]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - mm/khugepaged.c
dm rq: check blk_mq_register_dev() return value in dm_mq_init_request_queue()
[karo-tx-linux.git] / mm / khugepaged.c
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2
3 #include <linux/mm.h>
4 #include <linux/sched.h>
5 #include <linux/sched/mm.h>
6 #include <linux/sched/coredump.h>
7 #include <linux/mmu_notifier.h>
8 #include <linux/rmap.h>
9 #include <linux/swap.h>
10 #include <linux/mm_inline.h>
11 #include <linux/kthread.h>
12 #include <linux/khugepaged.h>
13 #include <linux/freezer.h>
14 #include <linux/mman.h>
15 #include <linux/hashtable.h>
16 #include <linux/userfaultfd_k.h>
17 #include <linux/page_idle.h>
18 #include <linux/swapops.h>
19 #include <linux/shmem_fs.h>
20
21 #include <asm/tlb.h>
22 #include <asm/pgalloc.h>
23 #include "internal.h"
24
25 enum scan_result {
26         SCAN_FAIL,
27         SCAN_SUCCEED,
28         SCAN_PMD_NULL,
29         SCAN_EXCEED_NONE_PTE,
30         SCAN_PTE_NON_PRESENT,
31         SCAN_PAGE_RO,
32         SCAN_LACK_REFERENCED_PAGE,
33         SCAN_PAGE_NULL,
34         SCAN_SCAN_ABORT,
35         SCAN_PAGE_COUNT,
36         SCAN_PAGE_LRU,
37         SCAN_PAGE_LOCK,
38         SCAN_PAGE_ANON,
39         SCAN_PAGE_COMPOUND,
40         SCAN_ANY_PROCESS,
41         SCAN_VMA_NULL,
42         SCAN_VMA_CHECK,
43         SCAN_ADDRESS_RANGE,
44         SCAN_SWAP_CACHE_PAGE,
45         SCAN_DEL_PAGE_LRU,
46         SCAN_ALLOC_HUGE_PAGE_FAIL,
47         SCAN_CGROUP_CHARGE_FAIL,
48         SCAN_EXCEED_SWAP_PTE,
49         SCAN_TRUNCATED,
50 };
51
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/huge_memory.h>
54
55 /* default scan 8*512 pte (or vmas) every 30 second */
56 static unsigned int khugepaged_pages_to_scan __read_mostly;
57 static unsigned int khugepaged_pages_collapsed;
58 static unsigned int khugepaged_full_scans;
59 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
60 /* during fragmentation poll the hugepage allocator once every minute */
61 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
62 static unsigned long khugepaged_sleep_expire;
63 static DEFINE_SPINLOCK(khugepaged_mm_lock);
64 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
65 /*
66  * default collapse hugepages if there is at least one pte mapped like
67  * it would have happened if the vma was large enough during page
68  * fault.
69  */
70 static unsigned int khugepaged_max_ptes_none __read_mostly;
71 static unsigned int khugepaged_max_ptes_swap __read_mostly;
72
73 #define MM_SLOTS_HASH_BITS 10
74 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
75
76 static struct kmem_cache *mm_slot_cache __read_mostly;
77
78 /**
79  * struct mm_slot - hash lookup from mm to mm_slot
80  * @hash: hash collision list
81  * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
82  * @mm: the mm that this information is valid for
83  */
84 struct mm_slot {
85         struct hlist_node hash;
86         struct list_head mm_node;
87         struct mm_struct *mm;
88 };
89
90 /**
91  * struct khugepaged_scan - cursor for scanning
92  * @mm_head: the head of the mm list to scan
93  * @mm_slot: the current mm_slot we are scanning
94  * @address: the next address inside that to be scanned
95  *
96  * There is only the one khugepaged_scan instance of this cursor structure.
97  */
98 struct khugepaged_scan {
99         struct list_head mm_head;
100         struct mm_slot *mm_slot;
101         unsigned long address;
102 };
103
104 static struct khugepaged_scan khugepaged_scan = {
105         .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
106 };
107
108 #ifdef CONFIG_SYSFS
109 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
110                                          struct kobj_attribute *attr,
111                                          char *buf)
112 {
113         return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
114 }
115
116 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
117                                           struct kobj_attribute *attr,
118                                           const char *buf, size_t count)
119 {
120         unsigned long msecs;
121         int err;
122
123         err = kstrtoul(buf, 10, &msecs);
124         if (err || msecs > UINT_MAX)
125                 return -EINVAL;
126
127         khugepaged_scan_sleep_millisecs = msecs;
128         khugepaged_sleep_expire = 0;
129         wake_up_interruptible(&khugepaged_wait);
130
131         return count;
132 }
133 static struct kobj_attribute scan_sleep_millisecs_attr =
134         __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
135                scan_sleep_millisecs_store);
136
137 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
138                                           struct kobj_attribute *attr,
139                                           char *buf)
140 {
141         return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
142 }
143
144 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
145                                            struct kobj_attribute *attr,
146                                            const char *buf, size_t count)
147 {
148         unsigned long msecs;
149         int err;
150
151         err = kstrtoul(buf, 10, &msecs);
152         if (err || msecs > UINT_MAX)
153                 return -EINVAL;
154
155         khugepaged_alloc_sleep_millisecs = msecs;
156         khugepaged_sleep_expire = 0;
157         wake_up_interruptible(&khugepaged_wait);
158
159         return count;
160 }
161 static struct kobj_attribute alloc_sleep_millisecs_attr =
162         __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
163                alloc_sleep_millisecs_store);
164
165 static ssize_t pages_to_scan_show(struct kobject *kobj,
166                                   struct kobj_attribute *attr,
167                                   char *buf)
168 {
169         return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
170 }
171 static ssize_t pages_to_scan_store(struct kobject *kobj,
172                                    struct kobj_attribute *attr,
173                                    const char *buf, size_t count)
174 {
175         int err;
176         unsigned long pages;
177
178         err = kstrtoul(buf, 10, &pages);
179         if (err || !pages || pages > UINT_MAX)
180                 return -EINVAL;
181
182         khugepaged_pages_to_scan = pages;
183
184         return count;
185 }
186 static struct kobj_attribute pages_to_scan_attr =
187         __ATTR(pages_to_scan, 0644, pages_to_scan_show,
188                pages_to_scan_store);
189
190 static ssize_t pages_collapsed_show(struct kobject *kobj,
191                                     struct kobj_attribute *attr,
192                                     char *buf)
193 {
194         return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
195 }
196 static struct kobj_attribute pages_collapsed_attr =
197         __ATTR_RO(pages_collapsed);
198
199 static ssize_t full_scans_show(struct kobject *kobj,
200                                struct kobj_attribute *attr,
201                                char *buf)
202 {
203         return sprintf(buf, "%u\n", khugepaged_full_scans);
204 }
205 static struct kobj_attribute full_scans_attr =
206         __ATTR_RO(full_scans);
207
208 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
209                                       struct kobj_attribute *attr, char *buf)
210 {
211         return single_hugepage_flag_show(kobj, attr, buf,
212                                 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
213 }
214 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
215                                        struct kobj_attribute *attr,
216                                        const char *buf, size_t count)
217 {
218         return single_hugepage_flag_store(kobj, attr, buf, count,
219                                  TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
220 }
221 static struct kobj_attribute khugepaged_defrag_attr =
222         __ATTR(defrag, 0644, khugepaged_defrag_show,
223                khugepaged_defrag_store);
224
225 /*
226  * max_ptes_none controls if khugepaged should collapse hugepages over
227  * any unmapped ptes in turn potentially increasing the memory
228  * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
229  * reduce the available free memory in the system as it
230  * runs. Increasing max_ptes_none will instead potentially reduce the
231  * free memory in the system during the khugepaged scan.
232  */
233 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
234                                              struct kobj_attribute *attr,
235                                              char *buf)
236 {
237         return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
238 }
239 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
240                                               struct kobj_attribute *attr,
241                                               const char *buf, size_t count)
242 {
243         int err;
244         unsigned long max_ptes_none;
245
246         err = kstrtoul(buf, 10, &max_ptes_none);
247         if (err || max_ptes_none > HPAGE_PMD_NR-1)
248                 return -EINVAL;
249
250         khugepaged_max_ptes_none = max_ptes_none;
251
252         return count;
253 }
254 static struct kobj_attribute khugepaged_max_ptes_none_attr =
255         __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
256                khugepaged_max_ptes_none_store);
257
258 static ssize_t khugepaged_max_ptes_swap_show(struct kobject *kobj,
259                                              struct kobj_attribute *attr,
260                                              char *buf)
261 {
262         return sprintf(buf, "%u\n", khugepaged_max_ptes_swap);
263 }
264
265 static ssize_t khugepaged_max_ptes_swap_store(struct kobject *kobj,
266                                               struct kobj_attribute *attr,
267                                               const char *buf, size_t count)
268 {
269         int err;
270         unsigned long max_ptes_swap;
271
272         err  = kstrtoul(buf, 10, &max_ptes_swap);
273         if (err || max_ptes_swap > HPAGE_PMD_NR-1)
274                 return -EINVAL;
275
276         khugepaged_max_ptes_swap = max_ptes_swap;
277
278         return count;
279 }
280
281 static struct kobj_attribute khugepaged_max_ptes_swap_attr =
282         __ATTR(max_ptes_swap, 0644, khugepaged_max_ptes_swap_show,
283                khugepaged_max_ptes_swap_store);
284
285 static struct attribute *khugepaged_attr[] = {
286         &khugepaged_defrag_attr.attr,
287         &khugepaged_max_ptes_none_attr.attr,
288         &pages_to_scan_attr.attr,
289         &pages_collapsed_attr.attr,
290         &full_scans_attr.attr,
291         &scan_sleep_millisecs_attr.attr,
292         &alloc_sleep_millisecs_attr.attr,
293         &khugepaged_max_ptes_swap_attr.attr,
294         NULL,
295 };
296
297 struct attribute_group khugepaged_attr_group = {
298         .attrs = khugepaged_attr,
299         .name = "khugepaged",
300 };
301 #endif /* CONFIG_SYSFS */
302
303 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
304
305 int hugepage_madvise(struct vm_area_struct *vma,
306                      unsigned long *vm_flags, int advice)
307 {
308         switch (advice) {
309         case MADV_HUGEPAGE:
310 #ifdef CONFIG_S390
311                 /*
312                  * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
313                  * can't handle this properly after s390_enable_sie, so we simply
314                  * ignore the madvise to prevent qemu from causing a SIGSEGV.
315                  */
316                 if (mm_has_pgste(vma->vm_mm))
317                         return 0;
318 #endif
319                 *vm_flags &= ~VM_NOHUGEPAGE;
320                 *vm_flags |= VM_HUGEPAGE;
321                 /*
322                  * If the vma become good for khugepaged to scan,
323                  * register it here without waiting a page fault that
324                  * may not happen any time soon.
325                  */
326                 if (!(*vm_flags & VM_NO_KHUGEPAGED) &&
327                                 khugepaged_enter_vma_merge(vma, *vm_flags))
328                         return -ENOMEM;
329                 break;
330         case MADV_NOHUGEPAGE:
331                 *vm_flags &= ~VM_HUGEPAGE;
332                 *vm_flags |= VM_NOHUGEPAGE;
333                 /*
334                  * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
335                  * this vma even if we leave the mm registered in khugepaged if
336                  * it got registered before VM_NOHUGEPAGE was set.
337                  */
338                 break;
339         }
340
341         return 0;
342 }
343
344 int __init khugepaged_init(void)
345 {
346         mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
347                                           sizeof(struct mm_slot),
348                                           __alignof__(struct mm_slot), 0, NULL);
349         if (!mm_slot_cache)
350                 return -ENOMEM;
351
352         khugepaged_pages_to_scan = HPAGE_PMD_NR * 8;
353         khugepaged_max_ptes_none = HPAGE_PMD_NR - 1;
354         khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8;
355
356         return 0;
357 }
358
359 void __init khugepaged_destroy(void)
360 {
361         kmem_cache_destroy(mm_slot_cache);
362 }
363
364 static inline struct mm_slot *alloc_mm_slot(void)
365 {
366         if (!mm_slot_cache)     /* initialization failed */
367                 return NULL;
368         return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
369 }
370
371 static inline void free_mm_slot(struct mm_slot *mm_slot)
372 {
373         kmem_cache_free(mm_slot_cache, mm_slot);
374 }
375
376 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
377 {
378         struct mm_slot *mm_slot;
379
380         hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
381                 if (mm == mm_slot->mm)
382                         return mm_slot;
383
384         return NULL;
385 }
386
387 static void insert_to_mm_slots_hash(struct mm_struct *mm,
388                                     struct mm_slot *mm_slot)
389 {
390         mm_slot->mm = mm;
391         hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
392 }
393
394 static inline int khugepaged_test_exit(struct mm_struct *mm)
395 {
396         return atomic_read(&mm->mm_users) == 0;
397 }
398
399 int __khugepaged_enter(struct mm_struct *mm)
400 {
401         struct mm_slot *mm_slot;
402         int wakeup;
403
404         mm_slot = alloc_mm_slot();
405         if (!mm_slot)
406                 return -ENOMEM;
407
408         /* __khugepaged_exit() must not run from under us */
409         VM_BUG_ON_MM(khugepaged_test_exit(mm), mm);
410         if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
411                 free_mm_slot(mm_slot);
412                 return 0;
413         }
414
415         spin_lock(&khugepaged_mm_lock);
416         insert_to_mm_slots_hash(mm, mm_slot);
417         /*
418          * Insert just behind the scanning cursor, to let the area settle
419          * down a little.
420          */
421         wakeup = list_empty(&khugepaged_scan.mm_head);
422         list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
423         spin_unlock(&khugepaged_mm_lock);
424
425         mmgrab(mm);
426         if (wakeup)
427                 wake_up_interruptible(&khugepaged_wait);
428
429         return 0;
430 }
431
432 int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
433                                unsigned long vm_flags)
434 {
435         unsigned long hstart, hend;
436         if (!vma->anon_vma)
437                 /*
438                  * Not yet faulted in so we will register later in the
439                  * page fault if needed.
440                  */
441                 return 0;
442         if (vma->vm_ops || (vm_flags & VM_NO_KHUGEPAGED))
443                 /* khugepaged not yet working on file or special mappings */
444                 return 0;
445         hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
446         hend = vma->vm_end & HPAGE_PMD_MASK;
447         if (hstart < hend)
448                 return khugepaged_enter(vma, vm_flags);
449         return 0;
450 }
451
452 void __khugepaged_exit(struct mm_struct *mm)
453 {
454         struct mm_slot *mm_slot;
455         int free = 0;
456
457         spin_lock(&khugepaged_mm_lock);
458         mm_slot = get_mm_slot(mm);
459         if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
460                 hash_del(&mm_slot->hash);
461                 list_del(&mm_slot->mm_node);
462                 free = 1;
463         }
464         spin_unlock(&khugepaged_mm_lock);
465
466         if (free) {
467                 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
468                 free_mm_slot(mm_slot);
469                 mmdrop(mm);
470         } else if (mm_slot) {
471                 /*
472                  * This is required to serialize against
473                  * khugepaged_test_exit() (which is guaranteed to run
474                  * under mmap sem read mode). Stop here (after we
475                  * return all pagetables will be destroyed) until
476                  * khugepaged has finished working on the pagetables
477                  * under the mmap_sem.
478                  */
479                 down_write(&mm->mmap_sem);
480                 up_write(&mm->mmap_sem);
481         }
482 }
483
484 static void release_pte_page(struct page *page)
485 {
486         /* 0 stands for page_is_file_cache(page) == false */
487         dec_node_page_state(page, NR_ISOLATED_ANON + 0);
488         unlock_page(page);
489         putback_lru_page(page);
490 }
491
492 static void release_pte_pages(pte_t *pte, pte_t *_pte)
493 {
494         while (--_pte >= pte) {
495                 pte_t pteval = *_pte;
496                 if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)))
497                         release_pte_page(pte_page(pteval));
498         }
499 }
500
501 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
502                                         unsigned long address,
503                                         pte_t *pte)
504 {
505         struct page *page = NULL;
506         pte_t *_pte;
507         int none_or_zero = 0, result = 0, referenced = 0;
508         bool writable = false;
509
510         for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
511              _pte++, address += PAGE_SIZE) {
512                 pte_t pteval = *_pte;
513                 if (pte_none(pteval) || (pte_present(pteval) &&
514                                 is_zero_pfn(pte_pfn(pteval)))) {
515                         if (!userfaultfd_armed(vma) &&
516                             ++none_or_zero <= khugepaged_max_ptes_none) {
517                                 continue;
518                         } else {
519                                 result = SCAN_EXCEED_NONE_PTE;
520                                 goto out;
521                         }
522                 }
523                 if (!pte_present(pteval)) {
524                         result = SCAN_PTE_NON_PRESENT;
525                         goto out;
526                 }
527                 page = vm_normal_page(vma, address, pteval);
528                 if (unlikely(!page)) {
529                         result = SCAN_PAGE_NULL;
530                         goto out;
531                 }
532
533                 VM_BUG_ON_PAGE(PageCompound(page), page);
534                 VM_BUG_ON_PAGE(!PageAnon(page), page);
535                 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
536
537                 /*
538                  * We can do it before isolate_lru_page because the
539                  * page can't be freed from under us. NOTE: PG_lock
540                  * is needed to serialize against split_huge_page
541                  * when invoked from the VM.
542                  */
543                 if (!trylock_page(page)) {
544                         result = SCAN_PAGE_LOCK;
545                         goto out;
546                 }
547
548                 /*
549                  * cannot use mapcount: can't collapse if there's a gup pin.
550                  * The page must only be referenced by the scanned process
551                  * and page swap cache.
552                  */
553                 if (page_count(page) != 1 + !!PageSwapCache(page)) {
554                         unlock_page(page);
555                         result = SCAN_PAGE_COUNT;
556                         goto out;
557                 }
558                 if (pte_write(pteval)) {
559                         writable = true;
560                 } else {
561                         if (PageSwapCache(page) &&
562                             !reuse_swap_page(page, NULL)) {
563                                 unlock_page(page);
564                                 result = SCAN_SWAP_CACHE_PAGE;
565                                 goto out;
566                         }
567                         /*
568                          * Page is not in the swap cache. It can be collapsed
569                          * into a THP.
570                          */
571                 }
572
573                 /*
574                  * Isolate the page to avoid collapsing an hugepage
575                  * currently in use by the VM.
576                  */
577                 if (isolate_lru_page(page)) {
578                         unlock_page(page);
579                         result = SCAN_DEL_PAGE_LRU;
580                         goto out;
581                 }
582                 /* 0 stands for page_is_file_cache(page) == false */
583                 inc_node_page_state(page, NR_ISOLATED_ANON + 0);
584                 VM_BUG_ON_PAGE(!PageLocked(page), page);
585                 VM_BUG_ON_PAGE(PageLRU(page), page);
586
587                 /* There should be enough young pte to collapse the page */
588                 if (pte_young(pteval) ||
589                     page_is_young(page) || PageReferenced(page) ||
590                     mmu_notifier_test_young(vma->vm_mm, address))
591                         referenced++;
592         }
593         if (likely(writable)) {
594                 if (likely(referenced)) {
595                         result = SCAN_SUCCEED;
596                         trace_mm_collapse_huge_page_isolate(page, none_or_zero,
597                                                             referenced, writable, result);
598                         return 1;
599                 }
600         } else {
601                 result = SCAN_PAGE_RO;
602         }
603
604 out:
605         release_pte_pages(pte, _pte);
606         trace_mm_collapse_huge_page_isolate(page, none_or_zero,
607                                             referenced, writable, result);
608         return 0;
609 }
610
611 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
612                                       struct vm_area_struct *vma,
613                                       unsigned long address,
614                                       spinlock_t *ptl)
615 {
616         pte_t *_pte;
617         for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
618                 pte_t pteval = *_pte;
619                 struct page *src_page;
620
621                 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
622                         clear_user_highpage(page, address);
623                         add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
624                         if (is_zero_pfn(pte_pfn(pteval))) {
625                                 /*
626                                  * ptl mostly unnecessary.
627                                  */
628                                 spin_lock(ptl);
629                                 /*
630                                  * paravirt calls inside pte_clear here are
631                                  * superfluous.
632                                  */
633                                 pte_clear(vma->vm_mm, address, _pte);
634                                 spin_unlock(ptl);
635                         }
636                 } else {
637                         src_page = pte_page(pteval);
638                         copy_user_highpage(page, src_page, address, vma);
639                         VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
640                         release_pte_page(src_page);
641                         /*
642                          * ptl mostly unnecessary, but preempt has to
643                          * be disabled to update the per-cpu stats
644                          * inside page_remove_rmap().
645                          */
646                         spin_lock(ptl);
647                         /*
648                          * paravirt calls inside pte_clear here are
649                          * superfluous.
650                          */
651                         pte_clear(vma->vm_mm, address, _pte);
652                         page_remove_rmap(src_page, false);
653                         spin_unlock(ptl);
654                         free_page_and_swap_cache(src_page);
655                 }
656
657                 address += PAGE_SIZE;
658                 page++;
659         }
660 }
661
662 static void khugepaged_alloc_sleep(void)
663 {
664         DEFINE_WAIT(wait);
665
666         add_wait_queue(&khugepaged_wait, &wait);
667         freezable_schedule_timeout_interruptible(
668                 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
669         remove_wait_queue(&khugepaged_wait, &wait);
670 }
671
672 static int khugepaged_node_load[MAX_NUMNODES];
673
674 static bool khugepaged_scan_abort(int nid)
675 {
676         int i;
677
678         /*
679          * If node_reclaim_mode is disabled, then no extra effort is made to
680          * allocate memory locally.
681          */
682         if (!node_reclaim_mode)
683                 return false;
684
685         /* If there is a count for this node already, it must be acceptable */
686         if (khugepaged_node_load[nid])
687                 return false;
688
689         for (i = 0; i < MAX_NUMNODES; i++) {
690                 if (!khugepaged_node_load[i])
691                         continue;
692                 if (node_distance(nid, i) > RECLAIM_DISTANCE)
693                         return true;
694         }
695         return false;
696 }
697
698 /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */
699 static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void)
700 {
701         return khugepaged_defrag() ? GFP_TRANSHUGE : GFP_TRANSHUGE_LIGHT;
702 }
703
704 #ifdef CONFIG_NUMA
705 static int khugepaged_find_target_node(void)
706 {
707         static int last_khugepaged_target_node = NUMA_NO_NODE;
708         int nid, target_node = 0, max_value = 0;
709
710         /* find first node with max normal pages hit */
711         for (nid = 0; nid < MAX_NUMNODES; nid++)
712                 if (khugepaged_node_load[nid] > max_value) {
713                         max_value = khugepaged_node_load[nid];
714                         target_node = nid;
715                 }
716
717         /* do some balance if several nodes have the same hit record */
718         if (target_node <= last_khugepaged_target_node)
719                 for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
720                                 nid++)
721                         if (max_value == khugepaged_node_load[nid]) {
722                                 target_node = nid;
723                                 break;
724                         }
725
726         last_khugepaged_target_node = target_node;
727         return target_node;
728 }
729
730 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
731 {
732         if (IS_ERR(*hpage)) {
733                 if (!*wait)
734                         return false;
735
736                 *wait = false;
737                 *hpage = NULL;
738                 khugepaged_alloc_sleep();
739         } else if (*hpage) {
740                 put_page(*hpage);
741                 *hpage = NULL;
742         }
743
744         return true;
745 }
746
747 static struct page *
748 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node)
749 {
750         VM_BUG_ON_PAGE(*hpage, *hpage);
751
752         *hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER);
753         if (unlikely(!*hpage)) {
754                 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
755                 *hpage = ERR_PTR(-ENOMEM);
756                 return NULL;
757         }
758
759         prep_transhuge_page(*hpage);
760         count_vm_event(THP_COLLAPSE_ALLOC);
761         return *hpage;
762 }
763 #else
764 static int khugepaged_find_target_node(void)
765 {
766         return 0;
767 }
768
769 static inline struct page *alloc_khugepaged_hugepage(void)
770 {
771         struct page *page;
772
773         page = alloc_pages(alloc_hugepage_khugepaged_gfpmask(),
774                            HPAGE_PMD_ORDER);
775         if (page)
776                 prep_transhuge_page(page);
777         return page;
778 }
779
780 static struct page *khugepaged_alloc_hugepage(bool *wait)
781 {
782         struct page *hpage;
783
784         do {
785                 hpage = alloc_khugepaged_hugepage();
786                 if (!hpage) {
787                         count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
788                         if (!*wait)
789                                 return NULL;
790
791                         *wait = false;
792                         khugepaged_alloc_sleep();
793                 } else
794                         count_vm_event(THP_COLLAPSE_ALLOC);
795         } while (unlikely(!hpage) && likely(khugepaged_enabled()));
796
797         return hpage;
798 }
799
800 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
801 {
802         if (!*hpage)
803                 *hpage = khugepaged_alloc_hugepage(wait);
804
805         if (unlikely(!*hpage))
806                 return false;
807
808         return true;
809 }
810
811 static struct page *
812 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node)
813 {
814         VM_BUG_ON(!*hpage);
815
816         return  *hpage;
817 }
818 #endif
819
820 static bool hugepage_vma_check(struct vm_area_struct *vma)
821 {
822         if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
823             (vma->vm_flags & VM_NOHUGEPAGE))
824                 return false;
825         if (shmem_file(vma->vm_file)) {
826                 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
827                         return false;
828                 return IS_ALIGNED((vma->vm_start >> PAGE_SHIFT) - vma->vm_pgoff,
829                                 HPAGE_PMD_NR);
830         }
831         if (!vma->anon_vma || vma->vm_ops)
832                 return false;
833         if (is_vma_temporary_stack(vma))
834                 return false;
835         return !(vma->vm_flags & VM_NO_KHUGEPAGED);
836 }
837
838 /*
839  * If mmap_sem temporarily dropped, revalidate vma
840  * before taking mmap_sem.
841  * Return 0 if succeeds, otherwise return none-zero
842  * value (scan code).
843  */
844
845 static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address,
846                 struct vm_area_struct **vmap)
847 {
848         struct vm_area_struct *vma;
849         unsigned long hstart, hend;
850
851         if (unlikely(khugepaged_test_exit(mm)))
852                 return SCAN_ANY_PROCESS;
853
854         *vmap = vma = find_vma(mm, address);
855         if (!vma)
856                 return SCAN_VMA_NULL;
857
858         hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
859         hend = vma->vm_end & HPAGE_PMD_MASK;
860         if (address < hstart || address + HPAGE_PMD_SIZE > hend)
861                 return SCAN_ADDRESS_RANGE;
862         if (!hugepage_vma_check(vma))
863                 return SCAN_VMA_CHECK;
864         return 0;
865 }
866
867 /*
868  * Bring missing pages in from swap, to complete THP collapse.
869  * Only done if khugepaged_scan_pmd believes it is worthwhile.
870  *
871  * Called and returns without pte mapped or spinlocks held,
872  * but with mmap_sem held to protect against vma changes.
873  */
874
875 static bool __collapse_huge_page_swapin(struct mm_struct *mm,
876                                         struct vm_area_struct *vma,
877                                         unsigned long address, pmd_t *pmd,
878                                         int referenced)
879 {
880         int swapped_in = 0, ret = 0;
881         struct vm_fault vmf = {
882                 .vma = vma,
883                 .address = address,
884                 .flags = FAULT_FLAG_ALLOW_RETRY,
885                 .pmd = pmd,
886                 .pgoff = linear_page_index(vma, address),
887         };
888
889         /* we only decide to swapin, if there is enough young ptes */
890         if (referenced < HPAGE_PMD_NR/2) {
891                 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
892                 return false;
893         }
894         vmf.pte = pte_offset_map(pmd, address);
895         for (; vmf.address < address + HPAGE_PMD_NR*PAGE_SIZE;
896                         vmf.pte++, vmf.address += PAGE_SIZE) {
897                 vmf.orig_pte = *vmf.pte;
898                 if (!is_swap_pte(vmf.orig_pte))
899                         continue;
900                 swapped_in++;
901                 ret = do_swap_page(&vmf);
902
903                 /* do_swap_page returns VM_FAULT_RETRY with released mmap_sem */
904                 if (ret & VM_FAULT_RETRY) {
905                         down_read(&mm->mmap_sem);
906                         if (hugepage_vma_revalidate(mm, address, &vmf.vma)) {
907                                 /* vma is no longer available, don't continue to swapin */
908                                 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
909                                 return false;
910                         }
911                         /* check if the pmd is still valid */
912                         if (mm_find_pmd(mm, address) != pmd)
913                                 return false;
914                 }
915                 if (ret & VM_FAULT_ERROR) {
916                         trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
917                         return false;
918                 }
919                 /* pte is unmapped now, we need to map it */
920                 vmf.pte = pte_offset_map(pmd, vmf.address);
921         }
922         vmf.pte--;
923         pte_unmap(vmf.pte);
924         trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 1);
925         return true;
926 }
927
928 static void collapse_huge_page(struct mm_struct *mm,
929                                    unsigned long address,
930                                    struct page **hpage,
931                                    int node, int referenced)
932 {
933         pmd_t *pmd, _pmd;
934         pte_t *pte;
935         pgtable_t pgtable;
936         struct page *new_page;
937         spinlock_t *pmd_ptl, *pte_ptl;
938         int isolated = 0, result = 0;
939         struct mem_cgroup *memcg;
940         struct vm_area_struct *vma;
941         unsigned long mmun_start;       /* For mmu_notifiers */
942         unsigned long mmun_end;         /* For mmu_notifiers */
943         gfp_t gfp;
944
945         VM_BUG_ON(address & ~HPAGE_PMD_MASK);
946
947         /* Only allocate from the target node */
948         gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE;
949
950         /*
951          * Before allocating the hugepage, release the mmap_sem read lock.
952          * The allocation can take potentially a long time if it involves
953          * sync compaction, and we do not need to hold the mmap_sem during
954          * that. We will recheck the vma after taking it again in write mode.
955          */
956         up_read(&mm->mmap_sem);
957         new_page = khugepaged_alloc_page(hpage, gfp, node);
958         if (!new_page) {
959                 result = SCAN_ALLOC_HUGE_PAGE_FAIL;
960                 goto out_nolock;
961         }
962
963         if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp, &memcg, true))) {
964                 result = SCAN_CGROUP_CHARGE_FAIL;
965                 goto out_nolock;
966         }
967
968         down_read(&mm->mmap_sem);
969         result = hugepage_vma_revalidate(mm, address, &vma);
970         if (result) {
971                 mem_cgroup_cancel_charge(new_page, memcg, true);
972                 up_read(&mm->mmap_sem);
973                 goto out_nolock;
974         }
975
976         pmd = mm_find_pmd(mm, address);
977         if (!pmd) {
978                 result = SCAN_PMD_NULL;
979                 mem_cgroup_cancel_charge(new_page, memcg, true);
980                 up_read(&mm->mmap_sem);
981                 goto out_nolock;
982         }
983
984         /*
985          * __collapse_huge_page_swapin always returns with mmap_sem locked.
986          * If it fails, we release mmap_sem and jump out_nolock.
987          * Continuing to collapse causes inconsistency.
988          */
989         if (!__collapse_huge_page_swapin(mm, vma, address, pmd, referenced)) {
990                 mem_cgroup_cancel_charge(new_page, memcg, true);
991                 up_read(&mm->mmap_sem);
992                 goto out_nolock;
993         }
994
995         up_read(&mm->mmap_sem);
996         /*
997          * Prevent all access to pagetables with the exception of
998          * gup_fast later handled by the ptep_clear_flush and the VM
999          * handled by the anon_vma lock + PG_lock.
1000          */
1001         down_write(&mm->mmap_sem);
1002         result = hugepage_vma_revalidate(mm, address, &vma);
1003         if (result)
1004                 goto out;
1005         /* check if the pmd is still valid */
1006         if (mm_find_pmd(mm, address) != pmd)
1007                 goto out;
1008
1009         anon_vma_lock_write(vma->anon_vma);
1010
1011         pte = pte_offset_map(pmd, address);
1012         pte_ptl = pte_lockptr(mm, pmd);
1013
1014         mmun_start = address;
1015         mmun_end   = address + HPAGE_PMD_SIZE;
1016         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1017         pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
1018         /*
1019          * After this gup_fast can't run anymore. This also removes
1020          * any huge TLB entry from the CPU so we won't allow
1021          * huge and small TLB entries for the same virtual address
1022          * to avoid the risk of CPU bugs in that area.
1023          */
1024         _pmd = pmdp_collapse_flush(vma, address, pmd);
1025         spin_unlock(pmd_ptl);
1026         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1027
1028         spin_lock(pte_ptl);
1029         isolated = __collapse_huge_page_isolate(vma, address, pte);
1030         spin_unlock(pte_ptl);
1031
1032         if (unlikely(!isolated)) {
1033                 pte_unmap(pte);
1034                 spin_lock(pmd_ptl);
1035                 BUG_ON(!pmd_none(*pmd));
1036                 /*
1037                  * We can only use set_pmd_at when establishing
1038                  * hugepmds and never for establishing regular pmds that
1039                  * points to regular pagetables. Use pmd_populate for that
1040                  */
1041                 pmd_populate(mm, pmd, pmd_pgtable(_pmd));
1042                 spin_unlock(pmd_ptl);
1043                 anon_vma_unlock_write(vma->anon_vma);
1044                 result = SCAN_FAIL;
1045                 goto out;
1046         }
1047
1048         /*
1049          * All pages are isolated and locked so anon_vma rmap
1050          * can't run anymore.
1051          */
1052         anon_vma_unlock_write(vma->anon_vma);
1053
1054         __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
1055         pte_unmap(pte);
1056         __SetPageUptodate(new_page);
1057         pgtable = pmd_pgtable(_pmd);
1058
1059         _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
1060         _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
1061
1062         /*
1063          * spin_lock() below is not the equivalent of smp_wmb(), so
1064          * this is needed to avoid the copy_huge_page writes to become
1065          * visible after the set_pmd_at() write.
1066          */
1067         smp_wmb();
1068
1069         spin_lock(pmd_ptl);
1070         BUG_ON(!pmd_none(*pmd));
1071         page_add_new_anon_rmap(new_page, vma, address, true);
1072         mem_cgroup_commit_charge(new_page, memcg, false, true);
1073         lru_cache_add_active_or_unevictable(new_page, vma);
1074         pgtable_trans_huge_deposit(mm, pmd, pgtable);
1075         set_pmd_at(mm, address, pmd, _pmd);
1076         update_mmu_cache_pmd(vma, address, pmd);
1077         spin_unlock(pmd_ptl);
1078
1079         *hpage = NULL;
1080
1081         khugepaged_pages_collapsed++;
1082         result = SCAN_SUCCEED;
1083 out_up_write:
1084         up_write(&mm->mmap_sem);
1085 out_nolock:
1086         trace_mm_collapse_huge_page(mm, isolated, result);
1087         return;
1088 out:
1089         mem_cgroup_cancel_charge(new_page, memcg, true);
1090         goto out_up_write;
1091 }
1092
1093 static int khugepaged_scan_pmd(struct mm_struct *mm,
1094                                struct vm_area_struct *vma,
1095                                unsigned long address,
1096                                struct page **hpage)
1097 {
1098         pmd_t *pmd;
1099         pte_t *pte, *_pte;
1100         int ret = 0, none_or_zero = 0, result = 0, referenced = 0;
1101         struct page *page = NULL;
1102         unsigned long _address;
1103         spinlock_t *ptl;
1104         int node = NUMA_NO_NODE, unmapped = 0;
1105         bool writable = false;
1106
1107         VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1108
1109         pmd = mm_find_pmd(mm, address);
1110         if (!pmd) {
1111                 result = SCAN_PMD_NULL;
1112                 goto out;
1113         }
1114
1115         memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
1116         pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1117         for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
1118              _pte++, _address += PAGE_SIZE) {
1119                 pte_t pteval = *_pte;
1120                 if (is_swap_pte(pteval)) {
1121                         if (++unmapped <= khugepaged_max_ptes_swap) {
1122                                 continue;
1123                         } else {
1124                                 result = SCAN_EXCEED_SWAP_PTE;
1125                                 goto out_unmap;
1126                         }
1127                 }
1128                 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
1129                         if (!userfaultfd_armed(vma) &&
1130                             ++none_or_zero <= khugepaged_max_ptes_none) {
1131                                 continue;
1132                         } else {
1133                                 result = SCAN_EXCEED_NONE_PTE;
1134                                 goto out_unmap;
1135                         }
1136                 }
1137                 if (!pte_present(pteval)) {
1138                         result = SCAN_PTE_NON_PRESENT;
1139                         goto out_unmap;
1140                 }
1141                 if (pte_write(pteval))
1142                         writable = true;
1143
1144                 page = vm_normal_page(vma, _address, pteval);
1145                 if (unlikely(!page)) {
1146                         result = SCAN_PAGE_NULL;
1147                         goto out_unmap;
1148                 }
1149
1150                 /* TODO: teach khugepaged to collapse THP mapped with pte */
1151                 if (PageCompound(page)) {
1152                         result = SCAN_PAGE_COMPOUND;
1153                         goto out_unmap;
1154                 }
1155
1156                 /*
1157                  * Record which node the original page is from and save this
1158                  * information to khugepaged_node_load[].
1159                  * Khupaged will allocate hugepage from the node has the max
1160                  * hit record.
1161                  */
1162                 node = page_to_nid(page);
1163                 if (khugepaged_scan_abort(node)) {
1164                         result = SCAN_SCAN_ABORT;
1165                         goto out_unmap;
1166                 }
1167                 khugepaged_node_load[node]++;
1168                 if (!PageLRU(page)) {
1169                         result = SCAN_PAGE_LRU;
1170                         goto out_unmap;
1171                 }
1172                 if (PageLocked(page)) {
1173                         result = SCAN_PAGE_LOCK;
1174                         goto out_unmap;
1175                 }
1176                 if (!PageAnon(page)) {
1177                         result = SCAN_PAGE_ANON;
1178                         goto out_unmap;
1179                 }
1180
1181                 /*
1182                  * cannot use mapcount: can't collapse if there's a gup pin.
1183                  * The page must only be referenced by the scanned process
1184                  * and page swap cache.
1185                  */
1186                 if (page_count(page) != 1 + !!PageSwapCache(page)) {
1187                         result = SCAN_PAGE_COUNT;
1188                         goto out_unmap;
1189                 }
1190                 if (pte_young(pteval) ||
1191                     page_is_young(page) || PageReferenced(page) ||
1192                     mmu_notifier_test_young(vma->vm_mm, address))
1193                         referenced++;
1194         }
1195         if (writable) {
1196                 if (referenced) {
1197                         result = SCAN_SUCCEED;
1198                         ret = 1;
1199                 } else {
1200                         result = SCAN_LACK_REFERENCED_PAGE;
1201                 }
1202         } else {
1203                 result = SCAN_PAGE_RO;
1204         }
1205 out_unmap:
1206         pte_unmap_unlock(pte, ptl);
1207         if (ret) {
1208                 node = khugepaged_find_target_node();
1209                 /* collapse_huge_page will return with the mmap_sem released */
1210                 collapse_huge_page(mm, address, hpage, node, referenced);
1211         }
1212 out:
1213         trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced,
1214                                      none_or_zero, result, unmapped);
1215         return ret;
1216 }
1217
1218 static void collect_mm_slot(struct mm_slot *mm_slot)
1219 {
1220         struct mm_struct *mm = mm_slot->mm;
1221
1222         VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
1223
1224         if (khugepaged_test_exit(mm)) {
1225                 /* free mm_slot */
1226                 hash_del(&mm_slot->hash);
1227                 list_del(&mm_slot->mm_node);
1228
1229                 /*
1230                  * Not strictly needed because the mm exited already.
1231                  *
1232                  * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1233                  */
1234
1235                 /* khugepaged_mm_lock actually not necessary for the below */
1236                 free_mm_slot(mm_slot);
1237                 mmdrop(mm);
1238         }
1239 }
1240
1241 #if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
1242 static void retract_page_tables(struct address_space *mapping, pgoff_t pgoff)
1243 {
1244         struct vm_area_struct *vma;
1245         unsigned long addr;
1246         pmd_t *pmd, _pmd;
1247
1248         i_mmap_lock_write(mapping);
1249         vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1250                 /* probably overkill */
1251                 if (vma->anon_vma)
1252                         continue;
1253                 addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
1254                 if (addr & ~HPAGE_PMD_MASK)
1255                         continue;
1256                 if (vma->vm_end < addr + HPAGE_PMD_SIZE)
1257                         continue;
1258                 pmd = mm_find_pmd(vma->vm_mm, addr);
1259                 if (!pmd)
1260                         continue;
1261                 /*
1262                  * We need exclusive mmap_sem to retract page table.
1263                  * If trylock fails we would end up with pte-mapped THP after
1264                  * re-fault. Not ideal, but it's more important to not disturb
1265                  * the system too much.
1266                  */
1267                 if (down_write_trylock(&vma->vm_mm->mmap_sem)) {
1268                         spinlock_t *ptl = pmd_lock(vma->vm_mm, pmd);
1269                         /* assume page table is clear */
1270                         _pmd = pmdp_collapse_flush(vma, addr, pmd);
1271                         spin_unlock(ptl);
1272                         up_write(&vma->vm_mm->mmap_sem);
1273                         atomic_long_dec(&vma->vm_mm->nr_ptes);
1274                         pte_free(vma->vm_mm, pmd_pgtable(_pmd));
1275                 }
1276         }
1277         i_mmap_unlock_write(mapping);
1278 }
1279
1280 /**
1281  * collapse_shmem - collapse small tmpfs/shmem pages into huge one.
1282  *
1283  * Basic scheme is simple, details are more complex:
1284  *  - allocate and freeze a new huge page;
1285  *  - scan over radix tree replacing old pages the new one
1286  *    + swap in pages if necessary;
1287  *    + fill in gaps;
1288  *    + keep old pages around in case if rollback is required;
1289  *  - if replacing succeed:
1290  *    + copy data over;
1291  *    + free old pages;
1292  *    + unfreeze huge page;
1293  *  - if replacing failed;
1294  *    + put all pages back and unfreeze them;
1295  *    + restore gaps in the radix-tree;
1296  *    + free huge page;
1297  */
1298 static void collapse_shmem(struct mm_struct *mm,
1299                 struct address_space *mapping, pgoff_t start,
1300                 struct page **hpage, int node)
1301 {
1302         gfp_t gfp;
1303         struct page *page, *new_page, *tmp;
1304         struct mem_cgroup *memcg;
1305         pgoff_t index, end = start + HPAGE_PMD_NR;
1306         LIST_HEAD(pagelist);
1307         struct radix_tree_iter iter;
1308         void **slot;
1309         int nr_none = 0, result = SCAN_SUCCEED;
1310
1311         VM_BUG_ON(start & (HPAGE_PMD_NR - 1));
1312
1313         /* Only allocate from the target node */
1314         gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE;
1315
1316         new_page = khugepaged_alloc_page(hpage, gfp, node);
1317         if (!new_page) {
1318                 result = SCAN_ALLOC_HUGE_PAGE_FAIL;
1319                 goto out;
1320         }
1321
1322         if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp, &memcg, true))) {
1323                 result = SCAN_CGROUP_CHARGE_FAIL;
1324                 goto out;
1325         }
1326
1327         new_page->index = start;
1328         new_page->mapping = mapping;
1329         __SetPageSwapBacked(new_page);
1330         __SetPageLocked(new_page);
1331         BUG_ON(!page_ref_freeze(new_page, 1));
1332
1333
1334         /*
1335          * At this point the new_page is 'frozen' (page_count() is zero), locked
1336          * and not up-to-date. It's safe to insert it into radix tree, because
1337          * nobody would be able to map it or use it in other way until we
1338          * unfreeze it.
1339          */
1340
1341         index = start;
1342         spin_lock_irq(&mapping->tree_lock);
1343         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1344                 int n = min(iter.index, end) - index;
1345
1346                 /*
1347                  * Handle holes in the radix tree: charge it from shmem and
1348                  * insert relevant subpage of new_page into the radix-tree.
1349                  */
1350                 if (n && !shmem_charge(mapping->host, n)) {
1351                         result = SCAN_FAIL;
1352                         break;
1353                 }
1354                 nr_none += n;
1355                 for (; index < min(iter.index, end); index++) {
1356                         radix_tree_insert(&mapping->page_tree, index,
1357                                         new_page + (index % HPAGE_PMD_NR));
1358                 }
1359
1360                 /* We are done. */
1361                 if (index >= end)
1362                         break;
1363
1364                 page = radix_tree_deref_slot_protected(slot,
1365                                 &mapping->tree_lock);
1366                 if (radix_tree_exceptional_entry(page) || !PageUptodate(page)) {
1367                         spin_unlock_irq(&mapping->tree_lock);
1368                         /* swap in or instantiate fallocated page */
1369                         if (shmem_getpage(mapping->host, index, &page,
1370                                                 SGP_NOHUGE)) {
1371                                 result = SCAN_FAIL;
1372                                 goto tree_unlocked;
1373                         }
1374                         spin_lock_irq(&mapping->tree_lock);
1375                 } else if (trylock_page(page)) {
1376                         get_page(page);
1377                 } else {
1378                         result = SCAN_PAGE_LOCK;
1379                         break;
1380                 }
1381
1382                 /*
1383                  * The page must be locked, so we can drop the tree_lock
1384                  * without racing with truncate.
1385                  */
1386                 VM_BUG_ON_PAGE(!PageLocked(page), page);
1387                 VM_BUG_ON_PAGE(!PageUptodate(page), page);
1388                 VM_BUG_ON_PAGE(PageTransCompound(page), page);
1389
1390                 if (page_mapping(page) != mapping) {
1391                         result = SCAN_TRUNCATED;
1392                         goto out_unlock;
1393                 }
1394                 spin_unlock_irq(&mapping->tree_lock);
1395
1396                 if (isolate_lru_page(page)) {
1397                         result = SCAN_DEL_PAGE_LRU;
1398                         goto out_isolate_failed;
1399                 }
1400
1401                 if (page_mapped(page))
1402                         unmap_mapping_range(mapping, index << PAGE_SHIFT,
1403                                         PAGE_SIZE, 0);
1404
1405                 spin_lock_irq(&mapping->tree_lock);
1406
1407                 slot = radix_tree_lookup_slot(&mapping->page_tree, index);
1408                 VM_BUG_ON_PAGE(page != radix_tree_deref_slot_protected(slot,
1409                                         &mapping->tree_lock), page);
1410                 VM_BUG_ON_PAGE(page_mapped(page), page);
1411
1412                 /*
1413                  * The page is expected to have page_count() == 3:
1414                  *  - we hold a pin on it;
1415                  *  - one reference from radix tree;
1416                  *  - one from isolate_lru_page;
1417                  */
1418                 if (!page_ref_freeze(page, 3)) {
1419                         result = SCAN_PAGE_COUNT;
1420                         goto out_lru;
1421                 }
1422
1423                 /*
1424                  * Add the page to the list to be able to undo the collapse if
1425                  * something go wrong.
1426                  */
1427                 list_add_tail(&page->lru, &pagelist);
1428
1429                 /* Finally, replace with the new page. */
1430                 radix_tree_replace_slot(&mapping->page_tree, slot,
1431                                 new_page + (index % HPAGE_PMD_NR));
1432
1433                 slot = radix_tree_iter_resume(slot, &iter);
1434                 index++;
1435                 continue;
1436 out_lru:
1437                 spin_unlock_irq(&mapping->tree_lock);
1438                 putback_lru_page(page);
1439 out_isolate_failed:
1440                 unlock_page(page);
1441                 put_page(page);
1442                 goto tree_unlocked;
1443 out_unlock:
1444                 unlock_page(page);
1445                 put_page(page);
1446                 break;
1447         }
1448
1449         /*
1450          * Handle hole in radix tree at the end of the range.
1451          * This code only triggers if there's nothing in radix tree
1452          * beyond 'end'.
1453          */
1454         if (result == SCAN_SUCCEED && index < end) {
1455                 int n = end - index;
1456
1457                 if (!shmem_charge(mapping->host, n)) {
1458                         result = SCAN_FAIL;
1459                         goto tree_locked;
1460                 }
1461
1462                 for (; index < end; index++) {
1463                         radix_tree_insert(&mapping->page_tree, index,
1464                                         new_page + (index % HPAGE_PMD_NR));
1465                 }
1466                 nr_none += n;
1467         }
1468
1469 tree_locked:
1470         spin_unlock_irq(&mapping->tree_lock);
1471 tree_unlocked:
1472
1473         if (result == SCAN_SUCCEED) {
1474                 unsigned long flags;
1475                 struct zone *zone = page_zone(new_page);
1476
1477                 /*
1478                  * Replacing old pages with new one has succeed, now we need to
1479                  * copy the content and free old pages.
1480                  */
1481                 list_for_each_entry_safe(page, tmp, &pagelist, lru) {
1482                         copy_highpage(new_page + (page->index % HPAGE_PMD_NR),
1483                                         page);
1484                         list_del(&page->lru);
1485                         unlock_page(page);
1486                         page_ref_unfreeze(page, 1);
1487                         page->mapping = NULL;
1488                         ClearPageActive(page);
1489                         ClearPageUnevictable(page);
1490                         put_page(page);
1491                 }
1492
1493                 local_irq_save(flags);
1494                 __inc_node_page_state(new_page, NR_SHMEM_THPS);
1495                 if (nr_none) {
1496                         __mod_node_page_state(zone->zone_pgdat, NR_FILE_PAGES, nr_none);
1497                         __mod_node_page_state(zone->zone_pgdat, NR_SHMEM, nr_none);
1498                 }
1499                 local_irq_restore(flags);
1500
1501                 /*
1502                  * Remove pte page tables, so we can re-faulti
1503                  * the page as huge.
1504                  */
1505                 retract_page_tables(mapping, start);
1506
1507                 /* Everything is ready, let's unfreeze the new_page */
1508                 set_page_dirty(new_page);
1509                 SetPageUptodate(new_page);
1510                 page_ref_unfreeze(new_page, HPAGE_PMD_NR);
1511                 mem_cgroup_commit_charge(new_page, memcg, false, true);
1512                 lru_cache_add_anon(new_page);
1513                 unlock_page(new_page);
1514
1515                 *hpage = NULL;
1516         } else {
1517                 /* Something went wrong: rollback changes to the radix-tree */
1518                 shmem_uncharge(mapping->host, nr_none);
1519                 spin_lock_irq(&mapping->tree_lock);
1520                 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter,
1521                                 start) {
1522                         if (iter.index >= end)
1523                                 break;
1524                         page = list_first_entry_or_null(&pagelist,
1525                                         struct page, lru);
1526                         if (!page || iter.index < page->index) {
1527                                 if (!nr_none)
1528                                         break;
1529                                 nr_none--;
1530                                 /* Put holes back where they were */
1531                                 radix_tree_delete(&mapping->page_tree,
1532                                                   iter.index);
1533                                 continue;
1534                         }
1535
1536                         VM_BUG_ON_PAGE(page->index != iter.index, page);
1537
1538                         /* Unfreeze the page. */
1539                         list_del(&page->lru);
1540                         page_ref_unfreeze(page, 2);
1541                         radix_tree_replace_slot(&mapping->page_tree,
1542                                                 slot, page);
1543                         slot = radix_tree_iter_resume(slot, &iter);
1544                         spin_unlock_irq(&mapping->tree_lock);
1545                         putback_lru_page(page);
1546                         unlock_page(page);
1547                         spin_lock_irq(&mapping->tree_lock);
1548                 }
1549                 VM_BUG_ON(nr_none);
1550                 spin_unlock_irq(&mapping->tree_lock);
1551
1552                 /* Unfreeze new_page, caller would take care about freeing it */
1553                 page_ref_unfreeze(new_page, 1);
1554                 mem_cgroup_cancel_charge(new_page, memcg, true);
1555                 unlock_page(new_page);
1556                 new_page->mapping = NULL;
1557         }
1558 out:
1559         VM_BUG_ON(!list_empty(&pagelist));
1560         /* TODO: tracepoints */
1561 }
1562
1563 static void khugepaged_scan_shmem(struct mm_struct *mm,
1564                 struct address_space *mapping,
1565                 pgoff_t start, struct page **hpage)
1566 {
1567         struct page *page = NULL;
1568         struct radix_tree_iter iter;
1569         void **slot;
1570         int present, swap;
1571         int node = NUMA_NO_NODE;
1572         int result = SCAN_SUCCEED;
1573
1574         present = 0;
1575         swap = 0;
1576         memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
1577         rcu_read_lock();
1578         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1579                 if (iter.index >= start + HPAGE_PMD_NR)
1580                         break;
1581
1582                 page = radix_tree_deref_slot(slot);
1583                 if (radix_tree_deref_retry(page)) {
1584                         slot = radix_tree_iter_retry(&iter);
1585                         continue;
1586                 }
1587
1588                 if (radix_tree_exception(page)) {
1589                         if (++swap > khugepaged_max_ptes_swap) {
1590                                 result = SCAN_EXCEED_SWAP_PTE;
1591                                 break;
1592                         }
1593                         continue;
1594                 }
1595
1596                 if (PageTransCompound(page)) {
1597                         result = SCAN_PAGE_COMPOUND;
1598                         break;
1599                 }
1600
1601                 node = page_to_nid(page);
1602                 if (khugepaged_scan_abort(node)) {
1603                         result = SCAN_SCAN_ABORT;
1604                         break;
1605                 }
1606                 khugepaged_node_load[node]++;
1607
1608                 if (!PageLRU(page)) {
1609                         result = SCAN_PAGE_LRU;
1610                         break;
1611                 }
1612
1613                 if (page_count(page) != 1 + page_mapcount(page)) {
1614                         result = SCAN_PAGE_COUNT;
1615                         break;
1616                 }
1617
1618                 /*
1619                  * We probably should check if the page is referenced here, but
1620                  * nobody would transfer pte_young() to PageReferenced() for us.
1621                  * And rmap walk here is just too costly...
1622                  */
1623
1624                 present++;
1625
1626                 if (need_resched()) {
1627                         slot = radix_tree_iter_resume(slot, &iter);
1628                         cond_resched_rcu();
1629                 }
1630         }
1631         rcu_read_unlock();
1632
1633         if (result == SCAN_SUCCEED) {
1634                 if (present < HPAGE_PMD_NR - khugepaged_max_ptes_none) {
1635                         result = SCAN_EXCEED_NONE_PTE;
1636                 } else {
1637                         node = khugepaged_find_target_node();
1638                         collapse_shmem(mm, mapping, start, hpage, node);
1639                 }
1640         }
1641
1642         /* TODO: tracepoints */
1643 }
1644 #else
1645 static void khugepaged_scan_shmem(struct mm_struct *mm,
1646                 struct address_space *mapping,
1647                 pgoff_t start, struct page **hpage)
1648 {
1649         BUILD_BUG();
1650 }
1651 #endif
1652
1653 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
1654                                             struct page **hpage)
1655         __releases(&khugepaged_mm_lock)
1656         __acquires(&khugepaged_mm_lock)
1657 {
1658         struct mm_slot *mm_slot;
1659         struct mm_struct *mm;
1660         struct vm_area_struct *vma;
1661         int progress = 0;
1662
1663         VM_BUG_ON(!pages);
1664         VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
1665
1666         if (khugepaged_scan.mm_slot)
1667                 mm_slot = khugepaged_scan.mm_slot;
1668         else {
1669                 mm_slot = list_entry(khugepaged_scan.mm_head.next,
1670                                      struct mm_slot, mm_node);
1671                 khugepaged_scan.address = 0;
1672                 khugepaged_scan.mm_slot = mm_slot;
1673         }
1674         spin_unlock(&khugepaged_mm_lock);
1675
1676         mm = mm_slot->mm;
1677         down_read(&mm->mmap_sem);
1678         if (unlikely(khugepaged_test_exit(mm)))
1679                 vma = NULL;
1680         else
1681                 vma = find_vma(mm, khugepaged_scan.address);
1682
1683         progress++;
1684         for (; vma; vma = vma->vm_next) {
1685                 unsigned long hstart, hend;
1686
1687                 cond_resched();
1688                 if (unlikely(khugepaged_test_exit(mm))) {
1689                         progress++;
1690                         break;
1691                 }
1692                 if (!hugepage_vma_check(vma)) {
1693 skip:
1694                         progress++;
1695                         continue;
1696                 }
1697                 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1698                 hend = vma->vm_end & HPAGE_PMD_MASK;
1699                 if (hstart >= hend)
1700                         goto skip;
1701                 if (khugepaged_scan.address > hend)
1702                         goto skip;
1703                 if (khugepaged_scan.address < hstart)
1704                         khugepaged_scan.address = hstart;
1705                 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
1706
1707                 while (khugepaged_scan.address < hend) {
1708                         int ret;
1709                         cond_resched();
1710                         if (unlikely(khugepaged_test_exit(mm)))
1711                                 goto breakouterloop;
1712
1713                         VM_BUG_ON(khugepaged_scan.address < hstart ||
1714                                   khugepaged_scan.address + HPAGE_PMD_SIZE >
1715                                   hend);
1716                         if (shmem_file(vma->vm_file)) {
1717                                 struct file *file;
1718                                 pgoff_t pgoff = linear_page_index(vma,
1719                                                 khugepaged_scan.address);
1720                                 if (!shmem_huge_enabled(vma))
1721                                         goto skip;
1722                                 file = get_file(vma->vm_file);
1723                                 up_read(&mm->mmap_sem);
1724                                 ret = 1;
1725                                 khugepaged_scan_shmem(mm, file->f_mapping,
1726                                                 pgoff, hpage);
1727                                 fput(file);
1728                         } else {
1729                                 ret = khugepaged_scan_pmd(mm, vma,
1730                                                 khugepaged_scan.address,
1731                                                 hpage);
1732                         }
1733                         /* move to next address */
1734                         khugepaged_scan.address += HPAGE_PMD_SIZE;
1735                         progress += HPAGE_PMD_NR;
1736                         if (ret)
1737                                 /* we released mmap_sem so break loop */
1738                                 goto breakouterloop_mmap_sem;
1739                         if (progress >= pages)
1740                                 goto breakouterloop;
1741                 }
1742         }
1743 breakouterloop:
1744         up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
1745 breakouterloop_mmap_sem:
1746
1747         spin_lock(&khugepaged_mm_lock);
1748         VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
1749         /*
1750          * Release the current mm_slot if this mm is about to die, or
1751          * if we scanned all vmas of this mm.
1752          */
1753         if (khugepaged_test_exit(mm) || !vma) {
1754                 /*
1755                  * Make sure that if mm_users is reaching zero while
1756                  * khugepaged runs here, khugepaged_exit will find
1757                  * mm_slot not pointing to the exiting mm.
1758                  */
1759                 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
1760                         khugepaged_scan.mm_slot = list_entry(
1761                                 mm_slot->mm_node.next,
1762                                 struct mm_slot, mm_node);
1763                         khugepaged_scan.address = 0;
1764                 } else {
1765                         khugepaged_scan.mm_slot = NULL;
1766                         khugepaged_full_scans++;
1767                 }
1768
1769                 collect_mm_slot(mm_slot);
1770         }
1771
1772         return progress;
1773 }
1774
1775 static int khugepaged_has_work(void)
1776 {
1777         return !list_empty(&khugepaged_scan.mm_head) &&
1778                 khugepaged_enabled();
1779 }
1780
1781 static int khugepaged_wait_event(void)
1782 {
1783         return !list_empty(&khugepaged_scan.mm_head) ||
1784                 kthread_should_stop();
1785 }
1786
1787 static void khugepaged_do_scan(void)
1788 {
1789         struct page *hpage = NULL;
1790         unsigned int progress = 0, pass_through_head = 0;
1791         unsigned int pages = khugepaged_pages_to_scan;
1792         bool wait = true;
1793
1794         barrier(); /* write khugepaged_pages_to_scan to local stack */
1795
1796         while (progress < pages) {
1797                 if (!khugepaged_prealloc_page(&hpage, &wait))
1798                         break;
1799
1800                 cond_resched();
1801
1802                 if (unlikely(kthread_should_stop() || try_to_freeze()))
1803                         break;
1804
1805                 spin_lock(&khugepaged_mm_lock);
1806                 if (!khugepaged_scan.mm_slot)
1807                         pass_through_head++;
1808                 if (khugepaged_has_work() &&
1809                     pass_through_head < 2)
1810                         progress += khugepaged_scan_mm_slot(pages - progress,
1811                                                             &hpage);
1812                 else
1813                         progress = pages;
1814                 spin_unlock(&khugepaged_mm_lock);
1815         }
1816
1817         if (!IS_ERR_OR_NULL(hpage))
1818                 put_page(hpage);
1819 }
1820
1821 static bool khugepaged_should_wakeup(void)
1822 {
1823         return kthread_should_stop() ||
1824                time_after_eq(jiffies, khugepaged_sleep_expire);
1825 }
1826
1827 static void khugepaged_wait_work(void)
1828 {
1829         if (khugepaged_has_work()) {
1830                 const unsigned long scan_sleep_jiffies =
1831                         msecs_to_jiffies(khugepaged_scan_sleep_millisecs);
1832
1833                 if (!scan_sleep_jiffies)
1834                         return;
1835
1836                 khugepaged_sleep_expire = jiffies + scan_sleep_jiffies;
1837                 wait_event_freezable_timeout(khugepaged_wait,
1838                                              khugepaged_should_wakeup(),
1839                                              scan_sleep_jiffies);
1840                 return;
1841         }
1842
1843         if (khugepaged_enabled())
1844                 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
1845 }
1846
1847 static int khugepaged(void *none)
1848 {
1849         struct mm_slot *mm_slot;
1850
1851         set_freezable();
1852         set_user_nice(current, MAX_NICE);
1853
1854         while (!kthread_should_stop()) {
1855                 khugepaged_do_scan();
1856                 khugepaged_wait_work();
1857         }
1858
1859         spin_lock(&khugepaged_mm_lock);
1860         mm_slot = khugepaged_scan.mm_slot;
1861         khugepaged_scan.mm_slot = NULL;
1862         if (mm_slot)
1863                 collect_mm_slot(mm_slot);
1864         spin_unlock(&khugepaged_mm_lock);
1865         return 0;
1866 }
1867
1868 static void set_recommended_min_free_kbytes(void)
1869 {
1870         struct zone *zone;
1871         int nr_zones = 0;
1872         unsigned long recommended_min;
1873
1874         for_each_populated_zone(zone)
1875                 nr_zones++;
1876
1877         /* Ensure 2 pageblocks are free to assist fragmentation avoidance */
1878         recommended_min = pageblock_nr_pages * nr_zones * 2;
1879
1880         /*
1881          * Make sure that on average at least two pageblocks are almost free
1882          * of another type, one for a migratetype to fall back to and a
1883          * second to avoid subsequent fallbacks of other types There are 3
1884          * MIGRATE_TYPES we care about.
1885          */
1886         recommended_min += pageblock_nr_pages * nr_zones *
1887                            MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
1888
1889         /* don't ever allow to reserve more than 5% of the lowmem */
1890         recommended_min = min(recommended_min,
1891                               (unsigned long) nr_free_buffer_pages() / 20);
1892         recommended_min <<= (PAGE_SHIFT-10);
1893
1894         if (recommended_min > min_free_kbytes) {
1895                 if (user_min_free_kbytes >= 0)
1896                         pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n",
1897                                 min_free_kbytes, recommended_min);
1898
1899                 min_free_kbytes = recommended_min;
1900         }
1901         setup_per_zone_wmarks();
1902 }
1903
1904 int start_stop_khugepaged(void)
1905 {
1906         static struct task_struct *khugepaged_thread __read_mostly;
1907         static DEFINE_MUTEX(khugepaged_mutex);
1908         int err = 0;
1909
1910         mutex_lock(&khugepaged_mutex);
1911         if (khugepaged_enabled()) {
1912                 if (!khugepaged_thread)
1913                         khugepaged_thread = kthread_run(khugepaged, NULL,
1914                                                         "khugepaged");
1915                 if (IS_ERR(khugepaged_thread)) {
1916                         pr_err("khugepaged: kthread_run(khugepaged) failed\n");
1917                         err = PTR_ERR(khugepaged_thread);
1918                         khugepaged_thread = NULL;
1919                         goto fail;
1920                 }
1921
1922                 if (!list_empty(&khugepaged_scan.mm_head))
1923                         wake_up_interruptible(&khugepaged_wait);
1924
1925                 set_recommended_min_free_kbytes();
1926         } else if (khugepaged_thread) {
1927                 kthread_stop(khugepaged_thread);
1928                 khugepaged_thread = NULL;
1929         }
1930 fail:
1931         mutex_unlock(&khugepaged_mutex);
1932         return err;
1933 }