]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - mm/ksm.c
net: make struct dst_entry::dev first member
[karo-tx-linux.git] / mm / ksm.c
1 /*
2  * Memory merging support.
3  *
4  * This code enables dynamic sharing of identical pages found in different
5  * memory areas, even if they are not shared by fork()
6  *
7  * Copyright (C) 2008-2009 Red Hat, Inc.
8  * Authors:
9  *      Izik Eidus
10  *      Andrea Arcangeli
11  *      Chris Wright
12  *      Hugh Dickins
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.
15  */
16
17 #include <linux/errno.h>
18 #include <linux/mm.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/sched/mm.h>
23 #include <linux/sched/coredump.h>
24 #include <linux/rwsem.h>
25 #include <linux/pagemap.h>
26 #include <linux/rmap.h>
27 #include <linux/spinlock.h>
28 #include <linux/jhash.h>
29 #include <linux/delay.h>
30 #include <linux/kthread.h>
31 #include <linux/wait.h>
32 #include <linux/slab.h>
33 #include <linux/rbtree.h>
34 #include <linux/memory.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/swap.h>
37 #include <linux/ksm.h>
38 #include <linux/hashtable.h>
39 #include <linux/freezer.h>
40 #include <linux/oom.h>
41 #include <linux/numa.h>
42
43 #include <asm/tlbflush.h>
44 #include "internal.h"
45
46 #ifdef CONFIG_NUMA
47 #define NUMA(x)         (x)
48 #define DO_NUMA(x)      do { (x); } while (0)
49 #else
50 #define NUMA(x)         (0)
51 #define DO_NUMA(x)      do { } while (0)
52 #endif
53
54 /*
55  * A few notes about the KSM scanning process,
56  * to make it easier to understand the data structures below:
57  *
58  * In order to reduce excessive scanning, KSM sorts the memory pages by their
59  * contents into a data structure that holds pointers to the pages' locations.
60  *
61  * Since the contents of the pages may change at any moment, KSM cannot just
62  * insert the pages into a normal sorted tree and expect it to find anything.
63  * Therefore KSM uses two data structures - the stable and the unstable tree.
64  *
65  * The stable tree holds pointers to all the merged pages (ksm pages), sorted
66  * by their contents.  Because each such page is write-protected, searching on
67  * this tree is fully assured to be working (except when pages are unmapped),
68  * and therefore this tree is called the stable tree.
69  *
70  * In addition to the stable tree, KSM uses a second data structure called the
71  * unstable tree: this tree holds pointers to pages which have been found to
72  * be "unchanged for a period of time".  The unstable tree sorts these pages
73  * by their contents, but since they are not write-protected, KSM cannot rely
74  * upon the unstable tree to work correctly - the unstable tree is liable to
75  * be corrupted as its contents are modified, and so it is called unstable.
76  *
77  * KSM solves this problem by several techniques:
78  *
79  * 1) The unstable tree is flushed every time KSM completes scanning all
80  *    memory areas, and then the tree is rebuilt again from the beginning.
81  * 2) KSM will only insert into the unstable tree, pages whose hash value
82  *    has not changed since the previous scan of all memory areas.
83  * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
84  *    colors of the nodes and not on their contents, assuring that even when
85  *    the tree gets "corrupted" it won't get out of balance, so scanning time
86  *    remains the same (also, searching and inserting nodes in an rbtree uses
87  *    the same algorithm, so we have no overhead when we flush and rebuild).
88  * 4) KSM never flushes the stable tree, which means that even if it were to
89  *    take 10 attempts to find a page in the unstable tree, once it is found,
90  *    it is secured in the stable tree.  (When we scan a new page, we first
91  *    compare it against the stable tree, and then against the unstable tree.)
92  *
93  * If the merge_across_nodes tunable is unset, then KSM maintains multiple
94  * stable trees and multiple unstable trees: one of each for each NUMA node.
95  */
96
97 /**
98  * struct mm_slot - ksm information per mm that is being scanned
99  * @link: link to the mm_slots hash list
100  * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
101  * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
102  * @mm: the mm that this information is valid for
103  */
104 struct mm_slot {
105         struct hlist_node link;
106         struct list_head mm_list;
107         struct rmap_item *rmap_list;
108         struct mm_struct *mm;
109 };
110
111 /**
112  * struct ksm_scan - cursor for scanning
113  * @mm_slot: the current mm_slot we are scanning
114  * @address: the next address inside that to be scanned
115  * @rmap_list: link to the next rmap to be scanned in the rmap_list
116  * @seqnr: count of completed full scans (needed when removing unstable node)
117  *
118  * There is only the one ksm_scan instance of this cursor structure.
119  */
120 struct ksm_scan {
121         struct mm_slot *mm_slot;
122         unsigned long address;
123         struct rmap_item **rmap_list;
124         unsigned long seqnr;
125 };
126
127 /**
128  * struct stable_node - node of the stable rbtree
129  * @node: rb node of this ksm page in the stable tree
130  * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
131  * @list: linked into migrate_nodes, pending placement in the proper node tree
132  * @hlist: hlist head of rmap_items using this ksm page
133  * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
134  * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
135  */
136 struct stable_node {
137         union {
138                 struct rb_node node;    /* when node of stable tree */
139                 struct {                /* when listed for migration */
140                         struct list_head *head;
141                         struct list_head list;
142                 };
143         };
144         struct hlist_head hlist;
145         unsigned long kpfn;
146 #ifdef CONFIG_NUMA
147         int nid;
148 #endif
149 };
150
151 /**
152  * struct rmap_item - reverse mapping item for virtual addresses
153  * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
154  * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
155  * @nid: NUMA node id of unstable tree in which linked (may not match page)
156  * @mm: the memory structure this rmap_item is pointing into
157  * @address: the virtual address this rmap_item tracks (+ flags in low bits)
158  * @oldchecksum: previous checksum of the page at that virtual address
159  * @node: rb node of this rmap_item in the unstable tree
160  * @head: pointer to stable_node heading this list in the stable tree
161  * @hlist: link into hlist of rmap_items hanging off that stable_node
162  */
163 struct rmap_item {
164         struct rmap_item *rmap_list;
165         union {
166                 struct anon_vma *anon_vma;      /* when stable */
167 #ifdef CONFIG_NUMA
168                 int nid;                /* when node of unstable tree */
169 #endif
170         };
171         struct mm_struct *mm;
172         unsigned long address;          /* + low bits used for flags below */
173         unsigned int oldchecksum;       /* when unstable */
174         union {
175                 struct rb_node node;    /* when node of unstable tree */
176                 struct {                /* when listed from stable tree */
177                         struct stable_node *head;
178                         struct hlist_node hlist;
179                 };
180         };
181 };
182
183 #define SEQNR_MASK      0x0ff   /* low bits of unstable tree seqnr */
184 #define UNSTABLE_FLAG   0x100   /* is a node of the unstable tree */
185 #define STABLE_FLAG     0x200   /* is listed from the stable tree */
186
187 /* The stable and unstable tree heads */
188 static struct rb_root one_stable_tree[1] = { RB_ROOT };
189 static struct rb_root one_unstable_tree[1] = { RB_ROOT };
190 static struct rb_root *root_stable_tree = one_stable_tree;
191 static struct rb_root *root_unstable_tree = one_unstable_tree;
192
193 /* Recently migrated nodes of stable tree, pending proper placement */
194 static LIST_HEAD(migrate_nodes);
195
196 #define MM_SLOTS_HASH_BITS 10
197 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
198
199 static struct mm_slot ksm_mm_head = {
200         .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
201 };
202 static struct ksm_scan ksm_scan = {
203         .mm_slot = &ksm_mm_head,
204 };
205
206 static struct kmem_cache *rmap_item_cache;
207 static struct kmem_cache *stable_node_cache;
208 static struct kmem_cache *mm_slot_cache;
209
210 /* The number of nodes in the stable tree */
211 static unsigned long ksm_pages_shared;
212
213 /* The number of page slots additionally sharing those nodes */
214 static unsigned long ksm_pages_sharing;
215
216 /* The number of nodes in the unstable tree */
217 static unsigned long ksm_pages_unshared;
218
219 /* The number of rmap_items in use: to calculate pages_volatile */
220 static unsigned long ksm_rmap_items;
221
222 /* Number of pages ksmd should scan in one batch */
223 static unsigned int ksm_thread_pages_to_scan = 100;
224
225 /* Milliseconds ksmd should sleep between batches */
226 static unsigned int ksm_thread_sleep_millisecs = 20;
227
228 /* Checksum of an empty (zeroed) page */
229 static unsigned int zero_checksum __read_mostly;
230
231 /* Whether to merge empty (zeroed) pages with actual zero pages */
232 static bool ksm_use_zero_pages __read_mostly;
233
234 #ifdef CONFIG_NUMA
235 /* Zeroed when merging across nodes is not allowed */
236 static unsigned int ksm_merge_across_nodes = 1;
237 static int ksm_nr_node_ids = 1;
238 #else
239 #define ksm_merge_across_nodes  1U
240 #define ksm_nr_node_ids         1
241 #endif
242
243 #define KSM_RUN_STOP    0
244 #define KSM_RUN_MERGE   1
245 #define KSM_RUN_UNMERGE 2
246 #define KSM_RUN_OFFLINE 4
247 static unsigned long ksm_run = KSM_RUN_STOP;
248 static void wait_while_offlining(void);
249
250 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
251 static DEFINE_MUTEX(ksm_thread_mutex);
252 static DEFINE_SPINLOCK(ksm_mmlist_lock);
253
254 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
255                 sizeof(struct __struct), __alignof__(struct __struct),\
256                 (__flags), NULL)
257
258 static int __init ksm_slab_init(void)
259 {
260         rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
261         if (!rmap_item_cache)
262                 goto out;
263
264         stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
265         if (!stable_node_cache)
266                 goto out_free1;
267
268         mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
269         if (!mm_slot_cache)
270                 goto out_free2;
271
272         return 0;
273
274 out_free2:
275         kmem_cache_destroy(stable_node_cache);
276 out_free1:
277         kmem_cache_destroy(rmap_item_cache);
278 out:
279         return -ENOMEM;
280 }
281
282 static void __init ksm_slab_free(void)
283 {
284         kmem_cache_destroy(mm_slot_cache);
285         kmem_cache_destroy(stable_node_cache);
286         kmem_cache_destroy(rmap_item_cache);
287         mm_slot_cache = NULL;
288 }
289
290 static inline struct rmap_item *alloc_rmap_item(void)
291 {
292         struct rmap_item *rmap_item;
293
294         rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
295                                                 __GFP_NORETRY | __GFP_NOWARN);
296         if (rmap_item)
297                 ksm_rmap_items++;
298         return rmap_item;
299 }
300
301 static inline void free_rmap_item(struct rmap_item *rmap_item)
302 {
303         ksm_rmap_items--;
304         rmap_item->mm = NULL;   /* debug safety */
305         kmem_cache_free(rmap_item_cache, rmap_item);
306 }
307
308 static inline struct stable_node *alloc_stable_node(void)
309 {
310         /*
311          * The allocation can take too long with GFP_KERNEL when memory is under
312          * pressure, which may lead to hung task warnings.  Adding __GFP_HIGH
313          * grants access to memory reserves, helping to avoid this problem.
314          */
315         return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
316 }
317
318 static inline void free_stable_node(struct stable_node *stable_node)
319 {
320         kmem_cache_free(stable_node_cache, stable_node);
321 }
322
323 static inline struct mm_slot *alloc_mm_slot(void)
324 {
325         if (!mm_slot_cache)     /* initialization failed */
326                 return NULL;
327         return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
328 }
329
330 static inline void free_mm_slot(struct mm_slot *mm_slot)
331 {
332         kmem_cache_free(mm_slot_cache, mm_slot);
333 }
334
335 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
336 {
337         struct mm_slot *slot;
338
339         hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm)
340                 if (slot->mm == mm)
341                         return slot;
342
343         return NULL;
344 }
345
346 static void insert_to_mm_slots_hash(struct mm_struct *mm,
347                                     struct mm_slot *mm_slot)
348 {
349         mm_slot->mm = mm;
350         hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
351 }
352
353 /*
354  * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
355  * page tables after it has passed through ksm_exit() - which, if necessary,
356  * takes mmap_sem briefly to serialize against them.  ksm_exit() does not set
357  * a special flag: they can just back out as soon as mm_users goes to zero.
358  * ksm_test_exit() is used throughout to make this test for exit: in some
359  * places for correctness, in some places just to avoid unnecessary work.
360  */
361 static inline bool ksm_test_exit(struct mm_struct *mm)
362 {
363         return atomic_read(&mm->mm_users) == 0;
364 }
365
366 /*
367  * We use break_ksm to break COW on a ksm page: it's a stripped down
368  *
369  *      if (get_user_pages(addr, 1, 1, 1, &page, NULL) == 1)
370  *              put_page(page);
371  *
372  * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
373  * in case the application has unmapped and remapped mm,addr meanwhile.
374  * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
375  * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
376  *
377  * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context
378  * of the process that owns 'vma'.  We also do not want to enforce
379  * protection keys here anyway.
380  */
381 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
382 {
383         struct page *page;
384         int ret = 0;
385
386         do {
387                 cond_resched();
388                 page = follow_page(vma, addr,
389                                 FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE);
390                 if (IS_ERR_OR_NULL(page))
391                         break;
392                 if (PageKsm(page))
393                         ret = handle_mm_fault(vma, addr,
394                                         FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE);
395                 else
396                         ret = VM_FAULT_WRITE;
397                 put_page(page);
398         } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
399         /*
400          * We must loop because handle_mm_fault() may back out if there's
401          * any difficulty e.g. if pte accessed bit gets updated concurrently.
402          *
403          * VM_FAULT_WRITE is what we have been hoping for: it indicates that
404          * COW has been broken, even if the vma does not permit VM_WRITE;
405          * but note that a concurrent fault might break PageKsm for us.
406          *
407          * VM_FAULT_SIGBUS could occur if we race with truncation of the
408          * backing file, which also invalidates anonymous pages: that's
409          * okay, that truncation will have unmapped the PageKsm for us.
410          *
411          * VM_FAULT_OOM: at the time of writing (late July 2009), setting
412          * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
413          * current task has TIF_MEMDIE set, and will be OOM killed on return
414          * to user; and ksmd, having no mm, would never be chosen for that.
415          *
416          * But if the mm is in a limited mem_cgroup, then the fault may fail
417          * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
418          * even ksmd can fail in this way - though it's usually breaking ksm
419          * just to undo a merge it made a moment before, so unlikely to oom.
420          *
421          * That's a pity: we might therefore have more kernel pages allocated
422          * than we're counting as nodes in the stable tree; but ksm_do_scan
423          * will retry to break_cow on each pass, so should recover the page
424          * in due course.  The important thing is to not let VM_MERGEABLE
425          * be cleared while any such pages might remain in the area.
426          */
427         return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
428 }
429
430 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
431                 unsigned long addr)
432 {
433         struct vm_area_struct *vma;
434         if (ksm_test_exit(mm))
435                 return NULL;
436         vma = find_vma(mm, addr);
437         if (!vma || vma->vm_start > addr)
438                 return NULL;
439         if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
440                 return NULL;
441         return vma;
442 }
443
444 static void break_cow(struct rmap_item *rmap_item)
445 {
446         struct mm_struct *mm = rmap_item->mm;
447         unsigned long addr = rmap_item->address;
448         struct vm_area_struct *vma;
449
450         /*
451          * It is not an accident that whenever we want to break COW
452          * to undo, we also need to drop a reference to the anon_vma.
453          */
454         put_anon_vma(rmap_item->anon_vma);
455
456         down_read(&mm->mmap_sem);
457         vma = find_mergeable_vma(mm, addr);
458         if (vma)
459                 break_ksm(vma, addr);
460         up_read(&mm->mmap_sem);
461 }
462
463 static struct page *get_mergeable_page(struct rmap_item *rmap_item)
464 {
465         struct mm_struct *mm = rmap_item->mm;
466         unsigned long addr = rmap_item->address;
467         struct vm_area_struct *vma;
468         struct page *page;
469
470         down_read(&mm->mmap_sem);
471         vma = find_mergeable_vma(mm, addr);
472         if (!vma)
473                 goto out;
474
475         page = follow_page(vma, addr, FOLL_GET);
476         if (IS_ERR_OR_NULL(page))
477                 goto out;
478         if (PageAnon(page)) {
479                 flush_anon_page(vma, page, addr);
480                 flush_dcache_page(page);
481         } else {
482                 put_page(page);
483 out:
484                 page = NULL;
485         }
486         up_read(&mm->mmap_sem);
487         return page;
488 }
489
490 /*
491  * This helper is used for getting right index into array of tree roots.
492  * When merge_across_nodes knob is set to 1, there are only two rb-trees for
493  * stable and unstable pages from all nodes with roots in index 0. Otherwise,
494  * every node has its own stable and unstable tree.
495  */
496 static inline int get_kpfn_nid(unsigned long kpfn)
497 {
498         return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
499 }
500
501 static void remove_node_from_stable_tree(struct stable_node *stable_node)
502 {
503         struct rmap_item *rmap_item;
504
505         hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
506                 if (rmap_item->hlist.next)
507                         ksm_pages_sharing--;
508                 else
509                         ksm_pages_shared--;
510                 put_anon_vma(rmap_item->anon_vma);
511                 rmap_item->address &= PAGE_MASK;
512                 cond_resched();
513         }
514
515         if (stable_node->head == &migrate_nodes)
516                 list_del(&stable_node->list);
517         else
518                 rb_erase(&stable_node->node,
519                          root_stable_tree + NUMA(stable_node->nid));
520         free_stable_node(stable_node);
521 }
522
523 /*
524  * get_ksm_page: checks if the page indicated by the stable node
525  * is still its ksm page, despite having held no reference to it.
526  * In which case we can trust the content of the page, and it
527  * returns the gotten page; but if the page has now been zapped,
528  * remove the stale node from the stable tree and return NULL.
529  * But beware, the stable node's page might be being migrated.
530  *
531  * You would expect the stable_node to hold a reference to the ksm page.
532  * But if it increments the page's count, swapping out has to wait for
533  * ksmd to come around again before it can free the page, which may take
534  * seconds or even minutes: much too unresponsive.  So instead we use a
535  * "keyhole reference": access to the ksm page from the stable node peeps
536  * out through its keyhole to see if that page still holds the right key,
537  * pointing back to this stable node.  This relies on freeing a PageAnon
538  * page to reset its page->mapping to NULL, and relies on no other use of
539  * a page to put something that might look like our key in page->mapping.
540  * is on its way to being freed; but it is an anomaly to bear in mind.
541  */
542 static struct page *get_ksm_page(struct stable_node *stable_node, bool lock_it)
543 {
544         struct page *page;
545         void *expected_mapping;
546         unsigned long kpfn;
547
548         expected_mapping = (void *)((unsigned long)stable_node |
549                                         PAGE_MAPPING_KSM);
550 again:
551         kpfn = READ_ONCE(stable_node->kpfn);
552         page = pfn_to_page(kpfn);
553
554         /*
555          * page is computed from kpfn, so on most architectures reading
556          * page->mapping is naturally ordered after reading node->kpfn,
557          * but on Alpha we need to be more careful.
558          */
559         smp_read_barrier_depends();
560         if (READ_ONCE(page->mapping) != expected_mapping)
561                 goto stale;
562
563         /*
564          * We cannot do anything with the page while its refcount is 0.
565          * Usually 0 means free, or tail of a higher-order page: in which
566          * case this node is no longer referenced, and should be freed;
567          * however, it might mean that the page is under page_freeze_refs().
568          * The __remove_mapping() case is easy, again the node is now stale;
569          * but if page is swapcache in migrate_page_move_mapping(), it might
570          * still be our page, in which case it's essential to keep the node.
571          */
572         while (!get_page_unless_zero(page)) {
573                 /*
574                  * Another check for page->mapping != expected_mapping would
575                  * work here too.  We have chosen the !PageSwapCache test to
576                  * optimize the common case, when the page is or is about to
577                  * be freed: PageSwapCache is cleared (under spin_lock_irq)
578                  * in the freeze_refs section of __remove_mapping(); but Anon
579                  * page->mapping reset to NULL later, in free_pages_prepare().
580                  */
581                 if (!PageSwapCache(page))
582                         goto stale;
583                 cpu_relax();
584         }
585
586         if (READ_ONCE(page->mapping) != expected_mapping) {
587                 put_page(page);
588                 goto stale;
589         }
590
591         if (lock_it) {
592                 lock_page(page);
593                 if (READ_ONCE(page->mapping) != expected_mapping) {
594                         unlock_page(page);
595                         put_page(page);
596                         goto stale;
597                 }
598         }
599         return page;
600
601 stale:
602         /*
603          * We come here from above when page->mapping or !PageSwapCache
604          * suggests that the node is stale; but it might be under migration.
605          * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(),
606          * before checking whether node->kpfn has been changed.
607          */
608         smp_rmb();
609         if (READ_ONCE(stable_node->kpfn) != kpfn)
610                 goto again;
611         remove_node_from_stable_tree(stable_node);
612         return NULL;
613 }
614
615 /*
616  * Removing rmap_item from stable or unstable tree.
617  * This function will clean the information from the stable/unstable tree.
618  */
619 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
620 {
621         if (rmap_item->address & STABLE_FLAG) {
622                 struct stable_node *stable_node;
623                 struct page *page;
624
625                 stable_node = rmap_item->head;
626                 page = get_ksm_page(stable_node, true);
627                 if (!page)
628                         goto out;
629
630                 hlist_del(&rmap_item->hlist);
631                 unlock_page(page);
632                 put_page(page);
633
634                 if (!hlist_empty(&stable_node->hlist))
635                         ksm_pages_sharing--;
636                 else
637                         ksm_pages_shared--;
638
639                 put_anon_vma(rmap_item->anon_vma);
640                 rmap_item->address &= PAGE_MASK;
641
642         } else if (rmap_item->address & UNSTABLE_FLAG) {
643                 unsigned char age;
644                 /*
645                  * Usually ksmd can and must skip the rb_erase, because
646                  * root_unstable_tree was already reset to RB_ROOT.
647                  * But be careful when an mm is exiting: do the rb_erase
648                  * if this rmap_item was inserted by this scan, rather
649                  * than left over from before.
650                  */
651                 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
652                 BUG_ON(age > 1);
653                 if (!age)
654                         rb_erase(&rmap_item->node,
655                                  root_unstable_tree + NUMA(rmap_item->nid));
656                 ksm_pages_unshared--;
657                 rmap_item->address &= PAGE_MASK;
658         }
659 out:
660         cond_resched();         /* we're called from many long loops */
661 }
662
663 static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
664                                        struct rmap_item **rmap_list)
665 {
666         while (*rmap_list) {
667                 struct rmap_item *rmap_item = *rmap_list;
668                 *rmap_list = rmap_item->rmap_list;
669                 remove_rmap_item_from_tree(rmap_item);
670                 free_rmap_item(rmap_item);
671         }
672 }
673
674 /*
675  * Though it's very tempting to unmerge rmap_items from stable tree rather
676  * than check every pte of a given vma, the locking doesn't quite work for
677  * that - an rmap_item is assigned to the stable tree after inserting ksm
678  * page and upping mmap_sem.  Nor does it fit with the way we skip dup'ing
679  * rmap_items from parent to child at fork time (so as not to waste time
680  * if exit comes before the next scan reaches it).
681  *
682  * Similarly, although we'd like to remove rmap_items (so updating counts
683  * and freeing memory) when unmerging an area, it's easier to leave that
684  * to the next pass of ksmd - consider, for example, how ksmd might be
685  * in cmp_and_merge_page on one of the rmap_items we would be removing.
686  */
687 static int unmerge_ksm_pages(struct vm_area_struct *vma,
688                              unsigned long start, unsigned long end)
689 {
690         unsigned long addr;
691         int err = 0;
692
693         for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
694                 if (ksm_test_exit(vma->vm_mm))
695                         break;
696                 if (signal_pending(current))
697                         err = -ERESTARTSYS;
698                 else
699                         err = break_ksm(vma, addr);
700         }
701         return err;
702 }
703
704 #ifdef CONFIG_SYSFS
705 /*
706  * Only called through the sysfs control interface:
707  */
708 static int remove_stable_node(struct stable_node *stable_node)
709 {
710         struct page *page;
711         int err;
712
713         page = get_ksm_page(stable_node, true);
714         if (!page) {
715                 /*
716                  * get_ksm_page did remove_node_from_stable_tree itself.
717                  */
718                 return 0;
719         }
720
721         if (WARN_ON_ONCE(page_mapped(page))) {
722                 /*
723                  * This should not happen: but if it does, just refuse to let
724                  * merge_across_nodes be switched - there is no need to panic.
725                  */
726                 err = -EBUSY;
727         } else {
728                 /*
729                  * The stable node did not yet appear stale to get_ksm_page(),
730                  * since that allows for an unmapped ksm page to be recognized
731                  * right up until it is freed; but the node is safe to remove.
732                  * This page might be in a pagevec waiting to be freed,
733                  * or it might be PageSwapCache (perhaps under writeback),
734                  * or it might have been removed from swapcache a moment ago.
735                  */
736                 set_page_stable_node(page, NULL);
737                 remove_node_from_stable_tree(stable_node);
738                 err = 0;
739         }
740
741         unlock_page(page);
742         put_page(page);
743         return err;
744 }
745
746 static int remove_all_stable_nodes(void)
747 {
748         struct stable_node *stable_node, *next;
749         int nid;
750         int err = 0;
751
752         for (nid = 0; nid < ksm_nr_node_ids; nid++) {
753                 while (root_stable_tree[nid].rb_node) {
754                         stable_node = rb_entry(root_stable_tree[nid].rb_node,
755                                                 struct stable_node, node);
756                         if (remove_stable_node(stable_node)) {
757                                 err = -EBUSY;
758                                 break;  /* proceed to next nid */
759                         }
760                         cond_resched();
761                 }
762         }
763         list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
764                 if (remove_stable_node(stable_node))
765                         err = -EBUSY;
766                 cond_resched();
767         }
768         return err;
769 }
770
771 static int unmerge_and_remove_all_rmap_items(void)
772 {
773         struct mm_slot *mm_slot;
774         struct mm_struct *mm;
775         struct vm_area_struct *vma;
776         int err = 0;
777
778         spin_lock(&ksm_mmlist_lock);
779         ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
780                                                 struct mm_slot, mm_list);
781         spin_unlock(&ksm_mmlist_lock);
782
783         for (mm_slot = ksm_scan.mm_slot;
784                         mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
785                 mm = mm_slot->mm;
786                 down_read(&mm->mmap_sem);
787                 for (vma = mm->mmap; vma; vma = vma->vm_next) {
788                         if (ksm_test_exit(mm))
789                                 break;
790                         if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
791                                 continue;
792                         err = unmerge_ksm_pages(vma,
793                                                 vma->vm_start, vma->vm_end);
794                         if (err)
795                                 goto error;
796                 }
797
798                 remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
799                 up_read(&mm->mmap_sem);
800
801                 spin_lock(&ksm_mmlist_lock);
802                 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
803                                                 struct mm_slot, mm_list);
804                 if (ksm_test_exit(mm)) {
805                         hash_del(&mm_slot->link);
806                         list_del(&mm_slot->mm_list);
807                         spin_unlock(&ksm_mmlist_lock);
808
809                         free_mm_slot(mm_slot);
810                         clear_bit(MMF_VM_MERGEABLE, &mm->flags);
811                         mmdrop(mm);
812                 } else
813                         spin_unlock(&ksm_mmlist_lock);
814         }
815
816         /* Clean up stable nodes, but don't worry if some are still busy */
817         remove_all_stable_nodes();
818         ksm_scan.seqnr = 0;
819         return 0;
820
821 error:
822         up_read(&mm->mmap_sem);
823         spin_lock(&ksm_mmlist_lock);
824         ksm_scan.mm_slot = &ksm_mm_head;
825         spin_unlock(&ksm_mmlist_lock);
826         return err;
827 }
828 #endif /* CONFIG_SYSFS */
829
830 static u32 calc_checksum(struct page *page)
831 {
832         u32 checksum;
833         void *addr = kmap_atomic(page);
834         checksum = jhash2(addr, PAGE_SIZE / 4, 17);
835         kunmap_atomic(addr);
836         return checksum;
837 }
838
839 static int memcmp_pages(struct page *page1, struct page *page2)
840 {
841         char *addr1, *addr2;
842         int ret;
843
844         addr1 = kmap_atomic(page1);
845         addr2 = kmap_atomic(page2);
846         ret = memcmp(addr1, addr2, PAGE_SIZE);
847         kunmap_atomic(addr2);
848         kunmap_atomic(addr1);
849         return ret;
850 }
851
852 static inline int pages_identical(struct page *page1, struct page *page2)
853 {
854         return !memcmp_pages(page1, page2);
855 }
856
857 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
858                               pte_t *orig_pte)
859 {
860         struct mm_struct *mm = vma->vm_mm;
861         struct page_vma_mapped_walk pvmw = {
862                 .page = page,
863                 .vma = vma,
864         };
865         int swapped;
866         int err = -EFAULT;
867         unsigned long mmun_start;       /* For mmu_notifiers */
868         unsigned long mmun_end;         /* For mmu_notifiers */
869
870         pvmw.address = page_address_in_vma(page, vma);
871         if (pvmw.address == -EFAULT)
872                 goto out;
873
874         BUG_ON(PageTransCompound(page));
875
876         mmun_start = pvmw.address;
877         mmun_end   = pvmw.address + PAGE_SIZE;
878         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
879
880         if (!page_vma_mapped_walk(&pvmw))
881                 goto out_mn;
882         if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
883                 goto out_unlock;
884
885         if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) ||
886             (pte_protnone(*pvmw.pte) && pte_savedwrite(*pvmw.pte))) {
887                 pte_t entry;
888
889                 swapped = PageSwapCache(page);
890                 flush_cache_page(vma, pvmw.address, page_to_pfn(page));
891                 /*
892                  * Ok this is tricky, when get_user_pages_fast() run it doesn't
893                  * take any lock, therefore the check that we are going to make
894                  * with the pagecount against the mapcount is racey and
895                  * O_DIRECT can happen right after the check.
896                  * So we clear the pte and flush the tlb before the check
897                  * this assure us that no O_DIRECT can happen after the check
898                  * or in the middle of the check.
899                  */
900                 entry = ptep_clear_flush_notify(vma, pvmw.address, pvmw.pte);
901                 /*
902                  * Check that no O_DIRECT or similar I/O is in progress on the
903                  * page
904                  */
905                 if (page_mapcount(page) + 1 + swapped != page_count(page)) {
906                         set_pte_at(mm, pvmw.address, pvmw.pte, entry);
907                         goto out_unlock;
908                 }
909                 if (pte_dirty(entry))
910                         set_page_dirty(page);
911
912                 if (pte_protnone(entry))
913                         entry = pte_mkclean(pte_clear_savedwrite(entry));
914                 else
915                         entry = pte_mkclean(pte_wrprotect(entry));
916                 set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry);
917         }
918         *orig_pte = *pvmw.pte;
919         err = 0;
920
921 out_unlock:
922         page_vma_mapped_walk_done(&pvmw);
923 out_mn:
924         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
925 out:
926         return err;
927 }
928
929 /**
930  * replace_page - replace page in vma by new ksm page
931  * @vma:      vma that holds the pte pointing to page
932  * @page:     the page we are replacing by kpage
933  * @kpage:    the ksm page we replace page by
934  * @orig_pte: the original value of the pte
935  *
936  * Returns 0 on success, -EFAULT on failure.
937  */
938 static int replace_page(struct vm_area_struct *vma, struct page *page,
939                         struct page *kpage, pte_t orig_pte)
940 {
941         struct mm_struct *mm = vma->vm_mm;
942         pmd_t *pmd;
943         pte_t *ptep;
944         pte_t newpte;
945         spinlock_t *ptl;
946         unsigned long addr;
947         int err = -EFAULT;
948         unsigned long mmun_start;       /* For mmu_notifiers */
949         unsigned long mmun_end;         /* For mmu_notifiers */
950
951         addr = page_address_in_vma(page, vma);
952         if (addr == -EFAULT)
953                 goto out;
954
955         pmd = mm_find_pmd(mm, addr);
956         if (!pmd)
957                 goto out;
958
959         mmun_start = addr;
960         mmun_end   = addr + PAGE_SIZE;
961         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
962
963         ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
964         if (!pte_same(*ptep, orig_pte)) {
965                 pte_unmap_unlock(ptep, ptl);
966                 goto out_mn;
967         }
968
969         /*
970          * No need to check ksm_use_zero_pages here: we can only have a
971          * zero_page here if ksm_use_zero_pages was enabled alreaady.
972          */
973         if (!is_zero_pfn(page_to_pfn(kpage))) {
974                 get_page(kpage);
975                 page_add_anon_rmap(kpage, vma, addr, false);
976                 newpte = mk_pte(kpage, vma->vm_page_prot);
977         } else {
978                 newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage),
979                                                vma->vm_page_prot));
980         }
981
982         flush_cache_page(vma, addr, pte_pfn(*ptep));
983         ptep_clear_flush_notify(vma, addr, ptep);
984         set_pte_at_notify(mm, addr, ptep, newpte);
985
986         page_remove_rmap(page, false);
987         if (!page_mapped(page))
988                 try_to_free_swap(page);
989         put_page(page);
990
991         pte_unmap_unlock(ptep, ptl);
992         err = 0;
993 out_mn:
994         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
995 out:
996         return err;
997 }
998
999 /*
1000  * try_to_merge_one_page - take two pages and merge them into one
1001  * @vma: the vma that holds the pte pointing to page
1002  * @page: the PageAnon page that we want to replace with kpage
1003  * @kpage: the PageKsm page that we want to map instead of page,
1004  *         or NULL the first time when we want to use page as kpage.
1005  *
1006  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1007  */
1008 static int try_to_merge_one_page(struct vm_area_struct *vma,
1009                                  struct page *page, struct page *kpage)
1010 {
1011         pte_t orig_pte = __pte(0);
1012         int err = -EFAULT;
1013
1014         if (page == kpage)                      /* ksm page forked */
1015                 return 0;
1016
1017         if (!PageAnon(page))
1018                 goto out;
1019
1020         /*
1021          * We need the page lock to read a stable PageSwapCache in
1022          * write_protect_page().  We use trylock_page() instead of
1023          * lock_page() because we don't want to wait here - we
1024          * prefer to continue scanning and merging different pages,
1025          * then come back to this page when it is unlocked.
1026          */
1027         if (!trylock_page(page))
1028                 goto out;
1029
1030         if (PageTransCompound(page)) {
1031                 err = split_huge_page(page);
1032                 if (err)
1033                         goto out_unlock;
1034         }
1035
1036         /*
1037          * If this anonymous page is mapped only here, its pte may need
1038          * to be write-protected.  If it's mapped elsewhere, all of its
1039          * ptes are necessarily already write-protected.  But in either
1040          * case, we need to lock and check page_count is not raised.
1041          */
1042         if (write_protect_page(vma, page, &orig_pte) == 0) {
1043                 if (!kpage) {
1044                         /*
1045                          * While we hold page lock, upgrade page from
1046                          * PageAnon+anon_vma to PageKsm+NULL stable_node:
1047                          * stable_tree_insert() will update stable_node.
1048                          */
1049                         set_page_stable_node(page, NULL);
1050                         mark_page_accessed(page);
1051                         /*
1052                          * Page reclaim just frees a clean page with no dirty
1053                          * ptes: make sure that the ksm page would be swapped.
1054                          */
1055                         if (!PageDirty(page))
1056                                 SetPageDirty(page);
1057                         err = 0;
1058                 } else if (pages_identical(page, kpage))
1059                         err = replace_page(vma, page, kpage, orig_pte);
1060         }
1061
1062         if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
1063                 munlock_vma_page(page);
1064                 if (!PageMlocked(kpage)) {
1065                         unlock_page(page);
1066                         lock_page(kpage);
1067                         mlock_vma_page(kpage);
1068                         page = kpage;           /* for final unlock */
1069                 }
1070         }
1071
1072 out_unlock:
1073         unlock_page(page);
1074 out:
1075         return err;
1076 }
1077
1078 /*
1079  * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1080  * but no new kernel page is allocated: kpage must already be a ksm page.
1081  *
1082  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1083  */
1084 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1085                                       struct page *page, struct page *kpage)
1086 {
1087         struct mm_struct *mm = rmap_item->mm;
1088         struct vm_area_struct *vma;
1089         int err = -EFAULT;
1090
1091         down_read(&mm->mmap_sem);
1092         vma = find_mergeable_vma(mm, rmap_item->address);
1093         if (!vma)
1094                 goto out;
1095
1096         err = try_to_merge_one_page(vma, page, kpage);
1097         if (err)
1098                 goto out;
1099
1100         /* Unstable nid is in union with stable anon_vma: remove first */
1101         remove_rmap_item_from_tree(rmap_item);
1102
1103         /* Must get reference to anon_vma while still holding mmap_sem */
1104         rmap_item->anon_vma = vma->anon_vma;
1105         get_anon_vma(vma->anon_vma);
1106 out:
1107         up_read(&mm->mmap_sem);
1108         return err;
1109 }
1110
1111 /*
1112  * try_to_merge_two_pages - take two identical pages and prepare them
1113  * to be merged into one page.
1114  *
1115  * This function returns the kpage if we successfully merged two identical
1116  * pages into one ksm page, NULL otherwise.
1117  *
1118  * Note that this function upgrades page to ksm page: if one of the pages
1119  * is already a ksm page, try_to_merge_with_ksm_page should be used.
1120  */
1121 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1122                                            struct page *page,
1123                                            struct rmap_item *tree_rmap_item,
1124                                            struct page *tree_page)
1125 {
1126         int err;
1127
1128         err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1129         if (!err) {
1130                 err = try_to_merge_with_ksm_page(tree_rmap_item,
1131                                                         tree_page, page);
1132                 /*
1133                  * If that fails, we have a ksm page with only one pte
1134                  * pointing to it: so break it.
1135                  */
1136                 if (err)
1137                         break_cow(rmap_item);
1138         }
1139         return err ? NULL : page;
1140 }
1141
1142 /*
1143  * stable_tree_search - search for page inside the stable tree
1144  *
1145  * This function checks if there is a page inside the stable tree
1146  * with identical content to the page that we are scanning right now.
1147  *
1148  * This function returns the stable tree node of identical content if found,
1149  * NULL otherwise.
1150  */
1151 static struct page *stable_tree_search(struct page *page)
1152 {
1153         int nid;
1154         struct rb_root *root;
1155         struct rb_node **new;
1156         struct rb_node *parent;
1157         struct stable_node *stable_node;
1158         struct stable_node *page_node;
1159
1160         page_node = page_stable_node(page);
1161         if (page_node && page_node->head != &migrate_nodes) {
1162                 /* ksm page forked */
1163                 get_page(page);
1164                 return page;
1165         }
1166
1167         nid = get_kpfn_nid(page_to_pfn(page));
1168         root = root_stable_tree + nid;
1169 again:
1170         new = &root->rb_node;
1171         parent = NULL;
1172
1173         while (*new) {
1174                 struct page *tree_page;
1175                 int ret;
1176
1177                 cond_resched();
1178                 stable_node = rb_entry(*new, struct stable_node, node);
1179                 tree_page = get_ksm_page(stable_node, false);
1180                 if (!tree_page) {
1181                         /*
1182                          * If we walked over a stale stable_node,
1183                          * get_ksm_page() will call rb_erase() and it
1184                          * may rebalance the tree from under us. So
1185                          * restart the search from scratch. Returning
1186                          * NULL would be safe too, but we'd generate
1187                          * false negative insertions just because some
1188                          * stable_node was stale.
1189                          */
1190                         goto again;
1191                 }
1192
1193                 ret = memcmp_pages(page, tree_page);
1194                 put_page(tree_page);
1195
1196                 parent = *new;
1197                 if (ret < 0)
1198                         new = &parent->rb_left;
1199                 else if (ret > 0)
1200                         new = &parent->rb_right;
1201                 else {
1202                         /*
1203                          * Lock and unlock the stable_node's page (which
1204                          * might already have been migrated) so that page
1205                          * migration is sure to notice its raised count.
1206                          * It would be more elegant to return stable_node
1207                          * than kpage, but that involves more changes.
1208                          */
1209                         tree_page = get_ksm_page(stable_node, true);
1210                         if (tree_page) {
1211                                 unlock_page(tree_page);
1212                                 if (get_kpfn_nid(stable_node->kpfn) !=
1213                                                 NUMA(stable_node->nid)) {
1214                                         put_page(tree_page);
1215                                         goto replace;
1216                                 }
1217                                 return tree_page;
1218                         }
1219                         /*
1220                          * There is now a place for page_node, but the tree may
1221                          * have been rebalanced, so re-evaluate parent and new.
1222                          */
1223                         if (page_node)
1224                                 goto again;
1225                         return NULL;
1226                 }
1227         }
1228
1229         if (!page_node)
1230                 return NULL;
1231
1232         list_del(&page_node->list);
1233         DO_NUMA(page_node->nid = nid);
1234         rb_link_node(&page_node->node, parent, new);
1235         rb_insert_color(&page_node->node, root);
1236         get_page(page);
1237         return page;
1238
1239 replace:
1240         if (page_node) {
1241                 list_del(&page_node->list);
1242                 DO_NUMA(page_node->nid = nid);
1243                 rb_replace_node(&stable_node->node, &page_node->node, root);
1244                 get_page(page);
1245         } else {
1246                 rb_erase(&stable_node->node, root);
1247                 page = NULL;
1248         }
1249         stable_node->head = &migrate_nodes;
1250         list_add(&stable_node->list, stable_node->head);
1251         return page;
1252 }
1253
1254 /*
1255  * stable_tree_insert - insert stable tree node pointing to new ksm page
1256  * into the stable tree.
1257  *
1258  * This function returns the stable tree node just allocated on success,
1259  * NULL otherwise.
1260  */
1261 static struct stable_node *stable_tree_insert(struct page *kpage)
1262 {
1263         int nid;
1264         unsigned long kpfn;
1265         struct rb_root *root;
1266         struct rb_node **new;
1267         struct rb_node *parent;
1268         struct stable_node *stable_node;
1269
1270         kpfn = page_to_pfn(kpage);
1271         nid = get_kpfn_nid(kpfn);
1272         root = root_stable_tree + nid;
1273 again:
1274         parent = NULL;
1275         new = &root->rb_node;
1276
1277         while (*new) {
1278                 struct page *tree_page;
1279                 int ret;
1280
1281                 cond_resched();
1282                 stable_node = rb_entry(*new, struct stable_node, node);
1283                 tree_page = get_ksm_page(stable_node, false);
1284                 if (!tree_page) {
1285                         /*
1286                          * If we walked over a stale stable_node,
1287                          * get_ksm_page() will call rb_erase() and it
1288                          * may rebalance the tree from under us. So
1289                          * restart the search from scratch. Returning
1290                          * NULL would be safe too, but we'd generate
1291                          * false negative insertions just because some
1292                          * stable_node was stale.
1293                          */
1294                         goto again;
1295                 }
1296
1297                 ret = memcmp_pages(kpage, tree_page);
1298                 put_page(tree_page);
1299
1300                 parent = *new;
1301                 if (ret < 0)
1302                         new = &parent->rb_left;
1303                 else if (ret > 0)
1304                         new = &parent->rb_right;
1305                 else {
1306                         /*
1307                          * It is not a bug that stable_tree_search() didn't
1308                          * find this node: because at that time our page was
1309                          * not yet write-protected, so may have changed since.
1310                          */
1311                         return NULL;
1312                 }
1313         }
1314
1315         stable_node = alloc_stable_node();
1316         if (!stable_node)
1317                 return NULL;
1318
1319         INIT_HLIST_HEAD(&stable_node->hlist);
1320         stable_node->kpfn = kpfn;
1321         set_page_stable_node(kpage, stable_node);
1322         DO_NUMA(stable_node->nid = nid);
1323         rb_link_node(&stable_node->node, parent, new);
1324         rb_insert_color(&stable_node->node, root);
1325
1326         return stable_node;
1327 }
1328
1329 /*
1330  * unstable_tree_search_insert - search for identical page,
1331  * else insert rmap_item into the unstable tree.
1332  *
1333  * This function searches for a page in the unstable tree identical to the
1334  * page currently being scanned; and if no identical page is found in the
1335  * tree, we insert rmap_item as a new object into the unstable tree.
1336  *
1337  * This function returns pointer to rmap_item found to be identical
1338  * to the currently scanned page, NULL otherwise.
1339  *
1340  * This function does both searching and inserting, because they share
1341  * the same walking algorithm in an rbtree.
1342  */
1343 static
1344 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1345                                               struct page *page,
1346                                               struct page **tree_pagep)
1347 {
1348         struct rb_node **new;
1349         struct rb_root *root;
1350         struct rb_node *parent = NULL;
1351         int nid;
1352
1353         nid = get_kpfn_nid(page_to_pfn(page));
1354         root = root_unstable_tree + nid;
1355         new = &root->rb_node;
1356
1357         while (*new) {
1358                 struct rmap_item *tree_rmap_item;
1359                 struct page *tree_page;
1360                 int ret;
1361
1362                 cond_resched();
1363                 tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1364                 tree_page = get_mergeable_page(tree_rmap_item);
1365                 if (!tree_page)
1366                         return NULL;
1367
1368                 /*
1369                  * Don't substitute a ksm page for a forked page.
1370                  */
1371                 if (page == tree_page) {
1372                         put_page(tree_page);
1373                         return NULL;
1374                 }
1375
1376                 ret = memcmp_pages(page, tree_page);
1377
1378                 parent = *new;
1379                 if (ret < 0) {
1380                         put_page(tree_page);
1381                         new = &parent->rb_left;
1382                 } else if (ret > 0) {
1383                         put_page(tree_page);
1384                         new = &parent->rb_right;
1385                 } else if (!ksm_merge_across_nodes &&
1386                            page_to_nid(tree_page) != nid) {
1387                         /*
1388                          * If tree_page has been migrated to another NUMA node,
1389                          * it will be flushed out and put in the right unstable
1390                          * tree next time: only merge with it when across_nodes.
1391                          */
1392                         put_page(tree_page);
1393                         return NULL;
1394                 } else {
1395                         *tree_pagep = tree_page;
1396                         return tree_rmap_item;
1397                 }
1398         }
1399
1400         rmap_item->address |= UNSTABLE_FLAG;
1401         rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1402         DO_NUMA(rmap_item->nid = nid);
1403         rb_link_node(&rmap_item->node, parent, new);
1404         rb_insert_color(&rmap_item->node, root);
1405
1406         ksm_pages_unshared++;
1407         return NULL;
1408 }
1409
1410 /*
1411  * stable_tree_append - add another rmap_item to the linked list of
1412  * rmap_items hanging off a given node of the stable tree, all sharing
1413  * the same ksm page.
1414  */
1415 static void stable_tree_append(struct rmap_item *rmap_item,
1416                                struct stable_node *stable_node)
1417 {
1418         rmap_item->head = stable_node;
1419         rmap_item->address |= STABLE_FLAG;
1420         hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
1421
1422         if (rmap_item->hlist.next)
1423                 ksm_pages_sharing++;
1424         else
1425                 ksm_pages_shared++;
1426 }
1427
1428 /*
1429  * cmp_and_merge_page - first see if page can be merged into the stable tree;
1430  * if not, compare checksum to previous and if it's the same, see if page can
1431  * be inserted into the unstable tree, or merged with a page already there and
1432  * both transferred to the stable tree.
1433  *
1434  * @page: the page that we are searching identical page to.
1435  * @rmap_item: the reverse mapping into the virtual address of this page
1436  */
1437 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
1438 {
1439         struct rmap_item *tree_rmap_item;
1440         struct page *tree_page = NULL;
1441         struct stable_node *stable_node;
1442         struct page *kpage;
1443         unsigned int checksum;
1444         int err;
1445
1446         stable_node = page_stable_node(page);
1447         if (stable_node) {
1448                 if (stable_node->head != &migrate_nodes &&
1449                     get_kpfn_nid(stable_node->kpfn) != NUMA(stable_node->nid)) {
1450                         rb_erase(&stable_node->node,
1451                                  root_stable_tree + NUMA(stable_node->nid));
1452                         stable_node->head = &migrate_nodes;
1453                         list_add(&stable_node->list, stable_node->head);
1454                 }
1455                 if (stable_node->head != &migrate_nodes &&
1456                     rmap_item->head == stable_node)
1457                         return;
1458         }
1459
1460         /* We first start with searching the page inside the stable tree */
1461         kpage = stable_tree_search(page);
1462         if (kpage == page && rmap_item->head == stable_node) {
1463                 put_page(kpage);
1464                 return;
1465         }
1466
1467         remove_rmap_item_from_tree(rmap_item);
1468
1469         if (kpage) {
1470                 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
1471                 if (!err) {
1472                         /*
1473                          * The page was successfully merged:
1474                          * add its rmap_item to the stable tree.
1475                          */
1476                         lock_page(kpage);
1477                         stable_tree_append(rmap_item, page_stable_node(kpage));
1478                         unlock_page(kpage);
1479                 }
1480                 put_page(kpage);
1481                 return;
1482         }
1483
1484         /*
1485          * If the hash value of the page has changed from the last time
1486          * we calculated it, this page is changing frequently: therefore we
1487          * don't want to insert it in the unstable tree, and we don't want
1488          * to waste our time searching for something identical to it there.
1489          */
1490         checksum = calc_checksum(page);
1491         if (rmap_item->oldchecksum != checksum) {
1492                 rmap_item->oldchecksum = checksum;
1493                 return;
1494         }
1495
1496         /*
1497          * Same checksum as an empty page. We attempt to merge it with the
1498          * appropriate zero page if the user enabled this via sysfs.
1499          */
1500         if (ksm_use_zero_pages && (checksum == zero_checksum)) {
1501                 struct vm_area_struct *vma;
1502
1503                 vma = find_mergeable_vma(rmap_item->mm, rmap_item->address);
1504                 err = try_to_merge_one_page(vma, page,
1505                                             ZERO_PAGE(rmap_item->address));
1506                 /*
1507                  * In case of failure, the page was not really empty, so we
1508                  * need to continue. Otherwise we're done.
1509                  */
1510                 if (!err)
1511                         return;
1512         }
1513         tree_rmap_item =
1514                 unstable_tree_search_insert(rmap_item, page, &tree_page);
1515         if (tree_rmap_item) {
1516                 kpage = try_to_merge_two_pages(rmap_item, page,
1517                                                 tree_rmap_item, tree_page);
1518                 put_page(tree_page);
1519                 if (kpage) {
1520                         /*
1521                          * The pages were successfully merged: insert new
1522                          * node in the stable tree and add both rmap_items.
1523                          */
1524                         lock_page(kpage);
1525                         stable_node = stable_tree_insert(kpage);
1526                         if (stable_node) {
1527                                 stable_tree_append(tree_rmap_item, stable_node);
1528                                 stable_tree_append(rmap_item, stable_node);
1529                         }
1530                         unlock_page(kpage);
1531
1532                         /*
1533                          * If we fail to insert the page into the stable tree,
1534                          * we will have 2 virtual addresses that are pointing
1535                          * to a ksm page left outside the stable tree,
1536                          * in which case we need to break_cow on both.
1537                          */
1538                         if (!stable_node) {
1539                                 break_cow(tree_rmap_item);
1540                                 break_cow(rmap_item);
1541                         }
1542                 }
1543         }
1544 }
1545
1546 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
1547                                             struct rmap_item **rmap_list,
1548                                             unsigned long addr)
1549 {
1550         struct rmap_item *rmap_item;
1551
1552         while (*rmap_list) {
1553                 rmap_item = *rmap_list;
1554                 if ((rmap_item->address & PAGE_MASK) == addr)
1555                         return rmap_item;
1556                 if (rmap_item->address > addr)
1557                         break;
1558                 *rmap_list = rmap_item->rmap_list;
1559                 remove_rmap_item_from_tree(rmap_item);
1560                 free_rmap_item(rmap_item);
1561         }
1562
1563         rmap_item = alloc_rmap_item();
1564         if (rmap_item) {
1565                 /* It has already been zeroed */
1566                 rmap_item->mm = mm_slot->mm;
1567                 rmap_item->address = addr;
1568                 rmap_item->rmap_list = *rmap_list;
1569                 *rmap_list = rmap_item;
1570         }
1571         return rmap_item;
1572 }
1573
1574 static struct rmap_item *scan_get_next_rmap_item(struct page **page)
1575 {
1576         struct mm_struct *mm;
1577         struct mm_slot *slot;
1578         struct vm_area_struct *vma;
1579         struct rmap_item *rmap_item;
1580         int nid;
1581
1582         if (list_empty(&ksm_mm_head.mm_list))
1583                 return NULL;
1584
1585         slot = ksm_scan.mm_slot;
1586         if (slot == &ksm_mm_head) {
1587                 /*
1588                  * A number of pages can hang around indefinitely on per-cpu
1589                  * pagevecs, raised page count preventing write_protect_page
1590                  * from merging them.  Though it doesn't really matter much,
1591                  * it is puzzling to see some stuck in pages_volatile until
1592                  * other activity jostles them out, and they also prevented
1593                  * LTP's KSM test from succeeding deterministically; so drain
1594                  * them here (here rather than on entry to ksm_do_scan(),
1595                  * so we don't IPI too often when pages_to_scan is set low).
1596                  */
1597                 lru_add_drain_all();
1598
1599                 /*
1600                  * Whereas stale stable_nodes on the stable_tree itself
1601                  * get pruned in the regular course of stable_tree_search(),
1602                  * those moved out to the migrate_nodes list can accumulate:
1603                  * so prune them once before each full scan.
1604                  */
1605                 if (!ksm_merge_across_nodes) {
1606                         struct stable_node *stable_node, *next;
1607                         struct page *page;
1608
1609                         list_for_each_entry_safe(stable_node, next,
1610                                                  &migrate_nodes, list) {
1611                                 page = get_ksm_page(stable_node, false);
1612                                 if (page)
1613                                         put_page(page);
1614                                 cond_resched();
1615                         }
1616                 }
1617
1618                 for (nid = 0; nid < ksm_nr_node_ids; nid++)
1619                         root_unstable_tree[nid] = RB_ROOT;
1620
1621                 spin_lock(&ksm_mmlist_lock);
1622                 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
1623                 ksm_scan.mm_slot = slot;
1624                 spin_unlock(&ksm_mmlist_lock);
1625                 /*
1626                  * Although we tested list_empty() above, a racing __ksm_exit
1627                  * of the last mm on the list may have removed it since then.
1628                  */
1629                 if (slot == &ksm_mm_head)
1630                         return NULL;
1631 next_mm:
1632                 ksm_scan.address = 0;
1633                 ksm_scan.rmap_list = &slot->rmap_list;
1634         }
1635
1636         mm = slot->mm;
1637         down_read(&mm->mmap_sem);
1638         if (ksm_test_exit(mm))
1639                 vma = NULL;
1640         else
1641                 vma = find_vma(mm, ksm_scan.address);
1642
1643         for (; vma; vma = vma->vm_next) {
1644                 if (!(vma->vm_flags & VM_MERGEABLE))
1645                         continue;
1646                 if (ksm_scan.address < vma->vm_start)
1647                         ksm_scan.address = vma->vm_start;
1648                 if (!vma->anon_vma)
1649                         ksm_scan.address = vma->vm_end;
1650
1651                 while (ksm_scan.address < vma->vm_end) {
1652                         if (ksm_test_exit(mm))
1653                                 break;
1654                         *page = follow_page(vma, ksm_scan.address, FOLL_GET);
1655                         if (IS_ERR_OR_NULL(*page)) {
1656                                 ksm_scan.address += PAGE_SIZE;
1657                                 cond_resched();
1658                                 continue;
1659                         }
1660                         if (PageAnon(*page)) {
1661                                 flush_anon_page(vma, *page, ksm_scan.address);
1662                                 flush_dcache_page(*page);
1663                                 rmap_item = get_next_rmap_item(slot,
1664                                         ksm_scan.rmap_list, ksm_scan.address);
1665                                 if (rmap_item) {
1666                                         ksm_scan.rmap_list =
1667                                                         &rmap_item->rmap_list;
1668                                         ksm_scan.address += PAGE_SIZE;
1669                                 } else
1670                                         put_page(*page);
1671                                 up_read(&mm->mmap_sem);
1672                                 return rmap_item;
1673                         }
1674                         put_page(*page);
1675                         ksm_scan.address += PAGE_SIZE;
1676                         cond_resched();
1677                 }
1678         }
1679
1680         if (ksm_test_exit(mm)) {
1681                 ksm_scan.address = 0;
1682                 ksm_scan.rmap_list = &slot->rmap_list;
1683         }
1684         /*
1685          * Nuke all the rmap_items that are above this current rmap:
1686          * because there were no VM_MERGEABLE vmas with such addresses.
1687          */
1688         remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
1689
1690         spin_lock(&ksm_mmlist_lock);
1691         ksm_scan.mm_slot = list_entry(slot->mm_list.next,
1692                                                 struct mm_slot, mm_list);
1693         if (ksm_scan.address == 0) {
1694                 /*
1695                  * We've completed a full scan of all vmas, holding mmap_sem
1696                  * throughout, and found no VM_MERGEABLE: so do the same as
1697                  * __ksm_exit does to remove this mm from all our lists now.
1698                  * This applies either when cleaning up after __ksm_exit
1699                  * (but beware: we can reach here even before __ksm_exit),
1700                  * or when all VM_MERGEABLE areas have been unmapped (and
1701                  * mmap_sem then protects against race with MADV_MERGEABLE).
1702                  */
1703                 hash_del(&slot->link);
1704                 list_del(&slot->mm_list);
1705                 spin_unlock(&ksm_mmlist_lock);
1706
1707                 free_mm_slot(slot);
1708                 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1709                 up_read(&mm->mmap_sem);
1710                 mmdrop(mm);
1711         } else {
1712                 up_read(&mm->mmap_sem);
1713                 /*
1714                  * up_read(&mm->mmap_sem) first because after
1715                  * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
1716                  * already have been freed under us by __ksm_exit()
1717                  * because the "mm_slot" is still hashed and
1718                  * ksm_scan.mm_slot doesn't point to it anymore.
1719                  */
1720                 spin_unlock(&ksm_mmlist_lock);
1721         }
1722
1723         /* Repeat until we've completed scanning the whole list */
1724         slot = ksm_scan.mm_slot;
1725         if (slot != &ksm_mm_head)
1726                 goto next_mm;
1727
1728         ksm_scan.seqnr++;
1729         return NULL;
1730 }
1731
1732 /**
1733  * ksm_do_scan  - the ksm scanner main worker function.
1734  * @scan_npages - number of pages we want to scan before we return.
1735  */
1736 static void ksm_do_scan(unsigned int scan_npages)
1737 {
1738         struct rmap_item *rmap_item;
1739         struct page *uninitialized_var(page);
1740
1741         while (scan_npages-- && likely(!freezing(current))) {
1742                 cond_resched();
1743                 rmap_item = scan_get_next_rmap_item(&page);
1744                 if (!rmap_item)
1745                         return;
1746                 cmp_and_merge_page(page, rmap_item);
1747                 put_page(page);
1748         }
1749 }
1750
1751 static int ksmd_should_run(void)
1752 {
1753         return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
1754 }
1755
1756 static int ksm_scan_thread(void *nothing)
1757 {
1758         set_freezable();
1759         set_user_nice(current, 5);
1760
1761         while (!kthread_should_stop()) {
1762                 mutex_lock(&ksm_thread_mutex);
1763                 wait_while_offlining();
1764                 if (ksmd_should_run())
1765                         ksm_do_scan(ksm_thread_pages_to_scan);
1766                 mutex_unlock(&ksm_thread_mutex);
1767
1768                 try_to_freeze();
1769
1770                 if (ksmd_should_run()) {
1771                         schedule_timeout_interruptible(
1772                                 msecs_to_jiffies(ksm_thread_sleep_millisecs));
1773                 } else {
1774                         wait_event_freezable(ksm_thread_wait,
1775                                 ksmd_should_run() || kthread_should_stop());
1776                 }
1777         }
1778         return 0;
1779 }
1780
1781 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
1782                 unsigned long end, int advice, unsigned long *vm_flags)
1783 {
1784         struct mm_struct *mm = vma->vm_mm;
1785         int err;
1786
1787         switch (advice) {
1788         case MADV_MERGEABLE:
1789                 /*
1790                  * Be somewhat over-protective for now!
1791                  */
1792                 if (*vm_flags & (VM_MERGEABLE | VM_SHARED  | VM_MAYSHARE   |
1793                                  VM_PFNMAP    | VM_IO      | VM_DONTEXPAND |
1794                                  VM_HUGETLB | VM_MIXEDMAP))
1795                         return 0;               /* just ignore the advice */
1796
1797 #ifdef VM_SAO
1798                 if (*vm_flags & VM_SAO)
1799                         return 0;
1800 #endif
1801
1802                 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
1803                         err = __ksm_enter(mm);
1804                         if (err)
1805                                 return err;
1806                 }
1807
1808                 *vm_flags |= VM_MERGEABLE;
1809                 break;
1810
1811         case MADV_UNMERGEABLE:
1812                 if (!(*vm_flags & VM_MERGEABLE))
1813                         return 0;               /* just ignore the advice */
1814
1815                 if (vma->anon_vma) {
1816                         err = unmerge_ksm_pages(vma, start, end);
1817                         if (err)
1818                                 return err;
1819                 }
1820
1821                 *vm_flags &= ~VM_MERGEABLE;
1822                 break;
1823         }
1824
1825         return 0;
1826 }
1827
1828 int __ksm_enter(struct mm_struct *mm)
1829 {
1830         struct mm_slot *mm_slot;
1831         int needs_wakeup;
1832
1833         mm_slot = alloc_mm_slot();
1834         if (!mm_slot)
1835                 return -ENOMEM;
1836
1837         /* Check ksm_run too?  Would need tighter locking */
1838         needs_wakeup = list_empty(&ksm_mm_head.mm_list);
1839
1840         spin_lock(&ksm_mmlist_lock);
1841         insert_to_mm_slots_hash(mm, mm_slot);
1842         /*
1843          * When KSM_RUN_MERGE (or KSM_RUN_STOP),
1844          * insert just behind the scanning cursor, to let the area settle
1845          * down a little; when fork is followed by immediate exec, we don't
1846          * want ksmd to waste time setting up and tearing down an rmap_list.
1847          *
1848          * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
1849          * scanning cursor, otherwise KSM pages in newly forked mms will be
1850          * missed: then we might as well insert at the end of the list.
1851          */
1852         if (ksm_run & KSM_RUN_UNMERGE)
1853                 list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
1854         else
1855                 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
1856         spin_unlock(&ksm_mmlist_lock);
1857
1858         set_bit(MMF_VM_MERGEABLE, &mm->flags);
1859         mmgrab(mm);
1860
1861         if (needs_wakeup)
1862                 wake_up_interruptible(&ksm_thread_wait);
1863
1864         return 0;
1865 }
1866
1867 void __ksm_exit(struct mm_struct *mm)
1868 {
1869         struct mm_slot *mm_slot;
1870         int easy_to_free = 0;
1871
1872         /*
1873          * This process is exiting: if it's straightforward (as is the
1874          * case when ksmd was never running), free mm_slot immediately.
1875          * But if it's at the cursor or has rmap_items linked to it, use
1876          * mmap_sem to synchronize with any break_cows before pagetables
1877          * are freed, and leave the mm_slot on the list for ksmd to free.
1878          * Beware: ksm may already have noticed it exiting and freed the slot.
1879          */
1880
1881         spin_lock(&ksm_mmlist_lock);
1882         mm_slot = get_mm_slot(mm);
1883         if (mm_slot && ksm_scan.mm_slot != mm_slot) {
1884                 if (!mm_slot->rmap_list) {
1885                         hash_del(&mm_slot->link);
1886                         list_del(&mm_slot->mm_list);
1887                         easy_to_free = 1;
1888                 } else {
1889                         list_move(&mm_slot->mm_list,
1890                                   &ksm_scan.mm_slot->mm_list);
1891                 }
1892         }
1893         spin_unlock(&ksm_mmlist_lock);
1894
1895         if (easy_to_free) {
1896                 free_mm_slot(mm_slot);
1897                 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1898                 mmdrop(mm);
1899         } else if (mm_slot) {
1900                 down_write(&mm->mmap_sem);
1901                 up_write(&mm->mmap_sem);
1902         }
1903 }
1904
1905 struct page *ksm_might_need_to_copy(struct page *page,
1906                         struct vm_area_struct *vma, unsigned long address)
1907 {
1908         struct anon_vma *anon_vma = page_anon_vma(page);
1909         struct page *new_page;
1910
1911         if (PageKsm(page)) {
1912                 if (page_stable_node(page) &&
1913                     !(ksm_run & KSM_RUN_UNMERGE))
1914                         return page;    /* no need to copy it */
1915         } else if (!anon_vma) {
1916                 return page;            /* no need to copy it */
1917         } else if (anon_vma->root == vma->anon_vma->root &&
1918                  page->index == linear_page_index(vma, address)) {
1919                 return page;            /* still no need to copy it */
1920         }
1921         if (!PageUptodate(page))
1922                 return page;            /* let do_swap_page report the error */
1923
1924         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1925         if (new_page) {
1926                 copy_user_highpage(new_page, page, address, vma);
1927
1928                 SetPageDirty(new_page);
1929                 __SetPageUptodate(new_page);
1930                 __SetPageLocked(new_page);
1931         }
1932
1933         return new_page;
1934 }
1935
1936 void rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc)
1937 {
1938         struct stable_node *stable_node;
1939         struct rmap_item *rmap_item;
1940         int search_new_forks = 0;
1941
1942         VM_BUG_ON_PAGE(!PageKsm(page), page);
1943
1944         /*
1945          * Rely on the page lock to protect against concurrent modifications
1946          * to that page's node of the stable tree.
1947          */
1948         VM_BUG_ON_PAGE(!PageLocked(page), page);
1949
1950         stable_node = page_stable_node(page);
1951         if (!stable_node)
1952                 return;
1953 again:
1954         hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
1955                 struct anon_vma *anon_vma = rmap_item->anon_vma;
1956                 struct anon_vma_chain *vmac;
1957                 struct vm_area_struct *vma;
1958
1959                 cond_resched();
1960                 anon_vma_lock_read(anon_vma);
1961                 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
1962                                                0, ULONG_MAX) {
1963                         cond_resched();
1964                         vma = vmac->vma;
1965                         if (rmap_item->address < vma->vm_start ||
1966                             rmap_item->address >= vma->vm_end)
1967                                 continue;
1968                         /*
1969                          * Initially we examine only the vma which covers this
1970                          * rmap_item; but later, if there is still work to do,
1971                          * we examine covering vmas in other mms: in case they
1972                          * were forked from the original since ksmd passed.
1973                          */
1974                         if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1975                                 continue;
1976
1977                         if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1978                                 continue;
1979
1980                         if (!rwc->rmap_one(page, vma,
1981                                         rmap_item->address, rwc->arg)) {
1982                                 anon_vma_unlock_read(anon_vma);
1983                                 return;
1984                         }
1985                         if (rwc->done && rwc->done(page)) {
1986                                 anon_vma_unlock_read(anon_vma);
1987                                 return;
1988                         }
1989                 }
1990                 anon_vma_unlock_read(anon_vma);
1991         }
1992         if (!search_new_forks++)
1993                 goto again;
1994 }
1995
1996 #ifdef CONFIG_MIGRATION
1997 void ksm_migrate_page(struct page *newpage, struct page *oldpage)
1998 {
1999         struct stable_node *stable_node;
2000
2001         VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
2002         VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
2003         VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage);
2004
2005         stable_node = page_stable_node(newpage);
2006         if (stable_node) {
2007                 VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage);
2008                 stable_node->kpfn = page_to_pfn(newpage);
2009                 /*
2010                  * newpage->mapping was set in advance; now we need smp_wmb()
2011                  * to make sure that the new stable_node->kpfn is visible
2012                  * to get_ksm_page() before it can see that oldpage->mapping
2013                  * has gone stale (or that PageSwapCache has been cleared).
2014                  */
2015                 smp_wmb();
2016                 set_page_stable_node(oldpage, NULL);
2017         }
2018 }
2019 #endif /* CONFIG_MIGRATION */
2020
2021 #ifdef CONFIG_MEMORY_HOTREMOVE
2022 static void wait_while_offlining(void)
2023 {
2024         while (ksm_run & KSM_RUN_OFFLINE) {
2025                 mutex_unlock(&ksm_thread_mutex);
2026                 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
2027                             TASK_UNINTERRUPTIBLE);
2028                 mutex_lock(&ksm_thread_mutex);
2029         }
2030 }
2031
2032 static void ksm_check_stable_tree(unsigned long start_pfn,
2033                                   unsigned long end_pfn)
2034 {
2035         struct stable_node *stable_node, *next;
2036         struct rb_node *node;
2037         int nid;
2038
2039         for (nid = 0; nid < ksm_nr_node_ids; nid++) {
2040                 node = rb_first(root_stable_tree + nid);
2041                 while (node) {
2042                         stable_node = rb_entry(node, struct stable_node, node);
2043                         if (stable_node->kpfn >= start_pfn &&
2044                             stable_node->kpfn < end_pfn) {
2045                                 /*
2046                                  * Don't get_ksm_page, page has already gone:
2047                                  * which is why we keep kpfn instead of page*
2048                                  */
2049                                 remove_node_from_stable_tree(stable_node);
2050                                 node = rb_first(root_stable_tree + nid);
2051                         } else
2052                                 node = rb_next(node);
2053                         cond_resched();
2054                 }
2055         }
2056         list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
2057                 if (stable_node->kpfn >= start_pfn &&
2058                     stable_node->kpfn < end_pfn)
2059                         remove_node_from_stable_tree(stable_node);
2060                 cond_resched();
2061         }
2062 }
2063
2064 static int ksm_memory_callback(struct notifier_block *self,
2065                                unsigned long action, void *arg)
2066 {
2067         struct memory_notify *mn = arg;
2068
2069         switch (action) {
2070         case MEM_GOING_OFFLINE:
2071                 /*
2072                  * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2073                  * and remove_all_stable_nodes() while memory is going offline:
2074                  * it is unsafe for them to touch the stable tree at this time.
2075                  * But unmerge_ksm_pages(), rmap lookups and other entry points
2076                  * which do not need the ksm_thread_mutex are all safe.
2077                  */
2078                 mutex_lock(&ksm_thread_mutex);
2079                 ksm_run |= KSM_RUN_OFFLINE;
2080                 mutex_unlock(&ksm_thread_mutex);
2081                 break;
2082
2083         case MEM_OFFLINE:
2084                 /*
2085                  * Most of the work is done by page migration; but there might
2086                  * be a few stable_nodes left over, still pointing to struct
2087                  * pages which have been offlined: prune those from the tree,
2088                  * otherwise get_ksm_page() might later try to access a
2089                  * non-existent struct page.
2090                  */
2091                 ksm_check_stable_tree(mn->start_pfn,
2092                                       mn->start_pfn + mn->nr_pages);
2093                 /* fallthrough */
2094
2095         case MEM_CANCEL_OFFLINE:
2096                 mutex_lock(&ksm_thread_mutex);
2097                 ksm_run &= ~KSM_RUN_OFFLINE;
2098                 mutex_unlock(&ksm_thread_mutex);
2099
2100                 smp_mb();       /* wake_up_bit advises this */
2101                 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
2102                 break;
2103         }
2104         return NOTIFY_OK;
2105 }
2106 #else
2107 static void wait_while_offlining(void)
2108 {
2109 }
2110 #endif /* CONFIG_MEMORY_HOTREMOVE */
2111
2112 #ifdef CONFIG_SYSFS
2113 /*
2114  * This all compiles without CONFIG_SYSFS, but is a waste of space.
2115  */
2116
2117 #define KSM_ATTR_RO(_name) \
2118         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2119 #define KSM_ATTR(_name) \
2120         static struct kobj_attribute _name##_attr = \
2121                 __ATTR(_name, 0644, _name##_show, _name##_store)
2122
2123 static ssize_t sleep_millisecs_show(struct kobject *kobj,
2124                                     struct kobj_attribute *attr, char *buf)
2125 {
2126         return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
2127 }
2128
2129 static ssize_t sleep_millisecs_store(struct kobject *kobj,
2130                                      struct kobj_attribute *attr,
2131                                      const char *buf, size_t count)
2132 {
2133         unsigned long msecs;
2134         int err;
2135
2136         err = kstrtoul(buf, 10, &msecs);
2137         if (err || msecs > UINT_MAX)
2138                 return -EINVAL;
2139
2140         ksm_thread_sleep_millisecs = msecs;
2141
2142         return count;
2143 }
2144 KSM_ATTR(sleep_millisecs);
2145
2146 static ssize_t pages_to_scan_show(struct kobject *kobj,
2147                                   struct kobj_attribute *attr, char *buf)
2148 {
2149         return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
2150 }
2151
2152 static ssize_t pages_to_scan_store(struct kobject *kobj,
2153                                    struct kobj_attribute *attr,
2154                                    const char *buf, size_t count)
2155 {
2156         int err;
2157         unsigned long nr_pages;
2158
2159         err = kstrtoul(buf, 10, &nr_pages);
2160         if (err || nr_pages > UINT_MAX)
2161                 return -EINVAL;
2162
2163         ksm_thread_pages_to_scan = nr_pages;
2164
2165         return count;
2166 }
2167 KSM_ATTR(pages_to_scan);
2168
2169 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2170                         char *buf)
2171 {
2172         return sprintf(buf, "%lu\n", ksm_run);
2173 }
2174
2175 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2176                          const char *buf, size_t count)
2177 {
2178         int err;
2179         unsigned long flags;
2180
2181         err = kstrtoul(buf, 10, &flags);
2182         if (err || flags > UINT_MAX)
2183                 return -EINVAL;
2184         if (flags > KSM_RUN_UNMERGE)
2185                 return -EINVAL;
2186
2187         /*
2188          * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2189          * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
2190          * breaking COW to free the pages_shared (but leaves mm_slots
2191          * on the list for when ksmd may be set running again).
2192          */
2193
2194         mutex_lock(&ksm_thread_mutex);
2195         wait_while_offlining();
2196         if (ksm_run != flags) {
2197                 ksm_run = flags;
2198                 if (flags & KSM_RUN_UNMERGE) {
2199                         set_current_oom_origin();
2200                         err = unmerge_and_remove_all_rmap_items();
2201                         clear_current_oom_origin();
2202                         if (err) {
2203                                 ksm_run = KSM_RUN_STOP;
2204                                 count = err;
2205                         }
2206                 }
2207         }
2208         mutex_unlock(&ksm_thread_mutex);
2209
2210         if (flags & KSM_RUN_MERGE)
2211                 wake_up_interruptible(&ksm_thread_wait);
2212
2213         return count;
2214 }
2215 KSM_ATTR(run);
2216
2217 #ifdef CONFIG_NUMA
2218 static ssize_t merge_across_nodes_show(struct kobject *kobj,
2219                                 struct kobj_attribute *attr, char *buf)
2220 {
2221         return sprintf(buf, "%u\n", ksm_merge_across_nodes);
2222 }
2223
2224 static ssize_t merge_across_nodes_store(struct kobject *kobj,
2225                                    struct kobj_attribute *attr,
2226                                    const char *buf, size_t count)
2227 {
2228         int err;
2229         unsigned long knob;
2230
2231         err = kstrtoul(buf, 10, &knob);
2232         if (err)
2233                 return err;
2234         if (knob > 1)
2235                 return -EINVAL;
2236
2237         mutex_lock(&ksm_thread_mutex);
2238         wait_while_offlining();
2239         if (ksm_merge_across_nodes != knob) {
2240                 if (ksm_pages_shared || remove_all_stable_nodes())
2241                         err = -EBUSY;
2242                 else if (root_stable_tree == one_stable_tree) {
2243                         struct rb_root *buf;
2244                         /*
2245                          * This is the first time that we switch away from the
2246                          * default of merging across nodes: must now allocate
2247                          * a buffer to hold as many roots as may be needed.
2248                          * Allocate stable and unstable together:
2249                          * MAXSMP NODES_SHIFT 10 will use 16kB.
2250                          */
2251                         buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
2252                                       GFP_KERNEL);
2253                         /* Let us assume that RB_ROOT is NULL is zero */
2254                         if (!buf)
2255                                 err = -ENOMEM;
2256                         else {
2257                                 root_stable_tree = buf;
2258                                 root_unstable_tree = buf + nr_node_ids;
2259                                 /* Stable tree is empty but not the unstable */
2260                                 root_unstable_tree[0] = one_unstable_tree[0];
2261                         }
2262                 }
2263                 if (!err) {
2264                         ksm_merge_across_nodes = knob;
2265                         ksm_nr_node_ids = knob ? 1 : nr_node_ids;
2266                 }
2267         }
2268         mutex_unlock(&ksm_thread_mutex);
2269
2270         return err ? err : count;
2271 }
2272 KSM_ATTR(merge_across_nodes);
2273 #endif
2274
2275 static ssize_t use_zero_pages_show(struct kobject *kobj,
2276                                 struct kobj_attribute *attr, char *buf)
2277 {
2278         return sprintf(buf, "%u\n", ksm_use_zero_pages);
2279 }
2280 static ssize_t use_zero_pages_store(struct kobject *kobj,
2281                                    struct kobj_attribute *attr,
2282                                    const char *buf, size_t count)
2283 {
2284         int err;
2285         bool value;
2286
2287         err = kstrtobool(buf, &value);
2288         if (err)
2289                 return -EINVAL;
2290
2291         ksm_use_zero_pages = value;
2292
2293         return count;
2294 }
2295 KSM_ATTR(use_zero_pages);
2296
2297 static ssize_t pages_shared_show(struct kobject *kobj,
2298                                  struct kobj_attribute *attr, char *buf)
2299 {
2300         return sprintf(buf, "%lu\n", ksm_pages_shared);
2301 }
2302 KSM_ATTR_RO(pages_shared);
2303
2304 static ssize_t pages_sharing_show(struct kobject *kobj,
2305                                   struct kobj_attribute *attr, char *buf)
2306 {
2307         return sprintf(buf, "%lu\n", ksm_pages_sharing);
2308 }
2309 KSM_ATTR_RO(pages_sharing);
2310
2311 static ssize_t pages_unshared_show(struct kobject *kobj,
2312                                    struct kobj_attribute *attr, char *buf)
2313 {
2314         return sprintf(buf, "%lu\n", ksm_pages_unshared);
2315 }
2316 KSM_ATTR_RO(pages_unshared);
2317
2318 static ssize_t pages_volatile_show(struct kobject *kobj,
2319                                    struct kobj_attribute *attr, char *buf)
2320 {
2321         long ksm_pages_volatile;
2322
2323         ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
2324                                 - ksm_pages_sharing - ksm_pages_unshared;
2325         /*
2326          * It was not worth any locking to calculate that statistic,
2327          * but it might therefore sometimes be negative: conceal that.
2328          */
2329         if (ksm_pages_volatile < 0)
2330                 ksm_pages_volatile = 0;
2331         return sprintf(buf, "%ld\n", ksm_pages_volatile);
2332 }
2333 KSM_ATTR_RO(pages_volatile);
2334
2335 static ssize_t full_scans_show(struct kobject *kobj,
2336                                struct kobj_attribute *attr, char *buf)
2337 {
2338         return sprintf(buf, "%lu\n", ksm_scan.seqnr);
2339 }
2340 KSM_ATTR_RO(full_scans);
2341
2342 static struct attribute *ksm_attrs[] = {
2343         &sleep_millisecs_attr.attr,
2344         &pages_to_scan_attr.attr,
2345         &run_attr.attr,
2346         &pages_shared_attr.attr,
2347         &pages_sharing_attr.attr,
2348         &pages_unshared_attr.attr,
2349         &pages_volatile_attr.attr,
2350         &full_scans_attr.attr,
2351 #ifdef CONFIG_NUMA
2352         &merge_across_nodes_attr.attr,
2353 #endif
2354         &use_zero_pages_attr.attr,
2355         NULL,
2356 };
2357
2358 static struct attribute_group ksm_attr_group = {
2359         .attrs = ksm_attrs,
2360         .name = "ksm",
2361 };
2362 #endif /* CONFIG_SYSFS */
2363
2364 static int __init ksm_init(void)
2365 {
2366         struct task_struct *ksm_thread;
2367         int err;
2368
2369         /* The correct value depends on page size and endianness */
2370         zero_checksum = calc_checksum(ZERO_PAGE(0));
2371         /* Default to false for backwards compatibility */
2372         ksm_use_zero_pages = false;
2373
2374         err = ksm_slab_init();
2375         if (err)
2376                 goto out;
2377
2378         ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
2379         if (IS_ERR(ksm_thread)) {
2380                 pr_err("ksm: creating kthread failed\n");
2381                 err = PTR_ERR(ksm_thread);
2382                 goto out_free;
2383         }
2384
2385 #ifdef CONFIG_SYSFS
2386         err = sysfs_create_group(mm_kobj, &ksm_attr_group);
2387         if (err) {
2388                 pr_err("ksm: register sysfs failed\n");
2389                 kthread_stop(ksm_thread);
2390                 goto out_free;
2391         }
2392 #else
2393         ksm_run = KSM_RUN_MERGE;        /* no way for user to start it */
2394
2395 #endif /* CONFIG_SYSFS */
2396
2397 #ifdef CONFIG_MEMORY_HOTREMOVE
2398         /* There is no significance to this priority 100 */
2399         hotplug_memory_notifier(ksm_memory_callback, 100);
2400 #endif
2401         return 0;
2402
2403 out_free:
2404         ksm_slab_free();
2405 out:
2406         return err;
2407 }
2408 subsys_initcall(ksm_init);