]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - mm/memory.c
dm rq: check blk_mq_register_dev() return value in dm_mq_init_request_queue()
[karo-tx-linux.git] / mm / memory.c
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *              Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *              (Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/sched/mm.h>
44 #include <linux/sched/coredump.h>
45 #include <linux/sched/numa_balancing.h>
46 #include <linux/sched/task.h>
47 #include <linux/hugetlb.h>
48 #include <linux/mman.h>
49 #include <linux/swap.h>
50 #include <linux/highmem.h>
51 #include <linux/pagemap.h>
52 #include <linux/ksm.h>
53 #include <linux/rmap.h>
54 #include <linux/export.h>
55 #include <linux/delayacct.h>
56 #include <linux/init.h>
57 #include <linux/pfn_t.h>
58 #include <linux/writeback.h>
59 #include <linux/memcontrol.h>
60 #include <linux/mmu_notifier.h>
61 #include <linux/kallsyms.h>
62 #include <linux/swapops.h>
63 #include <linux/elf.h>
64 #include <linux/gfp.h>
65 #include <linux/migrate.h>
66 #include <linux/string.h>
67 #include <linux/dma-debug.h>
68 #include <linux/debugfs.h>
69 #include <linux/userfaultfd_k.h>
70 #include <linux/dax.h>
71
72 #include <asm/io.h>
73 #include <asm/mmu_context.h>
74 #include <asm/pgalloc.h>
75 #include <linux/uaccess.h>
76 #include <asm/tlb.h>
77 #include <asm/tlbflush.h>
78 #include <asm/pgtable.h>
79
80 #include "internal.h"
81
82 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
83 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
84 #endif
85
86 #ifndef CONFIG_NEED_MULTIPLE_NODES
87 /* use the per-pgdat data instead for discontigmem - mbligh */
88 unsigned long max_mapnr;
89 EXPORT_SYMBOL(max_mapnr);
90
91 struct page *mem_map;
92 EXPORT_SYMBOL(mem_map);
93 #endif
94
95 /*
96  * A number of key systems in x86 including ioremap() rely on the assumption
97  * that high_memory defines the upper bound on direct map memory, then end
98  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
99  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
100  * and ZONE_HIGHMEM.
101  */
102 void *high_memory;
103 EXPORT_SYMBOL(high_memory);
104
105 /*
106  * Randomize the address space (stacks, mmaps, brk, etc.).
107  *
108  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
109  *   as ancient (libc5 based) binaries can segfault. )
110  */
111 int randomize_va_space __read_mostly =
112 #ifdef CONFIG_COMPAT_BRK
113                                         1;
114 #else
115                                         2;
116 #endif
117
118 static int __init disable_randmaps(char *s)
119 {
120         randomize_va_space = 0;
121         return 1;
122 }
123 __setup("norandmaps", disable_randmaps);
124
125 unsigned long zero_pfn __read_mostly;
126 EXPORT_SYMBOL(zero_pfn);
127
128 unsigned long highest_memmap_pfn __read_mostly;
129
130 /*
131  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
132  */
133 static int __init init_zero_pfn(void)
134 {
135         zero_pfn = page_to_pfn(ZERO_PAGE(0));
136         return 0;
137 }
138 core_initcall(init_zero_pfn);
139
140
141 #if defined(SPLIT_RSS_COUNTING)
142
143 void sync_mm_rss(struct mm_struct *mm)
144 {
145         int i;
146
147         for (i = 0; i < NR_MM_COUNTERS; i++) {
148                 if (current->rss_stat.count[i]) {
149                         add_mm_counter(mm, i, current->rss_stat.count[i]);
150                         current->rss_stat.count[i] = 0;
151                 }
152         }
153         current->rss_stat.events = 0;
154 }
155
156 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
157 {
158         struct task_struct *task = current;
159
160         if (likely(task->mm == mm))
161                 task->rss_stat.count[member] += val;
162         else
163                 add_mm_counter(mm, member, val);
164 }
165 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
166 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
167
168 /* sync counter once per 64 page faults */
169 #define TASK_RSS_EVENTS_THRESH  (64)
170 static void check_sync_rss_stat(struct task_struct *task)
171 {
172         if (unlikely(task != current))
173                 return;
174         if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
175                 sync_mm_rss(task->mm);
176 }
177 #else /* SPLIT_RSS_COUNTING */
178
179 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
180 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
181
182 static void check_sync_rss_stat(struct task_struct *task)
183 {
184 }
185
186 #endif /* SPLIT_RSS_COUNTING */
187
188 #ifdef HAVE_GENERIC_MMU_GATHER
189
190 static bool tlb_next_batch(struct mmu_gather *tlb)
191 {
192         struct mmu_gather_batch *batch;
193
194         batch = tlb->active;
195         if (batch->next) {
196                 tlb->active = batch->next;
197                 return true;
198         }
199
200         if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
201                 return false;
202
203         batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
204         if (!batch)
205                 return false;
206
207         tlb->batch_count++;
208         batch->next = NULL;
209         batch->nr   = 0;
210         batch->max  = MAX_GATHER_BATCH;
211
212         tlb->active->next = batch;
213         tlb->active = batch;
214
215         return true;
216 }
217
218 /* tlb_gather_mmu
219  *      Called to initialize an (on-stack) mmu_gather structure for page-table
220  *      tear-down from @mm. The @fullmm argument is used when @mm is without
221  *      users and we're going to destroy the full address space (exit/execve).
222  */
223 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
224 {
225         tlb->mm = mm;
226
227         /* Is it from 0 to ~0? */
228         tlb->fullmm     = !(start | (end+1));
229         tlb->need_flush_all = 0;
230         tlb->local.next = NULL;
231         tlb->local.nr   = 0;
232         tlb->local.max  = ARRAY_SIZE(tlb->__pages);
233         tlb->active     = &tlb->local;
234         tlb->batch_count = 0;
235
236 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
237         tlb->batch = NULL;
238 #endif
239         tlb->page_size = 0;
240
241         __tlb_reset_range(tlb);
242 }
243
244 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
245 {
246         if (!tlb->end)
247                 return;
248
249         tlb_flush(tlb);
250         mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
251 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
252         tlb_table_flush(tlb);
253 #endif
254         __tlb_reset_range(tlb);
255 }
256
257 static void tlb_flush_mmu_free(struct mmu_gather *tlb)
258 {
259         struct mmu_gather_batch *batch;
260
261         for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
262                 free_pages_and_swap_cache(batch->pages, batch->nr);
263                 batch->nr = 0;
264         }
265         tlb->active = &tlb->local;
266 }
267
268 void tlb_flush_mmu(struct mmu_gather *tlb)
269 {
270         tlb_flush_mmu_tlbonly(tlb);
271         tlb_flush_mmu_free(tlb);
272 }
273
274 /* tlb_finish_mmu
275  *      Called at the end of the shootdown operation to free up any resources
276  *      that were required.
277  */
278 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
279 {
280         struct mmu_gather_batch *batch, *next;
281
282         tlb_flush_mmu(tlb);
283
284         /* keep the page table cache within bounds */
285         check_pgt_cache();
286
287         for (batch = tlb->local.next; batch; batch = next) {
288                 next = batch->next;
289                 free_pages((unsigned long)batch, 0);
290         }
291         tlb->local.next = NULL;
292 }
293
294 /* __tlb_remove_page
295  *      Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
296  *      handling the additional races in SMP caused by other CPUs caching valid
297  *      mappings in their TLBs. Returns the number of free page slots left.
298  *      When out of page slots we must call tlb_flush_mmu().
299  *returns true if the caller should flush.
300  */
301 bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page, int page_size)
302 {
303         struct mmu_gather_batch *batch;
304
305         VM_BUG_ON(!tlb->end);
306         VM_WARN_ON(tlb->page_size != page_size);
307
308         batch = tlb->active;
309         /*
310          * Add the page and check if we are full. If so
311          * force a flush.
312          */
313         batch->pages[batch->nr++] = page;
314         if (batch->nr == batch->max) {
315                 if (!tlb_next_batch(tlb))
316                         return true;
317                 batch = tlb->active;
318         }
319         VM_BUG_ON_PAGE(batch->nr > batch->max, page);
320
321         return false;
322 }
323
324 #endif /* HAVE_GENERIC_MMU_GATHER */
325
326 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
327
328 /*
329  * See the comment near struct mmu_table_batch.
330  */
331
332 static void tlb_remove_table_smp_sync(void *arg)
333 {
334         /* Simply deliver the interrupt */
335 }
336
337 static void tlb_remove_table_one(void *table)
338 {
339         /*
340          * This isn't an RCU grace period and hence the page-tables cannot be
341          * assumed to be actually RCU-freed.
342          *
343          * It is however sufficient for software page-table walkers that rely on
344          * IRQ disabling. See the comment near struct mmu_table_batch.
345          */
346         smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
347         __tlb_remove_table(table);
348 }
349
350 static void tlb_remove_table_rcu(struct rcu_head *head)
351 {
352         struct mmu_table_batch *batch;
353         int i;
354
355         batch = container_of(head, struct mmu_table_batch, rcu);
356
357         for (i = 0; i < batch->nr; i++)
358                 __tlb_remove_table(batch->tables[i]);
359
360         free_page((unsigned long)batch);
361 }
362
363 void tlb_table_flush(struct mmu_gather *tlb)
364 {
365         struct mmu_table_batch **batch = &tlb->batch;
366
367         if (*batch) {
368                 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
369                 *batch = NULL;
370         }
371 }
372
373 void tlb_remove_table(struct mmu_gather *tlb, void *table)
374 {
375         struct mmu_table_batch **batch = &tlb->batch;
376
377         /*
378          * When there's less then two users of this mm there cannot be a
379          * concurrent page-table walk.
380          */
381         if (atomic_read(&tlb->mm->mm_users) < 2) {
382                 __tlb_remove_table(table);
383                 return;
384         }
385
386         if (*batch == NULL) {
387                 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
388                 if (*batch == NULL) {
389                         tlb_remove_table_one(table);
390                         return;
391                 }
392                 (*batch)->nr = 0;
393         }
394         (*batch)->tables[(*batch)->nr++] = table;
395         if ((*batch)->nr == MAX_TABLE_BATCH)
396                 tlb_table_flush(tlb);
397 }
398
399 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
400
401 /*
402  * Note: this doesn't free the actual pages themselves. That
403  * has been handled earlier when unmapping all the memory regions.
404  */
405 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
406                            unsigned long addr)
407 {
408         pgtable_t token = pmd_pgtable(*pmd);
409         pmd_clear(pmd);
410         pte_free_tlb(tlb, token, addr);
411         atomic_long_dec(&tlb->mm->nr_ptes);
412 }
413
414 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
415                                 unsigned long addr, unsigned long end,
416                                 unsigned long floor, unsigned long ceiling)
417 {
418         pmd_t *pmd;
419         unsigned long next;
420         unsigned long start;
421
422         start = addr;
423         pmd = pmd_offset(pud, addr);
424         do {
425                 next = pmd_addr_end(addr, end);
426                 if (pmd_none_or_clear_bad(pmd))
427                         continue;
428                 free_pte_range(tlb, pmd, addr);
429         } while (pmd++, addr = next, addr != end);
430
431         start &= PUD_MASK;
432         if (start < floor)
433                 return;
434         if (ceiling) {
435                 ceiling &= PUD_MASK;
436                 if (!ceiling)
437                         return;
438         }
439         if (end - 1 > ceiling - 1)
440                 return;
441
442         pmd = pmd_offset(pud, start);
443         pud_clear(pud);
444         pmd_free_tlb(tlb, pmd, start);
445         mm_dec_nr_pmds(tlb->mm);
446 }
447
448 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
449                                 unsigned long addr, unsigned long end,
450                                 unsigned long floor, unsigned long ceiling)
451 {
452         pud_t *pud;
453         unsigned long next;
454         unsigned long start;
455
456         start = addr;
457         pud = pud_offset(pgd, addr);
458         do {
459                 next = pud_addr_end(addr, end);
460                 if (pud_none_or_clear_bad(pud))
461                         continue;
462                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
463         } while (pud++, addr = next, addr != end);
464
465         start &= PGDIR_MASK;
466         if (start < floor)
467                 return;
468         if (ceiling) {
469                 ceiling &= PGDIR_MASK;
470                 if (!ceiling)
471                         return;
472         }
473         if (end - 1 > ceiling - 1)
474                 return;
475
476         pud = pud_offset(pgd, start);
477         pgd_clear(pgd);
478         pud_free_tlb(tlb, pud, start);
479 }
480
481 /*
482  * This function frees user-level page tables of a process.
483  */
484 void free_pgd_range(struct mmu_gather *tlb,
485                         unsigned long addr, unsigned long end,
486                         unsigned long floor, unsigned long ceiling)
487 {
488         pgd_t *pgd;
489         unsigned long next;
490
491         /*
492          * The next few lines have given us lots of grief...
493          *
494          * Why are we testing PMD* at this top level?  Because often
495          * there will be no work to do at all, and we'd prefer not to
496          * go all the way down to the bottom just to discover that.
497          *
498          * Why all these "- 1"s?  Because 0 represents both the bottom
499          * of the address space and the top of it (using -1 for the
500          * top wouldn't help much: the masks would do the wrong thing).
501          * The rule is that addr 0 and floor 0 refer to the bottom of
502          * the address space, but end 0 and ceiling 0 refer to the top
503          * Comparisons need to use "end - 1" and "ceiling - 1" (though
504          * that end 0 case should be mythical).
505          *
506          * Wherever addr is brought up or ceiling brought down, we must
507          * be careful to reject "the opposite 0" before it confuses the
508          * subsequent tests.  But what about where end is brought down
509          * by PMD_SIZE below? no, end can't go down to 0 there.
510          *
511          * Whereas we round start (addr) and ceiling down, by different
512          * masks at different levels, in order to test whether a table
513          * now has no other vmas using it, so can be freed, we don't
514          * bother to round floor or end up - the tests don't need that.
515          */
516
517         addr &= PMD_MASK;
518         if (addr < floor) {
519                 addr += PMD_SIZE;
520                 if (!addr)
521                         return;
522         }
523         if (ceiling) {
524                 ceiling &= PMD_MASK;
525                 if (!ceiling)
526                         return;
527         }
528         if (end - 1 > ceiling - 1)
529                 end -= PMD_SIZE;
530         if (addr > end - 1)
531                 return;
532         /*
533          * We add page table cache pages with PAGE_SIZE,
534          * (see pte_free_tlb()), flush the tlb if we need
535          */
536         tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
537         pgd = pgd_offset(tlb->mm, addr);
538         do {
539                 next = pgd_addr_end(addr, end);
540                 if (pgd_none_or_clear_bad(pgd))
541                         continue;
542                 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
543         } while (pgd++, addr = next, addr != end);
544 }
545
546 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
547                 unsigned long floor, unsigned long ceiling)
548 {
549         while (vma) {
550                 struct vm_area_struct *next = vma->vm_next;
551                 unsigned long addr = vma->vm_start;
552
553                 /*
554                  * Hide vma from rmap and truncate_pagecache before freeing
555                  * pgtables
556                  */
557                 unlink_anon_vmas(vma);
558                 unlink_file_vma(vma);
559
560                 if (is_vm_hugetlb_page(vma)) {
561                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
562                                 floor, next ? next->vm_start : ceiling);
563                 } else {
564                         /*
565                          * Optimization: gather nearby vmas into one call down
566                          */
567                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
568                                && !is_vm_hugetlb_page(next)) {
569                                 vma = next;
570                                 next = vma->vm_next;
571                                 unlink_anon_vmas(vma);
572                                 unlink_file_vma(vma);
573                         }
574                         free_pgd_range(tlb, addr, vma->vm_end,
575                                 floor, next ? next->vm_start : ceiling);
576                 }
577                 vma = next;
578         }
579 }
580
581 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
582 {
583         spinlock_t *ptl;
584         pgtable_t new = pte_alloc_one(mm, address);
585         if (!new)
586                 return -ENOMEM;
587
588         /*
589          * Ensure all pte setup (eg. pte page lock and page clearing) are
590          * visible before the pte is made visible to other CPUs by being
591          * put into page tables.
592          *
593          * The other side of the story is the pointer chasing in the page
594          * table walking code (when walking the page table without locking;
595          * ie. most of the time). Fortunately, these data accesses consist
596          * of a chain of data-dependent loads, meaning most CPUs (alpha
597          * being the notable exception) will already guarantee loads are
598          * seen in-order. See the alpha page table accessors for the
599          * smp_read_barrier_depends() barriers in page table walking code.
600          */
601         smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
602
603         ptl = pmd_lock(mm, pmd);
604         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
605                 atomic_long_inc(&mm->nr_ptes);
606                 pmd_populate(mm, pmd, new);
607                 new = NULL;
608         }
609         spin_unlock(ptl);
610         if (new)
611                 pte_free(mm, new);
612         return 0;
613 }
614
615 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
616 {
617         pte_t *new = pte_alloc_one_kernel(&init_mm, address);
618         if (!new)
619                 return -ENOMEM;
620
621         smp_wmb(); /* See comment in __pte_alloc */
622
623         spin_lock(&init_mm.page_table_lock);
624         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
625                 pmd_populate_kernel(&init_mm, pmd, new);
626                 new = NULL;
627         }
628         spin_unlock(&init_mm.page_table_lock);
629         if (new)
630                 pte_free_kernel(&init_mm, new);
631         return 0;
632 }
633
634 static inline void init_rss_vec(int *rss)
635 {
636         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
637 }
638
639 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
640 {
641         int i;
642
643         if (current->mm == mm)
644                 sync_mm_rss(mm);
645         for (i = 0; i < NR_MM_COUNTERS; i++)
646                 if (rss[i])
647                         add_mm_counter(mm, i, rss[i]);
648 }
649
650 /*
651  * This function is called to print an error when a bad pte
652  * is found. For example, we might have a PFN-mapped pte in
653  * a region that doesn't allow it.
654  *
655  * The calling function must still handle the error.
656  */
657 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
658                           pte_t pte, struct page *page)
659 {
660         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
661         pud_t *pud = pud_offset(pgd, addr);
662         pmd_t *pmd = pmd_offset(pud, addr);
663         struct address_space *mapping;
664         pgoff_t index;
665         static unsigned long resume;
666         static unsigned long nr_shown;
667         static unsigned long nr_unshown;
668
669         /*
670          * Allow a burst of 60 reports, then keep quiet for that minute;
671          * or allow a steady drip of one report per second.
672          */
673         if (nr_shown == 60) {
674                 if (time_before(jiffies, resume)) {
675                         nr_unshown++;
676                         return;
677                 }
678                 if (nr_unshown) {
679                         pr_alert("BUG: Bad page map: %lu messages suppressed\n",
680                                  nr_unshown);
681                         nr_unshown = 0;
682                 }
683                 nr_shown = 0;
684         }
685         if (nr_shown++ == 0)
686                 resume = jiffies + 60 * HZ;
687
688         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
689         index = linear_page_index(vma, addr);
690
691         pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
692                  current->comm,
693                  (long long)pte_val(pte), (long long)pmd_val(*pmd));
694         if (page)
695                 dump_page(page, "bad pte");
696         pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
697                  (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
698         /*
699          * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
700          */
701         pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
702                  vma->vm_file,
703                  vma->vm_ops ? vma->vm_ops->fault : NULL,
704                  vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
705                  mapping ? mapping->a_ops->readpage : NULL);
706         dump_stack();
707         add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
708 }
709
710 /*
711  * vm_normal_page -- This function gets the "struct page" associated with a pte.
712  *
713  * "Special" mappings do not wish to be associated with a "struct page" (either
714  * it doesn't exist, or it exists but they don't want to touch it). In this
715  * case, NULL is returned here. "Normal" mappings do have a struct page.
716  *
717  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
718  * pte bit, in which case this function is trivial. Secondly, an architecture
719  * may not have a spare pte bit, which requires a more complicated scheme,
720  * described below.
721  *
722  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
723  * special mapping (even if there are underlying and valid "struct pages").
724  * COWed pages of a VM_PFNMAP are always normal.
725  *
726  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
727  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
728  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
729  * mapping will always honor the rule
730  *
731  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
732  *
733  * And for normal mappings this is false.
734  *
735  * This restricts such mappings to be a linear translation from virtual address
736  * to pfn. To get around this restriction, we allow arbitrary mappings so long
737  * as the vma is not a COW mapping; in that case, we know that all ptes are
738  * special (because none can have been COWed).
739  *
740  *
741  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
742  *
743  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
744  * page" backing, however the difference is that _all_ pages with a struct
745  * page (that is, those where pfn_valid is true) are refcounted and considered
746  * normal pages by the VM. The disadvantage is that pages are refcounted
747  * (which can be slower and simply not an option for some PFNMAP users). The
748  * advantage is that we don't have to follow the strict linearity rule of
749  * PFNMAP mappings in order to support COWable mappings.
750  *
751  */
752 #ifdef __HAVE_ARCH_PTE_SPECIAL
753 # define HAVE_PTE_SPECIAL 1
754 #else
755 # define HAVE_PTE_SPECIAL 0
756 #endif
757 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
758                                 pte_t pte)
759 {
760         unsigned long pfn = pte_pfn(pte);
761
762         if (HAVE_PTE_SPECIAL) {
763                 if (likely(!pte_special(pte)))
764                         goto check_pfn;
765                 if (vma->vm_ops && vma->vm_ops->find_special_page)
766                         return vma->vm_ops->find_special_page(vma, addr);
767                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
768                         return NULL;
769                 if (!is_zero_pfn(pfn))
770                         print_bad_pte(vma, addr, pte, NULL);
771                 return NULL;
772         }
773
774         /* !HAVE_PTE_SPECIAL case follows: */
775
776         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
777                 if (vma->vm_flags & VM_MIXEDMAP) {
778                         if (!pfn_valid(pfn))
779                                 return NULL;
780                         goto out;
781                 } else {
782                         unsigned long off;
783                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
784                         if (pfn == vma->vm_pgoff + off)
785                                 return NULL;
786                         if (!is_cow_mapping(vma->vm_flags))
787                                 return NULL;
788                 }
789         }
790
791         if (is_zero_pfn(pfn))
792                 return NULL;
793 check_pfn:
794         if (unlikely(pfn > highest_memmap_pfn)) {
795                 print_bad_pte(vma, addr, pte, NULL);
796                 return NULL;
797         }
798
799         /*
800          * NOTE! We still have PageReserved() pages in the page tables.
801          * eg. VDSO mappings can cause them to exist.
802          */
803 out:
804         return pfn_to_page(pfn);
805 }
806
807 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
808 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
809                                 pmd_t pmd)
810 {
811         unsigned long pfn = pmd_pfn(pmd);
812
813         /*
814          * There is no pmd_special() but there may be special pmds, e.g.
815          * in a direct-access (dax) mapping, so let's just replicate the
816          * !HAVE_PTE_SPECIAL case from vm_normal_page() here.
817          */
818         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
819                 if (vma->vm_flags & VM_MIXEDMAP) {
820                         if (!pfn_valid(pfn))
821                                 return NULL;
822                         goto out;
823                 } else {
824                         unsigned long off;
825                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
826                         if (pfn == vma->vm_pgoff + off)
827                                 return NULL;
828                         if (!is_cow_mapping(vma->vm_flags))
829                                 return NULL;
830                 }
831         }
832
833         if (is_zero_pfn(pfn))
834                 return NULL;
835         if (unlikely(pfn > highest_memmap_pfn))
836                 return NULL;
837
838         /*
839          * NOTE! We still have PageReserved() pages in the page tables.
840          * eg. VDSO mappings can cause them to exist.
841          */
842 out:
843         return pfn_to_page(pfn);
844 }
845 #endif
846
847 /*
848  * copy one vm_area from one task to the other. Assumes the page tables
849  * already present in the new task to be cleared in the whole range
850  * covered by this vma.
851  */
852
853 static inline unsigned long
854 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
855                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
856                 unsigned long addr, int *rss)
857 {
858         unsigned long vm_flags = vma->vm_flags;
859         pte_t pte = *src_pte;
860         struct page *page;
861
862         /* pte contains position in swap or file, so copy. */
863         if (unlikely(!pte_present(pte))) {
864                 swp_entry_t entry = pte_to_swp_entry(pte);
865
866                 if (likely(!non_swap_entry(entry))) {
867                         if (swap_duplicate(entry) < 0)
868                                 return entry.val;
869
870                         /* make sure dst_mm is on swapoff's mmlist. */
871                         if (unlikely(list_empty(&dst_mm->mmlist))) {
872                                 spin_lock(&mmlist_lock);
873                                 if (list_empty(&dst_mm->mmlist))
874                                         list_add(&dst_mm->mmlist,
875                                                         &src_mm->mmlist);
876                                 spin_unlock(&mmlist_lock);
877                         }
878                         rss[MM_SWAPENTS]++;
879                 } else if (is_migration_entry(entry)) {
880                         page = migration_entry_to_page(entry);
881
882                         rss[mm_counter(page)]++;
883
884                         if (is_write_migration_entry(entry) &&
885                                         is_cow_mapping(vm_flags)) {
886                                 /*
887                                  * COW mappings require pages in both
888                                  * parent and child to be set to read.
889                                  */
890                                 make_migration_entry_read(&entry);
891                                 pte = swp_entry_to_pte(entry);
892                                 if (pte_swp_soft_dirty(*src_pte))
893                                         pte = pte_swp_mksoft_dirty(pte);
894                                 set_pte_at(src_mm, addr, src_pte, pte);
895                         }
896                 }
897                 goto out_set_pte;
898         }
899
900         /*
901          * If it's a COW mapping, write protect it both
902          * in the parent and the child
903          */
904         if (is_cow_mapping(vm_flags)) {
905                 ptep_set_wrprotect(src_mm, addr, src_pte);
906                 pte = pte_wrprotect(pte);
907         }
908
909         /*
910          * If it's a shared mapping, mark it clean in
911          * the child
912          */
913         if (vm_flags & VM_SHARED)
914                 pte = pte_mkclean(pte);
915         pte = pte_mkold(pte);
916
917         page = vm_normal_page(vma, addr, pte);
918         if (page) {
919                 get_page(page);
920                 page_dup_rmap(page, false);
921                 rss[mm_counter(page)]++;
922         }
923
924 out_set_pte:
925         set_pte_at(dst_mm, addr, dst_pte, pte);
926         return 0;
927 }
928
929 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
930                    pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
931                    unsigned long addr, unsigned long end)
932 {
933         pte_t *orig_src_pte, *orig_dst_pte;
934         pte_t *src_pte, *dst_pte;
935         spinlock_t *src_ptl, *dst_ptl;
936         int progress = 0;
937         int rss[NR_MM_COUNTERS];
938         swp_entry_t entry = (swp_entry_t){0};
939
940 again:
941         init_rss_vec(rss);
942
943         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
944         if (!dst_pte)
945                 return -ENOMEM;
946         src_pte = pte_offset_map(src_pmd, addr);
947         src_ptl = pte_lockptr(src_mm, src_pmd);
948         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
949         orig_src_pte = src_pte;
950         orig_dst_pte = dst_pte;
951         arch_enter_lazy_mmu_mode();
952
953         do {
954                 /*
955                  * We are holding two locks at this point - either of them
956                  * could generate latencies in another task on another CPU.
957                  */
958                 if (progress >= 32) {
959                         progress = 0;
960                         if (need_resched() ||
961                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
962                                 break;
963                 }
964                 if (pte_none(*src_pte)) {
965                         progress++;
966                         continue;
967                 }
968                 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
969                                                         vma, addr, rss);
970                 if (entry.val)
971                         break;
972                 progress += 8;
973         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
974
975         arch_leave_lazy_mmu_mode();
976         spin_unlock(src_ptl);
977         pte_unmap(orig_src_pte);
978         add_mm_rss_vec(dst_mm, rss);
979         pte_unmap_unlock(orig_dst_pte, dst_ptl);
980         cond_resched();
981
982         if (entry.val) {
983                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
984                         return -ENOMEM;
985                 progress = 0;
986         }
987         if (addr != end)
988                 goto again;
989         return 0;
990 }
991
992 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
993                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
994                 unsigned long addr, unsigned long end)
995 {
996         pmd_t *src_pmd, *dst_pmd;
997         unsigned long next;
998
999         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1000         if (!dst_pmd)
1001                 return -ENOMEM;
1002         src_pmd = pmd_offset(src_pud, addr);
1003         do {
1004                 next = pmd_addr_end(addr, end);
1005                 if (pmd_trans_huge(*src_pmd) || pmd_devmap(*src_pmd)) {
1006                         int err;
1007                         VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
1008                         err = copy_huge_pmd(dst_mm, src_mm,
1009                                             dst_pmd, src_pmd, addr, vma);
1010                         if (err == -ENOMEM)
1011                                 return -ENOMEM;
1012                         if (!err)
1013                                 continue;
1014                         /* fall through */
1015                 }
1016                 if (pmd_none_or_clear_bad(src_pmd))
1017                         continue;
1018                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1019                                                 vma, addr, next))
1020                         return -ENOMEM;
1021         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1022         return 0;
1023 }
1024
1025 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1026                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1027                 unsigned long addr, unsigned long end)
1028 {
1029         pud_t *src_pud, *dst_pud;
1030         unsigned long next;
1031
1032         dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
1033         if (!dst_pud)
1034                 return -ENOMEM;
1035         src_pud = pud_offset(src_pgd, addr);
1036         do {
1037                 next = pud_addr_end(addr, end);
1038                 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1039                         int err;
1040
1041                         VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
1042                         err = copy_huge_pud(dst_mm, src_mm,
1043                                             dst_pud, src_pud, addr, vma);
1044                         if (err == -ENOMEM)
1045                                 return -ENOMEM;
1046                         if (!err)
1047                                 continue;
1048                         /* fall through */
1049                 }
1050                 if (pud_none_or_clear_bad(src_pud))
1051                         continue;
1052                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1053                                                 vma, addr, next))
1054                         return -ENOMEM;
1055         } while (dst_pud++, src_pud++, addr = next, addr != end);
1056         return 0;
1057 }
1058
1059 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1060                 struct vm_area_struct *vma)
1061 {
1062         pgd_t *src_pgd, *dst_pgd;
1063         unsigned long next;
1064         unsigned long addr = vma->vm_start;
1065         unsigned long end = vma->vm_end;
1066         unsigned long mmun_start;       /* For mmu_notifiers */
1067         unsigned long mmun_end;         /* For mmu_notifiers */
1068         bool is_cow;
1069         int ret;
1070
1071         /*
1072          * Don't copy ptes where a page fault will fill them correctly.
1073          * Fork becomes much lighter when there are big shared or private
1074          * readonly mappings. The tradeoff is that copy_page_range is more
1075          * efficient than faulting.
1076          */
1077         if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1078                         !vma->anon_vma)
1079                 return 0;
1080
1081         if (is_vm_hugetlb_page(vma))
1082                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1083
1084         if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1085                 /*
1086                  * We do not free on error cases below as remove_vma
1087                  * gets called on error from higher level routine
1088                  */
1089                 ret = track_pfn_copy(vma);
1090                 if (ret)
1091                         return ret;
1092         }
1093
1094         /*
1095          * We need to invalidate the secondary MMU mappings only when
1096          * there could be a permission downgrade on the ptes of the
1097          * parent mm. And a permission downgrade will only happen if
1098          * is_cow_mapping() returns true.
1099          */
1100         is_cow = is_cow_mapping(vma->vm_flags);
1101         mmun_start = addr;
1102         mmun_end   = end;
1103         if (is_cow)
1104                 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1105                                                     mmun_end);
1106
1107         ret = 0;
1108         dst_pgd = pgd_offset(dst_mm, addr);
1109         src_pgd = pgd_offset(src_mm, addr);
1110         do {
1111                 next = pgd_addr_end(addr, end);
1112                 if (pgd_none_or_clear_bad(src_pgd))
1113                         continue;
1114                 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1115                                             vma, addr, next))) {
1116                         ret = -ENOMEM;
1117                         break;
1118                 }
1119         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1120
1121         if (is_cow)
1122                 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1123         return ret;
1124 }
1125
1126 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1127                                 struct vm_area_struct *vma, pmd_t *pmd,
1128                                 unsigned long addr, unsigned long end,
1129                                 struct zap_details *details)
1130 {
1131         struct mm_struct *mm = tlb->mm;
1132         int force_flush = 0;
1133         int rss[NR_MM_COUNTERS];
1134         spinlock_t *ptl;
1135         pte_t *start_pte;
1136         pte_t *pte;
1137         swp_entry_t entry;
1138
1139         tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
1140 again:
1141         init_rss_vec(rss);
1142         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1143         pte = start_pte;
1144         arch_enter_lazy_mmu_mode();
1145         do {
1146                 pte_t ptent = *pte;
1147                 if (pte_none(ptent))
1148                         continue;
1149
1150                 if (pte_present(ptent)) {
1151                         struct page *page;
1152
1153                         page = vm_normal_page(vma, addr, ptent);
1154                         if (unlikely(details) && page) {
1155                                 /*
1156                                  * unmap_shared_mapping_pages() wants to
1157                                  * invalidate cache without truncating:
1158                                  * unmap shared but keep private pages.
1159                                  */
1160                                 if (details->check_mapping &&
1161                                     details->check_mapping != page_rmapping(page))
1162                                         continue;
1163                         }
1164                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1165                                                         tlb->fullmm);
1166                         tlb_remove_tlb_entry(tlb, pte, addr);
1167                         if (unlikely(!page))
1168                                 continue;
1169
1170                         if (!PageAnon(page)) {
1171                                 if (pte_dirty(ptent)) {
1172                                         force_flush = 1;
1173                                         set_page_dirty(page);
1174                                 }
1175                                 if (pte_young(ptent) &&
1176                                     likely(!(vma->vm_flags & VM_SEQ_READ)))
1177                                         mark_page_accessed(page);
1178                         }
1179                         rss[mm_counter(page)]--;
1180                         page_remove_rmap(page, false);
1181                         if (unlikely(page_mapcount(page) < 0))
1182                                 print_bad_pte(vma, addr, ptent, page);
1183                         if (unlikely(__tlb_remove_page(tlb, page))) {
1184                                 force_flush = 1;
1185                                 addr += PAGE_SIZE;
1186                                 break;
1187                         }
1188                         continue;
1189                 }
1190                 /* If details->check_mapping, we leave swap entries. */
1191                 if (unlikely(details))
1192                         continue;
1193
1194                 entry = pte_to_swp_entry(ptent);
1195                 if (!non_swap_entry(entry))
1196                         rss[MM_SWAPENTS]--;
1197                 else if (is_migration_entry(entry)) {
1198                         struct page *page;
1199
1200                         page = migration_entry_to_page(entry);
1201                         rss[mm_counter(page)]--;
1202                 }
1203                 if (unlikely(!free_swap_and_cache(entry)))
1204                         print_bad_pte(vma, addr, ptent, NULL);
1205                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1206         } while (pte++, addr += PAGE_SIZE, addr != end);
1207
1208         add_mm_rss_vec(mm, rss);
1209         arch_leave_lazy_mmu_mode();
1210
1211         /* Do the actual TLB flush before dropping ptl */
1212         if (force_flush)
1213                 tlb_flush_mmu_tlbonly(tlb);
1214         pte_unmap_unlock(start_pte, ptl);
1215
1216         /*
1217          * If we forced a TLB flush (either due to running out of
1218          * batch buffers or because we needed to flush dirty TLB
1219          * entries before releasing the ptl), free the batched
1220          * memory too. Restart if we didn't do everything.
1221          */
1222         if (force_flush) {
1223                 force_flush = 0;
1224                 tlb_flush_mmu_free(tlb);
1225                 if (addr != end)
1226                         goto again;
1227         }
1228
1229         return addr;
1230 }
1231
1232 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1233                                 struct vm_area_struct *vma, pud_t *pud,
1234                                 unsigned long addr, unsigned long end,
1235                                 struct zap_details *details)
1236 {
1237         pmd_t *pmd;
1238         unsigned long next;
1239
1240         pmd = pmd_offset(pud, addr);
1241         do {
1242                 next = pmd_addr_end(addr, end);
1243                 if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1244                         if (next - addr != HPAGE_PMD_SIZE) {
1245                                 VM_BUG_ON_VMA(vma_is_anonymous(vma) &&
1246                                     !rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1247                                 __split_huge_pmd(vma, pmd, addr, false, NULL);
1248                         } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1249                                 goto next;
1250                         /* fall through */
1251                 }
1252                 /*
1253                  * Here there can be other concurrent MADV_DONTNEED or
1254                  * trans huge page faults running, and if the pmd is
1255                  * none or trans huge it can change under us. This is
1256                  * because MADV_DONTNEED holds the mmap_sem in read
1257                  * mode.
1258                  */
1259                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1260                         goto next;
1261                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1262 next:
1263                 cond_resched();
1264         } while (pmd++, addr = next, addr != end);
1265
1266         return addr;
1267 }
1268
1269 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1270                                 struct vm_area_struct *vma, pgd_t *pgd,
1271                                 unsigned long addr, unsigned long end,
1272                                 struct zap_details *details)
1273 {
1274         pud_t *pud;
1275         unsigned long next;
1276
1277         pud = pud_offset(pgd, addr);
1278         do {
1279                 next = pud_addr_end(addr, end);
1280                 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1281                         if (next - addr != HPAGE_PUD_SIZE) {
1282                                 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1283                                 split_huge_pud(vma, pud, addr);
1284                         } else if (zap_huge_pud(tlb, vma, pud, addr))
1285                                 goto next;
1286                         /* fall through */
1287                 }
1288                 if (pud_none_or_clear_bad(pud))
1289                         continue;
1290                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1291 next:
1292                 cond_resched();
1293         } while (pud++, addr = next, addr != end);
1294
1295         return addr;
1296 }
1297
1298 void unmap_page_range(struct mmu_gather *tlb,
1299                              struct vm_area_struct *vma,
1300                              unsigned long addr, unsigned long end,
1301                              struct zap_details *details)
1302 {
1303         pgd_t *pgd;
1304         unsigned long next;
1305
1306         BUG_ON(addr >= end);
1307         tlb_start_vma(tlb, vma);
1308         pgd = pgd_offset(vma->vm_mm, addr);
1309         do {
1310                 next = pgd_addr_end(addr, end);
1311                 if (pgd_none_or_clear_bad(pgd))
1312                         continue;
1313                 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1314         } while (pgd++, addr = next, addr != end);
1315         tlb_end_vma(tlb, vma);
1316 }
1317
1318
1319 static void unmap_single_vma(struct mmu_gather *tlb,
1320                 struct vm_area_struct *vma, unsigned long start_addr,
1321                 unsigned long end_addr,
1322                 struct zap_details *details)
1323 {
1324         unsigned long start = max(vma->vm_start, start_addr);
1325         unsigned long end;
1326
1327         if (start >= vma->vm_end)
1328                 return;
1329         end = min(vma->vm_end, end_addr);
1330         if (end <= vma->vm_start)
1331                 return;
1332
1333         if (vma->vm_file)
1334                 uprobe_munmap(vma, start, end);
1335
1336         if (unlikely(vma->vm_flags & VM_PFNMAP))
1337                 untrack_pfn(vma, 0, 0);
1338
1339         if (start != end) {
1340                 if (unlikely(is_vm_hugetlb_page(vma))) {
1341                         /*
1342                          * It is undesirable to test vma->vm_file as it
1343                          * should be non-null for valid hugetlb area.
1344                          * However, vm_file will be NULL in the error
1345                          * cleanup path of mmap_region. When
1346                          * hugetlbfs ->mmap method fails,
1347                          * mmap_region() nullifies vma->vm_file
1348                          * before calling this function to clean up.
1349                          * Since no pte has actually been setup, it is
1350                          * safe to do nothing in this case.
1351                          */
1352                         if (vma->vm_file) {
1353                                 i_mmap_lock_write(vma->vm_file->f_mapping);
1354                                 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1355                                 i_mmap_unlock_write(vma->vm_file->f_mapping);
1356                         }
1357                 } else
1358                         unmap_page_range(tlb, vma, start, end, details);
1359         }
1360 }
1361
1362 /**
1363  * unmap_vmas - unmap a range of memory covered by a list of vma's
1364  * @tlb: address of the caller's struct mmu_gather
1365  * @vma: the starting vma
1366  * @start_addr: virtual address at which to start unmapping
1367  * @end_addr: virtual address at which to end unmapping
1368  *
1369  * Unmap all pages in the vma list.
1370  *
1371  * Only addresses between `start' and `end' will be unmapped.
1372  *
1373  * The VMA list must be sorted in ascending virtual address order.
1374  *
1375  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1376  * range after unmap_vmas() returns.  So the only responsibility here is to
1377  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1378  * drops the lock and schedules.
1379  */
1380 void unmap_vmas(struct mmu_gather *tlb,
1381                 struct vm_area_struct *vma, unsigned long start_addr,
1382                 unsigned long end_addr)
1383 {
1384         struct mm_struct *mm = vma->vm_mm;
1385
1386         mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1387         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1388                 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1389         mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1390 }
1391
1392 /**
1393  * zap_page_range - remove user pages in a given range
1394  * @vma: vm_area_struct holding the applicable pages
1395  * @start: starting address of pages to zap
1396  * @size: number of bytes to zap
1397  *
1398  * Caller must protect the VMA list
1399  */
1400 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1401                 unsigned long size)
1402 {
1403         struct mm_struct *mm = vma->vm_mm;
1404         struct mmu_gather tlb;
1405         unsigned long end = start + size;
1406
1407         lru_add_drain();
1408         tlb_gather_mmu(&tlb, mm, start, end);
1409         update_hiwater_rss(mm);
1410         mmu_notifier_invalidate_range_start(mm, start, end);
1411         for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1412                 unmap_single_vma(&tlb, vma, start, end, NULL);
1413         mmu_notifier_invalidate_range_end(mm, start, end);
1414         tlb_finish_mmu(&tlb, start, end);
1415 }
1416
1417 /**
1418  * zap_page_range_single - remove user pages in a given range
1419  * @vma: vm_area_struct holding the applicable pages
1420  * @address: starting address of pages to zap
1421  * @size: number of bytes to zap
1422  * @details: details of shared cache invalidation
1423  *
1424  * The range must fit into one VMA.
1425  */
1426 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1427                 unsigned long size, struct zap_details *details)
1428 {
1429         struct mm_struct *mm = vma->vm_mm;
1430         struct mmu_gather tlb;
1431         unsigned long end = address + size;
1432
1433         lru_add_drain();
1434         tlb_gather_mmu(&tlb, mm, address, end);
1435         update_hiwater_rss(mm);
1436         mmu_notifier_invalidate_range_start(mm, address, end);
1437         unmap_single_vma(&tlb, vma, address, end, details);
1438         mmu_notifier_invalidate_range_end(mm, address, end);
1439         tlb_finish_mmu(&tlb, address, end);
1440 }
1441
1442 /**
1443  * zap_vma_ptes - remove ptes mapping the vma
1444  * @vma: vm_area_struct holding ptes to be zapped
1445  * @address: starting address of pages to zap
1446  * @size: number of bytes to zap
1447  *
1448  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1449  *
1450  * The entire address range must be fully contained within the vma.
1451  *
1452  * Returns 0 if successful.
1453  */
1454 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1455                 unsigned long size)
1456 {
1457         if (address < vma->vm_start || address + size > vma->vm_end ||
1458                         !(vma->vm_flags & VM_PFNMAP))
1459                 return -1;
1460         zap_page_range_single(vma, address, size, NULL);
1461         return 0;
1462 }
1463 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1464
1465 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1466                         spinlock_t **ptl)
1467 {
1468         pgd_t *pgd = pgd_offset(mm, addr);
1469         pud_t *pud = pud_alloc(mm, pgd, addr);
1470         if (pud) {
1471                 pmd_t *pmd = pmd_alloc(mm, pud, addr);
1472                 if (pmd) {
1473                         VM_BUG_ON(pmd_trans_huge(*pmd));
1474                         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1475                 }
1476         }
1477         return NULL;
1478 }
1479
1480 /*
1481  * This is the old fallback for page remapping.
1482  *
1483  * For historical reasons, it only allows reserved pages. Only
1484  * old drivers should use this, and they needed to mark their
1485  * pages reserved for the old functions anyway.
1486  */
1487 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1488                         struct page *page, pgprot_t prot)
1489 {
1490         struct mm_struct *mm = vma->vm_mm;
1491         int retval;
1492         pte_t *pte;
1493         spinlock_t *ptl;
1494
1495         retval = -EINVAL;
1496         if (PageAnon(page))
1497                 goto out;
1498         retval = -ENOMEM;
1499         flush_dcache_page(page);
1500         pte = get_locked_pte(mm, addr, &ptl);
1501         if (!pte)
1502                 goto out;
1503         retval = -EBUSY;
1504         if (!pte_none(*pte))
1505                 goto out_unlock;
1506
1507         /* Ok, finally just insert the thing.. */
1508         get_page(page);
1509         inc_mm_counter_fast(mm, mm_counter_file(page));
1510         page_add_file_rmap(page, false);
1511         set_pte_at(mm, addr, pte, mk_pte(page, prot));
1512
1513         retval = 0;
1514         pte_unmap_unlock(pte, ptl);
1515         return retval;
1516 out_unlock:
1517         pte_unmap_unlock(pte, ptl);
1518 out:
1519         return retval;
1520 }
1521
1522 /**
1523  * vm_insert_page - insert single page into user vma
1524  * @vma: user vma to map to
1525  * @addr: target user address of this page
1526  * @page: source kernel page
1527  *
1528  * This allows drivers to insert individual pages they've allocated
1529  * into a user vma.
1530  *
1531  * The page has to be a nice clean _individual_ kernel allocation.
1532  * If you allocate a compound page, you need to have marked it as
1533  * such (__GFP_COMP), or manually just split the page up yourself
1534  * (see split_page()).
1535  *
1536  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1537  * took an arbitrary page protection parameter. This doesn't allow
1538  * that. Your vma protection will have to be set up correctly, which
1539  * means that if you want a shared writable mapping, you'd better
1540  * ask for a shared writable mapping!
1541  *
1542  * The page does not need to be reserved.
1543  *
1544  * Usually this function is called from f_op->mmap() handler
1545  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1546  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1547  * function from other places, for example from page-fault handler.
1548  */
1549 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1550                         struct page *page)
1551 {
1552         if (addr < vma->vm_start || addr >= vma->vm_end)
1553                 return -EFAULT;
1554         if (!page_count(page))
1555                 return -EINVAL;
1556         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1557                 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1558                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1559                 vma->vm_flags |= VM_MIXEDMAP;
1560         }
1561         return insert_page(vma, addr, page, vma->vm_page_prot);
1562 }
1563 EXPORT_SYMBOL(vm_insert_page);
1564
1565 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1566                         pfn_t pfn, pgprot_t prot)
1567 {
1568         struct mm_struct *mm = vma->vm_mm;
1569         int retval;
1570         pte_t *pte, entry;
1571         spinlock_t *ptl;
1572
1573         retval = -ENOMEM;
1574         pte = get_locked_pte(mm, addr, &ptl);
1575         if (!pte)
1576                 goto out;
1577         retval = -EBUSY;
1578         if (!pte_none(*pte))
1579                 goto out_unlock;
1580
1581         /* Ok, finally just insert the thing.. */
1582         if (pfn_t_devmap(pfn))
1583                 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1584         else
1585                 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1586         set_pte_at(mm, addr, pte, entry);
1587         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1588
1589         retval = 0;
1590 out_unlock:
1591         pte_unmap_unlock(pte, ptl);
1592 out:
1593         return retval;
1594 }
1595
1596 /**
1597  * vm_insert_pfn - insert single pfn into user vma
1598  * @vma: user vma to map to
1599  * @addr: target user address of this page
1600  * @pfn: source kernel pfn
1601  *
1602  * Similar to vm_insert_page, this allows drivers to insert individual pages
1603  * they've allocated into a user vma. Same comments apply.
1604  *
1605  * This function should only be called from a vm_ops->fault handler, and
1606  * in that case the handler should return NULL.
1607  *
1608  * vma cannot be a COW mapping.
1609  *
1610  * As this is called only for pages that do not currently exist, we
1611  * do not need to flush old virtual caches or the TLB.
1612  */
1613 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1614                         unsigned long pfn)
1615 {
1616         return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1617 }
1618 EXPORT_SYMBOL(vm_insert_pfn);
1619
1620 /**
1621  * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1622  * @vma: user vma to map to
1623  * @addr: target user address of this page
1624  * @pfn: source kernel pfn
1625  * @pgprot: pgprot flags for the inserted page
1626  *
1627  * This is exactly like vm_insert_pfn, except that it allows drivers to
1628  * to override pgprot on a per-page basis.
1629  *
1630  * This only makes sense for IO mappings, and it makes no sense for
1631  * cow mappings.  In general, using multiple vmas is preferable;
1632  * vm_insert_pfn_prot should only be used if using multiple VMAs is
1633  * impractical.
1634  */
1635 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1636                         unsigned long pfn, pgprot_t pgprot)
1637 {
1638         int ret;
1639         /*
1640          * Technically, architectures with pte_special can avoid all these
1641          * restrictions (same for remap_pfn_range).  However we would like
1642          * consistency in testing and feature parity among all, so we should
1643          * try to keep these invariants in place for everybody.
1644          */
1645         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1646         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1647                                                 (VM_PFNMAP|VM_MIXEDMAP));
1648         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1649         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1650
1651         if (addr < vma->vm_start || addr >= vma->vm_end)
1652                 return -EFAULT;
1653
1654         track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1655
1656         ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot);
1657
1658         return ret;
1659 }
1660 EXPORT_SYMBOL(vm_insert_pfn_prot);
1661
1662 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1663                         pfn_t pfn)
1664 {
1665         pgprot_t pgprot = vma->vm_page_prot;
1666
1667         BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1668
1669         if (addr < vma->vm_start || addr >= vma->vm_end)
1670                 return -EFAULT;
1671
1672         track_pfn_insert(vma, &pgprot, pfn);
1673
1674         /*
1675          * If we don't have pte special, then we have to use the pfn_valid()
1676          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1677          * refcount the page if pfn_valid is true (hence insert_page rather
1678          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1679          * without pte special, it would there be refcounted as a normal page.
1680          */
1681         if (!HAVE_PTE_SPECIAL && !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1682                 struct page *page;
1683
1684                 /*
1685                  * At this point we are committed to insert_page()
1686                  * regardless of whether the caller specified flags that
1687                  * result in pfn_t_has_page() == false.
1688                  */
1689                 page = pfn_to_page(pfn_t_to_pfn(pfn));
1690                 return insert_page(vma, addr, page, pgprot);
1691         }
1692         return insert_pfn(vma, addr, pfn, pgprot);
1693 }
1694 EXPORT_SYMBOL(vm_insert_mixed);
1695
1696 /*
1697  * maps a range of physical memory into the requested pages. the old
1698  * mappings are removed. any references to nonexistent pages results
1699  * in null mappings (currently treated as "copy-on-access")
1700  */
1701 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1702                         unsigned long addr, unsigned long end,
1703                         unsigned long pfn, pgprot_t prot)
1704 {
1705         pte_t *pte;
1706         spinlock_t *ptl;
1707
1708         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1709         if (!pte)
1710                 return -ENOMEM;
1711         arch_enter_lazy_mmu_mode();
1712         do {
1713                 BUG_ON(!pte_none(*pte));
1714                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1715                 pfn++;
1716         } while (pte++, addr += PAGE_SIZE, addr != end);
1717         arch_leave_lazy_mmu_mode();
1718         pte_unmap_unlock(pte - 1, ptl);
1719         return 0;
1720 }
1721
1722 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1723                         unsigned long addr, unsigned long end,
1724                         unsigned long pfn, pgprot_t prot)
1725 {
1726         pmd_t *pmd;
1727         unsigned long next;
1728
1729         pfn -= addr >> PAGE_SHIFT;
1730         pmd = pmd_alloc(mm, pud, addr);
1731         if (!pmd)
1732                 return -ENOMEM;
1733         VM_BUG_ON(pmd_trans_huge(*pmd));
1734         do {
1735                 next = pmd_addr_end(addr, end);
1736                 if (remap_pte_range(mm, pmd, addr, next,
1737                                 pfn + (addr >> PAGE_SHIFT), prot))
1738                         return -ENOMEM;
1739         } while (pmd++, addr = next, addr != end);
1740         return 0;
1741 }
1742
1743 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1744                         unsigned long addr, unsigned long end,
1745                         unsigned long pfn, pgprot_t prot)
1746 {
1747         pud_t *pud;
1748         unsigned long next;
1749
1750         pfn -= addr >> PAGE_SHIFT;
1751         pud = pud_alloc(mm, pgd, addr);
1752         if (!pud)
1753                 return -ENOMEM;
1754         do {
1755                 next = pud_addr_end(addr, end);
1756                 if (remap_pmd_range(mm, pud, addr, next,
1757                                 pfn + (addr >> PAGE_SHIFT), prot))
1758                         return -ENOMEM;
1759         } while (pud++, addr = next, addr != end);
1760         return 0;
1761 }
1762
1763 /**
1764  * remap_pfn_range - remap kernel memory to userspace
1765  * @vma: user vma to map to
1766  * @addr: target user address to start at
1767  * @pfn: physical address of kernel memory
1768  * @size: size of map area
1769  * @prot: page protection flags for this mapping
1770  *
1771  *  Note: this is only safe if the mm semaphore is held when called.
1772  */
1773 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1774                     unsigned long pfn, unsigned long size, pgprot_t prot)
1775 {
1776         pgd_t *pgd;
1777         unsigned long next;
1778         unsigned long end = addr + PAGE_ALIGN(size);
1779         struct mm_struct *mm = vma->vm_mm;
1780         unsigned long remap_pfn = pfn;
1781         int err;
1782
1783         /*
1784          * Physically remapped pages are special. Tell the
1785          * rest of the world about it:
1786          *   VM_IO tells people not to look at these pages
1787          *      (accesses can have side effects).
1788          *   VM_PFNMAP tells the core MM that the base pages are just
1789          *      raw PFN mappings, and do not have a "struct page" associated
1790          *      with them.
1791          *   VM_DONTEXPAND
1792          *      Disable vma merging and expanding with mremap().
1793          *   VM_DONTDUMP
1794          *      Omit vma from core dump, even when VM_IO turned off.
1795          *
1796          * There's a horrible special case to handle copy-on-write
1797          * behaviour that some programs depend on. We mark the "original"
1798          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1799          * See vm_normal_page() for details.
1800          */
1801         if (is_cow_mapping(vma->vm_flags)) {
1802                 if (addr != vma->vm_start || end != vma->vm_end)
1803                         return -EINVAL;
1804                 vma->vm_pgoff = pfn;
1805         }
1806
1807         err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
1808         if (err)
1809                 return -EINVAL;
1810
1811         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1812
1813         BUG_ON(addr >= end);
1814         pfn -= addr >> PAGE_SHIFT;
1815         pgd = pgd_offset(mm, addr);
1816         flush_cache_range(vma, addr, end);
1817         do {
1818                 next = pgd_addr_end(addr, end);
1819                 err = remap_pud_range(mm, pgd, addr, next,
1820                                 pfn + (addr >> PAGE_SHIFT), prot);
1821                 if (err)
1822                         break;
1823         } while (pgd++, addr = next, addr != end);
1824
1825         if (err)
1826                 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
1827
1828         return err;
1829 }
1830 EXPORT_SYMBOL(remap_pfn_range);
1831
1832 /**
1833  * vm_iomap_memory - remap memory to userspace
1834  * @vma: user vma to map to
1835  * @start: start of area
1836  * @len: size of area
1837  *
1838  * This is a simplified io_remap_pfn_range() for common driver use. The
1839  * driver just needs to give us the physical memory range to be mapped,
1840  * we'll figure out the rest from the vma information.
1841  *
1842  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1843  * whatever write-combining details or similar.
1844  */
1845 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1846 {
1847         unsigned long vm_len, pfn, pages;
1848
1849         /* Check that the physical memory area passed in looks valid */
1850         if (start + len < start)
1851                 return -EINVAL;
1852         /*
1853          * You *really* shouldn't map things that aren't page-aligned,
1854          * but we've historically allowed it because IO memory might
1855          * just have smaller alignment.
1856          */
1857         len += start & ~PAGE_MASK;
1858         pfn = start >> PAGE_SHIFT;
1859         pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1860         if (pfn + pages < pfn)
1861                 return -EINVAL;
1862
1863         /* We start the mapping 'vm_pgoff' pages into the area */
1864         if (vma->vm_pgoff > pages)
1865                 return -EINVAL;
1866         pfn += vma->vm_pgoff;
1867         pages -= vma->vm_pgoff;
1868
1869         /* Can we fit all of the mapping? */
1870         vm_len = vma->vm_end - vma->vm_start;
1871         if (vm_len >> PAGE_SHIFT > pages)
1872                 return -EINVAL;
1873
1874         /* Ok, let it rip */
1875         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1876 }
1877 EXPORT_SYMBOL(vm_iomap_memory);
1878
1879 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1880                                      unsigned long addr, unsigned long end,
1881                                      pte_fn_t fn, void *data)
1882 {
1883         pte_t *pte;
1884         int err;
1885         pgtable_t token;
1886         spinlock_t *uninitialized_var(ptl);
1887
1888         pte = (mm == &init_mm) ?
1889                 pte_alloc_kernel(pmd, addr) :
1890                 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1891         if (!pte)
1892                 return -ENOMEM;
1893
1894         BUG_ON(pmd_huge(*pmd));
1895
1896         arch_enter_lazy_mmu_mode();
1897
1898         token = pmd_pgtable(*pmd);
1899
1900         do {
1901                 err = fn(pte++, token, addr, data);
1902                 if (err)
1903                         break;
1904         } while (addr += PAGE_SIZE, addr != end);
1905
1906         arch_leave_lazy_mmu_mode();
1907
1908         if (mm != &init_mm)
1909                 pte_unmap_unlock(pte-1, ptl);
1910         return err;
1911 }
1912
1913 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1914                                      unsigned long addr, unsigned long end,
1915                                      pte_fn_t fn, void *data)
1916 {
1917         pmd_t *pmd;
1918         unsigned long next;
1919         int err;
1920
1921         BUG_ON(pud_huge(*pud));
1922
1923         pmd = pmd_alloc(mm, pud, addr);
1924         if (!pmd)
1925                 return -ENOMEM;
1926         do {
1927                 next = pmd_addr_end(addr, end);
1928                 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1929                 if (err)
1930                         break;
1931         } while (pmd++, addr = next, addr != end);
1932         return err;
1933 }
1934
1935 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1936                                      unsigned long addr, unsigned long end,
1937                                      pte_fn_t fn, void *data)
1938 {
1939         pud_t *pud;
1940         unsigned long next;
1941         int err;
1942
1943         pud = pud_alloc(mm, pgd, addr);
1944         if (!pud)
1945                 return -ENOMEM;
1946         do {
1947                 next = pud_addr_end(addr, end);
1948                 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1949                 if (err)
1950                         break;
1951         } while (pud++, addr = next, addr != end);
1952         return err;
1953 }
1954
1955 /*
1956  * Scan a region of virtual memory, filling in page tables as necessary
1957  * and calling a provided function on each leaf page table.
1958  */
1959 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1960                         unsigned long size, pte_fn_t fn, void *data)
1961 {
1962         pgd_t *pgd;
1963         unsigned long next;
1964         unsigned long end = addr + size;
1965         int err;
1966
1967         if (WARN_ON(addr >= end))
1968                 return -EINVAL;
1969
1970         pgd = pgd_offset(mm, addr);
1971         do {
1972                 next = pgd_addr_end(addr, end);
1973                 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1974                 if (err)
1975                         break;
1976         } while (pgd++, addr = next, addr != end);
1977
1978         return err;
1979 }
1980 EXPORT_SYMBOL_GPL(apply_to_page_range);
1981
1982 /*
1983  * handle_pte_fault chooses page fault handler according to an entry which was
1984  * read non-atomically.  Before making any commitment, on those architectures
1985  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
1986  * parts, do_swap_page must check under lock before unmapping the pte and
1987  * proceeding (but do_wp_page is only called after already making such a check;
1988  * and do_anonymous_page can safely check later on).
1989  */
1990 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1991                                 pte_t *page_table, pte_t orig_pte)
1992 {
1993         int same = 1;
1994 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1995         if (sizeof(pte_t) > sizeof(unsigned long)) {
1996                 spinlock_t *ptl = pte_lockptr(mm, pmd);
1997                 spin_lock(ptl);
1998                 same = pte_same(*page_table, orig_pte);
1999                 spin_unlock(ptl);
2000         }
2001 #endif
2002         pte_unmap(page_table);
2003         return same;
2004 }
2005
2006 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2007 {
2008         debug_dma_assert_idle(src);
2009
2010         /*
2011          * If the source page was a PFN mapping, we don't have
2012          * a "struct page" for it. We do a best-effort copy by
2013          * just copying from the original user address. If that
2014          * fails, we just zero-fill it. Live with it.
2015          */
2016         if (unlikely(!src)) {
2017                 void *kaddr = kmap_atomic(dst);
2018                 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2019
2020                 /*
2021                  * This really shouldn't fail, because the page is there
2022                  * in the page tables. But it might just be unreadable,
2023                  * in which case we just give up and fill the result with
2024                  * zeroes.
2025                  */
2026                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2027                         clear_page(kaddr);
2028                 kunmap_atomic(kaddr);
2029                 flush_dcache_page(dst);
2030         } else
2031                 copy_user_highpage(dst, src, va, vma);
2032 }
2033
2034 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2035 {
2036         struct file *vm_file = vma->vm_file;
2037
2038         if (vm_file)
2039                 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2040
2041         /*
2042          * Special mappings (e.g. VDSO) do not have any file so fake
2043          * a default GFP_KERNEL for them.
2044          */
2045         return GFP_KERNEL;
2046 }
2047
2048 /*
2049  * Notify the address space that the page is about to become writable so that
2050  * it can prohibit this or wait for the page to get into an appropriate state.
2051  *
2052  * We do this without the lock held, so that it can sleep if it needs to.
2053  */
2054 static int do_page_mkwrite(struct vm_fault *vmf)
2055 {
2056         int ret;
2057         struct page *page = vmf->page;
2058         unsigned int old_flags = vmf->flags;
2059
2060         vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2061
2062         ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2063         /* Restore original flags so that caller is not surprised */
2064         vmf->flags = old_flags;
2065         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2066                 return ret;
2067         if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2068                 lock_page(page);
2069                 if (!page->mapping) {
2070                         unlock_page(page);
2071                         return 0; /* retry */
2072                 }
2073                 ret |= VM_FAULT_LOCKED;
2074         } else
2075                 VM_BUG_ON_PAGE(!PageLocked(page), page);
2076         return ret;
2077 }
2078
2079 /*
2080  * Handle dirtying of a page in shared file mapping on a write fault.
2081  *
2082  * The function expects the page to be locked and unlocks it.
2083  */
2084 static void fault_dirty_shared_page(struct vm_area_struct *vma,
2085                                     struct page *page)
2086 {
2087         struct address_space *mapping;
2088         bool dirtied;
2089         bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2090
2091         dirtied = set_page_dirty(page);
2092         VM_BUG_ON_PAGE(PageAnon(page), page);
2093         /*
2094          * Take a local copy of the address_space - page.mapping may be zeroed
2095          * by truncate after unlock_page().   The address_space itself remains
2096          * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2097          * release semantics to prevent the compiler from undoing this copying.
2098          */
2099         mapping = page_rmapping(page);
2100         unlock_page(page);
2101
2102         if ((dirtied || page_mkwrite) && mapping) {
2103                 /*
2104                  * Some device drivers do not set page.mapping
2105                  * but still dirty their pages
2106                  */
2107                 balance_dirty_pages_ratelimited(mapping);
2108         }
2109
2110         if (!page_mkwrite)
2111                 file_update_time(vma->vm_file);
2112 }
2113
2114 /*
2115  * Handle write page faults for pages that can be reused in the current vma
2116  *
2117  * This can happen either due to the mapping being with the VM_SHARED flag,
2118  * or due to us being the last reference standing to the page. In either
2119  * case, all we need to do here is to mark the page as writable and update
2120  * any related book-keeping.
2121  */
2122 static inline void wp_page_reuse(struct vm_fault *vmf)
2123         __releases(vmf->ptl)
2124 {
2125         struct vm_area_struct *vma = vmf->vma;
2126         struct page *page = vmf->page;
2127         pte_t entry;
2128         /*
2129          * Clear the pages cpupid information as the existing
2130          * information potentially belongs to a now completely
2131          * unrelated process.
2132          */
2133         if (page)
2134                 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2135
2136         flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2137         entry = pte_mkyoung(vmf->orig_pte);
2138         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2139         if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2140                 update_mmu_cache(vma, vmf->address, vmf->pte);
2141         pte_unmap_unlock(vmf->pte, vmf->ptl);
2142 }
2143
2144 /*
2145  * Handle the case of a page which we actually need to copy to a new page.
2146  *
2147  * Called with mmap_sem locked and the old page referenced, but
2148  * without the ptl held.
2149  *
2150  * High level logic flow:
2151  *
2152  * - Allocate a page, copy the content of the old page to the new one.
2153  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2154  * - Take the PTL. If the pte changed, bail out and release the allocated page
2155  * - If the pte is still the way we remember it, update the page table and all
2156  *   relevant references. This includes dropping the reference the page-table
2157  *   held to the old page, as well as updating the rmap.
2158  * - In any case, unlock the PTL and drop the reference we took to the old page.
2159  */
2160 static int wp_page_copy(struct vm_fault *vmf)
2161 {
2162         struct vm_area_struct *vma = vmf->vma;
2163         struct mm_struct *mm = vma->vm_mm;
2164         struct page *old_page = vmf->page;
2165         struct page *new_page = NULL;
2166         pte_t entry;
2167         int page_copied = 0;
2168         const unsigned long mmun_start = vmf->address & PAGE_MASK;
2169         const unsigned long mmun_end = mmun_start + PAGE_SIZE;
2170         struct mem_cgroup *memcg;
2171
2172         if (unlikely(anon_vma_prepare(vma)))
2173                 goto oom;
2174
2175         if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2176                 new_page = alloc_zeroed_user_highpage_movable(vma,
2177                                                               vmf->address);
2178                 if (!new_page)
2179                         goto oom;
2180         } else {
2181                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2182                                 vmf->address);
2183                 if (!new_page)
2184                         goto oom;
2185                 cow_user_page(new_page, old_page, vmf->address, vma);
2186         }
2187
2188         if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false))
2189                 goto oom_free_new;
2190
2191         __SetPageUptodate(new_page);
2192
2193         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2194
2195         /*
2196          * Re-check the pte - we dropped the lock
2197          */
2198         vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2199         if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2200                 if (old_page) {
2201                         if (!PageAnon(old_page)) {
2202                                 dec_mm_counter_fast(mm,
2203                                                 mm_counter_file(old_page));
2204                                 inc_mm_counter_fast(mm, MM_ANONPAGES);
2205                         }
2206                 } else {
2207                         inc_mm_counter_fast(mm, MM_ANONPAGES);
2208                 }
2209                 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2210                 entry = mk_pte(new_page, vma->vm_page_prot);
2211                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2212                 /*
2213                  * Clear the pte entry and flush it first, before updating the
2214                  * pte with the new entry. This will avoid a race condition
2215                  * seen in the presence of one thread doing SMC and another
2216                  * thread doing COW.
2217                  */
2218                 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2219                 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2220                 mem_cgroup_commit_charge(new_page, memcg, false, false);
2221                 lru_cache_add_active_or_unevictable(new_page, vma);
2222                 /*
2223                  * We call the notify macro here because, when using secondary
2224                  * mmu page tables (such as kvm shadow page tables), we want the
2225                  * new page to be mapped directly into the secondary page table.
2226                  */
2227                 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2228                 update_mmu_cache(vma, vmf->address, vmf->pte);
2229                 if (old_page) {
2230                         /*
2231                          * Only after switching the pte to the new page may
2232                          * we remove the mapcount here. Otherwise another
2233                          * process may come and find the rmap count decremented
2234                          * before the pte is switched to the new page, and
2235                          * "reuse" the old page writing into it while our pte
2236                          * here still points into it and can be read by other
2237                          * threads.
2238                          *
2239                          * The critical issue is to order this
2240                          * page_remove_rmap with the ptp_clear_flush above.
2241                          * Those stores are ordered by (if nothing else,)
2242                          * the barrier present in the atomic_add_negative
2243                          * in page_remove_rmap.
2244                          *
2245                          * Then the TLB flush in ptep_clear_flush ensures that
2246                          * no process can access the old page before the
2247                          * decremented mapcount is visible. And the old page
2248                          * cannot be reused until after the decremented
2249                          * mapcount is visible. So transitively, TLBs to
2250                          * old page will be flushed before it can be reused.
2251                          */
2252                         page_remove_rmap(old_page, false);
2253                 }
2254
2255                 /* Free the old page.. */
2256                 new_page = old_page;
2257                 page_copied = 1;
2258         } else {
2259                 mem_cgroup_cancel_charge(new_page, memcg, false);
2260         }
2261
2262         if (new_page)
2263                 put_page(new_page);
2264
2265         pte_unmap_unlock(vmf->pte, vmf->ptl);
2266         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2267         if (old_page) {
2268                 /*
2269                  * Don't let another task, with possibly unlocked vma,
2270                  * keep the mlocked page.
2271                  */
2272                 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2273                         lock_page(old_page);    /* LRU manipulation */
2274                         if (PageMlocked(old_page))
2275                                 munlock_vma_page(old_page);
2276                         unlock_page(old_page);
2277                 }
2278                 put_page(old_page);
2279         }
2280         return page_copied ? VM_FAULT_WRITE : 0;
2281 oom_free_new:
2282         put_page(new_page);
2283 oom:
2284         if (old_page)
2285                 put_page(old_page);
2286         return VM_FAULT_OOM;
2287 }
2288
2289 /**
2290  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2291  *                        writeable once the page is prepared
2292  *
2293  * @vmf: structure describing the fault
2294  *
2295  * This function handles all that is needed to finish a write page fault in a
2296  * shared mapping due to PTE being read-only once the mapped page is prepared.
2297  * It handles locking of PTE and modifying it. The function returns
2298  * VM_FAULT_WRITE on success, 0 when PTE got changed before we acquired PTE
2299  * lock.
2300  *
2301  * The function expects the page to be locked or other protection against
2302  * concurrent faults / writeback (such as DAX radix tree locks).
2303  */
2304 int finish_mkwrite_fault(struct vm_fault *vmf)
2305 {
2306         WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2307         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2308                                        &vmf->ptl);
2309         /*
2310          * We might have raced with another page fault while we released the
2311          * pte_offset_map_lock.
2312          */
2313         if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2314                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2315                 return VM_FAULT_NOPAGE;
2316         }
2317         wp_page_reuse(vmf);
2318         return 0;
2319 }
2320
2321 /*
2322  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2323  * mapping
2324  */
2325 static int wp_pfn_shared(struct vm_fault *vmf)
2326 {
2327         struct vm_area_struct *vma = vmf->vma;
2328
2329         if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2330                 int ret;
2331
2332                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2333                 vmf->flags |= FAULT_FLAG_MKWRITE;
2334                 ret = vma->vm_ops->pfn_mkwrite(vmf);
2335                 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2336                         return ret;
2337                 return finish_mkwrite_fault(vmf);
2338         }
2339         wp_page_reuse(vmf);
2340         return VM_FAULT_WRITE;
2341 }
2342
2343 static int wp_page_shared(struct vm_fault *vmf)
2344         __releases(vmf->ptl)
2345 {
2346         struct vm_area_struct *vma = vmf->vma;
2347
2348         get_page(vmf->page);
2349
2350         if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2351                 int tmp;
2352
2353                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2354                 tmp = do_page_mkwrite(vmf);
2355                 if (unlikely(!tmp || (tmp &
2356                                       (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2357                         put_page(vmf->page);
2358                         return tmp;
2359                 }
2360                 tmp = finish_mkwrite_fault(vmf);
2361                 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2362                         unlock_page(vmf->page);
2363                         put_page(vmf->page);
2364                         return tmp;
2365                 }
2366         } else {
2367                 wp_page_reuse(vmf);
2368                 lock_page(vmf->page);
2369         }
2370         fault_dirty_shared_page(vma, vmf->page);
2371         put_page(vmf->page);
2372
2373         return VM_FAULT_WRITE;
2374 }
2375
2376 /*
2377  * This routine handles present pages, when users try to write
2378  * to a shared page. It is done by copying the page to a new address
2379  * and decrementing the shared-page counter for the old page.
2380  *
2381  * Note that this routine assumes that the protection checks have been
2382  * done by the caller (the low-level page fault routine in most cases).
2383  * Thus we can safely just mark it writable once we've done any necessary
2384  * COW.
2385  *
2386  * We also mark the page dirty at this point even though the page will
2387  * change only once the write actually happens. This avoids a few races,
2388  * and potentially makes it more efficient.
2389  *
2390  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2391  * but allow concurrent faults), with pte both mapped and locked.
2392  * We return with mmap_sem still held, but pte unmapped and unlocked.
2393  */
2394 static int do_wp_page(struct vm_fault *vmf)
2395         __releases(vmf->ptl)
2396 {
2397         struct vm_area_struct *vma = vmf->vma;
2398
2399         vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2400         if (!vmf->page) {
2401                 /*
2402                  * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2403                  * VM_PFNMAP VMA.
2404                  *
2405                  * We should not cow pages in a shared writeable mapping.
2406                  * Just mark the pages writable and/or call ops->pfn_mkwrite.
2407                  */
2408                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2409                                      (VM_WRITE|VM_SHARED))
2410                         return wp_pfn_shared(vmf);
2411
2412                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2413                 return wp_page_copy(vmf);
2414         }
2415
2416         /*
2417          * Take out anonymous pages first, anonymous shared vmas are
2418          * not dirty accountable.
2419          */
2420         if (PageAnon(vmf->page) && !PageKsm(vmf->page)) {
2421                 int total_mapcount;
2422                 if (!trylock_page(vmf->page)) {
2423                         get_page(vmf->page);
2424                         pte_unmap_unlock(vmf->pte, vmf->ptl);
2425                         lock_page(vmf->page);
2426                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2427                                         vmf->address, &vmf->ptl);
2428                         if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2429                                 unlock_page(vmf->page);
2430                                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2431                                 put_page(vmf->page);
2432                                 return 0;
2433                         }
2434                         put_page(vmf->page);
2435                 }
2436                 if (reuse_swap_page(vmf->page, &total_mapcount)) {
2437                         if (total_mapcount == 1) {
2438                                 /*
2439                                  * The page is all ours. Move it to
2440                                  * our anon_vma so the rmap code will
2441                                  * not search our parent or siblings.
2442                                  * Protected against the rmap code by
2443                                  * the page lock.
2444                                  */
2445                                 page_move_anon_rmap(vmf->page, vma);
2446                         }
2447                         unlock_page(vmf->page);
2448                         wp_page_reuse(vmf);
2449                         return VM_FAULT_WRITE;
2450                 }
2451                 unlock_page(vmf->page);
2452         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2453                                         (VM_WRITE|VM_SHARED))) {
2454                 return wp_page_shared(vmf);
2455         }
2456
2457         /*
2458          * Ok, we need to copy. Oh, well..
2459          */
2460         get_page(vmf->page);
2461
2462         pte_unmap_unlock(vmf->pte, vmf->ptl);
2463         return wp_page_copy(vmf);
2464 }
2465
2466 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2467                 unsigned long start_addr, unsigned long end_addr,
2468                 struct zap_details *details)
2469 {
2470         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2471 }
2472
2473 static inline void unmap_mapping_range_tree(struct rb_root *root,
2474                                             struct zap_details *details)
2475 {
2476         struct vm_area_struct *vma;
2477         pgoff_t vba, vea, zba, zea;
2478
2479         vma_interval_tree_foreach(vma, root,
2480                         details->first_index, details->last_index) {
2481
2482                 vba = vma->vm_pgoff;
2483                 vea = vba + vma_pages(vma) - 1;
2484                 zba = details->first_index;
2485                 if (zba < vba)
2486                         zba = vba;
2487                 zea = details->last_index;
2488                 if (zea > vea)
2489                         zea = vea;
2490
2491                 unmap_mapping_range_vma(vma,
2492                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2493                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2494                                 details);
2495         }
2496 }
2497
2498 /**
2499  * unmap_mapping_range - unmap the portion of all mmaps in the specified
2500  * address_space corresponding to the specified page range in the underlying
2501  * file.
2502  *
2503  * @mapping: the address space containing mmaps to be unmapped.
2504  * @holebegin: byte in first page to unmap, relative to the start of
2505  * the underlying file.  This will be rounded down to a PAGE_SIZE
2506  * boundary.  Note that this is different from truncate_pagecache(), which
2507  * must keep the partial page.  In contrast, we must get rid of
2508  * partial pages.
2509  * @holelen: size of prospective hole in bytes.  This will be rounded
2510  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2511  * end of the file.
2512  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2513  * but 0 when invalidating pagecache, don't throw away private data.
2514  */
2515 void unmap_mapping_range(struct address_space *mapping,
2516                 loff_t const holebegin, loff_t const holelen, int even_cows)
2517 {
2518         struct zap_details details = { };
2519         pgoff_t hba = holebegin >> PAGE_SHIFT;
2520         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2521
2522         /* Check for overflow. */
2523         if (sizeof(holelen) > sizeof(hlen)) {
2524                 long long holeend =
2525                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2526                 if (holeend & ~(long long)ULONG_MAX)
2527                         hlen = ULONG_MAX - hba + 1;
2528         }
2529
2530         details.check_mapping = even_cows ? NULL : mapping;
2531         details.first_index = hba;
2532         details.last_index = hba + hlen - 1;
2533         if (details.last_index < details.first_index)
2534                 details.last_index = ULONG_MAX;
2535
2536         i_mmap_lock_write(mapping);
2537         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
2538                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2539         i_mmap_unlock_write(mapping);
2540 }
2541 EXPORT_SYMBOL(unmap_mapping_range);
2542
2543 /*
2544  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2545  * but allow concurrent faults), and pte mapped but not yet locked.
2546  * We return with pte unmapped and unlocked.
2547  *
2548  * We return with the mmap_sem locked or unlocked in the same cases
2549  * as does filemap_fault().
2550  */
2551 int do_swap_page(struct vm_fault *vmf)
2552 {
2553         struct vm_area_struct *vma = vmf->vma;
2554         struct page *page, *swapcache;
2555         struct mem_cgroup *memcg;
2556         swp_entry_t entry;
2557         pte_t pte;
2558         int locked;
2559         int exclusive = 0;
2560         int ret = 0;
2561
2562         if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
2563                 goto out;
2564
2565         entry = pte_to_swp_entry(vmf->orig_pte);
2566         if (unlikely(non_swap_entry(entry))) {
2567                 if (is_migration_entry(entry)) {
2568                         migration_entry_wait(vma->vm_mm, vmf->pmd,
2569                                              vmf->address);
2570                 } else if (is_hwpoison_entry(entry)) {
2571                         ret = VM_FAULT_HWPOISON;
2572                 } else {
2573                         print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
2574                         ret = VM_FAULT_SIGBUS;
2575                 }
2576                 goto out;
2577         }
2578         delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2579         page = lookup_swap_cache(entry);
2580         if (!page) {
2581                 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, vma,
2582                                         vmf->address);
2583                 if (!page) {
2584                         /*
2585                          * Back out if somebody else faulted in this pte
2586                          * while we released the pte lock.
2587                          */
2588                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2589                                         vmf->address, &vmf->ptl);
2590                         if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
2591                                 ret = VM_FAULT_OOM;
2592                         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2593                         goto unlock;
2594                 }
2595
2596                 /* Had to read the page from swap area: Major fault */
2597                 ret = VM_FAULT_MAJOR;
2598                 count_vm_event(PGMAJFAULT);
2599                 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
2600         } else if (PageHWPoison(page)) {
2601                 /*
2602                  * hwpoisoned dirty swapcache pages are kept for killing
2603                  * owner processes (which may be unknown at hwpoison time)
2604                  */
2605                 ret = VM_FAULT_HWPOISON;
2606                 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2607                 swapcache = page;
2608                 goto out_release;
2609         }
2610
2611         swapcache = page;
2612         locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
2613
2614         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2615         if (!locked) {
2616                 ret |= VM_FAULT_RETRY;
2617                 goto out_release;
2618         }
2619
2620         /*
2621          * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2622          * release the swapcache from under us.  The page pin, and pte_same
2623          * test below, are not enough to exclude that.  Even if it is still
2624          * swapcache, we need to check that the page's swap has not changed.
2625          */
2626         if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2627                 goto out_page;
2628
2629         page = ksm_might_need_to_copy(page, vma, vmf->address);
2630         if (unlikely(!page)) {
2631                 ret = VM_FAULT_OOM;
2632                 page = swapcache;
2633                 goto out_page;
2634         }
2635
2636         if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
2637                                 &memcg, false)) {
2638                 ret = VM_FAULT_OOM;
2639                 goto out_page;
2640         }
2641
2642         /*
2643          * Back out if somebody else already faulted in this pte.
2644          */
2645         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2646                         &vmf->ptl);
2647         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
2648                 goto out_nomap;
2649
2650         if (unlikely(!PageUptodate(page))) {
2651                 ret = VM_FAULT_SIGBUS;
2652                 goto out_nomap;
2653         }
2654
2655         /*
2656          * The page isn't present yet, go ahead with the fault.
2657          *
2658          * Be careful about the sequence of operations here.
2659          * To get its accounting right, reuse_swap_page() must be called
2660          * while the page is counted on swap but not yet in mapcount i.e.
2661          * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2662          * must be called after the swap_free(), or it will never succeed.
2663          */
2664
2665         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2666         dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
2667         pte = mk_pte(page, vma->vm_page_prot);
2668         if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
2669                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2670                 vmf->flags &= ~FAULT_FLAG_WRITE;
2671                 ret |= VM_FAULT_WRITE;
2672                 exclusive = RMAP_EXCLUSIVE;
2673         }
2674         flush_icache_page(vma, page);
2675         if (pte_swp_soft_dirty(vmf->orig_pte))
2676                 pte = pte_mksoft_dirty(pte);
2677         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
2678         vmf->orig_pte = pte;
2679         if (page == swapcache) {
2680                 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
2681                 mem_cgroup_commit_charge(page, memcg, true, false);
2682                 activate_page(page);
2683         } else { /* ksm created a completely new copy */
2684                 page_add_new_anon_rmap(page, vma, vmf->address, false);
2685                 mem_cgroup_commit_charge(page, memcg, false, false);
2686                 lru_cache_add_active_or_unevictable(page, vma);
2687         }
2688
2689         swap_free(entry);
2690         if (mem_cgroup_swap_full(page) ||
2691             (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2692                 try_to_free_swap(page);
2693         unlock_page(page);
2694         if (page != swapcache) {
2695                 /*
2696                  * Hold the lock to avoid the swap entry to be reused
2697                  * until we take the PT lock for the pte_same() check
2698                  * (to avoid false positives from pte_same). For
2699                  * further safety release the lock after the swap_free
2700                  * so that the swap count won't change under a
2701                  * parallel locked swapcache.
2702                  */
2703                 unlock_page(swapcache);
2704                 put_page(swapcache);
2705         }
2706
2707         if (vmf->flags & FAULT_FLAG_WRITE) {
2708                 ret |= do_wp_page(vmf);
2709                 if (ret & VM_FAULT_ERROR)
2710                         ret &= VM_FAULT_ERROR;
2711                 goto out;
2712         }
2713
2714         /* No need to invalidate - it was non-present before */
2715         update_mmu_cache(vma, vmf->address, vmf->pte);
2716 unlock:
2717         pte_unmap_unlock(vmf->pte, vmf->ptl);
2718 out:
2719         return ret;
2720 out_nomap:
2721         mem_cgroup_cancel_charge(page, memcg, false);
2722         pte_unmap_unlock(vmf->pte, vmf->ptl);
2723 out_page:
2724         unlock_page(page);
2725 out_release:
2726         put_page(page);
2727         if (page != swapcache) {
2728                 unlock_page(swapcache);
2729                 put_page(swapcache);
2730         }
2731         return ret;
2732 }
2733
2734 /*
2735  * This is like a special single-page "expand_{down|up}wards()",
2736  * except we must first make sure that 'address{-|+}PAGE_SIZE'
2737  * doesn't hit another vma.
2738  */
2739 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
2740 {
2741         address &= PAGE_MASK;
2742         if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
2743                 struct vm_area_struct *prev = vma->vm_prev;
2744
2745                 /*
2746                  * Is there a mapping abutting this one below?
2747                  *
2748                  * That's only ok if it's the same stack mapping
2749                  * that has gotten split..
2750                  */
2751                 if (prev && prev->vm_end == address)
2752                         return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
2753
2754                 return expand_downwards(vma, address - PAGE_SIZE);
2755         }
2756         if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
2757                 struct vm_area_struct *next = vma->vm_next;
2758
2759                 /* As VM_GROWSDOWN but s/below/above/ */
2760                 if (next && next->vm_start == address + PAGE_SIZE)
2761                         return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
2762
2763                 return expand_upwards(vma, address + PAGE_SIZE);
2764         }
2765         return 0;
2766 }
2767
2768 /*
2769  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2770  * but allow concurrent faults), and pte mapped but not yet locked.
2771  * We return with mmap_sem still held, but pte unmapped and unlocked.
2772  */
2773 static int do_anonymous_page(struct vm_fault *vmf)
2774 {
2775         struct vm_area_struct *vma = vmf->vma;
2776         struct mem_cgroup *memcg;
2777         struct page *page;
2778         pte_t entry;
2779
2780         /* File mapping without ->vm_ops ? */
2781         if (vma->vm_flags & VM_SHARED)
2782                 return VM_FAULT_SIGBUS;
2783
2784         /* Check if we need to add a guard page to the stack */
2785         if (check_stack_guard_page(vma, vmf->address) < 0)
2786                 return VM_FAULT_SIGSEGV;
2787
2788         /*
2789          * Use pte_alloc() instead of pte_alloc_map().  We can't run
2790          * pte_offset_map() on pmds where a huge pmd might be created
2791          * from a different thread.
2792          *
2793          * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2794          * parallel threads are excluded by other means.
2795          *
2796          * Here we only have down_read(mmap_sem).
2797          */
2798         if (pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))
2799                 return VM_FAULT_OOM;
2800
2801         /* See the comment in pte_alloc_one_map() */
2802         if (unlikely(pmd_trans_unstable(vmf->pmd)))
2803                 return 0;
2804
2805         /* Use the zero-page for reads */
2806         if (!(vmf->flags & FAULT_FLAG_WRITE) &&
2807                         !mm_forbids_zeropage(vma->vm_mm)) {
2808                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
2809                                                 vma->vm_page_prot));
2810                 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2811                                 vmf->address, &vmf->ptl);
2812                 if (!pte_none(*vmf->pte))
2813                         goto unlock;
2814                 /* Deliver the page fault to userland, check inside PT lock */
2815                 if (userfaultfd_missing(vma)) {
2816                         pte_unmap_unlock(vmf->pte, vmf->ptl);
2817                         return handle_userfault(vmf, VM_UFFD_MISSING);
2818                 }
2819                 goto setpte;
2820         }
2821
2822         /* Allocate our own private page. */
2823         if (unlikely(anon_vma_prepare(vma)))
2824                 goto oom;
2825         page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
2826         if (!page)
2827                 goto oom;
2828
2829         if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
2830                 goto oom_free_page;
2831
2832         /*
2833          * The memory barrier inside __SetPageUptodate makes sure that
2834          * preceeding stores to the page contents become visible before
2835          * the set_pte_at() write.
2836          */
2837         __SetPageUptodate(page);
2838
2839         entry = mk_pte(page, vma->vm_page_prot);
2840         if (vma->vm_flags & VM_WRITE)
2841                 entry = pte_mkwrite(pte_mkdirty(entry));
2842
2843         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2844                         &vmf->ptl);
2845         if (!pte_none(*vmf->pte))
2846                 goto release;
2847
2848         /* Deliver the page fault to userland, check inside PT lock */
2849         if (userfaultfd_missing(vma)) {
2850                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2851                 mem_cgroup_cancel_charge(page, memcg, false);
2852                 put_page(page);
2853                 return handle_userfault(vmf, VM_UFFD_MISSING);
2854         }
2855
2856         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2857         page_add_new_anon_rmap(page, vma, vmf->address, false);
2858         mem_cgroup_commit_charge(page, memcg, false, false);
2859         lru_cache_add_active_or_unevictable(page, vma);
2860 setpte:
2861         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
2862
2863         /* No need to invalidate - it was non-present before */
2864         update_mmu_cache(vma, vmf->address, vmf->pte);
2865 unlock:
2866         pte_unmap_unlock(vmf->pte, vmf->ptl);
2867         return 0;
2868 release:
2869         mem_cgroup_cancel_charge(page, memcg, false);
2870         put_page(page);
2871         goto unlock;
2872 oom_free_page:
2873         put_page(page);
2874 oom:
2875         return VM_FAULT_OOM;
2876 }
2877
2878 /*
2879  * The mmap_sem must have been held on entry, and may have been
2880  * released depending on flags and vma->vm_ops->fault() return value.
2881  * See filemap_fault() and __lock_page_retry().
2882  */
2883 static int __do_fault(struct vm_fault *vmf)
2884 {
2885         struct vm_area_struct *vma = vmf->vma;
2886         int ret;
2887
2888         ret = vma->vm_ops->fault(vmf);
2889         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
2890                             VM_FAULT_DONE_COW)))
2891                 return ret;
2892
2893         if (unlikely(PageHWPoison(vmf->page))) {
2894                 if (ret & VM_FAULT_LOCKED)
2895                         unlock_page(vmf->page);
2896                 put_page(vmf->page);
2897                 vmf->page = NULL;
2898                 return VM_FAULT_HWPOISON;
2899         }
2900
2901         if (unlikely(!(ret & VM_FAULT_LOCKED)))
2902                 lock_page(vmf->page);
2903         else
2904                 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
2905
2906         return ret;
2907 }
2908
2909 static int pte_alloc_one_map(struct vm_fault *vmf)
2910 {
2911         struct vm_area_struct *vma = vmf->vma;
2912
2913         if (!pmd_none(*vmf->pmd))
2914                 goto map_pte;
2915         if (vmf->prealloc_pte) {
2916                 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
2917                 if (unlikely(!pmd_none(*vmf->pmd))) {
2918                         spin_unlock(vmf->ptl);
2919                         goto map_pte;
2920                 }
2921
2922                 atomic_long_inc(&vma->vm_mm->nr_ptes);
2923                 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
2924                 spin_unlock(vmf->ptl);
2925                 vmf->prealloc_pte = NULL;
2926         } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))) {
2927                 return VM_FAULT_OOM;
2928         }
2929 map_pte:
2930         /*
2931          * If a huge pmd materialized under us just retry later.  Use
2932          * pmd_trans_unstable() instead of pmd_trans_huge() to ensure the pmd
2933          * didn't become pmd_trans_huge under us and then back to pmd_none, as
2934          * a result of MADV_DONTNEED running immediately after a huge pmd fault
2935          * in a different thread of this mm, in turn leading to a misleading
2936          * pmd_trans_huge() retval.  All we have to ensure is that it is a
2937          * regular pmd that we can walk with pte_offset_map() and we can do that
2938          * through an atomic read in C, which is what pmd_trans_unstable()
2939          * provides.
2940          */
2941         if (pmd_trans_unstable(vmf->pmd) || pmd_devmap(*vmf->pmd))
2942                 return VM_FAULT_NOPAGE;
2943
2944         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2945                         &vmf->ptl);
2946         return 0;
2947 }
2948
2949 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
2950
2951 #define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1)
2952 static inline bool transhuge_vma_suitable(struct vm_area_struct *vma,
2953                 unsigned long haddr)
2954 {
2955         if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) !=
2956                         (vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK))
2957                 return false;
2958         if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
2959                 return false;
2960         return true;
2961 }
2962
2963 static void deposit_prealloc_pte(struct vm_fault *vmf)
2964 {
2965         struct vm_area_struct *vma = vmf->vma;
2966
2967         pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
2968         /*
2969          * We are going to consume the prealloc table,
2970          * count that as nr_ptes.
2971          */
2972         atomic_long_inc(&vma->vm_mm->nr_ptes);
2973         vmf->prealloc_pte = NULL;
2974 }
2975
2976 static int do_set_pmd(struct vm_fault *vmf, struct page *page)
2977 {
2978         struct vm_area_struct *vma = vmf->vma;
2979         bool write = vmf->flags & FAULT_FLAG_WRITE;
2980         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
2981         pmd_t entry;
2982         int i, ret;
2983
2984         if (!transhuge_vma_suitable(vma, haddr))
2985                 return VM_FAULT_FALLBACK;
2986
2987         ret = VM_FAULT_FALLBACK;
2988         page = compound_head(page);
2989
2990         /*
2991          * Archs like ppc64 need additonal space to store information
2992          * related to pte entry. Use the preallocated table for that.
2993          */
2994         if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
2995                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm, vmf->address);
2996                 if (!vmf->prealloc_pte)
2997                         return VM_FAULT_OOM;
2998                 smp_wmb(); /* See comment in __pte_alloc() */
2999         }
3000
3001         vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3002         if (unlikely(!pmd_none(*vmf->pmd)))
3003                 goto out;
3004
3005         for (i = 0; i < HPAGE_PMD_NR; i++)
3006                 flush_icache_page(vma, page + i);
3007
3008         entry = mk_huge_pmd(page, vma->vm_page_prot);
3009         if (write)
3010                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3011
3012         add_mm_counter(vma->vm_mm, MM_FILEPAGES, HPAGE_PMD_NR);
3013         page_add_file_rmap(page, true);
3014         /*
3015          * deposit and withdraw with pmd lock held
3016          */
3017         if (arch_needs_pgtable_deposit())
3018                 deposit_prealloc_pte(vmf);
3019
3020         set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3021
3022         update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3023
3024         /* fault is handled */
3025         ret = 0;
3026         count_vm_event(THP_FILE_MAPPED);
3027 out:
3028         spin_unlock(vmf->ptl);
3029         return ret;
3030 }
3031 #else
3032 static int do_set_pmd(struct vm_fault *vmf, struct page *page)
3033 {
3034         BUILD_BUG();
3035         return 0;
3036 }
3037 #endif
3038
3039 /**
3040  * alloc_set_pte - setup new PTE entry for given page and add reverse page
3041  * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3042  *
3043  * @vmf: fault environment
3044  * @memcg: memcg to charge page (only for private mappings)
3045  * @page: page to map
3046  *
3047  * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3048  * return.
3049  *
3050  * Target users are page handler itself and implementations of
3051  * vm_ops->map_pages.
3052  */
3053 int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
3054                 struct page *page)
3055 {
3056         struct vm_area_struct *vma = vmf->vma;
3057         bool write = vmf->flags & FAULT_FLAG_WRITE;
3058         pte_t entry;
3059         int ret;
3060
3061         if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
3062                         IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
3063                 /* THP on COW? */
3064                 VM_BUG_ON_PAGE(memcg, page);
3065
3066                 ret = do_set_pmd(vmf, page);
3067                 if (ret != VM_FAULT_FALLBACK)
3068                         return ret;
3069         }
3070
3071         if (!vmf->pte) {
3072                 ret = pte_alloc_one_map(vmf);
3073                 if (ret)
3074                         return ret;
3075         }
3076
3077         /* Re-check under ptl */
3078         if (unlikely(!pte_none(*vmf->pte)))
3079                 return VM_FAULT_NOPAGE;
3080
3081         flush_icache_page(vma, page);
3082         entry = mk_pte(page, vma->vm_page_prot);
3083         if (write)
3084                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3085         /* copy-on-write page */
3086         if (write && !(vma->vm_flags & VM_SHARED)) {
3087                 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3088                 page_add_new_anon_rmap(page, vma, vmf->address, false);
3089                 mem_cgroup_commit_charge(page, memcg, false, false);
3090                 lru_cache_add_active_or_unevictable(page, vma);
3091         } else {
3092                 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3093                 page_add_file_rmap(page, false);
3094         }
3095         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3096
3097         /* no need to invalidate: a not-present page won't be cached */
3098         update_mmu_cache(vma, vmf->address, vmf->pte);
3099
3100         return 0;
3101 }
3102
3103
3104 /**
3105  * finish_fault - finish page fault once we have prepared the page to fault
3106  *
3107  * @vmf: structure describing the fault
3108  *
3109  * This function handles all that is needed to finish a page fault once the
3110  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3111  * given page, adds reverse page mapping, handles memcg charges and LRU
3112  * addition. The function returns 0 on success, VM_FAULT_ code in case of
3113  * error.
3114  *
3115  * The function expects the page to be locked and on success it consumes a
3116  * reference of a page being mapped (for the PTE which maps it).
3117  */
3118 int finish_fault(struct vm_fault *vmf)
3119 {
3120         struct page *page;
3121         int ret;
3122
3123         /* Did we COW the page? */
3124         if ((vmf->flags & FAULT_FLAG_WRITE) &&
3125             !(vmf->vma->vm_flags & VM_SHARED))
3126                 page = vmf->cow_page;
3127         else
3128                 page = vmf->page;
3129         ret = alloc_set_pte(vmf, vmf->memcg, page);
3130         if (vmf->pte)
3131                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3132         return ret;
3133 }
3134
3135 static unsigned long fault_around_bytes __read_mostly =
3136         rounddown_pow_of_two(65536);
3137
3138 #ifdef CONFIG_DEBUG_FS
3139 static int fault_around_bytes_get(void *data, u64 *val)
3140 {
3141         *val = fault_around_bytes;
3142         return 0;
3143 }
3144
3145 /*
3146  * fault_around_pages() and fault_around_mask() expects fault_around_bytes
3147  * rounded down to nearest page order. It's what do_fault_around() expects to
3148  * see.
3149  */
3150 static int fault_around_bytes_set(void *data, u64 val)
3151 {
3152         if (val / PAGE_SIZE > PTRS_PER_PTE)
3153                 return -EINVAL;
3154         if (val > PAGE_SIZE)
3155                 fault_around_bytes = rounddown_pow_of_two(val);
3156         else
3157                 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3158         return 0;
3159 }
3160 DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops,
3161                 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3162
3163 static int __init fault_around_debugfs(void)
3164 {
3165         void *ret;
3166
3167         ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL,
3168                         &fault_around_bytes_fops);
3169         if (!ret)
3170                 pr_warn("Failed to create fault_around_bytes in debugfs");
3171         return 0;
3172 }
3173 late_initcall(fault_around_debugfs);
3174 #endif
3175
3176 /*
3177  * do_fault_around() tries to map few pages around the fault address. The hope
3178  * is that the pages will be needed soon and this will lower the number of
3179  * faults to handle.
3180  *
3181  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3182  * not ready to be mapped: not up-to-date, locked, etc.
3183  *
3184  * This function is called with the page table lock taken. In the split ptlock
3185  * case the page table lock only protects only those entries which belong to
3186  * the page table corresponding to the fault address.
3187  *
3188  * This function doesn't cross the VMA boundaries, in order to call map_pages()
3189  * only once.
3190  *
3191  * fault_around_pages() defines how many pages we'll try to map.
3192  * do_fault_around() expects it to return a power of two less than or equal to
3193  * PTRS_PER_PTE.
3194  *
3195  * The virtual address of the area that we map is naturally aligned to the
3196  * fault_around_pages() value (and therefore to page order).  This way it's
3197  * easier to guarantee that we don't cross page table boundaries.
3198  */
3199 static int do_fault_around(struct vm_fault *vmf)
3200 {
3201         unsigned long address = vmf->address, nr_pages, mask;
3202         pgoff_t start_pgoff = vmf->pgoff;
3203         pgoff_t end_pgoff;
3204         int off, ret = 0;
3205
3206         nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3207         mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3208
3209         vmf->address = max(address & mask, vmf->vma->vm_start);
3210         off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3211         start_pgoff -= off;
3212
3213         /*
3214          *  end_pgoff is either end of page table or end of vma
3215          *  or fault_around_pages() from start_pgoff, depending what is nearest.
3216          */
3217         end_pgoff = start_pgoff -
3218                 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3219                 PTRS_PER_PTE - 1;
3220         end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3221                         start_pgoff + nr_pages - 1);
3222
3223         if (pmd_none(*vmf->pmd)) {
3224                 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm,
3225                                                   vmf->address);
3226                 if (!vmf->prealloc_pte)
3227                         goto out;
3228                 smp_wmb(); /* See comment in __pte_alloc() */
3229         }
3230
3231         vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3232
3233         /* Huge page is mapped? Page fault is solved */
3234         if (pmd_trans_huge(*vmf->pmd)) {
3235                 ret = VM_FAULT_NOPAGE;
3236                 goto out;
3237         }
3238
3239         /* ->map_pages() haven't done anything useful. Cold page cache? */
3240         if (!vmf->pte)
3241                 goto out;
3242
3243         /* check if the page fault is solved */
3244         vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3245         if (!pte_none(*vmf->pte))
3246                 ret = VM_FAULT_NOPAGE;
3247         pte_unmap_unlock(vmf->pte, vmf->ptl);
3248 out:
3249         vmf->address = address;
3250         vmf->pte = NULL;
3251         return ret;
3252 }
3253
3254 static int do_read_fault(struct vm_fault *vmf)
3255 {
3256         struct vm_area_struct *vma = vmf->vma;
3257         int ret = 0;
3258
3259         /*
3260          * Let's call ->map_pages() first and use ->fault() as fallback
3261          * if page by the offset is not ready to be mapped (cold cache or
3262          * something).
3263          */
3264         if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3265                 ret = do_fault_around(vmf);
3266                 if (ret)
3267                         return ret;
3268         }
3269
3270         ret = __do_fault(vmf);
3271         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3272                 return ret;
3273
3274         ret |= finish_fault(vmf);
3275         unlock_page(vmf->page);
3276         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3277                 put_page(vmf->page);
3278         return ret;
3279 }
3280
3281 static int do_cow_fault(struct vm_fault *vmf)
3282 {
3283         struct vm_area_struct *vma = vmf->vma;
3284         int ret;
3285
3286         if (unlikely(anon_vma_prepare(vma)))
3287                 return VM_FAULT_OOM;
3288
3289         vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3290         if (!vmf->cow_page)
3291                 return VM_FAULT_OOM;
3292
3293         if (mem_cgroup_try_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3294                                 &vmf->memcg, false)) {
3295                 put_page(vmf->cow_page);
3296                 return VM_FAULT_OOM;
3297         }
3298
3299         ret = __do_fault(vmf);
3300         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3301                 goto uncharge_out;
3302         if (ret & VM_FAULT_DONE_COW)
3303                 return ret;
3304
3305         copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3306         __SetPageUptodate(vmf->cow_page);
3307
3308         ret |= finish_fault(vmf);
3309         unlock_page(vmf->page);
3310         put_page(vmf->page);
3311         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3312                 goto uncharge_out;
3313         return ret;
3314 uncharge_out:
3315         mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
3316         put_page(vmf->cow_page);
3317         return ret;
3318 }
3319
3320 static int do_shared_fault(struct vm_fault *vmf)
3321 {
3322         struct vm_area_struct *vma = vmf->vma;
3323         int ret, tmp;
3324
3325         ret = __do_fault(vmf);
3326         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3327                 return ret;
3328
3329         /*
3330          * Check if the backing address space wants to know that the page is
3331          * about to become writable
3332          */
3333         if (vma->vm_ops->page_mkwrite) {
3334                 unlock_page(vmf->page);
3335                 tmp = do_page_mkwrite(vmf);
3336                 if (unlikely(!tmp ||
3337                                 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3338                         put_page(vmf->page);
3339                         return tmp;
3340                 }
3341         }
3342
3343         ret |= finish_fault(vmf);
3344         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3345                                         VM_FAULT_RETRY))) {
3346                 unlock_page(vmf->page);
3347                 put_page(vmf->page);
3348                 return ret;
3349         }
3350
3351         fault_dirty_shared_page(vma, vmf->page);
3352         return ret;
3353 }
3354
3355 /*
3356  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3357  * but allow concurrent faults).
3358  * The mmap_sem may have been released depending on flags and our
3359  * return value.  See filemap_fault() and __lock_page_or_retry().
3360  */
3361 static int do_fault(struct vm_fault *vmf)
3362 {
3363         struct vm_area_struct *vma = vmf->vma;
3364         int ret;
3365
3366         /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3367         if (!vma->vm_ops->fault)
3368                 ret = VM_FAULT_SIGBUS;
3369         else if (!(vmf->flags & FAULT_FLAG_WRITE))
3370                 ret = do_read_fault(vmf);
3371         else if (!(vma->vm_flags & VM_SHARED))
3372                 ret = do_cow_fault(vmf);
3373         else
3374                 ret = do_shared_fault(vmf);
3375
3376         /* preallocated pagetable is unused: free it */
3377         if (vmf->prealloc_pte) {
3378                 pte_free(vma->vm_mm, vmf->prealloc_pte);
3379                 vmf->prealloc_pte = NULL;
3380         }
3381         return ret;
3382 }
3383
3384 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3385                                 unsigned long addr, int page_nid,
3386                                 int *flags)
3387 {
3388         get_page(page);
3389
3390         count_vm_numa_event(NUMA_HINT_FAULTS);
3391         if (page_nid == numa_node_id()) {
3392                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3393                 *flags |= TNF_FAULT_LOCAL;
3394         }
3395
3396         return mpol_misplaced(page, vma, addr);
3397 }
3398
3399 static int do_numa_page(struct vm_fault *vmf)
3400 {
3401         struct vm_area_struct *vma = vmf->vma;
3402         struct page *page = NULL;
3403         int page_nid = -1;
3404         int last_cpupid;
3405         int target_nid;
3406         bool migrated = false;
3407         pte_t pte;
3408         bool was_writable = pte_savedwrite(vmf->orig_pte);
3409         int flags = 0;
3410
3411         /*
3412          * The "pte" at this point cannot be used safely without
3413          * validation through pte_unmap_same(). It's of NUMA type but
3414          * the pfn may be screwed if the read is non atomic.
3415          */
3416         vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3417         spin_lock(vmf->ptl);
3418         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3419                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3420                 goto out;
3421         }
3422
3423         /*
3424          * Make it present again, Depending on how arch implementes non
3425          * accessible ptes, some can allow access by kernel mode.
3426          */
3427         pte = ptep_modify_prot_start(vma->vm_mm, vmf->address, vmf->pte);
3428         pte = pte_modify(pte, vma->vm_page_prot);
3429         pte = pte_mkyoung(pte);
3430         if (was_writable)
3431                 pte = pte_mkwrite(pte);
3432         ptep_modify_prot_commit(vma->vm_mm, vmf->address, vmf->pte, pte);
3433         update_mmu_cache(vma, vmf->address, vmf->pte);
3434
3435         page = vm_normal_page(vma, vmf->address, pte);
3436         if (!page) {
3437                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3438                 return 0;
3439         }
3440
3441         /* TODO: handle PTE-mapped THP */
3442         if (PageCompound(page)) {
3443                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3444                 return 0;
3445         }
3446
3447         /*
3448          * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3449          * much anyway since they can be in shared cache state. This misses
3450          * the case where a mapping is writable but the process never writes
3451          * to it but pte_write gets cleared during protection updates and
3452          * pte_dirty has unpredictable behaviour between PTE scan updates,
3453          * background writeback, dirty balancing and application behaviour.
3454          */
3455         if (!pte_write(pte))
3456                 flags |= TNF_NO_GROUP;
3457
3458         /*
3459          * Flag if the page is shared between multiple address spaces. This
3460          * is later used when determining whether to group tasks together
3461          */
3462         if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3463                 flags |= TNF_SHARED;
3464
3465         last_cpupid = page_cpupid_last(page);
3466         page_nid = page_to_nid(page);
3467         target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
3468                         &flags);
3469         pte_unmap_unlock(vmf->pte, vmf->ptl);
3470         if (target_nid == -1) {
3471                 put_page(page);
3472                 goto out;
3473         }
3474
3475         /* Migrate to the requested node */
3476         migrated = migrate_misplaced_page(page, vma, target_nid);
3477         if (migrated) {
3478                 page_nid = target_nid;
3479                 flags |= TNF_MIGRATED;
3480         } else
3481                 flags |= TNF_MIGRATE_FAIL;
3482
3483 out:
3484         if (page_nid != -1)
3485                 task_numa_fault(last_cpupid, page_nid, 1, flags);
3486         return 0;
3487 }
3488
3489 static int create_huge_pmd(struct vm_fault *vmf)
3490 {
3491         if (vma_is_anonymous(vmf->vma))
3492                 return do_huge_pmd_anonymous_page(vmf);
3493         if (vmf->vma->vm_ops->huge_fault)
3494                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3495         return VM_FAULT_FALLBACK;
3496 }
3497
3498 static int wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
3499 {
3500         if (vma_is_anonymous(vmf->vma))
3501                 return do_huge_pmd_wp_page(vmf, orig_pmd);
3502         if (vmf->vma->vm_ops->huge_fault)
3503                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3504
3505         /* COW handled on pte level: split pmd */
3506         VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3507         __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
3508
3509         return VM_FAULT_FALLBACK;
3510 }
3511
3512 static inline bool vma_is_accessible(struct vm_area_struct *vma)
3513 {
3514         return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3515 }
3516
3517 static int create_huge_pud(struct vm_fault *vmf)
3518 {
3519 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3520         /* No support for anonymous transparent PUD pages yet */
3521         if (vma_is_anonymous(vmf->vma))
3522                 return VM_FAULT_FALLBACK;
3523         if (vmf->vma->vm_ops->huge_fault)
3524                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3525 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3526         return VM_FAULT_FALLBACK;
3527 }
3528
3529 static int wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
3530 {
3531 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3532         /* No support for anonymous transparent PUD pages yet */
3533         if (vma_is_anonymous(vmf->vma))
3534                 return VM_FAULT_FALLBACK;
3535         if (vmf->vma->vm_ops->huge_fault)
3536                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3537 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3538         return VM_FAULT_FALLBACK;
3539 }
3540
3541 /*
3542  * These routines also need to handle stuff like marking pages dirty
3543  * and/or accessed for architectures that don't do it in hardware (most
3544  * RISC architectures).  The early dirtying is also good on the i386.
3545  *
3546  * There is also a hook called "update_mmu_cache()" that architectures
3547  * with external mmu caches can use to update those (ie the Sparc or
3548  * PowerPC hashed page tables that act as extended TLBs).
3549  *
3550  * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3551  * concurrent faults).
3552  *
3553  * The mmap_sem may have been released depending on flags and our return value.
3554  * See filemap_fault() and __lock_page_or_retry().
3555  */
3556 static int handle_pte_fault(struct vm_fault *vmf)
3557 {
3558         pte_t entry;
3559
3560         if (unlikely(pmd_none(*vmf->pmd))) {
3561                 /*
3562                  * Leave __pte_alloc() until later: because vm_ops->fault may
3563                  * want to allocate huge page, and if we expose page table
3564                  * for an instant, it will be difficult to retract from
3565                  * concurrent faults and from rmap lookups.
3566                  */
3567                 vmf->pte = NULL;
3568         } else {
3569                 /* See comment in pte_alloc_one_map() */
3570                 if (pmd_trans_unstable(vmf->pmd) || pmd_devmap(*vmf->pmd))
3571                         return 0;
3572                 /*
3573                  * A regular pmd is established and it can't morph into a huge
3574                  * pmd from under us anymore at this point because we hold the
3575                  * mmap_sem read mode and khugepaged takes it in write mode.
3576                  * So now it's safe to run pte_offset_map().
3577                  */
3578                 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
3579                 vmf->orig_pte = *vmf->pte;
3580
3581                 /*
3582                  * some architectures can have larger ptes than wordsize,
3583                  * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
3584                  * CONFIG_32BIT=y, so READ_ONCE or ACCESS_ONCE cannot guarantee
3585                  * atomic accesses.  The code below just needs a consistent
3586                  * view for the ifs and we later double check anyway with the
3587                  * ptl lock held. So here a barrier will do.
3588                  */
3589                 barrier();
3590                 if (pte_none(vmf->orig_pte)) {
3591                         pte_unmap(vmf->pte);
3592                         vmf->pte = NULL;
3593                 }
3594         }
3595
3596         if (!vmf->pte) {
3597                 if (vma_is_anonymous(vmf->vma))
3598                         return do_anonymous_page(vmf);
3599                 else
3600                         return do_fault(vmf);
3601         }
3602
3603         if (!pte_present(vmf->orig_pte))
3604                 return do_swap_page(vmf);
3605
3606         if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
3607                 return do_numa_page(vmf);
3608
3609         vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
3610         spin_lock(vmf->ptl);
3611         entry = vmf->orig_pte;
3612         if (unlikely(!pte_same(*vmf->pte, entry)))
3613                 goto unlock;
3614         if (vmf->flags & FAULT_FLAG_WRITE) {
3615                 if (!pte_write(entry))
3616                         return do_wp_page(vmf);
3617                 entry = pte_mkdirty(entry);
3618         }
3619         entry = pte_mkyoung(entry);
3620         if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
3621                                 vmf->flags & FAULT_FLAG_WRITE)) {
3622                 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
3623         } else {
3624                 /*
3625                  * This is needed only for protection faults but the arch code
3626                  * is not yet telling us if this is a protection fault or not.
3627                  * This still avoids useless tlb flushes for .text page faults
3628                  * with threads.
3629                  */
3630                 if (vmf->flags & FAULT_FLAG_WRITE)
3631                         flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
3632         }
3633 unlock:
3634         pte_unmap_unlock(vmf->pte, vmf->ptl);
3635         return 0;
3636 }
3637
3638 /*
3639  * By the time we get here, we already hold the mm semaphore
3640  *
3641  * The mmap_sem may have been released depending on flags and our
3642  * return value.  See filemap_fault() and __lock_page_or_retry().
3643  */
3644 static int __handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
3645                 unsigned int flags)
3646 {
3647         struct vm_fault vmf = {
3648                 .vma = vma,
3649                 .address = address & PAGE_MASK,
3650                 .flags = flags,
3651                 .pgoff = linear_page_index(vma, address),
3652                 .gfp_mask = __get_fault_gfp_mask(vma),
3653         };
3654         struct mm_struct *mm = vma->vm_mm;
3655         pgd_t *pgd;
3656         int ret;
3657
3658         pgd = pgd_offset(mm, address);
3659
3660         vmf.pud = pud_alloc(mm, pgd, address);
3661         if (!vmf.pud)
3662                 return VM_FAULT_OOM;
3663         if (pud_none(*vmf.pud) && transparent_hugepage_enabled(vma)) {
3664                 ret = create_huge_pud(&vmf);
3665                 if (!(ret & VM_FAULT_FALLBACK))
3666                         return ret;
3667         } else {
3668                 pud_t orig_pud = *vmf.pud;
3669
3670                 barrier();
3671                 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
3672                         unsigned int dirty = flags & FAULT_FLAG_WRITE;
3673
3674                         /* NUMA case for anonymous PUDs would go here */
3675
3676                         if (dirty && !pud_write(orig_pud)) {
3677                                 ret = wp_huge_pud(&vmf, orig_pud);
3678                                 if (!(ret & VM_FAULT_FALLBACK))
3679                                         return ret;
3680                         } else {
3681                                 huge_pud_set_accessed(&vmf, orig_pud);
3682                                 return 0;
3683                         }
3684                 }
3685         }
3686
3687         vmf.pmd = pmd_alloc(mm, vmf.pud, address);
3688         if (!vmf.pmd)
3689                 return VM_FAULT_OOM;
3690         if (pmd_none(*vmf.pmd) && transparent_hugepage_enabled(vma)) {
3691                 ret = create_huge_pmd(&vmf);
3692                 if (!(ret & VM_FAULT_FALLBACK))
3693                         return ret;
3694         } else {
3695                 pmd_t orig_pmd = *vmf.pmd;
3696
3697                 barrier();
3698                 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
3699                         if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
3700                                 return do_huge_pmd_numa_page(&vmf, orig_pmd);
3701
3702                         if ((vmf.flags & FAULT_FLAG_WRITE) &&
3703                                         !pmd_write(orig_pmd)) {
3704                                 ret = wp_huge_pmd(&vmf, orig_pmd);
3705                                 if (!(ret & VM_FAULT_FALLBACK))
3706                                         return ret;
3707                         } else {
3708                                 huge_pmd_set_accessed(&vmf, orig_pmd);
3709                                 return 0;
3710                         }
3711                 }
3712         }
3713
3714         return handle_pte_fault(&vmf);
3715 }
3716
3717 /*
3718  * By the time we get here, we already hold the mm semaphore
3719  *
3720  * The mmap_sem may have been released depending on flags and our
3721  * return value.  See filemap_fault() and __lock_page_or_retry().
3722  */
3723 int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
3724                 unsigned int flags)
3725 {
3726         int ret;
3727
3728         __set_current_state(TASK_RUNNING);
3729
3730         count_vm_event(PGFAULT);
3731         mem_cgroup_count_vm_event(vma->vm_mm, PGFAULT);
3732
3733         /* do counter updates before entering really critical section. */
3734         check_sync_rss_stat(current);
3735
3736         /*
3737          * Enable the memcg OOM handling for faults triggered in user
3738          * space.  Kernel faults are handled more gracefully.
3739          */
3740         if (flags & FAULT_FLAG_USER)
3741                 mem_cgroup_oom_enable();
3742
3743         if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
3744                                             flags & FAULT_FLAG_INSTRUCTION,
3745                                             flags & FAULT_FLAG_REMOTE))
3746                 return VM_FAULT_SIGSEGV;
3747
3748         if (unlikely(is_vm_hugetlb_page(vma)))
3749                 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
3750         else
3751                 ret = __handle_mm_fault(vma, address, flags);
3752
3753         if (flags & FAULT_FLAG_USER) {
3754                 mem_cgroup_oom_disable();
3755                 /*
3756                  * The task may have entered a memcg OOM situation but
3757                  * if the allocation error was handled gracefully (no
3758                  * VM_FAULT_OOM), there is no need to kill anything.
3759                  * Just clean up the OOM state peacefully.
3760                  */
3761                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3762                         mem_cgroup_oom_synchronize(false);
3763         }
3764
3765         /*
3766          * This mm has been already reaped by the oom reaper and so the
3767          * refault cannot be trusted in general. Anonymous refaults would
3768          * lose data and give a zero page instead e.g. This is especially
3769          * problem for use_mm() because regular tasks will just die and
3770          * the corrupted data will not be visible anywhere while kthread
3771          * will outlive the oom victim and potentially propagate the date
3772          * further.
3773          */
3774         if (unlikely((current->flags & PF_KTHREAD) && !(ret & VM_FAULT_ERROR)
3775                                 && test_bit(MMF_UNSTABLE, &vma->vm_mm->flags)))
3776                 ret = VM_FAULT_SIGBUS;
3777
3778         return ret;
3779 }
3780 EXPORT_SYMBOL_GPL(handle_mm_fault);
3781
3782 #ifndef __PAGETABLE_PUD_FOLDED
3783 /*
3784  * Allocate page upper directory.
3785  * We've already handled the fast-path in-line.
3786  */
3787 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3788 {
3789         pud_t *new = pud_alloc_one(mm, address);
3790         if (!new)
3791                 return -ENOMEM;
3792
3793         smp_wmb(); /* See comment in __pte_alloc */
3794
3795         spin_lock(&mm->page_table_lock);
3796         if (pgd_present(*pgd))          /* Another has populated it */
3797                 pud_free(mm, new);
3798         else
3799                 pgd_populate(mm, pgd, new);
3800         spin_unlock(&mm->page_table_lock);
3801         return 0;
3802 }
3803 #endif /* __PAGETABLE_PUD_FOLDED */
3804
3805 #ifndef __PAGETABLE_PMD_FOLDED
3806 /*
3807  * Allocate page middle directory.
3808  * We've already handled the fast-path in-line.
3809  */
3810 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3811 {
3812         spinlock_t *ptl;
3813         pmd_t *new = pmd_alloc_one(mm, address);
3814         if (!new)
3815                 return -ENOMEM;
3816
3817         smp_wmb(); /* See comment in __pte_alloc */
3818
3819         ptl = pud_lock(mm, pud);
3820 #ifndef __ARCH_HAS_4LEVEL_HACK
3821         if (!pud_present(*pud)) {
3822                 mm_inc_nr_pmds(mm);
3823                 pud_populate(mm, pud, new);
3824         } else  /* Another has populated it */
3825                 pmd_free(mm, new);
3826 #else
3827         if (!pgd_present(*pud)) {
3828                 mm_inc_nr_pmds(mm);
3829                 pgd_populate(mm, pud, new);
3830         } else /* Another has populated it */
3831                 pmd_free(mm, new);
3832 #endif /* __ARCH_HAS_4LEVEL_HACK */
3833         spin_unlock(ptl);
3834         return 0;
3835 }
3836 #endif /* __PAGETABLE_PMD_FOLDED */
3837
3838 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
3839                 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
3840 {
3841         pgd_t *pgd;
3842         pud_t *pud;
3843         pmd_t *pmd;
3844         pte_t *ptep;
3845
3846         pgd = pgd_offset(mm, address);
3847         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3848                 goto out;
3849
3850         pud = pud_offset(pgd, address);
3851         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3852                 goto out;
3853
3854         pmd = pmd_offset(pud, address);
3855         VM_BUG_ON(pmd_trans_huge(*pmd));
3856
3857         if (pmd_huge(*pmd)) {
3858                 if (!pmdpp)
3859                         goto out;
3860
3861                 *ptlp = pmd_lock(mm, pmd);
3862                 if (pmd_huge(*pmd)) {
3863                         *pmdpp = pmd;
3864                         return 0;
3865                 }
3866                 spin_unlock(*ptlp);
3867         }
3868
3869         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3870                 goto out;
3871
3872         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3873         if (!ptep)
3874                 goto out;
3875         if (!pte_present(*ptep))
3876                 goto unlock;
3877         *ptepp = ptep;
3878         return 0;
3879 unlock:
3880         pte_unmap_unlock(ptep, *ptlp);
3881 out:
3882         return -EINVAL;
3883 }
3884
3885 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3886                              pte_t **ptepp, spinlock_t **ptlp)
3887 {
3888         int res;
3889
3890         /* (void) is needed to make gcc happy */
3891         (void) __cond_lock(*ptlp,
3892                            !(res = __follow_pte_pmd(mm, address, ptepp, NULL,
3893                                            ptlp)));
3894         return res;
3895 }
3896
3897 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
3898                              pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
3899 {
3900         int res;
3901
3902         /* (void) is needed to make gcc happy */
3903         (void) __cond_lock(*ptlp,
3904                            !(res = __follow_pte_pmd(mm, address, ptepp, pmdpp,
3905                                            ptlp)));
3906         return res;
3907 }
3908 EXPORT_SYMBOL(follow_pte_pmd);
3909
3910 /**
3911  * follow_pfn - look up PFN at a user virtual address
3912  * @vma: memory mapping
3913  * @address: user virtual address
3914  * @pfn: location to store found PFN
3915  *
3916  * Only IO mappings and raw PFN mappings are allowed.
3917  *
3918  * Returns zero and the pfn at @pfn on success, -ve otherwise.
3919  */
3920 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3921         unsigned long *pfn)
3922 {
3923         int ret = -EINVAL;
3924         spinlock_t *ptl;
3925         pte_t *ptep;
3926
3927         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3928                 return ret;
3929
3930         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3931         if (ret)
3932                 return ret;
3933         *pfn = pte_pfn(*ptep);
3934         pte_unmap_unlock(ptep, ptl);
3935         return 0;
3936 }
3937 EXPORT_SYMBOL(follow_pfn);
3938
3939 #ifdef CONFIG_HAVE_IOREMAP_PROT
3940 int follow_phys(struct vm_area_struct *vma,
3941                 unsigned long address, unsigned int flags,
3942                 unsigned long *prot, resource_size_t *phys)
3943 {
3944         int ret = -EINVAL;
3945         pte_t *ptep, pte;
3946         spinlock_t *ptl;
3947
3948         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3949                 goto out;
3950
3951         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3952                 goto out;
3953         pte = *ptep;
3954
3955         if ((flags & FOLL_WRITE) && !pte_write(pte))
3956                 goto unlock;
3957
3958         *prot = pgprot_val(pte_pgprot(pte));
3959         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3960
3961         ret = 0;
3962 unlock:
3963         pte_unmap_unlock(ptep, ptl);
3964 out:
3965         return ret;
3966 }
3967
3968 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3969                         void *buf, int len, int write)
3970 {
3971         resource_size_t phys_addr;
3972         unsigned long prot = 0;
3973         void __iomem *maddr;
3974         int offset = addr & (PAGE_SIZE-1);
3975
3976         if (follow_phys(vma, addr, write, &prot, &phys_addr))
3977                 return -EINVAL;
3978
3979         maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
3980         if (write)
3981                 memcpy_toio(maddr + offset, buf, len);
3982         else
3983                 memcpy_fromio(buf, maddr + offset, len);
3984         iounmap(maddr);
3985
3986         return len;
3987 }
3988 EXPORT_SYMBOL_GPL(generic_access_phys);
3989 #endif
3990
3991 /*
3992  * Access another process' address space as given in mm.  If non-NULL, use the
3993  * given task for page fault accounting.
3994  */
3995 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3996                 unsigned long addr, void *buf, int len, unsigned int gup_flags)
3997 {
3998         struct vm_area_struct *vma;
3999         void *old_buf = buf;
4000         int write = gup_flags & FOLL_WRITE;
4001
4002         down_read(&mm->mmap_sem);
4003         /* ignore errors, just check how much was successfully transferred */
4004         while (len) {
4005                 int bytes, ret, offset;
4006                 void *maddr;
4007                 struct page *page = NULL;
4008
4009                 ret = get_user_pages_remote(tsk, mm, addr, 1,
4010                                 gup_flags, &page, &vma, NULL);
4011                 if (ret <= 0) {
4012 #ifndef CONFIG_HAVE_IOREMAP_PROT
4013                         break;
4014 #else
4015                         /*
4016                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
4017                          * we can access using slightly different code.
4018                          */
4019                         vma = find_vma(mm, addr);
4020                         if (!vma || vma->vm_start > addr)
4021                                 break;
4022                         if (vma->vm_ops && vma->vm_ops->access)
4023                                 ret = vma->vm_ops->access(vma, addr, buf,
4024                                                           len, write);
4025                         if (ret <= 0)
4026                                 break;
4027                         bytes = ret;
4028 #endif
4029                 } else {
4030                         bytes = len;
4031                         offset = addr & (PAGE_SIZE-1);
4032                         if (bytes > PAGE_SIZE-offset)
4033                                 bytes = PAGE_SIZE-offset;
4034
4035                         maddr = kmap(page);
4036                         if (write) {
4037                                 copy_to_user_page(vma, page, addr,
4038                                                   maddr + offset, buf, bytes);
4039                                 set_page_dirty_lock(page);
4040                         } else {
4041                                 copy_from_user_page(vma, page, addr,
4042                                                     buf, maddr + offset, bytes);
4043                         }
4044                         kunmap(page);
4045                         put_page(page);
4046                 }
4047                 len -= bytes;
4048                 buf += bytes;
4049                 addr += bytes;
4050         }
4051         up_read(&mm->mmap_sem);
4052
4053         return buf - old_buf;
4054 }
4055
4056 /**
4057  * access_remote_vm - access another process' address space
4058  * @mm:         the mm_struct of the target address space
4059  * @addr:       start address to access
4060  * @buf:        source or destination buffer
4061  * @len:        number of bytes to transfer
4062  * @gup_flags:  flags modifying lookup behaviour
4063  *
4064  * The caller must hold a reference on @mm.
4065  */
4066 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4067                 void *buf, int len, unsigned int gup_flags)
4068 {
4069         return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4070 }
4071
4072 /*
4073  * Access another process' address space.
4074  * Source/target buffer must be kernel space,
4075  * Do not walk the page table directly, use get_user_pages
4076  */
4077 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4078                 void *buf, int len, unsigned int gup_flags)
4079 {
4080         struct mm_struct *mm;
4081         int ret;
4082
4083         mm = get_task_mm(tsk);
4084         if (!mm)
4085                 return 0;
4086
4087         ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4088
4089         mmput(mm);
4090
4091         return ret;
4092 }
4093 EXPORT_SYMBOL_GPL(access_process_vm);
4094
4095 /*
4096  * Print the name of a VMA.
4097  */
4098 void print_vma_addr(char *prefix, unsigned long ip)
4099 {
4100         struct mm_struct *mm = current->mm;
4101         struct vm_area_struct *vma;
4102
4103         /*
4104          * Do not print if we are in atomic
4105          * contexts (in exception stacks, etc.):
4106          */
4107         if (preempt_count())
4108                 return;
4109
4110         down_read(&mm->mmap_sem);
4111         vma = find_vma(mm, ip);
4112         if (vma && vma->vm_file) {
4113                 struct file *f = vma->vm_file;
4114                 char *buf = (char *)__get_free_page(GFP_KERNEL);
4115                 if (buf) {
4116                         char *p;
4117
4118                         p = file_path(f, buf, PAGE_SIZE);
4119                         if (IS_ERR(p))
4120                                 p = "?";
4121                         printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4122                                         vma->vm_start,
4123                                         vma->vm_end - vma->vm_start);
4124                         free_page((unsigned long)buf);
4125                 }
4126         }
4127         up_read(&mm->mmap_sem);
4128 }
4129
4130 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4131 void __might_fault(const char *file, int line)
4132 {
4133         /*
4134          * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4135          * holding the mmap_sem, this is safe because kernel memory doesn't
4136          * get paged out, therefore we'll never actually fault, and the
4137          * below annotations will generate false positives.
4138          */
4139         if (segment_eq(get_fs(), KERNEL_DS))
4140                 return;
4141         if (pagefault_disabled())
4142                 return;
4143         __might_sleep(file, line, 0);
4144 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4145         if (current->mm)
4146                 might_lock_read(&current->mm->mmap_sem);
4147 #endif
4148 }
4149 EXPORT_SYMBOL(__might_fault);
4150 #endif
4151
4152 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4153 static void clear_gigantic_page(struct page *page,
4154                                 unsigned long addr,
4155                                 unsigned int pages_per_huge_page)
4156 {
4157         int i;
4158         struct page *p = page;
4159
4160         might_sleep();
4161         for (i = 0; i < pages_per_huge_page;
4162              i++, p = mem_map_next(p, page, i)) {
4163                 cond_resched();
4164                 clear_user_highpage(p, addr + i * PAGE_SIZE);
4165         }
4166 }
4167 void clear_huge_page(struct page *page,
4168                      unsigned long addr, unsigned int pages_per_huge_page)
4169 {
4170         int i;
4171
4172         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4173                 clear_gigantic_page(page, addr, pages_per_huge_page);
4174                 return;
4175         }
4176
4177         might_sleep();
4178         for (i = 0; i < pages_per_huge_page; i++) {
4179                 cond_resched();
4180                 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4181         }
4182 }
4183
4184 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4185                                     unsigned long addr,
4186                                     struct vm_area_struct *vma,
4187                                     unsigned int pages_per_huge_page)
4188 {
4189         int i;
4190         struct page *dst_base = dst;
4191         struct page *src_base = src;
4192
4193         for (i = 0; i < pages_per_huge_page; ) {
4194                 cond_resched();
4195                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4196
4197                 i++;
4198                 dst = mem_map_next(dst, dst_base, i);
4199                 src = mem_map_next(src, src_base, i);
4200         }
4201 }
4202
4203 void copy_user_huge_page(struct page *dst, struct page *src,
4204                          unsigned long addr, struct vm_area_struct *vma,
4205                          unsigned int pages_per_huge_page)
4206 {
4207         int i;
4208
4209         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4210                 copy_user_gigantic_page(dst, src, addr, vma,
4211                                         pages_per_huge_page);
4212                 return;
4213         }
4214
4215         might_sleep();
4216         for (i = 0; i < pages_per_huge_page; i++) {
4217                 cond_resched();
4218                 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4219         }
4220 }
4221
4222 long copy_huge_page_from_user(struct page *dst_page,
4223                                 const void __user *usr_src,
4224                                 unsigned int pages_per_huge_page,
4225                                 bool allow_pagefault)
4226 {
4227         void *src = (void *)usr_src;
4228         void *page_kaddr;
4229         unsigned long i, rc = 0;
4230         unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4231
4232         for (i = 0; i < pages_per_huge_page; i++) {
4233                 if (allow_pagefault)
4234                         page_kaddr = kmap(dst_page + i);
4235                 else
4236                         page_kaddr = kmap_atomic(dst_page + i);
4237                 rc = copy_from_user(page_kaddr,
4238                                 (const void __user *)(src + i * PAGE_SIZE),
4239                                 PAGE_SIZE);
4240                 if (allow_pagefault)
4241                         kunmap(dst_page + i);
4242                 else
4243                         kunmap_atomic(page_kaddr);
4244
4245                 ret_val -= (PAGE_SIZE - rc);
4246                 if (rc)
4247                         break;
4248
4249                 cond_resched();
4250         }
4251         return ret_val;
4252 }
4253 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4254
4255 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4256
4257 static struct kmem_cache *page_ptl_cachep;
4258
4259 void __init ptlock_cache_init(void)
4260 {
4261         page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4262                         SLAB_PANIC, NULL);
4263 }
4264
4265 bool ptlock_alloc(struct page *page)
4266 {
4267         spinlock_t *ptl;
4268
4269         ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4270         if (!ptl)
4271                 return false;
4272         page->ptl = ptl;
4273         return true;
4274 }
4275
4276 void ptlock_free(struct page *page)
4277 {
4278         kmem_cache_free(page_ptl_cachep, page->ptl);
4279 }
4280 #endif