]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - mm/migrate.c
Sanitize 'move_pages()' permission checks
[karo-tx-linux.git] / mm / migrate.c
1 /*
2  * Memory Migration functionality - linux/mm/migrate.c
3  *
4  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
5  *
6  * Page migration was first developed in the context of the memory hotplug
7  * project. The main authors of the migration code are:
8  *
9  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10  * Hirokazu Takahashi <taka@valinux.co.jp>
11  * Dave Hansen <haveblue@us.ibm.com>
12  * Christoph Lameter
13  */
14
15 #include <linux/migrate.h>
16 #include <linux/export.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/topology.h>
27 #include <linux/cpu.h>
28 #include <linux/cpuset.h>
29 #include <linux/writeback.h>
30 #include <linux/mempolicy.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/backing-dev.h>
34 #include <linux/compaction.h>
35 #include <linux/syscalls.h>
36 #include <linux/hugetlb.h>
37 #include <linux/hugetlb_cgroup.h>
38 #include <linux/gfp.h>
39 #include <linux/balloon_compaction.h>
40 #include <linux/mmu_notifier.h>
41 #include <linux/page_idle.h>
42 #include <linux/page_owner.h>
43 #include <linux/sched/mm.h>
44 #include <linux/ptrace.h>
45
46 #include <asm/tlbflush.h>
47
48 #define CREATE_TRACE_POINTS
49 #include <trace/events/migrate.h>
50
51 #include "internal.h"
52
53 /*
54  * migrate_prep() needs to be called before we start compiling a list of pages
55  * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
56  * undesirable, use migrate_prep_local()
57  */
58 int migrate_prep(void)
59 {
60         /*
61          * Clear the LRU lists so pages can be isolated.
62          * Note that pages may be moved off the LRU after we have
63          * drained them. Those pages will fail to migrate like other
64          * pages that may be busy.
65          */
66         lru_add_drain_all();
67
68         return 0;
69 }
70
71 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
72 int migrate_prep_local(void)
73 {
74         lru_add_drain();
75
76         return 0;
77 }
78
79 int isolate_movable_page(struct page *page, isolate_mode_t mode)
80 {
81         struct address_space *mapping;
82
83         /*
84          * Avoid burning cycles with pages that are yet under __free_pages(),
85          * or just got freed under us.
86          *
87          * In case we 'win' a race for a movable page being freed under us and
88          * raise its refcount preventing __free_pages() from doing its job
89          * the put_page() at the end of this block will take care of
90          * release this page, thus avoiding a nasty leakage.
91          */
92         if (unlikely(!get_page_unless_zero(page)))
93                 goto out;
94
95         /*
96          * Check PageMovable before holding a PG_lock because page's owner
97          * assumes anybody doesn't touch PG_lock of newly allocated page
98          * so unconditionally grapping the lock ruins page's owner side.
99          */
100         if (unlikely(!__PageMovable(page)))
101                 goto out_putpage;
102         /*
103          * As movable pages are not isolated from LRU lists, concurrent
104          * compaction threads can race against page migration functions
105          * as well as race against the releasing a page.
106          *
107          * In order to avoid having an already isolated movable page
108          * being (wrongly) re-isolated while it is under migration,
109          * or to avoid attempting to isolate pages being released,
110          * lets be sure we have the page lock
111          * before proceeding with the movable page isolation steps.
112          */
113         if (unlikely(!trylock_page(page)))
114                 goto out_putpage;
115
116         if (!PageMovable(page) || PageIsolated(page))
117                 goto out_no_isolated;
118
119         mapping = page_mapping(page);
120         VM_BUG_ON_PAGE(!mapping, page);
121
122         if (!mapping->a_ops->isolate_page(page, mode))
123                 goto out_no_isolated;
124
125         /* Driver shouldn't use PG_isolated bit of page->flags */
126         WARN_ON_ONCE(PageIsolated(page));
127         __SetPageIsolated(page);
128         unlock_page(page);
129
130         return 0;
131
132 out_no_isolated:
133         unlock_page(page);
134 out_putpage:
135         put_page(page);
136 out:
137         return -EBUSY;
138 }
139
140 /* It should be called on page which is PG_movable */
141 void putback_movable_page(struct page *page)
142 {
143         struct address_space *mapping;
144
145         VM_BUG_ON_PAGE(!PageLocked(page), page);
146         VM_BUG_ON_PAGE(!PageMovable(page), page);
147         VM_BUG_ON_PAGE(!PageIsolated(page), page);
148
149         mapping = page_mapping(page);
150         mapping->a_ops->putback_page(page);
151         __ClearPageIsolated(page);
152 }
153
154 /*
155  * Put previously isolated pages back onto the appropriate lists
156  * from where they were once taken off for compaction/migration.
157  *
158  * This function shall be used whenever the isolated pageset has been
159  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
160  * and isolate_huge_page().
161  */
162 void putback_movable_pages(struct list_head *l)
163 {
164         struct page *page;
165         struct page *page2;
166
167         list_for_each_entry_safe(page, page2, l, lru) {
168                 if (unlikely(PageHuge(page))) {
169                         putback_active_hugepage(page);
170                         continue;
171                 }
172                 list_del(&page->lru);
173                 /*
174                  * We isolated non-lru movable page so here we can use
175                  * __PageMovable because LRU page's mapping cannot have
176                  * PAGE_MAPPING_MOVABLE.
177                  */
178                 if (unlikely(__PageMovable(page))) {
179                         VM_BUG_ON_PAGE(!PageIsolated(page), page);
180                         lock_page(page);
181                         if (PageMovable(page))
182                                 putback_movable_page(page);
183                         else
184                                 __ClearPageIsolated(page);
185                         unlock_page(page);
186                         put_page(page);
187                 } else {
188                         dec_node_page_state(page, NR_ISOLATED_ANON +
189                                         page_is_file_cache(page));
190                         putback_lru_page(page);
191                 }
192         }
193 }
194
195 /*
196  * Restore a potential migration pte to a working pte entry
197  */
198 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
199                                  unsigned long addr, void *old)
200 {
201         struct page_vma_mapped_walk pvmw = {
202                 .page = old,
203                 .vma = vma,
204                 .address = addr,
205                 .flags = PVMW_SYNC | PVMW_MIGRATION,
206         };
207         struct page *new;
208         pte_t pte;
209         swp_entry_t entry;
210
211         VM_BUG_ON_PAGE(PageTail(page), page);
212         while (page_vma_mapped_walk(&pvmw)) {
213                 if (PageKsm(page))
214                         new = page;
215                 else
216                         new = page - pvmw.page->index +
217                                 linear_page_index(vma, pvmw.address);
218
219                 get_page(new);
220                 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
221                 if (pte_swp_soft_dirty(*pvmw.pte))
222                         pte = pte_mksoft_dirty(pte);
223
224                 /*
225                  * Recheck VMA as permissions can change since migration started
226                  */
227                 entry = pte_to_swp_entry(*pvmw.pte);
228                 if (is_write_migration_entry(entry))
229                         pte = maybe_mkwrite(pte, vma);
230
231                 flush_dcache_page(new);
232 #ifdef CONFIG_HUGETLB_PAGE
233                 if (PageHuge(new)) {
234                         pte = pte_mkhuge(pte);
235                         pte = arch_make_huge_pte(pte, vma, new, 0);
236                         set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
237                         if (PageAnon(new))
238                                 hugepage_add_anon_rmap(new, vma, pvmw.address);
239                         else
240                                 page_dup_rmap(new, true);
241                 } else
242 #endif
243                 {
244                         set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
245
246                         if (PageAnon(new))
247                                 page_add_anon_rmap(new, vma, pvmw.address, false);
248                         else
249                                 page_add_file_rmap(new, false);
250                 }
251                 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
252                         mlock_vma_page(new);
253
254                 /* No need to invalidate - it was non-present before */
255                 update_mmu_cache(vma, pvmw.address, pvmw.pte);
256         }
257
258         return true;
259 }
260
261 /*
262  * Get rid of all migration entries and replace them by
263  * references to the indicated page.
264  */
265 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
266 {
267         struct rmap_walk_control rwc = {
268                 .rmap_one = remove_migration_pte,
269                 .arg = old,
270         };
271
272         if (locked)
273                 rmap_walk_locked(new, &rwc);
274         else
275                 rmap_walk(new, &rwc);
276 }
277
278 /*
279  * Something used the pte of a page under migration. We need to
280  * get to the page and wait until migration is finished.
281  * When we return from this function the fault will be retried.
282  */
283 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
284                                 spinlock_t *ptl)
285 {
286         pte_t pte;
287         swp_entry_t entry;
288         struct page *page;
289
290         spin_lock(ptl);
291         pte = *ptep;
292         if (!is_swap_pte(pte))
293                 goto out;
294
295         entry = pte_to_swp_entry(pte);
296         if (!is_migration_entry(entry))
297                 goto out;
298
299         page = migration_entry_to_page(entry);
300
301         /*
302          * Once radix-tree replacement of page migration started, page_count
303          * *must* be zero. And, we don't want to call wait_on_page_locked()
304          * against a page without get_page().
305          * So, we use get_page_unless_zero(), here. Even failed, page fault
306          * will occur again.
307          */
308         if (!get_page_unless_zero(page))
309                 goto out;
310         pte_unmap_unlock(ptep, ptl);
311         wait_on_page_locked(page);
312         put_page(page);
313         return;
314 out:
315         pte_unmap_unlock(ptep, ptl);
316 }
317
318 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
319                                 unsigned long address)
320 {
321         spinlock_t *ptl = pte_lockptr(mm, pmd);
322         pte_t *ptep = pte_offset_map(pmd, address);
323         __migration_entry_wait(mm, ptep, ptl);
324 }
325
326 void migration_entry_wait_huge(struct vm_area_struct *vma,
327                 struct mm_struct *mm, pte_t *pte)
328 {
329         spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
330         __migration_entry_wait(mm, pte, ptl);
331 }
332
333 #ifdef CONFIG_BLOCK
334 /* Returns true if all buffers are successfully locked */
335 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
336                                                         enum migrate_mode mode)
337 {
338         struct buffer_head *bh = head;
339
340         /* Simple case, sync compaction */
341         if (mode != MIGRATE_ASYNC) {
342                 do {
343                         get_bh(bh);
344                         lock_buffer(bh);
345                         bh = bh->b_this_page;
346
347                 } while (bh != head);
348
349                 return true;
350         }
351
352         /* async case, we cannot block on lock_buffer so use trylock_buffer */
353         do {
354                 get_bh(bh);
355                 if (!trylock_buffer(bh)) {
356                         /*
357                          * We failed to lock the buffer and cannot stall in
358                          * async migration. Release the taken locks
359                          */
360                         struct buffer_head *failed_bh = bh;
361                         put_bh(failed_bh);
362                         bh = head;
363                         while (bh != failed_bh) {
364                                 unlock_buffer(bh);
365                                 put_bh(bh);
366                                 bh = bh->b_this_page;
367                         }
368                         return false;
369                 }
370
371                 bh = bh->b_this_page;
372         } while (bh != head);
373         return true;
374 }
375 #else
376 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
377                                                         enum migrate_mode mode)
378 {
379         return true;
380 }
381 #endif /* CONFIG_BLOCK */
382
383 /*
384  * Replace the page in the mapping.
385  *
386  * The number of remaining references must be:
387  * 1 for anonymous pages without a mapping
388  * 2 for pages with a mapping
389  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
390  */
391 int migrate_page_move_mapping(struct address_space *mapping,
392                 struct page *newpage, struct page *page,
393                 struct buffer_head *head, enum migrate_mode mode,
394                 int extra_count)
395 {
396         struct zone *oldzone, *newzone;
397         int dirty;
398         int expected_count = 1 + extra_count;
399         void **pslot;
400
401         if (!mapping) {
402                 /* Anonymous page without mapping */
403                 if (page_count(page) != expected_count)
404                         return -EAGAIN;
405
406                 /* No turning back from here */
407                 newpage->index = page->index;
408                 newpage->mapping = page->mapping;
409                 if (PageSwapBacked(page))
410                         __SetPageSwapBacked(newpage);
411
412                 return MIGRATEPAGE_SUCCESS;
413         }
414
415         oldzone = page_zone(page);
416         newzone = page_zone(newpage);
417
418         spin_lock_irq(&mapping->tree_lock);
419
420         pslot = radix_tree_lookup_slot(&mapping->page_tree,
421                                         page_index(page));
422
423         expected_count += 1 + page_has_private(page);
424         if (page_count(page) != expected_count ||
425                 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
426                 spin_unlock_irq(&mapping->tree_lock);
427                 return -EAGAIN;
428         }
429
430         if (!page_ref_freeze(page, expected_count)) {
431                 spin_unlock_irq(&mapping->tree_lock);
432                 return -EAGAIN;
433         }
434
435         /*
436          * In the async migration case of moving a page with buffers, lock the
437          * buffers using trylock before the mapping is moved. If the mapping
438          * was moved, we later failed to lock the buffers and could not move
439          * the mapping back due to an elevated page count, we would have to
440          * block waiting on other references to be dropped.
441          */
442         if (mode == MIGRATE_ASYNC && head &&
443                         !buffer_migrate_lock_buffers(head, mode)) {
444                 page_ref_unfreeze(page, expected_count);
445                 spin_unlock_irq(&mapping->tree_lock);
446                 return -EAGAIN;
447         }
448
449         /*
450          * Now we know that no one else is looking at the page:
451          * no turning back from here.
452          */
453         newpage->index = page->index;
454         newpage->mapping = page->mapping;
455         get_page(newpage);      /* add cache reference */
456         if (PageSwapBacked(page)) {
457                 __SetPageSwapBacked(newpage);
458                 if (PageSwapCache(page)) {
459                         SetPageSwapCache(newpage);
460                         set_page_private(newpage, page_private(page));
461                 }
462         } else {
463                 VM_BUG_ON_PAGE(PageSwapCache(page), page);
464         }
465
466         /* Move dirty while page refs frozen and newpage not yet exposed */
467         dirty = PageDirty(page);
468         if (dirty) {
469                 ClearPageDirty(page);
470                 SetPageDirty(newpage);
471         }
472
473         radix_tree_replace_slot(&mapping->page_tree, pslot, newpage);
474
475         /*
476          * Drop cache reference from old page by unfreezing
477          * to one less reference.
478          * We know this isn't the last reference.
479          */
480         page_ref_unfreeze(page, expected_count - 1);
481
482         spin_unlock(&mapping->tree_lock);
483         /* Leave irq disabled to prevent preemption while updating stats */
484
485         /*
486          * If moved to a different zone then also account
487          * the page for that zone. Other VM counters will be
488          * taken care of when we establish references to the
489          * new page and drop references to the old page.
490          *
491          * Note that anonymous pages are accounted for
492          * via NR_FILE_PAGES and NR_ANON_MAPPED if they
493          * are mapped to swap space.
494          */
495         if (newzone != oldzone) {
496                 __dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES);
497                 __inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES);
498                 if (PageSwapBacked(page) && !PageSwapCache(page)) {
499                         __dec_node_state(oldzone->zone_pgdat, NR_SHMEM);
500                         __inc_node_state(newzone->zone_pgdat, NR_SHMEM);
501                 }
502                 if (dirty && mapping_cap_account_dirty(mapping)) {
503                         __dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
504                         __dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
505                         __inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
506                         __inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
507                 }
508         }
509         local_irq_enable();
510
511         return MIGRATEPAGE_SUCCESS;
512 }
513 EXPORT_SYMBOL(migrate_page_move_mapping);
514
515 /*
516  * The expected number of remaining references is the same as that
517  * of migrate_page_move_mapping().
518  */
519 int migrate_huge_page_move_mapping(struct address_space *mapping,
520                                    struct page *newpage, struct page *page)
521 {
522         int expected_count;
523         void **pslot;
524
525         spin_lock_irq(&mapping->tree_lock);
526
527         pslot = radix_tree_lookup_slot(&mapping->page_tree,
528                                         page_index(page));
529
530         expected_count = 2 + page_has_private(page);
531         if (page_count(page) != expected_count ||
532                 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
533                 spin_unlock_irq(&mapping->tree_lock);
534                 return -EAGAIN;
535         }
536
537         if (!page_ref_freeze(page, expected_count)) {
538                 spin_unlock_irq(&mapping->tree_lock);
539                 return -EAGAIN;
540         }
541
542         newpage->index = page->index;
543         newpage->mapping = page->mapping;
544
545         get_page(newpage);
546
547         radix_tree_replace_slot(&mapping->page_tree, pslot, newpage);
548
549         page_ref_unfreeze(page, expected_count - 1);
550
551         spin_unlock_irq(&mapping->tree_lock);
552
553         return MIGRATEPAGE_SUCCESS;
554 }
555
556 /*
557  * Gigantic pages are so large that we do not guarantee that page++ pointer
558  * arithmetic will work across the entire page.  We need something more
559  * specialized.
560  */
561 static void __copy_gigantic_page(struct page *dst, struct page *src,
562                                 int nr_pages)
563 {
564         int i;
565         struct page *dst_base = dst;
566         struct page *src_base = src;
567
568         for (i = 0; i < nr_pages; ) {
569                 cond_resched();
570                 copy_highpage(dst, src);
571
572                 i++;
573                 dst = mem_map_next(dst, dst_base, i);
574                 src = mem_map_next(src, src_base, i);
575         }
576 }
577
578 static void copy_huge_page(struct page *dst, struct page *src)
579 {
580         int i;
581         int nr_pages;
582
583         if (PageHuge(src)) {
584                 /* hugetlbfs page */
585                 struct hstate *h = page_hstate(src);
586                 nr_pages = pages_per_huge_page(h);
587
588                 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
589                         __copy_gigantic_page(dst, src, nr_pages);
590                         return;
591                 }
592         } else {
593                 /* thp page */
594                 BUG_ON(!PageTransHuge(src));
595                 nr_pages = hpage_nr_pages(src);
596         }
597
598         for (i = 0; i < nr_pages; i++) {
599                 cond_resched();
600                 copy_highpage(dst + i, src + i);
601         }
602 }
603
604 /*
605  * Copy the page to its new location
606  */
607 void migrate_page_copy(struct page *newpage, struct page *page)
608 {
609         int cpupid;
610
611         if (PageHuge(page) || PageTransHuge(page))
612                 copy_huge_page(newpage, page);
613         else
614                 copy_highpage(newpage, page);
615
616         if (PageError(page))
617                 SetPageError(newpage);
618         if (PageReferenced(page))
619                 SetPageReferenced(newpage);
620         if (PageUptodate(page))
621                 SetPageUptodate(newpage);
622         if (TestClearPageActive(page)) {
623                 VM_BUG_ON_PAGE(PageUnevictable(page), page);
624                 SetPageActive(newpage);
625         } else if (TestClearPageUnevictable(page))
626                 SetPageUnevictable(newpage);
627         if (PageChecked(page))
628                 SetPageChecked(newpage);
629         if (PageMappedToDisk(page))
630                 SetPageMappedToDisk(newpage);
631
632         /* Move dirty on pages not done by migrate_page_move_mapping() */
633         if (PageDirty(page))
634                 SetPageDirty(newpage);
635
636         if (page_is_young(page))
637                 set_page_young(newpage);
638         if (page_is_idle(page))
639                 set_page_idle(newpage);
640
641         /*
642          * Copy NUMA information to the new page, to prevent over-eager
643          * future migrations of this same page.
644          */
645         cpupid = page_cpupid_xchg_last(page, -1);
646         page_cpupid_xchg_last(newpage, cpupid);
647
648         ksm_migrate_page(newpage, page);
649         /*
650          * Please do not reorder this without considering how mm/ksm.c's
651          * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
652          */
653         if (PageSwapCache(page))
654                 ClearPageSwapCache(page);
655         ClearPagePrivate(page);
656         set_page_private(page, 0);
657
658         /*
659          * If any waiters have accumulated on the new page then
660          * wake them up.
661          */
662         if (PageWriteback(newpage))
663                 end_page_writeback(newpage);
664
665         copy_page_owner(page, newpage);
666
667         mem_cgroup_migrate(page, newpage);
668 }
669 EXPORT_SYMBOL(migrate_page_copy);
670
671 /************************************************************
672  *                    Migration functions
673  ***********************************************************/
674
675 /*
676  * Common logic to directly migrate a single LRU page suitable for
677  * pages that do not use PagePrivate/PagePrivate2.
678  *
679  * Pages are locked upon entry and exit.
680  */
681 int migrate_page(struct address_space *mapping,
682                 struct page *newpage, struct page *page,
683                 enum migrate_mode mode)
684 {
685         int rc;
686
687         BUG_ON(PageWriteback(page));    /* Writeback must be complete */
688
689         rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
690
691         if (rc != MIGRATEPAGE_SUCCESS)
692                 return rc;
693
694         migrate_page_copy(newpage, page);
695         return MIGRATEPAGE_SUCCESS;
696 }
697 EXPORT_SYMBOL(migrate_page);
698
699 #ifdef CONFIG_BLOCK
700 /*
701  * Migration function for pages with buffers. This function can only be used
702  * if the underlying filesystem guarantees that no other references to "page"
703  * exist.
704  */
705 int buffer_migrate_page(struct address_space *mapping,
706                 struct page *newpage, struct page *page, enum migrate_mode mode)
707 {
708         struct buffer_head *bh, *head;
709         int rc;
710
711         if (!page_has_buffers(page))
712                 return migrate_page(mapping, newpage, page, mode);
713
714         head = page_buffers(page);
715
716         rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
717
718         if (rc != MIGRATEPAGE_SUCCESS)
719                 return rc;
720
721         /*
722          * In the async case, migrate_page_move_mapping locked the buffers
723          * with an IRQ-safe spinlock held. In the sync case, the buffers
724          * need to be locked now
725          */
726         if (mode != MIGRATE_ASYNC)
727                 BUG_ON(!buffer_migrate_lock_buffers(head, mode));
728
729         ClearPagePrivate(page);
730         set_page_private(newpage, page_private(page));
731         set_page_private(page, 0);
732         put_page(page);
733         get_page(newpage);
734
735         bh = head;
736         do {
737                 set_bh_page(bh, newpage, bh_offset(bh));
738                 bh = bh->b_this_page;
739
740         } while (bh != head);
741
742         SetPagePrivate(newpage);
743
744         migrate_page_copy(newpage, page);
745
746         bh = head;
747         do {
748                 unlock_buffer(bh);
749                 put_bh(bh);
750                 bh = bh->b_this_page;
751
752         } while (bh != head);
753
754         return MIGRATEPAGE_SUCCESS;
755 }
756 EXPORT_SYMBOL(buffer_migrate_page);
757 #endif
758
759 /*
760  * Writeback a page to clean the dirty state
761  */
762 static int writeout(struct address_space *mapping, struct page *page)
763 {
764         struct writeback_control wbc = {
765                 .sync_mode = WB_SYNC_NONE,
766                 .nr_to_write = 1,
767                 .range_start = 0,
768                 .range_end = LLONG_MAX,
769                 .for_reclaim = 1
770         };
771         int rc;
772
773         if (!mapping->a_ops->writepage)
774                 /* No write method for the address space */
775                 return -EINVAL;
776
777         if (!clear_page_dirty_for_io(page))
778                 /* Someone else already triggered a write */
779                 return -EAGAIN;
780
781         /*
782          * A dirty page may imply that the underlying filesystem has
783          * the page on some queue. So the page must be clean for
784          * migration. Writeout may mean we loose the lock and the
785          * page state is no longer what we checked for earlier.
786          * At this point we know that the migration attempt cannot
787          * be successful.
788          */
789         remove_migration_ptes(page, page, false);
790
791         rc = mapping->a_ops->writepage(page, &wbc);
792
793         if (rc != AOP_WRITEPAGE_ACTIVATE)
794                 /* unlocked. Relock */
795                 lock_page(page);
796
797         return (rc < 0) ? -EIO : -EAGAIN;
798 }
799
800 /*
801  * Default handling if a filesystem does not provide a migration function.
802  */
803 static int fallback_migrate_page(struct address_space *mapping,
804         struct page *newpage, struct page *page, enum migrate_mode mode)
805 {
806         if (PageDirty(page)) {
807                 /* Only writeback pages in full synchronous migration */
808                 if (mode != MIGRATE_SYNC)
809                         return -EBUSY;
810                 return writeout(mapping, page);
811         }
812
813         /*
814          * Buffers may be managed in a filesystem specific way.
815          * We must have no buffers or drop them.
816          */
817         if (page_has_private(page) &&
818             !try_to_release_page(page, GFP_KERNEL))
819                 return -EAGAIN;
820
821         return migrate_page(mapping, newpage, page, mode);
822 }
823
824 /*
825  * Move a page to a newly allocated page
826  * The page is locked and all ptes have been successfully removed.
827  *
828  * The new page will have replaced the old page if this function
829  * is successful.
830  *
831  * Return value:
832  *   < 0 - error code
833  *  MIGRATEPAGE_SUCCESS - success
834  */
835 static int move_to_new_page(struct page *newpage, struct page *page,
836                                 enum migrate_mode mode)
837 {
838         struct address_space *mapping;
839         int rc = -EAGAIN;
840         bool is_lru = !__PageMovable(page);
841
842         VM_BUG_ON_PAGE(!PageLocked(page), page);
843         VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
844
845         mapping = page_mapping(page);
846
847         if (likely(is_lru)) {
848                 if (!mapping)
849                         rc = migrate_page(mapping, newpage, page, mode);
850                 else if (mapping->a_ops->migratepage)
851                         /*
852                          * Most pages have a mapping and most filesystems
853                          * provide a migratepage callback. Anonymous pages
854                          * are part of swap space which also has its own
855                          * migratepage callback. This is the most common path
856                          * for page migration.
857                          */
858                         rc = mapping->a_ops->migratepage(mapping, newpage,
859                                                         page, mode);
860                 else
861                         rc = fallback_migrate_page(mapping, newpage,
862                                                         page, mode);
863         } else {
864                 /*
865                  * In case of non-lru page, it could be released after
866                  * isolation step. In that case, we shouldn't try migration.
867                  */
868                 VM_BUG_ON_PAGE(!PageIsolated(page), page);
869                 if (!PageMovable(page)) {
870                         rc = MIGRATEPAGE_SUCCESS;
871                         __ClearPageIsolated(page);
872                         goto out;
873                 }
874
875                 rc = mapping->a_ops->migratepage(mapping, newpage,
876                                                 page, mode);
877                 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
878                         !PageIsolated(page));
879         }
880
881         /*
882          * When successful, old pagecache page->mapping must be cleared before
883          * page is freed; but stats require that PageAnon be left as PageAnon.
884          */
885         if (rc == MIGRATEPAGE_SUCCESS) {
886                 if (__PageMovable(page)) {
887                         VM_BUG_ON_PAGE(!PageIsolated(page), page);
888
889                         /*
890                          * We clear PG_movable under page_lock so any compactor
891                          * cannot try to migrate this page.
892                          */
893                         __ClearPageIsolated(page);
894                 }
895
896                 /*
897                  * Anonymous and movable page->mapping will be cleard by
898                  * free_pages_prepare so don't reset it here for keeping
899                  * the type to work PageAnon, for example.
900                  */
901                 if (!PageMappingFlags(page))
902                         page->mapping = NULL;
903         }
904 out:
905         return rc;
906 }
907
908 static int __unmap_and_move(struct page *page, struct page *newpage,
909                                 int force, enum migrate_mode mode)
910 {
911         int rc = -EAGAIN;
912         int page_was_mapped = 0;
913         struct anon_vma *anon_vma = NULL;
914         bool is_lru = !__PageMovable(page);
915
916         if (!trylock_page(page)) {
917                 if (!force || mode == MIGRATE_ASYNC)
918                         goto out;
919
920                 /*
921                  * It's not safe for direct compaction to call lock_page.
922                  * For example, during page readahead pages are added locked
923                  * to the LRU. Later, when the IO completes the pages are
924                  * marked uptodate and unlocked. However, the queueing
925                  * could be merging multiple pages for one bio (e.g.
926                  * mpage_readpages). If an allocation happens for the
927                  * second or third page, the process can end up locking
928                  * the same page twice and deadlocking. Rather than
929                  * trying to be clever about what pages can be locked,
930                  * avoid the use of lock_page for direct compaction
931                  * altogether.
932                  */
933                 if (current->flags & PF_MEMALLOC)
934                         goto out;
935
936                 lock_page(page);
937         }
938
939         if (PageWriteback(page)) {
940                 /*
941                  * Only in the case of a full synchronous migration is it
942                  * necessary to wait for PageWriteback. In the async case,
943                  * the retry loop is too short and in the sync-light case,
944                  * the overhead of stalling is too much
945                  */
946                 if (mode != MIGRATE_SYNC) {
947                         rc = -EBUSY;
948                         goto out_unlock;
949                 }
950                 if (!force)
951                         goto out_unlock;
952                 wait_on_page_writeback(page);
953         }
954
955         /*
956          * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
957          * we cannot notice that anon_vma is freed while we migrates a page.
958          * This get_anon_vma() delays freeing anon_vma pointer until the end
959          * of migration. File cache pages are no problem because of page_lock()
960          * File Caches may use write_page() or lock_page() in migration, then,
961          * just care Anon page here.
962          *
963          * Only page_get_anon_vma() understands the subtleties of
964          * getting a hold on an anon_vma from outside one of its mms.
965          * But if we cannot get anon_vma, then we won't need it anyway,
966          * because that implies that the anon page is no longer mapped
967          * (and cannot be remapped so long as we hold the page lock).
968          */
969         if (PageAnon(page) && !PageKsm(page))
970                 anon_vma = page_get_anon_vma(page);
971
972         /*
973          * Block others from accessing the new page when we get around to
974          * establishing additional references. We are usually the only one
975          * holding a reference to newpage at this point. We used to have a BUG
976          * here if trylock_page(newpage) fails, but would like to allow for
977          * cases where there might be a race with the previous use of newpage.
978          * This is much like races on refcount of oldpage: just don't BUG().
979          */
980         if (unlikely(!trylock_page(newpage)))
981                 goto out_unlock;
982
983         if (unlikely(!is_lru)) {
984                 rc = move_to_new_page(newpage, page, mode);
985                 goto out_unlock_both;
986         }
987
988         /*
989          * Corner case handling:
990          * 1. When a new swap-cache page is read into, it is added to the LRU
991          * and treated as swapcache but it has no rmap yet.
992          * Calling try_to_unmap() against a page->mapping==NULL page will
993          * trigger a BUG.  So handle it here.
994          * 2. An orphaned page (see truncate_complete_page) might have
995          * fs-private metadata. The page can be picked up due to memory
996          * offlining.  Everywhere else except page reclaim, the page is
997          * invisible to the vm, so the page can not be migrated.  So try to
998          * free the metadata, so the page can be freed.
999          */
1000         if (!page->mapping) {
1001                 VM_BUG_ON_PAGE(PageAnon(page), page);
1002                 if (page_has_private(page)) {
1003                         try_to_free_buffers(page);
1004                         goto out_unlock_both;
1005                 }
1006         } else if (page_mapped(page)) {
1007                 /* Establish migration ptes */
1008                 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1009                                 page);
1010                 try_to_unmap(page,
1011                         TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1012                 page_was_mapped = 1;
1013         }
1014
1015         if (!page_mapped(page))
1016                 rc = move_to_new_page(newpage, page, mode);
1017
1018         if (page_was_mapped)
1019                 remove_migration_ptes(page,
1020                         rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1021
1022 out_unlock_both:
1023         unlock_page(newpage);
1024 out_unlock:
1025         /* Drop an anon_vma reference if we took one */
1026         if (anon_vma)
1027                 put_anon_vma(anon_vma);
1028         unlock_page(page);
1029 out:
1030         /*
1031          * If migration is successful, decrease refcount of the newpage
1032          * which will not free the page because new page owner increased
1033          * refcounter. As well, if it is LRU page, add the page to LRU
1034          * list in here.
1035          */
1036         if (rc == MIGRATEPAGE_SUCCESS) {
1037                 if (unlikely(__PageMovable(newpage)))
1038                         put_page(newpage);
1039                 else
1040                         putback_lru_page(newpage);
1041         }
1042
1043         return rc;
1044 }
1045
1046 /*
1047  * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move().  Work
1048  * around it.
1049  */
1050 #if (GCC_VERSION >= 40700 && GCC_VERSION < 40900) && defined(CONFIG_ARM)
1051 #define ICE_noinline noinline
1052 #else
1053 #define ICE_noinline
1054 #endif
1055
1056 /*
1057  * Obtain the lock on page, remove all ptes and migrate the page
1058  * to the newly allocated page in newpage.
1059  */
1060 static ICE_noinline int unmap_and_move(new_page_t get_new_page,
1061                                    free_page_t put_new_page,
1062                                    unsigned long private, struct page *page,
1063                                    int force, enum migrate_mode mode,
1064                                    enum migrate_reason reason)
1065 {
1066         int rc = MIGRATEPAGE_SUCCESS;
1067         int *result = NULL;
1068         struct page *newpage;
1069
1070         newpage = get_new_page(page, private, &result);
1071         if (!newpage)
1072                 return -ENOMEM;
1073
1074         if (page_count(page) == 1) {
1075                 /* page was freed from under us. So we are done. */
1076                 ClearPageActive(page);
1077                 ClearPageUnevictable(page);
1078                 if (unlikely(__PageMovable(page))) {
1079                         lock_page(page);
1080                         if (!PageMovable(page))
1081                                 __ClearPageIsolated(page);
1082                         unlock_page(page);
1083                 }
1084                 if (put_new_page)
1085                         put_new_page(newpage, private);
1086                 else
1087                         put_page(newpage);
1088                 goto out;
1089         }
1090
1091         if (unlikely(PageTransHuge(page))) {
1092                 lock_page(page);
1093                 rc = split_huge_page(page);
1094                 unlock_page(page);
1095                 if (rc)
1096                         goto out;
1097         }
1098
1099         rc = __unmap_and_move(page, newpage, force, mode);
1100         if (rc == MIGRATEPAGE_SUCCESS)
1101                 set_page_owner_migrate_reason(newpage, reason);
1102
1103 out:
1104         if (rc != -EAGAIN) {
1105                 /*
1106                  * A page that has been migrated has all references
1107                  * removed and will be freed. A page that has not been
1108                  * migrated will have kepts its references and be
1109                  * restored.
1110                  */
1111                 list_del(&page->lru);
1112
1113                 /*
1114                  * Compaction can migrate also non-LRU pages which are
1115                  * not accounted to NR_ISOLATED_*. They can be recognized
1116                  * as __PageMovable
1117                  */
1118                 if (likely(!__PageMovable(page)))
1119                         dec_node_page_state(page, NR_ISOLATED_ANON +
1120                                         page_is_file_cache(page));
1121         }
1122
1123         /*
1124          * If migration is successful, releases reference grabbed during
1125          * isolation. Otherwise, restore the page to right list unless
1126          * we want to retry.
1127          */
1128         if (rc == MIGRATEPAGE_SUCCESS) {
1129                 put_page(page);
1130                 if (reason == MR_MEMORY_FAILURE) {
1131                         /*
1132                          * Set PG_HWPoison on just freed page
1133                          * intentionally. Although it's rather weird,
1134                          * it's how HWPoison flag works at the moment.
1135                          */
1136                         if (!test_set_page_hwpoison(page))
1137                                 num_poisoned_pages_inc();
1138                 }
1139         } else {
1140                 if (rc != -EAGAIN) {
1141                         if (likely(!__PageMovable(page))) {
1142                                 putback_lru_page(page);
1143                                 goto put_new;
1144                         }
1145
1146                         lock_page(page);
1147                         if (PageMovable(page))
1148                                 putback_movable_page(page);
1149                         else
1150                                 __ClearPageIsolated(page);
1151                         unlock_page(page);
1152                         put_page(page);
1153                 }
1154 put_new:
1155                 if (put_new_page)
1156                         put_new_page(newpage, private);
1157                 else
1158                         put_page(newpage);
1159         }
1160
1161         if (result) {
1162                 if (rc)
1163                         *result = rc;
1164                 else
1165                         *result = page_to_nid(newpage);
1166         }
1167         return rc;
1168 }
1169
1170 /*
1171  * Counterpart of unmap_and_move_page() for hugepage migration.
1172  *
1173  * This function doesn't wait the completion of hugepage I/O
1174  * because there is no race between I/O and migration for hugepage.
1175  * Note that currently hugepage I/O occurs only in direct I/O
1176  * where no lock is held and PG_writeback is irrelevant,
1177  * and writeback status of all subpages are counted in the reference
1178  * count of the head page (i.e. if all subpages of a 2MB hugepage are
1179  * under direct I/O, the reference of the head page is 512 and a bit more.)
1180  * This means that when we try to migrate hugepage whose subpages are
1181  * doing direct I/O, some references remain after try_to_unmap() and
1182  * hugepage migration fails without data corruption.
1183  *
1184  * There is also no race when direct I/O is issued on the page under migration,
1185  * because then pte is replaced with migration swap entry and direct I/O code
1186  * will wait in the page fault for migration to complete.
1187  */
1188 static int unmap_and_move_huge_page(new_page_t get_new_page,
1189                                 free_page_t put_new_page, unsigned long private,
1190                                 struct page *hpage, int force,
1191                                 enum migrate_mode mode, int reason)
1192 {
1193         int rc = -EAGAIN;
1194         int *result = NULL;
1195         int page_was_mapped = 0;
1196         struct page *new_hpage;
1197         struct anon_vma *anon_vma = NULL;
1198
1199         /*
1200          * Movability of hugepages depends on architectures and hugepage size.
1201          * This check is necessary because some callers of hugepage migration
1202          * like soft offline and memory hotremove don't walk through page
1203          * tables or check whether the hugepage is pmd-based or not before
1204          * kicking migration.
1205          */
1206         if (!hugepage_migration_supported(page_hstate(hpage))) {
1207                 putback_active_hugepage(hpage);
1208                 return -ENOSYS;
1209         }
1210
1211         new_hpage = get_new_page(hpage, private, &result);
1212         if (!new_hpage)
1213                 return -ENOMEM;
1214
1215         if (!trylock_page(hpage)) {
1216                 if (!force || mode != MIGRATE_SYNC)
1217                         goto out;
1218                 lock_page(hpage);
1219         }
1220
1221         if (PageAnon(hpage))
1222                 anon_vma = page_get_anon_vma(hpage);
1223
1224         if (unlikely(!trylock_page(new_hpage)))
1225                 goto put_anon;
1226
1227         if (page_mapped(hpage)) {
1228                 try_to_unmap(hpage,
1229                         TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1230                 page_was_mapped = 1;
1231         }
1232
1233         if (!page_mapped(hpage))
1234                 rc = move_to_new_page(new_hpage, hpage, mode);
1235
1236         if (page_was_mapped)
1237                 remove_migration_ptes(hpage,
1238                         rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1239
1240         unlock_page(new_hpage);
1241
1242 put_anon:
1243         if (anon_vma)
1244                 put_anon_vma(anon_vma);
1245
1246         if (rc == MIGRATEPAGE_SUCCESS) {
1247                 hugetlb_cgroup_migrate(hpage, new_hpage);
1248                 put_new_page = NULL;
1249                 set_page_owner_migrate_reason(new_hpage, reason);
1250         }
1251
1252         unlock_page(hpage);
1253 out:
1254         if (rc != -EAGAIN)
1255                 putback_active_hugepage(hpage);
1256         if (reason == MR_MEMORY_FAILURE && !test_set_page_hwpoison(hpage))
1257                 num_poisoned_pages_inc();
1258
1259         /*
1260          * If migration was not successful and there's a freeing callback, use
1261          * it.  Otherwise, put_page() will drop the reference grabbed during
1262          * isolation.
1263          */
1264         if (put_new_page)
1265                 put_new_page(new_hpage, private);
1266         else
1267                 putback_active_hugepage(new_hpage);
1268
1269         if (result) {
1270                 if (rc)
1271                         *result = rc;
1272                 else
1273                         *result = page_to_nid(new_hpage);
1274         }
1275         return rc;
1276 }
1277
1278 /*
1279  * migrate_pages - migrate the pages specified in a list, to the free pages
1280  *                 supplied as the target for the page migration
1281  *
1282  * @from:               The list of pages to be migrated.
1283  * @get_new_page:       The function used to allocate free pages to be used
1284  *                      as the target of the page migration.
1285  * @put_new_page:       The function used to free target pages if migration
1286  *                      fails, or NULL if no special handling is necessary.
1287  * @private:            Private data to be passed on to get_new_page()
1288  * @mode:               The migration mode that specifies the constraints for
1289  *                      page migration, if any.
1290  * @reason:             The reason for page migration.
1291  *
1292  * The function returns after 10 attempts or if no pages are movable any more
1293  * because the list has become empty or no retryable pages exist any more.
1294  * The caller should call putback_movable_pages() to return pages to the LRU
1295  * or free list only if ret != 0.
1296  *
1297  * Returns the number of pages that were not migrated, or an error code.
1298  */
1299 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1300                 free_page_t put_new_page, unsigned long private,
1301                 enum migrate_mode mode, int reason)
1302 {
1303         int retry = 1;
1304         int nr_failed = 0;
1305         int nr_succeeded = 0;
1306         int pass = 0;
1307         struct page *page;
1308         struct page *page2;
1309         int swapwrite = current->flags & PF_SWAPWRITE;
1310         int rc;
1311
1312         if (!swapwrite)
1313                 current->flags |= PF_SWAPWRITE;
1314
1315         for(pass = 0; pass < 10 && retry; pass++) {
1316                 retry = 0;
1317
1318                 list_for_each_entry_safe(page, page2, from, lru) {
1319                         cond_resched();
1320
1321                         if (PageHuge(page))
1322                                 rc = unmap_and_move_huge_page(get_new_page,
1323                                                 put_new_page, private, page,
1324                                                 pass > 2, mode, reason);
1325                         else
1326                                 rc = unmap_and_move(get_new_page, put_new_page,
1327                                                 private, page, pass > 2, mode,
1328                                                 reason);
1329
1330                         switch(rc) {
1331                         case -ENOMEM:
1332                                 nr_failed++;
1333                                 goto out;
1334                         case -EAGAIN:
1335                                 retry++;
1336                                 break;
1337                         case MIGRATEPAGE_SUCCESS:
1338                                 nr_succeeded++;
1339                                 break;
1340                         default:
1341                                 /*
1342                                  * Permanent failure (-EBUSY, -ENOSYS, etc.):
1343                                  * unlike -EAGAIN case, the failed page is
1344                                  * removed from migration page list and not
1345                                  * retried in the next outer loop.
1346                                  */
1347                                 nr_failed++;
1348                                 break;
1349                         }
1350                 }
1351         }
1352         nr_failed += retry;
1353         rc = nr_failed;
1354 out:
1355         if (nr_succeeded)
1356                 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1357         if (nr_failed)
1358                 count_vm_events(PGMIGRATE_FAIL, nr_failed);
1359         trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1360
1361         if (!swapwrite)
1362                 current->flags &= ~PF_SWAPWRITE;
1363
1364         return rc;
1365 }
1366
1367 #ifdef CONFIG_NUMA
1368 /*
1369  * Move a list of individual pages
1370  */
1371 struct page_to_node {
1372         unsigned long addr;
1373         struct page *page;
1374         int node;
1375         int status;
1376 };
1377
1378 static struct page *new_page_node(struct page *p, unsigned long private,
1379                 int **result)
1380 {
1381         struct page_to_node *pm = (struct page_to_node *)private;
1382
1383         while (pm->node != MAX_NUMNODES && pm->page != p)
1384                 pm++;
1385
1386         if (pm->node == MAX_NUMNODES)
1387                 return NULL;
1388
1389         *result = &pm->status;
1390
1391         if (PageHuge(p))
1392                 return alloc_huge_page_node(page_hstate(compound_head(p)),
1393                                         pm->node);
1394         else
1395                 return __alloc_pages_node(pm->node,
1396                                 GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 0);
1397 }
1398
1399 /*
1400  * Move a set of pages as indicated in the pm array. The addr
1401  * field must be set to the virtual address of the page to be moved
1402  * and the node number must contain a valid target node.
1403  * The pm array ends with node = MAX_NUMNODES.
1404  */
1405 static int do_move_page_to_node_array(struct mm_struct *mm,
1406                                       struct page_to_node *pm,
1407                                       int migrate_all)
1408 {
1409         int err;
1410         struct page_to_node *pp;
1411         LIST_HEAD(pagelist);
1412
1413         down_read(&mm->mmap_sem);
1414
1415         /*
1416          * Build a list of pages to migrate
1417          */
1418         for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1419                 struct vm_area_struct *vma;
1420                 struct page *page;
1421
1422                 err = -EFAULT;
1423                 vma = find_vma(mm, pp->addr);
1424                 if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1425                         goto set_status;
1426
1427                 /* FOLL_DUMP to ignore special (like zero) pages */
1428                 page = follow_page(vma, pp->addr,
1429                                 FOLL_GET | FOLL_SPLIT | FOLL_DUMP);
1430
1431                 err = PTR_ERR(page);
1432                 if (IS_ERR(page))
1433                         goto set_status;
1434
1435                 err = -ENOENT;
1436                 if (!page)
1437                         goto set_status;
1438
1439                 pp->page = page;
1440                 err = page_to_nid(page);
1441
1442                 if (err == pp->node)
1443                         /*
1444                          * Node already in the right place
1445                          */
1446                         goto put_and_set;
1447
1448                 err = -EACCES;
1449                 if (page_mapcount(page) > 1 &&
1450                                 !migrate_all)
1451                         goto put_and_set;
1452
1453                 if (PageHuge(page)) {
1454                         if (PageHead(page))
1455                                 isolate_huge_page(page, &pagelist);
1456                         goto put_and_set;
1457                 }
1458
1459                 err = isolate_lru_page(page);
1460                 if (!err) {
1461                         list_add_tail(&page->lru, &pagelist);
1462                         inc_node_page_state(page, NR_ISOLATED_ANON +
1463                                             page_is_file_cache(page));
1464                 }
1465 put_and_set:
1466                 /*
1467                  * Either remove the duplicate refcount from
1468                  * isolate_lru_page() or drop the page ref if it was
1469                  * not isolated.
1470                  */
1471                 put_page(page);
1472 set_status:
1473                 pp->status = err;
1474         }
1475
1476         err = 0;
1477         if (!list_empty(&pagelist)) {
1478                 err = migrate_pages(&pagelist, new_page_node, NULL,
1479                                 (unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL);
1480                 if (err)
1481                         putback_movable_pages(&pagelist);
1482         }
1483
1484         up_read(&mm->mmap_sem);
1485         return err;
1486 }
1487
1488 /*
1489  * Migrate an array of page address onto an array of nodes and fill
1490  * the corresponding array of status.
1491  */
1492 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1493                          unsigned long nr_pages,
1494                          const void __user * __user *pages,
1495                          const int __user *nodes,
1496                          int __user *status, int flags)
1497 {
1498         struct page_to_node *pm;
1499         unsigned long chunk_nr_pages;
1500         unsigned long chunk_start;
1501         int err;
1502
1503         err = -ENOMEM;
1504         pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1505         if (!pm)
1506                 goto out;
1507
1508         migrate_prep();
1509
1510         /*
1511          * Store a chunk of page_to_node array in a page,
1512          * but keep the last one as a marker
1513          */
1514         chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1515
1516         for (chunk_start = 0;
1517              chunk_start < nr_pages;
1518              chunk_start += chunk_nr_pages) {
1519                 int j;
1520
1521                 if (chunk_start + chunk_nr_pages > nr_pages)
1522                         chunk_nr_pages = nr_pages - chunk_start;
1523
1524                 /* fill the chunk pm with addrs and nodes from user-space */
1525                 for (j = 0; j < chunk_nr_pages; j++) {
1526                         const void __user *p;
1527                         int node;
1528
1529                         err = -EFAULT;
1530                         if (get_user(p, pages + j + chunk_start))
1531                                 goto out_pm;
1532                         pm[j].addr = (unsigned long) p;
1533
1534                         if (get_user(node, nodes + j + chunk_start))
1535                                 goto out_pm;
1536
1537                         err = -ENODEV;
1538                         if (node < 0 || node >= MAX_NUMNODES)
1539                                 goto out_pm;
1540
1541                         if (!node_state(node, N_MEMORY))
1542                                 goto out_pm;
1543
1544                         err = -EACCES;
1545                         if (!node_isset(node, task_nodes))
1546                                 goto out_pm;
1547
1548                         pm[j].node = node;
1549                 }
1550
1551                 /* End marker for this chunk */
1552                 pm[chunk_nr_pages].node = MAX_NUMNODES;
1553
1554                 /* Migrate this chunk */
1555                 err = do_move_page_to_node_array(mm, pm,
1556                                                  flags & MPOL_MF_MOVE_ALL);
1557                 if (err < 0)
1558                         goto out_pm;
1559
1560                 /* Return status information */
1561                 for (j = 0; j < chunk_nr_pages; j++)
1562                         if (put_user(pm[j].status, status + j + chunk_start)) {
1563                                 err = -EFAULT;
1564                                 goto out_pm;
1565                         }
1566         }
1567         err = 0;
1568
1569 out_pm:
1570         free_page((unsigned long)pm);
1571 out:
1572         return err;
1573 }
1574
1575 /*
1576  * Determine the nodes of an array of pages and store it in an array of status.
1577  */
1578 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1579                                 const void __user **pages, int *status)
1580 {
1581         unsigned long i;
1582
1583         down_read(&mm->mmap_sem);
1584
1585         for (i = 0; i < nr_pages; i++) {
1586                 unsigned long addr = (unsigned long)(*pages);
1587                 struct vm_area_struct *vma;
1588                 struct page *page;
1589                 int err = -EFAULT;
1590
1591                 vma = find_vma(mm, addr);
1592                 if (!vma || addr < vma->vm_start)
1593                         goto set_status;
1594
1595                 /* FOLL_DUMP to ignore special (like zero) pages */
1596                 page = follow_page(vma, addr, FOLL_DUMP);
1597
1598                 err = PTR_ERR(page);
1599                 if (IS_ERR(page))
1600                         goto set_status;
1601
1602                 err = page ? page_to_nid(page) : -ENOENT;
1603 set_status:
1604                 *status = err;
1605
1606                 pages++;
1607                 status++;
1608         }
1609
1610         up_read(&mm->mmap_sem);
1611 }
1612
1613 /*
1614  * Determine the nodes of a user array of pages and store it in
1615  * a user array of status.
1616  */
1617 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1618                          const void __user * __user *pages,
1619                          int __user *status)
1620 {
1621 #define DO_PAGES_STAT_CHUNK_NR 16
1622         const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1623         int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1624
1625         while (nr_pages) {
1626                 unsigned long chunk_nr;
1627
1628                 chunk_nr = nr_pages;
1629                 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1630                         chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1631
1632                 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1633                         break;
1634
1635                 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1636
1637                 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1638                         break;
1639
1640                 pages += chunk_nr;
1641                 status += chunk_nr;
1642                 nr_pages -= chunk_nr;
1643         }
1644         return nr_pages ? -EFAULT : 0;
1645 }
1646
1647 /*
1648  * Move a list of pages in the address space of the currently executing
1649  * process.
1650  */
1651 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1652                 const void __user * __user *, pages,
1653                 const int __user *, nodes,
1654                 int __user *, status, int, flags)
1655 {
1656         struct task_struct *task;
1657         struct mm_struct *mm;
1658         int err;
1659         nodemask_t task_nodes;
1660
1661         /* Check flags */
1662         if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1663                 return -EINVAL;
1664
1665         if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1666                 return -EPERM;
1667
1668         /* Find the mm_struct */
1669         rcu_read_lock();
1670         task = pid ? find_task_by_vpid(pid) : current;
1671         if (!task) {
1672                 rcu_read_unlock();
1673                 return -ESRCH;
1674         }
1675         get_task_struct(task);
1676
1677         /*
1678          * Check if this process has the right to modify the specified
1679          * process. Use the regular "ptrace_may_access()" checks.
1680          */
1681         if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1682                 rcu_read_unlock();
1683                 err = -EPERM;
1684                 goto out;
1685         }
1686         rcu_read_unlock();
1687
1688         err = security_task_movememory(task);
1689         if (err)
1690                 goto out;
1691
1692         task_nodes = cpuset_mems_allowed(task);
1693         mm = get_task_mm(task);
1694         put_task_struct(task);
1695
1696         if (!mm)
1697                 return -EINVAL;
1698
1699         if (nodes)
1700                 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1701                                     nodes, status, flags);
1702         else
1703                 err = do_pages_stat(mm, nr_pages, pages, status);
1704
1705         mmput(mm);
1706         return err;
1707
1708 out:
1709         put_task_struct(task);
1710         return err;
1711 }
1712
1713 #ifdef CONFIG_NUMA_BALANCING
1714 /*
1715  * Returns true if this is a safe migration target node for misplaced NUMA
1716  * pages. Currently it only checks the watermarks which crude
1717  */
1718 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1719                                    unsigned long nr_migrate_pages)
1720 {
1721         int z;
1722
1723         for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1724                 struct zone *zone = pgdat->node_zones + z;
1725
1726                 if (!populated_zone(zone))
1727                         continue;
1728
1729                 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1730                 if (!zone_watermark_ok(zone, 0,
1731                                        high_wmark_pages(zone) +
1732                                        nr_migrate_pages,
1733                                        0, 0))
1734                         continue;
1735                 return true;
1736         }
1737         return false;
1738 }
1739
1740 static struct page *alloc_misplaced_dst_page(struct page *page,
1741                                            unsigned long data,
1742                                            int **result)
1743 {
1744         int nid = (int) data;
1745         struct page *newpage;
1746
1747         newpage = __alloc_pages_node(nid,
1748                                          (GFP_HIGHUSER_MOVABLE |
1749                                           __GFP_THISNODE | __GFP_NOMEMALLOC |
1750                                           __GFP_NORETRY | __GFP_NOWARN) &
1751                                          ~__GFP_RECLAIM, 0);
1752
1753         return newpage;
1754 }
1755
1756 /*
1757  * page migration rate limiting control.
1758  * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1759  * window of time. Default here says do not migrate more than 1280M per second.
1760  */
1761 static unsigned int migrate_interval_millisecs __read_mostly = 100;
1762 static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
1763
1764 /* Returns true if the node is migrate rate-limited after the update */
1765 static bool numamigrate_update_ratelimit(pg_data_t *pgdat,
1766                                         unsigned long nr_pages)
1767 {
1768         /*
1769          * Rate-limit the amount of data that is being migrated to a node.
1770          * Optimal placement is no good if the memory bus is saturated and
1771          * all the time is being spent migrating!
1772          */
1773         if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1774                 spin_lock(&pgdat->numabalancing_migrate_lock);
1775                 pgdat->numabalancing_migrate_nr_pages = 0;
1776                 pgdat->numabalancing_migrate_next_window = jiffies +
1777                         msecs_to_jiffies(migrate_interval_millisecs);
1778                 spin_unlock(&pgdat->numabalancing_migrate_lock);
1779         }
1780         if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) {
1781                 trace_mm_numa_migrate_ratelimit(current, pgdat->node_id,
1782                                                                 nr_pages);
1783                 return true;
1784         }
1785
1786         /*
1787          * This is an unlocked non-atomic update so errors are possible.
1788          * The consequences are failing to migrate when we potentiall should
1789          * have which is not severe enough to warrant locking. If it is ever
1790          * a problem, it can be converted to a per-cpu counter.
1791          */
1792         pgdat->numabalancing_migrate_nr_pages += nr_pages;
1793         return false;
1794 }
1795
1796 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1797 {
1798         int page_lru;
1799
1800         VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1801
1802         /* Avoid migrating to a node that is nearly full */
1803         if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1804                 return 0;
1805
1806         if (isolate_lru_page(page))
1807                 return 0;
1808
1809         /*
1810          * migrate_misplaced_transhuge_page() skips page migration's usual
1811          * check on page_count(), so we must do it here, now that the page
1812          * has been isolated: a GUP pin, or any other pin, prevents migration.
1813          * The expected page count is 3: 1 for page's mapcount and 1 for the
1814          * caller's pin and 1 for the reference taken by isolate_lru_page().
1815          */
1816         if (PageTransHuge(page) && page_count(page) != 3) {
1817                 putback_lru_page(page);
1818                 return 0;
1819         }
1820
1821         page_lru = page_is_file_cache(page);
1822         mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
1823                                 hpage_nr_pages(page));
1824
1825         /*
1826          * Isolating the page has taken another reference, so the
1827          * caller's reference can be safely dropped without the page
1828          * disappearing underneath us during migration.
1829          */
1830         put_page(page);
1831         return 1;
1832 }
1833
1834 bool pmd_trans_migrating(pmd_t pmd)
1835 {
1836         struct page *page = pmd_page(pmd);
1837         return PageLocked(page);
1838 }
1839
1840 /*
1841  * Attempt to migrate a misplaced page to the specified destination
1842  * node. Caller is expected to have an elevated reference count on
1843  * the page that will be dropped by this function before returning.
1844  */
1845 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1846                            int node)
1847 {
1848         pg_data_t *pgdat = NODE_DATA(node);
1849         int isolated;
1850         int nr_remaining;
1851         LIST_HEAD(migratepages);
1852
1853         /*
1854          * Don't migrate file pages that are mapped in multiple processes
1855          * with execute permissions as they are probably shared libraries.
1856          */
1857         if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1858             (vma->vm_flags & VM_EXEC))
1859                 goto out;
1860
1861         /*
1862          * Rate-limit the amount of data that is being migrated to a node.
1863          * Optimal placement is no good if the memory bus is saturated and
1864          * all the time is being spent migrating!
1865          */
1866         if (numamigrate_update_ratelimit(pgdat, 1))
1867                 goto out;
1868
1869         isolated = numamigrate_isolate_page(pgdat, page);
1870         if (!isolated)
1871                 goto out;
1872
1873         list_add(&page->lru, &migratepages);
1874         nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1875                                      NULL, node, MIGRATE_ASYNC,
1876                                      MR_NUMA_MISPLACED);
1877         if (nr_remaining) {
1878                 if (!list_empty(&migratepages)) {
1879                         list_del(&page->lru);
1880                         dec_node_page_state(page, NR_ISOLATED_ANON +
1881                                         page_is_file_cache(page));
1882                         putback_lru_page(page);
1883                 }
1884                 isolated = 0;
1885         } else
1886                 count_vm_numa_event(NUMA_PAGE_MIGRATE);
1887         BUG_ON(!list_empty(&migratepages));
1888         return isolated;
1889
1890 out:
1891         put_page(page);
1892         return 0;
1893 }
1894 #endif /* CONFIG_NUMA_BALANCING */
1895
1896 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1897 /*
1898  * Migrates a THP to a given target node. page must be locked and is unlocked
1899  * before returning.
1900  */
1901 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1902                                 struct vm_area_struct *vma,
1903                                 pmd_t *pmd, pmd_t entry,
1904                                 unsigned long address,
1905                                 struct page *page, int node)
1906 {
1907         spinlock_t *ptl;
1908         pg_data_t *pgdat = NODE_DATA(node);
1909         int isolated = 0;
1910         struct page *new_page = NULL;
1911         int page_lru = page_is_file_cache(page);
1912         unsigned long mmun_start = address & HPAGE_PMD_MASK;
1913         unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
1914
1915         /*
1916          * Rate-limit the amount of data that is being migrated to a node.
1917          * Optimal placement is no good if the memory bus is saturated and
1918          * all the time is being spent migrating!
1919          */
1920         if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
1921                 goto out_dropref;
1922
1923         new_page = alloc_pages_node(node,
1924                 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
1925                 HPAGE_PMD_ORDER);
1926         if (!new_page)
1927                 goto out_fail;
1928         prep_transhuge_page(new_page);
1929
1930         isolated = numamigrate_isolate_page(pgdat, page);
1931         if (!isolated) {
1932                 put_page(new_page);
1933                 goto out_fail;
1934         }
1935
1936         /* Prepare a page as a migration target */
1937         __SetPageLocked(new_page);
1938         if (PageSwapBacked(page))
1939                 __SetPageSwapBacked(new_page);
1940
1941         /* anon mapping, we can simply copy page->mapping to the new page: */
1942         new_page->mapping = page->mapping;
1943         new_page->index = page->index;
1944         migrate_page_copy(new_page, page);
1945         WARN_ON(PageLRU(new_page));
1946
1947         /* Recheck the target PMD */
1948         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1949         ptl = pmd_lock(mm, pmd);
1950         if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
1951                 spin_unlock(ptl);
1952                 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1953
1954                 /* Reverse changes made by migrate_page_copy() */
1955                 if (TestClearPageActive(new_page))
1956                         SetPageActive(page);
1957                 if (TestClearPageUnevictable(new_page))
1958                         SetPageUnevictable(page);
1959
1960                 unlock_page(new_page);
1961                 put_page(new_page);             /* Free it */
1962
1963                 /* Retake the callers reference and putback on LRU */
1964                 get_page(page);
1965                 putback_lru_page(page);
1966                 mod_node_page_state(page_pgdat(page),
1967                          NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
1968
1969                 goto out_unlock;
1970         }
1971
1972         entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1973         entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1974
1975         /*
1976          * Clear the old entry under pagetable lock and establish the new PTE.
1977          * Any parallel GUP will either observe the old page blocking on the
1978          * page lock, block on the page table lock or observe the new page.
1979          * The SetPageUptodate on the new page and page_add_new_anon_rmap
1980          * guarantee the copy is visible before the pagetable update.
1981          */
1982         flush_cache_range(vma, mmun_start, mmun_end);
1983         page_add_anon_rmap(new_page, vma, mmun_start, true);
1984         pmdp_huge_clear_flush_notify(vma, mmun_start, pmd);
1985         set_pmd_at(mm, mmun_start, pmd, entry);
1986         update_mmu_cache_pmd(vma, address, &entry);
1987
1988         page_ref_unfreeze(page, 2);
1989         mlock_migrate_page(new_page, page);
1990         page_remove_rmap(page, true);
1991         set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
1992
1993         spin_unlock(ptl);
1994         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1995
1996         /* Take an "isolate" reference and put new page on the LRU. */
1997         get_page(new_page);
1998         putback_lru_page(new_page);
1999
2000         unlock_page(new_page);
2001         unlock_page(page);
2002         put_page(page);                 /* Drop the rmap reference */
2003         put_page(page);                 /* Drop the LRU isolation reference */
2004
2005         count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2006         count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2007
2008         mod_node_page_state(page_pgdat(page),
2009                         NR_ISOLATED_ANON + page_lru,
2010                         -HPAGE_PMD_NR);
2011         return isolated;
2012
2013 out_fail:
2014         count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2015 out_dropref:
2016         ptl = pmd_lock(mm, pmd);
2017         if (pmd_same(*pmd, entry)) {
2018                 entry = pmd_modify(entry, vma->vm_page_prot);
2019                 set_pmd_at(mm, mmun_start, pmd, entry);
2020                 update_mmu_cache_pmd(vma, address, &entry);
2021         }
2022         spin_unlock(ptl);
2023
2024 out_unlock:
2025         unlock_page(page);
2026         put_page(page);
2027         return 0;
2028 }
2029 #endif /* CONFIG_NUMA_BALANCING */
2030
2031 #endif /* CONFIG_NUMA */