]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - mm/mmap.c
ARM: dts: tx6: add enet_out clock for FEC
[karo-tx-linux.git] / mm / mmap.c
1 /*
2  * mm/mmap.c
3  *
4  * Written by obz.
5  *
6  * Address space accounting code        <alan@lxorguk.ukuu.org.uk>
7  */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/kernel.h>
12 #include <linux/slab.h>
13 #include <linux/backing-dev.h>
14 #include <linux/mm.h>
15 #include <linux/vmacache.h>
16 #include <linux/shm.h>
17 #include <linux/mman.h>
18 #include <linux/pagemap.h>
19 #include <linux/swap.h>
20 #include <linux/syscalls.h>
21 #include <linux/capability.h>
22 #include <linux/init.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/hugetlb.h>
28 #include <linux/profile.h>
29 #include <linux/export.h>
30 #include <linux/mount.h>
31 #include <linux/mempolicy.h>
32 #include <linux/rmap.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/perf_event.h>
35 #include <linux/audit.h>
36 #include <linux/khugepaged.h>
37 #include <linux/uprobes.h>
38 #include <linux/rbtree_augmented.h>
39 #include <linux/sched/sysctl.h>
40 #include <linux/notifier.h>
41 #include <linux/memory.h>
42 #include <linux/printk.h>
43
44 #include <asm/uaccess.h>
45 #include <asm/cacheflush.h>
46 #include <asm/tlb.h>
47 #include <asm/mmu_context.h>
48
49 #include "internal.h"
50
51 #ifndef arch_mmap_check
52 #define arch_mmap_check(addr, len, flags)       (0)
53 #endif
54
55 #ifndef arch_rebalance_pgtables
56 #define arch_rebalance_pgtables(addr, len)              (addr)
57 #endif
58
59 static void unmap_region(struct mm_struct *mm,
60                 struct vm_area_struct *vma, struct vm_area_struct *prev,
61                 unsigned long start, unsigned long end);
62
63 /* description of effects of mapping type and prot in current implementation.
64  * this is due to the limited x86 page protection hardware.  The expected
65  * behavior is in parens:
66  *
67  * map_type     prot
68  *              PROT_NONE       PROT_READ       PROT_WRITE      PROT_EXEC
69  * MAP_SHARED   r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
70  *              w: (no) no      w: (no) no      w: (yes) yes    w: (no) no
71  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
72  *              
73  * MAP_PRIVATE  r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
74  *              w: (no) no      w: (no) no      w: (copy) copy  w: (no) no
75  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
76  *
77  */
78 pgprot_t protection_map[16] = {
79         __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
80         __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
81 };
82
83 pgprot_t vm_get_page_prot(unsigned long vm_flags)
84 {
85         return __pgprot(pgprot_val(protection_map[vm_flags &
86                                 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
87                         pgprot_val(arch_vm_get_page_prot(vm_flags)));
88 }
89 EXPORT_SYMBOL(vm_get_page_prot);
90
91 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;  /* heuristic overcommit */
92 int sysctl_overcommit_ratio __read_mostly = 50; /* default is 50% */
93 unsigned long sysctl_overcommit_kbytes __read_mostly;
94 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
95 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
96 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
97 /*
98  * Make sure vm_committed_as in one cacheline and not cacheline shared with
99  * other variables. It can be updated by several CPUs frequently.
100  */
101 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
102
103 /*
104  * The global memory commitment made in the system can be a metric
105  * that can be used to drive ballooning decisions when Linux is hosted
106  * as a guest. On Hyper-V, the host implements a policy engine for dynamically
107  * balancing memory across competing virtual machines that are hosted.
108  * Several metrics drive this policy engine including the guest reported
109  * memory commitment.
110  */
111 unsigned long vm_memory_committed(void)
112 {
113         return percpu_counter_read_positive(&vm_committed_as);
114 }
115 EXPORT_SYMBOL_GPL(vm_memory_committed);
116
117 /*
118  * Check that a process has enough memory to allocate a new virtual
119  * mapping. 0 means there is enough memory for the allocation to
120  * succeed and -ENOMEM implies there is not.
121  *
122  * We currently support three overcommit policies, which are set via the
123  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
124  *
125  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
126  * Additional code 2002 Jul 20 by Robert Love.
127  *
128  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
129  *
130  * Note this is a helper function intended to be used by LSMs which
131  * wish to use this logic.
132  */
133 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
134 {
135         unsigned long free, allowed, reserve;
136
137         vm_acct_memory(pages);
138
139         /*
140          * Sometimes we want to use more memory than we have
141          */
142         if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
143                 return 0;
144
145         if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
146                 free = global_page_state(NR_FREE_PAGES);
147                 free += global_page_state(NR_FILE_PAGES);
148
149                 /*
150                  * shmem pages shouldn't be counted as free in this
151                  * case, they can't be purged, only swapped out, and
152                  * that won't affect the overall amount of available
153                  * memory in the system.
154                  */
155                 free -= global_page_state(NR_SHMEM);
156
157                 free += get_nr_swap_pages();
158
159                 /*
160                  * Any slabs which are created with the
161                  * SLAB_RECLAIM_ACCOUNT flag claim to have contents
162                  * which are reclaimable, under pressure.  The dentry
163                  * cache and most inode caches should fall into this
164                  */
165                 free += global_page_state(NR_SLAB_RECLAIMABLE);
166
167                 /*
168                  * Leave reserved pages. The pages are not for anonymous pages.
169                  */
170                 if (free <= totalreserve_pages)
171                         goto error;
172                 else
173                         free -= totalreserve_pages;
174
175                 /*
176                  * Reserve some for root
177                  */
178                 if (!cap_sys_admin)
179                         free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
180
181                 if (free > pages)
182                         return 0;
183
184                 goto error;
185         }
186
187         allowed = vm_commit_limit();
188         /*
189          * Reserve some for root
190          */
191         if (!cap_sys_admin)
192                 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
193
194         /*
195          * Don't let a single process grow so big a user can't recover
196          */
197         if (mm) {
198                 reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
199                 allowed -= min(mm->total_vm / 32, reserve);
200         }
201
202         if (percpu_counter_read_positive(&vm_committed_as) < allowed)
203                 return 0;
204 error:
205         vm_unacct_memory(pages);
206
207         return -ENOMEM;
208 }
209
210 /*
211  * Requires inode->i_mapping->i_mmap_mutex
212  */
213 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
214                 struct file *file, struct address_space *mapping)
215 {
216         if (vma->vm_flags & VM_DENYWRITE)
217                 atomic_inc(&file_inode(file)->i_writecount);
218         if (vma->vm_flags & VM_SHARED)
219                 mapping->i_mmap_writable--;
220
221         flush_dcache_mmap_lock(mapping);
222         if (unlikely(vma->vm_flags & VM_NONLINEAR))
223                 list_del_init(&vma->shared.nonlinear);
224         else
225                 vma_interval_tree_remove(vma, &mapping->i_mmap);
226         flush_dcache_mmap_unlock(mapping);
227 }
228
229 /*
230  * Unlink a file-based vm structure from its interval tree, to hide
231  * vma from rmap and vmtruncate before freeing its page tables.
232  */
233 void unlink_file_vma(struct vm_area_struct *vma)
234 {
235         struct file *file = vma->vm_file;
236
237         if (file) {
238                 struct address_space *mapping = file->f_mapping;
239                 mutex_lock(&mapping->i_mmap_mutex);
240                 __remove_shared_vm_struct(vma, file, mapping);
241                 mutex_unlock(&mapping->i_mmap_mutex);
242         }
243 }
244
245 /*
246  * Close a vm structure and free it, returning the next.
247  */
248 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
249 {
250         struct vm_area_struct *next = vma->vm_next;
251
252         might_sleep();
253         if (vma->vm_ops && vma->vm_ops->close)
254                 vma->vm_ops->close(vma);
255         if (vma->vm_file)
256                 fput(vma->vm_file);
257         mpol_put(vma_policy(vma));
258         kmem_cache_free(vm_area_cachep, vma);
259         return next;
260 }
261
262 static unsigned long do_brk(unsigned long addr, unsigned long len);
263
264 SYSCALL_DEFINE1(brk, unsigned long, brk)
265 {
266         unsigned long rlim, retval;
267         unsigned long newbrk, oldbrk;
268         struct mm_struct *mm = current->mm;
269         unsigned long min_brk;
270         bool populate;
271
272         down_write(&mm->mmap_sem);
273
274 #ifdef CONFIG_COMPAT_BRK
275         /*
276          * CONFIG_COMPAT_BRK can still be overridden by setting
277          * randomize_va_space to 2, which will still cause mm->start_brk
278          * to be arbitrarily shifted
279          */
280         if (current->brk_randomized)
281                 min_brk = mm->start_brk;
282         else
283                 min_brk = mm->end_data;
284 #else
285         min_brk = mm->start_brk;
286 #endif
287         if (brk < min_brk)
288                 goto out;
289
290         /*
291          * Check against rlimit here. If this check is done later after the test
292          * of oldbrk with newbrk then it can escape the test and let the data
293          * segment grow beyond its set limit the in case where the limit is
294          * not page aligned -Ram Gupta
295          */
296         rlim = rlimit(RLIMIT_DATA);
297         if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
298                         (mm->end_data - mm->start_data) > rlim)
299                 goto out;
300
301         newbrk = PAGE_ALIGN(brk);
302         oldbrk = PAGE_ALIGN(mm->brk);
303         if (oldbrk == newbrk)
304                 goto set_brk;
305
306         /* Always allow shrinking brk. */
307         if (brk <= mm->brk) {
308                 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
309                         goto set_brk;
310                 goto out;
311         }
312
313         /* Check against existing mmap mappings. */
314         if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
315                 goto out;
316
317         /* Ok, looks good - let it rip. */
318         if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
319                 goto out;
320
321 set_brk:
322         mm->brk = brk;
323         populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
324         up_write(&mm->mmap_sem);
325         if (populate)
326                 mm_populate(oldbrk, newbrk - oldbrk);
327         return brk;
328
329 out:
330         retval = mm->brk;
331         up_write(&mm->mmap_sem);
332         return retval;
333 }
334
335 static long vma_compute_subtree_gap(struct vm_area_struct *vma)
336 {
337         unsigned long max, subtree_gap;
338         max = vma->vm_start;
339         if (vma->vm_prev)
340                 max -= vma->vm_prev->vm_end;
341         if (vma->vm_rb.rb_left) {
342                 subtree_gap = rb_entry(vma->vm_rb.rb_left,
343                                 struct vm_area_struct, vm_rb)->rb_subtree_gap;
344                 if (subtree_gap > max)
345                         max = subtree_gap;
346         }
347         if (vma->vm_rb.rb_right) {
348                 subtree_gap = rb_entry(vma->vm_rb.rb_right,
349                                 struct vm_area_struct, vm_rb)->rb_subtree_gap;
350                 if (subtree_gap > max)
351                         max = subtree_gap;
352         }
353         return max;
354 }
355
356 #ifdef CONFIG_DEBUG_VM_RB
357 static int browse_rb(struct rb_root *root)
358 {
359         int i = 0, j, bug = 0;
360         struct rb_node *nd, *pn = NULL;
361         unsigned long prev = 0, pend = 0;
362
363         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
364                 struct vm_area_struct *vma;
365                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
366                 if (vma->vm_start < prev) {
367                         pr_info("vm_start %lx prev %lx\n", vma->vm_start, prev);
368                         bug = 1;
369                 }
370                 if (vma->vm_start < pend) {
371                         pr_info("vm_start %lx pend %lx\n", vma->vm_start, pend);
372                         bug = 1;
373                 }
374                 if (vma->vm_start > vma->vm_end) {
375                         pr_info("vm_end %lx < vm_start %lx\n",
376                                 vma->vm_end, vma->vm_start);
377                         bug = 1;
378                 }
379                 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
380                         pr_info("free gap %lx, correct %lx\n",
381                                vma->rb_subtree_gap,
382                                vma_compute_subtree_gap(vma));
383                         bug = 1;
384                 }
385                 i++;
386                 pn = nd;
387                 prev = vma->vm_start;
388                 pend = vma->vm_end;
389         }
390         j = 0;
391         for (nd = pn; nd; nd = rb_prev(nd))
392                 j++;
393         if (i != j) {
394                 pr_info("backwards %d, forwards %d\n", j, i);
395                 bug = 1;
396         }
397         return bug ? -1 : i;
398 }
399
400 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
401 {
402         struct rb_node *nd;
403
404         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
405                 struct vm_area_struct *vma;
406                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
407                 BUG_ON(vma != ignore &&
408                        vma->rb_subtree_gap != vma_compute_subtree_gap(vma));
409         }
410 }
411
412 static void validate_mm(struct mm_struct *mm)
413 {
414         int bug = 0;
415         int i = 0;
416         unsigned long highest_address = 0;
417         struct vm_area_struct *vma = mm->mmap;
418         while (vma) {
419                 struct anon_vma_chain *avc;
420                 vma_lock_anon_vma(vma);
421                 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
422                         anon_vma_interval_tree_verify(avc);
423                 vma_unlock_anon_vma(vma);
424                 highest_address = vma->vm_end;
425                 vma = vma->vm_next;
426                 i++;
427         }
428         if (i != mm->map_count) {
429                 pr_info("map_count %d vm_next %d\n", mm->map_count, i);
430                 bug = 1;
431         }
432         if (highest_address != mm->highest_vm_end) {
433                 pr_info("mm->highest_vm_end %lx, found %lx\n",
434                        mm->highest_vm_end, highest_address);
435                 bug = 1;
436         }
437         i = browse_rb(&mm->mm_rb);
438         if (i != mm->map_count) {
439                 pr_info("map_count %d rb %d\n", mm->map_count, i);
440                 bug = 1;
441         }
442         BUG_ON(bug);
443 }
444 #else
445 #define validate_mm_rb(root, ignore) do { } while (0)
446 #define validate_mm(mm) do { } while (0)
447 #endif
448
449 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
450                      unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
451
452 /*
453  * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
454  * vma->vm_prev->vm_end values changed, without modifying the vma's position
455  * in the rbtree.
456  */
457 static void vma_gap_update(struct vm_area_struct *vma)
458 {
459         /*
460          * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
461          * function that does exacltly what we want.
462          */
463         vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
464 }
465
466 static inline void vma_rb_insert(struct vm_area_struct *vma,
467                                  struct rb_root *root)
468 {
469         /* All rb_subtree_gap values must be consistent prior to insertion */
470         validate_mm_rb(root, NULL);
471
472         rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
473 }
474
475 static void vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
476 {
477         /*
478          * All rb_subtree_gap values must be consistent prior to erase,
479          * with the possible exception of the vma being erased.
480          */
481         validate_mm_rb(root, vma);
482
483         /*
484          * Note rb_erase_augmented is a fairly large inline function,
485          * so make sure we instantiate it only once with our desired
486          * augmented rbtree callbacks.
487          */
488         rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
489 }
490
491 /*
492  * vma has some anon_vma assigned, and is already inserted on that
493  * anon_vma's interval trees.
494  *
495  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
496  * vma must be removed from the anon_vma's interval trees using
497  * anon_vma_interval_tree_pre_update_vma().
498  *
499  * After the update, the vma will be reinserted using
500  * anon_vma_interval_tree_post_update_vma().
501  *
502  * The entire update must be protected by exclusive mmap_sem and by
503  * the root anon_vma's mutex.
504  */
505 static inline void
506 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
507 {
508         struct anon_vma_chain *avc;
509
510         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
511                 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
512 }
513
514 static inline void
515 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
516 {
517         struct anon_vma_chain *avc;
518
519         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
520                 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
521 }
522
523 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
524                 unsigned long end, struct vm_area_struct **pprev,
525                 struct rb_node ***rb_link, struct rb_node **rb_parent)
526 {
527         struct rb_node **__rb_link, *__rb_parent, *rb_prev;
528
529         __rb_link = &mm->mm_rb.rb_node;
530         rb_prev = __rb_parent = NULL;
531
532         while (*__rb_link) {
533                 struct vm_area_struct *vma_tmp;
534
535                 __rb_parent = *__rb_link;
536                 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
537
538                 if (vma_tmp->vm_end > addr) {
539                         /* Fail if an existing vma overlaps the area */
540                         if (vma_tmp->vm_start < end)
541                                 return -ENOMEM;
542                         __rb_link = &__rb_parent->rb_left;
543                 } else {
544                         rb_prev = __rb_parent;
545                         __rb_link = &__rb_parent->rb_right;
546                 }
547         }
548
549         *pprev = NULL;
550         if (rb_prev)
551                 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
552         *rb_link = __rb_link;
553         *rb_parent = __rb_parent;
554         return 0;
555 }
556
557 static unsigned long count_vma_pages_range(struct mm_struct *mm,
558                 unsigned long addr, unsigned long end)
559 {
560         unsigned long nr_pages = 0;
561         struct vm_area_struct *vma;
562
563         /* Find first overlaping mapping */
564         vma = find_vma_intersection(mm, addr, end);
565         if (!vma)
566                 return 0;
567
568         nr_pages = (min(end, vma->vm_end) -
569                 max(addr, vma->vm_start)) >> PAGE_SHIFT;
570
571         /* Iterate over the rest of the overlaps */
572         for (vma = vma->vm_next; vma; vma = vma->vm_next) {
573                 unsigned long overlap_len;
574
575                 if (vma->vm_start > end)
576                         break;
577
578                 overlap_len = min(end, vma->vm_end) - vma->vm_start;
579                 nr_pages += overlap_len >> PAGE_SHIFT;
580         }
581
582         return nr_pages;
583 }
584
585 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
586                 struct rb_node **rb_link, struct rb_node *rb_parent)
587 {
588         /* Update tracking information for the gap following the new vma. */
589         if (vma->vm_next)
590                 vma_gap_update(vma->vm_next);
591         else
592                 mm->highest_vm_end = vma->vm_end;
593
594         /*
595          * vma->vm_prev wasn't known when we followed the rbtree to find the
596          * correct insertion point for that vma. As a result, we could not
597          * update the vma vm_rb parents rb_subtree_gap values on the way down.
598          * So, we first insert the vma with a zero rb_subtree_gap value
599          * (to be consistent with what we did on the way down), and then
600          * immediately update the gap to the correct value. Finally we
601          * rebalance the rbtree after all augmented values have been set.
602          */
603         rb_link_node(&vma->vm_rb, rb_parent, rb_link);
604         vma->rb_subtree_gap = 0;
605         vma_gap_update(vma);
606         vma_rb_insert(vma, &mm->mm_rb);
607 }
608
609 static void __vma_link_file(struct vm_area_struct *vma)
610 {
611         struct file *file;
612
613         file = vma->vm_file;
614         if (file) {
615                 struct address_space *mapping = file->f_mapping;
616
617                 if (vma->vm_flags & VM_DENYWRITE)
618                         atomic_dec(&file_inode(file)->i_writecount);
619                 if (vma->vm_flags & VM_SHARED)
620                         mapping->i_mmap_writable++;
621
622                 flush_dcache_mmap_lock(mapping);
623                 if (unlikely(vma->vm_flags & VM_NONLINEAR))
624                         vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
625                 else
626                         vma_interval_tree_insert(vma, &mapping->i_mmap);
627                 flush_dcache_mmap_unlock(mapping);
628         }
629 }
630
631 static void
632 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
633         struct vm_area_struct *prev, struct rb_node **rb_link,
634         struct rb_node *rb_parent)
635 {
636         __vma_link_list(mm, vma, prev, rb_parent);
637         __vma_link_rb(mm, vma, rb_link, rb_parent);
638 }
639
640 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
641                         struct vm_area_struct *prev, struct rb_node **rb_link,
642                         struct rb_node *rb_parent)
643 {
644         struct address_space *mapping = NULL;
645
646         if (vma->vm_file) {
647                 mapping = vma->vm_file->f_mapping;
648                 mutex_lock(&mapping->i_mmap_mutex);
649         }
650
651         __vma_link(mm, vma, prev, rb_link, rb_parent);
652         __vma_link_file(vma);
653
654         if (mapping)
655                 mutex_unlock(&mapping->i_mmap_mutex);
656
657         mm->map_count++;
658         validate_mm(mm);
659 }
660
661 /*
662  * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
663  * mm's list and rbtree.  It has already been inserted into the interval tree.
664  */
665 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
666 {
667         struct vm_area_struct *prev;
668         struct rb_node **rb_link, *rb_parent;
669
670         if (find_vma_links(mm, vma->vm_start, vma->vm_end,
671                            &prev, &rb_link, &rb_parent))
672                 BUG();
673         __vma_link(mm, vma, prev, rb_link, rb_parent);
674         mm->map_count++;
675 }
676
677 static inline void
678 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
679                 struct vm_area_struct *prev)
680 {
681         struct vm_area_struct *next;
682
683         vma_rb_erase(vma, &mm->mm_rb);
684         prev->vm_next = next = vma->vm_next;
685         if (next)
686                 next->vm_prev = prev;
687
688         /* Kill the cache */
689         vmacache_invalidate(mm);
690 }
691
692 /*
693  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
694  * is already present in an i_mmap tree without adjusting the tree.
695  * The following helper function should be used when such adjustments
696  * are necessary.  The "insert" vma (if any) is to be inserted
697  * before we drop the necessary locks.
698  */
699 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
700         unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
701 {
702         struct mm_struct *mm = vma->vm_mm;
703         struct vm_area_struct *next = vma->vm_next;
704         struct vm_area_struct *importer = NULL;
705         struct address_space *mapping = NULL;
706         struct rb_root *root = NULL;
707         struct anon_vma *anon_vma = NULL;
708         struct file *file = vma->vm_file;
709         bool start_changed = false, end_changed = false;
710         long adjust_next = 0;
711         int remove_next = 0;
712
713         if (next && !insert) {
714                 struct vm_area_struct *exporter = NULL;
715
716                 if (end >= next->vm_end) {
717                         /*
718                          * vma expands, overlapping all the next, and
719                          * perhaps the one after too (mprotect case 6).
720                          */
721 again:                  remove_next = 1 + (end > next->vm_end);
722                         end = next->vm_end;
723                         exporter = next;
724                         importer = vma;
725                 } else if (end > next->vm_start) {
726                         /*
727                          * vma expands, overlapping part of the next:
728                          * mprotect case 5 shifting the boundary up.
729                          */
730                         adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
731                         exporter = next;
732                         importer = vma;
733                 } else if (end < vma->vm_end) {
734                         /*
735                          * vma shrinks, and !insert tells it's not
736                          * split_vma inserting another: so it must be
737                          * mprotect case 4 shifting the boundary down.
738                          */
739                         adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
740                         exporter = vma;
741                         importer = next;
742                 }
743
744                 /*
745                  * Easily overlooked: when mprotect shifts the boundary,
746                  * make sure the expanding vma has anon_vma set if the
747                  * shrinking vma had, to cover any anon pages imported.
748                  */
749                 if (exporter && exporter->anon_vma && !importer->anon_vma) {
750                         if (anon_vma_clone(importer, exporter))
751                                 return -ENOMEM;
752                         importer->anon_vma = exporter->anon_vma;
753                 }
754         }
755
756         if (file) {
757                 mapping = file->f_mapping;
758                 if (!(vma->vm_flags & VM_NONLINEAR)) {
759                         root = &mapping->i_mmap;
760                         uprobe_munmap(vma, vma->vm_start, vma->vm_end);
761
762                         if (adjust_next)
763                                 uprobe_munmap(next, next->vm_start,
764                                                         next->vm_end);
765                 }
766
767                 mutex_lock(&mapping->i_mmap_mutex);
768                 if (insert) {
769                         /*
770                          * Put into interval tree now, so instantiated pages
771                          * are visible to arm/parisc __flush_dcache_page
772                          * throughout; but we cannot insert into address
773                          * space until vma start or end is updated.
774                          */
775                         __vma_link_file(insert);
776                 }
777         }
778
779         vma_adjust_trans_huge(vma, start, end, adjust_next);
780
781         anon_vma = vma->anon_vma;
782         if (!anon_vma && adjust_next)
783                 anon_vma = next->anon_vma;
784         if (anon_vma) {
785                 VM_BUG_ON(adjust_next && next->anon_vma &&
786                           anon_vma != next->anon_vma);
787                 anon_vma_lock_write(anon_vma);
788                 anon_vma_interval_tree_pre_update_vma(vma);
789                 if (adjust_next)
790                         anon_vma_interval_tree_pre_update_vma(next);
791         }
792
793         if (root) {
794                 flush_dcache_mmap_lock(mapping);
795                 vma_interval_tree_remove(vma, root);
796                 if (adjust_next)
797                         vma_interval_tree_remove(next, root);
798         }
799
800         if (start != vma->vm_start) {
801                 vma->vm_start = start;
802                 start_changed = true;
803         }
804         if (end != vma->vm_end) {
805                 vma->vm_end = end;
806                 end_changed = true;
807         }
808         vma->vm_pgoff = pgoff;
809         if (adjust_next) {
810                 next->vm_start += adjust_next << PAGE_SHIFT;
811                 next->vm_pgoff += adjust_next;
812         }
813
814         if (root) {
815                 if (adjust_next)
816                         vma_interval_tree_insert(next, root);
817                 vma_interval_tree_insert(vma, root);
818                 flush_dcache_mmap_unlock(mapping);
819         }
820
821         if (remove_next) {
822                 /*
823                  * vma_merge has merged next into vma, and needs
824                  * us to remove next before dropping the locks.
825                  */
826                 __vma_unlink(mm, next, vma);
827                 if (file)
828                         __remove_shared_vm_struct(next, file, mapping);
829         } else if (insert) {
830                 /*
831                  * split_vma has split insert from vma, and needs
832                  * us to insert it before dropping the locks
833                  * (it may either follow vma or precede it).
834                  */
835                 __insert_vm_struct(mm, insert);
836         } else {
837                 if (start_changed)
838                         vma_gap_update(vma);
839                 if (end_changed) {
840                         if (!next)
841                                 mm->highest_vm_end = end;
842                         else if (!adjust_next)
843                                 vma_gap_update(next);
844                 }
845         }
846
847         if (anon_vma) {
848                 anon_vma_interval_tree_post_update_vma(vma);
849                 if (adjust_next)
850                         anon_vma_interval_tree_post_update_vma(next);
851                 anon_vma_unlock_write(anon_vma);
852         }
853         if (mapping)
854                 mutex_unlock(&mapping->i_mmap_mutex);
855
856         if (root) {
857                 uprobe_mmap(vma);
858
859                 if (adjust_next)
860                         uprobe_mmap(next);
861         }
862
863         if (remove_next) {
864                 if (file) {
865                         uprobe_munmap(next, next->vm_start, next->vm_end);
866                         fput(file);
867                 }
868                 if (next->anon_vma)
869                         anon_vma_merge(vma, next);
870                 mm->map_count--;
871                 mpol_put(vma_policy(next));
872                 kmem_cache_free(vm_area_cachep, next);
873                 /*
874                  * In mprotect's case 6 (see comments on vma_merge),
875                  * we must remove another next too. It would clutter
876                  * up the code too much to do both in one go.
877                  */
878                 next = vma->vm_next;
879                 if (remove_next == 2)
880                         goto again;
881                 else if (next)
882                         vma_gap_update(next);
883                 else
884                         mm->highest_vm_end = end;
885         }
886         if (insert && file)
887                 uprobe_mmap(insert);
888
889         validate_mm(mm);
890
891         return 0;
892 }
893
894 /*
895  * If the vma has a ->close operation then the driver probably needs to release
896  * per-vma resources, so we don't attempt to merge those.
897  */
898 static inline int is_mergeable_vma(struct vm_area_struct *vma,
899                         struct file *file, unsigned long vm_flags)
900 {
901         /*
902          * VM_SOFTDIRTY should not prevent from VMA merging, if we
903          * match the flags but dirty bit -- the caller should mark
904          * merged VMA as dirty. If dirty bit won't be excluded from
905          * comparison, we increase pressue on the memory system forcing
906          * the kernel to generate new VMAs when old one could be
907          * extended instead.
908          */
909         if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
910                 return 0;
911         if (vma->vm_file != file)
912                 return 0;
913         if (vma->vm_ops && vma->vm_ops->close)
914                 return 0;
915         return 1;
916 }
917
918 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
919                                         struct anon_vma *anon_vma2,
920                                         struct vm_area_struct *vma)
921 {
922         /*
923          * The list_is_singular() test is to avoid merging VMA cloned from
924          * parents. This can improve scalability caused by anon_vma lock.
925          */
926         if ((!anon_vma1 || !anon_vma2) && (!vma ||
927                 list_is_singular(&vma->anon_vma_chain)))
928                 return 1;
929         return anon_vma1 == anon_vma2;
930 }
931
932 /*
933  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
934  * in front of (at a lower virtual address and file offset than) the vma.
935  *
936  * We cannot merge two vmas if they have differently assigned (non-NULL)
937  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
938  *
939  * We don't check here for the merged mmap wrapping around the end of pagecache
940  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
941  * wrap, nor mmaps which cover the final page at index -1UL.
942  */
943 static int
944 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
945         struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
946 {
947         if (is_mergeable_vma(vma, file, vm_flags) &&
948             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
949                 if (vma->vm_pgoff == vm_pgoff)
950                         return 1;
951         }
952         return 0;
953 }
954
955 /*
956  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
957  * beyond (at a higher virtual address and file offset than) the vma.
958  *
959  * We cannot merge two vmas if they have differently assigned (non-NULL)
960  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
961  */
962 static int
963 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
964         struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
965 {
966         if (is_mergeable_vma(vma, file, vm_flags) &&
967             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
968                 pgoff_t vm_pglen;
969                 vm_pglen = vma_pages(vma);
970                 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
971                         return 1;
972         }
973         return 0;
974 }
975
976 /*
977  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
978  * whether that can be merged with its predecessor or its successor.
979  * Or both (it neatly fills a hole).
980  *
981  * In most cases - when called for mmap, brk or mremap - [addr,end) is
982  * certain not to be mapped by the time vma_merge is called; but when
983  * called for mprotect, it is certain to be already mapped (either at
984  * an offset within prev, or at the start of next), and the flags of
985  * this area are about to be changed to vm_flags - and the no-change
986  * case has already been eliminated.
987  *
988  * The following mprotect cases have to be considered, where AAAA is
989  * the area passed down from mprotect_fixup, never extending beyond one
990  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
991  *
992  *     AAAA             AAAA                AAAA          AAAA
993  *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
994  *    cannot merge    might become    might become    might become
995  *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
996  *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
997  *    mremap move:                                    PPPPNNNNNNNN 8
998  *        AAAA
999  *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
1000  *    might become    case 1 below    case 2 below    case 3 below
1001  *
1002  * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
1003  * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
1004  */
1005 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1006                         struct vm_area_struct *prev, unsigned long addr,
1007                         unsigned long end, unsigned long vm_flags,
1008                         struct anon_vma *anon_vma, struct file *file,
1009                         pgoff_t pgoff, struct mempolicy *policy)
1010 {
1011         pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1012         struct vm_area_struct *area, *next;
1013         int err;
1014
1015         /*
1016          * We later require that vma->vm_flags == vm_flags,
1017          * so this tests vma->vm_flags & VM_SPECIAL, too.
1018          */
1019         if (vm_flags & VM_SPECIAL)
1020                 return NULL;
1021
1022         if (prev)
1023                 next = prev->vm_next;
1024         else
1025                 next = mm->mmap;
1026         area = next;
1027         if (next && next->vm_end == end)                /* cases 6, 7, 8 */
1028                 next = next->vm_next;
1029
1030         /*
1031          * Can it merge with the predecessor?
1032          */
1033         if (prev && prev->vm_end == addr &&
1034                         mpol_equal(vma_policy(prev), policy) &&
1035                         can_vma_merge_after(prev, vm_flags,
1036                                                 anon_vma, file, pgoff)) {
1037                 /*
1038                  * OK, it can.  Can we now merge in the successor as well?
1039                  */
1040                 if (next && end == next->vm_start &&
1041                                 mpol_equal(policy, vma_policy(next)) &&
1042                                 can_vma_merge_before(next, vm_flags,
1043                                         anon_vma, file, pgoff+pglen) &&
1044                                 is_mergeable_anon_vma(prev->anon_vma,
1045                                                       next->anon_vma, NULL)) {
1046                                                         /* cases 1, 6 */
1047                         err = vma_adjust(prev, prev->vm_start,
1048                                 next->vm_end, prev->vm_pgoff, NULL);
1049                 } else                                  /* cases 2, 5, 7 */
1050                         err = vma_adjust(prev, prev->vm_start,
1051                                 end, prev->vm_pgoff, NULL);
1052                 if (err)
1053                         return NULL;
1054                 khugepaged_enter_vma_merge(prev);
1055                 return prev;
1056         }
1057
1058         /*
1059          * Can this new request be merged in front of next?
1060          */
1061         if (next && end == next->vm_start &&
1062                         mpol_equal(policy, vma_policy(next)) &&
1063                         can_vma_merge_before(next, vm_flags,
1064                                         anon_vma, file, pgoff+pglen)) {
1065                 if (prev && addr < prev->vm_end)        /* case 4 */
1066                         err = vma_adjust(prev, prev->vm_start,
1067                                 addr, prev->vm_pgoff, NULL);
1068                 else                                    /* cases 3, 8 */
1069                         err = vma_adjust(area, addr, next->vm_end,
1070                                 next->vm_pgoff - pglen, NULL);
1071                 if (err)
1072                         return NULL;
1073                 khugepaged_enter_vma_merge(area);
1074                 return area;
1075         }
1076
1077         return NULL;
1078 }
1079
1080 /*
1081  * Rough compatbility check to quickly see if it's even worth looking
1082  * at sharing an anon_vma.
1083  *
1084  * They need to have the same vm_file, and the flags can only differ
1085  * in things that mprotect may change.
1086  *
1087  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1088  * we can merge the two vma's. For example, we refuse to merge a vma if
1089  * there is a vm_ops->close() function, because that indicates that the
1090  * driver is doing some kind of reference counting. But that doesn't
1091  * really matter for the anon_vma sharing case.
1092  */
1093 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1094 {
1095         return a->vm_end == b->vm_start &&
1096                 mpol_equal(vma_policy(a), vma_policy(b)) &&
1097                 a->vm_file == b->vm_file &&
1098                 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1099                 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1100 }
1101
1102 /*
1103  * Do some basic sanity checking to see if we can re-use the anon_vma
1104  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1105  * the same as 'old', the other will be the new one that is trying
1106  * to share the anon_vma.
1107  *
1108  * NOTE! This runs with mm_sem held for reading, so it is possible that
1109  * the anon_vma of 'old' is concurrently in the process of being set up
1110  * by another page fault trying to merge _that_. But that's ok: if it
1111  * is being set up, that automatically means that it will be a singleton
1112  * acceptable for merging, so we can do all of this optimistically. But
1113  * we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
1114  *
1115  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1116  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1117  * is to return an anon_vma that is "complex" due to having gone through
1118  * a fork).
1119  *
1120  * We also make sure that the two vma's are compatible (adjacent,
1121  * and with the same memory policies). That's all stable, even with just
1122  * a read lock on the mm_sem.
1123  */
1124 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1125 {
1126         if (anon_vma_compatible(a, b)) {
1127                 struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma);
1128
1129                 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1130                         return anon_vma;
1131         }
1132         return NULL;
1133 }
1134
1135 /*
1136  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1137  * neighbouring vmas for a suitable anon_vma, before it goes off
1138  * to allocate a new anon_vma.  It checks because a repetitive
1139  * sequence of mprotects and faults may otherwise lead to distinct
1140  * anon_vmas being allocated, preventing vma merge in subsequent
1141  * mprotect.
1142  */
1143 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1144 {
1145         struct anon_vma *anon_vma;
1146         struct vm_area_struct *near;
1147
1148         near = vma->vm_next;
1149         if (!near)
1150                 goto try_prev;
1151
1152         anon_vma = reusable_anon_vma(near, vma, near);
1153         if (anon_vma)
1154                 return anon_vma;
1155 try_prev:
1156         near = vma->vm_prev;
1157         if (!near)
1158                 goto none;
1159
1160         anon_vma = reusable_anon_vma(near, near, vma);
1161         if (anon_vma)
1162                 return anon_vma;
1163 none:
1164         /*
1165          * There's no absolute need to look only at touching neighbours:
1166          * we could search further afield for "compatible" anon_vmas.
1167          * But it would probably just be a waste of time searching,
1168          * or lead to too many vmas hanging off the same anon_vma.
1169          * We're trying to allow mprotect remerging later on,
1170          * not trying to minimize memory used for anon_vmas.
1171          */
1172         return NULL;
1173 }
1174
1175 #ifdef CONFIG_PROC_FS
1176 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
1177                                                 struct file *file, long pages)
1178 {
1179         const unsigned long stack_flags
1180                 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
1181
1182         mm->total_vm += pages;
1183
1184         if (file) {
1185                 mm->shared_vm += pages;
1186                 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
1187                         mm->exec_vm += pages;
1188         } else if (flags & stack_flags)
1189                 mm->stack_vm += pages;
1190 }
1191 #endif /* CONFIG_PROC_FS */
1192
1193 /*
1194  * If a hint addr is less than mmap_min_addr change hint to be as
1195  * low as possible but still greater than mmap_min_addr
1196  */
1197 static inline unsigned long round_hint_to_min(unsigned long hint)
1198 {
1199         hint &= PAGE_MASK;
1200         if (((void *)hint != NULL) &&
1201             (hint < mmap_min_addr))
1202                 return PAGE_ALIGN(mmap_min_addr);
1203         return hint;
1204 }
1205
1206 static inline int mlock_future_check(struct mm_struct *mm,
1207                                      unsigned long flags,
1208                                      unsigned long len)
1209 {
1210         unsigned long locked, lock_limit;
1211
1212         /*  mlock MCL_FUTURE? */
1213         if (flags & VM_LOCKED) {
1214                 locked = len >> PAGE_SHIFT;
1215                 locked += mm->locked_vm;
1216                 lock_limit = rlimit(RLIMIT_MEMLOCK);
1217                 lock_limit >>= PAGE_SHIFT;
1218                 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1219                         return -EAGAIN;
1220         }
1221         return 0;
1222 }
1223
1224 /*
1225  * The caller must hold down_write(&current->mm->mmap_sem).
1226  */
1227
1228 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1229                         unsigned long len, unsigned long prot,
1230                         unsigned long flags, unsigned long pgoff,
1231                         unsigned long *populate)
1232 {
1233         struct mm_struct * mm = current->mm;
1234         vm_flags_t vm_flags;
1235
1236         *populate = 0;
1237
1238         /*
1239          * Does the application expect PROT_READ to imply PROT_EXEC?
1240          *
1241          * (the exception is when the underlying filesystem is noexec
1242          *  mounted, in which case we dont add PROT_EXEC.)
1243          */
1244         if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1245                 if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
1246                         prot |= PROT_EXEC;
1247
1248         if (!len)
1249                 return -EINVAL;
1250
1251         if (!(flags & MAP_FIXED))
1252                 addr = round_hint_to_min(addr);
1253
1254         /* Careful about overflows.. */
1255         len = PAGE_ALIGN(len);
1256         if (!len)
1257                 return -ENOMEM;
1258
1259         /* offset overflow? */
1260         if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1261                return -EOVERFLOW;
1262
1263         /* Too many mappings? */
1264         if (mm->map_count > sysctl_max_map_count)
1265                 return -ENOMEM;
1266
1267         /* Obtain the address to map to. we verify (or select) it and ensure
1268          * that it represents a valid section of the address space.
1269          */
1270         addr = get_unmapped_area(file, addr, len, pgoff, flags);
1271         if (addr & ~PAGE_MASK)
1272                 return addr;
1273
1274         /* Do simple checking here so the lower-level routines won't have
1275          * to. we assume access permissions have been handled by the open
1276          * of the memory object, so we don't do any here.
1277          */
1278         vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1279                         mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1280
1281         if (flags & MAP_LOCKED)
1282                 if (!can_do_mlock())
1283                         return -EPERM;
1284
1285         if (mlock_future_check(mm, vm_flags, len))
1286                 return -EAGAIN;
1287
1288         if (file) {
1289                 struct inode *inode = file_inode(file);
1290
1291                 switch (flags & MAP_TYPE) {
1292                 case MAP_SHARED:
1293                         if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1294                                 return -EACCES;
1295
1296                         /*
1297                          * Make sure we don't allow writing to an append-only
1298                          * file..
1299                          */
1300                         if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1301                                 return -EACCES;
1302
1303                         /*
1304                          * Make sure there are no mandatory locks on the file.
1305                          */
1306                         if (locks_verify_locked(file))
1307                                 return -EAGAIN;
1308
1309                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1310                         if (!(file->f_mode & FMODE_WRITE))
1311                                 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1312
1313                         /* fall through */
1314                 case MAP_PRIVATE:
1315                         if (!(file->f_mode & FMODE_READ))
1316                                 return -EACCES;
1317                         if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1318                                 if (vm_flags & VM_EXEC)
1319                                         return -EPERM;
1320                                 vm_flags &= ~VM_MAYEXEC;
1321                         }
1322
1323                         if (!file->f_op->mmap)
1324                                 return -ENODEV;
1325                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1326                                 return -EINVAL;
1327                         break;
1328
1329                 default:
1330                         return -EINVAL;
1331                 }
1332         } else {
1333                 switch (flags & MAP_TYPE) {
1334                 case MAP_SHARED:
1335                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1336                                 return -EINVAL;
1337                         /*
1338                          * Ignore pgoff.
1339                          */
1340                         pgoff = 0;
1341                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1342                         break;
1343                 case MAP_PRIVATE:
1344                         /*
1345                          * Set pgoff according to addr for anon_vma.
1346                          */
1347                         pgoff = addr >> PAGE_SHIFT;
1348                         break;
1349                 default:
1350                         return -EINVAL;
1351                 }
1352         }
1353
1354         /*
1355          * Set 'VM_NORESERVE' if we should not account for the
1356          * memory use of this mapping.
1357          */
1358         if (flags & MAP_NORESERVE) {
1359                 /* We honor MAP_NORESERVE if allowed to overcommit */
1360                 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1361                         vm_flags |= VM_NORESERVE;
1362
1363                 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1364                 if (file && is_file_hugepages(file))
1365                         vm_flags |= VM_NORESERVE;
1366         }
1367
1368         addr = mmap_region(file, addr, len, vm_flags, pgoff);
1369         if (!IS_ERR_VALUE(addr) &&
1370             ((vm_flags & VM_LOCKED) ||
1371              (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1372                 *populate = len;
1373         return addr;
1374 }
1375
1376 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1377                 unsigned long, prot, unsigned long, flags,
1378                 unsigned long, fd, unsigned long, pgoff)
1379 {
1380         struct file *file = NULL;
1381         unsigned long retval = -EBADF;
1382
1383         if (!(flags & MAP_ANONYMOUS)) {
1384                 audit_mmap_fd(fd, flags);
1385                 file = fget(fd);
1386                 if (!file)
1387                         goto out;
1388                 if (is_file_hugepages(file))
1389                         len = ALIGN(len, huge_page_size(hstate_file(file)));
1390                 retval = -EINVAL;
1391                 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1392                         goto out_fput;
1393         } else if (flags & MAP_HUGETLB) {
1394                 struct user_struct *user = NULL;
1395                 struct hstate *hs;
1396
1397                 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & SHM_HUGE_MASK);
1398                 if (!hs)
1399                         return -EINVAL;
1400
1401                 len = ALIGN(len, huge_page_size(hs));
1402                 /*
1403                  * VM_NORESERVE is used because the reservations will be
1404                  * taken when vm_ops->mmap() is called
1405                  * A dummy user value is used because we are not locking
1406                  * memory so no accounting is necessary
1407                  */
1408                 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1409                                 VM_NORESERVE,
1410                                 &user, HUGETLB_ANONHUGE_INODE,
1411                                 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1412                 if (IS_ERR(file))
1413                         return PTR_ERR(file);
1414         }
1415
1416         flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1417
1418         retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1419 out_fput:
1420         if (file)
1421                 fput(file);
1422 out:
1423         return retval;
1424 }
1425
1426 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1427 struct mmap_arg_struct {
1428         unsigned long addr;
1429         unsigned long len;
1430         unsigned long prot;
1431         unsigned long flags;
1432         unsigned long fd;
1433         unsigned long offset;
1434 };
1435
1436 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1437 {
1438         struct mmap_arg_struct a;
1439
1440         if (copy_from_user(&a, arg, sizeof(a)))
1441                 return -EFAULT;
1442         if (a.offset & ~PAGE_MASK)
1443                 return -EINVAL;
1444
1445         return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1446                               a.offset >> PAGE_SHIFT);
1447 }
1448 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1449
1450 /*
1451  * Some shared mappigns will want the pages marked read-only
1452  * to track write events. If so, we'll downgrade vm_page_prot
1453  * to the private version (using protection_map[] without the
1454  * VM_SHARED bit).
1455  */
1456 int vma_wants_writenotify(struct vm_area_struct *vma)
1457 {
1458         vm_flags_t vm_flags = vma->vm_flags;
1459
1460         /* If it was private or non-writable, the write bit is already clear */
1461         if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1462                 return 0;
1463
1464         /* The backer wishes to know when pages are first written to? */
1465         if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1466                 return 1;
1467
1468         /* The open routine did something to the protections already? */
1469         if (pgprot_val(vma->vm_page_prot) !=
1470             pgprot_val(vm_get_page_prot(vm_flags)))
1471                 return 0;
1472
1473         /* Specialty mapping? */
1474         if (vm_flags & VM_PFNMAP)
1475                 return 0;
1476
1477         /* Can the mapping track the dirty pages? */
1478         return vma->vm_file && vma->vm_file->f_mapping &&
1479                 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1480 }
1481
1482 /*
1483  * We account for memory if it's a private writeable mapping,
1484  * not hugepages and VM_NORESERVE wasn't set.
1485  */
1486 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1487 {
1488         /*
1489          * hugetlb has its own accounting separate from the core VM
1490          * VM_HUGETLB may not be set yet so we cannot check for that flag.
1491          */
1492         if (file && is_file_hugepages(file))
1493                 return 0;
1494
1495         return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1496 }
1497
1498 unsigned long mmap_region(struct file *file, unsigned long addr,
1499                 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff)
1500 {
1501         struct mm_struct *mm = current->mm;
1502         struct vm_area_struct *vma, *prev;
1503         int error;
1504         struct rb_node **rb_link, *rb_parent;
1505         unsigned long charged = 0;
1506
1507         /* Check against address space limit. */
1508         if (!may_expand_vm(mm, len >> PAGE_SHIFT)) {
1509                 unsigned long nr_pages;
1510
1511                 /*
1512                  * MAP_FIXED may remove pages of mappings that intersects with
1513                  * requested mapping. Account for the pages it would unmap.
1514                  */
1515                 if (!(vm_flags & MAP_FIXED))
1516                         return -ENOMEM;
1517
1518                 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1519
1520                 if (!may_expand_vm(mm, (len >> PAGE_SHIFT) - nr_pages))
1521                         return -ENOMEM;
1522         }
1523
1524         /* Clear old maps */
1525         error = -ENOMEM;
1526 munmap_back:
1527         if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
1528                 if (do_munmap(mm, addr, len))
1529                         return -ENOMEM;
1530                 goto munmap_back;
1531         }
1532
1533         /*
1534          * Private writable mapping: check memory availability
1535          */
1536         if (accountable_mapping(file, vm_flags)) {
1537                 charged = len >> PAGE_SHIFT;
1538                 if (security_vm_enough_memory_mm(mm, charged))
1539                         return -ENOMEM;
1540                 vm_flags |= VM_ACCOUNT;
1541         }
1542
1543         /*
1544          * Can we just expand an old mapping?
1545          */
1546         vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
1547         if (vma)
1548                 goto out;
1549
1550         /*
1551          * Determine the object being mapped and call the appropriate
1552          * specific mapper. the address has already been validated, but
1553          * not unmapped, but the maps are removed from the list.
1554          */
1555         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1556         if (!vma) {
1557                 error = -ENOMEM;
1558                 goto unacct_error;
1559         }
1560
1561         vma->vm_mm = mm;
1562         vma->vm_start = addr;
1563         vma->vm_end = addr + len;
1564         vma->vm_flags = vm_flags;
1565         vma->vm_page_prot = vm_get_page_prot(vm_flags);
1566         vma->vm_pgoff = pgoff;
1567         INIT_LIST_HEAD(&vma->anon_vma_chain);
1568
1569         if (file) {
1570                 if (vm_flags & VM_DENYWRITE) {
1571                         error = deny_write_access(file);
1572                         if (error)
1573                                 goto free_vma;
1574                 }
1575                 vma->vm_file = get_file(file);
1576                 error = file->f_op->mmap(file, vma);
1577                 if (error)
1578                         goto unmap_and_free_vma;
1579
1580                 /* Can addr have changed??
1581                  *
1582                  * Answer: Yes, several device drivers can do it in their
1583                  *         f_op->mmap method. -DaveM
1584                  * Bug: If addr is changed, prev, rb_link, rb_parent should
1585                  *      be updated for vma_link()
1586                  */
1587                 WARN_ON_ONCE(addr != vma->vm_start);
1588
1589                 addr = vma->vm_start;
1590                 vm_flags = vma->vm_flags;
1591         } else if (vm_flags & VM_SHARED) {
1592                 error = shmem_zero_setup(vma);
1593                 if (error)
1594                         goto free_vma;
1595         }
1596
1597         if (vma_wants_writenotify(vma)) {
1598                 pgprot_t pprot = vma->vm_page_prot;
1599
1600                 /* Can vma->vm_page_prot have changed??
1601                  *
1602                  * Answer: Yes, drivers may have changed it in their
1603                  *         f_op->mmap method.
1604                  *
1605                  * Ensures that vmas marked as uncached stay that way.
1606                  */
1607                 vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1608                 if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot)))
1609                         vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1610         }
1611
1612         vma_link(mm, vma, prev, rb_link, rb_parent);
1613         /* Once vma denies write, undo our temporary denial count */
1614         if (vm_flags & VM_DENYWRITE)
1615                 allow_write_access(file);
1616         file = vma->vm_file;
1617 out:
1618         perf_event_mmap(vma);
1619
1620         vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1621         if (vm_flags & VM_LOCKED) {
1622                 if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1623                                         vma == get_gate_vma(current->mm)))
1624                         mm->locked_vm += (len >> PAGE_SHIFT);
1625                 else
1626                         vma->vm_flags &= ~VM_LOCKED;
1627         }
1628
1629         if (file)
1630                 uprobe_mmap(vma);
1631
1632         /*
1633          * New (or expanded) vma always get soft dirty status.
1634          * Otherwise user-space soft-dirty page tracker won't
1635          * be able to distinguish situation when vma area unmapped,
1636          * then new mapped in-place (which must be aimed as
1637          * a completely new data area).
1638          */
1639         vma->vm_flags |= VM_SOFTDIRTY;
1640
1641         return addr;
1642
1643 unmap_and_free_vma:
1644         if (vm_flags & VM_DENYWRITE)
1645                 allow_write_access(file);
1646         vma->vm_file = NULL;
1647         fput(file);
1648
1649         /* Undo any partial mapping done by a device driver. */
1650         unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1651         charged = 0;
1652 free_vma:
1653         kmem_cache_free(vm_area_cachep, vma);
1654 unacct_error:
1655         if (charged)
1656                 vm_unacct_memory(charged);
1657         return error;
1658 }
1659
1660 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1661 {
1662         /*
1663          * We implement the search by looking for an rbtree node that
1664          * immediately follows a suitable gap. That is,
1665          * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1666          * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1667          * - gap_end - gap_start >= length
1668          */
1669
1670         struct mm_struct *mm = current->mm;
1671         struct vm_area_struct *vma;
1672         unsigned long length, low_limit, high_limit, gap_start, gap_end;
1673
1674         /* Adjust search length to account for worst case alignment overhead */
1675         length = info->length + info->align_mask;
1676         if (length < info->length)
1677                 return -ENOMEM;
1678
1679         /* Adjust search limits by the desired length */
1680         if (info->high_limit < length)
1681                 return -ENOMEM;
1682         high_limit = info->high_limit - length;
1683
1684         if (info->low_limit > high_limit)
1685                 return -ENOMEM;
1686         low_limit = info->low_limit + length;
1687
1688         /* Check if rbtree root looks promising */
1689         if (RB_EMPTY_ROOT(&mm->mm_rb))
1690                 goto check_highest;
1691         vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1692         if (vma->rb_subtree_gap < length)
1693                 goto check_highest;
1694
1695         while (true) {
1696                 /* Visit left subtree if it looks promising */
1697                 gap_end = vma->vm_start;
1698                 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1699                         struct vm_area_struct *left =
1700                                 rb_entry(vma->vm_rb.rb_left,
1701                                          struct vm_area_struct, vm_rb);
1702                         if (left->rb_subtree_gap >= length) {
1703                                 vma = left;
1704                                 continue;
1705                         }
1706                 }
1707
1708                 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1709 check_current:
1710                 /* Check if current node has a suitable gap */
1711                 if (gap_start > high_limit)
1712                         return -ENOMEM;
1713                 if (gap_end >= low_limit && gap_end - gap_start >= length)
1714                         goto found;
1715
1716                 /* Visit right subtree if it looks promising */
1717                 if (vma->vm_rb.rb_right) {
1718                         struct vm_area_struct *right =
1719                                 rb_entry(vma->vm_rb.rb_right,
1720                                          struct vm_area_struct, vm_rb);
1721                         if (right->rb_subtree_gap >= length) {
1722                                 vma = right;
1723                                 continue;
1724                         }
1725                 }
1726
1727                 /* Go back up the rbtree to find next candidate node */
1728                 while (true) {
1729                         struct rb_node *prev = &vma->vm_rb;
1730                         if (!rb_parent(prev))
1731                                 goto check_highest;
1732                         vma = rb_entry(rb_parent(prev),
1733                                        struct vm_area_struct, vm_rb);
1734                         if (prev == vma->vm_rb.rb_left) {
1735                                 gap_start = vma->vm_prev->vm_end;
1736                                 gap_end = vma->vm_start;
1737                                 goto check_current;
1738                         }
1739                 }
1740         }
1741
1742 check_highest:
1743         /* Check highest gap, which does not precede any rbtree node */
1744         gap_start = mm->highest_vm_end;
1745         gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
1746         if (gap_start > high_limit)
1747                 return -ENOMEM;
1748
1749 found:
1750         /* We found a suitable gap. Clip it with the original low_limit. */
1751         if (gap_start < info->low_limit)
1752                 gap_start = info->low_limit;
1753
1754         /* Adjust gap address to the desired alignment */
1755         gap_start += (info->align_offset - gap_start) & info->align_mask;
1756
1757         VM_BUG_ON(gap_start + info->length > info->high_limit);
1758         VM_BUG_ON(gap_start + info->length > gap_end);
1759         return gap_start;
1760 }
1761
1762 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1763 {
1764         struct mm_struct *mm = current->mm;
1765         struct vm_area_struct *vma;
1766         unsigned long length, low_limit, high_limit, gap_start, gap_end;
1767
1768         /* Adjust search length to account for worst case alignment overhead */
1769         length = info->length + info->align_mask;
1770         if (length < info->length)
1771                 return -ENOMEM;
1772
1773         /*
1774          * Adjust search limits by the desired length.
1775          * See implementation comment at top of unmapped_area().
1776          */
1777         gap_end = info->high_limit;
1778         if (gap_end < length)
1779                 return -ENOMEM;
1780         high_limit = gap_end - length;
1781
1782         if (info->low_limit > high_limit)
1783                 return -ENOMEM;
1784         low_limit = info->low_limit + length;
1785
1786         /* Check highest gap, which does not precede any rbtree node */
1787         gap_start = mm->highest_vm_end;
1788         if (gap_start <= high_limit)
1789                 goto found_highest;
1790
1791         /* Check if rbtree root looks promising */
1792         if (RB_EMPTY_ROOT(&mm->mm_rb))
1793                 return -ENOMEM;
1794         vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1795         if (vma->rb_subtree_gap < length)
1796                 return -ENOMEM;
1797
1798         while (true) {
1799                 /* Visit right subtree if it looks promising */
1800                 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1801                 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1802                         struct vm_area_struct *right =
1803                                 rb_entry(vma->vm_rb.rb_right,
1804                                          struct vm_area_struct, vm_rb);
1805                         if (right->rb_subtree_gap >= length) {
1806                                 vma = right;
1807                                 continue;
1808                         }
1809                 }
1810
1811 check_current:
1812                 /* Check if current node has a suitable gap */
1813                 gap_end = vma->vm_start;
1814                 if (gap_end < low_limit)
1815                         return -ENOMEM;
1816                 if (gap_start <= high_limit && gap_end - gap_start >= length)
1817                         goto found;
1818
1819                 /* Visit left subtree if it looks promising */
1820                 if (vma->vm_rb.rb_left) {
1821                         struct vm_area_struct *left =
1822                                 rb_entry(vma->vm_rb.rb_left,
1823                                          struct vm_area_struct, vm_rb);
1824                         if (left->rb_subtree_gap >= length) {
1825                                 vma = left;
1826                                 continue;
1827                         }
1828                 }
1829
1830                 /* Go back up the rbtree to find next candidate node */
1831                 while (true) {
1832                         struct rb_node *prev = &vma->vm_rb;
1833                         if (!rb_parent(prev))
1834                                 return -ENOMEM;
1835                         vma = rb_entry(rb_parent(prev),
1836                                        struct vm_area_struct, vm_rb);
1837                         if (prev == vma->vm_rb.rb_right) {
1838                                 gap_start = vma->vm_prev ?
1839                                         vma->vm_prev->vm_end : 0;
1840                                 goto check_current;
1841                         }
1842                 }
1843         }
1844
1845 found:
1846         /* We found a suitable gap. Clip it with the original high_limit. */
1847         if (gap_end > info->high_limit)
1848                 gap_end = info->high_limit;
1849
1850 found_highest:
1851         /* Compute highest gap address at the desired alignment */
1852         gap_end -= info->length;
1853         gap_end -= (gap_end - info->align_offset) & info->align_mask;
1854
1855         VM_BUG_ON(gap_end < info->low_limit);
1856         VM_BUG_ON(gap_end < gap_start);
1857         return gap_end;
1858 }
1859
1860 /* Get an address range which is currently unmapped.
1861  * For shmat() with addr=0.
1862  *
1863  * Ugly calling convention alert:
1864  * Return value with the low bits set means error value,
1865  * ie
1866  *      if (ret & ~PAGE_MASK)
1867  *              error = ret;
1868  *
1869  * This function "knows" that -ENOMEM has the bits set.
1870  */
1871 #ifndef HAVE_ARCH_UNMAPPED_AREA
1872 unsigned long
1873 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1874                 unsigned long len, unsigned long pgoff, unsigned long flags)
1875 {
1876         struct mm_struct *mm = current->mm;
1877         struct vm_area_struct *vma;
1878         struct vm_unmapped_area_info info;
1879
1880         if (len > TASK_SIZE - mmap_min_addr)
1881                 return -ENOMEM;
1882
1883         if (flags & MAP_FIXED)
1884                 return addr;
1885
1886         if (addr) {
1887                 addr = PAGE_ALIGN(addr);
1888                 vma = find_vma(mm, addr);
1889                 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1890                     (!vma || addr + len <= vma->vm_start))
1891                         return addr;
1892         }
1893
1894         info.flags = 0;
1895         info.length = len;
1896         info.low_limit = mm->mmap_base;
1897         info.high_limit = TASK_SIZE;
1898         info.align_mask = 0;
1899         return vm_unmapped_area(&info);
1900 }
1901 #endif  
1902
1903 /*
1904  * This mmap-allocator allocates new areas top-down from below the
1905  * stack's low limit (the base):
1906  */
1907 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1908 unsigned long
1909 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1910                           const unsigned long len, const unsigned long pgoff,
1911                           const unsigned long flags)
1912 {
1913         struct vm_area_struct *vma;
1914         struct mm_struct *mm = current->mm;
1915         unsigned long addr = addr0;
1916         struct vm_unmapped_area_info info;
1917
1918         /* requested length too big for entire address space */
1919         if (len > TASK_SIZE - mmap_min_addr)
1920                 return -ENOMEM;
1921
1922         if (flags & MAP_FIXED)
1923                 return addr;
1924
1925         /* requesting a specific address */
1926         if (addr) {
1927                 addr = PAGE_ALIGN(addr);
1928                 vma = find_vma(mm, addr);
1929                 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1930                                 (!vma || addr + len <= vma->vm_start))
1931                         return addr;
1932         }
1933
1934         info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1935         info.length = len;
1936         info.low_limit = max(PAGE_SIZE, mmap_min_addr);
1937         info.high_limit = mm->mmap_base;
1938         info.align_mask = 0;
1939         addr = vm_unmapped_area(&info);
1940
1941         /*
1942          * A failed mmap() very likely causes application failure,
1943          * so fall back to the bottom-up function here. This scenario
1944          * can happen with large stack limits and large mmap()
1945          * allocations.
1946          */
1947         if (addr & ~PAGE_MASK) {
1948                 VM_BUG_ON(addr != -ENOMEM);
1949                 info.flags = 0;
1950                 info.low_limit = TASK_UNMAPPED_BASE;
1951                 info.high_limit = TASK_SIZE;
1952                 addr = vm_unmapped_area(&info);
1953         }
1954
1955         return addr;
1956 }
1957 #endif
1958
1959 unsigned long
1960 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1961                 unsigned long pgoff, unsigned long flags)
1962 {
1963         unsigned long (*get_area)(struct file *, unsigned long,
1964                                   unsigned long, unsigned long, unsigned long);
1965
1966         unsigned long error = arch_mmap_check(addr, len, flags);
1967         if (error)
1968                 return error;
1969
1970         /* Careful about overflows.. */
1971         if (len > TASK_SIZE)
1972                 return -ENOMEM;
1973
1974         get_area = current->mm->get_unmapped_area;
1975         if (file && file->f_op->get_unmapped_area)
1976                 get_area = file->f_op->get_unmapped_area;
1977         addr = get_area(file, addr, len, pgoff, flags);
1978         if (IS_ERR_VALUE(addr))
1979                 return addr;
1980
1981         if (addr > TASK_SIZE - len)
1982                 return -ENOMEM;
1983         if (addr & ~PAGE_MASK)
1984                 return -EINVAL;
1985
1986         addr = arch_rebalance_pgtables(addr, len);
1987         error = security_mmap_addr(addr);
1988         return error ? error : addr;
1989 }
1990
1991 EXPORT_SYMBOL(get_unmapped_area);
1992
1993 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1994 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1995 {
1996         struct rb_node *rb_node;
1997         struct vm_area_struct *vma;
1998
1999         /* Check the cache first. */
2000         vma = vmacache_find(mm, addr);
2001         if (likely(vma))
2002                 return vma;
2003
2004         rb_node = mm->mm_rb.rb_node;
2005         vma = NULL;
2006
2007         while (rb_node) {
2008                 struct vm_area_struct *tmp;
2009
2010                 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2011
2012                 if (tmp->vm_end > addr) {
2013                         vma = tmp;
2014                         if (tmp->vm_start <= addr)
2015                                 break;
2016                         rb_node = rb_node->rb_left;
2017                 } else
2018                         rb_node = rb_node->rb_right;
2019         }
2020
2021         if (vma)
2022                 vmacache_update(addr, vma);
2023         return vma;
2024 }
2025
2026 EXPORT_SYMBOL(find_vma);
2027
2028 /*
2029  * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2030  */
2031 struct vm_area_struct *
2032 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2033                         struct vm_area_struct **pprev)
2034 {
2035         struct vm_area_struct *vma;
2036
2037         vma = find_vma(mm, addr);
2038         if (vma) {
2039                 *pprev = vma->vm_prev;
2040         } else {
2041                 struct rb_node *rb_node = mm->mm_rb.rb_node;
2042                 *pprev = NULL;
2043                 while (rb_node) {
2044                         *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2045                         rb_node = rb_node->rb_right;
2046                 }
2047         }
2048         return vma;
2049 }
2050
2051 /*
2052  * Verify that the stack growth is acceptable and
2053  * update accounting. This is shared with both the
2054  * grow-up and grow-down cases.
2055  */
2056 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
2057 {
2058         struct mm_struct *mm = vma->vm_mm;
2059         struct rlimit *rlim = current->signal->rlim;
2060         unsigned long new_start;
2061
2062         /* address space limit tests */
2063         if (!may_expand_vm(mm, grow))
2064                 return -ENOMEM;
2065
2066         /* Stack limit test */
2067         if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur))
2068                 return -ENOMEM;
2069
2070         /* mlock limit tests */
2071         if (vma->vm_flags & VM_LOCKED) {
2072                 unsigned long locked;
2073                 unsigned long limit;
2074                 locked = mm->locked_vm + grow;
2075                 limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
2076                 limit >>= PAGE_SHIFT;
2077                 if (locked > limit && !capable(CAP_IPC_LOCK))
2078                         return -ENOMEM;
2079         }
2080
2081         /* Check to ensure the stack will not grow into a hugetlb-only region */
2082         new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2083                         vma->vm_end - size;
2084         if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2085                 return -EFAULT;
2086
2087         /*
2088          * Overcommit..  This must be the final test, as it will
2089          * update security statistics.
2090          */
2091         if (security_vm_enough_memory_mm(mm, grow))
2092                 return -ENOMEM;
2093
2094         /* Ok, everything looks good - let it rip */
2095         if (vma->vm_flags & VM_LOCKED)
2096                 mm->locked_vm += grow;
2097         vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
2098         return 0;
2099 }
2100
2101 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2102 /*
2103  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2104  * vma is the last one with address > vma->vm_end.  Have to extend vma.
2105  */
2106 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2107 {
2108         int error;
2109
2110         if (!(vma->vm_flags & VM_GROWSUP))
2111                 return -EFAULT;
2112
2113         /*
2114          * We must make sure the anon_vma is allocated
2115          * so that the anon_vma locking is not a noop.
2116          */
2117         if (unlikely(anon_vma_prepare(vma)))
2118                 return -ENOMEM;
2119         vma_lock_anon_vma(vma);
2120
2121         /*
2122          * vma->vm_start/vm_end cannot change under us because the caller
2123          * is required to hold the mmap_sem in read mode.  We need the
2124          * anon_vma lock to serialize against concurrent expand_stacks.
2125          * Also guard against wrapping around to address 0.
2126          */
2127         if (address < PAGE_ALIGN(address+4))
2128                 address = PAGE_ALIGN(address+4);
2129         else {
2130                 vma_unlock_anon_vma(vma);
2131                 return -ENOMEM;
2132         }
2133         error = 0;
2134
2135         /* Somebody else might have raced and expanded it already */
2136         if (address > vma->vm_end) {
2137                 unsigned long size, grow;
2138
2139                 size = address - vma->vm_start;
2140                 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2141
2142                 error = -ENOMEM;
2143                 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2144                         error = acct_stack_growth(vma, size, grow);
2145                         if (!error) {
2146                                 /*
2147                                  * vma_gap_update() doesn't support concurrent
2148                                  * updates, but we only hold a shared mmap_sem
2149                                  * lock here, so we need to protect against
2150                                  * concurrent vma expansions.
2151                                  * vma_lock_anon_vma() doesn't help here, as
2152                                  * we don't guarantee that all growable vmas
2153                                  * in a mm share the same root anon vma.
2154                                  * So, we reuse mm->page_table_lock to guard
2155                                  * against concurrent vma expansions.
2156                                  */
2157                                 spin_lock(&vma->vm_mm->page_table_lock);
2158                                 anon_vma_interval_tree_pre_update_vma(vma);
2159                                 vma->vm_end = address;
2160                                 anon_vma_interval_tree_post_update_vma(vma);
2161                                 if (vma->vm_next)
2162                                         vma_gap_update(vma->vm_next);
2163                                 else
2164                                         vma->vm_mm->highest_vm_end = address;
2165                                 spin_unlock(&vma->vm_mm->page_table_lock);
2166
2167                                 perf_event_mmap(vma);
2168                         }
2169                 }
2170         }
2171         vma_unlock_anon_vma(vma);
2172         khugepaged_enter_vma_merge(vma);
2173         validate_mm(vma->vm_mm);
2174         return error;
2175 }
2176 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2177
2178 /*
2179  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2180  */
2181 int expand_downwards(struct vm_area_struct *vma,
2182                                    unsigned long address)
2183 {
2184         int error;
2185
2186         /*
2187          * We must make sure the anon_vma is allocated
2188          * so that the anon_vma locking is not a noop.
2189          */
2190         if (unlikely(anon_vma_prepare(vma)))
2191                 return -ENOMEM;
2192
2193         address &= PAGE_MASK;
2194         error = security_mmap_addr(address);
2195         if (error)
2196                 return error;
2197
2198         vma_lock_anon_vma(vma);
2199
2200         /*
2201          * vma->vm_start/vm_end cannot change under us because the caller
2202          * is required to hold the mmap_sem in read mode.  We need the
2203          * anon_vma lock to serialize against concurrent expand_stacks.
2204          */
2205
2206         /* Somebody else might have raced and expanded it already */
2207         if (address < vma->vm_start) {
2208                 unsigned long size, grow;
2209
2210                 size = vma->vm_end - address;
2211                 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2212
2213                 error = -ENOMEM;
2214                 if (grow <= vma->vm_pgoff) {
2215                         error = acct_stack_growth(vma, size, grow);
2216                         if (!error) {
2217                                 /*
2218                                  * vma_gap_update() doesn't support concurrent
2219                                  * updates, but we only hold a shared mmap_sem
2220                                  * lock here, so we need to protect against
2221                                  * concurrent vma expansions.
2222                                  * vma_lock_anon_vma() doesn't help here, as
2223                                  * we don't guarantee that all growable vmas
2224                                  * in a mm share the same root anon vma.
2225                                  * So, we reuse mm->page_table_lock to guard
2226                                  * against concurrent vma expansions.
2227                                  */
2228                                 spin_lock(&vma->vm_mm->page_table_lock);
2229                                 anon_vma_interval_tree_pre_update_vma(vma);
2230                                 vma->vm_start = address;
2231                                 vma->vm_pgoff -= grow;
2232                                 anon_vma_interval_tree_post_update_vma(vma);
2233                                 vma_gap_update(vma);
2234                                 spin_unlock(&vma->vm_mm->page_table_lock);
2235
2236                                 perf_event_mmap(vma);
2237                         }
2238                 }
2239         }
2240         vma_unlock_anon_vma(vma);
2241         khugepaged_enter_vma_merge(vma);
2242         validate_mm(vma->vm_mm);
2243         return error;
2244 }
2245
2246 /*
2247  * Note how expand_stack() refuses to expand the stack all the way to
2248  * abut the next virtual mapping, *unless* that mapping itself is also
2249  * a stack mapping. We want to leave room for a guard page, after all
2250  * (the guard page itself is not added here, that is done by the
2251  * actual page faulting logic)
2252  *
2253  * This matches the behavior of the guard page logic (see mm/memory.c:
2254  * check_stack_guard_page()), which only allows the guard page to be
2255  * removed under these circumstances.
2256  */
2257 #ifdef CONFIG_STACK_GROWSUP
2258 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2259 {
2260         struct vm_area_struct *next;
2261
2262         address &= PAGE_MASK;
2263         next = vma->vm_next;
2264         if (next && next->vm_start == address + PAGE_SIZE) {
2265                 if (!(next->vm_flags & VM_GROWSUP))
2266                         return -ENOMEM;
2267         }
2268         return expand_upwards(vma, address);
2269 }
2270
2271 struct vm_area_struct *
2272 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2273 {
2274         struct vm_area_struct *vma, *prev;
2275
2276         addr &= PAGE_MASK;
2277         vma = find_vma_prev(mm, addr, &prev);
2278         if (vma && (vma->vm_start <= addr))
2279                 return vma;
2280         if (!prev || expand_stack(prev, addr))
2281                 return NULL;
2282         if (prev->vm_flags & VM_LOCKED)
2283                 __mlock_vma_pages_range(prev, addr, prev->vm_end, NULL);
2284         return prev;
2285 }
2286 #else
2287 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2288 {
2289         struct vm_area_struct *prev;
2290
2291         address &= PAGE_MASK;
2292         prev = vma->vm_prev;
2293         if (prev && prev->vm_end == address) {
2294                 if (!(prev->vm_flags & VM_GROWSDOWN))
2295                         return -ENOMEM;
2296         }
2297         return expand_downwards(vma, address);
2298 }
2299
2300 struct vm_area_struct *
2301 find_extend_vma(struct mm_struct * mm, unsigned long addr)
2302 {
2303         struct vm_area_struct * vma;
2304         unsigned long start;
2305
2306         addr &= PAGE_MASK;
2307         vma = find_vma(mm,addr);
2308         if (!vma)
2309                 return NULL;
2310         if (vma->vm_start <= addr)
2311                 return vma;
2312         if (!(vma->vm_flags & VM_GROWSDOWN))
2313                 return NULL;
2314         start = vma->vm_start;
2315         if (expand_stack(vma, addr))
2316                 return NULL;
2317         if (vma->vm_flags & VM_LOCKED)
2318                 __mlock_vma_pages_range(vma, addr, start, NULL);
2319         return vma;
2320 }
2321 #endif
2322
2323 /*
2324  * Ok - we have the memory areas we should free on the vma list,
2325  * so release them, and do the vma updates.
2326  *
2327  * Called with the mm semaphore held.
2328  */
2329 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2330 {
2331         unsigned long nr_accounted = 0;
2332
2333         /* Update high watermark before we lower total_vm */
2334         update_hiwater_vm(mm);
2335         do {
2336                 long nrpages = vma_pages(vma);
2337
2338                 if (vma->vm_flags & VM_ACCOUNT)
2339                         nr_accounted += nrpages;
2340                 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
2341                 vma = remove_vma(vma);
2342         } while (vma);
2343         vm_unacct_memory(nr_accounted);
2344         validate_mm(mm);
2345 }
2346
2347 /*
2348  * Get rid of page table information in the indicated region.
2349  *
2350  * Called with the mm semaphore held.
2351  */
2352 static void unmap_region(struct mm_struct *mm,
2353                 struct vm_area_struct *vma, struct vm_area_struct *prev,
2354                 unsigned long start, unsigned long end)
2355 {
2356         struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
2357         struct mmu_gather tlb;
2358
2359         lru_add_drain();
2360         tlb_gather_mmu(&tlb, mm, start, end);
2361         update_hiwater_rss(mm);
2362         unmap_vmas(&tlb, vma, start, end);
2363         free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2364                                  next ? next->vm_start : USER_PGTABLES_CEILING);
2365         tlb_finish_mmu(&tlb, start, end);
2366 }
2367
2368 /*
2369  * Create a list of vma's touched by the unmap, removing them from the mm's
2370  * vma list as we go..
2371  */
2372 static void
2373 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2374         struct vm_area_struct *prev, unsigned long end)
2375 {
2376         struct vm_area_struct **insertion_point;
2377         struct vm_area_struct *tail_vma = NULL;
2378
2379         insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2380         vma->vm_prev = NULL;
2381         do {
2382                 vma_rb_erase(vma, &mm->mm_rb);
2383                 mm->map_count--;
2384                 tail_vma = vma;
2385                 vma = vma->vm_next;
2386         } while (vma && vma->vm_start < end);
2387         *insertion_point = vma;
2388         if (vma) {
2389                 vma->vm_prev = prev;
2390                 vma_gap_update(vma);
2391         } else
2392                 mm->highest_vm_end = prev ? prev->vm_end : 0;
2393         tail_vma->vm_next = NULL;
2394
2395         /* Kill the cache */
2396         vmacache_invalidate(mm);
2397 }
2398
2399 /*
2400  * __split_vma() bypasses sysctl_max_map_count checking.  We use this on the
2401  * munmap path where it doesn't make sense to fail.
2402  */
2403 static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
2404               unsigned long addr, int new_below)
2405 {
2406         struct vm_area_struct *new;
2407         int err = -ENOMEM;
2408
2409         if (is_vm_hugetlb_page(vma) && (addr &
2410                                         ~(huge_page_mask(hstate_vma(vma)))))
2411                 return -EINVAL;
2412
2413         new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2414         if (!new)
2415                 goto out_err;
2416
2417         /* most fields are the same, copy all, and then fixup */
2418         *new = *vma;
2419
2420         INIT_LIST_HEAD(&new->anon_vma_chain);
2421
2422         if (new_below)
2423                 new->vm_end = addr;
2424         else {
2425                 new->vm_start = addr;
2426                 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2427         }
2428
2429         err = vma_dup_policy(vma, new);
2430         if (err)
2431                 goto out_free_vma;
2432
2433         if (anon_vma_clone(new, vma))
2434                 goto out_free_mpol;
2435
2436         if (new->vm_file)
2437                 get_file(new->vm_file);
2438
2439         if (new->vm_ops && new->vm_ops->open)
2440                 new->vm_ops->open(new);
2441
2442         if (new_below)
2443                 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2444                         ((addr - new->vm_start) >> PAGE_SHIFT), new);
2445         else
2446                 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2447
2448         /* Success. */
2449         if (!err)
2450                 return 0;
2451
2452         /* Clean everything up if vma_adjust failed. */
2453         if (new->vm_ops && new->vm_ops->close)
2454                 new->vm_ops->close(new);
2455         if (new->vm_file)
2456                 fput(new->vm_file);
2457         unlink_anon_vmas(new);
2458  out_free_mpol:
2459         mpol_put(vma_policy(new));
2460  out_free_vma:
2461         kmem_cache_free(vm_area_cachep, new);
2462  out_err:
2463         return err;
2464 }
2465
2466 /*
2467  * Split a vma into two pieces at address 'addr', a new vma is allocated
2468  * either for the first part or the tail.
2469  */
2470 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2471               unsigned long addr, int new_below)
2472 {
2473         if (mm->map_count >= sysctl_max_map_count)
2474                 return -ENOMEM;
2475
2476         return __split_vma(mm, vma, addr, new_below);
2477 }
2478
2479 /* Munmap is split into 2 main parts -- this part which finds
2480  * what needs doing, and the areas themselves, which do the
2481  * work.  This now handles partial unmappings.
2482  * Jeremy Fitzhardinge <jeremy@goop.org>
2483  */
2484 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2485 {
2486         unsigned long end;
2487         struct vm_area_struct *vma, *prev, *last;
2488
2489         if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
2490                 return -EINVAL;
2491
2492         if ((len = PAGE_ALIGN(len)) == 0)
2493                 return -EINVAL;
2494
2495         /* Find the first overlapping VMA */
2496         vma = find_vma(mm, start);
2497         if (!vma)
2498                 return 0;
2499         prev = vma->vm_prev;
2500         /* we have  start < vma->vm_end  */
2501
2502         /* if it doesn't overlap, we have nothing.. */
2503         end = start + len;
2504         if (vma->vm_start >= end)
2505                 return 0;
2506
2507         /*
2508          * If we need to split any vma, do it now to save pain later.
2509          *
2510          * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2511          * unmapped vm_area_struct will remain in use: so lower split_vma
2512          * places tmp vma above, and higher split_vma places tmp vma below.
2513          */
2514         if (start > vma->vm_start) {
2515                 int error;
2516
2517                 /*
2518                  * Make sure that map_count on return from munmap() will
2519                  * not exceed its limit; but let map_count go just above
2520                  * its limit temporarily, to help free resources as expected.
2521                  */
2522                 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2523                         return -ENOMEM;
2524
2525                 error = __split_vma(mm, vma, start, 0);
2526                 if (error)
2527                         return error;
2528                 prev = vma;
2529         }
2530
2531         /* Does it split the last one? */
2532         last = find_vma(mm, end);
2533         if (last && end > last->vm_start) {
2534                 int error = __split_vma(mm, last, end, 1);
2535                 if (error)
2536                         return error;
2537         }
2538         vma = prev? prev->vm_next: mm->mmap;
2539
2540         /*
2541          * unlock any mlock()ed ranges before detaching vmas
2542          */
2543         if (mm->locked_vm) {
2544                 struct vm_area_struct *tmp = vma;
2545                 while (tmp && tmp->vm_start < end) {
2546                         if (tmp->vm_flags & VM_LOCKED) {
2547                                 mm->locked_vm -= vma_pages(tmp);
2548                                 munlock_vma_pages_all(tmp);
2549                         }
2550                         tmp = tmp->vm_next;
2551                 }
2552         }
2553
2554         /*
2555          * Remove the vma's, and unmap the actual pages
2556          */
2557         detach_vmas_to_be_unmapped(mm, vma, prev, end);
2558         unmap_region(mm, vma, prev, start, end);
2559
2560         /* Fix up all other VM information */
2561         remove_vma_list(mm, vma);
2562
2563         return 0;
2564 }
2565
2566 int vm_munmap(unsigned long start, size_t len)
2567 {
2568         int ret;
2569         struct mm_struct *mm = current->mm;
2570
2571         down_write(&mm->mmap_sem);
2572         ret = do_munmap(mm, start, len);
2573         up_write(&mm->mmap_sem);
2574         return ret;
2575 }
2576 EXPORT_SYMBOL(vm_munmap);
2577
2578 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2579 {
2580         profile_munmap(addr);
2581         return vm_munmap(addr, len);
2582 }
2583
2584 static inline void verify_mm_writelocked(struct mm_struct *mm)
2585 {
2586 #ifdef CONFIG_DEBUG_VM
2587         if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2588                 WARN_ON(1);
2589                 up_read(&mm->mmap_sem);
2590         }
2591 #endif
2592 }
2593
2594 /*
2595  *  this is really a simplified "do_mmap".  it only handles
2596  *  anonymous maps.  eventually we may be able to do some
2597  *  brk-specific accounting here.
2598  */
2599 static unsigned long do_brk(unsigned long addr, unsigned long len)
2600 {
2601         struct mm_struct * mm = current->mm;
2602         struct vm_area_struct * vma, * prev;
2603         unsigned long flags;
2604         struct rb_node ** rb_link, * rb_parent;
2605         pgoff_t pgoff = addr >> PAGE_SHIFT;
2606         int error;
2607
2608         len = PAGE_ALIGN(len);
2609         if (!len)
2610                 return addr;
2611
2612         flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2613
2614         error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2615         if (error & ~PAGE_MASK)
2616                 return error;
2617
2618         error = mlock_future_check(mm, mm->def_flags, len);
2619         if (error)
2620                 return error;
2621
2622         /*
2623          * mm->mmap_sem is required to protect against another thread
2624          * changing the mappings in case we sleep.
2625          */
2626         verify_mm_writelocked(mm);
2627
2628         /*
2629          * Clear old maps.  this also does some error checking for us
2630          */
2631  munmap_back:
2632         if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
2633                 if (do_munmap(mm, addr, len))
2634                         return -ENOMEM;
2635                 goto munmap_back;
2636         }
2637
2638         /* Check against address space limits *after* clearing old maps... */
2639         if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2640                 return -ENOMEM;
2641
2642         if (mm->map_count > sysctl_max_map_count)
2643                 return -ENOMEM;
2644
2645         if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2646                 return -ENOMEM;
2647
2648         /* Can we just expand an old private anonymous mapping? */
2649         vma = vma_merge(mm, prev, addr, addr + len, flags,
2650                                         NULL, NULL, pgoff, NULL);
2651         if (vma)
2652                 goto out;
2653
2654         /*
2655          * create a vma struct for an anonymous mapping
2656          */
2657         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2658         if (!vma) {
2659                 vm_unacct_memory(len >> PAGE_SHIFT);
2660                 return -ENOMEM;
2661         }
2662
2663         INIT_LIST_HEAD(&vma->anon_vma_chain);
2664         vma->vm_mm = mm;
2665         vma->vm_start = addr;
2666         vma->vm_end = addr + len;
2667         vma->vm_pgoff = pgoff;
2668         vma->vm_flags = flags;
2669         vma->vm_page_prot = vm_get_page_prot(flags);
2670         vma_link(mm, vma, prev, rb_link, rb_parent);
2671 out:
2672         perf_event_mmap(vma);
2673         mm->total_vm += len >> PAGE_SHIFT;
2674         if (flags & VM_LOCKED)
2675                 mm->locked_vm += (len >> PAGE_SHIFT);
2676         vma->vm_flags |= VM_SOFTDIRTY;
2677         return addr;
2678 }
2679
2680 unsigned long vm_brk(unsigned long addr, unsigned long len)
2681 {
2682         struct mm_struct *mm = current->mm;
2683         unsigned long ret;
2684         bool populate;
2685
2686         down_write(&mm->mmap_sem);
2687         ret = do_brk(addr, len);
2688         populate = ((mm->def_flags & VM_LOCKED) != 0);
2689         up_write(&mm->mmap_sem);
2690         if (populate)
2691                 mm_populate(addr, len);
2692         return ret;
2693 }
2694 EXPORT_SYMBOL(vm_brk);
2695
2696 /* Release all mmaps. */
2697 void exit_mmap(struct mm_struct *mm)
2698 {
2699         struct mmu_gather tlb;
2700         struct vm_area_struct *vma;
2701         unsigned long nr_accounted = 0;
2702
2703         /* mm's last user has gone, and its about to be pulled down */
2704         mmu_notifier_release(mm);
2705
2706         if (mm->locked_vm) {
2707                 vma = mm->mmap;
2708                 while (vma) {
2709                         if (vma->vm_flags & VM_LOCKED)
2710                                 munlock_vma_pages_all(vma);
2711                         vma = vma->vm_next;
2712                 }
2713         }
2714
2715         arch_exit_mmap(mm);
2716
2717         vma = mm->mmap;
2718         if (!vma)       /* Can happen if dup_mmap() received an OOM */
2719                 return;
2720
2721         lru_add_drain();
2722         flush_cache_mm(mm);
2723         tlb_gather_mmu(&tlb, mm, 0, -1);
2724         /* update_hiwater_rss(mm) here? but nobody should be looking */
2725         /* Use -1 here to ensure all VMAs in the mm are unmapped */
2726         unmap_vmas(&tlb, vma, 0, -1);
2727
2728         free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
2729         tlb_finish_mmu(&tlb, 0, -1);
2730
2731         /*
2732          * Walk the list again, actually closing and freeing it,
2733          * with preemption enabled, without holding any MM locks.
2734          */
2735         while (vma) {
2736                 if (vma->vm_flags & VM_ACCOUNT)
2737                         nr_accounted += vma_pages(vma);
2738                 vma = remove_vma(vma);
2739         }
2740         vm_unacct_memory(nr_accounted);
2741
2742         WARN_ON(atomic_long_read(&mm->nr_ptes) >
2743                         (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2744 }
2745
2746 /* Insert vm structure into process list sorted by address
2747  * and into the inode's i_mmap tree.  If vm_file is non-NULL
2748  * then i_mmap_mutex is taken here.
2749  */
2750 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
2751 {
2752         struct vm_area_struct *prev;
2753         struct rb_node **rb_link, *rb_parent;
2754
2755         /*
2756          * The vm_pgoff of a purely anonymous vma should be irrelevant
2757          * until its first write fault, when page's anon_vma and index
2758          * are set.  But now set the vm_pgoff it will almost certainly
2759          * end up with (unless mremap moves it elsewhere before that
2760          * first wfault), so /proc/pid/maps tells a consistent story.
2761          *
2762          * By setting it to reflect the virtual start address of the
2763          * vma, merges and splits can happen in a seamless way, just
2764          * using the existing file pgoff checks and manipulations.
2765          * Similarly in do_mmap_pgoff and in do_brk.
2766          */
2767         if (!vma->vm_file) {
2768                 BUG_ON(vma->anon_vma);
2769                 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2770         }
2771         if (find_vma_links(mm, vma->vm_start, vma->vm_end,
2772                            &prev, &rb_link, &rb_parent))
2773                 return -ENOMEM;
2774         if ((vma->vm_flags & VM_ACCOUNT) &&
2775              security_vm_enough_memory_mm(mm, vma_pages(vma)))
2776                 return -ENOMEM;
2777
2778         vma_link(mm, vma, prev, rb_link, rb_parent);
2779         return 0;
2780 }
2781
2782 /*
2783  * Copy the vma structure to a new location in the same mm,
2784  * prior to moving page table entries, to effect an mremap move.
2785  */
2786 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2787         unsigned long addr, unsigned long len, pgoff_t pgoff,
2788         bool *need_rmap_locks)
2789 {
2790         struct vm_area_struct *vma = *vmap;
2791         unsigned long vma_start = vma->vm_start;
2792         struct mm_struct *mm = vma->vm_mm;
2793         struct vm_area_struct *new_vma, *prev;
2794         struct rb_node **rb_link, *rb_parent;
2795         bool faulted_in_anon_vma = true;
2796
2797         /*
2798          * If anonymous vma has not yet been faulted, update new pgoff
2799          * to match new location, to increase its chance of merging.
2800          */
2801         if (unlikely(!vma->vm_file && !vma->anon_vma)) {
2802                 pgoff = addr >> PAGE_SHIFT;
2803                 faulted_in_anon_vma = false;
2804         }
2805
2806         if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
2807                 return NULL;    /* should never get here */
2808         new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2809                         vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2810         if (new_vma) {
2811                 /*
2812                  * Source vma may have been merged into new_vma
2813                  */
2814                 if (unlikely(vma_start >= new_vma->vm_start &&
2815                              vma_start < new_vma->vm_end)) {
2816                         /*
2817                          * The only way we can get a vma_merge with
2818                          * self during an mremap is if the vma hasn't
2819                          * been faulted in yet and we were allowed to
2820                          * reset the dst vma->vm_pgoff to the
2821                          * destination address of the mremap to allow
2822                          * the merge to happen. mremap must change the
2823                          * vm_pgoff linearity between src and dst vmas
2824                          * (in turn preventing a vma_merge) to be
2825                          * safe. It is only safe to keep the vm_pgoff
2826                          * linear if there are no pages mapped yet.
2827                          */
2828                         VM_BUG_ON(faulted_in_anon_vma);
2829                         *vmap = vma = new_vma;
2830                 }
2831                 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
2832         } else {
2833                 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2834                 if (new_vma) {
2835                         *new_vma = *vma;
2836                         new_vma->vm_start = addr;
2837                         new_vma->vm_end = addr + len;
2838                         new_vma->vm_pgoff = pgoff;
2839                         if (vma_dup_policy(vma, new_vma))
2840                                 goto out_free_vma;
2841                         INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2842                         if (anon_vma_clone(new_vma, vma))
2843                                 goto out_free_mempol;
2844                         if (new_vma->vm_file)
2845                                 get_file(new_vma->vm_file);
2846                         if (new_vma->vm_ops && new_vma->vm_ops->open)
2847                                 new_vma->vm_ops->open(new_vma);
2848                         vma_link(mm, new_vma, prev, rb_link, rb_parent);
2849                         *need_rmap_locks = false;
2850                 }
2851         }
2852         return new_vma;
2853
2854  out_free_mempol:
2855         mpol_put(vma_policy(new_vma));
2856  out_free_vma:
2857         kmem_cache_free(vm_area_cachep, new_vma);
2858         return NULL;
2859 }
2860
2861 /*
2862  * Return true if the calling process may expand its vm space by the passed
2863  * number of pages
2864  */
2865 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2866 {
2867         unsigned long cur = mm->total_vm;       /* pages */
2868         unsigned long lim;
2869
2870         lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
2871
2872         if (cur + npages > lim)
2873                 return 0;
2874         return 1;
2875 }
2876
2877 static int special_mapping_fault(struct vm_area_struct *vma,
2878                                  struct vm_fault *vmf);
2879
2880 /*
2881  * Having a close hook prevents vma merging regardless of flags.
2882  */
2883 static void special_mapping_close(struct vm_area_struct *vma)
2884 {
2885 }
2886
2887 static const char *special_mapping_name(struct vm_area_struct *vma)
2888 {
2889         return ((struct vm_special_mapping *)vma->vm_private_data)->name;
2890 }
2891
2892 static const struct vm_operations_struct special_mapping_vmops = {
2893         .close = special_mapping_close,
2894         .fault = special_mapping_fault,
2895         .name = special_mapping_name,
2896 };
2897
2898 static const struct vm_operations_struct legacy_special_mapping_vmops = {
2899         .close = special_mapping_close,
2900         .fault = special_mapping_fault,
2901 };
2902
2903 static int special_mapping_fault(struct vm_area_struct *vma,
2904                                 struct vm_fault *vmf)
2905 {
2906         pgoff_t pgoff;
2907         struct page **pages;
2908
2909         /*
2910          * special mappings have no vm_file, and in that case, the mm
2911          * uses vm_pgoff internally. So we have to subtract it from here.
2912          * We are allowed to do this because we are the mm; do not copy
2913          * this code into drivers!
2914          */
2915         pgoff = vmf->pgoff - vma->vm_pgoff;
2916
2917         if (vma->vm_ops == &legacy_special_mapping_vmops)
2918                 pages = vma->vm_private_data;
2919         else
2920                 pages = ((struct vm_special_mapping *)vma->vm_private_data)->
2921                         pages;
2922
2923         for (; pgoff && *pages; ++pages)
2924                 pgoff--;
2925
2926         if (*pages) {
2927                 struct page *page = *pages;
2928                 get_page(page);
2929                 vmf->page = page;
2930                 return 0;
2931         }
2932
2933         return VM_FAULT_SIGBUS;
2934 }
2935
2936 static struct vm_area_struct *__install_special_mapping(
2937         struct mm_struct *mm,
2938         unsigned long addr, unsigned long len,
2939         unsigned long vm_flags, const struct vm_operations_struct *ops,
2940         void *priv)
2941 {
2942         int ret;
2943         struct vm_area_struct *vma;
2944
2945         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2946         if (unlikely(vma == NULL))
2947                 return ERR_PTR(-ENOMEM);
2948
2949         INIT_LIST_HEAD(&vma->anon_vma_chain);
2950         vma->vm_mm = mm;
2951         vma->vm_start = addr;
2952         vma->vm_end = addr + len;
2953
2954         vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
2955         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2956
2957         vma->vm_ops = ops;
2958         vma->vm_private_data = priv;
2959
2960         ret = insert_vm_struct(mm, vma);
2961         if (ret)
2962                 goto out;
2963
2964         mm->total_vm += len >> PAGE_SHIFT;
2965
2966         perf_event_mmap(vma);
2967
2968         return vma;
2969
2970 out:
2971         kmem_cache_free(vm_area_cachep, vma);
2972         return ERR_PTR(ret);
2973 }
2974
2975 /*
2976  * Called with mm->mmap_sem held for writing.
2977  * Insert a new vma covering the given region, with the given flags.
2978  * Its pages are supplied by the given array of struct page *.
2979  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2980  * The region past the last page supplied will always produce SIGBUS.
2981  * The array pointer and the pages it points to are assumed to stay alive
2982  * for as long as this mapping might exist.
2983  */
2984 struct vm_area_struct *_install_special_mapping(
2985         struct mm_struct *mm,
2986         unsigned long addr, unsigned long len,
2987         unsigned long vm_flags, const struct vm_special_mapping *spec)
2988 {
2989         return __install_special_mapping(mm, addr, len, vm_flags,
2990                                          &special_mapping_vmops, (void *)spec);
2991 }
2992
2993 int install_special_mapping(struct mm_struct *mm,
2994                             unsigned long addr, unsigned long len,
2995                             unsigned long vm_flags, struct page **pages)
2996 {
2997         struct vm_area_struct *vma = __install_special_mapping(
2998                 mm, addr, len, vm_flags, &legacy_special_mapping_vmops,
2999                 (void *)pages);
3000
3001         return PTR_ERR_OR_ZERO(vma);
3002 }
3003
3004 static DEFINE_MUTEX(mm_all_locks_mutex);
3005
3006 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3007 {
3008         if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3009                 /*
3010                  * The LSB of head.next can't change from under us
3011                  * because we hold the mm_all_locks_mutex.
3012                  */
3013                 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3014                 /*
3015                  * We can safely modify head.next after taking the
3016                  * anon_vma->root->rwsem. If some other vma in this mm shares
3017                  * the same anon_vma we won't take it again.
3018                  *
3019                  * No need of atomic instructions here, head.next
3020                  * can't change from under us thanks to the
3021                  * anon_vma->root->rwsem.
3022                  */
3023                 if (__test_and_set_bit(0, (unsigned long *)
3024                                        &anon_vma->root->rb_root.rb_node))
3025                         BUG();
3026         }
3027 }
3028
3029 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3030 {
3031         if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3032                 /*
3033                  * AS_MM_ALL_LOCKS can't change from under us because
3034                  * we hold the mm_all_locks_mutex.
3035                  *
3036                  * Operations on ->flags have to be atomic because
3037                  * even if AS_MM_ALL_LOCKS is stable thanks to the
3038                  * mm_all_locks_mutex, there may be other cpus
3039                  * changing other bitflags in parallel to us.
3040                  */
3041                 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3042                         BUG();
3043                 mutex_lock_nest_lock(&mapping->i_mmap_mutex, &mm->mmap_sem);
3044         }
3045 }
3046
3047 /*
3048  * This operation locks against the VM for all pte/vma/mm related
3049  * operations that could ever happen on a certain mm. This includes
3050  * vmtruncate, try_to_unmap, and all page faults.
3051  *
3052  * The caller must take the mmap_sem in write mode before calling
3053  * mm_take_all_locks(). The caller isn't allowed to release the
3054  * mmap_sem until mm_drop_all_locks() returns.
3055  *
3056  * mmap_sem in write mode is required in order to block all operations
3057  * that could modify pagetables and free pages without need of
3058  * altering the vma layout (for example populate_range() with
3059  * nonlinear vmas). It's also needed in write mode to avoid new
3060  * anon_vmas to be associated with existing vmas.
3061  *
3062  * A single task can't take more than one mm_take_all_locks() in a row
3063  * or it would deadlock.
3064  *
3065  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3066  * mapping->flags avoid to take the same lock twice, if more than one
3067  * vma in this mm is backed by the same anon_vma or address_space.
3068  *
3069  * We can take all the locks in random order because the VM code
3070  * taking i_mmap_mutex or anon_vma->rwsem outside the mmap_sem never
3071  * takes more than one of them in a row. Secondly we're protected
3072  * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
3073  *
3074  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3075  * that may have to take thousand of locks.
3076  *
3077  * mm_take_all_locks() can fail if it's interrupted by signals.
3078  */
3079 int mm_take_all_locks(struct mm_struct *mm)
3080 {
3081         struct vm_area_struct *vma;
3082         struct anon_vma_chain *avc;
3083
3084         BUG_ON(down_read_trylock(&mm->mmap_sem));
3085
3086         mutex_lock(&mm_all_locks_mutex);
3087
3088         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3089                 if (signal_pending(current))
3090                         goto out_unlock;
3091                 if (vma->vm_file && vma->vm_file->f_mapping)
3092                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
3093         }
3094
3095         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3096                 if (signal_pending(current))
3097                         goto out_unlock;
3098                 if (vma->anon_vma)
3099                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3100                                 vm_lock_anon_vma(mm, avc->anon_vma);
3101         }
3102
3103         return 0;
3104
3105 out_unlock:
3106         mm_drop_all_locks(mm);
3107         return -EINTR;
3108 }
3109
3110 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3111 {
3112         if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3113                 /*
3114                  * The LSB of head.next can't change to 0 from under
3115                  * us because we hold the mm_all_locks_mutex.
3116                  *
3117                  * We must however clear the bitflag before unlocking
3118                  * the vma so the users using the anon_vma->rb_root will
3119                  * never see our bitflag.
3120                  *
3121                  * No need of atomic instructions here, head.next
3122                  * can't change from under us until we release the
3123                  * anon_vma->root->rwsem.
3124                  */
3125                 if (!__test_and_clear_bit(0, (unsigned long *)
3126                                           &anon_vma->root->rb_root.rb_node))
3127                         BUG();
3128                 anon_vma_unlock_write(anon_vma);
3129         }
3130 }
3131
3132 static void vm_unlock_mapping(struct address_space *mapping)
3133 {
3134         if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3135                 /*
3136                  * AS_MM_ALL_LOCKS can't change to 0 from under us
3137                  * because we hold the mm_all_locks_mutex.
3138                  */
3139                 mutex_unlock(&mapping->i_mmap_mutex);
3140                 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3141                                         &mapping->flags))
3142                         BUG();
3143         }
3144 }
3145
3146 /*
3147  * The mmap_sem cannot be released by the caller until
3148  * mm_drop_all_locks() returns.
3149  */
3150 void mm_drop_all_locks(struct mm_struct *mm)
3151 {
3152         struct vm_area_struct *vma;
3153         struct anon_vma_chain *avc;
3154
3155         BUG_ON(down_read_trylock(&mm->mmap_sem));
3156         BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3157
3158         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3159                 if (vma->anon_vma)
3160                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3161                                 vm_unlock_anon_vma(avc->anon_vma);
3162                 if (vma->vm_file && vma->vm_file->f_mapping)
3163                         vm_unlock_mapping(vma->vm_file->f_mapping);
3164         }
3165
3166         mutex_unlock(&mm_all_locks_mutex);
3167 }
3168
3169 /*
3170  * initialise the VMA slab
3171  */
3172 void __init mmap_init(void)
3173 {
3174         int ret;
3175
3176         ret = percpu_counter_init(&vm_committed_as, 0);
3177         VM_BUG_ON(ret);
3178 }
3179
3180 /*
3181  * Initialise sysctl_user_reserve_kbytes.
3182  *
3183  * This is intended to prevent a user from starting a single memory hogging
3184  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3185  * mode.
3186  *
3187  * The default value is min(3% of free memory, 128MB)
3188  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3189  */
3190 static int init_user_reserve(void)
3191 {
3192         unsigned long free_kbytes;
3193
3194         free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3195
3196         sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3197         return 0;
3198 }
3199 subsys_initcall(init_user_reserve);
3200
3201 /*
3202  * Initialise sysctl_admin_reserve_kbytes.
3203  *
3204  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3205  * to log in and kill a memory hogging process.
3206  *
3207  * Systems with more than 256MB will reserve 8MB, enough to recover
3208  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3209  * only reserve 3% of free pages by default.
3210  */
3211 static int init_admin_reserve(void)
3212 {
3213         unsigned long free_kbytes;
3214
3215         free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3216
3217         sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3218         return 0;
3219 }
3220 subsys_initcall(init_admin_reserve);
3221
3222 /*
3223  * Reinititalise user and admin reserves if memory is added or removed.
3224  *
3225  * The default user reserve max is 128MB, and the default max for the
3226  * admin reserve is 8MB. These are usually, but not always, enough to
3227  * enable recovery from a memory hogging process using login/sshd, a shell,
3228  * and tools like top. It may make sense to increase or even disable the
3229  * reserve depending on the existence of swap or variations in the recovery
3230  * tools. So, the admin may have changed them.
3231  *
3232  * If memory is added and the reserves have been eliminated or increased above
3233  * the default max, then we'll trust the admin.
3234  *
3235  * If memory is removed and there isn't enough free memory, then we
3236  * need to reset the reserves.
3237  *
3238  * Otherwise keep the reserve set by the admin.
3239  */
3240 static int reserve_mem_notifier(struct notifier_block *nb,
3241                              unsigned long action, void *data)
3242 {
3243         unsigned long tmp, free_kbytes;
3244
3245         switch (action) {
3246         case MEM_ONLINE:
3247                 /* Default max is 128MB. Leave alone if modified by operator. */
3248                 tmp = sysctl_user_reserve_kbytes;
3249                 if (0 < tmp && tmp < (1UL << 17))
3250                         init_user_reserve();
3251
3252                 /* Default max is 8MB.  Leave alone if modified by operator. */
3253                 tmp = sysctl_admin_reserve_kbytes;
3254                 if (0 < tmp && tmp < (1UL << 13))
3255                         init_admin_reserve();
3256
3257                 break;
3258         case MEM_OFFLINE:
3259                 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3260
3261                 if (sysctl_user_reserve_kbytes > free_kbytes) {
3262                         init_user_reserve();
3263                         pr_info("vm.user_reserve_kbytes reset to %lu\n",
3264                                 sysctl_user_reserve_kbytes);
3265                 }
3266
3267                 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3268                         init_admin_reserve();
3269                         pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3270                                 sysctl_admin_reserve_kbytes);
3271                 }
3272                 break;
3273         default:
3274                 break;
3275         }
3276         return NOTIFY_OK;
3277 }
3278
3279 static struct notifier_block reserve_mem_nb = {
3280         .notifier_call = reserve_mem_notifier,
3281 };
3282
3283 static int __meminit init_reserve_notifier(void)
3284 {
3285         if (register_hotmemory_notifier(&reserve_mem_nb))
3286                 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3287
3288         return 0;
3289 }
3290 subsys_initcall(init_reserve_notifier);