]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - mm/mmap.c
cpuidle: powerpc: cpuidle set polling before enabling irqs
[karo-tx-linux.git] / mm / mmap.c
1 /*
2  * mm/mmap.c
3  *
4  * Written by obz.
5  *
6  * Address space accounting code        <alan@lxorguk.ukuu.org.uk>
7  */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/kernel.h>
12 #include <linux/slab.h>
13 #include <linux/backing-dev.h>
14 #include <linux/mm.h>
15 #include <linux/vmacache.h>
16 #include <linux/shm.h>
17 #include <linux/mman.h>
18 #include <linux/pagemap.h>
19 #include <linux/swap.h>
20 #include <linux/syscalls.h>
21 #include <linux/capability.h>
22 #include <linux/init.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/hugetlb.h>
28 #include <linux/shmem_fs.h>
29 #include <linux/profile.h>
30 #include <linux/export.h>
31 #include <linux/mount.h>
32 #include <linux/mempolicy.h>
33 #include <linux/rmap.h>
34 #include <linux/mmu_notifier.h>
35 #include <linux/mmdebug.h>
36 #include <linux/perf_event.h>
37 #include <linux/audit.h>
38 #include <linux/khugepaged.h>
39 #include <linux/uprobes.h>
40 #include <linux/rbtree_augmented.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/moduleparam.h>
46 #include <linux/pkeys.h>
47
48 #include <linux/uaccess.h>
49 #include <asm/cacheflush.h>
50 #include <asm/tlb.h>
51 #include <asm/mmu_context.h>
52
53 #include "internal.h"
54
55 #ifndef arch_mmap_check
56 #define arch_mmap_check(addr, len, flags)       (0)
57 #endif
58
59 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
60 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
61 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
62 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
63 #endif
64 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
65 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
66 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
67 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
68 #endif
69
70 static bool ignore_rlimit_data;
71 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
72
73 static void unmap_region(struct mm_struct *mm,
74                 struct vm_area_struct *vma, struct vm_area_struct *prev,
75                 unsigned long start, unsigned long end);
76
77 /* description of effects of mapping type and prot in current implementation.
78  * this is due to the limited x86 page protection hardware.  The expected
79  * behavior is in parens:
80  *
81  * map_type     prot
82  *              PROT_NONE       PROT_READ       PROT_WRITE      PROT_EXEC
83  * MAP_SHARED   r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
84  *              w: (no) no      w: (no) no      w: (yes) yes    w: (no) no
85  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
86  *
87  * MAP_PRIVATE  r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
88  *              w: (no) no      w: (no) no      w: (copy) copy  w: (no) no
89  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
90  *
91  * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and
92  * MAP_PRIVATE:
93  *                                                              r: (no) no
94  *                                                              w: (no) no
95  *                                                              x: (yes) yes
96  */
97 pgprot_t protection_map[16] = {
98         __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
99         __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
100 };
101
102 pgprot_t vm_get_page_prot(unsigned long vm_flags)
103 {
104         return __pgprot(pgprot_val(protection_map[vm_flags &
105                                 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
106                         pgprot_val(arch_vm_get_page_prot(vm_flags)));
107 }
108 EXPORT_SYMBOL(vm_get_page_prot);
109
110 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
111 {
112         return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
113 }
114
115 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
116 void vma_set_page_prot(struct vm_area_struct *vma)
117 {
118         unsigned long vm_flags = vma->vm_flags;
119         pgprot_t vm_page_prot;
120
121         vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
122         if (vma_wants_writenotify(vma, vm_page_prot)) {
123                 vm_flags &= ~VM_SHARED;
124                 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
125         }
126         /* remove_protection_ptes reads vma->vm_page_prot without mmap_sem */
127         WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
128 }
129
130 /*
131  * Requires inode->i_mapping->i_mmap_rwsem
132  */
133 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
134                 struct file *file, struct address_space *mapping)
135 {
136         if (vma->vm_flags & VM_DENYWRITE)
137                 atomic_inc(&file_inode(file)->i_writecount);
138         if (vma->vm_flags & VM_SHARED)
139                 mapping_unmap_writable(mapping);
140
141         flush_dcache_mmap_lock(mapping);
142         vma_interval_tree_remove(vma, &mapping->i_mmap);
143         flush_dcache_mmap_unlock(mapping);
144 }
145
146 /*
147  * Unlink a file-based vm structure from its interval tree, to hide
148  * vma from rmap and vmtruncate before freeing its page tables.
149  */
150 void unlink_file_vma(struct vm_area_struct *vma)
151 {
152         struct file *file = vma->vm_file;
153
154         if (file) {
155                 struct address_space *mapping = file->f_mapping;
156                 i_mmap_lock_write(mapping);
157                 __remove_shared_vm_struct(vma, file, mapping);
158                 i_mmap_unlock_write(mapping);
159         }
160 }
161
162 /*
163  * Close a vm structure and free it, returning the next.
164  */
165 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
166 {
167         struct vm_area_struct *next = vma->vm_next;
168
169         might_sleep();
170         if (vma->vm_ops && vma->vm_ops->close)
171                 vma->vm_ops->close(vma);
172         if (vma->vm_file)
173                 fput(vma->vm_file);
174         mpol_put(vma_policy(vma));
175         kmem_cache_free(vm_area_cachep, vma);
176         return next;
177 }
178
179 static int do_brk(unsigned long addr, unsigned long len, struct list_head *uf);
180
181 SYSCALL_DEFINE1(brk, unsigned long, brk)
182 {
183         unsigned long retval;
184         unsigned long newbrk, oldbrk;
185         struct mm_struct *mm = current->mm;
186         unsigned long min_brk;
187         bool populate;
188         LIST_HEAD(uf);
189
190         if (down_write_killable(&mm->mmap_sem))
191                 return -EINTR;
192
193 #ifdef CONFIG_COMPAT_BRK
194         /*
195          * CONFIG_COMPAT_BRK can still be overridden by setting
196          * randomize_va_space to 2, which will still cause mm->start_brk
197          * to be arbitrarily shifted
198          */
199         if (current->brk_randomized)
200                 min_brk = mm->start_brk;
201         else
202                 min_brk = mm->end_data;
203 #else
204         min_brk = mm->start_brk;
205 #endif
206         if (brk < min_brk)
207                 goto out;
208
209         /*
210          * Check against rlimit here. If this check is done later after the test
211          * of oldbrk with newbrk then it can escape the test and let the data
212          * segment grow beyond its set limit the in case where the limit is
213          * not page aligned -Ram Gupta
214          */
215         if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
216                               mm->end_data, mm->start_data))
217                 goto out;
218
219         newbrk = PAGE_ALIGN(brk);
220         oldbrk = PAGE_ALIGN(mm->brk);
221         if (oldbrk == newbrk)
222                 goto set_brk;
223
224         /* Always allow shrinking brk. */
225         if (brk <= mm->brk) {
226                 if (!do_munmap(mm, newbrk, oldbrk-newbrk, &uf))
227                         goto set_brk;
228                 goto out;
229         }
230
231         /* Check against existing mmap mappings. */
232         if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
233                 goto out;
234
235         /* Ok, looks good - let it rip. */
236         if (do_brk(oldbrk, newbrk-oldbrk, &uf) < 0)
237                 goto out;
238
239 set_brk:
240         mm->brk = brk;
241         populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
242         up_write(&mm->mmap_sem);
243         userfaultfd_unmap_complete(mm, &uf);
244         if (populate)
245                 mm_populate(oldbrk, newbrk - oldbrk);
246         return brk;
247
248 out:
249         retval = mm->brk;
250         up_write(&mm->mmap_sem);
251         return retval;
252 }
253
254 static long vma_compute_subtree_gap(struct vm_area_struct *vma)
255 {
256         unsigned long max, subtree_gap;
257         max = vma->vm_start;
258         if (vma->vm_prev)
259                 max -= vma->vm_prev->vm_end;
260         if (vma->vm_rb.rb_left) {
261                 subtree_gap = rb_entry(vma->vm_rb.rb_left,
262                                 struct vm_area_struct, vm_rb)->rb_subtree_gap;
263                 if (subtree_gap > max)
264                         max = subtree_gap;
265         }
266         if (vma->vm_rb.rb_right) {
267                 subtree_gap = rb_entry(vma->vm_rb.rb_right,
268                                 struct vm_area_struct, vm_rb)->rb_subtree_gap;
269                 if (subtree_gap > max)
270                         max = subtree_gap;
271         }
272         return max;
273 }
274
275 #ifdef CONFIG_DEBUG_VM_RB
276 static int browse_rb(struct mm_struct *mm)
277 {
278         struct rb_root *root = &mm->mm_rb;
279         int i = 0, j, bug = 0;
280         struct rb_node *nd, *pn = NULL;
281         unsigned long prev = 0, pend = 0;
282
283         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
284                 struct vm_area_struct *vma;
285                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
286                 if (vma->vm_start < prev) {
287                         pr_emerg("vm_start %lx < prev %lx\n",
288                                   vma->vm_start, prev);
289                         bug = 1;
290                 }
291                 if (vma->vm_start < pend) {
292                         pr_emerg("vm_start %lx < pend %lx\n",
293                                   vma->vm_start, pend);
294                         bug = 1;
295                 }
296                 if (vma->vm_start > vma->vm_end) {
297                         pr_emerg("vm_start %lx > vm_end %lx\n",
298                                   vma->vm_start, vma->vm_end);
299                         bug = 1;
300                 }
301                 spin_lock(&mm->page_table_lock);
302                 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
303                         pr_emerg("free gap %lx, correct %lx\n",
304                                vma->rb_subtree_gap,
305                                vma_compute_subtree_gap(vma));
306                         bug = 1;
307                 }
308                 spin_unlock(&mm->page_table_lock);
309                 i++;
310                 pn = nd;
311                 prev = vma->vm_start;
312                 pend = vma->vm_end;
313         }
314         j = 0;
315         for (nd = pn; nd; nd = rb_prev(nd))
316                 j++;
317         if (i != j) {
318                 pr_emerg("backwards %d, forwards %d\n", j, i);
319                 bug = 1;
320         }
321         return bug ? -1 : i;
322 }
323
324 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
325 {
326         struct rb_node *nd;
327
328         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
329                 struct vm_area_struct *vma;
330                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
331                 VM_BUG_ON_VMA(vma != ignore &&
332                         vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
333                         vma);
334         }
335 }
336
337 static void validate_mm(struct mm_struct *mm)
338 {
339         int bug = 0;
340         int i = 0;
341         unsigned long highest_address = 0;
342         struct vm_area_struct *vma = mm->mmap;
343
344         while (vma) {
345                 struct anon_vma *anon_vma = vma->anon_vma;
346                 struct anon_vma_chain *avc;
347
348                 if (anon_vma) {
349                         anon_vma_lock_read(anon_vma);
350                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
351                                 anon_vma_interval_tree_verify(avc);
352                         anon_vma_unlock_read(anon_vma);
353                 }
354
355                 highest_address = vma->vm_end;
356                 vma = vma->vm_next;
357                 i++;
358         }
359         if (i != mm->map_count) {
360                 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
361                 bug = 1;
362         }
363         if (highest_address != mm->highest_vm_end) {
364                 pr_emerg("mm->highest_vm_end %lx, found %lx\n",
365                           mm->highest_vm_end, highest_address);
366                 bug = 1;
367         }
368         i = browse_rb(mm);
369         if (i != mm->map_count) {
370                 if (i != -1)
371                         pr_emerg("map_count %d rb %d\n", mm->map_count, i);
372                 bug = 1;
373         }
374         VM_BUG_ON_MM(bug, mm);
375 }
376 #else
377 #define validate_mm_rb(root, ignore) do { } while (0)
378 #define validate_mm(mm) do { } while (0)
379 #endif
380
381 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
382                      unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
383
384 /*
385  * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
386  * vma->vm_prev->vm_end values changed, without modifying the vma's position
387  * in the rbtree.
388  */
389 static void vma_gap_update(struct vm_area_struct *vma)
390 {
391         /*
392          * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
393          * function that does exacltly what we want.
394          */
395         vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
396 }
397
398 static inline void vma_rb_insert(struct vm_area_struct *vma,
399                                  struct rb_root *root)
400 {
401         /* All rb_subtree_gap values must be consistent prior to insertion */
402         validate_mm_rb(root, NULL);
403
404         rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
405 }
406
407 static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
408 {
409         /*
410          * Note rb_erase_augmented is a fairly large inline function,
411          * so make sure we instantiate it only once with our desired
412          * augmented rbtree callbacks.
413          */
414         rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
415 }
416
417 static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma,
418                                                 struct rb_root *root,
419                                                 struct vm_area_struct *ignore)
420 {
421         /*
422          * All rb_subtree_gap values must be consistent prior to erase,
423          * with the possible exception of the "next" vma being erased if
424          * next->vm_start was reduced.
425          */
426         validate_mm_rb(root, ignore);
427
428         __vma_rb_erase(vma, root);
429 }
430
431 static __always_inline void vma_rb_erase(struct vm_area_struct *vma,
432                                          struct rb_root *root)
433 {
434         /*
435          * All rb_subtree_gap values must be consistent prior to erase,
436          * with the possible exception of the vma being erased.
437          */
438         validate_mm_rb(root, vma);
439
440         __vma_rb_erase(vma, root);
441 }
442
443 /*
444  * vma has some anon_vma assigned, and is already inserted on that
445  * anon_vma's interval trees.
446  *
447  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
448  * vma must be removed from the anon_vma's interval trees using
449  * anon_vma_interval_tree_pre_update_vma().
450  *
451  * After the update, the vma will be reinserted using
452  * anon_vma_interval_tree_post_update_vma().
453  *
454  * The entire update must be protected by exclusive mmap_sem and by
455  * the root anon_vma's mutex.
456  */
457 static inline void
458 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
459 {
460         struct anon_vma_chain *avc;
461
462         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
463                 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
464 }
465
466 static inline void
467 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
468 {
469         struct anon_vma_chain *avc;
470
471         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
472                 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
473 }
474
475 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
476                 unsigned long end, struct vm_area_struct **pprev,
477                 struct rb_node ***rb_link, struct rb_node **rb_parent)
478 {
479         struct rb_node **__rb_link, *__rb_parent, *rb_prev;
480
481         __rb_link = &mm->mm_rb.rb_node;
482         rb_prev = __rb_parent = NULL;
483
484         while (*__rb_link) {
485                 struct vm_area_struct *vma_tmp;
486
487                 __rb_parent = *__rb_link;
488                 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
489
490                 if (vma_tmp->vm_end > addr) {
491                         /* Fail if an existing vma overlaps the area */
492                         if (vma_tmp->vm_start < end)
493                                 return -ENOMEM;
494                         __rb_link = &__rb_parent->rb_left;
495                 } else {
496                         rb_prev = __rb_parent;
497                         __rb_link = &__rb_parent->rb_right;
498                 }
499         }
500
501         *pprev = NULL;
502         if (rb_prev)
503                 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
504         *rb_link = __rb_link;
505         *rb_parent = __rb_parent;
506         return 0;
507 }
508
509 static unsigned long count_vma_pages_range(struct mm_struct *mm,
510                 unsigned long addr, unsigned long end)
511 {
512         unsigned long nr_pages = 0;
513         struct vm_area_struct *vma;
514
515         /* Find first overlaping mapping */
516         vma = find_vma_intersection(mm, addr, end);
517         if (!vma)
518                 return 0;
519
520         nr_pages = (min(end, vma->vm_end) -
521                 max(addr, vma->vm_start)) >> PAGE_SHIFT;
522
523         /* Iterate over the rest of the overlaps */
524         for (vma = vma->vm_next; vma; vma = vma->vm_next) {
525                 unsigned long overlap_len;
526
527                 if (vma->vm_start > end)
528                         break;
529
530                 overlap_len = min(end, vma->vm_end) - vma->vm_start;
531                 nr_pages += overlap_len >> PAGE_SHIFT;
532         }
533
534         return nr_pages;
535 }
536
537 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
538                 struct rb_node **rb_link, struct rb_node *rb_parent)
539 {
540         /* Update tracking information for the gap following the new vma. */
541         if (vma->vm_next)
542                 vma_gap_update(vma->vm_next);
543         else
544                 mm->highest_vm_end = vma->vm_end;
545
546         /*
547          * vma->vm_prev wasn't known when we followed the rbtree to find the
548          * correct insertion point for that vma. As a result, we could not
549          * update the vma vm_rb parents rb_subtree_gap values on the way down.
550          * So, we first insert the vma with a zero rb_subtree_gap value
551          * (to be consistent with what we did on the way down), and then
552          * immediately update the gap to the correct value. Finally we
553          * rebalance the rbtree after all augmented values have been set.
554          */
555         rb_link_node(&vma->vm_rb, rb_parent, rb_link);
556         vma->rb_subtree_gap = 0;
557         vma_gap_update(vma);
558         vma_rb_insert(vma, &mm->mm_rb);
559 }
560
561 static void __vma_link_file(struct vm_area_struct *vma)
562 {
563         struct file *file;
564
565         file = vma->vm_file;
566         if (file) {
567                 struct address_space *mapping = file->f_mapping;
568
569                 if (vma->vm_flags & VM_DENYWRITE)
570                         atomic_dec(&file_inode(file)->i_writecount);
571                 if (vma->vm_flags & VM_SHARED)
572                         atomic_inc(&mapping->i_mmap_writable);
573
574                 flush_dcache_mmap_lock(mapping);
575                 vma_interval_tree_insert(vma, &mapping->i_mmap);
576                 flush_dcache_mmap_unlock(mapping);
577         }
578 }
579
580 static void
581 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
582         struct vm_area_struct *prev, struct rb_node **rb_link,
583         struct rb_node *rb_parent)
584 {
585         __vma_link_list(mm, vma, prev, rb_parent);
586         __vma_link_rb(mm, vma, rb_link, rb_parent);
587 }
588
589 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
590                         struct vm_area_struct *prev, struct rb_node **rb_link,
591                         struct rb_node *rb_parent)
592 {
593         struct address_space *mapping = NULL;
594
595         if (vma->vm_file) {
596                 mapping = vma->vm_file->f_mapping;
597                 i_mmap_lock_write(mapping);
598         }
599
600         __vma_link(mm, vma, prev, rb_link, rb_parent);
601         __vma_link_file(vma);
602
603         if (mapping)
604                 i_mmap_unlock_write(mapping);
605
606         mm->map_count++;
607         validate_mm(mm);
608 }
609
610 /*
611  * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
612  * mm's list and rbtree.  It has already been inserted into the interval tree.
613  */
614 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
615 {
616         struct vm_area_struct *prev;
617         struct rb_node **rb_link, *rb_parent;
618
619         if (find_vma_links(mm, vma->vm_start, vma->vm_end,
620                            &prev, &rb_link, &rb_parent))
621                 BUG();
622         __vma_link(mm, vma, prev, rb_link, rb_parent);
623         mm->map_count++;
624 }
625
626 static __always_inline void __vma_unlink_common(struct mm_struct *mm,
627                                                 struct vm_area_struct *vma,
628                                                 struct vm_area_struct *prev,
629                                                 bool has_prev,
630                                                 struct vm_area_struct *ignore)
631 {
632         struct vm_area_struct *next;
633
634         vma_rb_erase_ignore(vma, &mm->mm_rb, ignore);
635         next = vma->vm_next;
636         if (has_prev)
637                 prev->vm_next = next;
638         else {
639                 prev = vma->vm_prev;
640                 if (prev)
641                         prev->vm_next = next;
642                 else
643                         mm->mmap = next;
644         }
645         if (next)
646                 next->vm_prev = prev;
647
648         /* Kill the cache */
649         vmacache_invalidate(mm);
650 }
651
652 static inline void __vma_unlink_prev(struct mm_struct *mm,
653                                      struct vm_area_struct *vma,
654                                      struct vm_area_struct *prev)
655 {
656         __vma_unlink_common(mm, vma, prev, true, vma);
657 }
658
659 /*
660  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
661  * is already present in an i_mmap tree without adjusting the tree.
662  * The following helper function should be used when such adjustments
663  * are necessary.  The "insert" vma (if any) is to be inserted
664  * before we drop the necessary locks.
665  */
666 int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
667         unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
668         struct vm_area_struct *expand)
669 {
670         struct mm_struct *mm = vma->vm_mm;
671         struct vm_area_struct *next = vma->vm_next, *orig_vma = vma;
672         struct address_space *mapping = NULL;
673         struct rb_root *root = NULL;
674         struct anon_vma *anon_vma = NULL;
675         struct file *file = vma->vm_file;
676         bool start_changed = false, end_changed = false;
677         long adjust_next = 0;
678         int remove_next = 0;
679
680         if (next && !insert) {
681                 struct vm_area_struct *exporter = NULL, *importer = NULL;
682
683                 if (end >= next->vm_end) {
684                         /*
685                          * vma expands, overlapping all the next, and
686                          * perhaps the one after too (mprotect case 6).
687                          * The only other cases that gets here are
688                          * case 1, case 7 and case 8.
689                          */
690                         if (next == expand) {
691                                 /*
692                                  * The only case where we don't expand "vma"
693                                  * and we expand "next" instead is case 8.
694                                  */
695                                 VM_WARN_ON(end != next->vm_end);
696                                 /*
697                                  * remove_next == 3 means we're
698                                  * removing "vma" and that to do so we
699                                  * swapped "vma" and "next".
700                                  */
701                                 remove_next = 3;
702                                 VM_WARN_ON(file != next->vm_file);
703                                 swap(vma, next);
704                         } else {
705                                 VM_WARN_ON(expand != vma);
706                                 /*
707                                  * case 1, 6, 7, remove_next == 2 is case 6,
708                                  * remove_next == 1 is case 1 or 7.
709                                  */
710                                 remove_next = 1 + (end > next->vm_end);
711                                 VM_WARN_ON(remove_next == 2 &&
712                                            end != next->vm_next->vm_end);
713                                 VM_WARN_ON(remove_next == 1 &&
714                                            end != next->vm_end);
715                                 /* trim end to next, for case 6 first pass */
716                                 end = next->vm_end;
717                         }
718
719                         exporter = next;
720                         importer = vma;
721
722                         /*
723                          * If next doesn't have anon_vma, import from vma after
724                          * next, if the vma overlaps with it.
725                          */
726                         if (remove_next == 2 && !next->anon_vma)
727                                 exporter = next->vm_next;
728
729                 } else if (end > next->vm_start) {
730                         /*
731                          * vma expands, overlapping part of the next:
732                          * mprotect case 5 shifting the boundary up.
733                          */
734                         adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
735                         exporter = next;
736                         importer = vma;
737                         VM_WARN_ON(expand != importer);
738                 } else if (end < vma->vm_end) {
739                         /*
740                          * vma shrinks, and !insert tells it's not
741                          * split_vma inserting another: so it must be
742                          * mprotect case 4 shifting the boundary down.
743                          */
744                         adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
745                         exporter = vma;
746                         importer = next;
747                         VM_WARN_ON(expand != importer);
748                 }
749
750                 /*
751                  * Easily overlooked: when mprotect shifts the boundary,
752                  * make sure the expanding vma has anon_vma set if the
753                  * shrinking vma had, to cover any anon pages imported.
754                  */
755                 if (exporter && exporter->anon_vma && !importer->anon_vma) {
756                         int error;
757
758                         importer->anon_vma = exporter->anon_vma;
759                         error = anon_vma_clone(importer, exporter);
760                         if (error)
761                                 return error;
762                 }
763         }
764 again:
765         vma_adjust_trans_huge(orig_vma, start, end, adjust_next);
766
767         if (file) {
768                 mapping = file->f_mapping;
769                 root = &mapping->i_mmap;
770                 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
771
772                 if (adjust_next)
773                         uprobe_munmap(next, next->vm_start, next->vm_end);
774
775                 i_mmap_lock_write(mapping);
776                 if (insert) {
777                         /*
778                          * Put into interval tree now, so instantiated pages
779                          * are visible to arm/parisc __flush_dcache_page
780                          * throughout; but we cannot insert into address
781                          * space until vma start or end is updated.
782                          */
783                         __vma_link_file(insert);
784                 }
785         }
786
787         anon_vma = vma->anon_vma;
788         if (!anon_vma && adjust_next)
789                 anon_vma = next->anon_vma;
790         if (anon_vma) {
791                 VM_WARN_ON(adjust_next && next->anon_vma &&
792                            anon_vma != next->anon_vma);
793                 anon_vma_lock_write(anon_vma);
794                 anon_vma_interval_tree_pre_update_vma(vma);
795                 if (adjust_next)
796                         anon_vma_interval_tree_pre_update_vma(next);
797         }
798
799         if (root) {
800                 flush_dcache_mmap_lock(mapping);
801                 vma_interval_tree_remove(vma, root);
802                 if (adjust_next)
803                         vma_interval_tree_remove(next, root);
804         }
805
806         if (start != vma->vm_start) {
807                 vma->vm_start = start;
808                 start_changed = true;
809         }
810         if (end != vma->vm_end) {
811                 vma->vm_end = end;
812                 end_changed = true;
813         }
814         vma->vm_pgoff = pgoff;
815         if (adjust_next) {
816                 next->vm_start += adjust_next << PAGE_SHIFT;
817                 next->vm_pgoff += adjust_next;
818         }
819
820         if (root) {
821                 if (adjust_next)
822                         vma_interval_tree_insert(next, root);
823                 vma_interval_tree_insert(vma, root);
824                 flush_dcache_mmap_unlock(mapping);
825         }
826
827         if (remove_next) {
828                 /*
829                  * vma_merge has merged next into vma, and needs
830                  * us to remove next before dropping the locks.
831                  */
832                 if (remove_next != 3)
833                         __vma_unlink_prev(mm, next, vma);
834                 else
835                         /*
836                          * vma is not before next if they've been
837                          * swapped.
838                          *
839                          * pre-swap() next->vm_start was reduced so
840                          * tell validate_mm_rb to ignore pre-swap()
841                          * "next" (which is stored in post-swap()
842                          * "vma").
843                          */
844                         __vma_unlink_common(mm, next, NULL, false, vma);
845                 if (file)
846                         __remove_shared_vm_struct(next, file, mapping);
847         } else if (insert) {
848                 /*
849                  * split_vma has split insert from vma, and needs
850                  * us to insert it before dropping the locks
851                  * (it may either follow vma or precede it).
852                  */
853                 __insert_vm_struct(mm, insert);
854         } else {
855                 if (start_changed)
856                         vma_gap_update(vma);
857                 if (end_changed) {
858                         if (!next)
859                                 mm->highest_vm_end = end;
860                         else if (!adjust_next)
861                                 vma_gap_update(next);
862                 }
863         }
864
865         if (anon_vma) {
866                 anon_vma_interval_tree_post_update_vma(vma);
867                 if (adjust_next)
868                         anon_vma_interval_tree_post_update_vma(next);
869                 anon_vma_unlock_write(anon_vma);
870         }
871         if (mapping)
872                 i_mmap_unlock_write(mapping);
873
874         if (root) {
875                 uprobe_mmap(vma);
876
877                 if (adjust_next)
878                         uprobe_mmap(next);
879         }
880
881         if (remove_next) {
882                 if (file) {
883                         uprobe_munmap(next, next->vm_start, next->vm_end);
884                         fput(file);
885                 }
886                 if (next->anon_vma)
887                         anon_vma_merge(vma, next);
888                 mm->map_count--;
889                 mpol_put(vma_policy(next));
890                 kmem_cache_free(vm_area_cachep, next);
891                 /*
892                  * In mprotect's case 6 (see comments on vma_merge),
893                  * we must remove another next too. It would clutter
894                  * up the code too much to do both in one go.
895                  */
896                 if (remove_next != 3) {
897                         /*
898                          * If "next" was removed and vma->vm_end was
899                          * expanded (up) over it, in turn
900                          * "next->vm_prev->vm_end" changed and the
901                          * "vma->vm_next" gap must be updated.
902                          */
903                         next = vma->vm_next;
904                 } else {
905                         /*
906                          * For the scope of the comment "next" and
907                          * "vma" considered pre-swap(): if "vma" was
908                          * removed, next->vm_start was expanded (down)
909                          * over it and the "next" gap must be updated.
910                          * Because of the swap() the post-swap() "vma"
911                          * actually points to pre-swap() "next"
912                          * (post-swap() "next" as opposed is now a
913                          * dangling pointer).
914                          */
915                         next = vma;
916                 }
917                 if (remove_next == 2) {
918                         remove_next = 1;
919                         end = next->vm_end;
920                         goto again;
921                 }
922                 else if (next)
923                         vma_gap_update(next);
924                 else {
925                         /*
926                          * If remove_next == 2 we obviously can't
927                          * reach this path.
928                          *
929                          * If remove_next == 3 we can't reach this
930                          * path because pre-swap() next is always not
931                          * NULL. pre-swap() "next" is not being
932                          * removed and its next->vm_end is not altered
933                          * (and furthermore "end" already matches
934                          * next->vm_end in remove_next == 3).
935                          *
936                          * We reach this only in the remove_next == 1
937                          * case if the "next" vma that was removed was
938                          * the highest vma of the mm. However in such
939                          * case next->vm_end == "end" and the extended
940                          * "vma" has vma->vm_end == next->vm_end so
941                          * mm->highest_vm_end doesn't need any update
942                          * in remove_next == 1 case.
943                          */
944                         VM_WARN_ON(mm->highest_vm_end != end);
945                 }
946         }
947         if (insert && file)
948                 uprobe_mmap(insert);
949
950         validate_mm(mm);
951
952         return 0;
953 }
954
955 /*
956  * If the vma has a ->close operation then the driver probably needs to release
957  * per-vma resources, so we don't attempt to merge those.
958  */
959 static inline int is_mergeable_vma(struct vm_area_struct *vma,
960                                 struct file *file, unsigned long vm_flags,
961                                 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
962 {
963         /*
964          * VM_SOFTDIRTY should not prevent from VMA merging, if we
965          * match the flags but dirty bit -- the caller should mark
966          * merged VMA as dirty. If dirty bit won't be excluded from
967          * comparison, we increase pressue on the memory system forcing
968          * the kernel to generate new VMAs when old one could be
969          * extended instead.
970          */
971         if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
972                 return 0;
973         if (vma->vm_file != file)
974                 return 0;
975         if (vma->vm_ops && vma->vm_ops->close)
976                 return 0;
977         if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
978                 return 0;
979         return 1;
980 }
981
982 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
983                                         struct anon_vma *anon_vma2,
984                                         struct vm_area_struct *vma)
985 {
986         /*
987          * The list_is_singular() test is to avoid merging VMA cloned from
988          * parents. This can improve scalability caused by anon_vma lock.
989          */
990         if ((!anon_vma1 || !anon_vma2) && (!vma ||
991                 list_is_singular(&vma->anon_vma_chain)))
992                 return 1;
993         return anon_vma1 == anon_vma2;
994 }
995
996 /*
997  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
998  * in front of (at a lower virtual address and file offset than) the vma.
999  *
1000  * We cannot merge two vmas if they have differently assigned (non-NULL)
1001  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1002  *
1003  * We don't check here for the merged mmap wrapping around the end of pagecache
1004  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
1005  * wrap, nor mmaps which cover the final page at index -1UL.
1006  */
1007 static int
1008 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
1009                      struct anon_vma *anon_vma, struct file *file,
1010                      pgoff_t vm_pgoff,
1011                      struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1012 {
1013         if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1014             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1015                 if (vma->vm_pgoff == vm_pgoff)
1016                         return 1;
1017         }
1018         return 0;
1019 }
1020
1021 /*
1022  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1023  * beyond (at a higher virtual address and file offset than) the vma.
1024  *
1025  * We cannot merge two vmas if they have differently assigned (non-NULL)
1026  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1027  */
1028 static int
1029 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1030                     struct anon_vma *anon_vma, struct file *file,
1031                     pgoff_t vm_pgoff,
1032                     struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1033 {
1034         if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1035             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1036                 pgoff_t vm_pglen;
1037                 vm_pglen = vma_pages(vma);
1038                 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1039                         return 1;
1040         }
1041         return 0;
1042 }
1043
1044 /*
1045  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1046  * whether that can be merged with its predecessor or its successor.
1047  * Or both (it neatly fills a hole).
1048  *
1049  * In most cases - when called for mmap, brk or mremap - [addr,end) is
1050  * certain not to be mapped by the time vma_merge is called; but when
1051  * called for mprotect, it is certain to be already mapped (either at
1052  * an offset within prev, or at the start of next), and the flags of
1053  * this area are about to be changed to vm_flags - and the no-change
1054  * case has already been eliminated.
1055  *
1056  * The following mprotect cases have to be considered, where AAAA is
1057  * the area passed down from mprotect_fixup, never extending beyond one
1058  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1059  *
1060  *     AAAA             AAAA                AAAA          AAAA
1061  *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
1062  *    cannot merge    might become    might become    might become
1063  *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
1064  *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
1065  *    mremap move:                                    PPPPXXXXXXXX 8
1066  *        AAAA
1067  *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
1068  *    might become    case 1 below    case 2 below    case 3 below
1069  *
1070  * It is important for case 8 that the the vma NNNN overlapping the
1071  * region AAAA is never going to extended over XXXX. Instead XXXX must
1072  * be extended in region AAAA and NNNN must be removed. This way in
1073  * all cases where vma_merge succeeds, the moment vma_adjust drops the
1074  * rmap_locks, the properties of the merged vma will be already
1075  * correct for the whole merged range. Some of those properties like
1076  * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
1077  * be correct for the whole merged range immediately after the
1078  * rmap_locks are released. Otherwise if XXXX would be removed and
1079  * NNNN would be extended over the XXXX range, remove_migration_ptes
1080  * or other rmap walkers (if working on addresses beyond the "end"
1081  * parameter) may establish ptes with the wrong permissions of NNNN
1082  * instead of the right permissions of XXXX.
1083  */
1084 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1085                         struct vm_area_struct *prev, unsigned long addr,
1086                         unsigned long end, unsigned long vm_flags,
1087                         struct anon_vma *anon_vma, struct file *file,
1088                         pgoff_t pgoff, struct mempolicy *policy,
1089                         struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1090 {
1091         pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1092         struct vm_area_struct *area, *next;
1093         int err;
1094
1095         /*
1096          * We later require that vma->vm_flags == vm_flags,
1097          * so this tests vma->vm_flags & VM_SPECIAL, too.
1098          */
1099         if (vm_flags & VM_SPECIAL)
1100                 return NULL;
1101
1102         if (prev)
1103                 next = prev->vm_next;
1104         else
1105                 next = mm->mmap;
1106         area = next;
1107         if (area && area->vm_end == end)                /* cases 6, 7, 8 */
1108                 next = next->vm_next;
1109
1110         /* verify some invariant that must be enforced by the caller */
1111         VM_WARN_ON(prev && addr <= prev->vm_start);
1112         VM_WARN_ON(area && end > area->vm_end);
1113         VM_WARN_ON(addr >= end);
1114
1115         /*
1116          * Can it merge with the predecessor?
1117          */
1118         if (prev && prev->vm_end == addr &&
1119                         mpol_equal(vma_policy(prev), policy) &&
1120                         can_vma_merge_after(prev, vm_flags,
1121                                             anon_vma, file, pgoff,
1122                                             vm_userfaultfd_ctx)) {
1123                 /*
1124                  * OK, it can.  Can we now merge in the successor as well?
1125                  */
1126                 if (next && end == next->vm_start &&
1127                                 mpol_equal(policy, vma_policy(next)) &&
1128                                 can_vma_merge_before(next, vm_flags,
1129                                                      anon_vma, file,
1130                                                      pgoff+pglen,
1131                                                      vm_userfaultfd_ctx) &&
1132                                 is_mergeable_anon_vma(prev->anon_vma,
1133                                                       next->anon_vma, NULL)) {
1134                                                         /* cases 1, 6 */
1135                         err = __vma_adjust(prev, prev->vm_start,
1136                                          next->vm_end, prev->vm_pgoff, NULL,
1137                                          prev);
1138                 } else                                  /* cases 2, 5, 7 */
1139                         err = __vma_adjust(prev, prev->vm_start,
1140                                          end, prev->vm_pgoff, NULL, prev);
1141                 if (err)
1142                         return NULL;
1143                 khugepaged_enter_vma_merge(prev, vm_flags);
1144                 return prev;
1145         }
1146
1147         /*
1148          * Can this new request be merged in front of next?
1149          */
1150         if (next && end == next->vm_start &&
1151                         mpol_equal(policy, vma_policy(next)) &&
1152                         can_vma_merge_before(next, vm_flags,
1153                                              anon_vma, file, pgoff+pglen,
1154                                              vm_userfaultfd_ctx)) {
1155                 if (prev && addr < prev->vm_end)        /* case 4 */
1156                         err = __vma_adjust(prev, prev->vm_start,
1157                                          addr, prev->vm_pgoff, NULL, next);
1158                 else {                                  /* cases 3, 8 */
1159                         err = __vma_adjust(area, addr, next->vm_end,
1160                                          next->vm_pgoff - pglen, NULL, next);
1161                         /*
1162                          * In case 3 area is already equal to next and
1163                          * this is a noop, but in case 8 "area" has
1164                          * been removed and next was expanded over it.
1165                          */
1166                         area = next;
1167                 }
1168                 if (err)
1169                         return NULL;
1170                 khugepaged_enter_vma_merge(area, vm_flags);
1171                 return area;
1172         }
1173
1174         return NULL;
1175 }
1176
1177 /*
1178  * Rough compatbility check to quickly see if it's even worth looking
1179  * at sharing an anon_vma.
1180  *
1181  * They need to have the same vm_file, and the flags can only differ
1182  * in things that mprotect may change.
1183  *
1184  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1185  * we can merge the two vma's. For example, we refuse to merge a vma if
1186  * there is a vm_ops->close() function, because that indicates that the
1187  * driver is doing some kind of reference counting. But that doesn't
1188  * really matter for the anon_vma sharing case.
1189  */
1190 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1191 {
1192         return a->vm_end == b->vm_start &&
1193                 mpol_equal(vma_policy(a), vma_policy(b)) &&
1194                 a->vm_file == b->vm_file &&
1195                 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1196                 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1197 }
1198
1199 /*
1200  * Do some basic sanity checking to see if we can re-use the anon_vma
1201  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1202  * the same as 'old', the other will be the new one that is trying
1203  * to share the anon_vma.
1204  *
1205  * NOTE! This runs with mm_sem held for reading, so it is possible that
1206  * the anon_vma of 'old' is concurrently in the process of being set up
1207  * by another page fault trying to merge _that_. But that's ok: if it
1208  * is being set up, that automatically means that it will be a singleton
1209  * acceptable for merging, so we can do all of this optimistically. But
1210  * we do that READ_ONCE() to make sure that we never re-load the pointer.
1211  *
1212  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1213  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1214  * is to return an anon_vma that is "complex" due to having gone through
1215  * a fork).
1216  *
1217  * We also make sure that the two vma's are compatible (adjacent,
1218  * and with the same memory policies). That's all stable, even with just
1219  * a read lock on the mm_sem.
1220  */
1221 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1222 {
1223         if (anon_vma_compatible(a, b)) {
1224                 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1225
1226                 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1227                         return anon_vma;
1228         }
1229         return NULL;
1230 }
1231
1232 /*
1233  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1234  * neighbouring vmas for a suitable anon_vma, before it goes off
1235  * to allocate a new anon_vma.  It checks because a repetitive
1236  * sequence of mprotects and faults may otherwise lead to distinct
1237  * anon_vmas being allocated, preventing vma merge in subsequent
1238  * mprotect.
1239  */
1240 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1241 {
1242         struct anon_vma *anon_vma;
1243         struct vm_area_struct *near;
1244
1245         near = vma->vm_next;
1246         if (!near)
1247                 goto try_prev;
1248
1249         anon_vma = reusable_anon_vma(near, vma, near);
1250         if (anon_vma)
1251                 return anon_vma;
1252 try_prev:
1253         near = vma->vm_prev;
1254         if (!near)
1255                 goto none;
1256
1257         anon_vma = reusable_anon_vma(near, near, vma);
1258         if (anon_vma)
1259                 return anon_vma;
1260 none:
1261         /*
1262          * There's no absolute need to look only at touching neighbours:
1263          * we could search further afield for "compatible" anon_vmas.
1264          * But it would probably just be a waste of time searching,
1265          * or lead to too many vmas hanging off the same anon_vma.
1266          * We're trying to allow mprotect remerging later on,
1267          * not trying to minimize memory used for anon_vmas.
1268          */
1269         return NULL;
1270 }
1271
1272 /*
1273  * If a hint addr is less than mmap_min_addr change hint to be as
1274  * low as possible but still greater than mmap_min_addr
1275  */
1276 static inline unsigned long round_hint_to_min(unsigned long hint)
1277 {
1278         hint &= PAGE_MASK;
1279         if (((void *)hint != NULL) &&
1280             (hint < mmap_min_addr))
1281                 return PAGE_ALIGN(mmap_min_addr);
1282         return hint;
1283 }
1284
1285 static inline int mlock_future_check(struct mm_struct *mm,
1286                                      unsigned long flags,
1287                                      unsigned long len)
1288 {
1289         unsigned long locked, lock_limit;
1290
1291         /*  mlock MCL_FUTURE? */
1292         if (flags & VM_LOCKED) {
1293                 locked = len >> PAGE_SHIFT;
1294                 locked += mm->locked_vm;
1295                 lock_limit = rlimit(RLIMIT_MEMLOCK);
1296                 lock_limit >>= PAGE_SHIFT;
1297                 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1298                         return -EAGAIN;
1299         }
1300         return 0;
1301 }
1302
1303 /*
1304  * The caller must hold down_write(&current->mm->mmap_sem).
1305  */
1306 unsigned long do_mmap(struct file *file, unsigned long addr,
1307                         unsigned long len, unsigned long prot,
1308                         unsigned long flags, vm_flags_t vm_flags,
1309                         unsigned long pgoff, unsigned long *populate,
1310                         struct list_head *uf)
1311 {
1312         struct mm_struct *mm = current->mm;
1313         int pkey = 0;
1314
1315         *populate = 0;
1316
1317         if (!len)
1318                 return -EINVAL;
1319
1320         /*
1321          * Does the application expect PROT_READ to imply PROT_EXEC?
1322          *
1323          * (the exception is when the underlying filesystem is noexec
1324          *  mounted, in which case we dont add PROT_EXEC.)
1325          */
1326         if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1327                 if (!(file && path_noexec(&file->f_path)))
1328                         prot |= PROT_EXEC;
1329
1330         if (!(flags & MAP_FIXED))
1331                 addr = round_hint_to_min(addr);
1332
1333         /* Careful about overflows.. */
1334         len = PAGE_ALIGN(len);
1335         if (!len)
1336                 return -ENOMEM;
1337
1338         /* offset overflow? */
1339         if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1340                 return -EOVERFLOW;
1341
1342         /* Too many mappings? */
1343         if (mm->map_count > sysctl_max_map_count)
1344                 return -ENOMEM;
1345
1346         /* Obtain the address to map to. we verify (or select) it and ensure
1347          * that it represents a valid section of the address space.
1348          */
1349         addr = get_unmapped_area(file, addr, len, pgoff, flags);
1350         if (offset_in_page(addr))
1351                 return addr;
1352
1353         if (prot == PROT_EXEC) {
1354                 pkey = execute_only_pkey(mm);
1355                 if (pkey < 0)
1356                         pkey = 0;
1357         }
1358
1359         /* Do simple checking here so the lower-level routines won't have
1360          * to. we assume access permissions have been handled by the open
1361          * of the memory object, so we don't do any here.
1362          */
1363         vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1364                         mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1365
1366         if (flags & MAP_LOCKED)
1367                 if (!can_do_mlock())
1368                         return -EPERM;
1369
1370         if (mlock_future_check(mm, vm_flags, len))
1371                 return -EAGAIN;
1372
1373         if (file) {
1374                 struct inode *inode = file_inode(file);
1375
1376                 switch (flags & MAP_TYPE) {
1377                 case MAP_SHARED:
1378                         if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1379                                 return -EACCES;
1380
1381                         /*
1382                          * Make sure we don't allow writing to an append-only
1383                          * file..
1384                          */
1385                         if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1386                                 return -EACCES;
1387
1388                         /*
1389                          * Make sure there are no mandatory locks on the file.
1390                          */
1391                         if (locks_verify_locked(file))
1392                                 return -EAGAIN;
1393
1394                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1395                         if (!(file->f_mode & FMODE_WRITE))
1396                                 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1397
1398                         /* fall through */
1399                 case MAP_PRIVATE:
1400                         if (!(file->f_mode & FMODE_READ))
1401                                 return -EACCES;
1402                         if (path_noexec(&file->f_path)) {
1403                                 if (vm_flags & VM_EXEC)
1404                                         return -EPERM;
1405                                 vm_flags &= ~VM_MAYEXEC;
1406                         }
1407
1408                         if (!file->f_op->mmap)
1409                                 return -ENODEV;
1410                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1411                                 return -EINVAL;
1412                         break;
1413
1414                 default:
1415                         return -EINVAL;
1416                 }
1417         } else {
1418                 switch (flags & MAP_TYPE) {
1419                 case MAP_SHARED:
1420                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1421                                 return -EINVAL;
1422                         /*
1423                          * Ignore pgoff.
1424                          */
1425                         pgoff = 0;
1426                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1427                         break;
1428                 case MAP_PRIVATE:
1429                         /*
1430                          * Set pgoff according to addr for anon_vma.
1431                          */
1432                         pgoff = addr >> PAGE_SHIFT;
1433                         break;
1434                 default:
1435                         return -EINVAL;
1436                 }
1437         }
1438
1439         /*
1440          * Set 'VM_NORESERVE' if we should not account for the
1441          * memory use of this mapping.
1442          */
1443         if (flags & MAP_NORESERVE) {
1444                 /* We honor MAP_NORESERVE if allowed to overcommit */
1445                 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1446                         vm_flags |= VM_NORESERVE;
1447
1448                 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1449                 if (file && is_file_hugepages(file))
1450                         vm_flags |= VM_NORESERVE;
1451         }
1452
1453         addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1454         if (!IS_ERR_VALUE(addr) &&
1455             ((vm_flags & VM_LOCKED) ||
1456              (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1457                 *populate = len;
1458         return addr;
1459 }
1460
1461 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1462                 unsigned long, prot, unsigned long, flags,
1463                 unsigned long, fd, unsigned long, pgoff)
1464 {
1465         struct file *file = NULL;
1466         unsigned long retval;
1467
1468         if (!(flags & MAP_ANONYMOUS)) {
1469                 audit_mmap_fd(fd, flags);
1470                 file = fget(fd);
1471                 if (!file)
1472                         return -EBADF;
1473                 if (is_file_hugepages(file))
1474                         len = ALIGN(len, huge_page_size(hstate_file(file)));
1475                 retval = -EINVAL;
1476                 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1477                         goto out_fput;
1478         } else if (flags & MAP_HUGETLB) {
1479                 struct user_struct *user = NULL;
1480                 struct hstate *hs;
1481
1482                 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1483                 if (!hs)
1484                         return -EINVAL;
1485
1486                 len = ALIGN(len, huge_page_size(hs));
1487                 /*
1488                  * VM_NORESERVE is used because the reservations will be
1489                  * taken when vm_ops->mmap() is called
1490                  * A dummy user value is used because we are not locking
1491                  * memory so no accounting is necessary
1492                  */
1493                 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1494                                 VM_NORESERVE,
1495                                 &user, HUGETLB_ANONHUGE_INODE,
1496                                 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1497                 if (IS_ERR(file))
1498                         return PTR_ERR(file);
1499         }
1500
1501         flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1502
1503         retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1504 out_fput:
1505         if (file)
1506                 fput(file);
1507         return retval;
1508 }
1509
1510 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1511 struct mmap_arg_struct {
1512         unsigned long addr;
1513         unsigned long len;
1514         unsigned long prot;
1515         unsigned long flags;
1516         unsigned long fd;
1517         unsigned long offset;
1518 };
1519
1520 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1521 {
1522         struct mmap_arg_struct a;
1523
1524         if (copy_from_user(&a, arg, sizeof(a)))
1525                 return -EFAULT;
1526         if (offset_in_page(a.offset))
1527                 return -EINVAL;
1528
1529         return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1530                               a.offset >> PAGE_SHIFT);
1531 }
1532 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1533
1534 /*
1535  * Some shared mappigns will want the pages marked read-only
1536  * to track write events. If so, we'll downgrade vm_page_prot
1537  * to the private version (using protection_map[] without the
1538  * VM_SHARED bit).
1539  */
1540 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1541 {
1542         vm_flags_t vm_flags = vma->vm_flags;
1543         const struct vm_operations_struct *vm_ops = vma->vm_ops;
1544
1545         /* If it was private or non-writable, the write bit is already clear */
1546         if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1547                 return 0;
1548
1549         /* The backer wishes to know when pages are first written to? */
1550         if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1551                 return 1;
1552
1553         /* The open routine did something to the protections that pgprot_modify
1554          * won't preserve? */
1555         if (pgprot_val(vm_page_prot) !=
1556             pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1557                 return 0;
1558
1559         /* Do we need to track softdirty? */
1560         if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1561                 return 1;
1562
1563         /* Specialty mapping? */
1564         if (vm_flags & VM_PFNMAP)
1565                 return 0;
1566
1567         /* Can the mapping track the dirty pages? */
1568         return vma->vm_file && vma->vm_file->f_mapping &&
1569                 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1570 }
1571
1572 /*
1573  * We account for memory if it's a private writeable mapping,
1574  * not hugepages and VM_NORESERVE wasn't set.
1575  */
1576 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1577 {
1578         /*
1579          * hugetlb has its own accounting separate from the core VM
1580          * VM_HUGETLB may not be set yet so we cannot check for that flag.
1581          */
1582         if (file && is_file_hugepages(file))
1583                 return 0;
1584
1585         return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1586 }
1587
1588 unsigned long mmap_region(struct file *file, unsigned long addr,
1589                 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
1590                 struct list_head *uf)
1591 {
1592         struct mm_struct *mm = current->mm;
1593         struct vm_area_struct *vma, *prev;
1594         int error;
1595         struct rb_node **rb_link, *rb_parent;
1596         unsigned long charged = 0;
1597
1598         /* Check against address space limit. */
1599         if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1600                 unsigned long nr_pages;
1601
1602                 /*
1603                  * MAP_FIXED may remove pages of mappings that intersects with
1604                  * requested mapping. Account for the pages it would unmap.
1605                  */
1606                 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1607
1608                 if (!may_expand_vm(mm, vm_flags,
1609                                         (len >> PAGE_SHIFT) - nr_pages))
1610                         return -ENOMEM;
1611         }
1612
1613         /* Clear old maps */
1614         while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
1615                               &rb_parent)) {
1616                 if (do_munmap(mm, addr, len, uf))
1617                         return -ENOMEM;
1618         }
1619
1620         /*
1621          * Private writable mapping: check memory availability
1622          */
1623         if (accountable_mapping(file, vm_flags)) {
1624                 charged = len >> PAGE_SHIFT;
1625                 if (security_vm_enough_memory_mm(mm, charged))
1626                         return -ENOMEM;
1627                 vm_flags |= VM_ACCOUNT;
1628         }
1629
1630         /*
1631          * Can we just expand an old mapping?
1632          */
1633         vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1634                         NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
1635         if (vma)
1636                 goto out;
1637
1638         /*
1639          * Determine the object being mapped and call the appropriate
1640          * specific mapper. the address has already been validated, but
1641          * not unmapped, but the maps are removed from the list.
1642          */
1643         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1644         if (!vma) {
1645                 error = -ENOMEM;
1646                 goto unacct_error;
1647         }
1648
1649         vma->vm_mm = mm;
1650         vma->vm_start = addr;
1651         vma->vm_end = addr + len;
1652         vma->vm_flags = vm_flags;
1653         vma->vm_page_prot = vm_get_page_prot(vm_flags);
1654         vma->vm_pgoff = pgoff;
1655         INIT_LIST_HEAD(&vma->anon_vma_chain);
1656
1657         if (file) {
1658                 if (vm_flags & VM_DENYWRITE) {
1659                         error = deny_write_access(file);
1660                         if (error)
1661                                 goto free_vma;
1662                 }
1663                 if (vm_flags & VM_SHARED) {
1664                         error = mapping_map_writable(file->f_mapping);
1665                         if (error)
1666                                 goto allow_write_and_free_vma;
1667                 }
1668
1669                 /* ->mmap() can change vma->vm_file, but must guarantee that
1670                  * vma_link() below can deny write-access if VM_DENYWRITE is set
1671                  * and map writably if VM_SHARED is set. This usually means the
1672                  * new file must not have been exposed to user-space, yet.
1673                  */
1674                 vma->vm_file = get_file(file);
1675                 error = call_mmap(file, vma);
1676                 if (error)
1677                         goto unmap_and_free_vma;
1678
1679                 /* Can addr have changed??
1680                  *
1681                  * Answer: Yes, several device drivers can do it in their
1682                  *         f_op->mmap method. -DaveM
1683                  * Bug: If addr is changed, prev, rb_link, rb_parent should
1684                  *      be updated for vma_link()
1685                  */
1686                 WARN_ON_ONCE(addr != vma->vm_start);
1687
1688                 addr = vma->vm_start;
1689                 vm_flags = vma->vm_flags;
1690         } else if (vm_flags & VM_SHARED) {
1691                 error = shmem_zero_setup(vma);
1692                 if (error)
1693                         goto free_vma;
1694         }
1695
1696         vma_link(mm, vma, prev, rb_link, rb_parent);
1697         /* Once vma denies write, undo our temporary denial count */
1698         if (file) {
1699                 if (vm_flags & VM_SHARED)
1700                         mapping_unmap_writable(file->f_mapping);
1701                 if (vm_flags & VM_DENYWRITE)
1702                         allow_write_access(file);
1703         }
1704         file = vma->vm_file;
1705 out:
1706         perf_event_mmap(vma);
1707
1708         vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1709         if (vm_flags & VM_LOCKED) {
1710                 if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1711                                         vma == get_gate_vma(current->mm)))
1712                         mm->locked_vm += (len >> PAGE_SHIFT);
1713                 else
1714                         vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1715         }
1716
1717         if (file)
1718                 uprobe_mmap(vma);
1719
1720         /*
1721          * New (or expanded) vma always get soft dirty status.
1722          * Otherwise user-space soft-dirty page tracker won't
1723          * be able to distinguish situation when vma area unmapped,
1724          * then new mapped in-place (which must be aimed as
1725          * a completely new data area).
1726          */
1727         vma->vm_flags |= VM_SOFTDIRTY;
1728
1729         vma_set_page_prot(vma);
1730
1731         return addr;
1732
1733 unmap_and_free_vma:
1734         vma->vm_file = NULL;
1735         fput(file);
1736
1737         /* Undo any partial mapping done by a device driver. */
1738         unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1739         charged = 0;
1740         if (vm_flags & VM_SHARED)
1741                 mapping_unmap_writable(file->f_mapping);
1742 allow_write_and_free_vma:
1743         if (vm_flags & VM_DENYWRITE)
1744                 allow_write_access(file);
1745 free_vma:
1746         kmem_cache_free(vm_area_cachep, vma);
1747 unacct_error:
1748         if (charged)
1749                 vm_unacct_memory(charged);
1750         return error;
1751 }
1752
1753 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1754 {
1755         /*
1756          * We implement the search by looking for an rbtree node that
1757          * immediately follows a suitable gap. That is,
1758          * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1759          * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1760          * - gap_end - gap_start >= length
1761          */
1762
1763         struct mm_struct *mm = current->mm;
1764         struct vm_area_struct *vma;
1765         unsigned long length, low_limit, high_limit, gap_start, gap_end;
1766
1767         /* Adjust search length to account for worst case alignment overhead */
1768         length = info->length + info->align_mask;
1769         if (length < info->length)
1770                 return -ENOMEM;
1771
1772         /* Adjust search limits by the desired length */
1773         if (info->high_limit < length)
1774                 return -ENOMEM;
1775         high_limit = info->high_limit - length;
1776
1777         if (info->low_limit > high_limit)
1778                 return -ENOMEM;
1779         low_limit = info->low_limit + length;
1780
1781         /* Check if rbtree root looks promising */
1782         if (RB_EMPTY_ROOT(&mm->mm_rb))
1783                 goto check_highest;
1784         vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1785         if (vma->rb_subtree_gap < length)
1786                 goto check_highest;
1787
1788         while (true) {
1789                 /* Visit left subtree if it looks promising */
1790                 gap_end = vma->vm_start;
1791                 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1792                         struct vm_area_struct *left =
1793                                 rb_entry(vma->vm_rb.rb_left,
1794                                          struct vm_area_struct, vm_rb);
1795                         if (left->rb_subtree_gap >= length) {
1796                                 vma = left;
1797                                 continue;
1798                         }
1799                 }
1800
1801                 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1802 check_current:
1803                 /* Check if current node has a suitable gap */
1804                 if (gap_start > high_limit)
1805                         return -ENOMEM;
1806                 if (gap_end >= low_limit && gap_end - gap_start >= length)
1807                         goto found;
1808
1809                 /* Visit right subtree if it looks promising */
1810                 if (vma->vm_rb.rb_right) {
1811                         struct vm_area_struct *right =
1812                                 rb_entry(vma->vm_rb.rb_right,
1813                                          struct vm_area_struct, vm_rb);
1814                         if (right->rb_subtree_gap >= length) {
1815                                 vma = right;
1816                                 continue;
1817                         }
1818                 }
1819
1820                 /* Go back up the rbtree to find next candidate node */
1821                 while (true) {
1822                         struct rb_node *prev = &vma->vm_rb;
1823                         if (!rb_parent(prev))
1824                                 goto check_highest;
1825                         vma = rb_entry(rb_parent(prev),
1826                                        struct vm_area_struct, vm_rb);
1827                         if (prev == vma->vm_rb.rb_left) {
1828                                 gap_start = vma->vm_prev->vm_end;
1829                                 gap_end = vma->vm_start;
1830                                 goto check_current;
1831                         }
1832                 }
1833         }
1834
1835 check_highest:
1836         /* Check highest gap, which does not precede any rbtree node */
1837         gap_start = mm->highest_vm_end;
1838         gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
1839         if (gap_start > high_limit)
1840                 return -ENOMEM;
1841
1842 found:
1843         /* We found a suitable gap. Clip it with the original low_limit. */
1844         if (gap_start < info->low_limit)
1845                 gap_start = info->low_limit;
1846
1847         /* Adjust gap address to the desired alignment */
1848         gap_start += (info->align_offset - gap_start) & info->align_mask;
1849
1850         VM_BUG_ON(gap_start + info->length > info->high_limit);
1851         VM_BUG_ON(gap_start + info->length > gap_end);
1852         return gap_start;
1853 }
1854
1855 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1856 {
1857         struct mm_struct *mm = current->mm;
1858         struct vm_area_struct *vma;
1859         unsigned long length, low_limit, high_limit, gap_start, gap_end;
1860
1861         /* Adjust search length to account for worst case alignment overhead */
1862         length = info->length + info->align_mask;
1863         if (length < info->length)
1864                 return -ENOMEM;
1865
1866         /*
1867          * Adjust search limits by the desired length.
1868          * See implementation comment at top of unmapped_area().
1869          */
1870         gap_end = info->high_limit;
1871         if (gap_end < length)
1872                 return -ENOMEM;
1873         high_limit = gap_end - length;
1874
1875         if (info->low_limit > high_limit)
1876                 return -ENOMEM;
1877         low_limit = info->low_limit + length;
1878
1879         /* Check highest gap, which does not precede any rbtree node */
1880         gap_start = mm->highest_vm_end;
1881         if (gap_start <= high_limit)
1882                 goto found_highest;
1883
1884         /* Check if rbtree root looks promising */
1885         if (RB_EMPTY_ROOT(&mm->mm_rb))
1886                 return -ENOMEM;
1887         vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1888         if (vma->rb_subtree_gap < length)
1889                 return -ENOMEM;
1890
1891         while (true) {
1892                 /* Visit right subtree if it looks promising */
1893                 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1894                 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1895                         struct vm_area_struct *right =
1896                                 rb_entry(vma->vm_rb.rb_right,
1897                                          struct vm_area_struct, vm_rb);
1898                         if (right->rb_subtree_gap >= length) {
1899                                 vma = right;
1900                                 continue;
1901                         }
1902                 }
1903
1904 check_current:
1905                 /* Check if current node has a suitable gap */
1906                 gap_end = vma->vm_start;
1907                 if (gap_end < low_limit)
1908                         return -ENOMEM;
1909                 if (gap_start <= high_limit && gap_end - gap_start >= length)
1910                         goto found;
1911
1912                 /* Visit left subtree if it looks promising */
1913                 if (vma->vm_rb.rb_left) {
1914                         struct vm_area_struct *left =
1915                                 rb_entry(vma->vm_rb.rb_left,
1916                                          struct vm_area_struct, vm_rb);
1917                         if (left->rb_subtree_gap >= length) {
1918                                 vma = left;
1919                                 continue;
1920                         }
1921                 }
1922
1923                 /* Go back up the rbtree to find next candidate node */
1924                 while (true) {
1925                         struct rb_node *prev = &vma->vm_rb;
1926                         if (!rb_parent(prev))
1927                                 return -ENOMEM;
1928                         vma = rb_entry(rb_parent(prev),
1929                                        struct vm_area_struct, vm_rb);
1930                         if (prev == vma->vm_rb.rb_right) {
1931                                 gap_start = vma->vm_prev ?
1932                                         vma->vm_prev->vm_end : 0;
1933                                 goto check_current;
1934                         }
1935                 }
1936         }
1937
1938 found:
1939         /* We found a suitable gap. Clip it with the original high_limit. */
1940         if (gap_end > info->high_limit)
1941                 gap_end = info->high_limit;
1942
1943 found_highest:
1944         /* Compute highest gap address at the desired alignment */
1945         gap_end -= info->length;
1946         gap_end -= (gap_end - info->align_offset) & info->align_mask;
1947
1948         VM_BUG_ON(gap_end < info->low_limit);
1949         VM_BUG_ON(gap_end < gap_start);
1950         return gap_end;
1951 }
1952
1953 /* Get an address range which is currently unmapped.
1954  * For shmat() with addr=0.
1955  *
1956  * Ugly calling convention alert:
1957  * Return value with the low bits set means error value,
1958  * ie
1959  *      if (ret & ~PAGE_MASK)
1960  *              error = ret;
1961  *
1962  * This function "knows" that -ENOMEM has the bits set.
1963  */
1964 #ifndef HAVE_ARCH_UNMAPPED_AREA
1965 unsigned long
1966 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1967                 unsigned long len, unsigned long pgoff, unsigned long flags)
1968 {
1969         struct mm_struct *mm = current->mm;
1970         struct vm_area_struct *vma;
1971         struct vm_unmapped_area_info info;
1972
1973         if (len > TASK_SIZE - mmap_min_addr)
1974                 return -ENOMEM;
1975
1976         if (flags & MAP_FIXED)
1977                 return addr;
1978
1979         if (addr) {
1980                 addr = PAGE_ALIGN(addr);
1981                 vma = find_vma(mm, addr);
1982                 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1983                     (!vma || addr + len <= vma->vm_start))
1984                         return addr;
1985         }
1986
1987         info.flags = 0;
1988         info.length = len;
1989         info.low_limit = mm->mmap_base;
1990         info.high_limit = TASK_SIZE;
1991         info.align_mask = 0;
1992         return vm_unmapped_area(&info);
1993 }
1994 #endif
1995
1996 /*
1997  * This mmap-allocator allocates new areas top-down from below the
1998  * stack's low limit (the base):
1999  */
2000 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
2001 unsigned long
2002 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
2003                           const unsigned long len, const unsigned long pgoff,
2004                           const unsigned long flags)
2005 {
2006         struct vm_area_struct *vma;
2007         struct mm_struct *mm = current->mm;
2008         unsigned long addr = addr0;
2009         struct vm_unmapped_area_info info;
2010
2011         /* requested length too big for entire address space */
2012         if (len > TASK_SIZE - mmap_min_addr)
2013                 return -ENOMEM;
2014
2015         if (flags & MAP_FIXED)
2016                 return addr;
2017
2018         /* requesting a specific address */
2019         if (addr) {
2020                 addr = PAGE_ALIGN(addr);
2021                 vma = find_vma(mm, addr);
2022                 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
2023                                 (!vma || addr + len <= vma->vm_start))
2024                         return addr;
2025         }
2026
2027         info.flags = VM_UNMAPPED_AREA_TOPDOWN;
2028         info.length = len;
2029         info.low_limit = max(PAGE_SIZE, mmap_min_addr);
2030         info.high_limit = mm->mmap_base;
2031         info.align_mask = 0;
2032         addr = vm_unmapped_area(&info);
2033
2034         /*
2035          * A failed mmap() very likely causes application failure,
2036          * so fall back to the bottom-up function here. This scenario
2037          * can happen with large stack limits and large mmap()
2038          * allocations.
2039          */
2040         if (offset_in_page(addr)) {
2041                 VM_BUG_ON(addr != -ENOMEM);
2042                 info.flags = 0;
2043                 info.low_limit = TASK_UNMAPPED_BASE;
2044                 info.high_limit = TASK_SIZE;
2045                 addr = vm_unmapped_area(&info);
2046         }
2047
2048         return addr;
2049 }
2050 #endif
2051
2052 unsigned long
2053 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2054                 unsigned long pgoff, unsigned long flags)
2055 {
2056         unsigned long (*get_area)(struct file *, unsigned long,
2057                                   unsigned long, unsigned long, unsigned long);
2058
2059         unsigned long error = arch_mmap_check(addr, len, flags);
2060         if (error)
2061                 return error;
2062
2063         /* Careful about overflows.. */
2064         if (len > TASK_SIZE)
2065                 return -ENOMEM;
2066
2067         get_area = current->mm->get_unmapped_area;
2068         if (file) {
2069                 if (file->f_op->get_unmapped_area)
2070                         get_area = file->f_op->get_unmapped_area;
2071         } else if (flags & MAP_SHARED) {
2072                 /*
2073                  * mmap_region() will call shmem_zero_setup() to create a file,
2074                  * so use shmem's get_unmapped_area in case it can be huge.
2075                  * do_mmap_pgoff() will clear pgoff, so match alignment.
2076                  */
2077                 pgoff = 0;
2078                 get_area = shmem_get_unmapped_area;
2079         }
2080
2081         addr = get_area(file, addr, len, pgoff, flags);
2082         if (IS_ERR_VALUE(addr))
2083                 return addr;
2084
2085         if (addr > TASK_SIZE - len)
2086                 return -ENOMEM;
2087         if (offset_in_page(addr))
2088                 return -EINVAL;
2089
2090         error = security_mmap_addr(addr);
2091         return error ? error : addr;
2092 }
2093
2094 EXPORT_SYMBOL(get_unmapped_area);
2095
2096 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2097 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2098 {
2099         struct rb_node *rb_node;
2100         struct vm_area_struct *vma;
2101
2102         /* Check the cache first. */
2103         vma = vmacache_find(mm, addr);
2104         if (likely(vma))
2105                 return vma;
2106
2107         rb_node = mm->mm_rb.rb_node;
2108
2109         while (rb_node) {
2110                 struct vm_area_struct *tmp;
2111
2112                 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2113
2114                 if (tmp->vm_end > addr) {
2115                         vma = tmp;
2116                         if (tmp->vm_start <= addr)
2117                                 break;
2118                         rb_node = rb_node->rb_left;
2119                 } else
2120                         rb_node = rb_node->rb_right;
2121         }
2122
2123         if (vma)
2124                 vmacache_update(addr, vma);
2125         return vma;
2126 }
2127
2128 EXPORT_SYMBOL(find_vma);
2129
2130 /*
2131  * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2132  */
2133 struct vm_area_struct *
2134 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2135                         struct vm_area_struct **pprev)
2136 {
2137         struct vm_area_struct *vma;
2138
2139         vma = find_vma(mm, addr);
2140         if (vma) {
2141                 *pprev = vma->vm_prev;
2142         } else {
2143                 struct rb_node *rb_node = mm->mm_rb.rb_node;
2144                 *pprev = NULL;
2145                 while (rb_node) {
2146                         *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2147                         rb_node = rb_node->rb_right;
2148                 }
2149         }
2150         return vma;
2151 }
2152
2153 /*
2154  * Verify that the stack growth is acceptable and
2155  * update accounting. This is shared with both the
2156  * grow-up and grow-down cases.
2157  */
2158 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
2159 {
2160         struct mm_struct *mm = vma->vm_mm;
2161         struct rlimit *rlim = current->signal->rlim;
2162         unsigned long new_start, actual_size;
2163
2164         /* address space limit tests */
2165         if (!may_expand_vm(mm, vma->vm_flags, grow))
2166                 return -ENOMEM;
2167
2168         /* Stack limit test */
2169         actual_size = size;
2170         if (size && (vma->vm_flags & (VM_GROWSUP | VM_GROWSDOWN)))
2171                 actual_size -= PAGE_SIZE;
2172         if (actual_size > READ_ONCE(rlim[RLIMIT_STACK].rlim_cur))
2173                 return -ENOMEM;
2174
2175         /* mlock limit tests */
2176         if (vma->vm_flags & VM_LOCKED) {
2177                 unsigned long locked;
2178                 unsigned long limit;
2179                 locked = mm->locked_vm + grow;
2180                 limit = READ_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
2181                 limit >>= PAGE_SHIFT;
2182                 if (locked > limit && !capable(CAP_IPC_LOCK))
2183                         return -ENOMEM;
2184         }
2185
2186         /* Check to ensure the stack will not grow into a hugetlb-only region */
2187         new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2188                         vma->vm_end - size;
2189         if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2190                 return -EFAULT;
2191
2192         /*
2193          * Overcommit..  This must be the final test, as it will
2194          * update security statistics.
2195          */
2196         if (security_vm_enough_memory_mm(mm, grow))
2197                 return -ENOMEM;
2198
2199         return 0;
2200 }
2201
2202 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2203 /*
2204  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2205  * vma is the last one with address > vma->vm_end.  Have to extend vma.
2206  */
2207 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2208 {
2209         struct mm_struct *mm = vma->vm_mm;
2210         int error = 0;
2211
2212         if (!(vma->vm_flags & VM_GROWSUP))
2213                 return -EFAULT;
2214
2215         /* Guard against wrapping around to address 0. */
2216         if (address < PAGE_ALIGN(address+4))
2217                 address = PAGE_ALIGN(address+4);
2218         else
2219                 return -ENOMEM;
2220
2221         /* We must make sure the anon_vma is allocated. */
2222         if (unlikely(anon_vma_prepare(vma)))
2223                 return -ENOMEM;
2224
2225         /*
2226          * vma->vm_start/vm_end cannot change under us because the caller
2227          * is required to hold the mmap_sem in read mode.  We need the
2228          * anon_vma lock to serialize against concurrent expand_stacks.
2229          */
2230         anon_vma_lock_write(vma->anon_vma);
2231
2232         /* Somebody else might have raced and expanded it already */
2233         if (address > vma->vm_end) {
2234                 unsigned long size, grow;
2235
2236                 size = address - vma->vm_start;
2237                 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2238
2239                 error = -ENOMEM;
2240                 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2241                         error = acct_stack_growth(vma, size, grow);
2242                         if (!error) {
2243                                 /*
2244                                  * vma_gap_update() doesn't support concurrent
2245                                  * updates, but we only hold a shared mmap_sem
2246                                  * lock here, so we need to protect against
2247                                  * concurrent vma expansions.
2248                                  * anon_vma_lock_write() doesn't help here, as
2249                                  * we don't guarantee that all growable vmas
2250                                  * in a mm share the same root anon vma.
2251                                  * So, we reuse mm->page_table_lock to guard
2252                                  * against concurrent vma expansions.
2253                                  */
2254                                 spin_lock(&mm->page_table_lock);
2255                                 if (vma->vm_flags & VM_LOCKED)
2256                                         mm->locked_vm += grow;
2257                                 vm_stat_account(mm, vma->vm_flags, grow);
2258                                 anon_vma_interval_tree_pre_update_vma(vma);
2259                                 vma->vm_end = address;
2260                                 anon_vma_interval_tree_post_update_vma(vma);
2261                                 if (vma->vm_next)
2262                                         vma_gap_update(vma->vm_next);
2263                                 else
2264                                         mm->highest_vm_end = address;
2265                                 spin_unlock(&mm->page_table_lock);
2266
2267                                 perf_event_mmap(vma);
2268                         }
2269                 }
2270         }
2271         anon_vma_unlock_write(vma->anon_vma);
2272         khugepaged_enter_vma_merge(vma, vma->vm_flags);
2273         validate_mm(mm);
2274         return error;
2275 }
2276 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2277
2278 /*
2279  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2280  */
2281 int expand_downwards(struct vm_area_struct *vma,
2282                                    unsigned long address)
2283 {
2284         struct mm_struct *mm = vma->vm_mm;
2285         int error;
2286
2287         address &= PAGE_MASK;
2288         error = security_mmap_addr(address);
2289         if (error)
2290                 return error;
2291
2292         /* We must make sure the anon_vma is allocated. */
2293         if (unlikely(anon_vma_prepare(vma)))
2294                 return -ENOMEM;
2295
2296         /*
2297          * vma->vm_start/vm_end cannot change under us because the caller
2298          * is required to hold the mmap_sem in read mode.  We need the
2299          * anon_vma lock to serialize against concurrent expand_stacks.
2300          */
2301         anon_vma_lock_write(vma->anon_vma);
2302
2303         /* Somebody else might have raced and expanded it already */
2304         if (address < vma->vm_start) {
2305                 unsigned long size, grow;
2306
2307                 size = vma->vm_end - address;
2308                 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2309
2310                 error = -ENOMEM;
2311                 if (grow <= vma->vm_pgoff) {
2312                         error = acct_stack_growth(vma, size, grow);
2313                         if (!error) {
2314                                 /*
2315                                  * vma_gap_update() doesn't support concurrent
2316                                  * updates, but we only hold a shared mmap_sem
2317                                  * lock here, so we need to protect against
2318                                  * concurrent vma expansions.
2319                                  * anon_vma_lock_write() doesn't help here, as
2320                                  * we don't guarantee that all growable vmas
2321                                  * in a mm share the same root anon vma.
2322                                  * So, we reuse mm->page_table_lock to guard
2323                                  * against concurrent vma expansions.
2324                                  */
2325                                 spin_lock(&mm->page_table_lock);
2326                                 if (vma->vm_flags & VM_LOCKED)
2327                                         mm->locked_vm += grow;
2328                                 vm_stat_account(mm, vma->vm_flags, grow);
2329                                 anon_vma_interval_tree_pre_update_vma(vma);
2330                                 vma->vm_start = address;
2331                                 vma->vm_pgoff -= grow;
2332                                 anon_vma_interval_tree_post_update_vma(vma);
2333                                 vma_gap_update(vma);
2334                                 spin_unlock(&mm->page_table_lock);
2335
2336                                 perf_event_mmap(vma);
2337                         }
2338                 }
2339         }
2340         anon_vma_unlock_write(vma->anon_vma);
2341         khugepaged_enter_vma_merge(vma, vma->vm_flags);
2342         validate_mm(mm);
2343         return error;
2344 }
2345
2346 /*
2347  * Note how expand_stack() refuses to expand the stack all the way to
2348  * abut the next virtual mapping, *unless* that mapping itself is also
2349  * a stack mapping. We want to leave room for a guard page, after all
2350  * (the guard page itself is not added here, that is done by the
2351  * actual page faulting logic)
2352  *
2353  * This matches the behavior of the guard page logic (see mm/memory.c:
2354  * check_stack_guard_page()), which only allows the guard page to be
2355  * removed under these circumstances.
2356  */
2357 #ifdef CONFIG_STACK_GROWSUP
2358 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2359 {
2360         struct vm_area_struct *next;
2361
2362         address &= PAGE_MASK;
2363         next = vma->vm_next;
2364         if (next && next->vm_start == address + PAGE_SIZE) {
2365                 if (!(next->vm_flags & VM_GROWSUP))
2366                         return -ENOMEM;
2367         }
2368         return expand_upwards(vma, address);
2369 }
2370
2371 struct vm_area_struct *
2372 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2373 {
2374         struct vm_area_struct *vma, *prev;
2375
2376         addr &= PAGE_MASK;
2377         vma = find_vma_prev(mm, addr, &prev);
2378         if (vma && (vma->vm_start <= addr))
2379                 return vma;
2380         if (!prev || expand_stack(prev, addr))
2381                 return NULL;
2382         if (prev->vm_flags & VM_LOCKED)
2383                 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2384         return prev;
2385 }
2386 #else
2387 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2388 {
2389         struct vm_area_struct *prev;
2390
2391         address &= PAGE_MASK;
2392         prev = vma->vm_prev;
2393         if (prev && prev->vm_end == address) {
2394                 if (!(prev->vm_flags & VM_GROWSDOWN))
2395                         return -ENOMEM;
2396         }
2397         return expand_downwards(vma, address);
2398 }
2399
2400 struct vm_area_struct *
2401 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2402 {
2403         struct vm_area_struct *vma;
2404         unsigned long start;
2405
2406         addr &= PAGE_MASK;
2407         vma = find_vma(mm, addr);
2408         if (!vma)
2409                 return NULL;
2410         if (vma->vm_start <= addr)
2411                 return vma;
2412         if (!(vma->vm_flags & VM_GROWSDOWN))
2413                 return NULL;
2414         start = vma->vm_start;
2415         if (expand_stack(vma, addr))
2416                 return NULL;
2417         if (vma->vm_flags & VM_LOCKED)
2418                 populate_vma_page_range(vma, addr, start, NULL);
2419         return vma;
2420 }
2421 #endif
2422
2423 EXPORT_SYMBOL_GPL(find_extend_vma);
2424
2425 /*
2426  * Ok - we have the memory areas we should free on the vma list,
2427  * so release them, and do the vma updates.
2428  *
2429  * Called with the mm semaphore held.
2430  */
2431 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2432 {
2433         unsigned long nr_accounted = 0;
2434
2435         /* Update high watermark before we lower total_vm */
2436         update_hiwater_vm(mm);
2437         do {
2438                 long nrpages = vma_pages(vma);
2439
2440                 if (vma->vm_flags & VM_ACCOUNT)
2441                         nr_accounted += nrpages;
2442                 vm_stat_account(mm, vma->vm_flags, -nrpages);
2443                 vma = remove_vma(vma);
2444         } while (vma);
2445         vm_unacct_memory(nr_accounted);
2446         validate_mm(mm);
2447 }
2448
2449 /*
2450  * Get rid of page table information in the indicated region.
2451  *
2452  * Called with the mm semaphore held.
2453  */
2454 static void unmap_region(struct mm_struct *mm,
2455                 struct vm_area_struct *vma, struct vm_area_struct *prev,
2456                 unsigned long start, unsigned long end)
2457 {
2458         struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2459         struct mmu_gather tlb;
2460
2461         lru_add_drain();
2462         tlb_gather_mmu(&tlb, mm, start, end);
2463         update_hiwater_rss(mm);
2464         unmap_vmas(&tlb, vma, start, end);
2465         free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2466                                  next ? next->vm_start : USER_PGTABLES_CEILING);
2467         tlb_finish_mmu(&tlb, start, end);
2468 }
2469
2470 /*
2471  * Create a list of vma's touched by the unmap, removing them from the mm's
2472  * vma list as we go..
2473  */
2474 static void
2475 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2476         struct vm_area_struct *prev, unsigned long end)
2477 {
2478         struct vm_area_struct **insertion_point;
2479         struct vm_area_struct *tail_vma = NULL;
2480
2481         insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2482         vma->vm_prev = NULL;
2483         do {
2484                 vma_rb_erase(vma, &mm->mm_rb);
2485                 mm->map_count--;
2486                 tail_vma = vma;
2487                 vma = vma->vm_next;
2488         } while (vma && vma->vm_start < end);
2489         *insertion_point = vma;
2490         if (vma) {
2491                 vma->vm_prev = prev;
2492                 vma_gap_update(vma);
2493         } else
2494                 mm->highest_vm_end = prev ? prev->vm_end : 0;
2495         tail_vma->vm_next = NULL;
2496
2497         /* Kill the cache */
2498         vmacache_invalidate(mm);
2499 }
2500
2501 /*
2502  * __split_vma() bypasses sysctl_max_map_count checking.  We use this where it
2503  * has already been checked or doesn't make sense to fail.
2504  */
2505 int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2506                 unsigned long addr, int new_below)
2507 {
2508         struct vm_area_struct *new;
2509         int err;
2510
2511         if (is_vm_hugetlb_page(vma) && (addr &
2512                                         ~(huge_page_mask(hstate_vma(vma)))))
2513                 return -EINVAL;
2514
2515         new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2516         if (!new)
2517                 return -ENOMEM;
2518
2519         /* most fields are the same, copy all, and then fixup */
2520         *new = *vma;
2521
2522         INIT_LIST_HEAD(&new->anon_vma_chain);
2523
2524         if (new_below)
2525                 new->vm_end = addr;
2526         else {
2527                 new->vm_start = addr;
2528                 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2529         }
2530
2531         err = vma_dup_policy(vma, new);
2532         if (err)
2533                 goto out_free_vma;
2534
2535         err = anon_vma_clone(new, vma);
2536         if (err)
2537                 goto out_free_mpol;
2538
2539         if (new->vm_file)
2540                 get_file(new->vm_file);
2541
2542         if (new->vm_ops && new->vm_ops->open)
2543                 new->vm_ops->open(new);
2544
2545         if (new_below)
2546                 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2547                         ((addr - new->vm_start) >> PAGE_SHIFT), new);
2548         else
2549                 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2550
2551         /* Success. */
2552         if (!err)
2553                 return 0;
2554
2555         /* Clean everything up if vma_adjust failed. */
2556         if (new->vm_ops && new->vm_ops->close)
2557                 new->vm_ops->close(new);
2558         if (new->vm_file)
2559                 fput(new->vm_file);
2560         unlink_anon_vmas(new);
2561  out_free_mpol:
2562         mpol_put(vma_policy(new));
2563  out_free_vma:
2564         kmem_cache_free(vm_area_cachep, new);
2565         return err;
2566 }
2567
2568 /*
2569  * Split a vma into two pieces at address 'addr', a new vma is allocated
2570  * either for the first part or the tail.
2571  */
2572 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2573               unsigned long addr, int new_below)
2574 {
2575         if (mm->map_count >= sysctl_max_map_count)
2576                 return -ENOMEM;
2577
2578         return __split_vma(mm, vma, addr, new_below);
2579 }
2580
2581 /* Munmap is split into 2 main parts -- this part which finds
2582  * what needs doing, and the areas themselves, which do the
2583  * work.  This now handles partial unmappings.
2584  * Jeremy Fitzhardinge <jeremy@goop.org>
2585  */
2586 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2587               struct list_head *uf)
2588 {
2589         unsigned long end;
2590         struct vm_area_struct *vma, *prev, *last;
2591
2592         if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2593                 return -EINVAL;
2594
2595         len = PAGE_ALIGN(len);
2596         if (len == 0)
2597                 return -EINVAL;
2598
2599         /* Find the first overlapping VMA */
2600         vma = find_vma(mm, start);
2601         if (!vma)
2602                 return 0;
2603         prev = vma->vm_prev;
2604         /* we have  start < vma->vm_end  */
2605
2606         /* if it doesn't overlap, we have nothing.. */
2607         end = start + len;
2608         if (vma->vm_start >= end)
2609                 return 0;
2610
2611         if (uf) {
2612                 int error = userfaultfd_unmap_prep(vma, start, end, uf);
2613
2614                 if (error)
2615                         return error;
2616         }
2617
2618         /*
2619          * If we need to split any vma, do it now to save pain later.
2620          *
2621          * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2622          * unmapped vm_area_struct will remain in use: so lower split_vma
2623          * places tmp vma above, and higher split_vma places tmp vma below.
2624          */
2625         if (start > vma->vm_start) {
2626                 int error;
2627
2628                 /*
2629                  * Make sure that map_count on return from munmap() will
2630                  * not exceed its limit; but let map_count go just above
2631                  * its limit temporarily, to help free resources as expected.
2632                  */
2633                 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2634                         return -ENOMEM;
2635
2636                 error = __split_vma(mm, vma, start, 0);
2637                 if (error)
2638                         return error;
2639                 prev = vma;
2640         }
2641
2642         /* Does it split the last one? */
2643         last = find_vma(mm, end);
2644         if (last && end > last->vm_start) {
2645                 int error = __split_vma(mm, last, end, 1);
2646                 if (error)
2647                         return error;
2648         }
2649         vma = prev ? prev->vm_next : mm->mmap;
2650
2651         /*
2652          * unlock any mlock()ed ranges before detaching vmas
2653          */
2654         if (mm->locked_vm) {
2655                 struct vm_area_struct *tmp = vma;
2656                 while (tmp && tmp->vm_start < end) {
2657                         if (tmp->vm_flags & VM_LOCKED) {
2658                                 mm->locked_vm -= vma_pages(tmp);
2659                                 munlock_vma_pages_all(tmp);
2660                         }
2661                         tmp = tmp->vm_next;
2662                 }
2663         }
2664
2665         /*
2666          * Remove the vma's, and unmap the actual pages
2667          */
2668         detach_vmas_to_be_unmapped(mm, vma, prev, end);
2669         unmap_region(mm, vma, prev, start, end);
2670
2671         arch_unmap(mm, vma, start, end);
2672
2673         /* Fix up all other VM information */
2674         remove_vma_list(mm, vma);
2675
2676         return 0;
2677 }
2678
2679 int vm_munmap(unsigned long start, size_t len)
2680 {
2681         int ret;
2682         struct mm_struct *mm = current->mm;
2683         LIST_HEAD(uf);
2684
2685         if (down_write_killable(&mm->mmap_sem))
2686                 return -EINTR;
2687
2688         ret = do_munmap(mm, start, len, &uf);
2689         up_write(&mm->mmap_sem);
2690         userfaultfd_unmap_complete(mm, &uf);
2691         return ret;
2692 }
2693 EXPORT_SYMBOL(vm_munmap);
2694
2695 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2696 {
2697         profile_munmap(addr);
2698         return vm_munmap(addr, len);
2699 }
2700
2701
2702 /*
2703  * Emulation of deprecated remap_file_pages() syscall.
2704  */
2705 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2706                 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2707 {
2708
2709         struct mm_struct *mm = current->mm;
2710         struct vm_area_struct *vma;
2711         unsigned long populate = 0;
2712         unsigned long ret = -EINVAL;
2713         struct file *file;
2714
2715         pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.txt.\n",
2716                      current->comm, current->pid);
2717
2718         if (prot)
2719                 return ret;
2720         start = start & PAGE_MASK;
2721         size = size & PAGE_MASK;
2722
2723         if (start + size <= start)
2724                 return ret;
2725
2726         /* Does pgoff wrap? */
2727         if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2728                 return ret;
2729
2730         if (down_write_killable(&mm->mmap_sem))
2731                 return -EINTR;
2732
2733         vma = find_vma(mm, start);
2734
2735         if (!vma || !(vma->vm_flags & VM_SHARED))
2736                 goto out;
2737
2738         if (start < vma->vm_start)
2739                 goto out;
2740
2741         if (start + size > vma->vm_end) {
2742                 struct vm_area_struct *next;
2743
2744                 for (next = vma->vm_next; next; next = next->vm_next) {
2745                         /* hole between vmas ? */
2746                         if (next->vm_start != next->vm_prev->vm_end)
2747                                 goto out;
2748
2749                         if (next->vm_file != vma->vm_file)
2750                                 goto out;
2751
2752                         if (next->vm_flags != vma->vm_flags)
2753                                 goto out;
2754
2755                         if (start + size <= next->vm_end)
2756                                 break;
2757                 }
2758
2759                 if (!next)
2760                         goto out;
2761         }
2762
2763         prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2764         prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2765         prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2766
2767         flags &= MAP_NONBLOCK;
2768         flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2769         if (vma->vm_flags & VM_LOCKED) {
2770                 struct vm_area_struct *tmp;
2771                 flags |= MAP_LOCKED;
2772
2773                 /* drop PG_Mlocked flag for over-mapped range */
2774                 for (tmp = vma; tmp->vm_start >= start + size;
2775                                 tmp = tmp->vm_next) {
2776                         /*
2777                          * Split pmd and munlock page on the border
2778                          * of the range.
2779                          */
2780                         vma_adjust_trans_huge(tmp, start, start + size, 0);
2781
2782                         munlock_vma_pages_range(tmp,
2783                                         max(tmp->vm_start, start),
2784                                         min(tmp->vm_end, start + size));
2785                 }
2786         }
2787
2788         file = get_file(vma->vm_file);
2789         ret = do_mmap_pgoff(vma->vm_file, start, size,
2790                         prot, flags, pgoff, &populate, NULL);
2791         fput(file);
2792 out:
2793         up_write(&mm->mmap_sem);
2794         if (populate)
2795                 mm_populate(ret, populate);
2796         if (!IS_ERR_VALUE(ret))
2797                 ret = 0;
2798         return ret;
2799 }
2800
2801 static inline void verify_mm_writelocked(struct mm_struct *mm)
2802 {
2803 #ifdef CONFIG_DEBUG_VM
2804         if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2805                 WARN_ON(1);
2806                 up_read(&mm->mmap_sem);
2807         }
2808 #endif
2809 }
2810
2811 /*
2812  *  this is really a simplified "do_mmap".  it only handles
2813  *  anonymous maps.  eventually we may be able to do some
2814  *  brk-specific accounting here.
2815  */
2816 static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags, struct list_head *uf)
2817 {
2818         struct mm_struct *mm = current->mm;
2819         struct vm_area_struct *vma, *prev;
2820         unsigned long len;
2821         struct rb_node **rb_link, *rb_parent;
2822         pgoff_t pgoff = addr >> PAGE_SHIFT;
2823         int error;
2824
2825         len = PAGE_ALIGN(request);
2826         if (len < request)
2827                 return -ENOMEM;
2828         if (!len)
2829                 return 0;
2830
2831         /* Until we need other flags, refuse anything except VM_EXEC. */
2832         if ((flags & (~VM_EXEC)) != 0)
2833                 return -EINVAL;
2834         flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2835
2836         error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2837         if (offset_in_page(error))
2838                 return error;
2839
2840         error = mlock_future_check(mm, mm->def_flags, len);
2841         if (error)
2842                 return error;
2843
2844         /*
2845          * mm->mmap_sem is required to protect against another thread
2846          * changing the mappings in case we sleep.
2847          */
2848         verify_mm_writelocked(mm);
2849
2850         /*
2851          * Clear old maps.  this also does some error checking for us
2852          */
2853         while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
2854                               &rb_parent)) {
2855                 if (do_munmap(mm, addr, len, uf))
2856                         return -ENOMEM;
2857         }
2858
2859         /* Check against address space limits *after* clearing old maps... */
2860         if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
2861                 return -ENOMEM;
2862
2863         if (mm->map_count > sysctl_max_map_count)
2864                 return -ENOMEM;
2865
2866         if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2867                 return -ENOMEM;
2868
2869         /* Can we just expand an old private anonymous mapping? */
2870         vma = vma_merge(mm, prev, addr, addr + len, flags,
2871                         NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
2872         if (vma)
2873                 goto out;
2874
2875         /*
2876          * create a vma struct for an anonymous mapping
2877          */
2878         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2879         if (!vma) {
2880                 vm_unacct_memory(len >> PAGE_SHIFT);
2881                 return -ENOMEM;
2882         }
2883
2884         INIT_LIST_HEAD(&vma->anon_vma_chain);
2885         vma->vm_mm = mm;
2886         vma->vm_start = addr;
2887         vma->vm_end = addr + len;
2888         vma->vm_pgoff = pgoff;
2889         vma->vm_flags = flags;
2890         vma->vm_page_prot = vm_get_page_prot(flags);
2891         vma_link(mm, vma, prev, rb_link, rb_parent);
2892 out:
2893         perf_event_mmap(vma);
2894         mm->total_vm += len >> PAGE_SHIFT;
2895         mm->data_vm += len >> PAGE_SHIFT;
2896         if (flags & VM_LOCKED)
2897                 mm->locked_vm += (len >> PAGE_SHIFT);
2898         vma->vm_flags |= VM_SOFTDIRTY;
2899         return 0;
2900 }
2901
2902 static int do_brk(unsigned long addr, unsigned long len, struct list_head *uf)
2903 {
2904         return do_brk_flags(addr, len, 0, uf);
2905 }
2906
2907 int vm_brk_flags(unsigned long addr, unsigned long len, unsigned long flags)
2908 {
2909         struct mm_struct *mm = current->mm;
2910         int ret;
2911         bool populate;
2912         LIST_HEAD(uf);
2913
2914         if (down_write_killable(&mm->mmap_sem))
2915                 return -EINTR;
2916
2917         ret = do_brk_flags(addr, len, flags, &uf);
2918         populate = ((mm->def_flags & VM_LOCKED) != 0);
2919         up_write(&mm->mmap_sem);
2920         userfaultfd_unmap_complete(mm, &uf);
2921         if (populate && !ret)
2922                 mm_populate(addr, len);
2923         return ret;
2924 }
2925 EXPORT_SYMBOL(vm_brk_flags);
2926
2927 int vm_brk(unsigned long addr, unsigned long len)
2928 {
2929         return vm_brk_flags(addr, len, 0);
2930 }
2931 EXPORT_SYMBOL(vm_brk);
2932
2933 /* Release all mmaps. */
2934 void exit_mmap(struct mm_struct *mm)
2935 {
2936         struct mmu_gather tlb;
2937         struct vm_area_struct *vma;
2938         unsigned long nr_accounted = 0;
2939
2940         /* mm's last user has gone, and its about to be pulled down */
2941         mmu_notifier_release(mm);
2942
2943         if (mm->locked_vm) {
2944                 vma = mm->mmap;
2945                 while (vma) {
2946                         if (vma->vm_flags & VM_LOCKED)
2947                                 munlock_vma_pages_all(vma);
2948                         vma = vma->vm_next;
2949                 }
2950         }
2951
2952         arch_exit_mmap(mm);
2953
2954         vma = mm->mmap;
2955         if (!vma)       /* Can happen if dup_mmap() received an OOM */
2956                 return;
2957
2958         lru_add_drain();
2959         flush_cache_mm(mm);
2960         tlb_gather_mmu(&tlb, mm, 0, -1);
2961         /* update_hiwater_rss(mm) here? but nobody should be looking */
2962         /* Use -1 here to ensure all VMAs in the mm are unmapped */
2963         unmap_vmas(&tlb, vma, 0, -1);
2964
2965         free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
2966         tlb_finish_mmu(&tlb, 0, -1);
2967
2968         /*
2969          * Walk the list again, actually closing and freeing it,
2970          * with preemption enabled, without holding any MM locks.
2971          */
2972         while (vma) {
2973                 if (vma->vm_flags & VM_ACCOUNT)
2974                         nr_accounted += vma_pages(vma);
2975                 vma = remove_vma(vma);
2976         }
2977         vm_unacct_memory(nr_accounted);
2978 }
2979
2980 /* Insert vm structure into process list sorted by address
2981  * and into the inode's i_mmap tree.  If vm_file is non-NULL
2982  * then i_mmap_rwsem is taken here.
2983  */
2984 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
2985 {
2986         struct vm_area_struct *prev;
2987         struct rb_node **rb_link, *rb_parent;
2988
2989         if (find_vma_links(mm, vma->vm_start, vma->vm_end,
2990                            &prev, &rb_link, &rb_parent))
2991                 return -ENOMEM;
2992         if ((vma->vm_flags & VM_ACCOUNT) &&
2993              security_vm_enough_memory_mm(mm, vma_pages(vma)))
2994                 return -ENOMEM;
2995
2996         /*
2997          * The vm_pgoff of a purely anonymous vma should be irrelevant
2998          * until its first write fault, when page's anon_vma and index
2999          * are set.  But now set the vm_pgoff it will almost certainly
3000          * end up with (unless mremap moves it elsewhere before that
3001          * first wfault), so /proc/pid/maps tells a consistent story.
3002          *
3003          * By setting it to reflect the virtual start address of the
3004          * vma, merges and splits can happen in a seamless way, just
3005          * using the existing file pgoff checks and manipulations.
3006          * Similarly in do_mmap_pgoff and in do_brk.
3007          */
3008         if (vma_is_anonymous(vma)) {
3009                 BUG_ON(vma->anon_vma);
3010                 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3011         }
3012
3013         vma_link(mm, vma, prev, rb_link, rb_parent);
3014         return 0;
3015 }
3016
3017 /*
3018  * Copy the vma structure to a new location in the same mm,
3019  * prior to moving page table entries, to effect an mremap move.
3020  */
3021 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3022         unsigned long addr, unsigned long len, pgoff_t pgoff,
3023         bool *need_rmap_locks)
3024 {
3025         struct vm_area_struct *vma = *vmap;
3026         unsigned long vma_start = vma->vm_start;
3027         struct mm_struct *mm = vma->vm_mm;
3028         struct vm_area_struct *new_vma, *prev;
3029         struct rb_node **rb_link, *rb_parent;
3030         bool faulted_in_anon_vma = true;
3031
3032         /*
3033          * If anonymous vma has not yet been faulted, update new pgoff
3034          * to match new location, to increase its chance of merging.
3035          */
3036         if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3037                 pgoff = addr >> PAGE_SHIFT;
3038                 faulted_in_anon_vma = false;
3039         }
3040
3041         if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
3042                 return NULL;    /* should never get here */
3043         new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
3044                             vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3045                             vma->vm_userfaultfd_ctx);
3046         if (new_vma) {
3047                 /*
3048                  * Source vma may have been merged into new_vma
3049                  */
3050                 if (unlikely(vma_start >= new_vma->vm_start &&
3051                              vma_start < new_vma->vm_end)) {
3052                         /*
3053                          * The only way we can get a vma_merge with
3054                          * self during an mremap is if the vma hasn't
3055                          * been faulted in yet and we were allowed to
3056                          * reset the dst vma->vm_pgoff to the
3057                          * destination address of the mremap to allow
3058                          * the merge to happen. mremap must change the
3059                          * vm_pgoff linearity between src and dst vmas
3060                          * (in turn preventing a vma_merge) to be
3061                          * safe. It is only safe to keep the vm_pgoff
3062                          * linear if there are no pages mapped yet.
3063                          */
3064                         VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3065                         *vmap = vma = new_vma;
3066                 }
3067                 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3068         } else {
3069                 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
3070                 if (!new_vma)
3071                         goto out;
3072                 *new_vma = *vma;
3073                 new_vma->vm_start = addr;
3074                 new_vma->vm_end = addr + len;
3075                 new_vma->vm_pgoff = pgoff;
3076                 if (vma_dup_policy(vma, new_vma))
3077                         goto out_free_vma;
3078                 INIT_LIST_HEAD(&new_vma->anon_vma_chain);
3079                 if (anon_vma_clone(new_vma, vma))
3080                         goto out_free_mempol;
3081                 if (new_vma->vm_file)
3082                         get_file(new_vma->vm_file);
3083                 if (new_vma->vm_ops && new_vma->vm_ops->open)
3084                         new_vma->vm_ops->open(new_vma);
3085                 vma_link(mm, new_vma, prev, rb_link, rb_parent);
3086                 *need_rmap_locks = false;
3087         }
3088         return new_vma;
3089
3090 out_free_mempol:
3091         mpol_put(vma_policy(new_vma));
3092 out_free_vma:
3093         kmem_cache_free(vm_area_cachep, new_vma);
3094 out:
3095         return NULL;
3096 }
3097
3098 /*
3099  * Return true if the calling process may expand its vm space by the passed
3100  * number of pages
3101  */
3102 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3103 {
3104         if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3105                 return false;
3106
3107         if (is_data_mapping(flags) &&
3108             mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3109                 /* Workaround for Valgrind */
3110                 if (rlimit(RLIMIT_DATA) == 0 &&
3111                     mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3112                         return true;
3113                 if (!ignore_rlimit_data) {
3114                         pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits or use boot option ignore_rlimit_data.\n",
3115                                      current->comm, current->pid,
3116                                      (mm->data_vm + npages) << PAGE_SHIFT,
3117                                      rlimit(RLIMIT_DATA));
3118                         return false;
3119                 }
3120         }
3121
3122         return true;
3123 }
3124
3125 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3126 {
3127         mm->total_vm += npages;
3128
3129         if (is_exec_mapping(flags))
3130                 mm->exec_vm += npages;
3131         else if (is_stack_mapping(flags))
3132                 mm->stack_vm += npages;
3133         else if (is_data_mapping(flags))
3134                 mm->data_vm += npages;
3135 }
3136
3137 static int special_mapping_fault(struct vm_fault *vmf);
3138
3139 /*
3140  * Having a close hook prevents vma merging regardless of flags.
3141  */
3142 static void special_mapping_close(struct vm_area_struct *vma)
3143 {
3144 }
3145
3146 static const char *special_mapping_name(struct vm_area_struct *vma)
3147 {
3148         return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3149 }
3150
3151 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3152 {
3153         struct vm_special_mapping *sm = new_vma->vm_private_data;
3154
3155         if (sm->mremap)
3156                 return sm->mremap(sm, new_vma);
3157         return 0;
3158 }
3159
3160 static const struct vm_operations_struct special_mapping_vmops = {
3161         .close = special_mapping_close,
3162         .fault = special_mapping_fault,
3163         .mremap = special_mapping_mremap,
3164         .name = special_mapping_name,
3165 };
3166
3167 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3168         .close = special_mapping_close,
3169         .fault = special_mapping_fault,
3170 };
3171
3172 static int special_mapping_fault(struct vm_fault *vmf)
3173 {
3174         struct vm_area_struct *vma = vmf->vma;
3175         pgoff_t pgoff;
3176         struct page **pages;
3177
3178         if (vma->vm_ops == &legacy_special_mapping_vmops) {
3179                 pages = vma->vm_private_data;
3180         } else {
3181                 struct vm_special_mapping *sm = vma->vm_private_data;
3182
3183                 if (sm->fault)
3184                         return sm->fault(sm, vmf->vma, vmf);
3185
3186                 pages = sm->pages;
3187         }
3188
3189         for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3190                 pgoff--;
3191
3192         if (*pages) {
3193                 struct page *page = *pages;
3194                 get_page(page);
3195                 vmf->page = page;
3196                 return 0;
3197         }
3198
3199         return VM_FAULT_SIGBUS;
3200 }
3201
3202 static struct vm_area_struct *__install_special_mapping(
3203         struct mm_struct *mm,
3204         unsigned long addr, unsigned long len,
3205         unsigned long vm_flags, void *priv,
3206         const struct vm_operations_struct *ops)
3207 {
3208         int ret;
3209         struct vm_area_struct *vma;
3210
3211         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
3212         if (unlikely(vma == NULL))
3213                 return ERR_PTR(-ENOMEM);
3214
3215         INIT_LIST_HEAD(&vma->anon_vma_chain);
3216         vma->vm_mm = mm;
3217         vma->vm_start = addr;
3218         vma->vm_end = addr + len;
3219
3220         vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3221         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3222
3223         vma->vm_ops = ops;
3224         vma->vm_private_data = priv;
3225
3226         ret = insert_vm_struct(mm, vma);
3227         if (ret)
3228                 goto out;
3229
3230         vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3231
3232         perf_event_mmap(vma);
3233
3234         return vma;
3235
3236 out:
3237         kmem_cache_free(vm_area_cachep, vma);
3238         return ERR_PTR(ret);
3239 }
3240
3241 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3242         const struct vm_special_mapping *sm)
3243 {
3244         return vma->vm_private_data == sm &&
3245                 (vma->vm_ops == &special_mapping_vmops ||
3246                  vma->vm_ops == &legacy_special_mapping_vmops);
3247 }
3248
3249 /*
3250  * Called with mm->mmap_sem held for writing.
3251  * Insert a new vma covering the given region, with the given flags.
3252  * Its pages are supplied by the given array of struct page *.
3253  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3254  * The region past the last page supplied will always produce SIGBUS.
3255  * The array pointer and the pages it points to are assumed to stay alive
3256  * for as long as this mapping might exist.
3257  */
3258 struct vm_area_struct *_install_special_mapping(
3259         struct mm_struct *mm,
3260         unsigned long addr, unsigned long len,
3261         unsigned long vm_flags, const struct vm_special_mapping *spec)
3262 {
3263         return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3264                                         &special_mapping_vmops);
3265 }
3266
3267 int install_special_mapping(struct mm_struct *mm,
3268                             unsigned long addr, unsigned long len,
3269                             unsigned long vm_flags, struct page **pages)
3270 {
3271         struct vm_area_struct *vma = __install_special_mapping(
3272                 mm, addr, len, vm_flags, (void *)pages,
3273                 &legacy_special_mapping_vmops);
3274
3275         return PTR_ERR_OR_ZERO(vma);
3276 }
3277
3278 static DEFINE_MUTEX(mm_all_locks_mutex);
3279
3280 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3281 {
3282         if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3283                 /*
3284                  * The LSB of head.next can't change from under us
3285                  * because we hold the mm_all_locks_mutex.
3286                  */
3287                 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3288                 /*
3289                  * We can safely modify head.next after taking the
3290                  * anon_vma->root->rwsem. If some other vma in this mm shares
3291                  * the same anon_vma we won't take it again.
3292                  *
3293                  * No need of atomic instructions here, head.next
3294                  * can't change from under us thanks to the
3295                  * anon_vma->root->rwsem.
3296                  */
3297                 if (__test_and_set_bit(0, (unsigned long *)
3298                                        &anon_vma->root->rb_root.rb_node))
3299                         BUG();
3300         }
3301 }
3302
3303 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3304 {
3305         if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3306                 /*
3307                  * AS_MM_ALL_LOCKS can't change from under us because
3308                  * we hold the mm_all_locks_mutex.
3309                  *
3310                  * Operations on ->flags have to be atomic because
3311                  * even if AS_MM_ALL_LOCKS is stable thanks to the
3312                  * mm_all_locks_mutex, there may be other cpus
3313                  * changing other bitflags in parallel to us.
3314                  */
3315                 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3316                         BUG();
3317                 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem);
3318         }
3319 }
3320
3321 /*
3322  * This operation locks against the VM for all pte/vma/mm related
3323  * operations that could ever happen on a certain mm. This includes
3324  * vmtruncate, try_to_unmap, and all page faults.
3325  *
3326  * The caller must take the mmap_sem in write mode before calling
3327  * mm_take_all_locks(). The caller isn't allowed to release the
3328  * mmap_sem until mm_drop_all_locks() returns.
3329  *
3330  * mmap_sem in write mode is required in order to block all operations
3331  * that could modify pagetables and free pages without need of
3332  * altering the vma layout. It's also needed in write mode to avoid new
3333  * anon_vmas to be associated with existing vmas.
3334  *
3335  * A single task can't take more than one mm_take_all_locks() in a row
3336  * or it would deadlock.
3337  *
3338  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3339  * mapping->flags avoid to take the same lock twice, if more than one
3340  * vma in this mm is backed by the same anon_vma or address_space.
3341  *
3342  * We take locks in following order, accordingly to comment at beginning
3343  * of mm/rmap.c:
3344  *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3345  *     hugetlb mapping);
3346  *   - all i_mmap_rwsem locks;
3347  *   - all anon_vma->rwseml
3348  *
3349  * We can take all locks within these types randomly because the VM code
3350  * doesn't nest them and we protected from parallel mm_take_all_locks() by
3351  * mm_all_locks_mutex.
3352  *
3353  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3354  * that may have to take thousand of locks.
3355  *
3356  * mm_take_all_locks() can fail if it's interrupted by signals.
3357  */
3358 int mm_take_all_locks(struct mm_struct *mm)
3359 {
3360         struct vm_area_struct *vma;
3361         struct anon_vma_chain *avc;
3362
3363         BUG_ON(down_read_trylock(&mm->mmap_sem));
3364
3365         mutex_lock(&mm_all_locks_mutex);
3366
3367         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3368                 if (signal_pending(current))
3369                         goto out_unlock;
3370                 if (vma->vm_file && vma->vm_file->f_mapping &&
3371                                 is_vm_hugetlb_page(vma))
3372                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
3373         }
3374
3375         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3376                 if (signal_pending(current))
3377                         goto out_unlock;
3378                 if (vma->vm_file && vma->vm_file->f_mapping &&
3379                                 !is_vm_hugetlb_page(vma))
3380                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
3381         }
3382
3383         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3384                 if (signal_pending(current))
3385                         goto out_unlock;
3386                 if (vma->anon_vma)
3387                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3388                                 vm_lock_anon_vma(mm, avc->anon_vma);
3389         }
3390
3391         return 0;
3392
3393 out_unlock:
3394         mm_drop_all_locks(mm);
3395         return -EINTR;
3396 }
3397
3398 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3399 {
3400         if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3401                 /*
3402                  * The LSB of head.next can't change to 0 from under
3403                  * us because we hold the mm_all_locks_mutex.
3404                  *
3405                  * We must however clear the bitflag before unlocking
3406                  * the vma so the users using the anon_vma->rb_root will
3407                  * never see our bitflag.
3408                  *
3409                  * No need of atomic instructions here, head.next
3410                  * can't change from under us until we release the
3411                  * anon_vma->root->rwsem.
3412                  */
3413                 if (!__test_and_clear_bit(0, (unsigned long *)
3414                                           &anon_vma->root->rb_root.rb_node))
3415                         BUG();
3416                 anon_vma_unlock_write(anon_vma);
3417         }
3418 }
3419
3420 static void vm_unlock_mapping(struct address_space *mapping)
3421 {
3422         if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3423                 /*
3424                  * AS_MM_ALL_LOCKS can't change to 0 from under us
3425                  * because we hold the mm_all_locks_mutex.
3426                  */
3427                 i_mmap_unlock_write(mapping);
3428                 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3429                                         &mapping->flags))
3430                         BUG();
3431         }
3432 }
3433
3434 /*
3435  * The mmap_sem cannot be released by the caller until
3436  * mm_drop_all_locks() returns.
3437  */
3438 void mm_drop_all_locks(struct mm_struct *mm)
3439 {
3440         struct vm_area_struct *vma;
3441         struct anon_vma_chain *avc;
3442
3443         BUG_ON(down_read_trylock(&mm->mmap_sem));
3444         BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3445
3446         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3447                 if (vma->anon_vma)
3448                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3449                                 vm_unlock_anon_vma(avc->anon_vma);
3450                 if (vma->vm_file && vma->vm_file->f_mapping)
3451                         vm_unlock_mapping(vma->vm_file->f_mapping);
3452         }
3453
3454         mutex_unlock(&mm_all_locks_mutex);
3455 }
3456
3457 /*
3458  * initialise the percpu counter for VM
3459  */
3460 void __init mmap_init(void)
3461 {
3462         int ret;
3463
3464         ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3465         VM_BUG_ON(ret);
3466 }
3467
3468 /*
3469  * Initialise sysctl_user_reserve_kbytes.
3470  *
3471  * This is intended to prevent a user from starting a single memory hogging
3472  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3473  * mode.
3474  *
3475  * The default value is min(3% of free memory, 128MB)
3476  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3477  */
3478 static int init_user_reserve(void)
3479 {
3480         unsigned long free_kbytes;
3481
3482         free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3483
3484         sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3485         return 0;
3486 }
3487 subsys_initcall(init_user_reserve);
3488
3489 /*
3490  * Initialise sysctl_admin_reserve_kbytes.
3491  *
3492  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3493  * to log in and kill a memory hogging process.
3494  *
3495  * Systems with more than 256MB will reserve 8MB, enough to recover
3496  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3497  * only reserve 3% of free pages by default.
3498  */
3499 static int init_admin_reserve(void)
3500 {
3501         unsigned long free_kbytes;
3502
3503         free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3504
3505         sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3506         return 0;
3507 }
3508 subsys_initcall(init_admin_reserve);
3509
3510 /*
3511  * Reinititalise user and admin reserves if memory is added or removed.
3512  *
3513  * The default user reserve max is 128MB, and the default max for the
3514  * admin reserve is 8MB. These are usually, but not always, enough to
3515  * enable recovery from a memory hogging process using login/sshd, a shell,
3516  * and tools like top. It may make sense to increase or even disable the
3517  * reserve depending on the existence of swap or variations in the recovery
3518  * tools. So, the admin may have changed them.
3519  *
3520  * If memory is added and the reserves have been eliminated or increased above
3521  * the default max, then we'll trust the admin.
3522  *
3523  * If memory is removed and there isn't enough free memory, then we
3524  * need to reset the reserves.
3525  *
3526  * Otherwise keep the reserve set by the admin.
3527  */
3528 static int reserve_mem_notifier(struct notifier_block *nb,
3529                              unsigned long action, void *data)
3530 {
3531         unsigned long tmp, free_kbytes;
3532
3533         switch (action) {
3534         case MEM_ONLINE:
3535                 /* Default max is 128MB. Leave alone if modified by operator. */
3536                 tmp = sysctl_user_reserve_kbytes;
3537                 if (0 < tmp && tmp < (1UL << 17))
3538                         init_user_reserve();
3539
3540                 /* Default max is 8MB.  Leave alone if modified by operator. */
3541                 tmp = sysctl_admin_reserve_kbytes;
3542                 if (0 < tmp && tmp < (1UL << 13))
3543                         init_admin_reserve();
3544
3545                 break;
3546         case MEM_OFFLINE:
3547                 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3548
3549                 if (sysctl_user_reserve_kbytes > free_kbytes) {
3550                         init_user_reserve();
3551                         pr_info("vm.user_reserve_kbytes reset to %lu\n",
3552                                 sysctl_user_reserve_kbytes);
3553                 }
3554
3555                 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3556                         init_admin_reserve();
3557                         pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3558                                 sysctl_admin_reserve_kbytes);
3559                 }
3560                 break;
3561         default:
3562                 break;
3563         }
3564         return NOTIFY_OK;
3565 }
3566
3567 static struct notifier_block reserve_mem_nb = {
3568         .notifier_call = reserve_mem_notifier,
3569 };
3570
3571 static int __meminit init_reserve_notifier(void)
3572 {
3573         if (register_hotmemory_notifier(&reserve_mem_nb))
3574                 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3575
3576         return 0;
3577 }
3578 subsys_initcall(init_reserve_notifier);