]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - mm/page_cgroup.c
ARM: dts: tx6: add enet_out clock for FEC
[karo-tx-linux.git] / mm / page_cgroup.c
1 #include <linux/mm.h>
2 #include <linux/mmzone.h>
3 #include <linux/bootmem.h>
4 #include <linux/bit_spinlock.h>
5 #include <linux/page_cgroup.h>
6 #include <linux/hash.h>
7 #include <linux/slab.h>
8 #include <linux/memory.h>
9 #include <linux/vmalloc.h>
10 #include <linux/cgroup.h>
11 #include <linux/swapops.h>
12 #include <linux/kmemleak.h>
13
14 static unsigned long total_usage;
15
16 #if !defined(CONFIG_SPARSEMEM)
17
18
19 void __meminit pgdat_page_cgroup_init(struct pglist_data *pgdat)
20 {
21         pgdat->node_page_cgroup = NULL;
22 }
23
24 struct page_cgroup *lookup_page_cgroup(struct page *page)
25 {
26         unsigned long pfn = page_to_pfn(page);
27         unsigned long offset;
28         struct page_cgroup *base;
29
30         base = NODE_DATA(page_to_nid(page))->node_page_cgroup;
31 #ifdef CONFIG_DEBUG_VM
32         /*
33          * The sanity checks the page allocator does upon freeing a
34          * page can reach here before the page_cgroup arrays are
35          * allocated when feeding a range of pages to the allocator
36          * for the first time during bootup or memory hotplug.
37          */
38         if (unlikely(!base))
39                 return NULL;
40 #endif
41         offset = pfn - NODE_DATA(page_to_nid(page))->node_start_pfn;
42         return base + offset;
43 }
44
45 static int __init alloc_node_page_cgroup(int nid)
46 {
47         struct page_cgroup *base;
48         unsigned long table_size;
49         unsigned long nr_pages;
50
51         nr_pages = NODE_DATA(nid)->node_spanned_pages;
52         if (!nr_pages)
53                 return 0;
54
55         table_size = sizeof(struct page_cgroup) * nr_pages;
56
57         base = memblock_virt_alloc_try_nid_nopanic(
58                         table_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
59                         BOOTMEM_ALLOC_ACCESSIBLE, nid);
60         if (!base)
61                 return -ENOMEM;
62         NODE_DATA(nid)->node_page_cgroup = base;
63         total_usage += table_size;
64         return 0;
65 }
66
67 void __init page_cgroup_init_flatmem(void)
68 {
69
70         int nid, fail;
71
72         if (mem_cgroup_disabled())
73                 return;
74
75         for_each_online_node(nid)  {
76                 fail = alloc_node_page_cgroup(nid);
77                 if (fail)
78                         goto fail;
79         }
80         printk(KERN_INFO "allocated %ld bytes of page_cgroup\n", total_usage);
81         printk(KERN_INFO "please try 'cgroup_disable=memory' option if you"
82         " don't want memory cgroups\n");
83         return;
84 fail:
85         printk(KERN_CRIT "allocation of page_cgroup failed.\n");
86         printk(KERN_CRIT "please try 'cgroup_disable=memory' boot option\n");
87         panic("Out of memory");
88 }
89
90 #else /* CONFIG_FLAT_NODE_MEM_MAP */
91
92 struct page_cgroup *lookup_page_cgroup(struct page *page)
93 {
94         unsigned long pfn = page_to_pfn(page);
95         struct mem_section *section = __pfn_to_section(pfn);
96 #ifdef CONFIG_DEBUG_VM
97         /*
98          * The sanity checks the page allocator does upon freeing a
99          * page can reach here before the page_cgroup arrays are
100          * allocated when feeding a range of pages to the allocator
101          * for the first time during bootup or memory hotplug.
102          */
103         if (!section->page_cgroup)
104                 return NULL;
105 #endif
106         return section->page_cgroup + pfn;
107 }
108
109 static void *__meminit alloc_page_cgroup(size_t size, int nid)
110 {
111         gfp_t flags = GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN;
112         void *addr = NULL;
113
114         addr = alloc_pages_exact_nid(nid, size, flags);
115         if (addr) {
116                 kmemleak_alloc(addr, size, 1, flags);
117                 return addr;
118         }
119
120         if (node_state(nid, N_HIGH_MEMORY))
121                 addr = vzalloc_node(size, nid);
122         else
123                 addr = vzalloc(size);
124
125         return addr;
126 }
127
128 static int __meminit init_section_page_cgroup(unsigned long pfn, int nid)
129 {
130         struct mem_section *section;
131         struct page_cgroup *base;
132         unsigned long table_size;
133
134         section = __pfn_to_section(pfn);
135
136         if (section->page_cgroup)
137                 return 0;
138
139         table_size = sizeof(struct page_cgroup) * PAGES_PER_SECTION;
140         base = alloc_page_cgroup(table_size, nid);
141
142         /*
143          * The value stored in section->page_cgroup is (base - pfn)
144          * and it does not point to the memory block allocated above,
145          * causing kmemleak false positives.
146          */
147         kmemleak_not_leak(base);
148
149         if (!base) {
150                 printk(KERN_ERR "page cgroup allocation failure\n");
151                 return -ENOMEM;
152         }
153
154         /*
155          * The passed "pfn" may not be aligned to SECTION.  For the calculation
156          * we need to apply a mask.
157          */
158         pfn &= PAGE_SECTION_MASK;
159         section->page_cgroup = base - pfn;
160         total_usage += table_size;
161         return 0;
162 }
163 #ifdef CONFIG_MEMORY_HOTPLUG
164 static void free_page_cgroup(void *addr)
165 {
166         if (is_vmalloc_addr(addr)) {
167                 vfree(addr);
168         } else {
169                 struct page *page = virt_to_page(addr);
170                 size_t table_size =
171                         sizeof(struct page_cgroup) * PAGES_PER_SECTION;
172
173                 BUG_ON(PageReserved(page));
174                 free_pages_exact(addr, table_size);
175         }
176 }
177
178 static void __free_page_cgroup(unsigned long pfn)
179 {
180         struct mem_section *ms;
181         struct page_cgroup *base;
182
183         ms = __pfn_to_section(pfn);
184         if (!ms || !ms->page_cgroup)
185                 return;
186         base = ms->page_cgroup + pfn;
187         free_page_cgroup(base);
188         ms->page_cgroup = NULL;
189 }
190
191 static int __meminit online_page_cgroup(unsigned long start_pfn,
192                                 unsigned long nr_pages,
193                                 int nid)
194 {
195         unsigned long start, end, pfn;
196         int fail = 0;
197
198         start = SECTION_ALIGN_DOWN(start_pfn);
199         end = SECTION_ALIGN_UP(start_pfn + nr_pages);
200
201         if (nid == -1) {
202                 /*
203                  * In this case, "nid" already exists and contains valid memory.
204                  * "start_pfn" passed to us is a pfn which is an arg for
205                  * online__pages(), and start_pfn should exist.
206                  */
207                 nid = pfn_to_nid(start_pfn);
208                 VM_BUG_ON(!node_state(nid, N_ONLINE));
209         }
210
211         for (pfn = start; !fail && pfn < end; pfn += PAGES_PER_SECTION) {
212                 if (!pfn_present(pfn))
213                         continue;
214                 fail = init_section_page_cgroup(pfn, nid);
215         }
216         if (!fail)
217                 return 0;
218
219         /* rollback */
220         for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION)
221                 __free_page_cgroup(pfn);
222
223         return -ENOMEM;
224 }
225
226 static int __meminit offline_page_cgroup(unsigned long start_pfn,
227                                 unsigned long nr_pages, int nid)
228 {
229         unsigned long start, end, pfn;
230
231         start = SECTION_ALIGN_DOWN(start_pfn);
232         end = SECTION_ALIGN_UP(start_pfn + nr_pages);
233
234         for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION)
235                 __free_page_cgroup(pfn);
236         return 0;
237
238 }
239
240 static int __meminit page_cgroup_callback(struct notifier_block *self,
241                                unsigned long action, void *arg)
242 {
243         struct memory_notify *mn = arg;
244         int ret = 0;
245         switch (action) {
246         case MEM_GOING_ONLINE:
247                 ret = online_page_cgroup(mn->start_pfn,
248                                    mn->nr_pages, mn->status_change_nid);
249                 break;
250         case MEM_OFFLINE:
251                 offline_page_cgroup(mn->start_pfn,
252                                 mn->nr_pages, mn->status_change_nid);
253                 break;
254         case MEM_CANCEL_ONLINE:
255                 offline_page_cgroup(mn->start_pfn,
256                                 mn->nr_pages, mn->status_change_nid);
257                 break;
258         case MEM_GOING_OFFLINE:
259                 break;
260         case MEM_ONLINE:
261         case MEM_CANCEL_OFFLINE:
262                 break;
263         }
264
265         return notifier_from_errno(ret);
266 }
267
268 #endif
269
270 void __init page_cgroup_init(void)
271 {
272         unsigned long pfn;
273         int nid;
274
275         if (mem_cgroup_disabled())
276                 return;
277
278         for_each_node_state(nid, N_MEMORY) {
279                 unsigned long start_pfn, end_pfn;
280
281                 start_pfn = node_start_pfn(nid);
282                 end_pfn = node_end_pfn(nid);
283                 /*
284                  * start_pfn and end_pfn may not be aligned to SECTION and the
285                  * page->flags of out of node pages are not initialized.  So we
286                  * scan [start_pfn, the biggest section's pfn < end_pfn) here.
287                  */
288                 for (pfn = start_pfn;
289                      pfn < end_pfn;
290                      pfn = ALIGN(pfn + 1, PAGES_PER_SECTION)) {
291
292                         if (!pfn_valid(pfn))
293                                 continue;
294                         /*
295                          * Nodes's pfns can be overlapping.
296                          * We know some arch can have a nodes layout such as
297                          * -------------pfn-------------->
298                          * N0 | N1 | N2 | N0 | N1 | N2|....
299                          */
300                         if (pfn_to_nid(pfn) != nid)
301                                 continue;
302                         if (init_section_page_cgroup(pfn, nid))
303                                 goto oom;
304                 }
305         }
306         hotplug_memory_notifier(page_cgroup_callback, 0);
307         printk(KERN_INFO "allocated %ld bytes of page_cgroup\n", total_usage);
308         printk(KERN_INFO "please try 'cgroup_disable=memory' option if you "
309                          "don't want memory cgroups\n");
310         return;
311 oom:
312         printk(KERN_CRIT "try 'cgroup_disable=memory' boot option\n");
313         panic("Out of memory");
314 }
315
316 void __meminit pgdat_page_cgroup_init(struct pglist_data *pgdat)
317 {
318         return;
319 }
320
321 #endif
322
323
324 #ifdef CONFIG_MEMCG_SWAP
325
326 static DEFINE_MUTEX(swap_cgroup_mutex);
327 struct swap_cgroup_ctrl {
328         struct page **map;
329         unsigned long length;
330         spinlock_t      lock;
331 };
332
333 static struct swap_cgroup_ctrl swap_cgroup_ctrl[MAX_SWAPFILES];
334
335 struct swap_cgroup {
336         unsigned short          id;
337 };
338 #define SC_PER_PAGE     (PAGE_SIZE/sizeof(struct swap_cgroup))
339
340 /*
341  * SwapCgroup implements "lookup" and "exchange" operations.
342  * In typical usage, this swap_cgroup is accessed via memcg's charge/uncharge
343  * against SwapCache. At swap_free(), this is accessed directly from swap.
344  *
345  * This means,
346  *  - we have no race in "exchange" when we're accessed via SwapCache because
347  *    SwapCache(and its swp_entry) is under lock.
348  *  - When called via swap_free(), there is no user of this entry and no race.
349  * Then, we don't need lock around "exchange".
350  *
351  * TODO: we can push these buffers out to HIGHMEM.
352  */
353
354 /*
355  * allocate buffer for swap_cgroup.
356  */
357 static int swap_cgroup_prepare(int type)
358 {
359         struct page *page;
360         struct swap_cgroup_ctrl *ctrl;
361         unsigned long idx, max;
362
363         ctrl = &swap_cgroup_ctrl[type];
364
365         for (idx = 0; idx < ctrl->length; idx++) {
366                 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
367                 if (!page)
368                         goto not_enough_page;
369                 ctrl->map[idx] = page;
370         }
371         return 0;
372 not_enough_page:
373         max = idx;
374         for (idx = 0; idx < max; idx++)
375                 __free_page(ctrl->map[idx]);
376
377         return -ENOMEM;
378 }
379
380 static struct swap_cgroup *lookup_swap_cgroup(swp_entry_t ent,
381                                         struct swap_cgroup_ctrl **ctrlp)
382 {
383         pgoff_t offset = swp_offset(ent);
384         struct swap_cgroup_ctrl *ctrl;
385         struct page *mappage;
386         struct swap_cgroup *sc;
387
388         ctrl = &swap_cgroup_ctrl[swp_type(ent)];
389         if (ctrlp)
390                 *ctrlp = ctrl;
391
392         mappage = ctrl->map[offset / SC_PER_PAGE];
393         sc = page_address(mappage);
394         return sc + offset % SC_PER_PAGE;
395 }
396
397 /**
398  * swap_cgroup_cmpxchg - cmpxchg mem_cgroup's id for this swp_entry.
399  * @ent: swap entry to be cmpxchged
400  * @old: old id
401  * @new: new id
402  *
403  * Returns old id at success, 0 at failure.
404  * (There is no mem_cgroup using 0 as its id)
405  */
406 unsigned short swap_cgroup_cmpxchg(swp_entry_t ent,
407                                         unsigned short old, unsigned short new)
408 {
409         struct swap_cgroup_ctrl *ctrl;
410         struct swap_cgroup *sc;
411         unsigned long flags;
412         unsigned short retval;
413
414         sc = lookup_swap_cgroup(ent, &ctrl);
415
416         spin_lock_irqsave(&ctrl->lock, flags);
417         retval = sc->id;
418         if (retval == old)
419                 sc->id = new;
420         else
421                 retval = 0;
422         spin_unlock_irqrestore(&ctrl->lock, flags);
423         return retval;
424 }
425
426 /**
427  * swap_cgroup_record - record mem_cgroup for this swp_entry.
428  * @ent: swap entry to be recorded into
429  * @id: mem_cgroup to be recorded
430  *
431  * Returns old value at success, 0 at failure.
432  * (Of course, old value can be 0.)
433  */
434 unsigned short swap_cgroup_record(swp_entry_t ent, unsigned short id)
435 {
436         struct swap_cgroup_ctrl *ctrl;
437         struct swap_cgroup *sc;
438         unsigned short old;
439         unsigned long flags;
440
441         sc = lookup_swap_cgroup(ent, &ctrl);
442
443         spin_lock_irqsave(&ctrl->lock, flags);
444         old = sc->id;
445         sc->id = id;
446         spin_unlock_irqrestore(&ctrl->lock, flags);
447
448         return old;
449 }
450
451 /**
452  * lookup_swap_cgroup_id - lookup mem_cgroup id tied to swap entry
453  * @ent: swap entry to be looked up.
454  *
455  * Returns ID of mem_cgroup at success. 0 at failure. (0 is invalid ID)
456  */
457 unsigned short lookup_swap_cgroup_id(swp_entry_t ent)
458 {
459         return lookup_swap_cgroup(ent, NULL)->id;
460 }
461
462 int swap_cgroup_swapon(int type, unsigned long max_pages)
463 {
464         void *array;
465         unsigned long array_size;
466         unsigned long length;
467         struct swap_cgroup_ctrl *ctrl;
468
469         if (!do_swap_account)
470                 return 0;
471
472         length = DIV_ROUND_UP(max_pages, SC_PER_PAGE);
473         array_size = length * sizeof(void *);
474
475         array = vzalloc(array_size);
476         if (!array)
477                 goto nomem;
478
479         ctrl = &swap_cgroup_ctrl[type];
480         mutex_lock(&swap_cgroup_mutex);
481         ctrl->length = length;
482         ctrl->map = array;
483         spin_lock_init(&ctrl->lock);
484         if (swap_cgroup_prepare(type)) {
485                 /* memory shortage */
486                 ctrl->map = NULL;
487                 ctrl->length = 0;
488                 mutex_unlock(&swap_cgroup_mutex);
489                 vfree(array);
490                 goto nomem;
491         }
492         mutex_unlock(&swap_cgroup_mutex);
493
494         return 0;
495 nomem:
496         printk(KERN_INFO "couldn't allocate enough memory for swap_cgroup.\n");
497         printk(KERN_INFO
498                 "swap_cgroup can be disabled by swapaccount=0 boot option\n");
499         return -ENOMEM;
500 }
501
502 void swap_cgroup_swapoff(int type)
503 {
504         struct page **map;
505         unsigned long i, length;
506         struct swap_cgroup_ctrl *ctrl;
507
508         if (!do_swap_account)
509                 return;
510
511         mutex_lock(&swap_cgroup_mutex);
512         ctrl = &swap_cgroup_ctrl[type];
513         map = ctrl->map;
514         length = ctrl->length;
515         ctrl->map = NULL;
516         ctrl->length = 0;
517         mutex_unlock(&swap_cgroup_mutex);
518
519         if (map) {
520                 for (i = 0; i < length; i++) {
521                         struct page *page = map[i];
522                         if (page)
523                                 __free_page(page);
524                 }
525                 vfree(map);
526         }
527 }
528
529 #endif