]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - mm/page_io.c
Merge branch 'i2c/for-current' of git://git.kernel.org/pub/scm/linux/kernel/git/wsa...
[karo-tx-linux.git] / mm / page_io.c
1 /*
2  *  linux/mm/page_io.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, 
7  *  Asynchronous swapping added 30.12.95. Stephen Tweedie
8  *  Removed race in async swapping. 14.4.1996. Bruno Haible
9  *  Add swap of shared pages through the page cache. 20.2.1998. Stephen Tweedie
10  *  Always use brw_page, life becomes simpler. 12 May 1998 Eric Biederman
11  */
12
13 #include <linux/mm.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/gfp.h>
16 #include <linux/pagemap.h>
17 #include <linux/swap.h>
18 #include <linux/bio.h>
19 #include <linux/swapops.h>
20 #include <linux/buffer_head.h>
21 #include <linux/writeback.h>
22 #include <linux/frontswap.h>
23 #include <linux/blkdev.h>
24 #include <linux/uio.h>
25 #include <linux/sched/task.h>
26 #include <asm/pgtable.h>
27
28 static struct bio *get_swap_bio(gfp_t gfp_flags,
29                                 struct page *page, bio_end_io_t end_io)
30 {
31         struct bio *bio;
32
33         bio = bio_alloc(gfp_flags, 1);
34         if (bio) {
35                 bio->bi_iter.bi_sector = map_swap_page(page, &bio->bi_bdev);
36                 bio->bi_iter.bi_sector <<= PAGE_SHIFT - 9;
37                 bio->bi_end_io = end_io;
38
39                 bio_add_page(bio, page, PAGE_SIZE, 0);
40                 BUG_ON(bio->bi_iter.bi_size != PAGE_SIZE);
41         }
42         return bio;
43 }
44
45 void end_swap_bio_write(struct bio *bio)
46 {
47         struct page *page = bio->bi_io_vec[0].bv_page;
48
49         if (bio->bi_status) {
50                 SetPageError(page);
51                 /*
52                  * We failed to write the page out to swap-space.
53                  * Re-dirty the page in order to avoid it being reclaimed.
54                  * Also print a dire warning that things will go BAD (tm)
55                  * very quickly.
56                  *
57                  * Also clear PG_reclaim to avoid rotate_reclaimable_page()
58                  */
59                 set_page_dirty(page);
60                 pr_alert("Write-error on swap-device (%u:%u:%llu)\n",
61                          imajor(bio->bi_bdev->bd_inode),
62                          iminor(bio->bi_bdev->bd_inode),
63                          (unsigned long long)bio->bi_iter.bi_sector);
64                 ClearPageReclaim(page);
65         }
66         end_page_writeback(page);
67         bio_put(bio);
68 }
69
70 static void swap_slot_free_notify(struct page *page)
71 {
72         struct swap_info_struct *sis;
73         struct gendisk *disk;
74
75         /*
76          * There is no guarantee that the page is in swap cache - the software
77          * suspend code (at least) uses end_swap_bio_read() against a non-
78          * swapcache page.  So we must check PG_swapcache before proceeding with
79          * this optimization.
80          */
81         if (unlikely(!PageSwapCache(page)))
82                 return;
83
84         sis = page_swap_info(page);
85         if (!(sis->flags & SWP_BLKDEV))
86                 return;
87
88         /*
89          * The swap subsystem performs lazy swap slot freeing,
90          * expecting that the page will be swapped out again.
91          * So we can avoid an unnecessary write if the page
92          * isn't redirtied.
93          * This is good for real swap storage because we can
94          * reduce unnecessary I/O and enhance wear-leveling
95          * if an SSD is used as the as swap device.
96          * But if in-memory swap device (eg zram) is used,
97          * this causes a duplicated copy between uncompressed
98          * data in VM-owned memory and compressed data in
99          * zram-owned memory.  So let's free zram-owned memory
100          * and make the VM-owned decompressed page *dirty*,
101          * so the page should be swapped out somewhere again if
102          * we again wish to reclaim it.
103          */
104         disk = sis->bdev->bd_disk;
105         if (disk->fops->swap_slot_free_notify) {
106                 swp_entry_t entry;
107                 unsigned long offset;
108
109                 entry.val = page_private(page);
110                 offset = swp_offset(entry);
111
112                 SetPageDirty(page);
113                 disk->fops->swap_slot_free_notify(sis->bdev,
114                                 offset);
115         }
116 }
117
118 static void end_swap_bio_read(struct bio *bio)
119 {
120         struct page *page = bio->bi_io_vec[0].bv_page;
121         struct task_struct *waiter = bio->bi_private;
122
123         if (bio->bi_status) {
124                 SetPageError(page);
125                 ClearPageUptodate(page);
126                 pr_alert("Read-error on swap-device (%u:%u:%llu)\n",
127                          imajor(bio->bi_bdev->bd_inode),
128                          iminor(bio->bi_bdev->bd_inode),
129                          (unsigned long long)bio->bi_iter.bi_sector);
130                 goto out;
131         }
132
133         SetPageUptodate(page);
134         swap_slot_free_notify(page);
135 out:
136         unlock_page(page);
137         WRITE_ONCE(bio->bi_private, NULL);
138         bio_put(bio);
139         wake_up_process(waiter);
140         put_task_struct(waiter);
141 }
142
143 int generic_swapfile_activate(struct swap_info_struct *sis,
144                                 struct file *swap_file,
145                                 sector_t *span)
146 {
147         struct address_space *mapping = swap_file->f_mapping;
148         struct inode *inode = mapping->host;
149         unsigned blocks_per_page;
150         unsigned long page_no;
151         unsigned blkbits;
152         sector_t probe_block;
153         sector_t last_block;
154         sector_t lowest_block = -1;
155         sector_t highest_block = 0;
156         int nr_extents = 0;
157         int ret;
158
159         blkbits = inode->i_blkbits;
160         blocks_per_page = PAGE_SIZE >> blkbits;
161
162         /*
163          * Map all the blocks into the extent list.  This code doesn't try
164          * to be very smart.
165          */
166         probe_block = 0;
167         page_no = 0;
168         last_block = i_size_read(inode) >> blkbits;
169         while ((probe_block + blocks_per_page) <= last_block &&
170                         page_no < sis->max) {
171                 unsigned block_in_page;
172                 sector_t first_block;
173
174                 cond_resched();
175
176                 first_block = bmap(inode, probe_block);
177                 if (first_block == 0)
178                         goto bad_bmap;
179
180                 /*
181                  * It must be PAGE_SIZE aligned on-disk
182                  */
183                 if (first_block & (blocks_per_page - 1)) {
184                         probe_block++;
185                         goto reprobe;
186                 }
187
188                 for (block_in_page = 1; block_in_page < blocks_per_page;
189                                         block_in_page++) {
190                         sector_t block;
191
192                         block = bmap(inode, probe_block + block_in_page);
193                         if (block == 0)
194                                 goto bad_bmap;
195                         if (block != first_block + block_in_page) {
196                                 /* Discontiguity */
197                                 probe_block++;
198                                 goto reprobe;
199                         }
200                 }
201
202                 first_block >>= (PAGE_SHIFT - blkbits);
203                 if (page_no) {  /* exclude the header page */
204                         if (first_block < lowest_block)
205                                 lowest_block = first_block;
206                         if (first_block > highest_block)
207                                 highest_block = first_block;
208                 }
209
210                 /*
211                  * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
212                  */
213                 ret = add_swap_extent(sis, page_no, 1, first_block);
214                 if (ret < 0)
215                         goto out;
216                 nr_extents += ret;
217                 page_no++;
218                 probe_block += blocks_per_page;
219 reprobe:
220                 continue;
221         }
222         ret = nr_extents;
223         *span = 1 + highest_block - lowest_block;
224         if (page_no == 0)
225                 page_no = 1;    /* force Empty message */
226         sis->max = page_no;
227         sis->pages = page_no - 1;
228         sis->highest_bit = page_no - 1;
229 out:
230         return ret;
231 bad_bmap:
232         pr_err("swapon: swapfile has holes\n");
233         ret = -EINVAL;
234         goto out;
235 }
236
237 /*
238  * We may have stale swap cache pages in memory: notice
239  * them here and get rid of the unnecessary final write.
240  */
241 int swap_writepage(struct page *page, struct writeback_control *wbc)
242 {
243         int ret = 0;
244
245         if (try_to_free_swap(page)) {
246                 unlock_page(page);
247                 goto out;
248         }
249         if (frontswap_store(page) == 0) {
250                 set_page_writeback(page);
251                 unlock_page(page);
252                 end_page_writeback(page);
253                 goto out;
254         }
255         ret = __swap_writepage(page, wbc, end_swap_bio_write);
256 out:
257         return ret;
258 }
259
260 static sector_t swap_page_sector(struct page *page)
261 {
262         return (sector_t)__page_file_index(page) << (PAGE_SHIFT - 9);
263 }
264
265 int __swap_writepage(struct page *page, struct writeback_control *wbc,
266                 bio_end_io_t end_write_func)
267 {
268         struct bio *bio;
269         int ret;
270         struct swap_info_struct *sis = page_swap_info(page);
271
272         VM_BUG_ON_PAGE(!PageSwapCache(page), page);
273         if (sis->flags & SWP_FILE) {
274                 struct kiocb kiocb;
275                 struct file *swap_file = sis->swap_file;
276                 struct address_space *mapping = swap_file->f_mapping;
277                 struct bio_vec bv = {
278                         .bv_page = page,
279                         .bv_len  = PAGE_SIZE,
280                         .bv_offset = 0
281                 };
282                 struct iov_iter from;
283
284                 iov_iter_bvec(&from, ITER_BVEC | WRITE, &bv, 1, PAGE_SIZE);
285                 init_sync_kiocb(&kiocb, swap_file);
286                 kiocb.ki_pos = page_file_offset(page);
287
288                 set_page_writeback(page);
289                 unlock_page(page);
290                 ret = mapping->a_ops->direct_IO(&kiocb, &from);
291                 if (ret == PAGE_SIZE) {
292                         count_vm_event(PSWPOUT);
293                         ret = 0;
294                 } else {
295                         /*
296                          * In the case of swap-over-nfs, this can be a
297                          * temporary failure if the system has limited
298                          * memory for allocating transmit buffers.
299                          * Mark the page dirty and avoid
300                          * rotate_reclaimable_page but rate-limit the
301                          * messages but do not flag PageError like
302                          * the normal direct-to-bio case as it could
303                          * be temporary.
304                          */
305                         set_page_dirty(page);
306                         ClearPageReclaim(page);
307                         pr_err_ratelimited("Write error on dio swapfile (%llu)\n",
308                                            page_file_offset(page));
309                 }
310                 end_page_writeback(page);
311                 return ret;
312         }
313
314         ret = bdev_write_page(sis->bdev, swap_page_sector(page), page, wbc);
315         if (!ret) {
316                 count_vm_event(PSWPOUT);
317                 return 0;
318         }
319
320         ret = 0;
321         bio = get_swap_bio(GFP_NOIO, page, end_write_func);
322         if (bio == NULL) {
323                 set_page_dirty(page);
324                 unlock_page(page);
325                 ret = -ENOMEM;
326                 goto out;
327         }
328         bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc);
329         count_vm_event(PSWPOUT);
330         set_page_writeback(page);
331         unlock_page(page);
332         submit_bio(bio);
333 out:
334         return ret;
335 }
336
337 int swap_readpage(struct page *page, bool do_poll)
338 {
339         struct bio *bio;
340         int ret = 0;
341         struct swap_info_struct *sis = page_swap_info(page);
342         blk_qc_t qc;
343         struct block_device *bdev;
344
345         VM_BUG_ON_PAGE(!PageSwapCache(page), page);
346         VM_BUG_ON_PAGE(!PageLocked(page), page);
347         VM_BUG_ON_PAGE(PageUptodate(page), page);
348         if (frontswap_load(page) == 0) {
349                 SetPageUptodate(page);
350                 unlock_page(page);
351                 goto out;
352         }
353
354         if (sis->flags & SWP_FILE) {
355                 struct file *swap_file = sis->swap_file;
356                 struct address_space *mapping = swap_file->f_mapping;
357
358                 ret = mapping->a_ops->readpage(swap_file, page);
359                 if (!ret)
360                         count_vm_event(PSWPIN);
361                 return ret;
362         }
363
364         ret = bdev_read_page(sis->bdev, swap_page_sector(page), page);
365         if (!ret) {
366                 if (trylock_page(page)) {
367                         swap_slot_free_notify(page);
368                         unlock_page(page);
369                 }
370
371                 count_vm_event(PSWPIN);
372                 return 0;
373         }
374
375         ret = 0;
376         bio = get_swap_bio(GFP_KERNEL, page, end_swap_bio_read);
377         if (bio == NULL) {
378                 unlock_page(page);
379                 ret = -ENOMEM;
380                 goto out;
381         }
382         bdev = bio->bi_bdev;
383         /*
384          * Keep this task valid during swap readpage because the oom killer may
385          * attempt to access it in the page fault retry time check.
386          */
387         get_task_struct(current);
388         bio->bi_private = current;
389         bio_set_op_attrs(bio, REQ_OP_READ, 0);
390         count_vm_event(PSWPIN);
391         bio_get(bio);
392         qc = submit_bio(bio);
393         while (do_poll) {
394                 set_current_state(TASK_UNINTERRUPTIBLE);
395                 if (!READ_ONCE(bio->bi_private))
396                         break;
397
398                 if (!blk_mq_poll(bdev_get_queue(bdev), qc))
399                         break;
400         }
401         __set_current_state(TASK_RUNNING);
402         bio_put(bio);
403
404 out:
405         return ret;
406 }
407
408 int swap_set_page_dirty(struct page *page)
409 {
410         struct swap_info_struct *sis = page_swap_info(page);
411
412         if (sis->flags & SWP_FILE) {
413                 struct address_space *mapping = sis->swap_file->f_mapping;
414
415                 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
416                 return mapping->a_ops->set_page_dirty(page);
417         } else {
418                 return __set_page_dirty_no_writeback(page);
419         }
420 }