]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - mm/shmem.c
userfaultfd: shmem: introduce vma_is_shmem
[karo-tx-linux.git] / mm / shmem.c
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *               2000 Transmeta Corp.
6  *               2000-2001 Christoph Rohland
7  *               2000-2001 SAP AG
8  *               2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/export.h>
33 #include <linux/swap.h>
34 #include <linux/uio.h>
35 #include <linux/khugepaged.h>
36
37 static struct vfsmount *shm_mnt;
38
39 #ifdef CONFIG_SHMEM
40 /*
41  * This virtual memory filesystem is heavily based on the ramfs. It
42  * extends ramfs by the ability to use swap and honor resource limits
43  * which makes it a completely usable filesystem.
44  */
45
46 #include <linux/xattr.h>
47 #include <linux/exportfs.h>
48 #include <linux/posix_acl.h>
49 #include <linux/posix_acl_xattr.h>
50 #include <linux/mman.h>
51 #include <linux/string.h>
52 #include <linux/slab.h>
53 #include <linux/backing-dev.h>
54 #include <linux/shmem_fs.h>
55 #include <linux/writeback.h>
56 #include <linux/blkdev.h>
57 #include <linux/pagevec.h>
58 #include <linux/percpu_counter.h>
59 #include <linux/falloc.h>
60 #include <linux/splice.h>
61 #include <linux/security.h>
62 #include <linux/swapops.h>
63 #include <linux/mempolicy.h>
64 #include <linux/namei.h>
65 #include <linux/ctype.h>
66 #include <linux/migrate.h>
67 #include <linux/highmem.h>
68 #include <linux/seq_file.h>
69 #include <linux/magic.h>
70 #include <linux/syscalls.h>
71 #include <linux/fcntl.h>
72 #include <uapi/linux/memfd.h>
73 #include <linux/rmap.h>
74
75 #include <linux/uaccess.h>
76 #include <asm/pgtable.h>
77
78 #include "internal.h"
79
80 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
81 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
82
83 /* Pretend that each entry is of this size in directory's i_size */
84 #define BOGO_DIRENT_SIZE 20
85
86 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
87 #define SHORT_SYMLINK_LEN 128
88
89 /*
90  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
91  * inode->i_private (with i_mutex making sure that it has only one user at
92  * a time): we would prefer not to enlarge the shmem inode just for that.
93  */
94 struct shmem_falloc {
95         wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
96         pgoff_t start;          /* start of range currently being fallocated */
97         pgoff_t next;           /* the next page offset to be fallocated */
98         pgoff_t nr_falloced;    /* how many new pages have been fallocated */
99         pgoff_t nr_unswapped;   /* how often writepage refused to swap out */
100 };
101
102 #ifdef CONFIG_TMPFS
103 static unsigned long shmem_default_max_blocks(void)
104 {
105         return totalram_pages / 2;
106 }
107
108 static unsigned long shmem_default_max_inodes(void)
109 {
110         return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
111 }
112 #endif
113
114 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
115 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
116                                 struct shmem_inode_info *info, pgoff_t index);
117 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
118                 struct page **pagep, enum sgp_type sgp,
119                 gfp_t gfp, struct mm_struct *fault_mm, int *fault_type);
120
121 int shmem_getpage(struct inode *inode, pgoff_t index,
122                 struct page **pagep, enum sgp_type sgp)
123 {
124         return shmem_getpage_gfp(inode, index, pagep, sgp,
125                 mapping_gfp_mask(inode->i_mapping), NULL, NULL);
126 }
127
128 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
129 {
130         return sb->s_fs_info;
131 }
132
133 /*
134  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
135  * for shared memory and for shared anonymous (/dev/zero) mappings
136  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
137  * consistent with the pre-accounting of private mappings ...
138  */
139 static inline int shmem_acct_size(unsigned long flags, loff_t size)
140 {
141         return (flags & VM_NORESERVE) ?
142                 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
143 }
144
145 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
146 {
147         if (!(flags & VM_NORESERVE))
148                 vm_unacct_memory(VM_ACCT(size));
149 }
150
151 static inline int shmem_reacct_size(unsigned long flags,
152                 loff_t oldsize, loff_t newsize)
153 {
154         if (!(flags & VM_NORESERVE)) {
155                 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
156                         return security_vm_enough_memory_mm(current->mm,
157                                         VM_ACCT(newsize) - VM_ACCT(oldsize));
158                 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
159                         vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
160         }
161         return 0;
162 }
163
164 /*
165  * ... whereas tmpfs objects are accounted incrementally as
166  * pages are allocated, in order to allow large sparse files.
167  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
168  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
169  */
170 static inline int shmem_acct_block(unsigned long flags, long pages)
171 {
172         if (!(flags & VM_NORESERVE))
173                 return 0;
174
175         return security_vm_enough_memory_mm(current->mm,
176                         pages * VM_ACCT(PAGE_SIZE));
177 }
178
179 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
180 {
181         if (flags & VM_NORESERVE)
182                 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
183 }
184
185 static const struct super_operations shmem_ops;
186 static const struct address_space_operations shmem_aops;
187 static const struct file_operations shmem_file_operations;
188 static const struct inode_operations shmem_inode_operations;
189 static const struct inode_operations shmem_dir_inode_operations;
190 static const struct inode_operations shmem_special_inode_operations;
191 static const struct vm_operations_struct shmem_vm_ops;
192 static struct file_system_type shmem_fs_type;
193
194 bool vma_is_shmem(struct vm_area_struct *vma)
195 {
196         return vma->vm_ops == &shmem_vm_ops;
197 }
198
199 static LIST_HEAD(shmem_swaplist);
200 static DEFINE_MUTEX(shmem_swaplist_mutex);
201
202 static int shmem_reserve_inode(struct super_block *sb)
203 {
204         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
205         if (sbinfo->max_inodes) {
206                 spin_lock(&sbinfo->stat_lock);
207                 if (!sbinfo->free_inodes) {
208                         spin_unlock(&sbinfo->stat_lock);
209                         return -ENOSPC;
210                 }
211                 sbinfo->free_inodes--;
212                 spin_unlock(&sbinfo->stat_lock);
213         }
214         return 0;
215 }
216
217 static void shmem_free_inode(struct super_block *sb)
218 {
219         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
220         if (sbinfo->max_inodes) {
221                 spin_lock(&sbinfo->stat_lock);
222                 sbinfo->free_inodes++;
223                 spin_unlock(&sbinfo->stat_lock);
224         }
225 }
226
227 /**
228  * shmem_recalc_inode - recalculate the block usage of an inode
229  * @inode: inode to recalc
230  *
231  * We have to calculate the free blocks since the mm can drop
232  * undirtied hole pages behind our back.
233  *
234  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
235  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
236  *
237  * It has to be called with the spinlock held.
238  */
239 static void shmem_recalc_inode(struct inode *inode)
240 {
241         struct shmem_inode_info *info = SHMEM_I(inode);
242         long freed;
243
244         freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
245         if (freed > 0) {
246                 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
247                 if (sbinfo->max_blocks)
248                         percpu_counter_add(&sbinfo->used_blocks, -freed);
249                 info->alloced -= freed;
250                 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
251                 shmem_unacct_blocks(info->flags, freed);
252         }
253 }
254
255 bool shmem_charge(struct inode *inode, long pages)
256 {
257         struct shmem_inode_info *info = SHMEM_I(inode);
258         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
259         unsigned long flags;
260
261         if (shmem_acct_block(info->flags, pages))
262                 return false;
263         spin_lock_irqsave(&info->lock, flags);
264         info->alloced += pages;
265         inode->i_blocks += pages * BLOCKS_PER_PAGE;
266         shmem_recalc_inode(inode);
267         spin_unlock_irqrestore(&info->lock, flags);
268         inode->i_mapping->nrpages += pages;
269
270         if (!sbinfo->max_blocks)
271                 return true;
272         if (percpu_counter_compare(&sbinfo->used_blocks,
273                                 sbinfo->max_blocks - pages) > 0) {
274                 inode->i_mapping->nrpages -= pages;
275                 spin_lock_irqsave(&info->lock, flags);
276                 info->alloced -= pages;
277                 shmem_recalc_inode(inode);
278                 spin_unlock_irqrestore(&info->lock, flags);
279                 shmem_unacct_blocks(info->flags, pages);
280                 return false;
281         }
282         percpu_counter_add(&sbinfo->used_blocks, pages);
283         return true;
284 }
285
286 void shmem_uncharge(struct inode *inode, long pages)
287 {
288         struct shmem_inode_info *info = SHMEM_I(inode);
289         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
290         unsigned long flags;
291
292         spin_lock_irqsave(&info->lock, flags);
293         info->alloced -= pages;
294         inode->i_blocks -= pages * BLOCKS_PER_PAGE;
295         shmem_recalc_inode(inode);
296         spin_unlock_irqrestore(&info->lock, flags);
297
298         if (sbinfo->max_blocks)
299                 percpu_counter_sub(&sbinfo->used_blocks, pages);
300         shmem_unacct_blocks(info->flags, pages);
301 }
302
303 /*
304  * Replace item expected in radix tree by a new item, while holding tree lock.
305  */
306 static int shmem_radix_tree_replace(struct address_space *mapping,
307                         pgoff_t index, void *expected, void *replacement)
308 {
309         struct radix_tree_node *node;
310         void **pslot;
311         void *item;
312
313         VM_BUG_ON(!expected);
314         VM_BUG_ON(!replacement);
315         item = __radix_tree_lookup(&mapping->page_tree, index, &node, &pslot);
316         if (!item)
317                 return -ENOENT;
318         if (item != expected)
319                 return -ENOENT;
320         __radix_tree_replace(&mapping->page_tree, node, pslot,
321                              replacement, NULL, NULL);
322         return 0;
323 }
324
325 /*
326  * Sometimes, before we decide whether to proceed or to fail, we must check
327  * that an entry was not already brought back from swap by a racing thread.
328  *
329  * Checking page is not enough: by the time a SwapCache page is locked, it
330  * might be reused, and again be SwapCache, using the same swap as before.
331  */
332 static bool shmem_confirm_swap(struct address_space *mapping,
333                                pgoff_t index, swp_entry_t swap)
334 {
335         void *item;
336
337         rcu_read_lock();
338         item = radix_tree_lookup(&mapping->page_tree, index);
339         rcu_read_unlock();
340         return item == swp_to_radix_entry(swap);
341 }
342
343 /*
344  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
345  *
346  * SHMEM_HUGE_NEVER:
347  *      disables huge pages for the mount;
348  * SHMEM_HUGE_ALWAYS:
349  *      enables huge pages for the mount;
350  * SHMEM_HUGE_WITHIN_SIZE:
351  *      only allocate huge pages if the page will be fully within i_size,
352  *      also respect fadvise()/madvise() hints;
353  * SHMEM_HUGE_ADVISE:
354  *      only allocate huge pages if requested with fadvise()/madvise();
355  */
356
357 #define SHMEM_HUGE_NEVER        0
358 #define SHMEM_HUGE_ALWAYS       1
359 #define SHMEM_HUGE_WITHIN_SIZE  2
360 #define SHMEM_HUGE_ADVISE       3
361
362 /*
363  * Special values.
364  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
365  *
366  * SHMEM_HUGE_DENY:
367  *      disables huge on shm_mnt and all mounts, for emergency use;
368  * SHMEM_HUGE_FORCE:
369  *      enables huge on shm_mnt and all mounts, w/o needing option, for testing;
370  *
371  */
372 #define SHMEM_HUGE_DENY         (-1)
373 #define SHMEM_HUGE_FORCE        (-2)
374
375 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
376 /* ifdef here to avoid bloating shmem.o when not necessary */
377
378 int shmem_huge __read_mostly;
379
380 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
381 static int shmem_parse_huge(const char *str)
382 {
383         if (!strcmp(str, "never"))
384                 return SHMEM_HUGE_NEVER;
385         if (!strcmp(str, "always"))
386                 return SHMEM_HUGE_ALWAYS;
387         if (!strcmp(str, "within_size"))
388                 return SHMEM_HUGE_WITHIN_SIZE;
389         if (!strcmp(str, "advise"))
390                 return SHMEM_HUGE_ADVISE;
391         if (!strcmp(str, "deny"))
392                 return SHMEM_HUGE_DENY;
393         if (!strcmp(str, "force"))
394                 return SHMEM_HUGE_FORCE;
395         return -EINVAL;
396 }
397
398 static const char *shmem_format_huge(int huge)
399 {
400         switch (huge) {
401         case SHMEM_HUGE_NEVER:
402                 return "never";
403         case SHMEM_HUGE_ALWAYS:
404                 return "always";
405         case SHMEM_HUGE_WITHIN_SIZE:
406                 return "within_size";
407         case SHMEM_HUGE_ADVISE:
408                 return "advise";
409         case SHMEM_HUGE_DENY:
410                 return "deny";
411         case SHMEM_HUGE_FORCE:
412                 return "force";
413         default:
414                 VM_BUG_ON(1);
415                 return "bad_val";
416         }
417 }
418 #endif
419
420 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
421                 struct shrink_control *sc, unsigned long nr_to_split)
422 {
423         LIST_HEAD(list), *pos, *next;
424         LIST_HEAD(to_remove);
425         struct inode *inode;
426         struct shmem_inode_info *info;
427         struct page *page;
428         unsigned long batch = sc ? sc->nr_to_scan : 128;
429         int removed = 0, split = 0;
430
431         if (list_empty(&sbinfo->shrinklist))
432                 return SHRINK_STOP;
433
434         spin_lock(&sbinfo->shrinklist_lock);
435         list_for_each_safe(pos, next, &sbinfo->shrinklist) {
436                 info = list_entry(pos, struct shmem_inode_info, shrinklist);
437
438                 /* pin the inode */
439                 inode = igrab(&info->vfs_inode);
440
441                 /* inode is about to be evicted */
442                 if (!inode) {
443                         list_del_init(&info->shrinklist);
444                         removed++;
445                         goto next;
446                 }
447
448                 /* Check if there's anything to gain */
449                 if (round_up(inode->i_size, PAGE_SIZE) ==
450                                 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
451                         list_move(&info->shrinklist, &to_remove);
452                         removed++;
453                         goto next;
454                 }
455
456                 list_move(&info->shrinklist, &list);
457 next:
458                 if (!--batch)
459                         break;
460         }
461         spin_unlock(&sbinfo->shrinklist_lock);
462
463         list_for_each_safe(pos, next, &to_remove) {
464                 info = list_entry(pos, struct shmem_inode_info, shrinklist);
465                 inode = &info->vfs_inode;
466                 list_del_init(&info->shrinklist);
467                 iput(inode);
468         }
469
470         list_for_each_safe(pos, next, &list) {
471                 int ret;
472
473                 info = list_entry(pos, struct shmem_inode_info, shrinklist);
474                 inode = &info->vfs_inode;
475
476                 if (nr_to_split && split >= nr_to_split) {
477                         iput(inode);
478                         continue;
479                 }
480
481                 page = find_lock_page(inode->i_mapping,
482                                 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
483                 if (!page)
484                         goto drop;
485
486                 if (!PageTransHuge(page)) {
487                         unlock_page(page);
488                         put_page(page);
489                         goto drop;
490                 }
491
492                 ret = split_huge_page(page);
493                 unlock_page(page);
494                 put_page(page);
495
496                 if (ret) {
497                         /* split failed: leave it on the list */
498                         iput(inode);
499                         continue;
500                 }
501
502                 split++;
503 drop:
504                 list_del_init(&info->shrinklist);
505                 removed++;
506                 iput(inode);
507         }
508
509         spin_lock(&sbinfo->shrinklist_lock);
510         list_splice_tail(&list, &sbinfo->shrinklist);
511         sbinfo->shrinklist_len -= removed;
512         spin_unlock(&sbinfo->shrinklist_lock);
513
514         return split;
515 }
516
517 static long shmem_unused_huge_scan(struct super_block *sb,
518                 struct shrink_control *sc)
519 {
520         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
521
522         if (!READ_ONCE(sbinfo->shrinklist_len))
523                 return SHRINK_STOP;
524
525         return shmem_unused_huge_shrink(sbinfo, sc, 0);
526 }
527
528 static long shmem_unused_huge_count(struct super_block *sb,
529                 struct shrink_control *sc)
530 {
531         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
532         return READ_ONCE(sbinfo->shrinklist_len);
533 }
534 #else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */
535
536 #define shmem_huge SHMEM_HUGE_DENY
537
538 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
539                 struct shrink_control *sc, unsigned long nr_to_split)
540 {
541         return 0;
542 }
543 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
544
545 /*
546  * Like add_to_page_cache_locked, but error if expected item has gone.
547  */
548 static int shmem_add_to_page_cache(struct page *page,
549                                    struct address_space *mapping,
550                                    pgoff_t index, void *expected)
551 {
552         int error, nr = hpage_nr_pages(page);
553
554         VM_BUG_ON_PAGE(PageTail(page), page);
555         VM_BUG_ON_PAGE(index != round_down(index, nr), page);
556         VM_BUG_ON_PAGE(!PageLocked(page), page);
557         VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
558         VM_BUG_ON(expected && PageTransHuge(page));
559
560         page_ref_add(page, nr);
561         page->mapping = mapping;
562         page->index = index;
563
564         spin_lock_irq(&mapping->tree_lock);
565         if (PageTransHuge(page)) {
566                 void __rcu **results;
567                 pgoff_t idx;
568                 int i;
569
570                 error = 0;
571                 if (radix_tree_gang_lookup_slot(&mapping->page_tree,
572                                         &results, &idx, index, 1) &&
573                                 idx < index + HPAGE_PMD_NR) {
574                         error = -EEXIST;
575                 }
576
577                 if (!error) {
578                         for (i = 0; i < HPAGE_PMD_NR; i++) {
579                                 error = radix_tree_insert(&mapping->page_tree,
580                                                 index + i, page + i);
581                                 VM_BUG_ON(error);
582                         }
583                         count_vm_event(THP_FILE_ALLOC);
584                 }
585         } else if (!expected) {
586                 error = radix_tree_insert(&mapping->page_tree, index, page);
587         } else {
588                 error = shmem_radix_tree_replace(mapping, index, expected,
589                                                                  page);
590         }
591
592         if (!error) {
593                 mapping->nrpages += nr;
594                 if (PageTransHuge(page))
595                         __inc_node_page_state(page, NR_SHMEM_THPS);
596                 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
597                 __mod_node_page_state(page_pgdat(page), NR_SHMEM, nr);
598                 spin_unlock_irq(&mapping->tree_lock);
599         } else {
600                 page->mapping = NULL;
601                 spin_unlock_irq(&mapping->tree_lock);
602                 page_ref_sub(page, nr);
603         }
604         return error;
605 }
606
607 /*
608  * Like delete_from_page_cache, but substitutes swap for page.
609  */
610 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
611 {
612         struct address_space *mapping = page->mapping;
613         int error;
614
615         VM_BUG_ON_PAGE(PageCompound(page), page);
616
617         spin_lock_irq(&mapping->tree_lock);
618         error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
619         page->mapping = NULL;
620         mapping->nrpages--;
621         __dec_node_page_state(page, NR_FILE_PAGES);
622         __dec_node_page_state(page, NR_SHMEM);
623         spin_unlock_irq(&mapping->tree_lock);
624         put_page(page);
625         BUG_ON(error);
626 }
627
628 /*
629  * Remove swap entry from radix tree, free the swap and its page cache.
630  */
631 static int shmem_free_swap(struct address_space *mapping,
632                            pgoff_t index, void *radswap)
633 {
634         void *old;
635
636         spin_lock_irq(&mapping->tree_lock);
637         old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
638         spin_unlock_irq(&mapping->tree_lock);
639         if (old != radswap)
640                 return -ENOENT;
641         free_swap_and_cache(radix_to_swp_entry(radswap));
642         return 0;
643 }
644
645 /*
646  * Determine (in bytes) how many of the shmem object's pages mapped by the
647  * given offsets are swapped out.
648  *
649  * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
650  * as long as the inode doesn't go away and racy results are not a problem.
651  */
652 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
653                                                 pgoff_t start, pgoff_t end)
654 {
655         struct radix_tree_iter iter;
656         void **slot;
657         struct page *page;
658         unsigned long swapped = 0;
659
660         rcu_read_lock();
661
662         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
663                 if (iter.index >= end)
664                         break;
665
666                 page = radix_tree_deref_slot(slot);
667
668                 if (radix_tree_deref_retry(page)) {
669                         slot = radix_tree_iter_retry(&iter);
670                         continue;
671                 }
672
673                 if (radix_tree_exceptional_entry(page))
674                         swapped++;
675
676                 if (need_resched()) {
677                         slot = radix_tree_iter_resume(slot, &iter);
678                         cond_resched_rcu();
679                 }
680         }
681
682         rcu_read_unlock();
683
684         return swapped << PAGE_SHIFT;
685 }
686
687 /*
688  * Determine (in bytes) how many of the shmem object's pages mapped by the
689  * given vma is swapped out.
690  *
691  * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
692  * as long as the inode doesn't go away and racy results are not a problem.
693  */
694 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
695 {
696         struct inode *inode = file_inode(vma->vm_file);
697         struct shmem_inode_info *info = SHMEM_I(inode);
698         struct address_space *mapping = inode->i_mapping;
699         unsigned long swapped;
700
701         /* Be careful as we don't hold info->lock */
702         swapped = READ_ONCE(info->swapped);
703
704         /*
705          * The easier cases are when the shmem object has nothing in swap, or
706          * the vma maps it whole. Then we can simply use the stats that we
707          * already track.
708          */
709         if (!swapped)
710                 return 0;
711
712         if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
713                 return swapped << PAGE_SHIFT;
714
715         /* Here comes the more involved part */
716         return shmem_partial_swap_usage(mapping,
717                         linear_page_index(vma, vma->vm_start),
718                         linear_page_index(vma, vma->vm_end));
719 }
720
721 /*
722  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
723  */
724 void shmem_unlock_mapping(struct address_space *mapping)
725 {
726         struct pagevec pvec;
727         pgoff_t indices[PAGEVEC_SIZE];
728         pgoff_t index = 0;
729
730         pagevec_init(&pvec, 0);
731         /*
732          * Minor point, but we might as well stop if someone else SHM_LOCKs it.
733          */
734         while (!mapping_unevictable(mapping)) {
735                 /*
736                  * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
737                  * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
738                  */
739                 pvec.nr = find_get_entries(mapping, index,
740                                            PAGEVEC_SIZE, pvec.pages, indices);
741                 if (!pvec.nr)
742                         break;
743                 index = indices[pvec.nr - 1] + 1;
744                 pagevec_remove_exceptionals(&pvec);
745                 check_move_unevictable_pages(pvec.pages, pvec.nr);
746                 pagevec_release(&pvec);
747                 cond_resched();
748         }
749 }
750
751 /*
752  * Remove range of pages and swap entries from radix tree, and free them.
753  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
754  */
755 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
756                                                                  bool unfalloc)
757 {
758         struct address_space *mapping = inode->i_mapping;
759         struct shmem_inode_info *info = SHMEM_I(inode);
760         pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
761         pgoff_t end = (lend + 1) >> PAGE_SHIFT;
762         unsigned int partial_start = lstart & (PAGE_SIZE - 1);
763         unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
764         struct pagevec pvec;
765         pgoff_t indices[PAGEVEC_SIZE];
766         long nr_swaps_freed = 0;
767         pgoff_t index;
768         int i;
769
770         if (lend == -1)
771                 end = -1;       /* unsigned, so actually very big */
772
773         pagevec_init(&pvec, 0);
774         index = start;
775         while (index < end) {
776                 pvec.nr = find_get_entries(mapping, index,
777                         min(end - index, (pgoff_t)PAGEVEC_SIZE),
778                         pvec.pages, indices);
779                 if (!pvec.nr)
780                         break;
781                 for (i = 0; i < pagevec_count(&pvec); i++) {
782                         struct page *page = pvec.pages[i];
783
784                         index = indices[i];
785                         if (index >= end)
786                                 break;
787
788                         if (radix_tree_exceptional_entry(page)) {
789                                 if (unfalloc)
790                                         continue;
791                                 nr_swaps_freed += !shmem_free_swap(mapping,
792                                                                 index, page);
793                                 continue;
794                         }
795
796                         VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
797
798                         if (!trylock_page(page))
799                                 continue;
800
801                         if (PageTransTail(page)) {
802                                 /* Middle of THP: zero out the page */
803                                 clear_highpage(page);
804                                 unlock_page(page);
805                                 continue;
806                         } else if (PageTransHuge(page)) {
807                                 if (index == round_down(end, HPAGE_PMD_NR)) {
808                                         /*
809                                          * Range ends in the middle of THP:
810                                          * zero out the page
811                                          */
812                                         clear_highpage(page);
813                                         unlock_page(page);
814                                         continue;
815                                 }
816                                 index += HPAGE_PMD_NR - 1;
817                                 i += HPAGE_PMD_NR - 1;
818                         }
819
820                         if (!unfalloc || !PageUptodate(page)) {
821                                 VM_BUG_ON_PAGE(PageTail(page), page);
822                                 if (page_mapping(page) == mapping) {
823                                         VM_BUG_ON_PAGE(PageWriteback(page), page);
824                                         truncate_inode_page(mapping, page);
825                                 }
826                         }
827                         unlock_page(page);
828                 }
829                 pagevec_remove_exceptionals(&pvec);
830                 pagevec_release(&pvec);
831                 cond_resched();
832                 index++;
833         }
834
835         if (partial_start) {
836                 struct page *page = NULL;
837                 shmem_getpage(inode, start - 1, &page, SGP_READ);
838                 if (page) {
839                         unsigned int top = PAGE_SIZE;
840                         if (start > end) {
841                                 top = partial_end;
842                                 partial_end = 0;
843                         }
844                         zero_user_segment(page, partial_start, top);
845                         set_page_dirty(page);
846                         unlock_page(page);
847                         put_page(page);
848                 }
849         }
850         if (partial_end) {
851                 struct page *page = NULL;
852                 shmem_getpage(inode, end, &page, SGP_READ);
853                 if (page) {
854                         zero_user_segment(page, 0, partial_end);
855                         set_page_dirty(page);
856                         unlock_page(page);
857                         put_page(page);
858                 }
859         }
860         if (start >= end)
861                 return;
862
863         index = start;
864         while (index < end) {
865                 cond_resched();
866
867                 pvec.nr = find_get_entries(mapping, index,
868                                 min(end - index, (pgoff_t)PAGEVEC_SIZE),
869                                 pvec.pages, indices);
870                 if (!pvec.nr) {
871                         /* If all gone or hole-punch or unfalloc, we're done */
872                         if (index == start || end != -1)
873                                 break;
874                         /* But if truncating, restart to make sure all gone */
875                         index = start;
876                         continue;
877                 }
878                 for (i = 0; i < pagevec_count(&pvec); i++) {
879                         struct page *page = pvec.pages[i];
880
881                         index = indices[i];
882                         if (index >= end)
883                                 break;
884
885                         if (radix_tree_exceptional_entry(page)) {
886                                 if (unfalloc)
887                                         continue;
888                                 if (shmem_free_swap(mapping, index, page)) {
889                                         /* Swap was replaced by page: retry */
890                                         index--;
891                                         break;
892                                 }
893                                 nr_swaps_freed++;
894                                 continue;
895                         }
896
897                         lock_page(page);
898
899                         if (PageTransTail(page)) {
900                                 /* Middle of THP: zero out the page */
901                                 clear_highpage(page);
902                                 unlock_page(page);
903                                 /*
904                                  * Partial thp truncate due 'start' in middle
905                                  * of THP: don't need to look on these pages
906                                  * again on !pvec.nr restart.
907                                  */
908                                 if (index != round_down(end, HPAGE_PMD_NR))
909                                         start++;
910                                 continue;
911                         } else if (PageTransHuge(page)) {
912                                 if (index == round_down(end, HPAGE_PMD_NR)) {
913                                         /*
914                                          * Range ends in the middle of THP:
915                                          * zero out the page
916                                          */
917                                         clear_highpage(page);
918                                         unlock_page(page);
919                                         continue;
920                                 }
921                                 index += HPAGE_PMD_NR - 1;
922                                 i += HPAGE_PMD_NR - 1;
923                         }
924
925                         if (!unfalloc || !PageUptodate(page)) {
926                                 VM_BUG_ON_PAGE(PageTail(page), page);
927                                 if (page_mapping(page) == mapping) {
928                                         VM_BUG_ON_PAGE(PageWriteback(page), page);
929                                         truncate_inode_page(mapping, page);
930                                 } else {
931                                         /* Page was replaced by swap: retry */
932                                         unlock_page(page);
933                                         index--;
934                                         break;
935                                 }
936                         }
937                         unlock_page(page);
938                 }
939                 pagevec_remove_exceptionals(&pvec);
940                 pagevec_release(&pvec);
941                 index++;
942         }
943
944         spin_lock_irq(&info->lock);
945         info->swapped -= nr_swaps_freed;
946         shmem_recalc_inode(inode);
947         spin_unlock_irq(&info->lock);
948 }
949
950 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
951 {
952         shmem_undo_range(inode, lstart, lend, false);
953         inode->i_ctime = inode->i_mtime = current_time(inode);
954 }
955 EXPORT_SYMBOL_GPL(shmem_truncate_range);
956
957 static int shmem_getattr(struct vfsmount *mnt, struct dentry *dentry,
958                          struct kstat *stat)
959 {
960         struct inode *inode = dentry->d_inode;
961         struct shmem_inode_info *info = SHMEM_I(inode);
962
963         if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
964                 spin_lock_irq(&info->lock);
965                 shmem_recalc_inode(inode);
966                 spin_unlock_irq(&info->lock);
967         }
968         generic_fillattr(inode, stat);
969         return 0;
970 }
971
972 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
973 {
974         struct inode *inode = d_inode(dentry);
975         struct shmem_inode_info *info = SHMEM_I(inode);
976         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
977         int error;
978
979         error = setattr_prepare(dentry, attr);
980         if (error)
981                 return error;
982
983         if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
984                 loff_t oldsize = inode->i_size;
985                 loff_t newsize = attr->ia_size;
986
987                 /* protected by i_mutex */
988                 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
989                     (newsize > oldsize && (info->seals & F_SEAL_GROW)))
990                         return -EPERM;
991
992                 if (newsize != oldsize) {
993                         error = shmem_reacct_size(SHMEM_I(inode)->flags,
994                                         oldsize, newsize);
995                         if (error)
996                                 return error;
997                         i_size_write(inode, newsize);
998                         inode->i_ctime = inode->i_mtime = current_time(inode);
999                 }
1000                 if (newsize <= oldsize) {
1001                         loff_t holebegin = round_up(newsize, PAGE_SIZE);
1002                         if (oldsize > holebegin)
1003                                 unmap_mapping_range(inode->i_mapping,
1004                                                         holebegin, 0, 1);
1005                         if (info->alloced)
1006                                 shmem_truncate_range(inode,
1007                                                         newsize, (loff_t)-1);
1008                         /* unmap again to remove racily COWed private pages */
1009                         if (oldsize > holebegin)
1010                                 unmap_mapping_range(inode->i_mapping,
1011                                                         holebegin, 0, 1);
1012
1013                         /*
1014                          * Part of the huge page can be beyond i_size: subject
1015                          * to shrink under memory pressure.
1016                          */
1017                         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
1018                                 spin_lock(&sbinfo->shrinklist_lock);
1019                                 if (list_empty(&info->shrinklist)) {
1020                                         list_add_tail(&info->shrinklist,
1021                                                         &sbinfo->shrinklist);
1022                                         sbinfo->shrinklist_len++;
1023                                 }
1024                                 spin_unlock(&sbinfo->shrinklist_lock);
1025                         }
1026                 }
1027         }
1028
1029         setattr_copy(inode, attr);
1030         if (attr->ia_valid & ATTR_MODE)
1031                 error = posix_acl_chmod(inode, inode->i_mode);
1032         return error;
1033 }
1034
1035 static void shmem_evict_inode(struct inode *inode)
1036 {
1037         struct shmem_inode_info *info = SHMEM_I(inode);
1038         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1039
1040         if (inode->i_mapping->a_ops == &shmem_aops) {
1041                 shmem_unacct_size(info->flags, inode->i_size);
1042                 inode->i_size = 0;
1043                 shmem_truncate_range(inode, 0, (loff_t)-1);
1044                 if (!list_empty(&info->shrinklist)) {
1045                         spin_lock(&sbinfo->shrinklist_lock);
1046                         if (!list_empty(&info->shrinklist)) {
1047                                 list_del_init(&info->shrinklist);
1048                                 sbinfo->shrinklist_len--;
1049                         }
1050                         spin_unlock(&sbinfo->shrinklist_lock);
1051                 }
1052                 if (!list_empty(&info->swaplist)) {
1053                         mutex_lock(&shmem_swaplist_mutex);
1054                         list_del_init(&info->swaplist);
1055                         mutex_unlock(&shmem_swaplist_mutex);
1056                 }
1057         }
1058
1059         simple_xattrs_free(&info->xattrs);
1060         WARN_ON(inode->i_blocks);
1061         shmem_free_inode(inode->i_sb);
1062         clear_inode(inode);
1063 }
1064
1065 static unsigned long find_swap_entry(struct radix_tree_root *root, void *item)
1066 {
1067         struct radix_tree_iter iter;
1068         void **slot;
1069         unsigned long found = -1;
1070         unsigned int checked = 0;
1071
1072         rcu_read_lock();
1073         radix_tree_for_each_slot(slot, root, &iter, 0) {
1074                 if (*slot == item) {
1075                         found = iter.index;
1076                         break;
1077                 }
1078                 checked++;
1079                 if ((checked % 4096) != 0)
1080                         continue;
1081                 slot = radix_tree_iter_resume(slot, &iter);
1082                 cond_resched_rcu();
1083         }
1084
1085         rcu_read_unlock();
1086         return found;
1087 }
1088
1089 /*
1090  * If swap found in inode, free it and move page from swapcache to filecache.
1091  */
1092 static int shmem_unuse_inode(struct shmem_inode_info *info,
1093                              swp_entry_t swap, struct page **pagep)
1094 {
1095         struct address_space *mapping = info->vfs_inode.i_mapping;
1096         void *radswap;
1097         pgoff_t index;
1098         gfp_t gfp;
1099         int error = 0;
1100
1101         radswap = swp_to_radix_entry(swap);
1102         index = find_swap_entry(&mapping->page_tree, radswap);
1103         if (index == -1)
1104                 return -EAGAIN; /* tell shmem_unuse we found nothing */
1105
1106         /*
1107          * Move _head_ to start search for next from here.
1108          * But be careful: shmem_evict_inode checks list_empty without taking
1109          * mutex, and there's an instant in list_move_tail when info->swaplist
1110          * would appear empty, if it were the only one on shmem_swaplist.
1111          */
1112         if (shmem_swaplist.next != &info->swaplist)
1113                 list_move_tail(&shmem_swaplist, &info->swaplist);
1114
1115         gfp = mapping_gfp_mask(mapping);
1116         if (shmem_should_replace_page(*pagep, gfp)) {
1117                 mutex_unlock(&shmem_swaplist_mutex);
1118                 error = shmem_replace_page(pagep, gfp, info, index);
1119                 mutex_lock(&shmem_swaplist_mutex);
1120                 /*
1121                  * We needed to drop mutex to make that restrictive page
1122                  * allocation, but the inode might have been freed while we
1123                  * dropped it: although a racing shmem_evict_inode() cannot
1124                  * complete without emptying the radix_tree, our page lock
1125                  * on this swapcache page is not enough to prevent that -
1126                  * free_swap_and_cache() of our swap entry will only
1127                  * trylock_page(), removing swap from radix_tree whatever.
1128                  *
1129                  * We must not proceed to shmem_add_to_page_cache() if the
1130                  * inode has been freed, but of course we cannot rely on
1131                  * inode or mapping or info to check that.  However, we can
1132                  * safely check if our swap entry is still in use (and here
1133                  * it can't have got reused for another page): if it's still
1134                  * in use, then the inode cannot have been freed yet, and we
1135                  * can safely proceed (if it's no longer in use, that tells
1136                  * nothing about the inode, but we don't need to unuse swap).
1137                  */
1138                 if (!page_swapcount(*pagep))
1139                         error = -ENOENT;
1140         }
1141
1142         /*
1143          * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
1144          * but also to hold up shmem_evict_inode(): so inode cannot be freed
1145          * beneath us (pagelock doesn't help until the page is in pagecache).
1146          */
1147         if (!error)
1148                 error = shmem_add_to_page_cache(*pagep, mapping, index,
1149                                                 radswap);
1150         if (error != -ENOMEM) {
1151                 /*
1152                  * Truncation and eviction use free_swap_and_cache(), which
1153                  * only does trylock page: if we raced, best clean up here.
1154                  */
1155                 delete_from_swap_cache(*pagep);
1156                 set_page_dirty(*pagep);
1157                 if (!error) {
1158                         spin_lock_irq(&info->lock);
1159                         info->swapped--;
1160                         spin_unlock_irq(&info->lock);
1161                         swap_free(swap);
1162                 }
1163         }
1164         return error;
1165 }
1166
1167 /*
1168  * Search through swapped inodes to find and replace swap by page.
1169  */
1170 int shmem_unuse(swp_entry_t swap, struct page *page)
1171 {
1172         struct list_head *this, *next;
1173         struct shmem_inode_info *info;
1174         struct mem_cgroup *memcg;
1175         int error = 0;
1176
1177         /*
1178          * There's a faint possibility that swap page was replaced before
1179          * caller locked it: caller will come back later with the right page.
1180          */
1181         if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
1182                 goto out;
1183
1184         /*
1185          * Charge page using GFP_KERNEL while we can wait, before taking
1186          * the shmem_swaplist_mutex which might hold up shmem_writepage().
1187          * Charged back to the user (not to caller) when swap account is used.
1188          */
1189         error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg,
1190                         false);
1191         if (error)
1192                 goto out;
1193         /* No radix_tree_preload: swap entry keeps a place for page in tree */
1194         error = -EAGAIN;
1195
1196         mutex_lock(&shmem_swaplist_mutex);
1197         list_for_each_safe(this, next, &shmem_swaplist) {
1198                 info = list_entry(this, struct shmem_inode_info, swaplist);
1199                 if (info->swapped)
1200                         error = shmem_unuse_inode(info, swap, &page);
1201                 else
1202                         list_del_init(&info->swaplist);
1203                 cond_resched();
1204                 if (error != -EAGAIN)
1205                         break;
1206                 /* found nothing in this: move on to search the next */
1207         }
1208         mutex_unlock(&shmem_swaplist_mutex);
1209
1210         if (error) {
1211                 if (error != -ENOMEM)
1212                         error = 0;
1213                 mem_cgroup_cancel_charge(page, memcg, false);
1214         } else
1215                 mem_cgroup_commit_charge(page, memcg, true, false);
1216 out:
1217         unlock_page(page);
1218         put_page(page);
1219         return error;
1220 }
1221
1222 /*
1223  * Move the page from the page cache to the swap cache.
1224  */
1225 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1226 {
1227         struct shmem_inode_info *info;
1228         struct address_space *mapping;
1229         struct inode *inode;
1230         swp_entry_t swap;
1231         pgoff_t index;
1232
1233         VM_BUG_ON_PAGE(PageCompound(page), page);
1234         BUG_ON(!PageLocked(page));
1235         mapping = page->mapping;
1236         index = page->index;
1237         inode = mapping->host;
1238         info = SHMEM_I(inode);
1239         if (info->flags & VM_LOCKED)
1240                 goto redirty;
1241         if (!total_swap_pages)
1242                 goto redirty;
1243
1244         /*
1245          * Our capabilities prevent regular writeback or sync from ever calling
1246          * shmem_writepage; but a stacking filesystem might use ->writepage of
1247          * its underlying filesystem, in which case tmpfs should write out to
1248          * swap only in response to memory pressure, and not for the writeback
1249          * threads or sync.
1250          */
1251         if (!wbc->for_reclaim) {
1252                 WARN_ON_ONCE(1);        /* Still happens? Tell us about it! */
1253                 goto redirty;
1254         }
1255
1256         /*
1257          * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1258          * value into swapfile.c, the only way we can correctly account for a
1259          * fallocated page arriving here is now to initialize it and write it.
1260          *
1261          * That's okay for a page already fallocated earlier, but if we have
1262          * not yet completed the fallocation, then (a) we want to keep track
1263          * of this page in case we have to undo it, and (b) it may not be a
1264          * good idea to continue anyway, once we're pushing into swap.  So
1265          * reactivate the page, and let shmem_fallocate() quit when too many.
1266          */
1267         if (!PageUptodate(page)) {
1268                 if (inode->i_private) {
1269                         struct shmem_falloc *shmem_falloc;
1270                         spin_lock(&inode->i_lock);
1271                         shmem_falloc = inode->i_private;
1272                         if (shmem_falloc &&
1273                             !shmem_falloc->waitq &&
1274                             index >= shmem_falloc->start &&
1275                             index < shmem_falloc->next)
1276                                 shmem_falloc->nr_unswapped++;
1277                         else
1278                                 shmem_falloc = NULL;
1279                         spin_unlock(&inode->i_lock);
1280                         if (shmem_falloc)
1281                                 goto redirty;
1282                 }
1283                 clear_highpage(page);
1284                 flush_dcache_page(page);
1285                 SetPageUptodate(page);
1286         }
1287
1288         swap = get_swap_page();
1289         if (!swap.val)
1290                 goto redirty;
1291
1292         if (mem_cgroup_try_charge_swap(page, swap))
1293                 goto free_swap;
1294
1295         /*
1296          * Add inode to shmem_unuse()'s list of swapped-out inodes,
1297          * if it's not already there.  Do it now before the page is
1298          * moved to swap cache, when its pagelock no longer protects
1299          * the inode from eviction.  But don't unlock the mutex until
1300          * we've incremented swapped, because shmem_unuse_inode() will
1301          * prune a !swapped inode from the swaplist under this mutex.
1302          */
1303         mutex_lock(&shmem_swaplist_mutex);
1304         if (list_empty(&info->swaplist))
1305                 list_add_tail(&info->swaplist, &shmem_swaplist);
1306
1307         if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1308                 spin_lock_irq(&info->lock);
1309                 shmem_recalc_inode(inode);
1310                 info->swapped++;
1311                 spin_unlock_irq(&info->lock);
1312
1313                 swap_shmem_alloc(swap);
1314                 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1315
1316                 mutex_unlock(&shmem_swaplist_mutex);
1317                 BUG_ON(page_mapped(page));
1318                 swap_writepage(page, wbc);
1319                 return 0;
1320         }
1321
1322         mutex_unlock(&shmem_swaplist_mutex);
1323 free_swap:
1324         swapcache_free(swap);
1325 redirty:
1326         set_page_dirty(page);
1327         if (wbc->for_reclaim)
1328                 return AOP_WRITEPAGE_ACTIVATE;  /* Return with page locked */
1329         unlock_page(page);
1330         return 0;
1331 }
1332
1333 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1334 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1335 {
1336         char buffer[64];
1337
1338         if (!mpol || mpol->mode == MPOL_DEFAULT)
1339                 return;         /* show nothing */
1340
1341         mpol_to_str(buffer, sizeof(buffer), mpol);
1342
1343         seq_printf(seq, ",mpol=%s", buffer);
1344 }
1345
1346 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1347 {
1348         struct mempolicy *mpol = NULL;
1349         if (sbinfo->mpol) {
1350                 spin_lock(&sbinfo->stat_lock);  /* prevent replace/use races */
1351                 mpol = sbinfo->mpol;
1352                 mpol_get(mpol);
1353                 spin_unlock(&sbinfo->stat_lock);
1354         }
1355         return mpol;
1356 }
1357 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1358 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1359 {
1360 }
1361 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1362 {
1363         return NULL;
1364 }
1365 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1366 #ifndef CONFIG_NUMA
1367 #define vm_policy vm_private_data
1368 #endif
1369
1370 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1371                 struct shmem_inode_info *info, pgoff_t index)
1372 {
1373         /* Create a pseudo vma that just contains the policy */
1374         vma->vm_start = 0;
1375         /* Bias interleave by inode number to distribute better across nodes */
1376         vma->vm_pgoff = index + info->vfs_inode.i_ino;
1377         vma->vm_ops = NULL;
1378         vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1379 }
1380
1381 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1382 {
1383         /* Drop reference taken by mpol_shared_policy_lookup() */
1384         mpol_cond_put(vma->vm_policy);
1385 }
1386
1387 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1388                         struct shmem_inode_info *info, pgoff_t index)
1389 {
1390         struct vm_area_struct pvma;
1391         struct page *page;
1392
1393         shmem_pseudo_vma_init(&pvma, info, index);
1394         page = swapin_readahead(swap, gfp, &pvma, 0);
1395         shmem_pseudo_vma_destroy(&pvma);
1396
1397         return page;
1398 }
1399
1400 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1401                 struct shmem_inode_info *info, pgoff_t index)
1402 {
1403         struct vm_area_struct pvma;
1404         struct inode *inode = &info->vfs_inode;
1405         struct address_space *mapping = inode->i_mapping;
1406         pgoff_t idx, hindex;
1407         void __rcu **results;
1408         struct page *page;
1409
1410         if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1411                 return NULL;
1412
1413         hindex = round_down(index, HPAGE_PMD_NR);
1414         rcu_read_lock();
1415         if (radix_tree_gang_lookup_slot(&mapping->page_tree, &results, &idx,
1416                                 hindex, 1) && idx < hindex + HPAGE_PMD_NR) {
1417                 rcu_read_unlock();
1418                 return NULL;
1419         }
1420         rcu_read_unlock();
1421
1422         shmem_pseudo_vma_init(&pvma, info, hindex);
1423         page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1424                         HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1425         shmem_pseudo_vma_destroy(&pvma);
1426         if (page)
1427                 prep_transhuge_page(page);
1428         return page;
1429 }
1430
1431 static struct page *shmem_alloc_page(gfp_t gfp,
1432                         struct shmem_inode_info *info, pgoff_t index)
1433 {
1434         struct vm_area_struct pvma;
1435         struct page *page;
1436
1437         shmem_pseudo_vma_init(&pvma, info, index);
1438         page = alloc_page_vma(gfp, &pvma, 0);
1439         shmem_pseudo_vma_destroy(&pvma);
1440
1441         return page;
1442 }
1443
1444 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1445                 struct shmem_inode_info *info, struct shmem_sb_info *sbinfo,
1446                 pgoff_t index, bool huge)
1447 {
1448         struct page *page;
1449         int nr;
1450         int err = -ENOSPC;
1451
1452         if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1453                 huge = false;
1454         nr = huge ? HPAGE_PMD_NR : 1;
1455
1456         if (shmem_acct_block(info->flags, nr))
1457                 goto failed;
1458         if (sbinfo->max_blocks) {
1459                 if (percpu_counter_compare(&sbinfo->used_blocks,
1460                                         sbinfo->max_blocks - nr) > 0)
1461                         goto unacct;
1462                 percpu_counter_add(&sbinfo->used_blocks, nr);
1463         }
1464
1465         if (huge)
1466                 page = shmem_alloc_hugepage(gfp, info, index);
1467         else
1468                 page = shmem_alloc_page(gfp, info, index);
1469         if (page) {
1470                 __SetPageLocked(page);
1471                 __SetPageSwapBacked(page);
1472                 return page;
1473         }
1474
1475         err = -ENOMEM;
1476         if (sbinfo->max_blocks)
1477                 percpu_counter_add(&sbinfo->used_blocks, -nr);
1478 unacct:
1479         shmem_unacct_blocks(info->flags, nr);
1480 failed:
1481         return ERR_PTR(err);
1482 }
1483
1484 /*
1485  * When a page is moved from swapcache to shmem filecache (either by the
1486  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1487  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1488  * ignorance of the mapping it belongs to.  If that mapping has special
1489  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1490  * we may need to copy to a suitable page before moving to filecache.
1491  *
1492  * In a future release, this may well be extended to respect cpuset and
1493  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1494  * but for now it is a simple matter of zone.
1495  */
1496 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1497 {
1498         return page_zonenum(page) > gfp_zone(gfp);
1499 }
1500
1501 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1502                                 struct shmem_inode_info *info, pgoff_t index)
1503 {
1504         struct page *oldpage, *newpage;
1505         struct address_space *swap_mapping;
1506         pgoff_t swap_index;
1507         int error;
1508
1509         oldpage = *pagep;
1510         swap_index = page_private(oldpage);
1511         swap_mapping = page_mapping(oldpage);
1512
1513         /*
1514          * We have arrived here because our zones are constrained, so don't
1515          * limit chance of success by further cpuset and node constraints.
1516          */
1517         gfp &= ~GFP_CONSTRAINT_MASK;
1518         newpage = shmem_alloc_page(gfp, info, index);
1519         if (!newpage)
1520                 return -ENOMEM;
1521
1522         get_page(newpage);
1523         copy_highpage(newpage, oldpage);
1524         flush_dcache_page(newpage);
1525
1526         __SetPageLocked(newpage);
1527         __SetPageSwapBacked(newpage);
1528         SetPageUptodate(newpage);
1529         set_page_private(newpage, swap_index);
1530         SetPageSwapCache(newpage);
1531
1532         /*
1533          * Our caller will very soon move newpage out of swapcache, but it's
1534          * a nice clean interface for us to replace oldpage by newpage there.
1535          */
1536         spin_lock_irq(&swap_mapping->tree_lock);
1537         error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1538                                                                    newpage);
1539         if (!error) {
1540                 __inc_node_page_state(newpage, NR_FILE_PAGES);
1541                 __dec_node_page_state(oldpage, NR_FILE_PAGES);
1542         }
1543         spin_unlock_irq(&swap_mapping->tree_lock);
1544
1545         if (unlikely(error)) {
1546                 /*
1547                  * Is this possible?  I think not, now that our callers check
1548                  * both PageSwapCache and page_private after getting page lock;
1549                  * but be defensive.  Reverse old to newpage for clear and free.
1550                  */
1551                 oldpage = newpage;
1552         } else {
1553                 mem_cgroup_migrate(oldpage, newpage);
1554                 lru_cache_add_anon(newpage);
1555                 *pagep = newpage;
1556         }
1557
1558         ClearPageSwapCache(oldpage);
1559         set_page_private(oldpage, 0);
1560
1561         unlock_page(oldpage);
1562         put_page(oldpage);
1563         put_page(oldpage);
1564         return error;
1565 }
1566
1567 /*
1568  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1569  *
1570  * If we allocate a new one we do not mark it dirty. That's up to the
1571  * vm. If we swap it in we mark it dirty since we also free the swap
1572  * entry since a page cannot live in both the swap and page cache.
1573  *
1574  * fault_mm and fault_type are only supplied by shmem_fault:
1575  * otherwise they are NULL.
1576  */
1577 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1578         struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1579         struct mm_struct *fault_mm, int *fault_type)
1580 {
1581         struct address_space *mapping = inode->i_mapping;
1582         struct shmem_inode_info *info = SHMEM_I(inode);
1583         struct shmem_sb_info *sbinfo;
1584         struct mm_struct *charge_mm;
1585         struct mem_cgroup *memcg;
1586         struct page *page;
1587         swp_entry_t swap;
1588         enum sgp_type sgp_huge = sgp;
1589         pgoff_t hindex = index;
1590         int error;
1591         int once = 0;
1592         int alloced = 0;
1593
1594         if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1595                 return -EFBIG;
1596         if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1597                 sgp = SGP_CACHE;
1598 repeat:
1599         swap.val = 0;
1600         page = find_lock_entry(mapping, index);
1601         if (radix_tree_exceptional_entry(page)) {
1602                 swap = radix_to_swp_entry(page);
1603                 page = NULL;
1604         }
1605
1606         if (sgp <= SGP_CACHE &&
1607             ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1608                 error = -EINVAL;
1609                 goto unlock;
1610         }
1611
1612         if (page && sgp == SGP_WRITE)
1613                 mark_page_accessed(page);
1614
1615         /* fallocated page? */
1616         if (page && !PageUptodate(page)) {
1617                 if (sgp != SGP_READ)
1618                         goto clear;
1619                 unlock_page(page);
1620                 put_page(page);
1621                 page = NULL;
1622         }
1623         if (page || (sgp == SGP_READ && !swap.val)) {
1624                 *pagep = page;
1625                 return 0;
1626         }
1627
1628         /*
1629          * Fast cache lookup did not find it:
1630          * bring it back from swap or allocate.
1631          */
1632         sbinfo = SHMEM_SB(inode->i_sb);
1633         charge_mm = fault_mm ? : current->mm;
1634
1635         if (swap.val) {
1636                 /* Look it up and read it in.. */
1637                 page = lookup_swap_cache(swap);
1638                 if (!page) {
1639                         /* Or update major stats only when swapin succeeds?? */
1640                         if (fault_type) {
1641                                 *fault_type |= VM_FAULT_MAJOR;
1642                                 count_vm_event(PGMAJFAULT);
1643                                 mem_cgroup_count_vm_event(fault_mm, PGMAJFAULT);
1644                         }
1645                         /* Here we actually start the io */
1646                         page = shmem_swapin(swap, gfp, info, index);
1647                         if (!page) {
1648                                 error = -ENOMEM;
1649                                 goto failed;
1650                         }
1651                 }
1652
1653                 /* We have to do this with page locked to prevent races */
1654                 lock_page(page);
1655                 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1656                     !shmem_confirm_swap(mapping, index, swap)) {
1657                         error = -EEXIST;        /* try again */
1658                         goto unlock;
1659                 }
1660                 if (!PageUptodate(page)) {
1661                         error = -EIO;
1662                         goto failed;
1663                 }
1664                 wait_on_page_writeback(page);
1665
1666                 if (shmem_should_replace_page(page, gfp)) {
1667                         error = shmem_replace_page(&page, gfp, info, index);
1668                         if (error)
1669                                 goto failed;
1670                 }
1671
1672                 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
1673                                 false);
1674                 if (!error) {
1675                         error = shmem_add_to_page_cache(page, mapping, index,
1676                                                 swp_to_radix_entry(swap));
1677                         /*
1678                          * We already confirmed swap under page lock, and make
1679                          * no memory allocation here, so usually no possibility
1680                          * of error; but free_swap_and_cache() only trylocks a
1681                          * page, so it is just possible that the entry has been
1682                          * truncated or holepunched since swap was confirmed.
1683                          * shmem_undo_range() will have done some of the
1684                          * unaccounting, now delete_from_swap_cache() will do
1685                          * the rest.
1686                          * Reset swap.val? No, leave it so "failed" goes back to
1687                          * "repeat": reading a hole and writing should succeed.
1688                          */
1689                         if (error) {
1690                                 mem_cgroup_cancel_charge(page, memcg, false);
1691                                 delete_from_swap_cache(page);
1692                         }
1693                 }
1694                 if (error)
1695                         goto failed;
1696
1697                 mem_cgroup_commit_charge(page, memcg, true, false);
1698
1699                 spin_lock_irq(&info->lock);
1700                 info->swapped--;
1701                 shmem_recalc_inode(inode);
1702                 spin_unlock_irq(&info->lock);
1703
1704                 if (sgp == SGP_WRITE)
1705                         mark_page_accessed(page);
1706
1707                 delete_from_swap_cache(page);
1708                 set_page_dirty(page);
1709                 swap_free(swap);
1710
1711         } else {
1712                 /* shmem_symlink() */
1713                 if (mapping->a_ops != &shmem_aops)
1714                         goto alloc_nohuge;
1715                 if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1716                         goto alloc_nohuge;
1717                 if (shmem_huge == SHMEM_HUGE_FORCE)
1718                         goto alloc_huge;
1719                 switch (sbinfo->huge) {
1720                         loff_t i_size;
1721                         pgoff_t off;
1722                 case SHMEM_HUGE_NEVER:
1723                         goto alloc_nohuge;
1724                 case SHMEM_HUGE_WITHIN_SIZE:
1725                         off = round_up(index, HPAGE_PMD_NR);
1726                         i_size = round_up(i_size_read(inode), PAGE_SIZE);
1727                         if (i_size >= HPAGE_PMD_SIZE &&
1728                                         i_size >> PAGE_SHIFT >= off)
1729                                 goto alloc_huge;
1730                         /* fallthrough */
1731                 case SHMEM_HUGE_ADVISE:
1732                         if (sgp_huge == SGP_HUGE)
1733                                 goto alloc_huge;
1734                         /* TODO: implement fadvise() hints */
1735                         goto alloc_nohuge;
1736                 }
1737
1738 alloc_huge:
1739                 page = shmem_alloc_and_acct_page(gfp, info, sbinfo,
1740                                 index, true);
1741                 if (IS_ERR(page)) {
1742 alloc_nohuge:           page = shmem_alloc_and_acct_page(gfp, info, sbinfo,
1743                                         index, false);
1744                 }
1745                 if (IS_ERR(page)) {
1746                         int retry = 5;
1747                         error = PTR_ERR(page);
1748                         page = NULL;
1749                         if (error != -ENOSPC)
1750                                 goto failed;
1751                         /*
1752                          * Try to reclaim some spece by splitting a huge page
1753                          * beyond i_size on the filesystem.
1754                          */
1755                         while (retry--) {
1756                                 int ret;
1757                                 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1758                                 if (ret == SHRINK_STOP)
1759                                         break;
1760                                 if (ret)
1761                                         goto alloc_nohuge;
1762                         }
1763                         goto failed;
1764                 }
1765
1766                 if (PageTransHuge(page))
1767                         hindex = round_down(index, HPAGE_PMD_NR);
1768                 else
1769                         hindex = index;
1770
1771                 if (sgp == SGP_WRITE)
1772                         __SetPageReferenced(page);
1773
1774                 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
1775                                 PageTransHuge(page));
1776                 if (error)
1777                         goto unacct;
1778                 error = radix_tree_maybe_preload_order(gfp & GFP_RECLAIM_MASK,
1779                                 compound_order(page));
1780                 if (!error) {
1781                         error = shmem_add_to_page_cache(page, mapping, hindex,
1782                                                         NULL);
1783                         radix_tree_preload_end();
1784                 }
1785                 if (error) {
1786                         mem_cgroup_cancel_charge(page, memcg,
1787                                         PageTransHuge(page));
1788                         goto unacct;
1789                 }
1790                 mem_cgroup_commit_charge(page, memcg, false,
1791                                 PageTransHuge(page));
1792                 lru_cache_add_anon(page);
1793
1794                 spin_lock_irq(&info->lock);
1795                 info->alloced += 1 << compound_order(page);
1796                 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1797                 shmem_recalc_inode(inode);
1798                 spin_unlock_irq(&info->lock);
1799                 alloced = true;
1800
1801                 if (PageTransHuge(page) &&
1802                                 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1803                                 hindex + HPAGE_PMD_NR - 1) {
1804                         /*
1805                          * Part of the huge page is beyond i_size: subject
1806                          * to shrink under memory pressure.
1807                          */
1808                         spin_lock(&sbinfo->shrinklist_lock);
1809                         if (list_empty(&info->shrinklist)) {
1810                                 list_add_tail(&info->shrinklist,
1811                                                 &sbinfo->shrinklist);
1812                                 sbinfo->shrinklist_len++;
1813                         }
1814                         spin_unlock(&sbinfo->shrinklist_lock);
1815                 }
1816
1817                 /*
1818                  * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1819                  */
1820                 if (sgp == SGP_FALLOC)
1821                         sgp = SGP_WRITE;
1822 clear:
1823                 /*
1824                  * Let SGP_WRITE caller clear ends if write does not fill page;
1825                  * but SGP_FALLOC on a page fallocated earlier must initialize
1826                  * it now, lest undo on failure cancel our earlier guarantee.
1827                  */
1828                 if (sgp != SGP_WRITE && !PageUptodate(page)) {
1829                         struct page *head = compound_head(page);
1830                         int i;
1831
1832                         for (i = 0; i < (1 << compound_order(head)); i++) {
1833                                 clear_highpage(head + i);
1834                                 flush_dcache_page(head + i);
1835                         }
1836                         SetPageUptodate(head);
1837                 }
1838         }
1839
1840         /* Perhaps the file has been truncated since we checked */
1841         if (sgp <= SGP_CACHE &&
1842             ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1843                 if (alloced) {
1844                         ClearPageDirty(page);
1845                         delete_from_page_cache(page);
1846                         spin_lock_irq(&info->lock);
1847                         shmem_recalc_inode(inode);
1848                         spin_unlock_irq(&info->lock);
1849                 }
1850                 error = -EINVAL;
1851                 goto unlock;
1852         }
1853         *pagep = page + index - hindex;
1854         return 0;
1855
1856         /*
1857          * Error recovery.
1858          */
1859 unacct:
1860         if (sbinfo->max_blocks)
1861                 percpu_counter_sub(&sbinfo->used_blocks,
1862                                 1 << compound_order(page));
1863         shmem_unacct_blocks(info->flags, 1 << compound_order(page));
1864
1865         if (PageTransHuge(page)) {
1866                 unlock_page(page);
1867                 put_page(page);
1868                 goto alloc_nohuge;
1869         }
1870 failed:
1871         if (swap.val && !shmem_confirm_swap(mapping, index, swap))
1872                 error = -EEXIST;
1873 unlock:
1874         if (page) {
1875                 unlock_page(page);
1876                 put_page(page);
1877         }
1878         if (error == -ENOSPC && !once++) {
1879                 spin_lock_irq(&info->lock);
1880                 shmem_recalc_inode(inode);
1881                 spin_unlock_irq(&info->lock);
1882                 goto repeat;
1883         }
1884         if (error == -EEXIST)   /* from above or from radix_tree_insert */
1885                 goto repeat;
1886         return error;
1887 }
1888
1889 /*
1890  * This is like autoremove_wake_function, but it removes the wait queue
1891  * entry unconditionally - even if something else had already woken the
1892  * target.
1893  */
1894 static int synchronous_wake_function(wait_queue_t *wait, unsigned mode, int sync, void *key)
1895 {
1896         int ret = default_wake_function(wait, mode, sync, key);
1897         list_del_init(&wait->task_list);
1898         return ret;
1899 }
1900
1901 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1902 {
1903         struct inode *inode = file_inode(vma->vm_file);
1904         gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
1905         enum sgp_type sgp;
1906         int error;
1907         int ret = VM_FAULT_LOCKED;
1908
1909         /*
1910          * Trinity finds that probing a hole which tmpfs is punching can
1911          * prevent the hole-punch from ever completing: which in turn
1912          * locks writers out with its hold on i_mutex.  So refrain from
1913          * faulting pages into the hole while it's being punched.  Although
1914          * shmem_undo_range() does remove the additions, it may be unable to
1915          * keep up, as each new page needs its own unmap_mapping_range() call,
1916          * and the i_mmap tree grows ever slower to scan if new vmas are added.
1917          *
1918          * It does not matter if we sometimes reach this check just before the
1919          * hole-punch begins, so that one fault then races with the punch:
1920          * we just need to make racing faults a rare case.
1921          *
1922          * The implementation below would be much simpler if we just used a
1923          * standard mutex or completion: but we cannot take i_mutex in fault,
1924          * and bloating every shmem inode for this unlikely case would be sad.
1925          */
1926         if (unlikely(inode->i_private)) {
1927                 struct shmem_falloc *shmem_falloc;
1928
1929                 spin_lock(&inode->i_lock);
1930                 shmem_falloc = inode->i_private;
1931                 if (shmem_falloc &&
1932                     shmem_falloc->waitq &&
1933                     vmf->pgoff >= shmem_falloc->start &&
1934                     vmf->pgoff < shmem_falloc->next) {
1935                         wait_queue_head_t *shmem_falloc_waitq;
1936                         DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
1937
1938                         ret = VM_FAULT_NOPAGE;
1939                         if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1940                            !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1941                                 /* It's polite to up mmap_sem if we can */
1942                                 up_read(&vma->vm_mm->mmap_sem);
1943                                 ret = VM_FAULT_RETRY;
1944                         }
1945
1946                         shmem_falloc_waitq = shmem_falloc->waitq;
1947                         prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1948                                         TASK_UNINTERRUPTIBLE);
1949                         spin_unlock(&inode->i_lock);
1950                         schedule();
1951
1952                         /*
1953                          * shmem_falloc_waitq points into the shmem_fallocate()
1954                          * stack of the hole-punching task: shmem_falloc_waitq
1955                          * is usually invalid by the time we reach here, but
1956                          * finish_wait() does not dereference it in that case;
1957                          * though i_lock needed lest racing with wake_up_all().
1958                          */
1959                         spin_lock(&inode->i_lock);
1960                         finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1961                         spin_unlock(&inode->i_lock);
1962                         return ret;
1963                 }
1964                 spin_unlock(&inode->i_lock);
1965         }
1966
1967         sgp = SGP_CACHE;
1968         if (vma->vm_flags & VM_HUGEPAGE)
1969                 sgp = SGP_HUGE;
1970         else if (vma->vm_flags & VM_NOHUGEPAGE)
1971                 sgp = SGP_NOHUGE;
1972
1973         error = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
1974                                   gfp, vma->vm_mm, &ret);
1975         if (error)
1976                 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1977         return ret;
1978 }
1979
1980 unsigned long shmem_get_unmapped_area(struct file *file,
1981                                       unsigned long uaddr, unsigned long len,
1982                                       unsigned long pgoff, unsigned long flags)
1983 {
1984         unsigned long (*get_area)(struct file *,
1985                 unsigned long, unsigned long, unsigned long, unsigned long);
1986         unsigned long addr;
1987         unsigned long offset;
1988         unsigned long inflated_len;
1989         unsigned long inflated_addr;
1990         unsigned long inflated_offset;
1991
1992         if (len > TASK_SIZE)
1993                 return -ENOMEM;
1994
1995         get_area = current->mm->get_unmapped_area;
1996         addr = get_area(file, uaddr, len, pgoff, flags);
1997
1998         if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1999                 return addr;
2000         if (IS_ERR_VALUE(addr))
2001                 return addr;
2002         if (addr & ~PAGE_MASK)
2003                 return addr;
2004         if (addr > TASK_SIZE - len)
2005                 return addr;
2006
2007         if (shmem_huge == SHMEM_HUGE_DENY)
2008                 return addr;
2009         if (len < HPAGE_PMD_SIZE)
2010                 return addr;
2011         if (flags & MAP_FIXED)
2012                 return addr;
2013         /*
2014          * Our priority is to support MAP_SHARED mapped hugely;
2015          * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2016          * But if caller specified an address hint, respect that as before.
2017          */
2018         if (uaddr)
2019                 return addr;
2020
2021         if (shmem_huge != SHMEM_HUGE_FORCE) {
2022                 struct super_block *sb;
2023
2024                 if (file) {
2025                         VM_BUG_ON(file->f_op != &shmem_file_operations);
2026                         sb = file_inode(file)->i_sb;
2027                 } else {
2028                         /*
2029                          * Called directly from mm/mmap.c, or drivers/char/mem.c
2030                          * for "/dev/zero", to create a shared anonymous object.
2031                          */
2032                         if (IS_ERR(shm_mnt))
2033                                 return addr;
2034                         sb = shm_mnt->mnt_sb;
2035                 }
2036                 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2037                         return addr;
2038         }
2039
2040         offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2041         if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2042                 return addr;
2043         if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2044                 return addr;
2045
2046         inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2047         if (inflated_len > TASK_SIZE)
2048                 return addr;
2049         if (inflated_len < len)
2050                 return addr;
2051
2052         inflated_addr = get_area(NULL, 0, inflated_len, 0, flags);
2053         if (IS_ERR_VALUE(inflated_addr))
2054                 return addr;
2055         if (inflated_addr & ~PAGE_MASK)
2056                 return addr;
2057
2058         inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2059         inflated_addr += offset - inflated_offset;
2060         if (inflated_offset > offset)
2061                 inflated_addr += HPAGE_PMD_SIZE;
2062
2063         if (inflated_addr > TASK_SIZE - len)
2064                 return addr;
2065         return inflated_addr;
2066 }
2067
2068 #ifdef CONFIG_NUMA
2069 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2070 {
2071         struct inode *inode = file_inode(vma->vm_file);
2072         return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2073 }
2074
2075 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2076                                           unsigned long addr)
2077 {
2078         struct inode *inode = file_inode(vma->vm_file);
2079         pgoff_t index;
2080
2081         index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2082         return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2083 }
2084 #endif
2085
2086 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2087 {
2088         struct inode *inode = file_inode(file);
2089         struct shmem_inode_info *info = SHMEM_I(inode);
2090         int retval = -ENOMEM;
2091
2092         spin_lock_irq(&info->lock);
2093         if (lock && !(info->flags & VM_LOCKED)) {
2094                 if (!user_shm_lock(inode->i_size, user))
2095                         goto out_nomem;
2096                 info->flags |= VM_LOCKED;
2097                 mapping_set_unevictable(file->f_mapping);
2098         }
2099         if (!lock && (info->flags & VM_LOCKED) && user) {
2100                 user_shm_unlock(inode->i_size, user);
2101                 info->flags &= ~VM_LOCKED;
2102                 mapping_clear_unevictable(file->f_mapping);
2103         }
2104         retval = 0;
2105
2106 out_nomem:
2107         spin_unlock_irq(&info->lock);
2108         return retval;
2109 }
2110
2111 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2112 {
2113         file_accessed(file);
2114         vma->vm_ops = &shmem_vm_ops;
2115         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
2116                         ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2117                         (vma->vm_end & HPAGE_PMD_MASK)) {
2118                 khugepaged_enter(vma, vma->vm_flags);
2119         }
2120         return 0;
2121 }
2122
2123 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2124                                      umode_t mode, dev_t dev, unsigned long flags)
2125 {
2126         struct inode *inode;
2127         struct shmem_inode_info *info;
2128         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2129
2130         if (shmem_reserve_inode(sb))
2131                 return NULL;
2132
2133         inode = new_inode(sb);
2134         if (inode) {
2135                 inode->i_ino = get_next_ino();
2136                 inode_init_owner(inode, dir, mode);
2137                 inode->i_blocks = 0;
2138                 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2139                 inode->i_generation = get_seconds();
2140                 info = SHMEM_I(inode);
2141                 memset(info, 0, (char *)inode - (char *)info);
2142                 spin_lock_init(&info->lock);
2143                 info->seals = F_SEAL_SEAL;
2144                 info->flags = flags & VM_NORESERVE;
2145                 INIT_LIST_HEAD(&info->shrinklist);
2146                 INIT_LIST_HEAD(&info->swaplist);
2147                 simple_xattrs_init(&info->xattrs);
2148                 cache_no_acl(inode);
2149
2150                 switch (mode & S_IFMT) {
2151                 default:
2152                         inode->i_op = &shmem_special_inode_operations;
2153                         init_special_inode(inode, mode, dev);
2154                         break;
2155                 case S_IFREG:
2156                         inode->i_mapping->a_ops = &shmem_aops;
2157                         inode->i_op = &shmem_inode_operations;
2158                         inode->i_fop = &shmem_file_operations;
2159                         mpol_shared_policy_init(&info->policy,
2160                                                  shmem_get_sbmpol(sbinfo));
2161                         break;
2162                 case S_IFDIR:
2163                         inc_nlink(inode);
2164                         /* Some things misbehave if size == 0 on a directory */
2165                         inode->i_size = 2 * BOGO_DIRENT_SIZE;
2166                         inode->i_op = &shmem_dir_inode_operations;
2167                         inode->i_fop = &simple_dir_operations;
2168                         break;
2169                 case S_IFLNK:
2170                         /*
2171                          * Must not load anything in the rbtree,
2172                          * mpol_free_shared_policy will not be called.
2173                          */
2174                         mpol_shared_policy_init(&info->policy, NULL);
2175                         break;
2176                 }
2177         } else
2178                 shmem_free_inode(sb);
2179         return inode;
2180 }
2181
2182 bool shmem_mapping(struct address_space *mapping)
2183 {
2184         return mapping->a_ops == &shmem_aops;
2185 }
2186
2187 int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm,
2188                            pmd_t *dst_pmd,
2189                            struct vm_area_struct *dst_vma,
2190                            unsigned long dst_addr,
2191                            unsigned long src_addr,
2192                            struct page **pagep)
2193 {
2194         struct inode *inode = file_inode(dst_vma->vm_file);
2195         struct shmem_inode_info *info = SHMEM_I(inode);
2196         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2197         struct address_space *mapping = inode->i_mapping;
2198         gfp_t gfp = mapping_gfp_mask(mapping);
2199         pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2200         struct mem_cgroup *memcg;
2201         spinlock_t *ptl;
2202         void *page_kaddr;
2203         struct page *page;
2204         pte_t _dst_pte, *dst_pte;
2205         int ret;
2206
2207         if (!*pagep) {
2208                 ret = -ENOMEM;
2209                 if (shmem_acct_block(info->flags, 1))
2210                         goto out;
2211                 if (sbinfo->max_blocks) {
2212                         if (percpu_counter_compare(&sbinfo->used_blocks,
2213                                                    sbinfo->max_blocks) >= 0)
2214                                 goto out_unacct_blocks;
2215                         percpu_counter_inc(&sbinfo->used_blocks);
2216                 }
2217
2218                 page = shmem_alloc_page(gfp, info, pgoff);
2219                 if (!page)
2220                         goto out_dec_used_blocks;
2221
2222                 page_kaddr = kmap_atomic(page);
2223                 ret = copy_from_user(page_kaddr, (const void __user *)src_addr,
2224                                      PAGE_SIZE);
2225                 kunmap_atomic(page_kaddr);
2226
2227                 /* fallback to copy_from_user outside mmap_sem */
2228                 if (unlikely(ret)) {
2229                         *pagep = page;
2230                         /* don't free the page */
2231                         return -EFAULT;
2232                 }
2233         } else {
2234                 page = *pagep;
2235                 *pagep = NULL;
2236         }
2237
2238         ret = mem_cgroup_try_charge(page, dst_mm, gfp, &memcg, false);
2239         if (ret)
2240                 goto out_release;
2241
2242         ret = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
2243         if (!ret) {
2244                 ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL);
2245                 radix_tree_preload_end();
2246         }
2247         if (ret)
2248                 goto out_release_uncharge;
2249
2250         mem_cgroup_commit_charge(page, memcg, false, false);
2251
2252         _dst_pte = mk_pte(page, dst_vma->vm_page_prot);
2253         if (dst_vma->vm_flags & VM_WRITE)
2254                 _dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte));
2255
2256         ret = -EEXIST;
2257         dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
2258         if (!pte_none(*dst_pte))
2259                 goto out_release_uncharge_unlock;
2260
2261         __SetPageUptodate(page);
2262
2263         lru_cache_add_anon(page);
2264
2265         spin_lock(&info->lock);
2266         info->alloced++;
2267         inode->i_blocks += BLOCKS_PER_PAGE;
2268         shmem_recalc_inode(inode);
2269         spin_unlock(&info->lock);
2270
2271         inc_mm_counter(dst_mm, mm_counter_file(page));
2272         page_add_file_rmap(page, false);
2273         set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
2274
2275         /* No need to invalidate - it was non-present before */
2276         update_mmu_cache(dst_vma, dst_addr, dst_pte);
2277         unlock_page(page);
2278         pte_unmap_unlock(dst_pte, ptl);
2279         ret = 0;
2280 out:
2281         return ret;
2282 out_release_uncharge_unlock:
2283         pte_unmap_unlock(dst_pte, ptl);
2284 out_release_uncharge:
2285         mem_cgroup_cancel_charge(page, memcg, false);
2286 out_release:
2287         put_page(page);
2288 out_dec_used_blocks:
2289         if (sbinfo->max_blocks)
2290                 percpu_counter_add(&sbinfo->used_blocks, -1);
2291 out_unacct_blocks:
2292         shmem_unacct_blocks(info->flags, 1);
2293         goto out;
2294 }
2295
2296 #ifdef CONFIG_TMPFS
2297 static const struct inode_operations shmem_symlink_inode_operations;
2298 static const struct inode_operations shmem_short_symlink_operations;
2299
2300 #ifdef CONFIG_TMPFS_XATTR
2301 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2302 #else
2303 #define shmem_initxattrs NULL
2304 #endif
2305
2306 static int
2307 shmem_write_begin(struct file *file, struct address_space *mapping,
2308                         loff_t pos, unsigned len, unsigned flags,
2309                         struct page **pagep, void **fsdata)
2310 {
2311         struct inode *inode = mapping->host;
2312         struct shmem_inode_info *info = SHMEM_I(inode);
2313         pgoff_t index = pos >> PAGE_SHIFT;
2314
2315         /* i_mutex is held by caller */
2316         if (unlikely(info->seals)) {
2317                 if (info->seals & F_SEAL_WRITE)
2318                         return -EPERM;
2319                 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2320                         return -EPERM;
2321         }
2322
2323         return shmem_getpage(inode, index, pagep, SGP_WRITE);
2324 }
2325
2326 static int
2327 shmem_write_end(struct file *file, struct address_space *mapping,
2328                         loff_t pos, unsigned len, unsigned copied,
2329                         struct page *page, void *fsdata)
2330 {
2331         struct inode *inode = mapping->host;
2332
2333         if (pos + copied > inode->i_size)
2334                 i_size_write(inode, pos + copied);
2335
2336         if (!PageUptodate(page)) {
2337                 struct page *head = compound_head(page);
2338                 if (PageTransCompound(page)) {
2339                         int i;
2340
2341                         for (i = 0; i < HPAGE_PMD_NR; i++) {
2342                                 if (head + i == page)
2343                                         continue;
2344                                 clear_highpage(head + i);
2345                                 flush_dcache_page(head + i);
2346                         }
2347                 }
2348                 if (copied < PAGE_SIZE) {
2349                         unsigned from = pos & (PAGE_SIZE - 1);
2350                         zero_user_segments(page, 0, from,
2351                                         from + copied, PAGE_SIZE);
2352                 }
2353                 SetPageUptodate(head);
2354         }
2355         set_page_dirty(page);
2356         unlock_page(page);
2357         put_page(page);
2358
2359         return copied;
2360 }
2361
2362 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2363 {
2364         struct file *file = iocb->ki_filp;
2365         struct inode *inode = file_inode(file);
2366         struct address_space *mapping = inode->i_mapping;
2367         pgoff_t index;
2368         unsigned long offset;
2369         enum sgp_type sgp = SGP_READ;
2370         int error = 0;
2371         ssize_t retval = 0;
2372         loff_t *ppos = &iocb->ki_pos;
2373
2374         /*
2375          * Might this read be for a stacking filesystem?  Then when reading
2376          * holes of a sparse file, we actually need to allocate those pages,
2377          * and even mark them dirty, so it cannot exceed the max_blocks limit.
2378          */
2379         if (!iter_is_iovec(to))
2380                 sgp = SGP_CACHE;
2381
2382         index = *ppos >> PAGE_SHIFT;
2383         offset = *ppos & ~PAGE_MASK;
2384
2385         for (;;) {
2386                 struct page *page = NULL;
2387                 pgoff_t end_index;
2388                 unsigned long nr, ret;
2389                 loff_t i_size = i_size_read(inode);
2390
2391                 end_index = i_size >> PAGE_SHIFT;
2392                 if (index > end_index)
2393                         break;
2394                 if (index == end_index) {
2395                         nr = i_size & ~PAGE_MASK;
2396                         if (nr <= offset)
2397                                 break;
2398                 }
2399
2400                 error = shmem_getpage(inode, index, &page, sgp);
2401                 if (error) {
2402                         if (error == -EINVAL)
2403                                 error = 0;
2404                         break;
2405                 }
2406                 if (page) {
2407                         if (sgp == SGP_CACHE)
2408                                 set_page_dirty(page);
2409                         unlock_page(page);
2410                 }
2411
2412                 /*
2413                  * We must evaluate after, since reads (unlike writes)
2414                  * are called without i_mutex protection against truncate
2415                  */
2416                 nr = PAGE_SIZE;
2417                 i_size = i_size_read(inode);
2418                 end_index = i_size >> PAGE_SHIFT;
2419                 if (index == end_index) {
2420                         nr = i_size & ~PAGE_MASK;
2421                         if (nr <= offset) {
2422                                 if (page)
2423                                         put_page(page);
2424                                 break;
2425                         }
2426                 }
2427                 nr -= offset;
2428
2429                 if (page) {
2430                         /*
2431                          * If users can be writing to this page using arbitrary
2432                          * virtual addresses, take care about potential aliasing
2433                          * before reading the page on the kernel side.
2434                          */
2435                         if (mapping_writably_mapped(mapping))
2436                                 flush_dcache_page(page);
2437                         /*
2438                          * Mark the page accessed if we read the beginning.
2439                          */
2440                         if (!offset)
2441                                 mark_page_accessed(page);
2442                 } else {
2443                         page = ZERO_PAGE(0);
2444                         get_page(page);
2445                 }
2446
2447                 /*
2448                  * Ok, we have the page, and it's up-to-date, so
2449                  * now we can copy it to user space...
2450                  */
2451                 ret = copy_page_to_iter(page, offset, nr, to);
2452                 retval += ret;
2453                 offset += ret;
2454                 index += offset >> PAGE_SHIFT;
2455                 offset &= ~PAGE_MASK;
2456
2457                 put_page(page);
2458                 if (!iov_iter_count(to))
2459                         break;
2460                 if (ret < nr) {
2461                         error = -EFAULT;
2462                         break;
2463                 }
2464                 cond_resched();
2465         }
2466
2467         *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2468         file_accessed(file);
2469         return retval ? retval : error;
2470 }
2471
2472 /*
2473  * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
2474  */
2475 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
2476                                     pgoff_t index, pgoff_t end, int whence)
2477 {
2478         struct page *page;
2479         struct pagevec pvec;
2480         pgoff_t indices[PAGEVEC_SIZE];
2481         bool done = false;
2482         int i;
2483
2484         pagevec_init(&pvec, 0);
2485         pvec.nr = 1;            /* start small: we may be there already */
2486         while (!done) {
2487                 pvec.nr = find_get_entries(mapping, index,
2488                                         pvec.nr, pvec.pages, indices);
2489                 if (!pvec.nr) {
2490                         if (whence == SEEK_DATA)
2491                                 index = end;
2492                         break;
2493                 }
2494                 for (i = 0; i < pvec.nr; i++, index++) {
2495                         if (index < indices[i]) {
2496                                 if (whence == SEEK_HOLE) {
2497                                         done = true;
2498                                         break;
2499                                 }
2500                                 index = indices[i];
2501                         }
2502                         page = pvec.pages[i];
2503                         if (page && !radix_tree_exceptional_entry(page)) {
2504                                 if (!PageUptodate(page))
2505                                         page = NULL;
2506                         }
2507                         if (index >= end ||
2508                             (page && whence == SEEK_DATA) ||
2509                             (!page && whence == SEEK_HOLE)) {
2510                                 done = true;
2511                                 break;
2512                         }
2513                 }
2514                 pagevec_remove_exceptionals(&pvec);
2515                 pagevec_release(&pvec);
2516                 pvec.nr = PAGEVEC_SIZE;
2517                 cond_resched();
2518         }
2519         return index;
2520 }
2521
2522 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2523 {
2524         struct address_space *mapping = file->f_mapping;
2525         struct inode *inode = mapping->host;
2526         pgoff_t start, end;
2527         loff_t new_offset;
2528
2529         if (whence != SEEK_DATA && whence != SEEK_HOLE)
2530                 return generic_file_llseek_size(file, offset, whence,
2531                                         MAX_LFS_FILESIZE, i_size_read(inode));
2532         inode_lock(inode);
2533         /* We're holding i_mutex so we can access i_size directly */
2534
2535         if (offset < 0)
2536                 offset = -EINVAL;
2537         else if (offset >= inode->i_size)
2538                 offset = -ENXIO;
2539         else {
2540                 start = offset >> PAGE_SHIFT;
2541                 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2542                 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
2543                 new_offset <<= PAGE_SHIFT;
2544                 if (new_offset > offset) {
2545                         if (new_offset < inode->i_size)
2546                                 offset = new_offset;
2547                         else if (whence == SEEK_DATA)
2548                                 offset = -ENXIO;
2549                         else
2550                                 offset = inode->i_size;
2551                 }
2552         }
2553
2554         if (offset >= 0)
2555                 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2556         inode_unlock(inode);
2557         return offset;
2558 }
2559
2560 /*
2561  * We need a tag: a new tag would expand every radix_tree_node by 8 bytes,
2562  * so reuse a tag which we firmly believe is never set or cleared on shmem.
2563  */
2564 #define SHMEM_TAG_PINNED        PAGECACHE_TAG_TOWRITE
2565 #define LAST_SCAN               4       /* about 150ms max */
2566
2567 static void shmem_tag_pins(struct address_space *mapping)
2568 {
2569         struct radix_tree_iter iter;
2570         void **slot;
2571         pgoff_t start;
2572         struct page *page;
2573
2574         lru_add_drain();
2575         start = 0;
2576         rcu_read_lock();
2577
2578         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
2579                 page = radix_tree_deref_slot(slot);
2580                 if (!page || radix_tree_exception(page)) {
2581                         if (radix_tree_deref_retry(page)) {
2582                                 slot = radix_tree_iter_retry(&iter);
2583                                 continue;
2584                         }
2585                 } else if (page_count(page) - page_mapcount(page) > 1) {
2586                         spin_lock_irq(&mapping->tree_lock);
2587                         radix_tree_tag_set(&mapping->page_tree, iter.index,
2588                                            SHMEM_TAG_PINNED);
2589                         spin_unlock_irq(&mapping->tree_lock);
2590                 }
2591
2592                 if (need_resched()) {
2593                         slot = radix_tree_iter_resume(slot, &iter);
2594                         cond_resched_rcu();
2595                 }
2596         }
2597         rcu_read_unlock();
2598 }
2599
2600 /*
2601  * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
2602  * via get_user_pages(), drivers might have some pending I/O without any active
2603  * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
2604  * and see whether it has an elevated ref-count. If so, we tag them and wait for
2605  * them to be dropped.
2606  * The caller must guarantee that no new user will acquire writable references
2607  * to those pages to avoid races.
2608  */
2609 static int shmem_wait_for_pins(struct address_space *mapping)
2610 {
2611         struct radix_tree_iter iter;
2612         void **slot;
2613         pgoff_t start;
2614         struct page *page;
2615         int error, scan;
2616
2617         shmem_tag_pins(mapping);
2618
2619         error = 0;
2620         for (scan = 0; scan <= LAST_SCAN; scan++) {
2621                 if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED))
2622                         break;
2623
2624                 if (!scan)
2625                         lru_add_drain_all();
2626                 else if (schedule_timeout_killable((HZ << scan) / 200))
2627                         scan = LAST_SCAN;
2628
2629                 start = 0;
2630                 rcu_read_lock();
2631                 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter,
2632                                            start, SHMEM_TAG_PINNED) {
2633
2634                         page = radix_tree_deref_slot(slot);
2635                         if (radix_tree_exception(page)) {
2636                                 if (radix_tree_deref_retry(page)) {
2637                                         slot = radix_tree_iter_retry(&iter);
2638                                         continue;
2639                                 }
2640
2641                                 page = NULL;
2642                         }
2643
2644                         if (page &&
2645                             page_count(page) - page_mapcount(page) != 1) {
2646                                 if (scan < LAST_SCAN)
2647                                         goto continue_resched;
2648
2649                                 /*
2650                                  * On the last scan, we clean up all those tags
2651                                  * we inserted; but make a note that we still
2652                                  * found pages pinned.
2653                                  */
2654                                 error = -EBUSY;
2655                         }
2656
2657                         spin_lock_irq(&mapping->tree_lock);
2658                         radix_tree_tag_clear(&mapping->page_tree,
2659                                              iter.index, SHMEM_TAG_PINNED);
2660                         spin_unlock_irq(&mapping->tree_lock);
2661 continue_resched:
2662                         if (need_resched()) {
2663                                 slot = radix_tree_iter_resume(slot, &iter);
2664                                 cond_resched_rcu();
2665                         }
2666                 }
2667                 rcu_read_unlock();
2668         }
2669
2670         return error;
2671 }
2672
2673 #define F_ALL_SEALS (F_SEAL_SEAL | \
2674                      F_SEAL_SHRINK | \
2675                      F_SEAL_GROW | \
2676                      F_SEAL_WRITE)
2677
2678 int shmem_add_seals(struct file *file, unsigned int seals)
2679 {
2680         struct inode *inode = file_inode(file);
2681         struct shmem_inode_info *info = SHMEM_I(inode);
2682         int error;
2683
2684         /*
2685          * SEALING
2686          * Sealing allows multiple parties to share a shmem-file but restrict
2687          * access to a specific subset of file operations. Seals can only be
2688          * added, but never removed. This way, mutually untrusted parties can
2689          * share common memory regions with a well-defined policy. A malicious
2690          * peer can thus never perform unwanted operations on a shared object.
2691          *
2692          * Seals are only supported on special shmem-files and always affect
2693          * the whole underlying inode. Once a seal is set, it may prevent some
2694          * kinds of access to the file. Currently, the following seals are
2695          * defined:
2696          *   SEAL_SEAL: Prevent further seals from being set on this file
2697          *   SEAL_SHRINK: Prevent the file from shrinking
2698          *   SEAL_GROW: Prevent the file from growing
2699          *   SEAL_WRITE: Prevent write access to the file
2700          *
2701          * As we don't require any trust relationship between two parties, we
2702          * must prevent seals from being removed. Therefore, sealing a file
2703          * only adds a given set of seals to the file, it never touches
2704          * existing seals. Furthermore, the "setting seals"-operation can be
2705          * sealed itself, which basically prevents any further seal from being
2706          * added.
2707          *
2708          * Semantics of sealing are only defined on volatile files. Only
2709          * anonymous shmem files support sealing. More importantly, seals are
2710          * never written to disk. Therefore, there's no plan to support it on
2711          * other file types.
2712          */
2713
2714         if (file->f_op != &shmem_file_operations)
2715                 return -EINVAL;
2716         if (!(file->f_mode & FMODE_WRITE))
2717                 return -EPERM;
2718         if (seals & ~(unsigned int)F_ALL_SEALS)
2719                 return -EINVAL;
2720
2721         inode_lock(inode);
2722
2723         if (info->seals & F_SEAL_SEAL) {
2724                 error = -EPERM;
2725                 goto unlock;
2726         }
2727
2728         if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) {
2729                 error = mapping_deny_writable(file->f_mapping);
2730                 if (error)
2731                         goto unlock;
2732
2733                 error = shmem_wait_for_pins(file->f_mapping);
2734                 if (error) {
2735                         mapping_allow_writable(file->f_mapping);
2736                         goto unlock;
2737                 }
2738         }
2739
2740         info->seals |= seals;
2741         error = 0;
2742
2743 unlock:
2744         inode_unlock(inode);
2745         return error;
2746 }
2747 EXPORT_SYMBOL_GPL(shmem_add_seals);
2748
2749 int shmem_get_seals(struct file *file)
2750 {
2751         if (file->f_op != &shmem_file_operations)
2752                 return -EINVAL;
2753
2754         return SHMEM_I(file_inode(file))->seals;
2755 }
2756 EXPORT_SYMBOL_GPL(shmem_get_seals);
2757
2758 long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
2759 {
2760         long error;
2761
2762         switch (cmd) {
2763         case F_ADD_SEALS:
2764                 /* disallow upper 32bit */
2765                 if (arg > UINT_MAX)
2766                         return -EINVAL;
2767
2768                 error = shmem_add_seals(file, arg);
2769                 break;
2770         case F_GET_SEALS:
2771                 error = shmem_get_seals(file);
2772                 break;
2773         default:
2774                 error = -EINVAL;
2775                 break;
2776         }
2777
2778         return error;
2779 }
2780
2781 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2782                                                          loff_t len)
2783 {
2784         struct inode *inode = file_inode(file);
2785         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2786         struct shmem_inode_info *info = SHMEM_I(inode);
2787         struct shmem_falloc shmem_falloc;
2788         pgoff_t start, index, end;
2789         int error;
2790
2791         if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2792                 return -EOPNOTSUPP;
2793
2794         inode_lock(inode);
2795
2796         if (mode & FALLOC_FL_PUNCH_HOLE) {
2797                 struct address_space *mapping = file->f_mapping;
2798                 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2799                 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2800                 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2801
2802                 /* protected by i_mutex */
2803                 if (info->seals & F_SEAL_WRITE) {
2804                         error = -EPERM;
2805                         goto out;
2806                 }
2807
2808                 shmem_falloc.waitq = &shmem_falloc_waitq;
2809                 shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2810                 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2811                 spin_lock(&inode->i_lock);
2812                 inode->i_private = &shmem_falloc;
2813                 spin_unlock(&inode->i_lock);
2814
2815                 if ((u64)unmap_end > (u64)unmap_start)
2816                         unmap_mapping_range(mapping, unmap_start,
2817                                             1 + unmap_end - unmap_start, 0);
2818                 shmem_truncate_range(inode, offset, offset + len - 1);
2819                 /* No need to unmap again: hole-punching leaves COWed pages */
2820
2821                 spin_lock(&inode->i_lock);
2822                 inode->i_private = NULL;
2823                 wake_up_all(&shmem_falloc_waitq);
2824                 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.task_list));
2825                 spin_unlock(&inode->i_lock);
2826                 error = 0;
2827                 goto out;
2828         }
2829
2830         /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2831         error = inode_newsize_ok(inode, offset + len);
2832         if (error)
2833                 goto out;
2834
2835         if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2836                 error = -EPERM;
2837                 goto out;
2838         }
2839
2840         start = offset >> PAGE_SHIFT;
2841         end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2842         /* Try to avoid a swapstorm if len is impossible to satisfy */
2843         if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2844                 error = -ENOSPC;
2845                 goto out;
2846         }
2847
2848         shmem_falloc.waitq = NULL;
2849         shmem_falloc.start = start;
2850         shmem_falloc.next  = start;
2851         shmem_falloc.nr_falloced = 0;
2852         shmem_falloc.nr_unswapped = 0;
2853         spin_lock(&inode->i_lock);
2854         inode->i_private = &shmem_falloc;
2855         spin_unlock(&inode->i_lock);
2856
2857         for (index = start; index < end; index++) {
2858                 struct page *page;
2859
2860                 /*
2861                  * Good, the fallocate(2) manpage permits EINTR: we may have
2862                  * been interrupted because we are using up too much memory.
2863                  */
2864                 if (signal_pending(current))
2865                         error = -EINTR;
2866                 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2867                         error = -ENOMEM;
2868                 else
2869                         error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2870                 if (error) {
2871                         /* Remove the !PageUptodate pages we added */
2872                         if (index > start) {
2873                                 shmem_undo_range(inode,
2874                                     (loff_t)start << PAGE_SHIFT,
2875                                     ((loff_t)index << PAGE_SHIFT) - 1, true);
2876                         }
2877                         goto undone;
2878                 }
2879
2880                 /*
2881                  * Inform shmem_writepage() how far we have reached.
2882                  * No need for lock or barrier: we have the page lock.
2883                  */
2884                 shmem_falloc.next++;
2885                 if (!PageUptodate(page))
2886                         shmem_falloc.nr_falloced++;
2887
2888                 /*
2889                  * If !PageUptodate, leave it that way so that freeable pages
2890                  * can be recognized if we need to rollback on error later.
2891                  * But set_page_dirty so that memory pressure will swap rather
2892                  * than free the pages we are allocating (and SGP_CACHE pages
2893                  * might still be clean: we now need to mark those dirty too).
2894                  */
2895                 set_page_dirty(page);
2896                 unlock_page(page);
2897                 put_page(page);
2898                 cond_resched();
2899         }
2900
2901         if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2902                 i_size_write(inode, offset + len);
2903         inode->i_ctime = current_time(inode);
2904 undone:
2905         spin_lock(&inode->i_lock);
2906         inode->i_private = NULL;
2907         spin_unlock(&inode->i_lock);
2908 out:
2909         inode_unlock(inode);
2910         return error;
2911 }
2912
2913 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2914 {
2915         struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2916
2917         buf->f_type = TMPFS_MAGIC;
2918         buf->f_bsize = PAGE_SIZE;
2919         buf->f_namelen = NAME_MAX;
2920         if (sbinfo->max_blocks) {
2921                 buf->f_blocks = sbinfo->max_blocks;
2922                 buf->f_bavail =
2923                 buf->f_bfree  = sbinfo->max_blocks -
2924                                 percpu_counter_sum(&sbinfo->used_blocks);
2925         }
2926         if (sbinfo->max_inodes) {
2927                 buf->f_files = sbinfo->max_inodes;
2928                 buf->f_ffree = sbinfo->free_inodes;
2929         }
2930         /* else leave those fields 0 like simple_statfs */
2931         return 0;
2932 }
2933
2934 /*
2935  * File creation. Allocate an inode, and we're done..
2936  */
2937 static int
2938 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2939 {
2940         struct inode *inode;
2941         int error = -ENOSPC;
2942
2943         inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2944         if (inode) {
2945                 error = simple_acl_create(dir, inode);
2946                 if (error)
2947                         goto out_iput;
2948                 error = security_inode_init_security(inode, dir,
2949                                                      &dentry->d_name,
2950                                                      shmem_initxattrs, NULL);
2951                 if (error && error != -EOPNOTSUPP)
2952                         goto out_iput;
2953
2954                 error = 0;
2955                 dir->i_size += BOGO_DIRENT_SIZE;
2956                 dir->i_ctime = dir->i_mtime = current_time(dir);
2957                 d_instantiate(dentry, inode);
2958                 dget(dentry); /* Extra count - pin the dentry in core */
2959         }
2960         return error;
2961 out_iput:
2962         iput(inode);
2963         return error;
2964 }
2965
2966 static int
2967 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2968 {
2969         struct inode *inode;
2970         int error = -ENOSPC;
2971
2972         inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2973         if (inode) {
2974                 error = security_inode_init_security(inode, dir,
2975                                                      NULL,
2976                                                      shmem_initxattrs, NULL);
2977                 if (error && error != -EOPNOTSUPP)
2978                         goto out_iput;
2979                 error = simple_acl_create(dir, inode);
2980                 if (error)
2981                         goto out_iput;
2982                 d_tmpfile(dentry, inode);
2983         }
2984         return error;
2985 out_iput:
2986         iput(inode);
2987         return error;
2988 }
2989
2990 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2991 {
2992         int error;
2993
2994         if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2995                 return error;
2996         inc_nlink(dir);
2997         return 0;
2998 }
2999
3000 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
3001                 bool excl)
3002 {
3003         return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
3004 }
3005
3006 /*
3007  * Link a file..
3008  */
3009 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
3010 {
3011         struct inode *inode = d_inode(old_dentry);
3012         int ret;
3013
3014         /*
3015          * No ordinary (disk based) filesystem counts links as inodes;
3016          * but each new link needs a new dentry, pinning lowmem, and
3017          * tmpfs dentries cannot be pruned until they are unlinked.
3018          */
3019         ret = shmem_reserve_inode(inode->i_sb);
3020         if (ret)
3021                 goto out;
3022
3023         dir->i_size += BOGO_DIRENT_SIZE;
3024         inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3025         inc_nlink(inode);
3026         ihold(inode);   /* New dentry reference */
3027         dget(dentry);           /* Extra pinning count for the created dentry */
3028         d_instantiate(dentry, inode);
3029 out:
3030         return ret;
3031 }
3032
3033 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
3034 {
3035         struct inode *inode = d_inode(dentry);
3036
3037         if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
3038                 shmem_free_inode(inode->i_sb);
3039
3040         dir->i_size -= BOGO_DIRENT_SIZE;
3041         inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3042         drop_nlink(inode);
3043         dput(dentry);   /* Undo the count from "create" - this does all the work */
3044         return 0;
3045 }
3046
3047 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3048 {
3049         if (!simple_empty(dentry))
3050                 return -ENOTEMPTY;
3051
3052         drop_nlink(d_inode(dentry));
3053         drop_nlink(dir);
3054         return shmem_unlink(dir, dentry);
3055 }
3056
3057 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
3058 {
3059         bool old_is_dir = d_is_dir(old_dentry);
3060         bool new_is_dir = d_is_dir(new_dentry);
3061
3062         if (old_dir != new_dir && old_is_dir != new_is_dir) {
3063                 if (old_is_dir) {
3064                         drop_nlink(old_dir);
3065                         inc_nlink(new_dir);
3066                 } else {
3067                         drop_nlink(new_dir);
3068                         inc_nlink(old_dir);
3069                 }
3070         }
3071         old_dir->i_ctime = old_dir->i_mtime =
3072         new_dir->i_ctime = new_dir->i_mtime =
3073         d_inode(old_dentry)->i_ctime =
3074         d_inode(new_dentry)->i_ctime = current_time(old_dir);
3075
3076         return 0;
3077 }
3078
3079 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
3080 {
3081         struct dentry *whiteout;
3082         int error;
3083
3084         whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3085         if (!whiteout)
3086                 return -ENOMEM;
3087
3088         error = shmem_mknod(old_dir, whiteout,
3089                             S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3090         dput(whiteout);
3091         if (error)
3092                 return error;
3093
3094         /*
3095          * Cheat and hash the whiteout while the old dentry is still in
3096          * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3097          *
3098          * d_lookup() will consistently find one of them at this point,
3099          * not sure which one, but that isn't even important.
3100          */
3101         d_rehash(whiteout);
3102         return 0;
3103 }
3104
3105 /*
3106  * The VFS layer already does all the dentry stuff for rename,
3107  * we just have to decrement the usage count for the target if
3108  * it exists so that the VFS layer correctly free's it when it
3109  * gets overwritten.
3110  */
3111 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
3112 {
3113         struct inode *inode = d_inode(old_dentry);
3114         int they_are_dirs = S_ISDIR(inode->i_mode);
3115
3116         if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3117                 return -EINVAL;
3118
3119         if (flags & RENAME_EXCHANGE)
3120                 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3121
3122         if (!simple_empty(new_dentry))
3123                 return -ENOTEMPTY;
3124
3125         if (flags & RENAME_WHITEOUT) {
3126                 int error;
3127
3128                 error = shmem_whiteout(old_dir, old_dentry);
3129                 if (error)
3130                         return error;
3131         }
3132
3133         if (d_really_is_positive(new_dentry)) {
3134                 (void) shmem_unlink(new_dir, new_dentry);
3135                 if (they_are_dirs) {
3136                         drop_nlink(d_inode(new_dentry));
3137                         drop_nlink(old_dir);
3138                 }
3139         } else if (they_are_dirs) {
3140                 drop_nlink(old_dir);
3141                 inc_nlink(new_dir);
3142         }
3143
3144         old_dir->i_size -= BOGO_DIRENT_SIZE;
3145         new_dir->i_size += BOGO_DIRENT_SIZE;
3146         old_dir->i_ctime = old_dir->i_mtime =
3147         new_dir->i_ctime = new_dir->i_mtime =
3148         inode->i_ctime = current_time(old_dir);
3149         return 0;
3150 }
3151
3152 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
3153 {
3154         int error;
3155         int len;
3156         struct inode *inode;
3157         struct page *page;
3158         struct shmem_inode_info *info;
3159
3160         len = strlen(symname) + 1;
3161         if (len > PAGE_SIZE)
3162                 return -ENAMETOOLONG;
3163
3164         inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
3165         if (!inode)
3166                 return -ENOSPC;
3167
3168         error = security_inode_init_security(inode, dir, &dentry->d_name,
3169                                              shmem_initxattrs, NULL);
3170         if (error) {
3171                 if (error != -EOPNOTSUPP) {
3172                         iput(inode);
3173                         return error;
3174                 }
3175                 error = 0;
3176         }
3177
3178         info = SHMEM_I(inode);
3179         inode->i_size = len-1;
3180         if (len <= SHORT_SYMLINK_LEN) {
3181                 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3182                 if (!inode->i_link) {
3183                         iput(inode);
3184                         return -ENOMEM;
3185                 }
3186                 inode->i_op = &shmem_short_symlink_operations;
3187         } else {
3188                 inode_nohighmem(inode);
3189                 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3190                 if (error) {
3191                         iput(inode);
3192                         return error;
3193                 }
3194                 inode->i_mapping->a_ops = &shmem_aops;
3195                 inode->i_op = &shmem_symlink_inode_operations;
3196                 memcpy(page_address(page), symname, len);
3197                 SetPageUptodate(page);
3198                 set_page_dirty(page);
3199                 unlock_page(page);
3200                 put_page(page);
3201         }
3202         dir->i_size += BOGO_DIRENT_SIZE;
3203         dir->i_ctime = dir->i_mtime = current_time(dir);
3204         d_instantiate(dentry, inode);
3205         dget(dentry);
3206         return 0;
3207 }
3208
3209 static void shmem_put_link(void *arg)
3210 {
3211         mark_page_accessed(arg);
3212         put_page(arg);
3213 }
3214
3215 static const char *shmem_get_link(struct dentry *dentry,
3216                                   struct inode *inode,
3217                                   struct delayed_call *done)
3218 {
3219         struct page *page = NULL;
3220         int error;
3221         if (!dentry) {
3222                 page = find_get_page(inode->i_mapping, 0);
3223                 if (!page)
3224                         return ERR_PTR(-ECHILD);
3225                 if (!PageUptodate(page)) {
3226                         put_page(page);
3227                         return ERR_PTR(-ECHILD);
3228                 }
3229         } else {
3230                 error = shmem_getpage(inode, 0, &page, SGP_READ);
3231                 if (error)
3232                         return ERR_PTR(error);
3233                 unlock_page(page);
3234         }
3235         set_delayed_call(done, shmem_put_link, page);
3236         return page_address(page);
3237 }
3238
3239 #ifdef CONFIG_TMPFS_XATTR
3240 /*
3241  * Superblocks without xattr inode operations may get some security.* xattr
3242  * support from the LSM "for free". As soon as we have any other xattrs
3243  * like ACLs, we also need to implement the security.* handlers at
3244  * filesystem level, though.
3245  */
3246
3247 /*
3248  * Callback for security_inode_init_security() for acquiring xattrs.
3249  */
3250 static int shmem_initxattrs(struct inode *inode,
3251                             const struct xattr *xattr_array,
3252                             void *fs_info)
3253 {
3254         struct shmem_inode_info *info = SHMEM_I(inode);
3255         const struct xattr *xattr;
3256         struct simple_xattr *new_xattr;
3257         size_t len;
3258
3259         for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3260                 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3261                 if (!new_xattr)
3262                         return -ENOMEM;
3263
3264                 len = strlen(xattr->name) + 1;
3265                 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3266                                           GFP_KERNEL);
3267                 if (!new_xattr->name) {
3268                         kfree(new_xattr);
3269                         return -ENOMEM;
3270                 }
3271
3272                 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3273                        XATTR_SECURITY_PREFIX_LEN);
3274                 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3275                        xattr->name, len);
3276
3277                 simple_xattr_list_add(&info->xattrs, new_xattr);
3278         }
3279
3280         return 0;
3281 }
3282
3283 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3284                                    struct dentry *unused, struct inode *inode,
3285                                    const char *name, void *buffer, size_t size)
3286 {
3287         struct shmem_inode_info *info = SHMEM_I(inode);
3288
3289         name = xattr_full_name(handler, name);
3290         return simple_xattr_get(&info->xattrs, name, buffer, size);
3291 }
3292
3293 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3294                                    struct dentry *unused, struct inode *inode,
3295                                    const char *name, const void *value,
3296                                    size_t size, int flags)
3297 {
3298         struct shmem_inode_info *info = SHMEM_I(inode);
3299
3300         name = xattr_full_name(handler, name);
3301         return simple_xattr_set(&info->xattrs, name, value, size, flags);
3302 }
3303
3304 static const struct xattr_handler shmem_security_xattr_handler = {
3305         .prefix = XATTR_SECURITY_PREFIX,
3306         .get = shmem_xattr_handler_get,
3307         .set = shmem_xattr_handler_set,
3308 };
3309
3310 static const struct xattr_handler shmem_trusted_xattr_handler = {
3311         .prefix = XATTR_TRUSTED_PREFIX,
3312         .get = shmem_xattr_handler_get,
3313         .set = shmem_xattr_handler_set,
3314 };
3315
3316 static const struct xattr_handler *shmem_xattr_handlers[] = {
3317 #ifdef CONFIG_TMPFS_POSIX_ACL
3318         &posix_acl_access_xattr_handler,
3319         &posix_acl_default_xattr_handler,
3320 #endif
3321         &shmem_security_xattr_handler,
3322         &shmem_trusted_xattr_handler,
3323         NULL
3324 };
3325
3326 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3327 {
3328         struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3329         return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3330 }
3331 #endif /* CONFIG_TMPFS_XATTR */
3332
3333 static const struct inode_operations shmem_short_symlink_operations = {
3334         .get_link       = simple_get_link,
3335 #ifdef CONFIG_TMPFS_XATTR
3336         .listxattr      = shmem_listxattr,
3337 #endif
3338 };
3339
3340 static const struct inode_operations shmem_symlink_inode_operations = {
3341         .get_link       = shmem_get_link,
3342 #ifdef CONFIG_TMPFS_XATTR
3343         .listxattr      = shmem_listxattr,
3344 #endif
3345 };
3346
3347 static struct dentry *shmem_get_parent(struct dentry *child)
3348 {
3349         return ERR_PTR(-ESTALE);
3350 }
3351
3352 static int shmem_match(struct inode *ino, void *vfh)
3353 {
3354         __u32 *fh = vfh;
3355         __u64 inum = fh[2];
3356         inum = (inum << 32) | fh[1];
3357         return ino->i_ino == inum && fh[0] == ino->i_generation;
3358 }
3359
3360 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3361                 struct fid *fid, int fh_len, int fh_type)
3362 {
3363         struct inode *inode;
3364         struct dentry *dentry = NULL;
3365         u64 inum;
3366
3367         if (fh_len < 3)
3368                 return NULL;
3369
3370         inum = fid->raw[2];
3371         inum = (inum << 32) | fid->raw[1];
3372
3373         inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3374                         shmem_match, fid->raw);
3375         if (inode) {
3376                 dentry = d_find_alias(inode);
3377                 iput(inode);
3378         }
3379
3380         return dentry;
3381 }
3382
3383 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3384                                 struct inode *parent)
3385 {
3386         if (*len < 3) {
3387                 *len = 3;
3388                 return FILEID_INVALID;
3389         }
3390
3391         if (inode_unhashed(inode)) {
3392                 /* Unfortunately insert_inode_hash is not idempotent,
3393                  * so as we hash inodes here rather than at creation
3394                  * time, we need a lock to ensure we only try
3395                  * to do it once
3396                  */
3397                 static DEFINE_SPINLOCK(lock);
3398                 spin_lock(&lock);
3399                 if (inode_unhashed(inode))
3400                         __insert_inode_hash(inode,
3401                                             inode->i_ino + inode->i_generation);
3402                 spin_unlock(&lock);
3403         }
3404
3405         fh[0] = inode->i_generation;
3406         fh[1] = inode->i_ino;
3407         fh[2] = ((__u64)inode->i_ino) >> 32;
3408
3409         *len = 3;
3410         return 1;
3411 }
3412
3413 static const struct export_operations shmem_export_ops = {
3414         .get_parent     = shmem_get_parent,
3415         .encode_fh      = shmem_encode_fh,
3416         .fh_to_dentry   = shmem_fh_to_dentry,
3417 };
3418
3419 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
3420                                bool remount)
3421 {
3422         char *this_char, *value, *rest;
3423         struct mempolicy *mpol = NULL;
3424         uid_t uid;
3425         gid_t gid;
3426
3427         while (options != NULL) {
3428                 this_char = options;
3429                 for (;;) {
3430                         /*
3431                          * NUL-terminate this option: unfortunately,
3432                          * mount options form a comma-separated list,
3433                          * but mpol's nodelist may also contain commas.
3434                          */
3435                         options = strchr(options, ',');
3436                         if (options == NULL)
3437                                 break;
3438                         options++;
3439                         if (!isdigit(*options)) {
3440                                 options[-1] = '\0';
3441                                 break;
3442                         }
3443                 }
3444                 if (!*this_char)
3445                         continue;
3446                 if ((value = strchr(this_char,'=')) != NULL) {
3447                         *value++ = 0;
3448                 } else {
3449                         pr_err("tmpfs: No value for mount option '%s'\n",
3450                                this_char);
3451                         goto error;
3452                 }
3453
3454                 if (!strcmp(this_char,"size")) {
3455                         unsigned long long size;
3456                         size = memparse(value,&rest);
3457                         if (*rest == '%') {
3458                                 size <<= PAGE_SHIFT;
3459                                 size *= totalram_pages;
3460                                 do_div(size, 100);
3461                                 rest++;
3462                         }
3463                         if (*rest)
3464                                 goto bad_val;
3465                         sbinfo->max_blocks =
3466                                 DIV_ROUND_UP(size, PAGE_SIZE);
3467                 } else if (!strcmp(this_char,"nr_blocks")) {
3468                         sbinfo->max_blocks = memparse(value, &rest);
3469                         if (*rest)
3470                                 goto bad_val;
3471                 } else if (!strcmp(this_char,"nr_inodes")) {
3472                         sbinfo->max_inodes = memparse(value, &rest);
3473                         if (*rest)
3474                                 goto bad_val;
3475                 } else if (!strcmp(this_char,"mode")) {
3476                         if (remount)
3477                                 continue;
3478                         sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
3479                         if (*rest)
3480                                 goto bad_val;
3481                 } else if (!strcmp(this_char,"uid")) {
3482                         if (remount)
3483                                 continue;
3484                         uid = simple_strtoul(value, &rest, 0);
3485                         if (*rest)
3486                                 goto bad_val;
3487                         sbinfo->uid = make_kuid(current_user_ns(), uid);
3488                         if (!uid_valid(sbinfo->uid))
3489                                 goto bad_val;
3490                 } else if (!strcmp(this_char,"gid")) {
3491                         if (remount)
3492                                 continue;
3493                         gid = simple_strtoul(value, &rest, 0);
3494                         if (*rest)
3495                                 goto bad_val;
3496                         sbinfo->gid = make_kgid(current_user_ns(), gid);
3497                         if (!gid_valid(sbinfo->gid))
3498                                 goto bad_val;
3499 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3500                 } else if (!strcmp(this_char, "huge")) {
3501                         int huge;
3502                         huge = shmem_parse_huge(value);
3503                         if (huge < 0)
3504                                 goto bad_val;
3505                         if (!has_transparent_hugepage() &&
3506                                         huge != SHMEM_HUGE_NEVER)
3507                                 goto bad_val;
3508                         sbinfo->huge = huge;
3509 #endif
3510 #ifdef CONFIG_NUMA
3511                 } else if (!strcmp(this_char,"mpol")) {
3512                         mpol_put(mpol);
3513                         mpol = NULL;
3514                         if (mpol_parse_str(value, &mpol))
3515                                 goto bad_val;
3516 #endif
3517                 } else {
3518                         pr_err("tmpfs: Bad mount option %s\n", this_char);
3519                         goto error;
3520                 }
3521         }
3522         sbinfo->mpol = mpol;
3523         return 0;
3524
3525 bad_val:
3526         pr_err("tmpfs: Bad value '%s' for mount option '%s'\n",
3527                value, this_char);
3528 error:
3529         mpol_put(mpol);
3530         return 1;
3531
3532 }
3533
3534 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
3535 {
3536         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3537         struct shmem_sb_info config = *sbinfo;
3538         unsigned long inodes;
3539         int error = -EINVAL;
3540
3541         config.mpol = NULL;
3542         if (shmem_parse_options(data, &config, true))
3543                 return error;
3544
3545         spin_lock(&sbinfo->stat_lock);
3546         inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3547         if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
3548                 goto out;
3549         if (config.max_inodes < inodes)
3550                 goto out;
3551         /*
3552          * Those tests disallow limited->unlimited while any are in use;
3553          * but we must separately disallow unlimited->limited, because
3554          * in that case we have no record of how much is already in use.
3555          */
3556         if (config.max_blocks && !sbinfo->max_blocks)
3557                 goto out;
3558         if (config.max_inodes && !sbinfo->max_inodes)
3559                 goto out;
3560
3561         error = 0;
3562         sbinfo->huge = config.huge;
3563         sbinfo->max_blocks  = config.max_blocks;
3564         sbinfo->max_inodes  = config.max_inodes;
3565         sbinfo->free_inodes = config.max_inodes - inodes;
3566
3567         /*
3568          * Preserve previous mempolicy unless mpol remount option was specified.
3569          */
3570         if (config.mpol) {
3571                 mpol_put(sbinfo->mpol);
3572                 sbinfo->mpol = config.mpol;     /* transfers initial ref */
3573         }
3574 out:
3575         spin_unlock(&sbinfo->stat_lock);
3576         return error;
3577 }
3578
3579 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3580 {
3581         struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3582
3583         if (sbinfo->max_blocks != shmem_default_max_blocks())
3584                 seq_printf(seq, ",size=%luk",
3585                         sbinfo->max_blocks << (PAGE_SHIFT - 10));
3586         if (sbinfo->max_inodes != shmem_default_max_inodes())
3587                 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3588         if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
3589                 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3590         if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3591                 seq_printf(seq, ",uid=%u",
3592                                 from_kuid_munged(&init_user_ns, sbinfo->uid));
3593         if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3594                 seq_printf(seq, ",gid=%u",
3595                                 from_kgid_munged(&init_user_ns, sbinfo->gid));
3596 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3597         /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3598         if (sbinfo->huge)
3599                 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3600 #endif
3601         shmem_show_mpol(seq, sbinfo->mpol);
3602         return 0;
3603 }
3604
3605 #define MFD_NAME_PREFIX "memfd:"
3606 #define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
3607 #define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
3608
3609 #define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING)
3610
3611 SYSCALL_DEFINE2(memfd_create,
3612                 const char __user *, uname,
3613                 unsigned int, flags)
3614 {
3615         struct shmem_inode_info *info;
3616         struct file *file;
3617         int fd, error;
3618         char *name;
3619         long len;
3620
3621         if (flags & ~(unsigned int)MFD_ALL_FLAGS)
3622                 return -EINVAL;
3623
3624         /* length includes terminating zero */
3625         len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1);
3626         if (len <= 0)
3627                 return -EFAULT;
3628         if (len > MFD_NAME_MAX_LEN + 1)
3629                 return -EINVAL;
3630
3631         name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_TEMPORARY);
3632         if (!name)
3633                 return -ENOMEM;
3634
3635         strcpy(name, MFD_NAME_PREFIX);
3636         if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) {
3637                 error = -EFAULT;
3638                 goto err_name;
3639         }
3640
3641         /* terminating-zero may have changed after strnlen_user() returned */
3642         if (name[len + MFD_NAME_PREFIX_LEN - 1]) {
3643                 error = -EFAULT;
3644                 goto err_name;
3645         }
3646
3647         fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0);
3648         if (fd < 0) {
3649                 error = fd;
3650                 goto err_name;
3651         }
3652
3653         file = shmem_file_setup(name, 0, VM_NORESERVE);
3654         if (IS_ERR(file)) {
3655                 error = PTR_ERR(file);
3656                 goto err_fd;
3657         }
3658         info = SHMEM_I(file_inode(file));
3659         file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE;
3660         file->f_flags |= O_RDWR | O_LARGEFILE;
3661         if (flags & MFD_ALLOW_SEALING)
3662                 info->seals &= ~F_SEAL_SEAL;
3663
3664         fd_install(fd, file);
3665         kfree(name);
3666         return fd;
3667
3668 err_fd:
3669         put_unused_fd(fd);
3670 err_name:
3671         kfree(name);
3672         return error;
3673 }
3674
3675 #endif /* CONFIG_TMPFS */
3676
3677 static void shmem_put_super(struct super_block *sb)
3678 {
3679         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3680
3681         percpu_counter_destroy(&sbinfo->used_blocks);
3682         mpol_put(sbinfo->mpol);
3683         kfree(sbinfo);
3684         sb->s_fs_info = NULL;
3685 }
3686
3687 int shmem_fill_super(struct super_block *sb, void *data, int silent)
3688 {
3689         struct inode *inode;
3690         struct shmem_sb_info *sbinfo;
3691         int err = -ENOMEM;
3692
3693         /* Round up to L1_CACHE_BYTES to resist false sharing */
3694         sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3695                                 L1_CACHE_BYTES), GFP_KERNEL);
3696         if (!sbinfo)
3697                 return -ENOMEM;
3698
3699         sbinfo->mode = S_IRWXUGO | S_ISVTX;
3700         sbinfo->uid = current_fsuid();
3701         sbinfo->gid = current_fsgid();
3702         sb->s_fs_info = sbinfo;
3703
3704 #ifdef CONFIG_TMPFS
3705         /*
3706          * Per default we only allow half of the physical ram per
3707          * tmpfs instance, limiting inodes to one per page of lowmem;
3708          * but the internal instance is left unlimited.
3709          */
3710         if (!(sb->s_flags & MS_KERNMOUNT)) {
3711                 sbinfo->max_blocks = shmem_default_max_blocks();
3712                 sbinfo->max_inodes = shmem_default_max_inodes();
3713                 if (shmem_parse_options(data, sbinfo, false)) {
3714                         err = -EINVAL;
3715                         goto failed;
3716                 }
3717         } else {
3718                 sb->s_flags |= MS_NOUSER;
3719         }
3720         sb->s_export_op = &shmem_export_ops;
3721         sb->s_flags |= MS_NOSEC;
3722 #else
3723         sb->s_flags |= MS_NOUSER;
3724 #endif
3725
3726         spin_lock_init(&sbinfo->stat_lock);
3727         if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3728                 goto failed;
3729         sbinfo->free_inodes = sbinfo->max_inodes;
3730         spin_lock_init(&sbinfo->shrinklist_lock);
3731         INIT_LIST_HEAD(&sbinfo->shrinklist);
3732
3733         sb->s_maxbytes = MAX_LFS_FILESIZE;
3734         sb->s_blocksize = PAGE_SIZE;
3735         sb->s_blocksize_bits = PAGE_SHIFT;
3736         sb->s_magic = TMPFS_MAGIC;
3737         sb->s_op = &shmem_ops;
3738         sb->s_time_gran = 1;
3739 #ifdef CONFIG_TMPFS_XATTR
3740         sb->s_xattr = shmem_xattr_handlers;
3741 #endif
3742 #ifdef CONFIG_TMPFS_POSIX_ACL
3743         sb->s_flags |= MS_POSIXACL;
3744 #endif
3745
3746         inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3747         if (!inode)
3748                 goto failed;
3749         inode->i_uid = sbinfo->uid;
3750         inode->i_gid = sbinfo->gid;
3751         sb->s_root = d_make_root(inode);
3752         if (!sb->s_root)
3753                 goto failed;
3754         return 0;
3755
3756 failed:
3757         shmem_put_super(sb);
3758         return err;
3759 }
3760
3761 static struct kmem_cache *shmem_inode_cachep;
3762
3763 static struct inode *shmem_alloc_inode(struct super_block *sb)
3764 {
3765         struct shmem_inode_info *info;
3766         info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3767         if (!info)
3768                 return NULL;
3769         return &info->vfs_inode;
3770 }
3771
3772 static void shmem_destroy_callback(struct rcu_head *head)
3773 {
3774         struct inode *inode = container_of(head, struct inode, i_rcu);
3775         if (S_ISLNK(inode->i_mode))
3776                 kfree(inode->i_link);
3777         kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3778 }
3779
3780 static void shmem_destroy_inode(struct inode *inode)
3781 {
3782         if (S_ISREG(inode->i_mode))
3783                 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3784         call_rcu(&inode->i_rcu, shmem_destroy_callback);
3785 }
3786
3787 static void shmem_init_inode(void *foo)
3788 {
3789         struct shmem_inode_info *info = foo;
3790         inode_init_once(&info->vfs_inode);
3791 }
3792
3793 static int shmem_init_inodecache(void)
3794 {
3795         shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3796                                 sizeof(struct shmem_inode_info),
3797                                 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3798         return 0;
3799 }
3800
3801 static void shmem_destroy_inodecache(void)
3802 {
3803         kmem_cache_destroy(shmem_inode_cachep);
3804 }
3805
3806 static const struct address_space_operations shmem_aops = {
3807         .writepage      = shmem_writepage,
3808         .set_page_dirty = __set_page_dirty_no_writeback,
3809 #ifdef CONFIG_TMPFS
3810         .write_begin    = shmem_write_begin,
3811         .write_end      = shmem_write_end,
3812 #endif
3813 #ifdef CONFIG_MIGRATION
3814         .migratepage    = migrate_page,
3815 #endif
3816         .error_remove_page = generic_error_remove_page,
3817 };
3818
3819 static const struct file_operations shmem_file_operations = {
3820         .mmap           = shmem_mmap,
3821         .get_unmapped_area = shmem_get_unmapped_area,
3822 #ifdef CONFIG_TMPFS
3823         .llseek         = shmem_file_llseek,
3824         .read_iter      = shmem_file_read_iter,
3825         .write_iter     = generic_file_write_iter,
3826         .fsync          = noop_fsync,
3827         .splice_read    = generic_file_splice_read,
3828         .splice_write   = iter_file_splice_write,
3829         .fallocate      = shmem_fallocate,
3830 #endif
3831 };
3832
3833 static const struct inode_operations shmem_inode_operations = {
3834         .getattr        = shmem_getattr,
3835         .setattr        = shmem_setattr,
3836 #ifdef CONFIG_TMPFS_XATTR
3837         .listxattr      = shmem_listxattr,
3838         .set_acl        = simple_set_acl,
3839 #endif
3840 };
3841
3842 static const struct inode_operations shmem_dir_inode_operations = {
3843 #ifdef CONFIG_TMPFS
3844         .create         = shmem_create,
3845         .lookup         = simple_lookup,
3846         .link           = shmem_link,
3847         .unlink         = shmem_unlink,
3848         .symlink        = shmem_symlink,
3849         .mkdir          = shmem_mkdir,
3850         .rmdir          = shmem_rmdir,
3851         .mknod          = shmem_mknod,
3852         .rename         = shmem_rename2,
3853         .tmpfile        = shmem_tmpfile,
3854 #endif
3855 #ifdef CONFIG_TMPFS_XATTR
3856         .listxattr      = shmem_listxattr,
3857 #endif
3858 #ifdef CONFIG_TMPFS_POSIX_ACL
3859         .setattr        = shmem_setattr,
3860         .set_acl        = simple_set_acl,
3861 #endif
3862 };
3863
3864 static const struct inode_operations shmem_special_inode_operations = {
3865 #ifdef CONFIG_TMPFS_XATTR
3866         .listxattr      = shmem_listxattr,
3867 #endif
3868 #ifdef CONFIG_TMPFS_POSIX_ACL
3869         .setattr        = shmem_setattr,
3870         .set_acl        = simple_set_acl,
3871 #endif
3872 };
3873
3874 static const struct super_operations shmem_ops = {
3875         .alloc_inode    = shmem_alloc_inode,
3876         .destroy_inode  = shmem_destroy_inode,
3877 #ifdef CONFIG_TMPFS
3878         .statfs         = shmem_statfs,
3879         .remount_fs     = shmem_remount_fs,
3880         .show_options   = shmem_show_options,
3881 #endif
3882         .evict_inode    = shmem_evict_inode,
3883         .drop_inode     = generic_delete_inode,
3884         .put_super      = shmem_put_super,
3885 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3886         .nr_cached_objects      = shmem_unused_huge_count,
3887         .free_cached_objects    = shmem_unused_huge_scan,
3888 #endif
3889 };
3890
3891 static const struct vm_operations_struct shmem_vm_ops = {
3892         .fault          = shmem_fault,
3893         .map_pages      = filemap_map_pages,
3894 #ifdef CONFIG_NUMA
3895         .set_policy     = shmem_set_policy,
3896         .get_policy     = shmem_get_policy,
3897 #endif
3898 };
3899
3900 static struct dentry *shmem_mount(struct file_system_type *fs_type,
3901         int flags, const char *dev_name, void *data)
3902 {
3903         return mount_nodev(fs_type, flags, data, shmem_fill_super);
3904 }
3905
3906 static struct file_system_type shmem_fs_type = {
3907         .owner          = THIS_MODULE,
3908         .name           = "tmpfs",
3909         .mount          = shmem_mount,
3910         .kill_sb        = kill_litter_super,
3911         .fs_flags       = FS_USERNS_MOUNT,
3912 };
3913
3914 int __init shmem_init(void)
3915 {
3916         int error;
3917
3918         /* If rootfs called this, don't re-init */
3919         if (shmem_inode_cachep)
3920                 return 0;
3921
3922         error = shmem_init_inodecache();
3923         if (error)
3924                 goto out3;
3925
3926         error = register_filesystem(&shmem_fs_type);
3927         if (error) {
3928                 pr_err("Could not register tmpfs\n");
3929                 goto out2;
3930         }
3931
3932         shm_mnt = kern_mount(&shmem_fs_type);
3933         if (IS_ERR(shm_mnt)) {
3934                 error = PTR_ERR(shm_mnt);
3935                 pr_err("Could not kern_mount tmpfs\n");
3936                 goto out1;
3937         }
3938
3939 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3940         if (has_transparent_hugepage() && shmem_huge < SHMEM_HUGE_DENY)
3941                 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3942         else
3943                 shmem_huge = 0; /* just in case it was patched */
3944 #endif
3945         return 0;
3946
3947 out1:
3948         unregister_filesystem(&shmem_fs_type);
3949 out2:
3950         shmem_destroy_inodecache();
3951 out3:
3952         shm_mnt = ERR_PTR(error);
3953         return error;
3954 }
3955
3956 #if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS)
3957 static ssize_t shmem_enabled_show(struct kobject *kobj,
3958                 struct kobj_attribute *attr, char *buf)
3959 {
3960         int values[] = {
3961                 SHMEM_HUGE_ALWAYS,
3962                 SHMEM_HUGE_WITHIN_SIZE,
3963                 SHMEM_HUGE_ADVISE,
3964                 SHMEM_HUGE_NEVER,
3965                 SHMEM_HUGE_DENY,
3966                 SHMEM_HUGE_FORCE,
3967         };
3968         int i, count;
3969
3970         for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
3971                 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
3972
3973                 count += sprintf(buf + count, fmt,
3974                                 shmem_format_huge(values[i]));
3975         }
3976         buf[count - 1] = '\n';
3977         return count;
3978 }
3979
3980 static ssize_t shmem_enabled_store(struct kobject *kobj,
3981                 struct kobj_attribute *attr, const char *buf, size_t count)
3982 {
3983         char tmp[16];
3984         int huge;
3985
3986         if (count + 1 > sizeof(tmp))
3987                 return -EINVAL;
3988         memcpy(tmp, buf, count);
3989         tmp[count] = '\0';
3990         if (count && tmp[count - 1] == '\n')
3991                 tmp[count - 1] = '\0';
3992
3993         huge = shmem_parse_huge(tmp);
3994         if (huge == -EINVAL)
3995                 return -EINVAL;
3996         if (!has_transparent_hugepage() &&
3997                         huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3998                 return -EINVAL;
3999
4000         shmem_huge = huge;
4001         if (shmem_huge < SHMEM_HUGE_DENY)
4002                 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4003         return count;
4004 }
4005
4006 struct kobj_attribute shmem_enabled_attr =
4007         __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
4008 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */
4009
4010 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
4011 bool shmem_huge_enabled(struct vm_area_struct *vma)
4012 {
4013         struct inode *inode = file_inode(vma->vm_file);
4014         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4015         loff_t i_size;
4016         pgoff_t off;
4017
4018         if (shmem_huge == SHMEM_HUGE_FORCE)
4019                 return true;
4020         if (shmem_huge == SHMEM_HUGE_DENY)
4021                 return false;
4022         switch (sbinfo->huge) {
4023                 case SHMEM_HUGE_NEVER:
4024                         return false;
4025                 case SHMEM_HUGE_ALWAYS:
4026                         return true;
4027                 case SHMEM_HUGE_WITHIN_SIZE:
4028                         off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
4029                         i_size = round_up(i_size_read(inode), PAGE_SIZE);
4030                         if (i_size >= HPAGE_PMD_SIZE &&
4031                                         i_size >> PAGE_SHIFT >= off)
4032                                 return true;
4033                 case SHMEM_HUGE_ADVISE:
4034                         /* TODO: implement fadvise() hints */
4035                         return (vma->vm_flags & VM_HUGEPAGE);
4036                 default:
4037                         VM_BUG_ON(1);
4038                         return false;
4039         }
4040 }
4041 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
4042
4043 #else /* !CONFIG_SHMEM */
4044
4045 /*
4046  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4047  *
4048  * This is intended for small system where the benefits of the full
4049  * shmem code (swap-backed and resource-limited) are outweighed by
4050  * their complexity. On systems without swap this code should be
4051  * effectively equivalent, but much lighter weight.
4052  */
4053
4054 static struct file_system_type shmem_fs_type = {
4055         .name           = "tmpfs",
4056         .mount          = ramfs_mount,
4057         .kill_sb        = kill_litter_super,
4058         .fs_flags       = FS_USERNS_MOUNT,
4059 };
4060
4061 int __init shmem_init(void)
4062 {
4063         BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4064
4065         shm_mnt = kern_mount(&shmem_fs_type);
4066         BUG_ON(IS_ERR(shm_mnt));
4067
4068         return 0;
4069 }
4070
4071 int shmem_unuse(swp_entry_t swap, struct page *page)
4072 {
4073         return 0;
4074 }
4075
4076 int shmem_lock(struct file *file, int lock, struct user_struct *user)
4077 {
4078         return 0;
4079 }
4080
4081 void shmem_unlock_mapping(struct address_space *mapping)
4082 {
4083 }
4084
4085 #ifdef CONFIG_MMU
4086 unsigned long shmem_get_unmapped_area(struct file *file,
4087                                       unsigned long addr, unsigned long len,
4088                                       unsigned long pgoff, unsigned long flags)
4089 {
4090         return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4091 }
4092 #endif
4093
4094 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4095 {
4096         truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4097 }
4098 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4099
4100 #define shmem_vm_ops                            generic_file_vm_ops
4101 #define shmem_file_operations                   ramfs_file_operations
4102 #define shmem_get_inode(sb, dir, mode, dev, flags)      ramfs_get_inode(sb, dir, mode, dev)
4103 #define shmem_acct_size(flags, size)            0
4104 #define shmem_unacct_size(flags, size)          do {} while (0)
4105
4106 #endif /* CONFIG_SHMEM */
4107
4108 /* common code */
4109
4110 static const struct dentry_operations anon_ops = {
4111         .d_dname = simple_dname
4112 };
4113
4114 static struct file *__shmem_file_setup(const char *name, loff_t size,
4115                                        unsigned long flags, unsigned int i_flags)
4116 {
4117         struct file *res;
4118         struct inode *inode;
4119         struct path path;
4120         struct super_block *sb;
4121         struct qstr this;
4122
4123         if (IS_ERR(shm_mnt))
4124                 return ERR_CAST(shm_mnt);
4125
4126         if (size < 0 || size > MAX_LFS_FILESIZE)
4127                 return ERR_PTR(-EINVAL);
4128
4129         if (shmem_acct_size(flags, size))
4130                 return ERR_PTR(-ENOMEM);
4131
4132         res = ERR_PTR(-ENOMEM);
4133         this.name = name;
4134         this.len = strlen(name);
4135         this.hash = 0; /* will go */
4136         sb = shm_mnt->mnt_sb;
4137         path.mnt = mntget(shm_mnt);
4138         path.dentry = d_alloc_pseudo(sb, &this);
4139         if (!path.dentry)
4140                 goto put_memory;
4141         d_set_d_op(path.dentry, &anon_ops);
4142
4143         res = ERR_PTR(-ENOSPC);
4144         inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
4145         if (!inode)
4146                 goto put_memory;
4147
4148         inode->i_flags |= i_flags;
4149         d_instantiate(path.dentry, inode);
4150         inode->i_size = size;
4151         clear_nlink(inode);     /* It is unlinked */
4152         res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4153         if (IS_ERR(res))
4154                 goto put_path;
4155
4156         res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
4157                   &shmem_file_operations);
4158         if (IS_ERR(res))
4159                 goto put_path;
4160
4161         return res;
4162
4163 put_memory:
4164         shmem_unacct_size(flags, size);
4165 put_path:
4166         path_put(&path);
4167         return res;
4168 }
4169
4170 /**
4171  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4172  *      kernel internal.  There will be NO LSM permission checks against the
4173  *      underlying inode.  So users of this interface must do LSM checks at a
4174  *      higher layer.  The users are the big_key and shm implementations.  LSM
4175  *      checks are provided at the key or shm level rather than the inode.
4176  * @name: name for dentry (to be seen in /proc/<pid>/maps
4177  * @size: size to be set for the file
4178  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4179  */
4180 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4181 {
4182         return __shmem_file_setup(name, size, flags, S_PRIVATE);
4183 }
4184
4185 /**
4186  * shmem_file_setup - get an unlinked file living in tmpfs
4187  * @name: name for dentry (to be seen in /proc/<pid>/maps
4188  * @size: size to be set for the file
4189  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4190  */
4191 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4192 {
4193         return __shmem_file_setup(name, size, flags, 0);
4194 }
4195 EXPORT_SYMBOL_GPL(shmem_file_setup);
4196
4197 /**
4198  * shmem_zero_setup - setup a shared anonymous mapping
4199  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
4200  */
4201 int shmem_zero_setup(struct vm_area_struct *vma)
4202 {
4203         struct file *file;
4204         loff_t size = vma->vm_end - vma->vm_start;
4205
4206         /*
4207          * Cloning a new file under mmap_sem leads to a lock ordering conflict
4208          * between XFS directory reading and selinux: since this file is only
4209          * accessible to the user through its mapping, use S_PRIVATE flag to
4210          * bypass file security, in the same way as shmem_kernel_file_setup().
4211          */
4212         file = __shmem_file_setup("dev/zero", size, vma->vm_flags, S_PRIVATE);
4213         if (IS_ERR(file))
4214                 return PTR_ERR(file);
4215
4216         if (vma->vm_file)
4217                 fput(vma->vm_file);
4218         vma->vm_file = file;
4219         vma->vm_ops = &shmem_vm_ops;
4220
4221         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
4222                         ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4223                         (vma->vm_end & HPAGE_PMD_MASK)) {
4224                 khugepaged_enter(vma, vma->vm_flags);
4225         }
4226
4227         return 0;
4228 }
4229
4230 /**
4231  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4232  * @mapping:    the page's address_space
4233  * @index:      the page index
4234  * @gfp:        the page allocator flags to use if allocating
4235  *
4236  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4237  * with any new page allocations done using the specified allocation flags.
4238  * But read_cache_page_gfp() uses the ->readpage() method: which does not
4239  * suit tmpfs, since it may have pages in swapcache, and needs to find those
4240  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4241  *
4242  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4243  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4244  */
4245 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4246                                          pgoff_t index, gfp_t gfp)
4247 {
4248 #ifdef CONFIG_SHMEM
4249         struct inode *inode = mapping->host;
4250         struct page *page;
4251         int error;
4252
4253         BUG_ON(mapping->a_ops != &shmem_aops);
4254         error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4255                                   gfp, NULL, NULL);
4256         if (error)
4257                 page = ERR_PTR(error);
4258         else
4259                 unlock_page(page);
4260         return page;
4261 #else
4262         /*
4263          * The tiny !SHMEM case uses ramfs without swap
4264          */
4265         return read_cache_page_gfp(mapping, index, gfp);
4266 #endif
4267 }
4268 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);