]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - mm/shmem.c
shmem: fix faulting into a hole, not taking i_mutex
[karo-tx-linux.git] / mm / shmem.c
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *               2000 Transmeta Corp.
6  *               2000-2001 Christoph Rohland
7  *               2000-2001 SAP AG
8  *               2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/export.h>
33 #include <linux/swap.h>
34 #include <linux/aio.h>
35
36 static struct vfsmount *shm_mnt;
37
38 #ifdef CONFIG_SHMEM
39 /*
40  * This virtual memory filesystem is heavily based on the ramfs. It
41  * extends ramfs by the ability to use swap and honor resource limits
42  * which makes it a completely usable filesystem.
43  */
44
45 #include <linux/xattr.h>
46 #include <linux/exportfs.h>
47 #include <linux/posix_acl.h>
48 #include <linux/posix_acl_xattr.h>
49 #include <linux/mman.h>
50 #include <linux/string.h>
51 #include <linux/slab.h>
52 #include <linux/backing-dev.h>
53 #include <linux/shmem_fs.h>
54 #include <linux/writeback.h>
55 #include <linux/blkdev.h>
56 #include <linux/pagevec.h>
57 #include <linux/percpu_counter.h>
58 #include <linux/falloc.h>
59 #include <linux/splice.h>
60 #include <linux/security.h>
61 #include <linux/swapops.h>
62 #include <linux/mempolicy.h>
63 #include <linux/namei.h>
64 #include <linux/ctype.h>
65 #include <linux/migrate.h>
66 #include <linux/highmem.h>
67 #include <linux/seq_file.h>
68 #include <linux/magic.h>
69
70 #include <asm/uaccess.h>
71 #include <asm/pgtable.h>
72
73 #define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
74 #define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
75
76 /* Pretend that each entry is of this size in directory's i_size */
77 #define BOGO_DIRENT_SIZE 20
78
79 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
80 #define SHORT_SYMLINK_LEN 128
81
82 /*
83  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
84  * inode->i_private (with i_mutex making sure that it has only one user at
85  * a time): we would prefer not to enlarge the shmem inode just for that.
86  */
87 struct shmem_falloc {
88         wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
89         pgoff_t start;          /* start of range currently being fallocated */
90         pgoff_t next;           /* the next page offset to be fallocated */
91         pgoff_t nr_falloced;    /* how many new pages have been fallocated */
92         pgoff_t nr_unswapped;   /* how often writepage refused to swap out */
93 };
94
95 /* Flag allocation requirements to shmem_getpage */
96 enum sgp_type {
97         SGP_READ,       /* don't exceed i_size, don't allocate page */
98         SGP_CACHE,      /* don't exceed i_size, may allocate page */
99         SGP_DIRTY,      /* like SGP_CACHE, but set new page dirty */
100         SGP_WRITE,      /* may exceed i_size, may allocate !Uptodate page */
101         SGP_FALLOC,     /* like SGP_WRITE, but make existing page Uptodate */
102 };
103
104 #ifdef CONFIG_TMPFS
105 static unsigned long shmem_default_max_blocks(void)
106 {
107         return totalram_pages / 2;
108 }
109
110 static unsigned long shmem_default_max_inodes(void)
111 {
112         return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
113 }
114 #endif
115
116 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
117 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
118                                 struct shmem_inode_info *info, pgoff_t index);
119 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
120         struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
121
122 static inline int shmem_getpage(struct inode *inode, pgoff_t index,
123         struct page **pagep, enum sgp_type sgp, int *fault_type)
124 {
125         return shmem_getpage_gfp(inode, index, pagep, sgp,
126                         mapping_gfp_mask(inode->i_mapping), fault_type);
127 }
128
129 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
130 {
131         return sb->s_fs_info;
132 }
133
134 /*
135  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
136  * for shared memory and for shared anonymous (/dev/zero) mappings
137  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
138  * consistent with the pre-accounting of private mappings ...
139  */
140 static inline int shmem_acct_size(unsigned long flags, loff_t size)
141 {
142         return (flags & VM_NORESERVE) ?
143                 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
144 }
145
146 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
147 {
148         if (!(flags & VM_NORESERVE))
149                 vm_unacct_memory(VM_ACCT(size));
150 }
151
152 /*
153  * ... whereas tmpfs objects are accounted incrementally as
154  * pages are allocated, in order to allow huge sparse files.
155  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
156  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
157  */
158 static inline int shmem_acct_block(unsigned long flags)
159 {
160         return (flags & VM_NORESERVE) ?
161                 security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0;
162 }
163
164 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
165 {
166         if (flags & VM_NORESERVE)
167                 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
168 }
169
170 static const struct super_operations shmem_ops;
171 static const struct address_space_operations shmem_aops;
172 static const struct file_operations shmem_file_operations;
173 static const struct inode_operations shmem_inode_operations;
174 static const struct inode_operations shmem_dir_inode_operations;
175 static const struct inode_operations shmem_special_inode_operations;
176 static const struct vm_operations_struct shmem_vm_ops;
177
178 static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
179         .ra_pages       = 0,    /* No readahead */
180         .capabilities   = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
181 };
182
183 static LIST_HEAD(shmem_swaplist);
184 static DEFINE_MUTEX(shmem_swaplist_mutex);
185
186 static int shmem_reserve_inode(struct super_block *sb)
187 {
188         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
189         if (sbinfo->max_inodes) {
190                 spin_lock(&sbinfo->stat_lock);
191                 if (!sbinfo->free_inodes) {
192                         spin_unlock(&sbinfo->stat_lock);
193                         return -ENOSPC;
194                 }
195                 sbinfo->free_inodes--;
196                 spin_unlock(&sbinfo->stat_lock);
197         }
198         return 0;
199 }
200
201 static void shmem_free_inode(struct super_block *sb)
202 {
203         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
204         if (sbinfo->max_inodes) {
205                 spin_lock(&sbinfo->stat_lock);
206                 sbinfo->free_inodes++;
207                 spin_unlock(&sbinfo->stat_lock);
208         }
209 }
210
211 /**
212  * shmem_recalc_inode - recalculate the block usage of an inode
213  * @inode: inode to recalc
214  *
215  * We have to calculate the free blocks since the mm can drop
216  * undirtied hole pages behind our back.
217  *
218  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
219  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
220  *
221  * It has to be called with the spinlock held.
222  */
223 static void shmem_recalc_inode(struct inode *inode)
224 {
225         struct shmem_inode_info *info = SHMEM_I(inode);
226         long freed;
227
228         freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
229         if (freed > 0) {
230                 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
231                 if (sbinfo->max_blocks)
232                         percpu_counter_add(&sbinfo->used_blocks, -freed);
233                 info->alloced -= freed;
234                 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
235                 shmem_unacct_blocks(info->flags, freed);
236         }
237 }
238
239 /*
240  * Replace item expected in radix tree by a new item, while holding tree lock.
241  */
242 static int shmem_radix_tree_replace(struct address_space *mapping,
243                         pgoff_t index, void *expected, void *replacement)
244 {
245         void **pslot;
246         void *item;
247
248         VM_BUG_ON(!expected);
249         VM_BUG_ON(!replacement);
250         pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
251         if (!pslot)
252                 return -ENOENT;
253         item = radix_tree_deref_slot_protected(pslot, &mapping->tree_lock);
254         if (item != expected)
255                 return -ENOENT;
256         radix_tree_replace_slot(pslot, replacement);
257         return 0;
258 }
259
260 /*
261  * Sometimes, before we decide whether to proceed or to fail, we must check
262  * that an entry was not already brought back from swap by a racing thread.
263  *
264  * Checking page is not enough: by the time a SwapCache page is locked, it
265  * might be reused, and again be SwapCache, using the same swap as before.
266  */
267 static bool shmem_confirm_swap(struct address_space *mapping,
268                                pgoff_t index, swp_entry_t swap)
269 {
270         void *item;
271
272         rcu_read_lock();
273         item = radix_tree_lookup(&mapping->page_tree, index);
274         rcu_read_unlock();
275         return item == swp_to_radix_entry(swap);
276 }
277
278 /*
279  * Like add_to_page_cache_locked, but error if expected item has gone.
280  */
281 static int shmem_add_to_page_cache(struct page *page,
282                                    struct address_space *mapping,
283                                    pgoff_t index, gfp_t gfp, void *expected)
284 {
285         int error;
286
287         VM_BUG_ON_PAGE(!PageLocked(page), page);
288         VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
289
290         page_cache_get(page);
291         page->mapping = mapping;
292         page->index = index;
293
294         spin_lock_irq(&mapping->tree_lock);
295         if (!expected)
296                 error = radix_tree_insert(&mapping->page_tree, index, page);
297         else
298                 error = shmem_radix_tree_replace(mapping, index, expected,
299                                                                  page);
300         if (!error) {
301                 mapping->nrpages++;
302                 __inc_zone_page_state(page, NR_FILE_PAGES);
303                 __inc_zone_page_state(page, NR_SHMEM);
304                 spin_unlock_irq(&mapping->tree_lock);
305         } else {
306                 page->mapping = NULL;
307                 spin_unlock_irq(&mapping->tree_lock);
308                 page_cache_release(page);
309         }
310         return error;
311 }
312
313 /*
314  * Like delete_from_page_cache, but substitutes swap for page.
315  */
316 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
317 {
318         struct address_space *mapping = page->mapping;
319         int error;
320
321         spin_lock_irq(&mapping->tree_lock);
322         error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
323         page->mapping = NULL;
324         mapping->nrpages--;
325         __dec_zone_page_state(page, NR_FILE_PAGES);
326         __dec_zone_page_state(page, NR_SHMEM);
327         spin_unlock_irq(&mapping->tree_lock);
328         page_cache_release(page);
329         BUG_ON(error);
330 }
331
332 /*
333  * Remove swap entry from radix tree, free the swap and its page cache.
334  */
335 static int shmem_free_swap(struct address_space *mapping,
336                            pgoff_t index, void *radswap)
337 {
338         void *old;
339
340         spin_lock_irq(&mapping->tree_lock);
341         old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
342         spin_unlock_irq(&mapping->tree_lock);
343         if (old != radswap)
344                 return -ENOENT;
345         free_swap_and_cache(radix_to_swp_entry(radswap));
346         return 0;
347 }
348
349 /*
350  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
351  */
352 void shmem_unlock_mapping(struct address_space *mapping)
353 {
354         struct pagevec pvec;
355         pgoff_t indices[PAGEVEC_SIZE];
356         pgoff_t index = 0;
357
358         pagevec_init(&pvec, 0);
359         /*
360          * Minor point, but we might as well stop if someone else SHM_LOCKs it.
361          */
362         while (!mapping_unevictable(mapping)) {
363                 /*
364                  * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
365                  * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
366                  */
367                 pvec.nr = find_get_entries(mapping, index,
368                                            PAGEVEC_SIZE, pvec.pages, indices);
369                 if (!pvec.nr)
370                         break;
371                 index = indices[pvec.nr - 1] + 1;
372                 pagevec_remove_exceptionals(&pvec);
373                 check_move_unevictable_pages(pvec.pages, pvec.nr);
374                 pagevec_release(&pvec);
375                 cond_resched();
376         }
377 }
378
379 /*
380  * Remove range of pages and swap entries from radix tree, and free them.
381  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
382  */
383 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
384                                                                  bool unfalloc)
385 {
386         struct address_space *mapping = inode->i_mapping;
387         struct shmem_inode_info *info = SHMEM_I(inode);
388         pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
389         pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT;
390         unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1);
391         unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
392         struct pagevec pvec;
393         pgoff_t indices[PAGEVEC_SIZE];
394         long nr_swaps_freed = 0;
395         pgoff_t index;
396         int i;
397
398         if (lend == -1)
399                 end = -1;       /* unsigned, so actually very big */
400
401         pagevec_init(&pvec, 0);
402         index = start;
403         while (index < end) {
404                 pvec.nr = find_get_entries(mapping, index,
405                         min(end - index, (pgoff_t)PAGEVEC_SIZE),
406                         pvec.pages, indices);
407                 if (!pvec.nr)
408                         break;
409                 mem_cgroup_uncharge_start();
410                 for (i = 0; i < pagevec_count(&pvec); i++) {
411                         struct page *page = pvec.pages[i];
412
413                         index = indices[i];
414                         if (index >= end)
415                                 break;
416
417                         if (radix_tree_exceptional_entry(page)) {
418                                 if (unfalloc)
419                                         continue;
420                                 nr_swaps_freed += !shmem_free_swap(mapping,
421                                                                 index, page);
422                                 continue;
423                         }
424
425                         if (!trylock_page(page))
426                                 continue;
427                         if (!unfalloc || !PageUptodate(page)) {
428                                 if (page->mapping == mapping) {
429                                         VM_BUG_ON_PAGE(PageWriteback(page), page);
430                                         truncate_inode_page(mapping, page);
431                                 }
432                         }
433                         unlock_page(page);
434                 }
435                 pagevec_remove_exceptionals(&pvec);
436                 pagevec_release(&pvec);
437                 mem_cgroup_uncharge_end();
438                 cond_resched();
439                 index++;
440         }
441
442         if (partial_start) {
443                 struct page *page = NULL;
444                 shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
445                 if (page) {
446                         unsigned int top = PAGE_CACHE_SIZE;
447                         if (start > end) {
448                                 top = partial_end;
449                                 partial_end = 0;
450                         }
451                         zero_user_segment(page, partial_start, top);
452                         set_page_dirty(page);
453                         unlock_page(page);
454                         page_cache_release(page);
455                 }
456         }
457         if (partial_end) {
458                 struct page *page = NULL;
459                 shmem_getpage(inode, end, &page, SGP_READ, NULL);
460                 if (page) {
461                         zero_user_segment(page, 0, partial_end);
462                         set_page_dirty(page);
463                         unlock_page(page);
464                         page_cache_release(page);
465                 }
466         }
467         if (start >= end)
468                 return;
469
470         index = start;
471         for ( ; ; ) {
472                 cond_resched();
473
474                 pvec.nr = find_get_entries(mapping, index,
475                                 min(end - index, (pgoff_t)PAGEVEC_SIZE),
476                                 pvec.pages, indices);
477                 if (!pvec.nr) {
478                         if (index == start || unfalloc)
479                                 break;
480                         index = start;
481                         continue;
482                 }
483                 if ((index == start || unfalloc) && indices[0] >= end) {
484                         pagevec_remove_exceptionals(&pvec);
485                         pagevec_release(&pvec);
486                         break;
487                 }
488                 mem_cgroup_uncharge_start();
489                 for (i = 0; i < pagevec_count(&pvec); i++) {
490                         struct page *page = pvec.pages[i];
491
492                         index = indices[i];
493                         if (index >= end)
494                                 break;
495
496                         if (radix_tree_exceptional_entry(page)) {
497                                 if (unfalloc)
498                                         continue;
499                                 nr_swaps_freed += !shmem_free_swap(mapping,
500                                                                 index, page);
501                                 continue;
502                         }
503
504                         lock_page(page);
505                         if (!unfalloc || !PageUptodate(page)) {
506                                 if (page->mapping == mapping) {
507                                         VM_BUG_ON_PAGE(PageWriteback(page), page);
508                                         truncate_inode_page(mapping, page);
509                                 }
510                         }
511                         unlock_page(page);
512                 }
513                 pagevec_remove_exceptionals(&pvec);
514                 pagevec_release(&pvec);
515                 mem_cgroup_uncharge_end();
516                 index++;
517         }
518
519         spin_lock(&info->lock);
520         info->swapped -= nr_swaps_freed;
521         shmem_recalc_inode(inode);
522         spin_unlock(&info->lock);
523 }
524
525 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
526 {
527         shmem_undo_range(inode, lstart, lend, false);
528         inode->i_ctime = inode->i_mtime = CURRENT_TIME;
529 }
530 EXPORT_SYMBOL_GPL(shmem_truncate_range);
531
532 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
533 {
534         struct inode *inode = dentry->d_inode;
535         int error;
536
537         error = inode_change_ok(inode, attr);
538         if (error)
539                 return error;
540
541         if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
542                 loff_t oldsize = inode->i_size;
543                 loff_t newsize = attr->ia_size;
544
545                 if (newsize != oldsize) {
546                         i_size_write(inode, newsize);
547                         inode->i_ctime = inode->i_mtime = CURRENT_TIME;
548                 }
549                 if (newsize < oldsize) {
550                         loff_t holebegin = round_up(newsize, PAGE_SIZE);
551                         unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
552                         shmem_truncate_range(inode, newsize, (loff_t)-1);
553                         /* unmap again to remove racily COWed private pages */
554                         unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
555                 }
556         }
557
558         setattr_copy(inode, attr);
559         if (attr->ia_valid & ATTR_MODE)
560                 error = posix_acl_chmod(inode, inode->i_mode);
561         return error;
562 }
563
564 static void shmem_evict_inode(struct inode *inode)
565 {
566         struct shmem_inode_info *info = SHMEM_I(inode);
567
568         if (inode->i_mapping->a_ops == &shmem_aops) {
569                 shmem_unacct_size(info->flags, inode->i_size);
570                 inode->i_size = 0;
571                 shmem_truncate_range(inode, 0, (loff_t)-1);
572                 if (!list_empty(&info->swaplist)) {
573                         mutex_lock(&shmem_swaplist_mutex);
574                         list_del_init(&info->swaplist);
575                         mutex_unlock(&shmem_swaplist_mutex);
576                 }
577         } else
578                 kfree(info->symlink);
579
580         simple_xattrs_free(&info->xattrs);
581         WARN_ON(inode->i_blocks);
582         shmem_free_inode(inode->i_sb);
583         clear_inode(inode);
584 }
585
586 /*
587  * If swap found in inode, free it and move page from swapcache to filecache.
588  */
589 static int shmem_unuse_inode(struct shmem_inode_info *info,
590                              swp_entry_t swap, struct page **pagep)
591 {
592         struct address_space *mapping = info->vfs_inode.i_mapping;
593         void *radswap;
594         pgoff_t index;
595         gfp_t gfp;
596         int error = 0;
597
598         radswap = swp_to_radix_entry(swap);
599         index = radix_tree_locate_item(&mapping->page_tree, radswap);
600         if (index == -1)
601                 return 0;
602
603         /*
604          * Move _head_ to start search for next from here.
605          * But be careful: shmem_evict_inode checks list_empty without taking
606          * mutex, and there's an instant in list_move_tail when info->swaplist
607          * would appear empty, if it were the only one on shmem_swaplist.
608          */
609         if (shmem_swaplist.next != &info->swaplist)
610                 list_move_tail(&shmem_swaplist, &info->swaplist);
611
612         gfp = mapping_gfp_mask(mapping);
613         if (shmem_should_replace_page(*pagep, gfp)) {
614                 mutex_unlock(&shmem_swaplist_mutex);
615                 error = shmem_replace_page(pagep, gfp, info, index);
616                 mutex_lock(&shmem_swaplist_mutex);
617                 /*
618                  * We needed to drop mutex to make that restrictive page
619                  * allocation, but the inode might have been freed while we
620                  * dropped it: although a racing shmem_evict_inode() cannot
621                  * complete without emptying the radix_tree, our page lock
622                  * on this swapcache page is not enough to prevent that -
623                  * free_swap_and_cache() of our swap entry will only
624                  * trylock_page(), removing swap from radix_tree whatever.
625                  *
626                  * We must not proceed to shmem_add_to_page_cache() if the
627                  * inode has been freed, but of course we cannot rely on
628                  * inode or mapping or info to check that.  However, we can
629                  * safely check if our swap entry is still in use (and here
630                  * it can't have got reused for another page): if it's still
631                  * in use, then the inode cannot have been freed yet, and we
632                  * can safely proceed (if it's no longer in use, that tells
633                  * nothing about the inode, but we don't need to unuse swap).
634                  */
635                 if (!page_swapcount(*pagep))
636                         error = -ENOENT;
637         }
638
639         /*
640          * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
641          * but also to hold up shmem_evict_inode(): so inode cannot be freed
642          * beneath us (pagelock doesn't help until the page is in pagecache).
643          */
644         if (!error)
645                 error = shmem_add_to_page_cache(*pagep, mapping, index,
646                                                 GFP_NOWAIT, radswap);
647         if (error != -ENOMEM) {
648                 /*
649                  * Truncation and eviction use free_swap_and_cache(), which
650                  * only does trylock page: if we raced, best clean up here.
651                  */
652                 delete_from_swap_cache(*pagep);
653                 set_page_dirty(*pagep);
654                 if (!error) {
655                         spin_lock(&info->lock);
656                         info->swapped--;
657                         spin_unlock(&info->lock);
658                         swap_free(swap);
659                 }
660                 error = 1;      /* not an error, but entry was found */
661         }
662         return error;
663 }
664
665 /*
666  * Search through swapped inodes to find and replace swap by page.
667  */
668 int shmem_unuse(swp_entry_t swap, struct page *page)
669 {
670         struct list_head *this, *next;
671         struct shmem_inode_info *info;
672         int found = 0;
673         int error = 0;
674
675         /*
676          * There's a faint possibility that swap page was replaced before
677          * caller locked it: caller will come back later with the right page.
678          */
679         if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
680                 goto out;
681
682         /*
683          * Charge page using GFP_KERNEL while we can wait, before taking
684          * the shmem_swaplist_mutex which might hold up shmem_writepage().
685          * Charged back to the user (not to caller) when swap account is used.
686          */
687         error = mem_cgroup_charge_file(page, current->mm, GFP_KERNEL);
688         if (error)
689                 goto out;
690         /* No radix_tree_preload: swap entry keeps a place for page in tree */
691
692         mutex_lock(&shmem_swaplist_mutex);
693         list_for_each_safe(this, next, &shmem_swaplist) {
694                 info = list_entry(this, struct shmem_inode_info, swaplist);
695                 if (info->swapped)
696                         found = shmem_unuse_inode(info, swap, &page);
697                 else
698                         list_del_init(&info->swaplist);
699                 cond_resched();
700                 if (found)
701                         break;
702         }
703         mutex_unlock(&shmem_swaplist_mutex);
704
705         if (found < 0)
706                 error = found;
707 out:
708         unlock_page(page);
709         page_cache_release(page);
710         return error;
711 }
712
713 /*
714  * Move the page from the page cache to the swap cache.
715  */
716 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
717 {
718         struct shmem_inode_info *info;
719         struct address_space *mapping;
720         struct inode *inode;
721         swp_entry_t swap;
722         pgoff_t index;
723
724         BUG_ON(!PageLocked(page));
725         mapping = page->mapping;
726         index = page->index;
727         inode = mapping->host;
728         info = SHMEM_I(inode);
729         if (info->flags & VM_LOCKED)
730                 goto redirty;
731         if (!total_swap_pages)
732                 goto redirty;
733
734         /*
735          * shmem_backing_dev_info's capabilities prevent regular writeback or
736          * sync from ever calling shmem_writepage; but a stacking filesystem
737          * might use ->writepage of its underlying filesystem, in which case
738          * tmpfs should write out to swap only in response to memory pressure,
739          * and not for the writeback threads or sync.
740          */
741         if (!wbc->for_reclaim) {
742                 WARN_ON_ONCE(1);        /* Still happens? Tell us about it! */
743                 goto redirty;
744         }
745
746         /*
747          * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
748          * value into swapfile.c, the only way we can correctly account for a
749          * fallocated page arriving here is now to initialize it and write it.
750          *
751          * That's okay for a page already fallocated earlier, but if we have
752          * not yet completed the fallocation, then (a) we want to keep track
753          * of this page in case we have to undo it, and (b) it may not be a
754          * good idea to continue anyway, once we're pushing into swap.  So
755          * reactivate the page, and let shmem_fallocate() quit when too many.
756          */
757         if (!PageUptodate(page)) {
758                 if (inode->i_private) {
759                         struct shmem_falloc *shmem_falloc;
760                         spin_lock(&inode->i_lock);
761                         shmem_falloc = inode->i_private;
762                         if (shmem_falloc &&
763                             !shmem_falloc->waitq &&
764                             index >= shmem_falloc->start &&
765                             index < shmem_falloc->next)
766                                 shmem_falloc->nr_unswapped++;
767                         else
768                                 shmem_falloc = NULL;
769                         spin_unlock(&inode->i_lock);
770                         if (shmem_falloc)
771                                 goto redirty;
772                 }
773                 clear_highpage(page);
774                 flush_dcache_page(page);
775                 SetPageUptodate(page);
776         }
777
778         swap = get_swap_page();
779         if (!swap.val)
780                 goto redirty;
781
782         /*
783          * Add inode to shmem_unuse()'s list of swapped-out inodes,
784          * if it's not already there.  Do it now before the page is
785          * moved to swap cache, when its pagelock no longer protects
786          * the inode from eviction.  But don't unlock the mutex until
787          * we've incremented swapped, because shmem_unuse_inode() will
788          * prune a !swapped inode from the swaplist under this mutex.
789          */
790         mutex_lock(&shmem_swaplist_mutex);
791         if (list_empty(&info->swaplist))
792                 list_add_tail(&info->swaplist, &shmem_swaplist);
793
794         if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
795                 swap_shmem_alloc(swap);
796                 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
797
798                 spin_lock(&info->lock);
799                 info->swapped++;
800                 shmem_recalc_inode(inode);
801                 spin_unlock(&info->lock);
802
803                 mutex_unlock(&shmem_swaplist_mutex);
804                 BUG_ON(page_mapped(page));
805                 swap_writepage(page, wbc);
806                 return 0;
807         }
808
809         mutex_unlock(&shmem_swaplist_mutex);
810         swapcache_free(swap, NULL);
811 redirty:
812         set_page_dirty(page);
813         if (wbc->for_reclaim)
814                 return AOP_WRITEPAGE_ACTIVATE;  /* Return with page locked */
815         unlock_page(page);
816         return 0;
817 }
818
819 #ifdef CONFIG_NUMA
820 #ifdef CONFIG_TMPFS
821 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
822 {
823         char buffer[64];
824
825         if (!mpol || mpol->mode == MPOL_DEFAULT)
826                 return;         /* show nothing */
827
828         mpol_to_str(buffer, sizeof(buffer), mpol);
829
830         seq_printf(seq, ",mpol=%s", buffer);
831 }
832
833 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
834 {
835         struct mempolicy *mpol = NULL;
836         if (sbinfo->mpol) {
837                 spin_lock(&sbinfo->stat_lock);  /* prevent replace/use races */
838                 mpol = sbinfo->mpol;
839                 mpol_get(mpol);
840                 spin_unlock(&sbinfo->stat_lock);
841         }
842         return mpol;
843 }
844 #endif /* CONFIG_TMPFS */
845
846 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
847                         struct shmem_inode_info *info, pgoff_t index)
848 {
849         struct vm_area_struct pvma;
850         struct page *page;
851
852         /* Create a pseudo vma that just contains the policy */
853         pvma.vm_start = 0;
854         /* Bias interleave by inode number to distribute better across nodes */
855         pvma.vm_pgoff = index + info->vfs_inode.i_ino;
856         pvma.vm_ops = NULL;
857         pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
858
859         page = swapin_readahead(swap, gfp, &pvma, 0);
860
861         /* Drop reference taken by mpol_shared_policy_lookup() */
862         mpol_cond_put(pvma.vm_policy);
863
864         return page;
865 }
866
867 static struct page *shmem_alloc_page(gfp_t gfp,
868                         struct shmem_inode_info *info, pgoff_t index)
869 {
870         struct vm_area_struct pvma;
871         struct page *page;
872
873         /* Create a pseudo vma that just contains the policy */
874         pvma.vm_start = 0;
875         /* Bias interleave by inode number to distribute better across nodes */
876         pvma.vm_pgoff = index + info->vfs_inode.i_ino;
877         pvma.vm_ops = NULL;
878         pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
879
880         page = alloc_page_vma(gfp, &pvma, 0);
881
882         /* Drop reference taken by mpol_shared_policy_lookup() */
883         mpol_cond_put(pvma.vm_policy);
884
885         return page;
886 }
887 #else /* !CONFIG_NUMA */
888 #ifdef CONFIG_TMPFS
889 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
890 {
891 }
892 #endif /* CONFIG_TMPFS */
893
894 static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
895                         struct shmem_inode_info *info, pgoff_t index)
896 {
897         return swapin_readahead(swap, gfp, NULL, 0);
898 }
899
900 static inline struct page *shmem_alloc_page(gfp_t gfp,
901                         struct shmem_inode_info *info, pgoff_t index)
902 {
903         return alloc_page(gfp);
904 }
905 #endif /* CONFIG_NUMA */
906
907 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
908 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
909 {
910         return NULL;
911 }
912 #endif
913
914 /*
915  * When a page is moved from swapcache to shmem filecache (either by the
916  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
917  * shmem_unuse_inode()), it may have been read in earlier from swap, in
918  * ignorance of the mapping it belongs to.  If that mapping has special
919  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
920  * we may need to copy to a suitable page before moving to filecache.
921  *
922  * In a future release, this may well be extended to respect cpuset and
923  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
924  * but for now it is a simple matter of zone.
925  */
926 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
927 {
928         return page_zonenum(page) > gfp_zone(gfp);
929 }
930
931 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
932                                 struct shmem_inode_info *info, pgoff_t index)
933 {
934         struct page *oldpage, *newpage;
935         struct address_space *swap_mapping;
936         pgoff_t swap_index;
937         int error;
938
939         oldpage = *pagep;
940         swap_index = page_private(oldpage);
941         swap_mapping = page_mapping(oldpage);
942
943         /*
944          * We have arrived here because our zones are constrained, so don't
945          * limit chance of success by further cpuset and node constraints.
946          */
947         gfp &= ~GFP_CONSTRAINT_MASK;
948         newpage = shmem_alloc_page(gfp, info, index);
949         if (!newpage)
950                 return -ENOMEM;
951
952         page_cache_get(newpage);
953         copy_highpage(newpage, oldpage);
954         flush_dcache_page(newpage);
955
956         __set_page_locked(newpage);
957         SetPageUptodate(newpage);
958         SetPageSwapBacked(newpage);
959         set_page_private(newpage, swap_index);
960         SetPageSwapCache(newpage);
961
962         /*
963          * Our caller will very soon move newpage out of swapcache, but it's
964          * a nice clean interface for us to replace oldpage by newpage there.
965          */
966         spin_lock_irq(&swap_mapping->tree_lock);
967         error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
968                                                                    newpage);
969         if (!error) {
970                 __inc_zone_page_state(newpage, NR_FILE_PAGES);
971                 __dec_zone_page_state(oldpage, NR_FILE_PAGES);
972         }
973         spin_unlock_irq(&swap_mapping->tree_lock);
974
975         if (unlikely(error)) {
976                 /*
977                  * Is this possible?  I think not, now that our callers check
978                  * both PageSwapCache and page_private after getting page lock;
979                  * but be defensive.  Reverse old to newpage for clear and free.
980                  */
981                 oldpage = newpage;
982         } else {
983                 mem_cgroup_replace_page_cache(oldpage, newpage);
984                 lru_cache_add_anon(newpage);
985                 *pagep = newpage;
986         }
987
988         ClearPageSwapCache(oldpage);
989         set_page_private(oldpage, 0);
990
991         unlock_page(oldpage);
992         page_cache_release(oldpage);
993         page_cache_release(oldpage);
994         return error;
995 }
996
997 /*
998  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
999  *
1000  * If we allocate a new one we do not mark it dirty. That's up to the
1001  * vm. If we swap it in we mark it dirty since we also free the swap
1002  * entry since a page cannot live in both the swap and page cache
1003  */
1004 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1005         struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
1006 {
1007         struct address_space *mapping = inode->i_mapping;
1008         struct shmem_inode_info *info;
1009         struct shmem_sb_info *sbinfo;
1010         struct page *page;
1011         swp_entry_t swap;
1012         int error;
1013         int once = 0;
1014         int alloced = 0;
1015
1016         if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
1017                 return -EFBIG;
1018 repeat:
1019         swap.val = 0;
1020         page = find_lock_entry(mapping, index);
1021         if (radix_tree_exceptional_entry(page)) {
1022                 swap = radix_to_swp_entry(page);
1023                 page = NULL;
1024         }
1025
1026         if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1027             ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1028                 error = -EINVAL;
1029                 goto failed;
1030         }
1031
1032         if (page && sgp == SGP_WRITE)
1033                 mark_page_accessed(page);
1034
1035         /* fallocated page? */
1036         if (page && !PageUptodate(page)) {
1037                 if (sgp != SGP_READ)
1038                         goto clear;
1039                 unlock_page(page);
1040                 page_cache_release(page);
1041                 page = NULL;
1042         }
1043         if (page || (sgp == SGP_READ && !swap.val)) {
1044                 *pagep = page;
1045                 return 0;
1046         }
1047
1048         /*
1049          * Fast cache lookup did not find it:
1050          * bring it back from swap or allocate.
1051          */
1052         info = SHMEM_I(inode);
1053         sbinfo = SHMEM_SB(inode->i_sb);
1054
1055         if (swap.val) {
1056                 /* Look it up and read it in.. */
1057                 page = lookup_swap_cache(swap);
1058                 if (!page) {
1059                         /* here we actually do the io */
1060                         if (fault_type)
1061                                 *fault_type |= VM_FAULT_MAJOR;
1062                         page = shmem_swapin(swap, gfp, info, index);
1063                         if (!page) {
1064                                 error = -ENOMEM;
1065                                 goto failed;
1066                         }
1067                 }
1068
1069                 /* We have to do this with page locked to prevent races */
1070                 lock_page(page);
1071                 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1072                     !shmem_confirm_swap(mapping, index, swap)) {
1073                         error = -EEXIST;        /* try again */
1074                         goto unlock;
1075                 }
1076                 if (!PageUptodate(page)) {
1077                         error = -EIO;
1078                         goto failed;
1079                 }
1080                 wait_on_page_writeback(page);
1081
1082                 if (shmem_should_replace_page(page, gfp)) {
1083                         error = shmem_replace_page(&page, gfp, info, index);
1084                         if (error)
1085                                 goto failed;
1086                 }
1087
1088                 error = mem_cgroup_charge_file(page, current->mm,
1089                                                 gfp & GFP_RECLAIM_MASK);
1090                 if (!error) {
1091                         error = shmem_add_to_page_cache(page, mapping, index,
1092                                                 gfp, swp_to_radix_entry(swap));
1093                         /*
1094                          * We already confirmed swap under page lock, and make
1095                          * no memory allocation here, so usually no possibility
1096                          * of error; but free_swap_and_cache() only trylocks a
1097                          * page, so it is just possible that the entry has been
1098                          * truncated or holepunched since swap was confirmed.
1099                          * shmem_undo_range() will have done some of the
1100                          * unaccounting, now delete_from_swap_cache() will do
1101                          * the rest (including mem_cgroup_uncharge_swapcache).
1102                          * Reset swap.val? No, leave it so "failed" goes back to
1103                          * "repeat": reading a hole and writing should succeed.
1104                          */
1105                         if (error)
1106                                 delete_from_swap_cache(page);
1107                 }
1108                 if (error)
1109                         goto failed;
1110
1111                 spin_lock(&info->lock);
1112                 info->swapped--;
1113                 shmem_recalc_inode(inode);
1114                 spin_unlock(&info->lock);
1115
1116                 if (sgp == SGP_WRITE)
1117                         mark_page_accessed(page);
1118
1119                 delete_from_swap_cache(page);
1120                 set_page_dirty(page);
1121                 swap_free(swap);
1122
1123         } else {
1124                 if (shmem_acct_block(info->flags)) {
1125                         error = -ENOSPC;
1126                         goto failed;
1127                 }
1128                 if (sbinfo->max_blocks) {
1129                         if (percpu_counter_compare(&sbinfo->used_blocks,
1130                                                 sbinfo->max_blocks) >= 0) {
1131                                 error = -ENOSPC;
1132                                 goto unacct;
1133                         }
1134                         percpu_counter_inc(&sbinfo->used_blocks);
1135                 }
1136
1137                 page = shmem_alloc_page(gfp, info, index);
1138                 if (!page) {
1139                         error = -ENOMEM;
1140                         goto decused;
1141                 }
1142
1143                 __SetPageSwapBacked(page);
1144                 __set_page_locked(page);
1145                 if (sgp == SGP_WRITE)
1146                         init_page_accessed(page);
1147
1148                 error = mem_cgroup_charge_file(page, current->mm,
1149                                                 gfp & GFP_RECLAIM_MASK);
1150                 if (error)
1151                         goto decused;
1152                 error = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
1153                 if (!error) {
1154                         error = shmem_add_to_page_cache(page, mapping, index,
1155                                                         gfp, NULL);
1156                         radix_tree_preload_end();
1157                 }
1158                 if (error) {
1159                         mem_cgroup_uncharge_cache_page(page);
1160                         goto decused;
1161                 }
1162                 lru_cache_add_anon(page);
1163
1164                 spin_lock(&info->lock);
1165                 info->alloced++;
1166                 inode->i_blocks += BLOCKS_PER_PAGE;
1167                 shmem_recalc_inode(inode);
1168                 spin_unlock(&info->lock);
1169                 alloced = true;
1170
1171                 /*
1172                  * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1173                  */
1174                 if (sgp == SGP_FALLOC)
1175                         sgp = SGP_WRITE;
1176 clear:
1177                 /*
1178                  * Let SGP_WRITE caller clear ends if write does not fill page;
1179                  * but SGP_FALLOC on a page fallocated earlier must initialize
1180                  * it now, lest undo on failure cancel our earlier guarantee.
1181                  */
1182                 if (sgp != SGP_WRITE) {
1183                         clear_highpage(page);
1184                         flush_dcache_page(page);
1185                         SetPageUptodate(page);
1186                 }
1187                 if (sgp == SGP_DIRTY)
1188                         set_page_dirty(page);
1189         }
1190
1191         /* Perhaps the file has been truncated since we checked */
1192         if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1193             ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1194                 error = -EINVAL;
1195                 if (alloced)
1196                         goto trunc;
1197                 else
1198                         goto failed;
1199         }
1200         *pagep = page;
1201         return 0;
1202
1203         /*
1204          * Error recovery.
1205          */
1206 trunc:
1207         info = SHMEM_I(inode);
1208         ClearPageDirty(page);
1209         delete_from_page_cache(page);
1210         spin_lock(&info->lock);
1211         info->alloced--;
1212         inode->i_blocks -= BLOCKS_PER_PAGE;
1213         spin_unlock(&info->lock);
1214 decused:
1215         sbinfo = SHMEM_SB(inode->i_sb);
1216         if (sbinfo->max_blocks)
1217                 percpu_counter_add(&sbinfo->used_blocks, -1);
1218 unacct:
1219         shmem_unacct_blocks(info->flags, 1);
1220 failed:
1221         if (swap.val && error != -EINVAL &&
1222             !shmem_confirm_swap(mapping, index, swap))
1223                 error = -EEXIST;
1224 unlock:
1225         if (page) {
1226                 unlock_page(page);
1227                 page_cache_release(page);
1228         }
1229         if (error == -ENOSPC && !once++) {
1230                 info = SHMEM_I(inode);
1231                 spin_lock(&info->lock);
1232                 shmem_recalc_inode(inode);
1233                 spin_unlock(&info->lock);
1234                 goto repeat;
1235         }
1236         if (error == -EEXIST)   /* from above or from radix_tree_insert */
1237                 goto repeat;
1238         return error;
1239 }
1240
1241 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1242 {
1243         struct inode *inode = file_inode(vma->vm_file);
1244         int error;
1245         int ret = VM_FAULT_LOCKED;
1246
1247         /*
1248          * Trinity finds that probing a hole which tmpfs is punching can
1249          * prevent the hole-punch from ever completing: which in turn
1250          * locks writers out with its hold on i_mutex.  So refrain from
1251          * faulting pages into the hole while it's being punched.  Although
1252          * shmem_undo_range() does remove the additions, it may be unable to
1253          * keep up, as each new page needs its own unmap_mapping_range() call,
1254          * and the i_mmap tree grows ever slower to scan if new vmas are added.
1255          *
1256          * It does not matter if we sometimes reach this check just before the
1257          * hole-punch begins, so that one fault then races with the punch:
1258          * we just need to make racing faults a rare case.
1259          *
1260          * The implementation below would be much simpler if we just used a
1261          * standard mutex or completion: but we cannot take i_mutex in fault,
1262          * and bloating every shmem inode for this unlikely case would be sad.
1263          */
1264         if (unlikely(inode->i_private)) {
1265                 struct shmem_falloc *shmem_falloc;
1266
1267                 spin_lock(&inode->i_lock);
1268                 shmem_falloc = inode->i_private;
1269                 if (shmem_falloc &&
1270                     shmem_falloc->waitq &&
1271                     vmf->pgoff >= shmem_falloc->start &&
1272                     vmf->pgoff < shmem_falloc->next) {
1273                         wait_queue_head_t *shmem_falloc_waitq;
1274                         DEFINE_WAIT(shmem_fault_wait);
1275
1276                         ret = VM_FAULT_NOPAGE;
1277                         if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1278                            !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1279                                 /* It's polite to up mmap_sem if we can */
1280                                 up_read(&vma->vm_mm->mmap_sem);
1281                                 ret = VM_FAULT_RETRY;
1282                         }
1283
1284                         shmem_falloc_waitq = shmem_falloc->waitq;
1285                         prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1286                                         TASK_UNINTERRUPTIBLE);
1287                         spin_unlock(&inode->i_lock);
1288                         schedule();
1289
1290                         /*
1291                          * shmem_falloc_waitq points into the shmem_fallocate()
1292                          * stack of the hole-punching task: shmem_falloc_waitq
1293                          * is usually invalid by the time we reach here, but
1294                          * finish_wait() does not dereference it in that case;
1295                          * though i_lock needed lest racing with wake_up_all().
1296                          */
1297                         spin_lock(&inode->i_lock);
1298                         finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1299                         spin_unlock(&inode->i_lock);
1300                         return ret;
1301                 }
1302                 spin_unlock(&inode->i_lock);
1303         }
1304
1305         error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1306         if (error)
1307                 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1308
1309         if (ret & VM_FAULT_MAJOR) {
1310                 count_vm_event(PGMAJFAULT);
1311                 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1312         }
1313         return ret;
1314 }
1315
1316 #ifdef CONFIG_NUMA
1317 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1318 {
1319         struct inode *inode = file_inode(vma->vm_file);
1320         return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1321 }
1322
1323 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1324                                           unsigned long addr)
1325 {
1326         struct inode *inode = file_inode(vma->vm_file);
1327         pgoff_t index;
1328
1329         index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1330         return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1331 }
1332 #endif
1333
1334 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1335 {
1336         struct inode *inode = file_inode(file);
1337         struct shmem_inode_info *info = SHMEM_I(inode);
1338         int retval = -ENOMEM;
1339
1340         spin_lock(&info->lock);
1341         if (lock && !(info->flags & VM_LOCKED)) {
1342                 if (!user_shm_lock(inode->i_size, user))
1343                         goto out_nomem;
1344                 info->flags |= VM_LOCKED;
1345                 mapping_set_unevictable(file->f_mapping);
1346         }
1347         if (!lock && (info->flags & VM_LOCKED) && user) {
1348                 user_shm_unlock(inode->i_size, user);
1349                 info->flags &= ~VM_LOCKED;
1350                 mapping_clear_unevictable(file->f_mapping);
1351         }
1352         retval = 0;
1353
1354 out_nomem:
1355         spin_unlock(&info->lock);
1356         return retval;
1357 }
1358
1359 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1360 {
1361         file_accessed(file);
1362         vma->vm_ops = &shmem_vm_ops;
1363         return 0;
1364 }
1365
1366 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1367                                      umode_t mode, dev_t dev, unsigned long flags)
1368 {
1369         struct inode *inode;
1370         struct shmem_inode_info *info;
1371         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1372
1373         if (shmem_reserve_inode(sb))
1374                 return NULL;
1375
1376         inode = new_inode(sb);
1377         if (inode) {
1378                 inode->i_ino = get_next_ino();
1379                 inode_init_owner(inode, dir, mode);
1380                 inode->i_blocks = 0;
1381                 inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1382                 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1383                 inode->i_generation = get_seconds();
1384                 info = SHMEM_I(inode);
1385                 memset(info, 0, (char *)inode - (char *)info);
1386                 spin_lock_init(&info->lock);
1387                 info->flags = flags & VM_NORESERVE;
1388                 INIT_LIST_HEAD(&info->swaplist);
1389                 simple_xattrs_init(&info->xattrs);
1390                 cache_no_acl(inode);
1391
1392                 switch (mode & S_IFMT) {
1393                 default:
1394                         inode->i_op = &shmem_special_inode_operations;
1395                         init_special_inode(inode, mode, dev);
1396                         break;
1397                 case S_IFREG:
1398                         inode->i_mapping->a_ops = &shmem_aops;
1399                         inode->i_op = &shmem_inode_operations;
1400                         inode->i_fop = &shmem_file_operations;
1401                         mpol_shared_policy_init(&info->policy,
1402                                                  shmem_get_sbmpol(sbinfo));
1403                         break;
1404                 case S_IFDIR:
1405                         inc_nlink(inode);
1406                         /* Some things misbehave if size == 0 on a directory */
1407                         inode->i_size = 2 * BOGO_DIRENT_SIZE;
1408                         inode->i_op = &shmem_dir_inode_operations;
1409                         inode->i_fop = &simple_dir_operations;
1410                         break;
1411                 case S_IFLNK:
1412                         /*
1413                          * Must not load anything in the rbtree,
1414                          * mpol_free_shared_policy will not be called.
1415                          */
1416                         mpol_shared_policy_init(&info->policy, NULL);
1417                         break;
1418                 }
1419         } else
1420                 shmem_free_inode(sb);
1421         return inode;
1422 }
1423
1424 bool shmem_mapping(struct address_space *mapping)
1425 {
1426         return mapping->backing_dev_info == &shmem_backing_dev_info;
1427 }
1428
1429 #ifdef CONFIG_TMPFS
1430 static const struct inode_operations shmem_symlink_inode_operations;
1431 static const struct inode_operations shmem_short_symlink_operations;
1432
1433 #ifdef CONFIG_TMPFS_XATTR
1434 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1435 #else
1436 #define shmem_initxattrs NULL
1437 #endif
1438
1439 static int
1440 shmem_write_begin(struct file *file, struct address_space *mapping,
1441                         loff_t pos, unsigned len, unsigned flags,
1442                         struct page **pagep, void **fsdata)
1443 {
1444         struct inode *inode = mapping->host;
1445         pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1446         return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1447 }
1448
1449 static int
1450 shmem_write_end(struct file *file, struct address_space *mapping,
1451                         loff_t pos, unsigned len, unsigned copied,
1452                         struct page *page, void *fsdata)
1453 {
1454         struct inode *inode = mapping->host;
1455
1456         if (pos + copied > inode->i_size)
1457                 i_size_write(inode, pos + copied);
1458
1459         if (!PageUptodate(page)) {
1460                 if (copied < PAGE_CACHE_SIZE) {
1461                         unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1462                         zero_user_segments(page, 0, from,
1463                                         from + copied, PAGE_CACHE_SIZE);
1464                 }
1465                 SetPageUptodate(page);
1466         }
1467         set_page_dirty(page);
1468         unlock_page(page);
1469         page_cache_release(page);
1470
1471         return copied;
1472 }
1473
1474 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1475 {
1476         struct file *file = iocb->ki_filp;
1477         struct inode *inode = file_inode(file);
1478         struct address_space *mapping = inode->i_mapping;
1479         pgoff_t index;
1480         unsigned long offset;
1481         enum sgp_type sgp = SGP_READ;
1482         int error = 0;
1483         ssize_t retval = 0;
1484         loff_t *ppos = &iocb->ki_pos;
1485
1486         /*
1487          * Might this read be for a stacking filesystem?  Then when reading
1488          * holes of a sparse file, we actually need to allocate those pages,
1489          * and even mark them dirty, so it cannot exceed the max_blocks limit.
1490          */
1491         if (segment_eq(get_fs(), KERNEL_DS))
1492                 sgp = SGP_DIRTY;
1493
1494         index = *ppos >> PAGE_CACHE_SHIFT;
1495         offset = *ppos & ~PAGE_CACHE_MASK;
1496
1497         for (;;) {
1498                 struct page *page = NULL;
1499                 pgoff_t end_index;
1500                 unsigned long nr, ret;
1501                 loff_t i_size = i_size_read(inode);
1502
1503                 end_index = i_size >> PAGE_CACHE_SHIFT;
1504                 if (index > end_index)
1505                         break;
1506                 if (index == end_index) {
1507                         nr = i_size & ~PAGE_CACHE_MASK;
1508                         if (nr <= offset)
1509                                 break;
1510                 }
1511
1512                 error = shmem_getpage(inode, index, &page, sgp, NULL);
1513                 if (error) {
1514                         if (error == -EINVAL)
1515                                 error = 0;
1516                         break;
1517                 }
1518                 if (page)
1519                         unlock_page(page);
1520
1521                 /*
1522                  * We must evaluate after, since reads (unlike writes)
1523                  * are called without i_mutex protection against truncate
1524                  */
1525                 nr = PAGE_CACHE_SIZE;
1526                 i_size = i_size_read(inode);
1527                 end_index = i_size >> PAGE_CACHE_SHIFT;
1528                 if (index == end_index) {
1529                         nr = i_size & ~PAGE_CACHE_MASK;
1530                         if (nr <= offset) {
1531                                 if (page)
1532                                         page_cache_release(page);
1533                                 break;
1534                         }
1535                 }
1536                 nr -= offset;
1537
1538                 if (page) {
1539                         /*
1540                          * If users can be writing to this page using arbitrary
1541                          * virtual addresses, take care about potential aliasing
1542                          * before reading the page on the kernel side.
1543                          */
1544                         if (mapping_writably_mapped(mapping))
1545                                 flush_dcache_page(page);
1546                         /*
1547                          * Mark the page accessed if we read the beginning.
1548                          */
1549                         if (!offset)
1550                                 mark_page_accessed(page);
1551                 } else {
1552                         page = ZERO_PAGE(0);
1553                         page_cache_get(page);
1554                 }
1555
1556                 /*
1557                  * Ok, we have the page, and it's up-to-date, so
1558                  * now we can copy it to user space...
1559                  */
1560                 ret = copy_page_to_iter(page, offset, nr, to);
1561                 retval += ret;
1562                 offset += ret;
1563                 index += offset >> PAGE_CACHE_SHIFT;
1564                 offset &= ~PAGE_CACHE_MASK;
1565
1566                 page_cache_release(page);
1567                 if (!iov_iter_count(to))
1568                         break;
1569                 if (ret < nr) {
1570                         error = -EFAULT;
1571                         break;
1572                 }
1573                 cond_resched();
1574         }
1575
1576         *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1577         file_accessed(file);
1578         return retval ? retval : error;
1579 }
1580
1581 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1582                                 struct pipe_inode_info *pipe, size_t len,
1583                                 unsigned int flags)
1584 {
1585         struct address_space *mapping = in->f_mapping;
1586         struct inode *inode = mapping->host;
1587         unsigned int loff, nr_pages, req_pages;
1588         struct page *pages[PIPE_DEF_BUFFERS];
1589         struct partial_page partial[PIPE_DEF_BUFFERS];
1590         struct page *page;
1591         pgoff_t index, end_index;
1592         loff_t isize, left;
1593         int error, page_nr;
1594         struct splice_pipe_desc spd = {
1595                 .pages = pages,
1596                 .partial = partial,
1597                 .nr_pages_max = PIPE_DEF_BUFFERS,
1598                 .flags = flags,
1599                 .ops = &page_cache_pipe_buf_ops,
1600                 .spd_release = spd_release_page,
1601         };
1602
1603         isize = i_size_read(inode);
1604         if (unlikely(*ppos >= isize))
1605                 return 0;
1606
1607         left = isize - *ppos;
1608         if (unlikely(left < len))
1609                 len = left;
1610
1611         if (splice_grow_spd(pipe, &spd))
1612                 return -ENOMEM;
1613
1614         index = *ppos >> PAGE_CACHE_SHIFT;
1615         loff = *ppos & ~PAGE_CACHE_MASK;
1616         req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1617         nr_pages = min(req_pages, spd.nr_pages_max);
1618
1619         spd.nr_pages = find_get_pages_contig(mapping, index,
1620                                                 nr_pages, spd.pages);
1621         index += spd.nr_pages;
1622         error = 0;
1623
1624         while (spd.nr_pages < nr_pages) {
1625                 error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1626                 if (error)
1627                         break;
1628                 unlock_page(page);
1629                 spd.pages[spd.nr_pages++] = page;
1630                 index++;
1631         }
1632
1633         index = *ppos >> PAGE_CACHE_SHIFT;
1634         nr_pages = spd.nr_pages;
1635         spd.nr_pages = 0;
1636
1637         for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1638                 unsigned int this_len;
1639
1640                 if (!len)
1641                         break;
1642
1643                 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1644                 page = spd.pages[page_nr];
1645
1646                 if (!PageUptodate(page) || page->mapping != mapping) {
1647                         error = shmem_getpage(inode, index, &page,
1648                                                         SGP_CACHE, NULL);
1649                         if (error)
1650                                 break;
1651                         unlock_page(page);
1652                         page_cache_release(spd.pages[page_nr]);
1653                         spd.pages[page_nr] = page;
1654                 }
1655
1656                 isize = i_size_read(inode);
1657                 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1658                 if (unlikely(!isize || index > end_index))
1659                         break;
1660
1661                 if (end_index == index) {
1662                         unsigned int plen;
1663
1664                         plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1665                         if (plen <= loff)
1666                                 break;
1667
1668                         this_len = min(this_len, plen - loff);
1669                         len = this_len;
1670                 }
1671
1672                 spd.partial[page_nr].offset = loff;
1673                 spd.partial[page_nr].len = this_len;
1674                 len -= this_len;
1675                 loff = 0;
1676                 spd.nr_pages++;
1677                 index++;
1678         }
1679
1680         while (page_nr < nr_pages)
1681                 page_cache_release(spd.pages[page_nr++]);
1682
1683         if (spd.nr_pages)
1684                 error = splice_to_pipe(pipe, &spd);
1685
1686         splice_shrink_spd(&spd);
1687
1688         if (error > 0) {
1689                 *ppos += error;
1690                 file_accessed(in);
1691         }
1692         return error;
1693 }
1694
1695 /*
1696  * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
1697  */
1698 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
1699                                     pgoff_t index, pgoff_t end, int whence)
1700 {
1701         struct page *page;
1702         struct pagevec pvec;
1703         pgoff_t indices[PAGEVEC_SIZE];
1704         bool done = false;
1705         int i;
1706
1707         pagevec_init(&pvec, 0);
1708         pvec.nr = 1;            /* start small: we may be there already */
1709         while (!done) {
1710                 pvec.nr = find_get_entries(mapping, index,
1711                                         pvec.nr, pvec.pages, indices);
1712                 if (!pvec.nr) {
1713                         if (whence == SEEK_DATA)
1714                                 index = end;
1715                         break;
1716                 }
1717                 for (i = 0; i < pvec.nr; i++, index++) {
1718                         if (index < indices[i]) {
1719                                 if (whence == SEEK_HOLE) {
1720                                         done = true;
1721                                         break;
1722                                 }
1723                                 index = indices[i];
1724                         }
1725                         page = pvec.pages[i];
1726                         if (page && !radix_tree_exceptional_entry(page)) {
1727                                 if (!PageUptodate(page))
1728                                         page = NULL;
1729                         }
1730                         if (index >= end ||
1731                             (page && whence == SEEK_DATA) ||
1732                             (!page && whence == SEEK_HOLE)) {
1733                                 done = true;
1734                                 break;
1735                         }
1736                 }
1737                 pagevec_remove_exceptionals(&pvec);
1738                 pagevec_release(&pvec);
1739                 pvec.nr = PAGEVEC_SIZE;
1740                 cond_resched();
1741         }
1742         return index;
1743 }
1744
1745 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
1746 {
1747         struct address_space *mapping = file->f_mapping;
1748         struct inode *inode = mapping->host;
1749         pgoff_t start, end;
1750         loff_t new_offset;
1751
1752         if (whence != SEEK_DATA && whence != SEEK_HOLE)
1753                 return generic_file_llseek_size(file, offset, whence,
1754                                         MAX_LFS_FILESIZE, i_size_read(inode));
1755         mutex_lock(&inode->i_mutex);
1756         /* We're holding i_mutex so we can access i_size directly */
1757
1758         if (offset < 0)
1759                 offset = -EINVAL;
1760         else if (offset >= inode->i_size)
1761                 offset = -ENXIO;
1762         else {
1763                 start = offset >> PAGE_CACHE_SHIFT;
1764                 end = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1765                 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
1766                 new_offset <<= PAGE_CACHE_SHIFT;
1767                 if (new_offset > offset) {
1768                         if (new_offset < inode->i_size)
1769                                 offset = new_offset;
1770                         else if (whence == SEEK_DATA)
1771                                 offset = -ENXIO;
1772                         else
1773                                 offset = inode->i_size;
1774                 }
1775         }
1776
1777         if (offset >= 0)
1778                 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
1779         mutex_unlock(&inode->i_mutex);
1780         return offset;
1781 }
1782
1783 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
1784                                                          loff_t len)
1785 {
1786         struct inode *inode = file_inode(file);
1787         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1788         struct shmem_falloc shmem_falloc;
1789         pgoff_t start, index, end;
1790         int error;
1791
1792         if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
1793                 return -EOPNOTSUPP;
1794
1795         mutex_lock(&inode->i_mutex);
1796
1797         if (mode & FALLOC_FL_PUNCH_HOLE) {
1798                 struct address_space *mapping = file->f_mapping;
1799                 loff_t unmap_start = round_up(offset, PAGE_SIZE);
1800                 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
1801                 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
1802
1803                 shmem_falloc.waitq = &shmem_falloc_waitq;
1804                 shmem_falloc.start = unmap_start >> PAGE_SHIFT;
1805                 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
1806                 spin_lock(&inode->i_lock);
1807                 inode->i_private = &shmem_falloc;
1808                 spin_unlock(&inode->i_lock);
1809
1810                 if ((u64)unmap_end > (u64)unmap_start)
1811                         unmap_mapping_range(mapping, unmap_start,
1812                                             1 + unmap_end - unmap_start, 0);
1813                 shmem_truncate_range(inode, offset, offset + len - 1);
1814                 /* No need to unmap again: hole-punching leaves COWed pages */
1815
1816                 spin_lock(&inode->i_lock);
1817                 inode->i_private = NULL;
1818                 wake_up_all(&shmem_falloc_waitq);
1819                 spin_unlock(&inode->i_lock);
1820                 error = 0;
1821                 goto out;
1822         }
1823
1824         /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
1825         error = inode_newsize_ok(inode, offset + len);
1826         if (error)
1827                 goto out;
1828
1829         start = offset >> PAGE_CACHE_SHIFT;
1830         end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1831         /* Try to avoid a swapstorm if len is impossible to satisfy */
1832         if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
1833                 error = -ENOSPC;
1834                 goto out;
1835         }
1836
1837         shmem_falloc.waitq = NULL;
1838         shmem_falloc.start = start;
1839         shmem_falloc.next  = start;
1840         shmem_falloc.nr_falloced = 0;
1841         shmem_falloc.nr_unswapped = 0;
1842         spin_lock(&inode->i_lock);
1843         inode->i_private = &shmem_falloc;
1844         spin_unlock(&inode->i_lock);
1845
1846         for (index = start; index < end; index++) {
1847                 struct page *page;
1848
1849                 /*
1850                  * Good, the fallocate(2) manpage permits EINTR: we may have
1851                  * been interrupted because we are using up too much memory.
1852                  */
1853                 if (signal_pending(current))
1854                         error = -EINTR;
1855                 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
1856                         error = -ENOMEM;
1857                 else
1858                         error = shmem_getpage(inode, index, &page, SGP_FALLOC,
1859                                                                         NULL);
1860                 if (error) {
1861                         /* Remove the !PageUptodate pages we added */
1862                         shmem_undo_range(inode,
1863                                 (loff_t)start << PAGE_CACHE_SHIFT,
1864                                 (loff_t)index << PAGE_CACHE_SHIFT, true);
1865                         goto undone;
1866                 }
1867
1868                 /*
1869                  * Inform shmem_writepage() how far we have reached.
1870                  * No need for lock or barrier: we have the page lock.
1871                  */
1872                 shmem_falloc.next++;
1873                 if (!PageUptodate(page))
1874                         shmem_falloc.nr_falloced++;
1875
1876                 /*
1877                  * If !PageUptodate, leave it that way so that freeable pages
1878                  * can be recognized if we need to rollback on error later.
1879                  * But set_page_dirty so that memory pressure will swap rather
1880                  * than free the pages we are allocating (and SGP_CACHE pages
1881                  * might still be clean: we now need to mark those dirty too).
1882                  */
1883                 set_page_dirty(page);
1884                 unlock_page(page);
1885                 page_cache_release(page);
1886                 cond_resched();
1887         }
1888
1889         if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
1890                 i_size_write(inode, offset + len);
1891         inode->i_ctime = CURRENT_TIME;
1892 undone:
1893         spin_lock(&inode->i_lock);
1894         inode->i_private = NULL;
1895         spin_unlock(&inode->i_lock);
1896 out:
1897         mutex_unlock(&inode->i_mutex);
1898         return error;
1899 }
1900
1901 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1902 {
1903         struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1904
1905         buf->f_type = TMPFS_MAGIC;
1906         buf->f_bsize = PAGE_CACHE_SIZE;
1907         buf->f_namelen = NAME_MAX;
1908         if (sbinfo->max_blocks) {
1909                 buf->f_blocks = sbinfo->max_blocks;
1910                 buf->f_bavail =
1911                 buf->f_bfree  = sbinfo->max_blocks -
1912                                 percpu_counter_sum(&sbinfo->used_blocks);
1913         }
1914         if (sbinfo->max_inodes) {
1915                 buf->f_files = sbinfo->max_inodes;
1916                 buf->f_ffree = sbinfo->free_inodes;
1917         }
1918         /* else leave those fields 0 like simple_statfs */
1919         return 0;
1920 }
1921
1922 /*
1923  * File creation. Allocate an inode, and we're done..
1924  */
1925 static int
1926 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1927 {
1928         struct inode *inode;
1929         int error = -ENOSPC;
1930
1931         inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1932         if (inode) {
1933                 error = simple_acl_create(dir, inode);
1934                 if (error)
1935                         goto out_iput;
1936                 error = security_inode_init_security(inode, dir,
1937                                                      &dentry->d_name,
1938                                                      shmem_initxattrs, NULL);
1939                 if (error && error != -EOPNOTSUPP)
1940                         goto out_iput;
1941
1942                 error = 0;
1943                 dir->i_size += BOGO_DIRENT_SIZE;
1944                 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1945                 d_instantiate(dentry, inode);
1946                 dget(dentry); /* Extra count - pin the dentry in core */
1947         }
1948         return error;
1949 out_iput:
1950         iput(inode);
1951         return error;
1952 }
1953
1954 static int
1955 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
1956 {
1957         struct inode *inode;
1958         int error = -ENOSPC;
1959
1960         inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
1961         if (inode) {
1962                 error = security_inode_init_security(inode, dir,
1963                                                      NULL,
1964                                                      shmem_initxattrs, NULL);
1965                 if (error && error != -EOPNOTSUPP)
1966                         goto out_iput;
1967                 error = simple_acl_create(dir, inode);
1968                 if (error)
1969                         goto out_iput;
1970                 d_tmpfile(dentry, inode);
1971         }
1972         return error;
1973 out_iput:
1974         iput(inode);
1975         return error;
1976 }
1977
1978 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1979 {
1980         int error;
1981
1982         if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1983                 return error;
1984         inc_nlink(dir);
1985         return 0;
1986 }
1987
1988 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
1989                 bool excl)
1990 {
1991         return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1992 }
1993
1994 /*
1995  * Link a file..
1996  */
1997 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1998 {
1999         struct inode *inode = old_dentry->d_inode;
2000         int ret;
2001
2002         /*
2003          * No ordinary (disk based) filesystem counts links as inodes;
2004          * but each new link needs a new dentry, pinning lowmem, and
2005          * tmpfs dentries cannot be pruned until they are unlinked.
2006          */
2007         ret = shmem_reserve_inode(inode->i_sb);
2008         if (ret)
2009                 goto out;
2010
2011         dir->i_size += BOGO_DIRENT_SIZE;
2012         inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2013         inc_nlink(inode);
2014         ihold(inode);   /* New dentry reference */
2015         dget(dentry);           /* Extra pinning count for the created dentry */
2016         d_instantiate(dentry, inode);
2017 out:
2018         return ret;
2019 }
2020
2021 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2022 {
2023         struct inode *inode = dentry->d_inode;
2024
2025         if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2026                 shmem_free_inode(inode->i_sb);
2027
2028         dir->i_size -= BOGO_DIRENT_SIZE;
2029         inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2030         drop_nlink(inode);
2031         dput(dentry);   /* Undo the count from "create" - this does all the work */
2032         return 0;
2033 }
2034
2035 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2036 {
2037         if (!simple_empty(dentry))
2038                 return -ENOTEMPTY;
2039
2040         drop_nlink(dentry->d_inode);
2041         drop_nlink(dir);
2042         return shmem_unlink(dir, dentry);
2043 }
2044
2045 /*
2046  * The VFS layer already does all the dentry stuff for rename,
2047  * we just have to decrement the usage count for the target if
2048  * it exists so that the VFS layer correctly free's it when it
2049  * gets overwritten.
2050  */
2051 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2052 {
2053         struct inode *inode = old_dentry->d_inode;
2054         int they_are_dirs = S_ISDIR(inode->i_mode);
2055
2056         if (!simple_empty(new_dentry))
2057                 return -ENOTEMPTY;
2058
2059         if (new_dentry->d_inode) {
2060                 (void) shmem_unlink(new_dir, new_dentry);
2061                 if (they_are_dirs)
2062                         drop_nlink(old_dir);
2063         } else if (they_are_dirs) {
2064                 drop_nlink(old_dir);
2065                 inc_nlink(new_dir);
2066         }
2067
2068         old_dir->i_size -= BOGO_DIRENT_SIZE;
2069         new_dir->i_size += BOGO_DIRENT_SIZE;
2070         old_dir->i_ctime = old_dir->i_mtime =
2071         new_dir->i_ctime = new_dir->i_mtime =
2072         inode->i_ctime = CURRENT_TIME;
2073         return 0;
2074 }
2075
2076 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2077 {
2078         int error;
2079         int len;
2080         struct inode *inode;
2081         struct page *page;
2082         char *kaddr;
2083         struct shmem_inode_info *info;
2084
2085         len = strlen(symname) + 1;
2086         if (len > PAGE_CACHE_SIZE)
2087                 return -ENAMETOOLONG;
2088
2089         inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
2090         if (!inode)
2091                 return -ENOSPC;
2092
2093         error = security_inode_init_security(inode, dir, &dentry->d_name,
2094                                              shmem_initxattrs, NULL);
2095         if (error) {
2096                 if (error != -EOPNOTSUPP) {
2097                         iput(inode);
2098                         return error;
2099                 }
2100                 error = 0;
2101         }
2102
2103         info = SHMEM_I(inode);
2104         inode->i_size = len-1;
2105         if (len <= SHORT_SYMLINK_LEN) {
2106                 info->symlink = kmemdup(symname, len, GFP_KERNEL);
2107                 if (!info->symlink) {
2108                         iput(inode);
2109                         return -ENOMEM;
2110                 }
2111                 inode->i_op = &shmem_short_symlink_operations;
2112         } else {
2113                 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2114                 if (error) {
2115                         iput(inode);
2116                         return error;
2117                 }
2118                 inode->i_mapping->a_ops = &shmem_aops;
2119                 inode->i_op = &shmem_symlink_inode_operations;
2120                 kaddr = kmap_atomic(page);
2121                 memcpy(kaddr, symname, len);
2122                 kunmap_atomic(kaddr);
2123                 SetPageUptodate(page);
2124                 set_page_dirty(page);
2125                 unlock_page(page);
2126                 page_cache_release(page);
2127         }
2128         dir->i_size += BOGO_DIRENT_SIZE;
2129         dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2130         d_instantiate(dentry, inode);
2131         dget(dentry);
2132         return 0;
2133 }
2134
2135 static void *shmem_follow_short_symlink(struct dentry *dentry, struct nameidata *nd)
2136 {
2137         nd_set_link(nd, SHMEM_I(dentry->d_inode)->symlink);
2138         return NULL;
2139 }
2140
2141 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
2142 {
2143         struct page *page = NULL;
2144         int error = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
2145         nd_set_link(nd, error ? ERR_PTR(error) : kmap(page));
2146         if (page)
2147                 unlock_page(page);
2148         return page;
2149 }
2150
2151 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2152 {
2153         if (!IS_ERR(nd_get_link(nd))) {
2154                 struct page *page = cookie;
2155                 kunmap(page);
2156                 mark_page_accessed(page);
2157                 page_cache_release(page);
2158         }
2159 }
2160
2161 #ifdef CONFIG_TMPFS_XATTR
2162 /*
2163  * Superblocks without xattr inode operations may get some security.* xattr
2164  * support from the LSM "for free". As soon as we have any other xattrs
2165  * like ACLs, we also need to implement the security.* handlers at
2166  * filesystem level, though.
2167  */
2168
2169 /*
2170  * Callback for security_inode_init_security() for acquiring xattrs.
2171  */
2172 static int shmem_initxattrs(struct inode *inode,
2173                             const struct xattr *xattr_array,
2174                             void *fs_info)
2175 {
2176         struct shmem_inode_info *info = SHMEM_I(inode);
2177         const struct xattr *xattr;
2178         struct simple_xattr *new_xattr;
2179         size_t len;
2180
2181         for (xattr = xattr_array; xattr->name != NULL; xattr++) {
2182                 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
2183                 if (!new_xattr)
2184                         return -ENOMEM;
2185
2186                 len = strlen(xattr->name) + 1;
2187                 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2188                                           GFP_KERNEL);
2189                 if (!new_xattr->name) {
2190                         kfree(new_xattr);
2191                         return -ENOMEM;
2192                 }
2193
2194                 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2195                        XATTR_SECURITY_PREFIX_LEN);
2196                 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2197                        xattr->name, len);
2198
2199                 simple_xattr_list_add(&info->xattrs, new_xattr);
2200         }
2201
2202         return 0;
2203 }
2204
2205 static const struct xattr_handler *shmem_xattr_handlers[] = {
2206 #ifdef CONFIG_TMPFS_POSIX_ACL
2207         &posix_acl_access_xattr_handler,
2208         &posix_acl_default_xattr_handler,
2209 #endif
2210         NULL
2211 };
2212
2213 static int shmem_xattr_validate(const char *name)
2214 {
2215         struct { const char *prefix; size_t len; } arr[] = {
2216                 { XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
2217                 { XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
2218         };
2219         int i;
2220
2221         for (i = 0; i < ARRAY_SIZE(arr); i++) {
2222                 size_t preflen = arr[i].len;
2223                 if (strncmp(name, arr[i].prefix, preflen) == 0) {
2224                         if (!name[preflen])
2225                                 return -EINVAL;
2226                         return 0;
2227                 }
2228         }
2229         return -EOPNOTSUPP;
2230 }
2231
2232 static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
2233                               void *buffer, size_t size)
2234 {
2235         struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2236         int err;
2237
2238         /*
2239          * If this is a request for a synthetic attribute in the system.*
2240          * namespace use the generic infrastructure to resolve a handler
2241          * for it via sb->s_xattr.
2242          */
2243         if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2244                 return generic_getxattr(dentry, name, buffer, size);
2245
2246         err = shmem_xattr_validate(name);
2247         if (err)
2248                 return err;
2249
2250         return simple_xattr_get(&info->xattrs, name, buffer, size);
2251 }
2252
2253 static int shmem_setxattr(struct dentry *dentry, const char *name,
2254                           const void *value, size_t size, int flags)
2255 {
2256         struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2257         int err;
2258
2259         /*
2260          * If this is a request for a synthetic attribute in the system.*
2261          * namespace use the generic infrastructure to resolve a handler
2262          * for it via sb->s_xattr.
2263          */
2264         if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2265                 return generic_setxattr(dentry, name, value, size, flags);
2266
2267         err = shmem_xattr_validate(name);
2268         if (err)
2269                 return err;
2270
2271         return simple_xattr_set(&info->xattrs, name, value, size, flags);
2272 }
2273
2274 static int shmem_removexattr(struct dentry *dentry, const char *name)
2275 {
2276         struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2277         int err;
2278
2279         /*
2280          * If this is a request for a synthetic attribute in the system.*
2281          * namespace use the generic infrastructure to resolve a handler
2282          * for it via sb->s_xattr.
2283          */
2284         if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2285                 return generic_removexattr(dentry, name);
2286
2287         err = shmem_xattr_validate(name);
2288         if (err)
2289                 return err;
2290
2291         return simple_xattr_remove(&info->xattrs, name);
2292 }
2293
2294 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2295 {
2296         struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2297         return simple_xattr_list(&info->xattrs, buffer, size);
2298 }
2299 #endif /* CONFIG_TMPFS_XATTR */
2300
2301 static const struct inode_operations shmem_short_symlink_operations = {
2302         .readlink       = generic_readlink,
2303         .follow_link    = shmem_follow_short_symlink,
2304 #ifdef CONFIG_TMPFS_XATTR
2305         .setxattr       = shmem_setxattr,
2306         .getxattr       = shmem_getxattr,
2307         .listxattr      = shmem_listxattr,
2308         .removexattr    = shmem_removexattr,
2309 #endif
2310 };
2311
2312 static const struct inode_operations shmem_symlink_inode_operations = {
2313         .readlink       = generic_readlink,
2314         .follow_link    = shmem_follow_link,
2315         .put_link       = shmem_put_link,
2316 #ifdef CONFIG_TMPFS_XATTR
2317         .setxattr       = shmem_setxattr,
2318         .getxattr       = shmem_getxattr,
2319         .listxattr      = shmem_listxattr,
2320         .removexattr    = shmem_removexattr,
2321 #endif
2322 };
2323
2324 static struct dentry *shmem_get_parent(struct dentry *child)
2325 {
2326         return ERR_PTR(-ESTALE);
2327 }
2328
2329 static int shmem_match(struct inode *ino, void *vfh)
2330 {
2331         __u32 *fh = vfh;
2332         __u64 inum = fh[2];
2333         inum = (inum << 32) | fh[1];
2334         return ino->i_ino == inum && fh[0] == ino->i_generation;
2335 }
2336
2337 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2338                 struct fid *fid, int fh_len, int fh_type)
2339 {
2340         struct inode *inode;
2341         struct dentry *dentry = NULL;
2342         u64 inum;
2343
2344         if (fh_len < 3)
2345                 return NULL;
2346
2347         inum = fid->raw[2];
2348         inum = (inum << 32) | fid->raw[1];
2349
2350         inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2351                         shmem_match, fid->raw);
2352         if (inode) {
2353                 dentry = d_find_alias(inode);
2354                 iput(inode);
2355         }
2356
2357         return dentry;
2358 }
2359
2360 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
2361                                 struct inode *parent)
2362 {
2363         if (*len < 3) {
2364                 *len = 3;
2365                 return FILEID_INVALID;
2366         }
2367
2368         if (inode_unhashed(inode)) {
2369                 /* Unfortunately insert_inode_hash is not idempotent,
2370                  * so as we hash inodes here rather than at creation
2371                  * time, we need a lock to ensure we only try
2372                  * to do it once
2373                  */
2374                 static DEFINE_SPINLOCK(lock);
2375                 spin_lock(&lock);
2376                 if (inode_unhashed(inode))
2377                         __insert_inode_hash(inode,
2378                                             inode->i_ino + inode->i_generation);
2379                 spin_unlock(&lock);
2380         }
2381
2382         fh[0] = inode->i_generation;
2383         fh[1] = inode->i_ino;
2384         fh[2] = ((__u64)inode->i_ino) >> 32;
2385
2386         *len = 3;
2387         return 1;
2388 }
2389
2390 static const struct export_operations shmem_export_ops = {
2391         .get_parent     = shmem_get_parent,
2392         .encode_fh      = shmem_encode_fh,
2393         .fh_to_dentry   = shmem_fh_to_dentry,
2394 };
2395
2396 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2397                                bool remount)
2398 {
2399         char *this_char, *value, *rest;
2400         struct mempolicy *mpol = NULL;
2401         uid_t uid;
2402         gid_t gid;
2403
2404         while (options != NULL) {
2405                 this_char = options;
2406                 for (;;) {
2407                         /*
2408                          * NUL-terminate this option: unfortunately,
2409                          * mount options form a comma-separated list,
2410                          * but mpol's nodelist may also contain commas.
2411                          */
2412                         options = strchr(options, ',');
2413                         if (options == NULL)
2414                                 break;
2415                         options++;
2416                         if (!isdigit(*options)) {
2417                                 options[-1] = '\0';
2418                                 break;
2419                         }
2420                 }
2421                 if (!*this_char)
2422                         continue;
2423                 if ((value = strchr(this_char,'=')) != NULL) {
2424                         *value++ = 0;
2425                 } else {
2426                         printk(KERN_ERR
2427                             "tmpfs: No value for mount option '%s'\n",
2428                             this_char);
2429                         goto error;
2430                 }
2431
2432                 if (!strcmp(this_char,"size")) {
2433                         unsigned long long size;
2434                         size = memparse(value,&rest);
2435                         if (*rest == '%') {
2436                                 size <<= PAGE_SHIFT;
2437                                 size *= totalram_pages;
2438                                 do_div(size, 100);
2439                                 rest++;
2440                         }
2441                         if (*rest)
2442                                 goto bad_val;
2443                         sbinfo->max_blocks =
2444                                 DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2445                 } else if (!strcmp(this_char,"nr_blocks")) {
2446                         sbinfo->max_blocks = memparse(value, &rest);
2447                         if (*rest)
2448                                 goto bad_val;
2449                 } else if (!strcmp(this_char,"nr_inodes")) {
2450                         sbinfo->max_inodes = memparse(value, &rest);
2451                         if (*rest)
2452                                 goto bad_val;
2453                 } else if (!strcmp(this_char,"mode")) {
2454                         if (remount)
2455                                 continue;
2456                         sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2457                         if (*rest)
2458                                 goto bad_val;
2459                 } else if (!strcmp(this_char,"uid")) {
2460                         if (remount)
2461                                 continue;
2462                         uid = simple_strtoul(value, &rest, 0);
2463                         if (*rest)
2464                                 goto bad_val;
2465                         sbinfo->uid = make_kuid(current_user_ns(), uid);
2466                         if (!uid_valid(sbinfo->uid))
2467                                 goto bad_val;
2468                 } else if (!strcmp(this_char,"gid")) {
2469                         if (remount)
2470                                 continue;
2471                         gid = simple_strtoul(value, &rest, 0);
2472                         if (*rest)
2473                                 goto bad_val;
2474                         sbinfo->gid = make_kgid(current_user_ns(), gid);
2475                         if (!gid_valid(sbinfo->gid))
2476                                 goto bad_val;
2477                 } else if (!strcmp(this_char,"mpol")) {
2478                         mpol_put(mpol);
2479                         mpol = NULL;
2480                         if (mpol_parse_str(value, &mpol))
2481                                 goto bad_val;
2482                 } else {
2483                         printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2484                                this_char);
2485                         goto error;
2486                 }
2487         }
2488         sbinfo->mpol = mpol;
2489         return 0;
2490
2491 bad_val:
2492         printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2493                value, this_char);
2494 error:
2495         mpol_put(mpol);
2496         return 1;
2497
2498 }
2499
2500 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2501 {
2502         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2503         struct shmem_sb_info config = *sbinfo;
2504         unsigned long inodes;
2505         int error = -EINVAL;
2506
2507         config.mpol = NULL;
2508         if (shmem_parse_options(data, &config, true))
2509                 return error;
2510
2511         spin_lock(&sbinfo->stat_lock);
2512         inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2513         if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2514                 goto out;
2515         if (config.max_inodes < inodes)
2516                 goto out;
2517         /*
2518          * Those tests disallow limited->unlimited while any are in use;
2519          * but we must separately disallow unlimited->limited, because
2520          * in that case we have no record of how much is already in use.
2521          */
2522         if (config.max_blocks && !sbinfo->max_blocks)
2523                 goto out;
2524         if (config.max_inodes && !sbinfo->max_inodes)
2525                 goto out;
2526
2527         error = 0;
2528         sbinfo->max_blocks  = config.max_blocks;
2529         sbinfo->max_inodes  = config.max_inodes;
2530         sbinfo->free_inodes = config.max_inodes - inodes;
2531
2532         /*
2533          * Preserve previous mempolicy unless mpol remount option was specified.
2534          */
2535         if (config.mpol) {
2536                 mpol_put(sbinfo->mpol);
2537                 sbinfo->mpol = config.mpol;     /* transfers initial ref */
2538         }
2539 out:
2540         spin_unlock(&sbinfo->stat_lock);
2541         return error;
2542 }
2543
2544 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
2545 {
2546         struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
2547
2548         if (sbinfo->max_blocks != shmem_default_max_blocks())
2549                 seq_printf(seq, ",size=%luk",
2550                         sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2551         if (sbinfo->max_inodes != shmem_default_max_inodes())
2552                 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2553         if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2554                 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
2555         if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2556                 seq_printf(seq, ",uid=%u",
2557                                 from_kuid_munged(&init_user_ns, sbinfo->uid));
2558         if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2559                 seq_printf(seq, ",gid=%u",
2560                                 from_kgid_munged(&init_user_ns, sbinfo->gid));
2561         shmem_show_mpol(seq, sbinfo->mpol);
2562         return 0;
2563 }
2564 #endif /* CONFIG_TMPFS */
2565
2566 static void shmem_put_super(struct super_block *sb)
2567 {
2568         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2569
2570         percpu_counter_destroy(&sbinfo->used_blocks);
2571         mpol_put(sbinfo->mpol);
2572         kfree(sbinfo);
2573         sb->s_fs_info = NULL;
2574 }
2575
2576 int shmem_fill_super(struct super_block *sb, void *data, int silent)
2577 {
2578         struct inode *inode;
2579         struct shmem_sb_info *sbinfo;
2580         int err = -ENOMEM;
2581
2582         /* Round up to L1_CACHE_BYTES to resist false sharing */
2583         sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
2584                                 L1_CACHE_BYTES), GFP_KERNEL);
2585         if (!sbinfo)
2586                 return -ENOMEM;
2587
2588         sbinfo->mode = S_IRWXUGO | S_ISVTX;
2589         sbinfo->uid = current_fsuid();
2590         sbinfo->gid = current_fsgid();
2591         sb->s_fs_info = sbinfo;
2592
2593 #ifdef CONFIG_TMPFS
2594         /*
2595          * Per default we only allow half of the physical ram per
2596          * tmpfs instance, limiting inodes to one per page of lowmem;
2597          * but the internal instance is left unlimited.
2598          */
2599         if (!(sb->s_flags & MS_KERNMOUNT)) {
2600                 sbinfo->max_blocks = shmem_default_max_blocks();
2601                 sbinfo->max_inodes = shmem_default_max_inodes();
2602                 if (shmem_parse_options(data, sbinfo, false)) {
2603                         err = -EINVAL;
2604                         goto failed;
2605                 }
2606         } else {
2607                 sb->s_flags |= MS_NOUSER;
2608         }
2609         sb->s_export_op = &shmem_export_ops;
2610         sb->s_flags |= MS_NOSEC;
2611 #else
2612         sb->s_flags |= MS_NOUSER;
2613 #endif
2614
2615         spin_lock_init(&sbinfo->stat_lock);
2616         if (percpu_counter_init(&sbinfo->used_blocks, 0))
2617                 goto failed;
2618         sbinfo->free_inodes = sbinfo->max_inodes;
2619
2620         sb->s_maxbytes = MAX_LFS_FILESIZE;
2621         sb->s_blocksize = PAGE_CACHE_SIZE;
2622         sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2623         sb->s_magic = TMPFS_MAGIC;
2624         sb->s_op = &shmem_ops;
2625         sb->s_time_gran = 1;
2626 #ifdef CONFIG_TMPFS_XATTR
2627         sb->s_xattr = shmem_xattr_handlers;
2628 #endif
2629 #ifdef CONFIG_TMPFS_POSIX_ACL
2630         sb->s_flags |= MS_POSIXACL;
2631 #endif
2632
2633         inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
2634         if (!inode)
2635                 goto failed;
2636         inode->i_uid = sbinfo->uid;
2637         inode->i_gid = sbinfo->gid;
2638         sb->s_root = d_make_root(inode);
2639         if (!sb->s_root)
2640                 goto failed;
2641         return 0;
2642
2643 failed:
2644         shmem_put_super(sb);
2645         return err;
2646 }
2647
2648 static struct kmem_cache *shmem_inode_cachep;
2649
2650 static struct inode *shmem_alloc_inode(struct super_block *sb)
2651 {
2652         struct shmem_inode_info *info;
2653         info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2654         if (!info)
2655                 return NULL;
2656         return &info->vfs_inode;
2657 }
2658
2659 static void shmem_destroy_callback(struct rcu_head *head)
2660 {
2661         struct inode *inode = container_of(head, struct inode, i_rcu);
2662         kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2663 }
2664
2665 static void shmem_destroy_inode(struct inode *inode)
2666 {
2667         if (S_ISREG(inode->i_mode))
2668                 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2669         call_rcu(&inode->i_rcu, shmem_destroy_callback);
2670 }
2671
2672 static void shmem_init_inode(void *foo)
2673 {
2674         struct shmem_inode_info *info = foo;
2675         inode_init_once(&info->vfs_inode);
2676 }
2677
2678 static int shmem_init_inodecache(void)
2679 {
2680         shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2681                                 sizeof(struct shmem_inode_info),
2682                                 0, SLAB_PANIC, shmem_init_inode);
2683         return 0;
2684 }
2685
2686 static void shmem_destroy_inodecache(void)
2687 {
2688         kmem_cache_destroy(shmem_inode_cachep);
2689 }
2690
2691 static const struct address_space_operations shmem_aops = {
2692         .writepage      = shmem_writepage,
2693         .set_page_dirty = __set_page_dirty_no_writeback,
2694 #ifdef CONFIG_TMPFS
2695         .write_begin    = shmem_write_begin,
2696         .write_end      = shmem_write_end,
2697 #endif
2698         .migratepage    = migrate_page,
2699         .error_remove_page = generic_error_remove_page,
2700 };
2701
2702 static const struct file_operations shmem_file_operations = {
2703         .mmap           = shmem_mmap,
2704 #ifdef CONFIG_TMPFS
2705         .llseek         = shmem_file_llseek,
2706         .read           = new_sync_read,
2707         .write          = new_sync_write,
2708         .read_iter      = shmem_file_read_iter,
2709         .write_iter     = generic_file_write_iter,
2710         .fsync          = noop_fsync,
2711         .splice_read    = shmem_file_splice_read,
2712         .splice_write   = iter_file_splice_write,
2713         .fallocate      = shmem_fallocate,
2714 #endif
2715 };
2716
2717 static const struct inode_operations shmem_inode_operations = {
2718         .setattr        = shmem_setattr,
2719 #ifdef CONFIG_TMPFS_XATTR
2720         .setxattr       = shmem_setxattr,
2721         .getxattr       = shmem_getxattr,
2722         .listxattr      = shmem_listxattr,
2723         .removexattr    = shmem_removexattr,
2724         .set_acl        = simple_set_acl,
2725 #endif
2726 };
2727
2728 static const struct inode_operations shmem_dir_inode_operations = {
2729 #ifdef CONFIG_TMPFS
2730         .create         = shmem_create,
2731         .lookup         = simple_lookup,
2732         .link           = shmem_link,
2733         .unlink         = shmem_unlink,
2734         .symlink        = shmem_symlink,
2735         .mkdir          = shmem_mkdir,
2736         .rmdir          = shmem_rmdir,
2737         .mknod          = shmem_mknod,
2738         .rename         = shmem_rename,
2739         .tmpfile        = shmem_tmpfile,
2740 #endif
2741 #ifdef CONFIG_TMPFS_XATTR
2742         .setxattr       = shmem_setxattr,
2743         .getxattr       = shmem_getxattr,
2744         .listxattr      = shmem_listxattr,
2745         .removexattr    = shmem_removexattr,
2746 #endif
2747 #ifdef CONFIG_TMPFS_POSIX_ACL
2748         .setattr        = shmem_setattr,
2749         .set_acl        = simple_set_acl,
2750 #endif
2751 };
2752
2753 static const struct inode_operations shmem_special_inode_operations = {
2754 #ifdef CONFIG_TMPFS_XATTR
2755         .setxattr       = shmem_setxattr,
2756         .getxattr       = shmem_getxattr,
2757         .listxattr      = shmem_listxattr,
2758         .removexattr    = shmem_removexattr,
2759 #endif
2760 #ifdef CONFIG_TMPFS_POSIX_ACL
2761         .setattr        = shmem_setattr,
2762         .set_acl        = simple_set_acl,
2763 #endif
2764 };
2765
2766 static const struct super_operations shmem_ops = {
2767         .alloc_inode    = shmem_alloc_inode,
2768         .destroy_inode  = shmem_destroy_inode,
2769 #ifdef CONFIG_TMPFS
2770         .statfs         = shmem_statfs,
2771         .remount_fs     = shmem_remount_fs,
2772         .show_options   = shmem_show_options,
2773 #endif
2774         .evict_inode    = shmem_evict_inode,
2775         .drop_inode     = generic_delete_inode,
2776         .put_super      = shmem_put_super,
2777 };
2778
2779 static const struct vm_operations_struct shmem_vm_ops = {
2780         .fault          = shmem_fault,
2781         .map_pages      = filemap_map_pages,
2782 #ifdef CONFIG_NUMA
2783         .set_policy     = shmem_set_policy,
2784         .get_policy     = shmem_get_policy,
2785 #endif
2786         .remap_pages    = generic_file_remap_pages,
2787 };
2788
2789 static struct dentry *shmem_mount(struct file_system_type *fs_type,
2790         int flags, const char *dev_name, void *data)
2791 {
2792         return mount_nodev(fs_type, flags, data, shmem_fill_super);
2793 }
2794
2795 static struct file_system_type shmem_fs_type = {
2796         .owner          = THIS_MODULE,
2797         .name           = "tmpfs",
2798         .mount          = shmem_mount,
2799         .kill_sb        = kill_litter_super,
2800         .fs_flags       = FS_USERNS_MOUNT,
2801 };
2802
2803 int __init shmem_init(void)
2804 {
2805         int error;
2806
2807         /* If rootfs called this, don't re-init */
2808         if (shmem_inode_cachep)
2809                 return 0;
2810
2811         error = bdi_init(&shmem_backing_dev_info);
2812         if (error)
2813                 goto out4;
2814
2815         error = shmem_init_inodecache();
2816         if (error)
2817                 goto out3;
2818
2819         error = register_filesystem(&shmem_fs_type);
2820         if (error) {
2821                 printk(KERN_ERR "Could not register tmpfs\n");
2822                 goto out2;
2823         }
2824
2825         shm_mnt = kern_mount(&shmem_fs_type);
2826         if (IS_ERR(shm_mnt)) {
2827                 error = PTR_ERR(shm_mnt);
2828                 printk(KERN_ERR "Could not kern_mount tmpfs\n");
2829                 goto out1;
2830         }
2831         return 0;
2832
2833 out1:
2834         unregister_filesystem(&shmem_fs_type);
2835 out2:
2836         shmem_destroy_inodecache();
2837 out3:
2838         bdi_destroy(&shmem_backing_dev_info);
2839 out4:
2840         shm_mnt = ERR_PTR(error);
2841         return error;
2842 }
2843
2844 #else /* !CONFIG_SHMEM */
2845
2846 /*
2847  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2848  *
2849  * This is intended for small system where the benefits of the full
2850  * shmem code (swap-backed and resource-limited) are outweighed by
2851  * their complexity. On systems without swap this code should be
2852  * effectively equivalent, but much lighter weight.
2853  */
2854
2855 static struct file_system_type shmem_fs_type = {
2856         .name           = "tmpfs",
2857         .mount          = ramfs_mount,
2858         .kill_sb        = kill_litter_super,
2859         .fs_flags       = FS_USERNS_MOUNT,
2860 };
2861
2862 int __init shmem_init(void)
2863 {
2864         BUG_ON(register_filesystem(&shmem_fs_type) != 0);
2865
2866         shm_mnt = kern_mount(&shmem_fs_type);
2867         BUG_ON(IS_ERR(shm_mnt));
2868
2869         return 0;
2870 }
2871
2872 int shmem_unuse(swp_entry_t swap, struct page *page)
2873 {
2874         return 0;
2875 }
2876
2877 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2878 {
2879         return 0;
2880 }
2881
2882 void shmem_unlock_mapping(struct address_space *mapping)
2883 {
2884 }
2885
2886 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
2887 {
2888         truncate_inode_pages_range(inode->i_mapping, lstart, lend);
2889 }
2890 EXPORT_SYMBOL_GPL(shmem_truncate_range);
2891
2892 #define shmem_vm_ops                            generic_file_vm_ops
2893 #define shmem_file_operations                   ramfs_file_operations
2894 #define shmem_get_inode(sb, dir, mode, dev, flags)      ramfs_get_inode(sb, dir, mode, dev)
2895 #define shmem_acct_size(flags, size)            0
2896 #define shmem_unacct_size(flags, size)          do {} while (0)
2897
2898 #endif /* CONFIG_SHMEM */
2899
2900 /* common code */
2901
2902 static struct dentry_operations anon_ops = {
2903         .d_dname = simple_dname
2904 };
2905
2906 static struct file *__shmem_file_setup(const char *name, loff_t size,
2907                                        unsigned long flags, unsigned int i_flags)
2908 {
2909         struct file *res;
2910         struct inode *inode;
2911         struct path path;
2912         struct super_block *sb;
2913         struct qstr this;
2914
2915         if (IS_ERR(shm_mnt))
2916                 return ERR_CAST(shm_mnt);
2917
2918         if (size < 0 || size > MAX_LFS_FILESIZE)
2919                 return ERR_PTR(-EINVAL);
2920
2921         if (shmem_acct_size(flags, size))
2922                 return ERR_PTR(-ENOMEM);
2923
2924         res = ERR_PTR(-ENOMEM);
2925         this.name = name;
2926         this.len = strlen(name);
2927         this.hash = 0; /* will go */
2928         sb = shm_mnt->mnt_sb;
2929         path.dentry = d_alloc_pseudo(sb, &this);
2930         if (!path.dentry)
2931                 goto put_memory;
2932         d_set_d_op(path.dentry, &anon_ops);
2933         path.mnt = mntget(shm_mnt);
2934
2935         res = ERR_PTR(-ENOSPC);
2936         inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
2937         if (!inode)
2938                 goto put_dentry;
2939
2940         inode->i_flags |= i_flags;
2941         d_instantiate(path.dentry, inode);
2942         inode->i_size = size;
2943         clear_nlink(inode);     /* It is unlinked */
2944         res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
2945         if (IS_ERR(res))
2946                 goto put_dentry;
2947
2948         res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
2949                   &shmem_file_operations);
2950         if (IS_ERR(res))
2951                 goto put_dentry;
2952
2953         return res;
2954
2955 put_dentry:
2956         path_put(&path);
2957 put_memory:
2958         shmem_unacct_size(flags, size);
2959         return res;
2960 }
2961
2962 /**
2963  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
2964  *      kernel internal.  There will be NO LSM permission checks against the
2965  *      underlying inode.  So users of this interface must do LSM checks at a
2966  *      higher layer.  The one user is the big_key implementation.  LSM checks
2967  *      are provided at the key level rather than the inode level.
2968  * @name: name for dentry (to be seen in /proc/<pid>/maps
2969  * @size: size to be set for the file
2970  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2971  */
2972 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
2973 {
2974         return __shmem_file_setup(name, size, flags, S_PRIVATE);
2975 }
2976
2977 /**
2978  * shmem_file_setup - get an unlinked file living in tmpfs
2979  * @name: name for dentry (to be seen in /proc/<pid>/maps
2980  * @size: size to be set for the file
2981  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2982  */
2983 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
2984 {
2985         return __shmem_file_setup(name, size, flags, 0);
2986 }
2987 EXPORT_SYMBOL_GPL(shmem_file_setup);
2988
2989 /**
2990  * shmem_zero_setup - setup a shared anonymous mapping
2991  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2992  */
2993 int shmem_zero_setup(struct vm_area_struct *vma)
2994 {
2995         struct file *file;
2996         loff_t size = vma->vm_end - vma->vm_start;
2997
2998         file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2999         if (IS_ERR(file))
3000                 return PTR_ERR(file);
3001
3002         if (vma->vm_file)
3003                 fput(vma->vm_file);
3004         vma->vm_file = file;
3005         vma->vm_ops = &shmem_vm_ops;
3006         return 0;
3007 }
3008
3009 /**
3010  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
3011  * @mapping:    the page's address_space
3012  * @index:      the page index
3013  * @gfp:        the page allocator flags to use if allocating
3014  *
3015  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
3016  * with any new page allocations done using the specified allocation flags.
3017  * But read_cache_page_gfp() uses the ->readpage() method: which does not
3018  * suit tmpfs, since it may have pages in swapcache, and needs to find those
3019  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
3020  *
3021  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
3022  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
3023  */
3024 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
3025                                          pgoff_t index, gfp_t gfp)
3026 {
3027 #ifdef CONFIG_SHMEM
3028         struct inode *inode = mapping->host;
3029         struct page *page;
3030         int error;
3031
3032         BUG_ON(mapping->a_ops != &shmem_aops);
3033         error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
3034         if (error)
3035                 page = ERR_PTR(error);
3036         else
3037                 unlock_page(page);
3038         return page;
3039 #else
3040         /*
3041          * The tiny !SHMEM case uses ramfs without swap
3042          */
3043         return read_cache_page_gfp(mapping, index, gfp);
3044 #endif
3045 }
3046 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);