]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - mm/sparse.c
net: make struct dst_entry::dev first member
[karo-tx-linux.git] / mm / sparse.c
1 /*
2  * sparse memory mappings.
3  */
4 #include <linux/mm.h>
5 #include <linux/slab.h>
6 #include <linux/mmzone.h>
7 #include <linux/bootmem.h>
8 #include <linux/compiler.h>
9 #include <linux/highmem.h>
10 #include <linux/export.h>
11 #include <linux/spinlock.h>
12 #include <linux/vmalloc.h>
13
14 #include "internal.h"
15 #include <asm/dma.h>
16 #include <asm/pgalloc.h>
17 #include <asm/pgtable.h>
18
19 /*
20  * Permanent SPARSEMEM data:
21  *
22  * 1) mem_section       - memory sections, mem_map's for valid memory
23  */
24 #ifdef CONFIG_SPARSEMEM_EXTREME
25 struct mem_section *mem_section[NR_SECTION_ROOTS]
26         ____cacheline_internodealigned_in_smp;
27 #else
28 struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
29         ____cacheline_internodealigned_in_smp;
30 #endif
31 EXPORT_SYMBOL(mem_section);
32
33 #ifdef NODE_NOT_IN_PAGE_FLAGS
34 /*
35  * If we did not store the node number in the page then we have to
36  * do a lookup in the section_to_node_table in order to find which
37  * node the page belongs to.
38  */
39 #if MAX_NUMNODES <= 256
40 static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
41 #else
42 static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
43 #endif
44
45 int page_to_nid(const struct page *page)
46 {
47         return section_to_node_table[page_to_section(page)];
48 }
49 EXPORT_SYMBOL(page_to_nid);
50
51 static void set_section_nid(unsigned long section_nr, int nid)
52 {
53         section_to_node_table[section_nr] = nid;
54 }
55 #else /* !NODE_NOT_IN_PAGE_FLAGS */
56 static inline void set_section_nid(unsigned long section_nr, int nid)
57 {
58 }
59 #endif
60
61 #ifdef CONFIG_SPARSEMEM_EXTREME
62 static noinline struct mem_section __ref *sparse_index_alloc(int nid)
63 {
64         struct mem_section *section = NULL;
65         unsigned long array_size = SECTIONS_PER_ROOT *
66                                    sizeof(struct mem_section);
67
68         if (slab_is_available()) {
69                 if (node_state(nid, N_HIGH_MEMORY))
70                         section = kzalloc_node(array_size, GFP_KERNEL, nid);
71                 else
72                         section = kzalloc(array_size, GFP_KERNEL);
73         } else {
74                 section = memblock_virt_alloc_node(array_size, nid);
75         }
76
77         return section;
78 }
79
80 static int __meminit sparse_index_init(unsigned long section_nr, int nid)
81 {
82         unsigned long root = SECTION_NR_TO_ROOT(section_nr);
83         struct mem_section *section;
84
85         if (mem_section[root])
86                 return -EEXIST;
87
88         section = sparse_index_alloc(nid);
89         if (!section)
90                 return -ENOMEM;
91
92         mem_section[root] = section;
93
94         return 0;
95 }
96 #else /* !SPARSEMEM_EXTREME */
97 static inline int sparse_index_init(unsigned long section_nr, int nid)
98 {
99         return 0;
100 }
101 #endif
102
103 #ifdef CONFIG_SPARSEMEM_EXTREME
104 int __section_nr(struct mem_section* ms)
105 {
106         unsigned long root_nr;
107         struct mem_section* root;
108
109         for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
110                 root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
111                 if (!root)
112                         continue;
113
114                 if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
115                      break;
116         }
117
118         VM_BUG_ON(root_nr == NR_SECTION_ROOTS);
119
120         return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
121 }
122 #else
123 int __section_nr(struct mem_section* ms)
124 {
125         return (int)(ms - mem_section[0]);
126 }
127 #endif
128
129 /*
130  * During early boot, before section_mem_map is used for an actual
131  * mem_map, we use section_mem_map to store the section's NUMA
132  * node.  This keeps us from having to use another data structure.  The
133  * node information is cleared just before we store the real mem_map.
134  */
135 static inline unsigned long sparse_encode_early_nid(int nid)
136 {
137         return (nid << SECTION_NID_SHIFT);
138 }
139
140 static inline int sparse_early_nid(struct mem_section *section)
141 {
142         return (section->section_mem_map >> SECTION_NID_SHIFT);
143 }
144
145 /* Validate the physical addressing limitations of the model */
146 void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
147                                                 unsigned long *end_pfn)
148 {
149         unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
150
151         /*
152          * Sanity checks - do not allow an architecture to pass
153          * in larger pfns than the maximum scope of sparsemem:
154          */
155         if (*start_pfn > max_sparsemem_pfn) {
156                 mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
157                         "Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
158                         *start_pfn, *end_pfn, max_sparsemem_pfn);
159                 WARN_ON_ONCE(1);
160                 *start_pfn = max_sparsemem_pfn;
161                 *end_pfn = max_sparsemem_pfn;
162         } else if (*end_pfn > max_sparsemem_pfn) {
163                 mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
164                         "End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
165                         *start_pfn, *end_pfn, max_sparsemem_pfn);
166                 WARN_ON_ONCE(1);
167                 *end_pfn = max_sparsemem_pfn;
168         }
169 }
170
171 /* Record a memory area against a node. */
172 void __init memory_present(int nid, unsigned long start, unsigned long end)
173 {
174         unsigned long pfn;
175
176         start &= PAGE_SECTION_MASK;
177         mminit_validate_memmodel_limits(&start, &end);
178         for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
179                 unsigned long section = pfn_to_section_nr(pfn);
180                 struct mem_section *ms;
181
182                 sparse_index_init(section, nid);
183                 set_section_nid(section, nid);
184
185                 ms = __nr_to_section(section);
186                 if (!ms->section_mem_map)
187                         ms->section_mem_map = sparse_encode_early_nid(nid) |
188                                                         SECTION_MARKED_PRESENT;
189         }
190 }
191
192 /*
193  * Only used by the i386 NUMA architecures, but relatively
194  * generic code.
195  */
196 unsigned long __init node_memmap_size_bytes(int nid, unsigned long start_pfn,
197                                                      unsigned long end_pfn)
198 {
199         unsigned long pfn;
200         unsigned long nr_pages = 0;
201
202         mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
203         for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
204                 if (nid != early_pfn_to_nid(pfn))
205                         continue;
206
207                 if (pfn_present(pfn))
208                         nr_pages += PAGES_PER_SECTION;
209         }
210
211         return nr_pages * sizeof(struct page);
212 }
213
214 /*
215  * Subtle, we encode the real pfn into the mem_map such that
216  * the identity pfn - section_mem_map will return the actual
217  * physical page frame number.
218  */
219 static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
220 {
221         return (unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
222 }
223
224 /*
225  * Decode mem_map from the coded memmap
226  */
227 struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
228 {
229         /* mask off the extra low bits of information */
230         coded_mem_map &= SECTION_MAP_MASK;
231         return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
232 }
233
234 static int __meminit sparse_init_one_section(struct mem_section *ms,
235                 unsigned long pnum, struct page *mem_map,
236                 unsigned long *pageblock_bitmap)
237 {
238         if (!present_section(ms))
239                 return -EINVAL;
240
241         ms->section_mem_map &= ~SECTION_MAP_MASK;
242         ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) |
243                                                         SECTION_HAS_MEM_MAP;
244         ms->pageblock_flags = pageblock_bitmap;
245
246         return 1;
247 }
248
249 unsigned long usemap_size(void)
250 {
251         return BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS) * sizeof(unsigned long);
252 }
253
254 #ifdef CONFIG_MEMORY_HOTPLUG
255 static unsigned long *__kmalloc_section_usemap(void)
256 {
257         return kmalloc(usemap_size(), GFP_KERNEL);
258 }
259 #endif /* CONFIG_MEMORY_HOTPLUG */
260
261 #ifdef CONFIG_MEMORY_HOTREMOVE
262 static unsigned long * __init
263 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
264                                          unsigned long size)
265 {
266         unsigned long goal, limit;
267         unsigned long *p;
268         int nid;
269         /*
270          * A page may contain usemaps for other sections preventing the
271          * page being freed and making a section unremovable while
272          * other sections referencing the usemap remain active. Similarly,
273          * a pgdat can prevent a section being removed. If section A
274          * contains a pgdat and section B contains the usemap, both
275          * sections become inter-dependent. This allocates usemaps
276          * from the same section as the pgdat where possible to avoid
277          * this problem.
278          */
279         goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT);
280         limit = goal + (1UL << PA_SECTION_SHIFT);
281         nid = early_pfn_to_nid(goal >> PAGE_SHIFT);
282 again:
283         p = memblock_virt_alloc_try_nid_nopanic(size,
284                                                 SMP_CACHE_BYTES, goal, limit,
285                                                 nid);
286         if (!p && limit) {
287                 limit = 0;
288                 goto again;
289         }
290         return p;
291 }
292
293 static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
294 {
295         unsigned long usemap_snr, pgdat_snr;
296         static unsigned long old_usemap_snr = NR_MEM_SECTIONS;
297         static unsigned long old_pgdat_snr = NR_MEM_SECTIONS;
298         struct pglist_data *pgdat = NODE_DATA(nid);
299         int usemap_nid;
300
301         usemap_snr = pfn_to_section_nr(__pa(usemap) >> PAGE_SHIFT);
302         pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
303         if (usemap_snr == pgdat_snr)
304                 return;
305
306         if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
307                 /* skip redundant message */
308                 return;
309
310         old_usemap_snr = usemap_snr;
311         old_pgdat_snr = pgdat_snr;
312
313         usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
314         if (usemap_nid != nid) {
315                 pr_info("node %d must be removed before remove section %ld\n",
316                         nid, usemap_snr);
317                 return;
318         }
319         /*
320          * There is a circular dependency.
321          * Some platforms allow un-removable section because they will just
322          * gather other removable sections for dynamic partitioning.
323          * Just notify un-removable section's number here.
324          */
325         pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n",
326                 usemap_snr, pgdat_snr, nid);
327 }
328 #else
329 static unsigned long * __init
330 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
331                                          unsigned long size)
332 {
333         return memblock_virt_alloc_node_nopanic(size, pgdat->node_id);
334 }
335
336 static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
337 {
338 }
339 #endif /* CONFIG_MEMORY_HOTREMOVE */
340
341 static void __init sparse_early_usemaps_alloc_node(void *data,
342                                  unsigned long pnum_begin,
343                                  unsigned long pnum_end,
344                                  unsigned long usemap_count, int nodeid)
345 {
346         void *usemap;
347         unsigned long pnum;
348         unsigned long **usemap_map = (unsigned long **)data;
349         int size = usemap_size();
350
351         usemap = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nodeid),
352                                                           size * usemap_count);
353         if (!usemap) {
354                 pr_warn("%s: allocation failed\n", __func__);
355                 return;
356         }
357
358         for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
359                 if (!present_section_nr(pnum))
360                         continue;
361                 usemap_map[pnum] = usemap;
362                 usemap += size;
363                 check_usemap_section_nr(nodeid, usemap_map[pnum]);
364         }
365 }
366
367 #ifndef CONFIG_SPARSEMEM_VMEMMAP
368 struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid)
369 {
370         struct page *map;
371         unsigned long size;
372
373         map = alloc_remap(nid, sizeof(struct page) * PAGES_PER_SECTION);
374         if (map)
375                 return map;
376
377         size = PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
378         map = memblock_virt_alloc_try_nid(size,
379                                           PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
380                                           BOOTMEM_ALLOC_ACCESSIBLE, nid);
381         return map;
382 }
383 void __init sparse_mem_maps_populate_node(struct page **map_map,
384                                           unsigned long pnum_begin,
385                                           unsigned long pnum_end,
386                                           unsigned long map_count, int nodeid)
387 {
388         void *map;
389         unsigned long pnum;
390         unsigned long size = sizeof(struct page) * PAGES_PER_SECTION;
391
392         map = alloc_remap(nodeid, size * map_count);
393         if (map) {
394                 for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
395                         if (!present_section_nr(pnum))
396                                 continue;
397                         map_map[pnum] = map;
398                         map += size;
399                 }
400                 return;
401         }
402
403         size = PAGE_ALIGN(size);
404         map = memblock_virt_alloc_try_nid(size * map_count,
405                                           PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
406                                           BOOTMEM_ALLOC_ACCESSIBLE, nodeid);
407         if (map) {
408                 for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
409                         if (!present_section_nr(pnum))
410                                 continue;
411                         map_map[pnum] = map;
412                         map += size;
413                 }
414                 return;
415         }
416
417         /* fallback */
418         for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
419                 struct mem_section *ms;
420
421                 if (!present_section_nr(pnum))
422                         continue;
423                 map_map[pnum] = sparse_mem_map_populate(pnum, nodeid);
424                 if (map_map[pnum])
425                         continue;
426                 ms = __nr_to_section(pnum);
427                 pr_err("%s: sparsemem memory map backing failed some memory will not be available\n",
428                        __func__);
429                 ms->section_mem_map = 0;
430         }
431 }
432 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
433
434 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
435 static void __init sparse_early_mem_maps_alloc_node(void *data,
436                                  unsigned long pnum_begin,
437                                  unsigned long pnum_end,
438                                  unsigned long map_count, int nodeid)
439 {
440         struct page **map_map = (struct page **)data;
441         sparse_mem_maps_populate_node(map_map, pnum_begin, pnum_end,
442                                          map_count, nodeid);
443 }
444 #else
445 static struct page __init *sparse_early_mem_map_alloc(unsigned long pnum)
446 {
447         struct page *map;
448         struct mem_section *ms = __nr_to_section(pnum);
449         int nid = sparse_early_nid(ms);
450
451         map = sparse_mem_map_populate(pnum, nid);
452         if (map)
453                 return map;
454
455         pr_err("%s: sparsemem memory map backing failed some memory will not be available\n",
456                __func__);
457         ms->section_mem_map = 0;
458         return NULL;
459 }
460 #endif
461
462 void __weak __meminit vmemmap_populate_print_last(void)
463 {
464 }
465
466 /**
467  *  alloc_usemap_and_memmap - memory alloction for pageblock flags and vmemmap
468  *  @map: usemap_map for pageblock flags or mmap_map for vmemmap
469  */
470 static void __init alloc_usemap_and_memmap(void (*alloc_func)
471                                         (void *, unsigned long, unsigned long,
472                                         unsigned long, int), void *data)
473 {
474         unsigned long pnum;
475         unsigned long map_count;
476         int nodeid_begin = 0;
477         unsigned long pnum_begin = 0;
478
479         for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
480                 struct mem_section *ms;
481
482                 if (!present_section_nr(pnum))
483                         continue;
484                 ms = __nr_to_section(pnum);
485                 nodeid_begin = sparse_early_nid(ms);
486                 pnum_begin = pnum;
487                 break;
488         }
489         map_count = 1;
490         for (pnum = pnum_begin + 1; pnum < NR_MEM_SECTIONS; pnum++) {
491                 struct mem_section *ms;
492                 int nodeid;
493
494                 if (!present_section_nr(pnum))
495                         continue;
496                 ms = __nr_to_section(pnum);
497                 nodeid = sparse_early_nid(ms);
498                 if (nodeid == nodeid_begin) {
499                         map_count++;
500                         continue;
501                 }
502                 /* ok, we need to take cake of from pnum_begin to pnum - 1*/
503                 alloc_func(data, pnum_begin, pnum,
504                                                 map_count, nodeid_begin);
505                 /* new start, update count etc*/
506                 nodeid_begin = nodeid;
507                 pnum_begin = pnum;
508                 map_count = 1;
509         }
510         /* ok, last chunk */
511         alloc_func(data, pnum_begin, NR_MEM_SECTIONS,
512                                                 map_count, nodeid_begin);
513 }
514
515 /*
516  * Allocate the accumulated non-linear sections, allocate a mem_map
517  * for each and record the physical to section mapping.
518  */
519 void __init sparse_init(void)
520 {
521         unsigned long pnum;
522         struct page *map;
523         unsigned long *usemap;
524         unsigned long **usemap_map;
525         int size;
526 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
527         int size2;
528         struct page **map_map;
529 #endif
530
531         /* see include/linux/mmzone.h 'struct mem_section' definition */
532         BUILD_BUG_ON(!is_power_of_2(sizeof(struct mem_section)));
533
534         /* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
535         set_pageblock_order();
536
537         /*
538          * map is using big page (aka 2M in x86 64 bit)
539          * usemap is less one page (aka 24 bytes)
540          * so alloc 2M (with 2M align) and 24 bytes in turn will
541          * make next 2M slip to one more 2M later.
542          * then in big system, the memory will have a lot of holes...
543          * here try to allocate 2M pages continuously.
544          *
545          * powerpc need to call sparse_init_one_section right after each
546          * sparse_early_mem_map_alloc, so allocate usemap_map at first.
547          */
548         size = sizeof(unsigned long *) * NR_MEM_SECTIONS;
549         usemap_map = memblock_virt_alloc(size, 0);
550         if (!usemap_map)
551                 panic("can not allocate usemap_map\n");
552         alloc_usemap_and_memmap(sparse_early_usemaps_alloc_node,
553                                                         (void *)usemap_map);
554
555 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
556         size2 = sizeof(struct page *) * NR_MEM_SECTIONS;
557         map_map = memblock_virt_alloc(size2, 0);
558         if (!map_map)
559                 panic("can not allocate map_map\n");
560         alloc_usemap_and_memmap(sparse_early_mem_maps_alloc_node,
561                                                         (void *)map_map);
562 #endif
563
564         for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
565                 if (!present_section_nr(pnum))
566                         continue;
567
568                 usemap = usemap_map[pnum];
569                 if (!usemap)
570                         continue;
571
572 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
573                 map = map_map[pnum];
574 #else
575                 map = sparse_early_mem_map_alloc(pnum);
576 #endif
577                 if (!map)
578                         continue;
579
580                 sparse_init_one_section(__nr_to_section(pnum), pnum, map,
581                                                                 usemap);
582         }
583
584         vmemmap_populate_print_last();
585
586 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
587         memblock_free_early(__pa(map_map), size2);
588 #endif
589         memblock_free_early(__pa(usemap_map), size);
590 }
591
592 #ifdef CONFIG_MEMORY_HOTPLUG
593 #ifdef CONFIG_SPARSEMEM_VMEMMAP
594 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid)
595 {
596         /* This will make the necessary allocations eventually. */
597         return sparse_mem_map_populate(pnum, nid);
598 }
599 static void __kfree_section_memmap(struct page *memmap)
600 {
601         unsigned long start = (unsigned long)memmap;
602         unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
603
604         vmemmap_free(start, end);
605 }
606 #ifdef CONFIG_MEMORY_HOTREMOVE
607 static void free_map_bootmem(struct page *memmap)
608 {
609         unsigned long start = (unsigned long)memmap;
610         unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
611
612         vmemmap_free(start, end);
613 }
614 #endif /* CONFIG_MEMORY_HOTREMOVE */
615 #else
616 static struct page *__kmalloc_section_memmap(void)
617 {
618         struct page *page, *ret;
619         unsigned long memmap_size = sizeof(struct page) * PAGES_PER_SECTION;
620
621         page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size));
622         if (page)
623                 goto got_map_page;
624
625         ret = vmalloc(memmap_size);
626         if (ret)
627                 goto got_map_ptr;
628
629         return NULL;
630 got_map_page:
631         ret = (struct page *)pfn_to_kaddr(page_to_pfn(page));
632 got_map_ptr:
633
634         return ret;
635 }
636
637 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid)
638 {
639         return __kmalloc_section_memmap();
640 }
641
642 static void __kfree_section_memmap(struct page *memmap)
643 {
644         if (is_vmalloc_addr(memmap))
645                 vfree(memmap);
646         else
647                 free_pages((unsigned long)memmap,
648                            get_order(sizeof(struct page) * PAGES_PER_SECTION));
649 }
650
651 #ifdef CONFIG_MEMORY_HOTREMOVE
652 static void free_map_bootmem(struct page *memmap)
653 {
654         unsigned long maps_section_nr, removing_section_nr, i;
655         unsigned long magic, nr_pages;
656         struct page *page = virt_to_page(memmap);
657
658         nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
659                 >> PAGE_SHIFT;
660
661         for (i = 0; i < nr_pages; i++, page++) {
662                 magic = (unsigned long) page->freelist;
663
664                 BUG_ON(magic == NODE_INFO);
665
666                 maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
667                 removing_section_nr = page_private(page);
668
669                 /*
670                  * When this function is called, the removing section is
671                  * logical offlined state. This means all pages are isolated
672                  * from page allocator. If removing section's memmap is placed
673                  * on the same section, it must not be freed.
674                  * If it is freed, page allocator may allocate it which will
675                  * be removed physically soon.
676                  */
677                 if (maps_section_nr != removing_section_nr)
678                         put_page_bootmem(page);
679         }
680 }
681 #endif /* CONFIG_MEMORY_HOTREMOVE */
682 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
683
684 /*
685  * returns the number of sections whose mem_maps were properly
686  * set.  If this is <=0, then that means that the passed-in
687  * map was not consumed and must be freed.
688  */
689 int __meminit sparse_add_one_section(struct zone *zone, unsigned long start_pfn)
690 {
691         unsigned long section_nr = pfn_to_section_nr(start_pfn);
692         struct pglist_data *pgdat = zone->zone_pgdat;
693         struct mem_section *ms;
694         struct page *memmap;
695         unsigned long *usemap;
696         unsigned long flags;
697         int ret;
698
699         /*
700          * no locking for this, because it does its own
701          * plus, it does a kmalloc
702          */
703         ret = sparse_index_init(section_nr, pgdat->node_id);
704         if (ret < 0 && ret != -EEXIST)
705                 return ret;
706         memmap = kmalloc_section_memmap(section_nr, pgdat->node_id);
707         if (!memmap)
708                 return -ENOMEM;
709         usemap = __kmalloc_section_usemap();
710         if (!usemap) {
711                 __kfree_section_memmap(memmap);
712                 return -ENOMEM;
713         }
714
715         pgdat_resize_lock(pgdat, &flags);
716
717         ms = __pfn_to_section(start_pfn);
718         if (ms->section_mem_map & SECTION_MARKED_PRESENT) {
719                 ret = -EEXIST;
720                 goto out;
721         }
722
723         memset(memmap, 0, sizeof(struct page) * PAGES_PER_SECTION);
724
725         ms->section_mem_map |= SECTION_MARKED_PRESENT;
726
727         ret = sparse_init_one_section(ms, section_nr, memmap, usemap);
728
729 out:
730         pgdat_resize_unlock(pgdat, &flags);
731         if (ret <= 0) {
732                 kfree(usemap);
733                 __kfree_section_memmap(memmap);
734         }
735         return ret;
736 }
737
738 #ifdef CONFIG_MEMORY_HOTREMOVE
739 #ifdef CONFIG_MEMORY_FAILURE
740 static void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
741 {
742         int i;
743
744         if (!memmap)
745                 return;
746
747         for (i = 0; i < nr_pages; i++) {
748                 if (PageHWPoison(&memmap[i])) {
749                         atomic_long_sub(1, &num_poisoned_pages);
750                         ClearPageHWPoison(&memmap[i]);
751                 }
752         }
753 }
754 #else
755 static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
756 {
757 }
758 #endif
759
760 static void free_section_usemap(struct page *memmap, unsigned long *usemap)
761 {
762         struct page *usemap_page;
763
764         if (!usemap)
765                 return;
766
767         usemap_page = virt_to_page(usemap);
768         /*
769          * Check to see if allocation came from hot-plug-add
770          */
771         if (PageSlab(usemap_page) || PageCompound(usemap_page)) {
772                 kfree(usemap);
773                 if (memmap)
774                         __kfree_section_memmap(memmap);
775                 return;
776         }
777
778         /*
779          * The usemap came from bootmem. This is packed with other usemaps
780          * on the section which has pgdat at boot time. Just keep it as is now.
781          */
782
783         if (memmap)
784                 free_map_bootmem(memmap);
785 }
786
787 void sparse_remove_one_section(struct zone *zone, struct mem_section *ms,
788                 unsigned long map_offset)
789 {
790         struct page *memmap = NULL;
791         unsigned long *usemap = NULL, flags;
792         struct pglist_data *pgdat = zone->zone_pgdat;
793
794         pgdat_resize_lock(pgdat, &flags);
795         if (ms->section_mem_map) {
796                 usemap = ms->pageblock_flags;
797                 memmap = sparse_decode_mem_map(ms->section_mem_map,
798                                                 __section_nr(ms));
799                 ms->section_mem_map = 0;
800                 ms->pageblock_flags = NULL;
801         }
802         pgdat_resize_unlock(pgdat, &flags);
803
804         clear_hwpoisoned_pages(memmap + map_offset,
805                         PAGES_PER_SECTION - map_offset);
806         free_section_usemap(memmap, usemap);
807 }
808 #endif /* CONFIG_MEMORY_HOTREMOVE */
809 #endif /* CONFIG_MEMORY_HOTPLUG */