]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - mm/sparse.c
drm/panel: simple: add support for overriding the pixel clock polarity
[karo-tx-linux.git] / mm / sparse.c
1 /*
2  * sparse memory mappings.
3  */
4 #include <linux/mm.h>
5 #include <linux/slab.h>
6 #include <linux/mmzone.h>
7 #include <linux/bootmem.h>
8 #include <linux/compiler.h>
9 #include <linux/highmem.h>
10 #include <linux/export.h>
11 #include <linux/spinlock.h>
12 #include <linux/vmalloc.h>
13
14 #include "internal.h"
15 #include <asm/dma.h>
16 #include <asm/pgalloc.h>
17 #include <asm/pgtable.h>
18
19 /*
20  * Permanent SPARSEMEM data:
21  *
22  * 1) mem_section       - memory sections, mem_map's for valid memory
23  */
24 #ifdef CONFIG_SPARSEMEM_EXTREME
25 struct mem_section *mem_section[NR_SECTION_ROOTS]
26         ____cacheline_internodealigned_in_smp;
27 #else
28 struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
29         ____cacheline_internodealigned_in_smp;
30 #endif
31 EXPORT_SYMBOL(mem_section);
32
33 #ifdef NODE_NOT_IN_PAGE_FLAGS
34 /*
35  * If we did not store the node number in the page then we have to
36  * do a lookup in the section_to_node_table in order to find which
37  * node the page belongs to.
38  */
39 #if MAX_NUMNODES <= 256
40 static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
41 #else
42 static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
43 #endif
44
45 int page_to_nid(const struct page *page)
46 {
47         return section_to_node_table[page_to_section(page)];
48 }
49 EXPORT_SYMBOL(page_to_nid);
50
51 static void set_section_nid(unsigned long section_nr, int nid)
52 {
53         section_to_node_table[section_nr] = nid;
54 }
55 #else /* !NODE_NOT_IN_PAGE_FLAGS */
56 static inline void set_section_nid(unsigned long section_nr, int nid)
57 {
58 }
59 #endif
60
61 #ifdef CONFIG_SPARSEMEM_EXTREME
62 static noinline struct mem_section __ref *sparse_index_alloc(int nid)
63 {
64         struct mem_section *section = NULL;
65         unsigned long array_size = SECTIONS_PER_ROOT *
66                                    sizeof(struct mem_section);
67
68         if (slab_is_available()) {
69                 if (node_state(nid, N_HIGH_MEMORY))
70                         section = kzalloc_node(array_size, GFP_KERNEL, nid);
71                 else
72                         section = kzalloc(array_size, GFP_KERNEL);
73         } else {
74                 section = memblock_virt_alloc_node(array_size, nid);
75         }
76
77         return section;
78 }
79
80 static int __meminit sparse_index_init(unsigned long section_nr, int nid)
81 {
82         unsigned long root = SECTION_NR_TO_ROOT(section_nr);
83         struct mem_section *section;
84
85         if (mem_section[root])
86                 return -EEXIST;
87
88         section = sparse_index_alloc(nid);
89         if (!section)
90                 return -ENOMEM;
91
92         mem_section[root] = section;
93
94         return 0;
95 }
96 #else /* !SPARSEMEM_EXTREME */
97 static inline int sparse_index_init(unsigned long section_nr, int nid)
98 {
99         return 0;
100 }
101 #endif
102
103 #ifdef CONFIG_SPARSEMEM_EXTREME
104 int __section_nr(struct mem_section* ms)
105 {
106         unsigned long root_nr;
107         struct mem_section* root;
108
109         for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
110                 root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
111                 if (!root)
112                         continue;
113
114                 if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
115                      break;
116         }
117
118         VM_BUG_ON(root_nr == NR_SECTION_ROOTS);
119
120         return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
121 }
122 #else
123 int __section_nr(struct mem_section* ms)
124 {
125         return (int)(ms - mem_section[0]);
126 }
127 #endif
128
129 /*
130  * During early boot, before section_mem_map is used for an actual
131  * mem_map, we use section_mem_map to store the section's NUMA
132  * node.  This keeps us from having to use another data structure.  The
133  * node information is cleared just before we store the real mem_map.
134  */
135 static inline unsigned long sparse_encode_early_nid(int nid)
136 {
137         return (nid << SECTION_NID_SHIFT);
138 }
139
140 static inline int sparse_early_nid(struct mem_section *section)
141 {
142         return (section->section_mem_map >> SECTION_NID_SHIFT);
143 }
144
145 /* Validate the physical addressing limitations of the model */
146 void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
147                                                 unsigned long *end_pfn)
148 {
149         unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
150
151         /*
152          * Sanity checks - do not allow an architecture to pass
153          * in larger pfns than the maximum scope of sparsemem:
154          */
155         if (*start_pfn > max_sparsemem_pfn) {
156                 mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
157                         "Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
158                         *start_pfn, *end_pfn, max_sparsemem_pfn);
159                 WARN_ON_ONCE(1);
160                 *start_pfn = max_sparsemem_pfn;
161                 *end_pfn = max_sparsemem_pfn;
162         } else if (*end_pfn > max_sparsemem_pfn) {
163                 mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
164                         "End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
165                         *start_pfn, *end_pfn, max_sparsemem_pfn);
166                 WARN_ON_ONCE(1);
167                 *end_pfn = max_sparsemem_pfn;
168         }
169 }
170
171 /*
172  * There are a number of times that we loop over NR_MEM_SECTIONS,
173  * looking for section_present() on each.  But, when we have very
174  * large physical address spaces, NR_MEM_SECTIONS can also be
175  * very large which makes the loops quite long.
176  *
177  * Keeping track of this gives us an easy way to break out of
178  * those loops early.
179  */
180 int __highest_present_section_nr;
181 static void section_mark_present(struct mem_section *ms)
182 {
183         int section_nr = __section_nr(ms);
184
185         if (section_nr > __highest_present_section_nr)
186                 __highest_present_section_nr = section_nr;
187
188         ms->section_mem_map |= SECTION_MARKED_PRESENT;
189 }
190
191 static inline int next_present_section_nr(int section_nr)
192 {
193         do {
194                 section_nr++;
195                 if (present_section_nr(section_nr))
196                         return section_nr;
197         } while ((section_nr < NR_MEM_SECTIONS) &&
198                  (section_nr <= __highest_present_section_nr));
199
200         return -1;
201 }
202 #define for_each_present_section_nr(start, section_nr)          \
203         for (section_nr = next_present_section_nr(start-1);     \
204              ((section_nr >= 0) &&                              \
205               (section_nr < NR_MEM_SECTIONS) &&                 \
206               (section_nr <= __highest_present_section_nr));    \
207              section_nr = next_present_section_nr(section_nr))
208
209 /* Record a memory area against a node. */
210 void __init memory_present(int nid, unsigned long start, unsigned long end)
211 {
212         unsigned long pfn;
213
214         start &= PAGE_SECTION_MASK;
215         mminit_validate_memmodel_limits(&start, &end);
216         for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
217                 unsigned long section = pfn_to_section_nr(pfn);
218                 struct mem_section *ms;
219
220                 sparse_index_init(section, nid);
221                 set_section_nid(section, nid);
222
223                 ms = __nr_to_section(section);
224                 if (!ms->section_mem_map) {
225                         ms->section_mem_map = sparse_encode_early_nid(nid) |
226                                                         SECTION_IS_ONLINE;
227                         section_mark_present(ms);
228                 }
229         }
230 }
231
232 /*
233  * Only used by the i386 NUMA architecures, but relatively
234  * generic code.
235  */
236 unsigned long __init node_memmap_size_bytes(int nid, unsigned long start_pfn,
237                                                      unsigned long end_pfn)
238 {
239         unsigned long pfn;
240         unsigned long nr_pages = 0;
241
242         mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
243         for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
244                 if (nid != early_pfn_to_nid(pfn))
245                         continue;
246
247                 if (pfn_present(pfn))
248                         nr_pages += PAGES_PER_SECTION;
249         }
250
251         return nr_pages * sizeof(struct page);
252 }
253
254 /*
255  * Subtle, we encode the real pfn into the mem_map such that
256  * the identity pfn - section_mem_map will return the actual
257  * physical page frame number.
258  */
259 static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
260 {
261         return (unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
262 }
263
264 /*
265  * Decode mem_map from the coded memmap
266  */
267 struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
268 {
269         /* mask off the extra low bits of information */
270         coded_mem_map &= SECTION_MAP_MASK;
271         return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
272 }
273
274 static int __meminit sparse_init_one_section(struct mem_section *ms,
275                 unsigned long pnum, struct page *mem_map,
276                 unsigned long *pageblock_bitmap)
277 {
278         if (!present_section(ms))
279                 return -EINVAL;
280
281         ms->section_mem_map &= ~SECTION_MAP_MASK;
282         ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) |
283                                                         SECTION_HAS_MEM_MAP;
284         ms->pageblock_flags = pageblock_bitmap;
285
286         return 1;
287 }
288
289 unsigned long usemap_size(void)
290 {
291         return BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS) * sizeof(unsigned long);
292 }
293
294 #ifdef CONFIG_MEMORY_HOTPLUG
295 static unsigned long *__kmalloc_section_usemap(void)
296 {
297         return kmalloc(usemap_size(), GFP_KERNEL);
298 }
299 #endif /* CONFIG_MEMORY_HOTPLUG */
300
301 #ifdef CONFIG_MEMORY_HOTREMOVE
302 static unsigned long * __init
303 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
304                                          unsigned long size)
305 {
306         unsigned long goal, limit;
307         unsigned long *p;
308         int nid;
309         /*
310          * A page may contain usemaps for other sections preventing the
311          * page being freed and making a section unremovable while
312          * other sections referencing the usemap remain active. Similarly,
313          * a pgdat can prevent a section being removed. If section A
314          * contains a pgdat and section B contains the usemap, both
315          * sections become inter-dependent. This allocates usemaps
316          * from the same section as the pgdat where possible to avoid
317          * this problem.
318          */
319         goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT);
320         limit = goal + (1UL << PA_SECTION_SHIFT);
321         nid = early_pfn_to_nid(goal >> PAGE_SHIFT);
322 again:
323         p = memblock_virt_alloc_try_nid_nopanic(size,
324                                                 SMP_CACHE_BYTES, goal, limit,
325                                                 nid);
326         if (!p && limit) {
327                 limit = 0;
328                 goto again;
329         }
330         return p;
331 }
332
333 static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
334 {
335         unsigned long usemap_snr, pgdat_snr;
336         static unsigned long old_usemap_snr = NR_MEM_SECTIONS;
337         static unsigned long old_pgdat_snr = NR_MEM_SECTIONS;
338         struct pglist_data *pgdat = NODE_DATA(nid);
339         int usemap_nid;
340
341         usemap_snr = pfn_to_section_nr(__pa(usemap) >> PAGE_SHIFT);
342         pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
343         if (usemap_snr == pgdat_snr)
344                 return;
345
346         if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
347                 /* skip redundant message */
348                 return;
349
350         old_usemap_snr = usemap_snr;
351         old_pgdat_snr = pgdat_snr;
352
353         usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
354         if (usemap_nid != nid) {
355                 pr_info("node %d must be removed before remove section %ld\n",
356                         nid, usemap_snr);
357                 return;
358         }
359         /*
360          * There is a circular dependency.
361          * Some platforms allow un-removable section because they will just
362          * gather other removable sections for dynamic partitioning.
363          * Just notify un-removable section's number here.
364          */
365         pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n",
366                 usemap_snr, pgdat_snr, nid);
367 }
368 #else
369 static unsigned long * __init
370 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
371                                          unsigned long size)
372 {
373         return memblock_virt_alloc_node_nopanic(size, pgdat->node_id);
374 }
375
376 static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
377 {
378 }
379 #endif /* CONFIG_MEMORY_HOTREMOVE */
380
381 static void __init sparse_early_usemaps_alloc_node(void *data,
382                                  unsigned long pnum_begin,
383                                  unsigned long pnum_end,
384                                  unsigned long usemap_count, int nodeid)
385 {
386         void *usemap;
387         unsigned long pnum;
388         unsigned long **usemap_map = (unsigned long **)data;
389         int size = usemap_size();
390
391         usemap = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nodeid),
392                                                           size * usemap_count);
393         if (!usemap) {
394                 pr_warn("%s: allocation failed\n", __func__);
395                 return;
396         }
397
398         for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
399                 if (!present_section_nr(pnum))
400                         continue;
401                 usemap_map[pnum] = usemap;
402                 usemap += size;
403                 check_usemap_section_nr(nodeid, usemap_map[pnum]);
404         }
405 }
406
407 #ifndef CONFIG_SPARSEMEM_VMEMMAP
408 struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid)
409 {
410         struct page *map;
411         unsigned long size;
412
413         map = alloc_remap(nid, sizeof(struct page) * PAGES_PER_SECTION);
414         if (map)
415                 return map;
416
417         size = PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
418         map = memblock_virt_alloc_try_nid(size,
419                                           PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
420                                           BOOTMEM_ALLOC_ACCESSIBLE, nid);
421         return map;
422 }
423 void __init sparse_mem_maps_populate_node(struct page **map_map,
424                                           unsigned long pnum_begin,
425                                           unsigned long pnum_end,
426                                           unsigned long map_count, int nodeid)
427 {
428         void *map;
429         unsigned long pnum;
430         unsigned long size = sizeof(struct page) * PAGES_PER_SECTION;
431
432         map = alloc_remap(nodeid, size * map_count);
433         if (map) {
434                 for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
435                         if (!present_section_nr(pnum))
436                                 continue;
437                         map_map[pnum] = map;
438                         map += size;
439                 }
440                 return;
441         }
442
443         size = PAGE_ALIGN(size);
444         map = memblock_virt_alloc_try_nid(size * map_count,
445                                           PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
446                                           BOOTMEM_ALLOC_ACCESSIBLE, nodeid);
447         if (map) {
448                 for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
449                         if (!present_section_nr(pnum))
450                                 continue;
451                         map_map[pnum] = map;
452                         map += size;
453                 }
454                 return;
455         }
456
457         /* fallback */
458         for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
459                 struct mem_section *ms;
460
461                 if (!present_section_nr(pnum))
462                         continue;
463                 map_map[pnum] = sparse_mem_map_populate(pnum, nodeid);
464                 if (map_map[pnum])
465                         continue;
466                 ms = __nr_to_section(pnum);
467                 pr_err("%s: sparsemem memory map backing failed some memory will not be available\n",
468                        __func__);
469                 ms->section_mem_map = 0;
470         }
471 }
472 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
473
474 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
475 static void __init sparse_early_mem_maps_alloc_node(void *data,
476                                  unsigned long pnum_begin,
477                                  unsigned long pnum_end,
478                                  unsigned long map_count, int nodeid)
479 {
480         struct page **map_map = (struct page **)data;
481         sparse_mem_maps_populate_node(map_map, pnum_begin, pnum_end,
482                                          map_count, nodeid);
483 }
484 #else
485 static struct page __init *sparse_early_mem_map_alloc(unsigned long pnum)
486 {
487         struct page *map;
488         struct mem_section *ms = __nr_to_section(pnum);
489         int nid = sparse_early_nid(ms);
490
491         map = sparse_mem_map_populate(pnum, nid);
492         if (map)
493                 return map;
494
495         pr_err("%s: sparsemem memory map backing failed some memory will not be available\n",
496                __func__);
497         ms->section_mem_map = 0;
498         return NULL;
499 }
500 #endif
501
502 void __weak __meminit vmemmap_populate_print_last(void)
503 {
504 }
505
506 /**
507  *  alloc_usemap_and_memmap - memory alloction for pageblock flags and vmemmap
508  *  @map: usemap_map for pageblock flags or mmap_map for vmemmap
509  */
510 static void __init alloc_usemap_and_memmap(void (*alloc_func)
511                                         (void *, unsigned long, unsigned long,
512                                         unsigned long, int), void *data)
513 {
514         unsigned long pnum;
515         unsigned long map_count;
516         int nodeid_begin = 0;
517         unsigned long pnum_begin = 0;
518
519         for_each_present_section_nr(0, pnum) {
520                 struct mem_section *ms;
521
522                 ms = __nr_to_section(pnum);
523                 nodeid_begin = sparse_early_nid(ms);
524                 pnum_begin = pnum;
525                 break;
526         }
527         map_count = 1;
528         for_each_present_section_nr(pnum_begin + 1, pnum) {
529                 struct mem_section *ms;
530                 int nodeid;
531
532                 ms = __nr_to_section(pnum);
533                 nodeid = sparse_early_nid(ms);
534                 if (nodeid == nodeid_begin) {
535                         map_count++;
536                         continue;
537                 }
538                 /* ok, we need to take cake of from pnum_begin to pnum - 1*/
539                 alloc_func(data, pnum_begin, pnum,
540                                                 map_count, nodeid_begin);
541                 /* new start, update count etc*/
542                 nodeid_begin = nodeid;
543                 pnum_begin = pnum;
544                 map_count = 1;
545         }
546         /* ok, last chunk */
547         alloc_func(data, pnum_begin, NR_MEM_SECTIONS,
548                                                 map_count, nodeid_begin);
549 }
550
551 /*
552  * Allocate the accumulated non-linear sections, allocate a mem_map
553  * for each and record the physical to section mapping.
554  */
555 void __init sparse_init(void)
556 {
557         unsigned long pnum;
558         struct page *map;
559         unsigned long *usemap;
560         unsigned long **usemap_map;
561         int size;
562 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
563         int size2;
564         struct page **map_map;
565 #endif
566
567         /* see include/linux/mmzone.h 'struct mem_section' definition */
568         BUILD_BUG_ON(!is_power_of_2(sizeof(struct mem_section)));
569
570         /* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
571         set_pageblock_order();
572
573         /*
574          * map is using big page (aka 2M in x86 64 bit)
575          * usemap is less one page (aka 24 bytes)
576          * so alloc 2M (with 2M align) and 24 bytes in turn will
577          * make next 2M slip to one more 2M later.
578          * then in big system, the memory will have a lot of holes...
579          * here try to allocate 2M pages continuously.
580          *
581          * powerpc need to call sparse_init_one_section right after each
582          * sparse_early_mem_map_alloc, so allocate usemap_map at first.
583          */
584         size = sizeof(unsigned long *) * NR_MEM_SECTIONS;
585         usemap_map = memblock_virt_alloc(size, 0);
586         if (!usemap_map)
587                 panic("can not allocate usemap_map\n");
588         alloc_usemap_and_memmap(sparse_early_usemaps_alloc_node,
589                                                         (void *)usemap_map);
590
591 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
592         size2 = sizeof(struct page *) * NR_MEM_SECTIONS;
593         map_map = memblock_virt_alloc(size2, 0);
594         if (!map_map)
595                 panic("can not allocate map_map\n");
596         alloc_usemap_and_memmap(sparse_early_mem_maps_alloc_node,
597                                                         (void *)map_map);
598 #endif
599
600         for_each_present_section_nr(0, pnum) {
601                 usemap = usemap_map[pnum];
602                 if (!usemap)
603                         continue;
604
605 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
606                 map = map_map[pnum];
607 #else
608                 map = sparse_early_mem_map_alloc(pnum);
609 #endif
610                 if (!map)
611                         continue;
612
613                 sparse_init_one_section(__nr_to_section(pnum), pnum, map,
614                                                                 usemap);
615         }
616
617         vmemmap_populate_print_last();
618
619 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
620         memblock_free_early(__pa(map_map), size2);
621 #endif
622         memblock_free_early(__pa(usemap_map), size);
623 }
624
625 #ifdef CONFIG_MEMORY_HOTPLUG
626
627 /* Mark all memory sections within the pfn range as online */
628 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
629 {
630         unsigned long pfn;
631
632         for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
633                 unsigned long section_nr = pfn_to_section_nr(start_pfn);
634                 struct mem_section *ms;
635
636                 /* onlining code should never touch invalid ranges */
637                 if (WARN_ON(!valid_section_nr(section_nr)))
638                         continue;
639
640                 ms = __nr_to_section(section_nr);
641                 ms->section_mem_map |= SECTION_IS_ONLINE;
642         }
643 }
644
645 #ifdef CONFIG_MEMORY_HOTREMOVE
646 /* Mark all memory sections within the pfn range as online */
647 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
648 {
649         unsigned long pfn;
650
651         for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
652                 unsigned long section_nr = pfn_to_section_nr(start_pfn);
653                 struct mem_section *ms;
654
655                 /*
656                  * TODO this needs some double checking. Offlining code makes
657                  * sure to check pfn_valid but those checks might be just bogus
658                  */
659                 if (WARN_ON(!valid_section_nr(section_nr)))
660                         continue;
661
662                 ms = __nr_to_section(section_nr);
663                 ms->section_mem_map &= ~SECTION_IS_ONLINE;
664         }
665 }
666 #endif
667
668 #ifdef CONFIG_SPARSEMEM_VMEMMAP
669 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid)
670 {
671         /* This will make the necessary allocations eventually. */
672         return sparse_mem_map_populate(pnum, nid);
673 }
674 static void __kfree_section_memmap(struct page *memmap)
675 {
676         unsigned long start = (unsigned long)memmap;
677         unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
678
679         vmemmap_free(start, end);
680 }
681 #ifdef CONFIG_MEMORY_HOTREMOVE
682 static void free_map_bootmem(struct page *memmap)
683 {
684         unsigned long start = (unsigned long)memmap;
685         unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
686
687         vmemmap_free(start, end);
688 }
689 #endif /* CONFIG_MEMORY_HOTREMOVE */
690 #else
691 static struct page *__kmalloc_section_memmap(void)
692 {
693         struct page *page, *ret;
694         unsigned long memmap_size = sizeof(struct page) * PAGES_PER_SECTION;
695
696         page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size));
697         if (page)
698                 goto got_map_page;
699
700         ret = vmalloc(memmap_size);
701         if (ret)
702                 goto got_map_ptr;
703
704         return NULL;
705 got_map_page:
706         ret = (struct page *)pfn_to_kaddr(page_to_pfn(page));
707 got_map_ptr:
708
709         return ret;
710 }
711
712 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid)
713 {
714         return __kmalloc_section_memmap();
715 }
716
717 static void __kfree_section_memmap(struct page *memmap)
718 {
719         if (is_vmalloc_addr(memmap))
720                 vfree(memmap);
721         else
722                 free_pages((unsigned long)memmap,
723                            get_order(sizeof(struct page) * PAGES_PER_SECTION));
724 }
725
726 #ifdef CONFIG_MEMORY_HOTREMOVE
727 static void free_map_bootmem(struct page *memmap)
728 {
729         unsigned long maps_section_nr, removing_section_nr, i;
730         unsigned long magic, nr_pages;
731         struct page *page = virt_to_page(memmap);
732
733         nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
734                 >> PAGE_SHIFT;
735
736         for (i = 0; i < nr_pages; i++, page++) {
737                 magic = (unsigned long) page->freelist;
738
739                 BUG_ON(magic == NODE_INFO);
740
741                 maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
742                 removing_section_nr = page_private(page);
743
744                 /*
745                  * When this function is called, the removing section is
746                  * logical offlined state. This means all pages are isolated
747                  * from page allocator. If removing section's memmap is placed
748                  * on the same section, it must not be freed.
749                  * If it is freed, page allocator may allocate it which will
750                  * be removed physically soon.
751                  */
752                 if (maps_section_nr != removing_section_nr)
753                         put_page_bootmem(page);
754         }
755 }
756 #endif /* CONFIG_MEMORY_HOTREMOVE */
757 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
758
759 /*
760  * returns the number of sections whose mem_maps were properly
761  * set.  If this is <=0, then that means that the passed-in
762  * map was not consumed and must be freed.
763  */
764 int __meminit sparse_add_one_section(struct pglist_data *pgdat, unsigned long start_pfn)
765 {
766         unsigned long section_nr = pfn_to_section_nr(start_pfn);
767         struct mem_section *ms;
768         struct page *memmap;
769         unsigned long *usemap;
770         unsigned long flags;
771         int ret;
772
773         /*
774          * no locking for this, because it does its own
775          * plus, it does a kmalloc
776          */
777         ret = sparse_index_init(section_nr, pgdat->node_id);
778         if (ret < 0 && ret != -EEXIST)
779                 return ret;
780         memmap = kmalloc_section_memmap(section_nr, pgdat->node_id);
781         if (!memmap)
782                 return -ENOMEM;
783         usemap = __kmalloc_section_usemap();
784         if (!usemap) {
785                 __kfree_section_memmap(memmap);
786                 return -ENOMEM;
787         }
788
789         pgdat_resize_lock(pgdat, &flags);
790
791         ms = __pfn_to_section(start_pfn);
792         if (ms->section_mem_map & SECTION_MARKED_PRESENT) {
793                 ret = -EEXIST;
794                 goto out;
795         }
796
797         memset(memmap, 0, sizeof(struct page) * PAGES_PER_SECTION);
798
799         section_mark_present(ms);
800
801         ret = sparse_init_one_section(ms, section_nr, memmap, usemap);
802
803 out:
804         pgdat_resize_unlock(pgdat, &flags);
805         if (ret <= 0) {
806                 kfree(usemap);
807                 __kfree_section_memmap(memmap);
808         }
809         return ret;
810 }
811
812 #ifdef CONFIG_MEMORY_HOTREMOVE
813 #ifdef CONFIG_MEMORY_FAILURE
814 static void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
815 {
816         int i;
817
818         if (!memmap)
819                 return;
820
821         for (i = 0; i < nr_pages; i++) {
822                 if (PageHWPoison(&memmap[i])) {
823                         atomic_long_sub(1, &num_poisoned_pages);
824                         ClearPageHWPoison(&memmap[i]);
825                 }
826         }
827 }
828 #else
829 static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
830 {
831 }
832 #endif
833
834 static void free_section_usemap(struct page *memmap, unsigned long *usemap)
835 {
836         struct page *usemap_page;
837
838         if (!usemap)
839                 return;
840
841         usemap_page = virt_to_page(usemap);
842         /*
843          * Check to see if allocation came from hot-plug-add
844          */
845         if (PageSlab(usemap_page) || PageCompound(usemap_page)) {
846                 kfree(usemap);
847                 if (memmap)
848                         __kfree_section_memmap(memmap);
849                 return;
850         }
851
852         /*
853          * The usemap came from bootmem. This is packed with other usemaps
854          * on the section which has pgdat at boot time. Just keep it as is now.
855          */
856
857         if (memmap)
858                 free_map_bootmem(memmap);
859 }
860
861 void sparse_remove_one_section(struct zone *zone, struct mem_section *ms,
862                 unsigned long map_offset)
863 {
864         struct page *memmap = NULL;
865         unsigned long *usemap = NULL, flags;
866         struct pglist_data *pgdat = zone->zone_pgdat;
867
868         pgdat_resize_lock(pgdat, &flags);
869         if (ms->section_mem_map) {
870                 usemap = ms->pageblock_flags;
871                 memmap = sparse_decode_mem_map(ms->section_mem_map,
872                                                 __section_nr(ms));
873                 ms->section_mem_map = 0;
874                 ms->pageblock_flags = NULL;
875         }
876         pgdat_resize_unlock(pgdat, &flags);
877
878         clear_hwpoisoned_pages(memmap + map_offset,
879                         PAGES_PER_SECTION - map_offset);
880         free_section_usemap(memmap, usemap);
881 }
882 #endif /* CONFIG_MEMORY_HOTREMOVE */
883 #endif /* CONFIG_MEMORY_HOTPLUG */