]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - mm/swapfile.c
ARM: dts: add support for TX6S with LVDS output
[karo-tx-linux.git] / mm / swapfile.c
1 /*
2  *  linux/mm/swapfile.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *  Swap reorganised 29.12.95, Stephen Tweedie
6  */
7
8 #include <linux/mm.h>
9 #include <linux/hugetlb.h>
10 #include <linux/mman.h>
11 #include <linux/slab.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/shmem_fs.h>
18 #include <linux/blkdev.h>
19 #include <linux/random.h>
20 #include <linux/writeback.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/init.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/security.h>
27 #include <linux/backing-dev.h>
28 #include <linux/mutex.h>
29 #include <linux/capability.h>
30 #include <linux/syscalls.h>
31 #include <linux/memcontrol.h>
32 #include <linux/poll.h>
33 #include <linux/oom.h>
34 #include <linux/frontswap.h>
35 #include <linux/swapfile.h>
36 #include <linux/export.h>
37
38 #include <asm/pgtable.h>
39 #include <asm/tlbflush.h>
40 #include <linux/swapops.h>
41 #include <linux/page_cgroup.h>
42
43 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
44                                  unsigned char);
45 static void free_swap_count_continuations(struct swap_info_struct *);
46 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
47
48 DEFINE_SPINLOCK(swap_lock);
49 static unsigned int nr_swapfiles;
50 atomic_long_t nr_swap_pages;
51 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
52 long total_swap_pages;
53 static int least_priority;
54
55 static const char Bad_file[] = "Bad swap file entry ";
56 static const char Unused_file[] = "Unused swap file entry ";
57 static const char Bad_offset[] = "Bad swap offset entry ";
58 static const char Unused_offset[] = "Unused swap offset entry ";
59
60 /*
61  * all active swap_info_structs
62  * protected with swap_lock, and ordered by priority.
63  */
64 PLIST_HEAD(swap_active_head);
65
66 /*
67  * all available (active, not full) swap_info_structs
68  * protected with swap_avail_lock, ordered by priority.
69  * This is used by get_swap_page() instead of swap_active_head
70  * because swap_active_head includes all swap_info_structs,
71  * but get_swap_page() doesn't need to look at full ones.
72  * This uses its own lock instead of swap_lock because when a
73  * swap_info_struct changes between not-full/full, it needs to
74  * add/remove itself to/from this list, but the swap_info_struct->lock
75  * is held and the locking order requires swap_lock to be taken
76  * before any swap_info_struct->lock.
77  */
78 static PLIST_HEAD(swap_avail_head);
79 static DEFINE_SPINLOCK(swap_avail_lock);
80
81 struct swap_info_struct *swap_info[MAX_SWAPFILES];
82
83 static DEFINE_MUTEX(swapon_mutex);
84
85 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
86 /* Activity counter to indicate that a swapon or swapoff has occurred */
87 static atomic_t proc_poll_event = ATOMIC_INIT(0);
88
89 static inline unsigned char swap_count(unsigned char ent)
90 {
91         return ent & ~SWAP_HAS_CACHE;   /* may include SWAP_HAS_CONT flag */
92 }
93
94 /* returns 1 if swap entry is freed */
95 static int
96 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
97 {
98         swp_entry_t entry = swp_entry(si->type, offset);
99         struct page *page;
100         int ret = 0;
101
102         page = find_get_page(swap_address_space(entry), entry.val);
103         if (!page)
104                 return 0;
105         /*
106          * This function is called from scan_swap_map() and it's called
107          * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
108          * We have to use trylock for avoiding deadlock. This is a special
109          * case and you should use try_to_free_swap() with explicit lock_page()
110          * in usual operations.
111          */
112         if (trylock_page(page)) {
113                 ret = try_to_free_swap(page);
114                 unlock_page(page);
115         }
116         page_cache_release(page);
117         return ret;
118 }
119
120 /*
121  * swapon tell device that all the old swap contents can be discarded,
122  * to allow the swap device to optimize its wear-levelling.
123  */
124 static int discard_swap(struct swap_info_struct *si)
125 {
126         struct swap_extent *se;
127         sector_t start_block;
128         sector_t nr_blocks;
129         int err = 0;
130
131         /* Do not discard the swap header page! */
132         se = &si->first_swap_extent;
133         start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
134         nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
135         if (nr_blocks) {
136                 err = blkdev_issue_discard(si->bdev, start_block,
137                                 nr_blocks, GFP_KERNEL, 0);
138                 if (err)
139                         return err;
140                 cond_resched();
141         }
142
143         list_for_each_entry(se, &si->first_swap_extent.list, list) {
144                 start_block = se->start_block << (PAGE_SHIFT - 9);
145                 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
146
147                 err = blkdev_issue_discard(si->bdev, start_block,
148                                 nr_blocks, GFP_KERNEL, 0);
149                 if (err)
150                         break;
151
152                 cond_resched();
153         }
154         return err;             /* That will often be -EOPNOTSUPP */
155 }
156
157 /*
158  * swap allocation tell device that a cluster of swap can now be discarded,
159  * to allow the swap device to optimize its wear-levelling.
160  */
161 static void discard_swap_cluster(struct swap_info_struct *si,
162                                  pgoff_t start_page, pgoff_t nr_pages)
163 {
164         struct swap_extent *se = si->curr_swap_extent;
165         int found_extent = 0;
166
167         while (nr_pages) {
168                 struct list_head *lh;
169
170                 if (se->start_page <= start_page &&
171                     start_page < se->start_page + se->nr_pages) {
172                         pgoff_t offset = start_page - se->start_page;
173                         sector_t start_block = se->start_block + offset;
174                         sector_t nr_blocks = se->nr_pages - offset;
175
176                         if (nr_blocks > nr_pages)
177                                 nr_blocks = nr_pages;
178                         start_page += nr_blocks;
179                         nr_pages -= nr_blocks;
180
181                         if (!found_extent++)
182                                 si->curr_swap_extent = se;
183
184                         start_block <<= PAGE_SHIFT - 9;
185                         nr_blocks <<= PAGE_SHIFT - 9;
186                         if (blkdev_issue_discard(si->bdev, start_block,
187                                     nr_blocks, GFP_NOIO, 0))
188                                 break;
189                 }
190
191                 lh = se->list.next;
192                 se = list_entry(lh, struct swap_extent, list);
193         }
194 }
195
196 #define SWAPFILE_CLUSTER        256
197 #define LATENCY_LIMIT           256
198
199 static inline void cluster_set_flag(struct swap_cluster_info *info,
200         unsigned int flag)
201 {
202         info->flags = flag;
203 }
204
205 static inline unsigned int cluster_count(struct swap_cluster_info *info)
206 {
207         return info->data;
208 }
209
210 static inline void cluster_set_count(struct swap_cluster_info *info,
211                                      unsigned int c)
212 {
213         info->data = c;
214 }
215
216 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
217                                          unsigned int c, unsigned int f)
218 {
219         info->flags = f;
220         info->data = c;
221 }
222
223 static inline unsigned int cluster_next(struct swap_cluster_info *info)
224 {
225         return info->data;
226 }
227
228 static inline void cluster_set_next(struct swap_cluster_info *info,
229                                     unsigned int n)
230 {
231         info->data = n;
232 }
233
234 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
235                                          unsigned int n, unsigned int f)
236 {
237         info->flags = f;
238         info->data = n;
239 }
240
241 static inline bool cluster_is_free(struct swap_cluster_info *info)
242 {
243         return info->flags & CLUSTER_FLAG_FREE;
244 }
245
246 static inline bool cluster_is_null(struct swap_cluster_info *info)
247 {
248         return info->flags & CLUSTER_FLAG_NEXT_NULL;
249 }
250
251 static inline void cluster_set_null(struct swap_cluster_info *info)
252 {
253         info->flags = CLUSTER_FLAG_NEXT_NULL;
254         info->data = 0;
255 }
256
257 /* Add a cluster to discard list and schedule it to do discard */
258 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
259                 unsigned int idx)
260 {
261         /*
262          * If scan_swap_map() can't find a free cluster, it will check
263          * si->swap_map directly. To make sure the discarding cluster isn't
264          * taken by scan_swap_map(), mark the swap entries bad (occupied). It
265          * will be cleared after discard
266          */
267         memset(si->swap_map + idx * SWAPFILE_CLUSTER,
268                         SWAP_MAP_BAD, SWAPFILE_CLUSTER);
269
270         if (cluster_is_null(&si->discard_cluster_head)) {
271                 cluster_set_next_flag(&si->discard_cluster_head,
272                                                 idx, 0);
273                 cluster_set_next_flag(&si->discard_cluster_tail,
274                                                 idx, 0);
275         } else {
276                 unsigned int tail = cluster_next(&si->discard_cluster_tail);
277                 cluster_set_next(&si->cluster_info[tail], idx);
278                 cluster_set_next_flag(&si->discard_cluster_tail,
279                                                 idx, 0);
280         }
281
282         schedule_work(&si->discard_work);
283 }
284
285 /*
286  * Doing discard actually. After a cluster discard is finished, the cluster
287  * will be added to free cluster list. caller should hold si->lock.
288 */
289 static void swap_do_scheduled_discard(struct swap_info_struct *si)
290 {
291         struct swap_cluster_info *info;
292         unsigned int idx;
293
294         info = si->cluster_info;
295
296         while (!cluster_is_null(&si->discard_cluster_head)) {
297                 idx = cluster_next(&si->discard_cluster_head);
298
299                 cluster_set_next_flag(&si->discard_cluster_head,
300                                                 cluster_next(&info[idx]), 0);
301                 if (cluster_next(&si->discard_cluster_tail) == idx) {
302                         cluster_set_null(&si->discard_cluster_head);
303                         cluster_set_null(&si->discard_cluster_tail);
304                 }
305                 spin_unlock(&si->lock);
306
307                 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
308                                 SWAPFILE_CLUSTER);
309
310                 spin_lock(&si->lock);
311                 cluster_set_flag(&info[idx], CLUSTER_FLAG_FREE);
312                 if (cluster_is_null(&si->free_cluster_head)) {
313                         cluster_set_next_flag(&si->free_cluster_head,
314                                                 idx, 0);
315                         cluster_set_next_flag(&si->free_cluster_tail,
316                                                 idx, 0);
317                 } else {
318                         unsigned int tail;
319
320                         tail = cluster_next(&si->free_cluster_tail);
321                         cluster_set_next(&info[tail], idx);
322                         cluster_set_next_flag(&si->free_cluster_tail,
323                                                 idx, 0);
324                 }
325                 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
326                                 0, SWAPFILE_CLUSTER);
327         }
328 }
329
330 static void swap_discard_work(struct work_struct *work)
331 {
332         struct swap_info_struct *si;
333
334         si = container_of(work, struct swap_info_struct, discard_work);
335
336         spin_lock(&si->lock);
337         swap_do_scheduled_discard(si);
338         spin_unlock(&si->lock);
339 }
340
341 /*
342  * The cluster corresponding to page_nr will be used. The cluster will be
343  * removed from free cluster list and its usage counter will be increased.
344  */
345 static void inc_cluster_info_page(struct swap_info_struct *p,
346         struct swap_cluster_info *cluster_info, unsigned long page_nr)
347 {
348         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
349
350         if (!cluster_info)
351                 return;
352         if (cluster_is_free(&cluster_info[idx])) {
353                 VM_BUG_ON(cluster_next(&p->free_cluster_head) != idx);
354                 cluster_set_next_flag(&p->free_cluster_head,
355                         cluster_next(&cluster_info[idx]), 0);
356                 if (cluster_next(&p->free_cluster_tail) == idx) {
357                         cluster_set_null(&p->free_cluster_tail);
358                         cluster_set_null(&p->free_cluster_head);
359                 }
360                 cluster_set_count_flag(&cluster_info[idx], 0, 0);
361         }
362
363         VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
364         cluster_set_count(&cluster_info[idx],
365                 cluster_count(&cluster_info[idx]) + 1);
366 }
367
368 /*
369  * The cluster corresponding to page_nr decreases one usage. If the usage
370  * counter becomes 0, which means no page in the cluster is in using, we can
371  * optionally discard the cluster and add it to free cluster list.
372  */
373 static void dec_cluster_info_page(struct swap_info_struct *p,
374         struct swap_cluster_info *cluster_info, unsigned long page_nr)
375 {
376         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
377
378         if (!cluster_info)
379                 return;
380
381         VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
382         cluster_set_count(&cluster_info[idx],
383                 cluster_count(&cluster_info[idx]) - 1);
384
385         if (cluster_count(&cluster_info[idx]) == 0) {
386                 /*
387                  * If the swap is discardable, prepare discard the cluster
388                  * instead of free it immediately. The cluster will be freed
389                  * after discard.
390                  */
391                 if ((p->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
392                                  (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
393                         swap_cluster_schedule_discard(p, idx);
394                         return;
395                 }
396
397                 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
398                 if (cluster_is_null(&p->free_cluster_head)) {
399                         cluster_set_next_flag(&p->free_cluster_head, idx, 0);
400                         cluster_set_next_flag(&p->free_cluster_tail, idx, 0);
401                 } else {
402                         unsigned int tail = cluster_next(&p->free_cluster_tail);
403                         cluster_set_next(&cluster_info[tail], idx);
404                         cluster_set_next_flag(&p->free_cluster_tail, idx, 0);
405                 }
406         }
407 }
408
409 /*
410  * It's possible scan_swap_map() uses a free cluster in the middle of free
411  * cluster list. Avoiding such abuse to avoid list corruption.
412  */
413 static bool
414 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
415         unsigned long offset)
416 {
417         struct percpu_cluster *percpu_cluster;
418         bool conflict;
419
420         offset /= SWAPFILE_CLUSTER;
421         conflict = !cluster_is_null(&si->free_cluster_head) &&
422                 offset != cluster_next(&si->free_cluster_head) &&
423                 cluster_is_free(&si->cluster_info[offset]);
424
425         if (!conflict)
426                 return false;
427
428         percpu_cluster = this_cpu_ptr(si->percpu_cluster);
429         cluster_set_null(&percpu_cluster->index);
430         return true;
431 }
432
433 /*
434  * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
435  * might involve allocating a new cluster for current CPU too.
436  */
437 static void scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
438         unsigned long *offset, unsigned long *scan_base)
439 {
440         struct percpu_cluster *cluster;
441         bool found_free;
442         unsigned long tmp;
443
444 new_cluster:
445         cluster = this_cpu_ptr(si->percpu_cluster);
446         if (cluster_is_null(&cluster->index)) {
447                 if (!cluster_is_null(&si->free_cluster_head)) {
448                         cluster->index = si->free_cluster_head;
449                         cluster->next = cluster_next(&cluster->index) *
450                                         SWAPFILE_CLUSTER;
451                 } else if (!cluster_is_null(&si->discard_cluster_head)) {
452                         /*
453                          * we don't have free cluster but have some clusters in
454                          * discarding, do discard now and reclaim them
455                          */
456                         swap_do_scheduled_discard(si);
457                         *scan_base = *offset = si->cluster_next;
458                         goto new_cluster;
459                 } else
460                         return;
461         }
462
463         found_free = false;
464
465         /*
466          * Other CPUs can use our cluster if they can't find a free cluster,
467          * check if there is still free entry in the cluster
468          */
469         tmp = cluster->next;
470         while (tmp < si->max && tmp < (cluster_next(&cluster->index) + 1) *
471                SWAPFILE_CLUSTER) {
472                 if (!si->swap_map[tmp]) {
473                         found_free = true;
474                         break;
475                 }
476                 tmp++;
477         }
478         if (!found_free) {
479                 cluster_set_null(&cluster->index);
480                 goto new_cluster;
481         }
482         cluster->next = tmp + 1;
483         *offset = tmp;
484         *scan_base = tmp;
485 }
486
487 static unsigned long scan_swap_map(struct swap_info_struct *si,
488                                    unsigned char usage)
489 {
490         unsigned long offset;
491         unsigned long scan_base;
492         unsigned long last_in_cluster = 0;
493         int latency_ration = LATENCY_LIMIT;
494
495         /*
496          * We try to cluster swap pages by allocating them sequentially
497          * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
498          * way, however, we resort to first-free allocation, starting
499          * a new cluster.  This prevents us from scattering swap pages
500          * all over the entire swap partition, so that we reduce
501          * overall disk seek times between swap pages.  -- sct
502          * But we do now try to find an empty cluster.  -Andrea
503          * And we let swap pages go all over an SSD partition.  Hugh
504          */
505
506         si->flags += SWP_SCANNING;
507         scan_base = offset = si->cluster_next;
508
509         /* SSD algorithm */
510         if (si->cluster_info) {
511                 scan_swap_map_try_ssd_cluster(si, &offset, &scan_base);
512                 goto checks;
513         }
514
515         if (unlikely(!si->cluster_nr--)) {
516                 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
517                         si->cluster_nr = SWAPFILE_CLUSTER - 1;
518                         goto checks;
519                 }
520
521                 spin_unlock(&si->lock);
522
523                 /*
524                  * If seek is expensive, start searching for new cluster from
525                  * start of partition, to minimize the span of allocated swap.
526                  * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
527                  * case, just handled by scan_swap_map_try_ssd_cluster() above.
528                  */
529                 scan_base = offset = si->lowest_bit;
530                 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
531
532                 /* Locate the first empty (unaligned) cluster */
533                 for (; last_in_cluster <= si->highest_bit; offset++) {
534                         if (si->swap_map[offset])
535                                 last_in_cluster = offset + SWAPFILE_CLUSTER;
536                         else if (offset == last_in_cluster) {
537                                 spin_lock(&si->lock);
538                                 offset -= SWAPFILE_CLUSTER - 1;
539                                 si->cluster_next = offset;
540                                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
541                                 goto checks;
542                         }
543                         if (unlikely(--latency_ration < 0)) {
544                                 cond_resched();
545                                 latency_ration = LATENCY_LIMIT;
546                         }
547                 }
548
549                 offset = scan_base;
550                 spin_lock(&si->lock);
551                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
552         }
553
554 checks:
555         if (si->cluster_info) {
556                 while (scan_swap_map_ssd_cluster_conflict(si, offset))
557                         scan_swap_map_try_ssd_cluster(si, &offset, &scan_base);
558         }
559         if (!(si->flags & SWP_WRITEOK))
560                 goto no_page;
561         if (!si->highest_bit)
562                 goto no_page;
563         if (offset > si->highest_bit)
564                 scan_base = offset = si->lowest_bit;
565
566         /* reuse swap entry of cache-only swap if not busy. */
567         if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
568                 int swap_was_freed;
569                 spin_unlock(&si->lock);
570                 swap_was_freed = __try_to_reclaim_swap(si, offset);
571                 spin_lock(&si->lock);
572                 /* entry was freed successfully, try to use this again */
573                 if (swap_was_freed)
574                         goto checks;
575                 goto scan; /* check next one */
576         }
577
578         if (si->swap_map[offset])
579                 goto scan;
580
581         if (offset == si->lowest_bit)
582                 si->lowest_bit++;
583         if (offset == si->highest_bit)
584                 si->highest_bit--;
585         si->inuse_pages++;
586         if (si->inuse_pages == si->pages) {
587                 si->lowest_bit = si->max;
588                 si->highest_bit = 0;
589                 spin_lock(&swap_avail_lock);
590                 plist_del(&si->avail_list, &swap_avail_head);
591                 spin_unlock(&swap_avail_lock);
592         }
593         si->swap_map[offset] = usage;
594         inc_cluster_info_page(si, si->cluster_info, offset);
595         si->cluster_next = offset + 1;
596         si->flags -= SWP_SCANNING;
597
598         return offset;
599
600 scan:
601         spin_unlock(&si->lock);
602         while (++offset <= si->highest_bit) {
603                 if (!si->swap_map[offset]) {
604                         spin_lock(&si->lock);
605                         goto checks;
606                 }
607                 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
608                         spin_lock(&si->lock);
609                         goto checks;
610                 }
611                 if (unlikely(--latency_ration < 0)) {
612                         cond_resched();
613                         latency_ration = LATENCY_LIMIT;
614                 }
615         }
616         offset = si->lowest_bit;
617         while (offset < scan_base) {
618                 if (!si->swap_map[offset]) {
619                         spin_lock(&si->lock);
620                         goto checks;
621                 }
622                 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
623                         spin_lock(&si->lock);
624                         goto checks;
625                 }
626                 if (unlikely(--latency_ration < 0)) {
627                         cond_resched();
628                         latency_ration = LATENCY_LIMIT;
629                 }
630                 offset++;
631         }
632         spin_lock(&si->lock);
633
634 no_page:
635         si->flags -= SWP_SCANNING;
636         return 0;
637 }
638
639 swp_entry_t get_swap_page(void)
640 {
641         struct swap_info_struct *si, *next;
642         pgoff_t offset;
643
644         if (atomic_long_read(&nr_swap_pages) <= 0)
645                 goto noswap;
646         atomic_long_dec(&nr_swap_pages);
647
648         spin_lock(&swap_avail_lock);
649
650 start_over:
651         plist_for_each_entry_safe(si, next, &swap_avail_head, avail_list) {
652                 /* requeue si to after same-priority siblings */
653                 plist_requeue(&si->avail_list, &swap_avail_head);
654                 spin_unlock(&swap_avail_lock);
655                 spin_lock(&si->lock);
656                 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
657                         spin_lock(&swap_avail_lock);
658                         if (plist_node_empty(&si->avail_list)) {
659                                 spin_unlock(&si->lock);
660                                 goto nextsi;
661                         }
662                         WARN(!si->highest_bit,
663                              "swap_info %d in list but !highest_bit\n",
664                              si->type);
665                         WARN(!(si->flags & SWP_WRITEOK),
666                              "swap_info %d in list but !SWP_WRITEOK\n",
667                              si->type);
668                         plist_del(&si->avail_list, &swap_avail_head);
669                         spin_unlock(&si->lock);
670                         goto nextsi;
671                 }
672
673                 /* This is called for allocating swap entry for cache */
674                 offset = scan_swap_map(si, SWAP_HAS_CACHE);
675                 spin_unlock(&si->lock);
676                 if (offset)
677                         return swp_entry(si->type, offset);
678                 pr_debug("scan_swap_map of si %d failed to find offset\n",
679                        si->type);
680                 spin_lock(&swap_avail_lock);
681 nextsi:
682                 /*
683                  * if we got here, it's likely that si was almost full before,
684                  * and since scan_swap_map() can drop the si->lock, multiple
685                  * callers probably all tried to get a page from the same si
686                  * and it filled up before we could get one; or, the si filled
687                  * up between us dropping swap_avail_lock and taking si->lock.
688                  * Since we dropped the swap_avail_lock, the swap_avail_head
689                  * list may have been modified; so if next is still in the
690                  * swap_avail_head list then try it, otherwise start over.
691                  */
692                 if (plist_node_empty(&next->avail_list))
693                         goto start_over;
694         }
695
696         spin_unlock(&swap_avail_lock);
697
698         atomic_long_inc(&nr_swap_pages);
699 noswap:
700         return (swp_entry_t) {0};
701 }
702
703 /* The only caller of this function is now suspend routine */
704 swp_entry_t get_swap_page_of_type(int type)
705 {
706         struct swap_info_struct *si;
707         pgoff_t offset;
708
709         si = swap_info[type];
710         spin_lock(&si->lock);
711         if (si && (si->flags & SWP_WRITEOK)) {
712                 atomic_long_dec(&nr_swap_pages);
713                 /* This is called for allocating swap entry, not cache */
714                 offset = scan_swap_map(si, 1);
715                 if (offset) {
716                         spin_unlock(&si->lock);
717                         return swp_entry(type, offset);
718                 }
719                 atomic_long_inc(&nr_swap_pages);
720         }
721         spin_unlock(&si->lock);
722         return (swp_entry_t) {0};
723 }
724
725 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
726 {
727         struct swap_info_struct *p;
728         unsigned long offset, type;
729
730         if (!entry.val)
731                 goto out;
732         type = swp_type(entry);
733         if (type >= nr_swapfiles)
734                 goto bad_nofile;
735         p = swap_info[type];
736         if (!(p->flags & SWP_USED))
737                 goto bad_device;
738         offset = swp_offset(entry);
739         if (offset >= p->max)
740                 goto bad_offset;
741         if (!p->swap_map[offset])
742                 goto bad_free;
743         spin_lock(&p->lock);
744         return p;
745
746 bad_free:
747         pr_err("swap_free: %s%08lx\n", Unused_offset, entry.val);
748         goto out;
749 bad_offset:
750         pr_err("swap_free: %s%08lx\n", Bad_offset, entry.val);
751         goto out;
752 bad_device:
753         pr_err("swap_free: %s%08lx\n", Unused_file, entry.val);
754         goto out;
755 bad_nofile:
756         pr_err("swap_free: %s%08lx\n", Bad_file, entry.val);
757 out:
758         return NULL;
759 }
760
761 static unsigned char swap_entry_free(struct swap_info_struct *p,
762                                      swp_entry_t entry, unsigned char usage)
763 {
764         unsigned long offset = swp_offset(entry);
765         unsigned char count;
766         unsigned char has_cache;
767
768         count = p->swap_map[offset];
769         has_cache = count & SWAP_HAS_CACHE;
770         count &= ~SWAP_HAS_CACHE;
771
772         if (usage == SWAP_HAS_CACHE) {
773                 VM_BUG_ON(!has_cache);
774                 has_cache = 0;
775         } else if (count == SWAP_MAP_SHMEM) {
776                 /*
777                  * Or we could insist on shmem.c using a special
778                  * swap_shmem_free() and free_shmem_swap_and_cache()...
779                  */
780                 count = 0;
781         } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
782                 if (count == COUNT_CONTINUED) {
783                         if (swap_count_continued(p, offset, count))
784                                 count = SWAP_MAP_MAX | COUNT_CONTINUED;
785                         else
786                                 count = SWAP_MAP_MAX;
787                 } else
788                         count--;
789         }
790
791         if (!count)
792                 mem_cgroup_uncharge_swap(entry);
793
794         usage = count | has_cache;
795         p->swap_map[offset] = usage;
796
797         /* free if no reference */
798         if (!usage) {
799                 dec_cluster_info_page(p, p->cluster_info, offset);
800                 if (offset < p->lowest_bit)
801                         p->lowest_bit = offset;
802                 if (offset > p->highest_bit) {
803                         bool was_full = !p->highest_bit;
804                         p->highest_bit = offset;
805                         if (was_full && (p->flags & SWP_WRITEOK)) {
806                                 spin_lock(&swap_avail_lock);
807                                 WARN_ON(!plist_node_empty(&p->avail_list));
808                                 if (plist_node_empty(&p->avail_list))
809                                         plist_add(&p->avail_list,
810                                                   &swap_avail_head);
811                                 spin_unlock(&swap_avail_lock);
812                         }
813                 }
814                 atomic_long_inc(&nr_swap_pages);
815                 p->inuse_pages--;
816                 frontswap_invalidate_page(p->type, offset);
817                 if (p->flags & SWP_BLKDEV) {
818                         struct gendisk *disk = p->bdev->bd_disk;
819                         if (disk->fops->swap_slot_free_notify)
820                                 disk->fops->swap_slot_free_notify(p->bdev,
821                                                                   offset);
822                 }
823         }
824
825         return usage;
826 }
827
828 /*
829  * Caller has made sure that the swap device corresponding to entry
830  * is still around or has not been recycled.
831  */
832 void swap_free(swp_entry_t entry)
833 {
834         struct swap_info_struct *p;
835
836         p = swap_info_get(entry);
837         if (p) {
838                 swap_entry_free(p, entry, 1);
839                 spin_unlock(&p->lock);
840         }
841 }
842
843 /*
844  * Called after dropping swapcache to decrease refcnt to swap entries.
845  */
846 void swapcache_free(swp_entry_t entry, struct page *page)
847 {
848         struct swap_info_struct *p;
849         unsigned char count;
850
851         p = swap_info_get(entry);
852         if (p) {
853                 count = swap_entry_free(p, entry, SWAP_HAS_CACHE);
854                 if (page)
855                         mem_cgroup_uncharge_swapcache(page, entry, count != 0);
856                 spin_unlock(&p->lock);
857         }
858 }
859
860 /*
861  * How many references to page are currently swapped out?
862  * This does not give an exact answer when swap count is continued,
863  * but does include the high COUNT_CONTINUED flag to allow for that.
864  */
865 int page_swapcount(struct page *page)
866 {
867         int count = 0;
868         struct swap_info_struct *p;
869         swp_entry_t entry;
870
871         entry.val = page_private(page);
872         p = swap_info_get(entry);
873         if (p) {
874                 count = swap_count(p->swap_map[swp_offset(entry)]);
875                 spin_unlock(&p->lock);
876         }
877         return count;
878 }
879
880 /*
881  * We can write to an anon page without COW if there are no other references
882  * to it.  And as a side-effect, free up its swap: because the old content
883  * on disk will never be read, and seeking back there to write new content
884  * later would only waste time away from clustering.
885  */
886 int reuse_swap_page(struct page *page)
887 {
888         int count;
889
890         VM_BUG_ON_PAGE(!PageLocked(page), page);
891         if (unlikely(PageKsm(page)))
892                 return 0;
893         count = page_mapcount(page);
894         if (count <= 1 && PageSwapCache(page)) {
895                 count += page_swapcount(page);
896                 if (count == 1 && !PageWriteback(page)) {
897                         delete_from_swap_cache(page);
898                         SetPageDirty(page);
899                 }
900         }
901         return count <= 1;
902 }
903
904 /*
905  * If swap is getting full, or if there are no more mappings of this page,
906  * then try_to_free_swap is called to free its swap space.
907  */
908 int try_to_free_swap(struct page *page)
909 {
910         VM_BUG_ON_PAGE(!PageLocked(page), page);
911
912         if (!PageSwapCache(page))
913                 return 0;
914         if (PageWriteback(page))
915                 return 0;
916         if (page_swapcount(page))
917                 return 0;
918
919         /*
920          * Once hibernation has begun to create its image of memory,
921          * there's a danger that one of the calls to try_to_free_swap()
922          * - most probably a call from __try_to_reclaim_swap() while
923          * hibernation is allocating its own swap pages for the image,
924          * but conceivably even a call from memory reclaim - will free
925          * the swap from a page which has already been recorded in the
926          * image as a clean swapcache page, and then reuse its swap for
927          * another page of the image.  On waking from hibernation, the
928          * original page might be freed under memory pressure, then
929          * later read back in from swap, now with the wrong data.
930          *
931          * Hibernation suspends storage while it is writing the image
932          * to disk so check that here.
933          */
934         if (pm_suspended_storage())
935                 return 0;
936
937         delete_from_swap_cache(page);
938         SetPageDirty(page);
939         return 1;
940 }
941
942 /*
943  * Free the swap entry like above, but also try to
944  * free the page cache entry if it is the last user.
945  */
946 int free_swap_and_cache(swp_entry_t entry)
947 {
948         struct swap_info_struct *p;
949         struct page *page = NULL;
950
951         if (non_swap_entry(entry))
952                 return 1;
953
954         p = swap_info_get(entry);
955         if (p) {
956                 if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) {
957                         page = find_get_page(swap_address_space(entry),
958                                                 entry.val);
959                         if (page && !trylock_page(page)) {
960                                 page_cache_release(page);
961                                 page = NULL;
962                         }
963                 }
964                 spin_unlock(&p->lock);
965         }
966         if (page) {
967                 /*
968                  * Not mapped elsewhere, or swap space full? Free it!
969                  * Also recheck PageSwapCache now page is locked (above).
970                  */
971                 if (PageSwapCache(page) && !PageWriteback(page) &&
972                                 (!page_mapped(page) || vm_swap_full())) {
973                         delete_from_swap_cache(page);
974                         SetPageDirty(page);
975                 }
976                 unlock_page(page);
977                 page_cache_release(page);
978         }
979         return p != NULL;
980 }
981
982 #ifdef CONFIG_HIBERNATION
983 /*
984  * Find the swap type that corresponds to given device (if any).
985  *
986  * @offset - number of the PAGE_SIZE-sized block of the device, starting
987  * from 0, in which the swap header is expected to be located.
988  *
989  * This is needed for the suspend to disk (aka swsusp).
990  */
991 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
992 {
993         struct block_device *bdev = NULL;
994         int type;
995
996         if (device)
997                 bdev = bdget(device);
998
999         spin_lock(&swap_lock);
1000         for (type = 0; type < nr_swapfiles; type++) {
1001                 struct swap_info_struct *sis = swap_info[type];
1002
1003                 if (!(sis->flags & SWP_WRITEOK))
1004                         continue;
1005
1006                 if (!bdev) {
1007                         if (bdev_p)
1008                                 *bdev_p = bdgrab(sis->bdev);
1009
1010                         spin_unlock(&swap_lock);
1011                         return type;
1012                 }
1013                 if (bdev == sis->bdev) {
1014                         struct swap_extent *se = &sis->first_swap_extent;
1015
1016                         if (se->start_block == offset) {
1017                                 if (bdev_p)
1018                                         *bdev_p = bdgrab(sis->bdev);
1019
1020                                 spin_unlock(&swap_lock);
1021                                 bdput(bdev);
1022                                 return type;
1023                         }
1024                 }
1025         }
1026         spin_unlock(&swap_lock);
1027         if (bdev)
1028                 bdput(bdev);
1029
1030         return -ENODEV;
1031 }
1032
1033 /*
1034  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1035  * corresponding to given index in swap_info (swap type).
1036  */
1037 sector_t swapdev_block(int type, pgoff_t offset)
1038 {
1039         struct block_device *bdev;
1040
1041         if ((unsigned int)type >= nr_swapfiles)
1042                 return 0;
1043         if (!(swap_info[type]->flags & SWP_WRITEOK))
1044                 return 0;
1045         return map_swap_entry(swp_entry(type, offset), &bdev);
1046 }
1047
1048 /*
1049  * Return either the total number of swap pages of given type, or the number
1050  * of free pages of that type (depending on @free)
1051  *
1052  * This is needed for software suspend
1053  */
1054 unsigned int count_swap_pages(int type, int free)
1055 {
1056         unsigned int n = 0;
1057
1058         spin_lock(&swap_lock);
1059         if ((unsigned int)type < nr_swapfiles) {
1060                 struct swap_info_struct *sis = swap_info[type];
1061
1062                 spin_lock(&sis->lock);
1063                 if (sis->flags & SWP_WRITEOK) {
1064                         n = sis->pages;
1065                         if (free)
1066                                 n -= sis->inuse_pages;
1067                 }
1068                 spin_unlock(&sis->lock);
1069         }
1070         spin_unlock(&swap_lock);
1071         return n;
1072 }
1073 #endif /* CONFIG_HIBERNATION */
1074
1075 static inline int maybe_same_pte(pte_t pte, pte_t swp_pte)
1076 {
1077 #ifdef CONFIG_MEM_SOFT_DIRTY
1078         /*
1079          * When pte keeps soft dirty bit the pte generated
1080          * from swap entry does not has it, still it's same
1081          * pte from logical point of view.
1082          */
1083         pte_t swp_pte_dirty = pte_swp_mksoft_dirty(swp_pte);
1084         return pte_same(pte, swp_pte) || pte_same(pte, swp_pte_dirty);
1085 #else
1086         return pte_same(pte, swp_pte);
1087 #endif
1088 }
1089
1090 /*
1091  * No need to decide whether this PTE shares the swap entry with others,
1092  * just let do_wp_page work it out if a write is requested later - to
1093  * force COW, vm_page_prot omits write permission from any private vma.
1094  */
1095 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1096                 unsigned long addr, swp_entry_t entry, struct page *page)
1097 {
1098         struct page *swapcache;
1099         struct mem_cgroup *memcg;
1100         spinlock_t *ptl;
1101         pte_t *pte;
1102         int ret = 1;
1103
1104         swapcache = page;
1105         page = ksm_might_need_to_copy(page, vma, addr);
1106         if (unlikely(!page))
1107                 return -ENOMEM;
1108
1109         if (mem_cgroup_try_charge_swapin(vma->vm_mm, page,
1110                                          GFP_KERNEL, &memcg)) {
1111                 ret = -ENOMEM;
1112                 goto out_nolock;
1113         }
1114
1115         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1116         if (unlikely(!maybe_same_pte(*pte, swp_entry_to_pte(entry)))) {
1117                 mem_cgroup_cancel_charge_swapin(memcg);
1118                 ret = 0;
1119                 goto out;
1120         }
1121
1122         dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1123         inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1124         get_page(page);
1125         set_pte_at(vma->vm_mm, addr, pte,
1126                    pte_mkold(mk_pte(page, vma->vm_page_prot)));
1127         if (page == swapcache)
1128                 page_add_anon_rmap(page, vma, addr);
1129         else /* ksm created a completely new copy */
1130                 page_add_new_anon_rmap(page, vma, addr);
1131         mem_cgroup_commit_charge_swapin(page, memcg);
1132         swap_free(entry);
1133         /*
1134          * Move the page to the active list so it is not
1135          * immediately swapped out again after swapon.
1136          */
1137         activate_page(page);
1138 out:
1139         pte_unmap_unlock(pte, ptl);
1140 out_nolock:
1141         if (page != swapcache) {
1142                 unlock_page(page);
1143                 put_page(page);
1144         }
1145         return ret;
1146 }
1147
1148 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1149                                 unsigned long addr, unsigned long end,
1150                                 swp_entry_t entry, struct page *page)
1151 {
1152         pte_t swp_pte = swp_entry_to_pte(entry);
1153         pte_t *pte;
1154         int ret = 0;
1155
1156         /*
1157          * We don't actually need pte lock while scanning for swp_pte: since
1158          * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
1159          * page table while we're scanning; though it could get zapped, and on
1160          * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
1161          * of unmatched parts which look like swp_pte, so unuse_pte must
1162          * recheck under pte lock.  Scanning without pte lock lets it be
1163          * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
1164          */
1165         pte = pte_offset_map(pmd, addr);
1166         do {
1167                 /*
1168                  * swapoff spends a _lot_ of time in this loop!
1169                  * Test inline before going to call unuse_pte.
1170                  */
1171                 if (unlikely(maybe_same_pte(*pte, swp_pte))) {
1172                         pte_unmap(pte);
1173                         ret = unuse_pte(vma, pmd, addr, entry, page);
1174                         if (ret)
1175                                 goto out;
1176                         pte = pte_offset_map(pmd, addr);
1177                 }
1178         } while (pte++, addr += PAGE_SIZE, addr != end);
1179         pte_unmap(pte - 1);
1180 out:
1181         return ret;
1182 }
1183
1184 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1185                                 unsigned long addr, unsigned long end,
1186                                 swp_entry_t entry, struct page *page)
1187 {
1188         pmd_t *pmd;
1189         unsigned long next;
1190         int ret;
1191
1192         pmd = pmd_offset(pud, addr);
1193         do {
1194                 next = pmd_addr_end(addr, end);
1195                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1196                         continue;
1197                 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
1198                 if (ret)
1199                         return ret;
1200         } while (pmd++, addr = next, addr != end);
1201         return 0;
1202 }
1203
1204 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
1205                                 unsigned long addr, unsigned long end,
1206                                 swp_entry_t entry, struct page *page)
1207 {
1208         pud_t *pud;
1209         unsigned long next;
1210         int ret;
1211
1212         pud = pud_offset(pgd, addr);
1213         do {
1214                 next = pud_addr_end(addr, end);
1215                 if (pud_none_or_clear_bad(pud))
1216                         continue;
1217                 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
1218                 if (ret)
1219                         return ret;
1220         } while (pud++, addr = next, addr != end);
1221         return 0;
1222 }
1223
1224 static int unuse_vma(struct vm_area_struct *vma,
1225                                 swp_entry_t entry, struct page *page)
1226 {
1227         pgd_t *pgd;
1228         unsigned long addr, end, next;
1229         int ret;
1230
1231         if (page_anon_vma(page)) {
1232                 addr = page_address_in_vma(page, vma);
1233                 if (addr == -EFAULT)
1234                         return 0;
1235                 else
1236                         end = addr + PAGE_SIZE;
1237         } else {
1238                 addr = vma->vm_start;
1239                 end = vma->vm_end;
1240         }
1241
1242         pgd = pgd_offset(vma->vm_mm, addr);
1243         do {
1244                 next = pgd_addr_end(addr, end);
1245                 if (pgd_none_or_clear_bad(pgd))
1246                         continue;
1247                 ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
1248                 if (ret)
1249                         return ret;
1250         } while (pgd++, addr = next, addr != end);
1251         return 0;
1252 }
1253
1254 static int unuse_mm(struct mm_struct *mm,
1255                                 swp_entry_t entry, struct page *page)
1256 {
1257         struct vm_area_struct *vma;
1258         int ret = 0;
1259
1260         if (!down_read_trylock(&mm->mmap_sem)) {
1261                 /*
1262                  * Activate page so shrink_inactive_list is unlikely to unmap
1263                  * its ptes while lock is dropped, so swapoff can make progress.
1264                  */
1265                 activate_page(page);
1266                 unlock_page(page);
1267                 down_read(&mm->mmap_sem);
1268                 lock_page(page);
1269         }
1270         for (vma = mm->mmap; vma; vma = vma->vm_next) {
1271                 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1272                         break;
1273         }
1274         up_read(&mm->mmap_sem);
1275         return (ret < 0)? ret: 0;
1276 }
1277
1278 /*
1279  * Scan swap_map (or frontswap_map if frontswap parameter is true)
1280  * from current position to next entry still in use.
1281  * Recycle to start on reaching the end, returning 0 when empty.
1282  */
1283 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1284                                         unsigned int prev, bool frontswap)
1285 {
1286         unsigned int max = si->max;
1287         unsigned int i = prev;
1288         unsigned char count;
1289
1290         /*
1291          * No need for swap_lock here: we're just looking
1292          * for whether an entry is in use, not modifying it; false
1293          * hits are okay, and sys_swapoff() has already prevented new
1294          * allocations from this area (while holding swap_lock).
1295          */
1296         for (;;) {
1297                 if (++i >= max) {
1298                         if (!prev) {
1299                                 i = 0;
1300                                 break;
1301                         }
1302                         /*
1303                          * No entries in use at top of swap_map,
1304                          * loop back to start and recheck there.
1305                          */
1306                         max = prev + 1;
1307                         prev = 0;
1308                         i = 1;
1309                 }
1310                 if (frontswap) {
1311                         if (frontswap_test(si, i))
1312                                 break;
1313                         else
1314                                 continue;
1315                 }
1316                 count = ACCESS_ONCE(si->swap_map[i]);
1317                 if (count && swap_count(count) != SWAP_MAP_BAD)
1318                         break;
1319         }
1320         return i;
1321 }
1322
1323 /*
1324  * We completely avoid races by reading each swap page in advance,
1325  * and then search for the process using it.  All the necessary
1326  * page table adjustments can then be made atomically.
1327  *
1328  * if the boolean frontswap is true, only unuse pages_to_unuse pages;
1329  * pages_to_unuse==0 means all pages; ignored if frontswap is false
1330  */
1331 int try_to_unuse(unsigned int type, bool frontswap,
1332                  unsigned long pages_to_unuse)
1333 {
1334         struct swap_info_struct *si = swap_info[type];
1335         struct mm_struct *start_mm;
1336         volatile unsigned char *swap_map; /* swap_map is accessed without
1337                                            * locking. Mark it as volatile
1338                                            * to prevent compiler doing
1339                                            * something odd.
1340                                            */
1341         unsigned char swcount;
1342         struct page *page;
1343         swp_entry_t entry;
1344         unsigned int i = 0;
1345         int retval = 0;
1346
1347         /*
1348          * When searching mms for an entry, a good strategy is to
1349          * start at the first mm we freed the previous entry from
1350          * (though actually we don't notice whether we or coincidence
1351          * freed the entry).  Initialize this start_mm with a hold.
1352          *
1353          * A simpler strategy would be to start at the last mm we
1354          * freed the previous entry from; but that would take less
1355          * advantage of mmlist ordering, which clusters forked mms
1356          * together, child after parent.  If we race with dup_mmap(), we
1357          * prefer to resolve parent before child, lest we miss entries
1358          * duplicated after we scanned child: using last mm would invert
1359          * that.
1360          */
1361         start_mm = &init_mm;
1362         atomic_inc(&init_mm.mm_users);
1363
1364         /*
1365          * Keep on scanning until all entries have gone.  Usually,
1366          * one pass through swap_map is enough, but not necessarily:
1367          * there are races when an instance of an entry might be missed.
1368          */
1369         while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
1370                 if (signal_pending(current)) {
1371                         retval = -EINTR;
1372                         break;
1373                 }
1374
1375                 /*
1376                  * Get a page for the entry, using the existing swap
1377                  * cache page if there is one.  Otherwise, get a clean
1378                  * page and read the swap into it.
1379                  */
1380                 swap_map = &si->swap_map[i];
1381                 entry = swp_entry(type, i);
1382                 page = read_swap_cache_async(entry,
1383                                         GFP_HIGHUSER_MOVABLE, NULL, 0);
1384                 if (!page) {
1385                         /*
1386                          * Either swap_duplicate() failed because entry
1387                          * has been freed independently, and will not be
1388                          * reused since sys_swapoff() already disabled
1389                          * allocation from here, or alloc_page() failed.
1390                          */
1391                         swcount = *swap_map;
1392                         /*
1393                          * We don't hold lock here, so the swap entry could be
1394                          * SWAP_MAP_BAD (when the cluster is discarding).
1395                          * Instead of fail out, We can just skip the swap
1396                          * entry because swapoff will wait for discarding
1397                          * finish anyway.
1398                          */
1399                         if (!swcount || swcount == SWAP_MAP_BAD)
1400                                 continue;
1401                         retval = -ENOMEM;
1402                         break;
1403                 }
1404
1405                 /*
1406                  * Don't hold on to start_mm if it looks like exiting.
1407                  */
1408                 if (atomic_read(&start_mm->mm_users) == 1) {
1409                         mmput(start_mm);
1410                         start_mm = &init_mm;
1411                         atomic_inc(&init_mm.mm_users);
1412                 }
1413
1414                 /*
1415                  * Wait for and lock page.  When do_swap_page races with
1416                  * try_to_unuse, do_swap_page can handle the fault much
1417                  * faster than try_to_unuse can locate the entry.  This
1418                  * apparently redundant "wait_on_page_locked" lets try_to_unuse
1419                  * defer to do_swap_page in such a case - in some tests,
1420                  * do_swap_page and try_to_unuse repeatedly compete.
1421                  */
1422                 wait_on_page_locked(page);
1423                 wait_on_page_writeback(page);
1424                 lock_page(page);
1425                 wait_on_page_writeback(page);
1426
1427                 /*
1428                  * Remove all references to entry.
1429                  */
1430                 swcount = *swap_map;
1431                 if (swap_count(swcount) == SWAP_MAP_SHMEM) {
1432                         retval = shmem_unuse(entry, page);
1433                         /* page has already been unlocked and released */
1434                         if (retval < 0)
1435                                 break;
1436                         continue;
1437                 }
1438                 if (swap_count(swcount) && start_mm != &init_mm)
1439                         retval = unuse_mm(start_mm, entry, page);
1440
1441                 if (swap_count(*swap_map)) {
1442                         int set_start_mm = (*swap_map >= swcount);
1443                         struct list_head *p = &start_mm->mmlist;
1444                         struct mm_struct *new_start_mm = start_mm;
1445                         struct mm_struct *prev_mm = start_mm;
1446                         struct mm_struct *mm;
1447
1448                         atomic_inc(&new_start_mm->mm_users);
1449                         atomic_inc(&prev_mm->mm_users);
1450                         spin_lock(&mmlist_lock);
1451                         while (swap_count(*swap_map) && !retval &&
1452                                         (p = p->next) != &start_mm->mmlist) {
1453                                 mm = list_entry(p, struct mm_struct, mmlist);
1454                                 if (!atomic_inc_not_zero(&mm->mm_users))
1455                                         continue;
1456                                 spin_unlock(&mmlist_lock);
1457                                 mmput(prev_mm);
1458                                 prev_mm = mm;
1459
1460                                 cond_resched();
1461
1462                                 swcount = *swap_map;
1463                                 if (!swap_count(swcount)) /* any usage ? */
1464                                         ;
1465                                 else if (mm == &init_mm)
1466                                         set_start_mm = 1;
1467                                 else
1468                                         retval = unuse_mm(mm, entry, page);
1469
1470                                 if (set_start_mm && *swap_map < swcount) {
1471                                         mmput(new_start_mm);
1472                                         atomic_inc(&mm->mm_users);
1473                                         new_start_mm = mm;
1474                                         set_start_mm = 0;
1475                                 }
1476                                 spin_lock(&mmlist_lock);
1477                         }
1478                         spin_unlock(&mmlist_lock);
1479                         mmput(prev_mm);
1480                         mmput(start_mm);
1481                         start_mm = new_start_mm;
1482                 }
1483                 if (retval) {
1484                         unlock_page(page);
1485                         page_cache_release(page);
1486                         break;
1487                 }
1488
1489                 /*
1490                  * If a reference remains (rare), we would like to leave
1491                  * the page in the swap cache; but try_to_unmap could
1492                  * then re-duplicate the entry once we drop page lock,
1493                  * so we might loop indefinitely; also, that page could
1494                  * not be swapped out to other storage meanwhile.  So:
1495                  * delete from cache even if there's another reference,
1496                  * after ensuring that the data has been saved to disk -
1497                  * since if the reference remains (rarer), it will be
1498                  * read from disk into another page.  Splitting into two
1499                  * pages would be incorrect if swap supported "shared
1500                  * private" pages, but they are handled by tmpfs files.
1501                  *
1502                  * Given how unuse_vma() targets one particular offset
1503                  * in an anon_vma, once the anon_vma has been determined,
1504                  * this splitting happens to be just what is needed to
1505                  * handle where KSM pages have been swapped out: re-reading
1506                  * is unnecessarily slow, but we can fix that later on.
1507                  */
1508                 if (swap_count(*swap_map) &&
1509                      PageDirty(page) && PageSwapCache(page)) {
1510                         struct writeback_control wbc = {
1511                                 .sync_mode = WB_SYNC_NONE,
1512                         };
1513
1514                         swap_writepage(page, &wbc);
1515                         lock_page(page);
1516                         wait_on_page_writeback(page);
1517                 }
1518
1519                 /*
1520                  * It is conceivable that a racing task removed this page from
1521                  * swap cache just before we acquired the page lock at the top,
1522                  * or while we dropped it in unuse_mm().  The page might even
1523                  * be back in swap cache on another swap area: that we must not
1524                  * delete, since it may not have been written out to swap yet.
1525                  */
1526                 if (PageSwapCache(page) &&
1527                     likely(page_private(page) == entry.val))
1528                         delete_from_swap_cache(page);
1529
1530                 /*
1531                  * So we could skip searching mms once swap count went
1532                  * to 1, we did not mark any present ptes as dirty: must
1533                  * mark page dirty so shrink_page_list will preserve it.
1534                  */
1535                 SetPageDirty(page);
1536                 unlock_page(page);
1537                 page_cache_release(page);
1538
1539                 /*
1540                  * Make sure that we aren't completely killing
1541                  * interactive performance.
1542                  */
1543                 cond_resched();
1544                 if (frontswap && pages_to_unuse > 0) {
1545                         if (!--pages_to_unuse)
1546                                 break;
1547                 }
1548         }
1549
1550         mmput(start_mm);
1551         return retval;
1552 }
1553
1554 /*
1555  * After a successful try_to_unuse, if no swap is now in use, we know
1556  * we can empty the mmlist.  swap_lock must be held on entry and exit.
1557  * Note that mmlist_lock nests inside swap_lock, and an mm must be
1558  * added to the mmlist just after page_duplicate - before would be racy.
1559  */
1560 static void drain_mmlist(void)
1561 {
1562         struct list_head *p, *next;
1563         unsigned int type;
1564
1565         for (type = 0; type < nr_swapfiles; type++)
1566                 if (swap_info[type]->inuse_pages)
1567                         return;
1568         spin_lock(&mmlist_lock);
1569         list_for_each_safe(p, next, &init_mm.mmlist)
1570                 list_del_init(p);
1571         spin_unlock(&mmlist_lock);
1572 }
1573
1574 /*
1575  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1576  * corresponds to page offset for the specified swap entry.
1577  * Note that the type of this function is sector_t, but it returns page offset
1578  * into the bdev, not sector offset.
1579  */
1580 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1581 {
1582         struct swap_info_struct *sis;
1583         struct swap_extent *start_se;
1584         struct swap_extent *se;
1585         pgoff_t offset;
1586
1587         sis = swap_info[swp_type(entry)];
1588         *bdev = sis->bdev;
1589
1590         offset = swp_offset(entry);
1591         start_se = sis->curr_swap_extent;
1592         se = start_se;
1593
1594         for ( ; ; ) {
1595                 struct list_head *lh;
1596
1597                 if (se->start_page <= offset &&
1598                                 offset < (se->start_page + se->nr_pages)) {
1599                         return se->start_block + (offset - se->start_page);
1600                 }
1601                 lh = se->list.next;
1602                 se = list_entry(lh, struct swap_extent, list);
1603                 sis->curr_swap_extent = se;
1604                 BUG_ON(se == start_se);         /* It *must* be present */
1605         }
1606 }
1607
1608 /*
1609  * Returns the page offset into bdev for the specified page's swap entry.
1610  */
1611 sector_t map_swap_page(struct page *page, struct block_device **bdev)
1612 {
1613         swp_entry_t entry;
1614         entry.val = page_private(page);
1615         return map_swap_entry(entry, bdev);
1616 }
1617
1618 /*
1619  * Free all of a swapdev's extent information
1620  */
1621 static void destroy_swap_extents(struct swap_info_struct *sis)
1622 {
1623         while (!list_empty(&sis->first_swap_extent.list)) {
1624                 struct swap_extent *se;
1625
1626                 se = list_entry(sis->first_swap_extent.list.next,
1627                                 struct swap_extent, list);
1628                 list_del(&se->list);
1629                 kfree(se);
1630         }
1631
1632         if (sis->flags & SWP_FILE) {
1633                 struct file *swap_file = sis->swap_file;
1634                 struct address_space *mapping = swap_file->f_mapping;
1635
1636                 sis->flags &= ~SWP_FILE;
1637                 mapping->a_ops->swap_deactivate(swap_file);
1638         }
1639 }
1640
1641 /*
1642  * Add a block range (and the corresponding page range) into this swapdev's
1643  * extent list.  The extent list is kept sorted in page order.
1644  *
1645  * This function rather assumes that it is called in ascending page order.
1646  */
1647 int
1648 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1649                 unsigned long nr_pages, sector_t start_block)
1650 {
1651         struct swap_extent *se;
1652         struct swap_extent *new_se;
1653         struct list_head *lh;
1654
1655         if (start_page == 0) {
1656                 se = &sis->first_swap_extent;
1657                 sis->curr_swap_extent = se;
1658                 se->start_page = 0;
1659                 se->nr_pages = nr_pages;
1660                 se->start_block = start_block;
1661                 return 1;
1662         } else {
1663                 lh = sis->first_swap_extent.list.prev;  /* Highest extent */
1664                 se = list_entry(lh, struct swap_extent, list);
1665                 BUG_ON(se->start_page + se->nr_pages != start_page);
1666                 if (se->start_block + se->nr_pages == start_block) {
1667                         /* Merge it */
1668                         se->nr_pages += nr_pages;
1669                         return 0;
1670                 }
1671         }
1672
1673         /*
1674          * No merge.  Insert a new extent, preserving ordering.
1675          */
1676         new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1677         if (new_se == NULL)
1678                 return -ENOMEM;
1679         new_se->start_page = start_page;
1680         new_se->nr_pages = nr_pages;
1681         new_se->start_block = start_block;
1682
1683         list_add_tail(&new_se->list, &sis->first_swap_extent.list);
1684         return 1;
1685 }
1686
1687 /*
1688  * A `swap extent' is a simple thing which maps a contiguous range of pages
1689  * onto a contiguous range of disk blocks.  An ordered list of swap extents
1690  * is built at swapon time and is then used at swap_writepage/swap_readpage
1691  * time for locating where on disk a page belongs.
1692  *
1693  * If the swapfile is an S_ISBLK block device, a single extent is installed.
1694  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1695  * swap files identically.
1696  *
1697  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1698  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
1699  * swapfiles are handled *identically* after swapon time.
1700  *
1701  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1702  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
1703  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1704  * requirements, they are simply tossed out - we will never use those blocks
1705  * for swapping.
1706  *
1707  * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
1708  * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1709  * which will scribble on the fs.
1710  *
1711  * The amount of disk space which a single swap extent represents varies.
1712  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
1713  * extents in the list.  To avoid much list walking, we cache the previous
1714  * search location in `curr_swap_extent', and start new searches from there.
1715  * This is extremely effective.  The average number of iterations in
1716  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
1717  */
1718 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1719 {
1720         struct file *swap_file = sis->swap_file;
1721         struct address_space *mapping = swap_file->f_mapping;
1722         struct inode *inode = mapping->host;
1723         int ret;
1724
1725         if (S_ISBLK(inode->i_mode)) {
1726                 ret = add_swap_extent(sis, 0, sis->max, 0);
1727                 *span = sis->pages;
1728                 return ret;
1729         }
1730
1731         if (mapping->a_ops->swap_activate) {
1732                 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
1733                 if (!ret) {
1734                         sis->flags |= SWP_FILE;
1735                         ret = add_swap_extent(sis, 0, sis->max, 0);
1736                         *span = sis->pages;
1737                 }
1738                 return ret;
1739         }
1740
1741         return generic_swapfile_activate(sis, swap_file, span);
1742 }
1743
1744 static void _enable_swap_info(struct swap_info_struct *p, int prio,
1745                                 unsigned char *swap_map,
1746                                 struct swap_cluster_info *cluster_info)
1747 {
1748         if (prio >= 0)
1749                 p->prio = prio;
1750         else
1751                 p->prio = --least_priority;
1752         /*
1753          * the plist prio is negated because plist ordering is
1754          * low-to-high, while swap ordering is high-to-low
1755          */
1756         p->list.prio = -p->prio;
1757         p->avail_list.prio = -p->prio;
1758         p->swap_map = swap_map;
1759         p->cluster_info = cluster_info;
1760         p->flags |= SWP_WRITEOK;
1761         atomic_long_add(p->pages, &nr_swap_pages);
1762         total_swap_pages += p->pages;
1763
1764         assert_spin_locked(&swap_lock);
1765         /*
1766          * both lists are plists, and thus priority ordered.
1767          * swap_active_head needs to be priority ordered for swapoff(),
1768          * which on removal of any swap_info_struct with an auto-assigned
1769          * (i.e. negative) priority increments the auto-assigned priority
1770          * of any lower-priority swap_info_structs.
1771          * swap_avail_head needs to be priority ordered for get_swap_page(),
1772          * which allocates swap pages from the highest available priority
1773          * swap_info_struct.
1774          */
1775         plist_add(&p->list, &swap_active_head);
1776         spin_lock(&swap_avail_lock);
1777         plist_add(&p->avail_list, &swap_avail_head);
1778         spin_unlock(&swap_avail_lock);
1779 }
1780
1781 static void enable_swap_info(struct swap_info_struct *p, int prio,
1782                                 unsigned char *swap_map,
1783                                 struct swap_cluster_info *cluster_info,
1784                                 unsigned long *frontswap_map)
1785 {
1786         frontswap_init(p->type, frontswap_map);
1787         spin_lock(&swap_lock);
1788         spin_lock(&p->lock);
1789          _enable_swap_info(p, prio, swap_map, cluster_info);
1790         spin_unlock(&p->lock);
1791         spin_unlock(&swap_lock);
1792 }
1793
1794 static void reinsert_swap_info(struct swap_info_struct *p)
1795 {
1796         spin_lock(&swap_lock);
1797         spin_lock(&p->lock);
1798         _enable_swap_info(p, p->prio, p->swap_map, p->cluster_info);
1799         spin_unlock(&p->lock);
1800         spin_unlock(&swap_lock);
1801 }
1802
1803 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1804 {
1805         struct swap_info_struct *p = NULL;
1806         unsigned char *swap_map;
1807         struct swap_cluster_info *cluster_info;
1808         unsigned long *frontswap_map;
1809         struct file *swap_file, *victim;
1810         struct address_space *mapping;
1811         struct inode *inode;
1812         struct filename *pathname;
1813         int err, found = 0;
1814         unsigned int old_block_size;
1815
1816         if (!capable(CAP_SYS_ADMIN))
1817                 return -EPERM;
1818
1819         BUG_ON(!current->mm);
1820
1821         pathname = getname(specialfile);
1822         if (IS_ERR(pathname))
1823                 return PTR_ERR(pathname);
1824
1825         victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
1826         err = PTR_ERR(victim);
1827         if (IS_ERR(victim))
1828                 goto out;
1829
1830         mapping = victim->f_mapping;
1831         spin_lock(&swap_lock);
1832         plist_for_each_entry(p, &swap_active_head, list) {
1833                 if (p->flags & SWP_WRITEOK) {
1834                         if (p->swap_file->f_mapping == mapping) {
1835                                 found = 1;
1836                                 break;
1837                         }
1838                 }
1839         }
1840         if (!found) {
1841                 err = -EINVAL;
1842                 spin_unlock(&swap_lock);
1843                 goto out_dput;
1844         }
1845         if (!security_vm_enough_memory_mm(current->mm, p->pages))
1846                 vm_unacct_memory(p->pages);
1847         else {
1848                 err = -ENOMEM;
1849                 spin_unlock(&swap_lock);
1850                 goto out_dput;
1851         }
1852         spin_lock(&swap_avail_lock);
1853         plist_del(&p->avail_list, &swap_avail_head);
1854         spin_unlock(&swap_avail_lock);
1855         spin_lock(&p->lock);
1856         if (p->prio < 0) {
1857                 struct swap_info_struct *si = p;
1858
1859                 plist_for_each_entry_continue(si, &swap_active_head, list) {
1860                         si->prio++;
1861                         si->list.prio--;
1862                         si->avail_list.prio--;
1863                 }
1864                 least_priority++;
1865         }
1866         plist_del(&p->list, &swap_active_head);
1867         atomic_long_sub(p->pages, &nr_swap_pages);
1868         total_swap_pages -= p->pages;
1869         p->flags &= ~SWP_WRITEOK;
1870         spin_unlock(&p->lock);
1871         spin_unlock(&swap_lock);
1872
1873         set_current_oom_origin();
1874         err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
1875         clear_current_oom_origin();
1876
1877         if (err) {
1878                 /* re-insert swap space back into swap_list */
1879                 reinsert_swap_info(p);
1880                 goto out_dput;
1881         }
1882
1883         flush_work(&p->discard_work);
1884
1885         destroy_swap_extents(p);
1886         if (p->flags & SWP_CONTINUED)
1887                 free_swap_count_continuations(p);
1888
1889         mutex_lock(&swapon_mutex);
1890         spin_lock(&swap_lock);
1891         spin_lock(&p->lock);
1892         drain_mmlist();
1893
1894         /* wait for anyone still in scan_swap_map */
1895         p->highest_bit = 0;             /* cuts scans short */
1896         while (p->flags >= SWP_SCANNING) {
1897                 spin_unlock(&p->lock);
1898                 spin_unlock(&swap_lock);
1899                 schedule_timeout_uninterruptible(1);
1900                 spin_lock(&swap_lock);
1901                 spin_lock(&p->lock);
1902         }
1903
1904         swap_file = p->swap_file;
1905         old_block_size = p->old_block_size;
1906         p->swap_file = NULL;
1907         p->max = 0;
1908         swap_map = p->swap_map;
1909         p->swap_map = NULL;
1910         cluster_info = p->cluster_info;
1911         p->cluster_info = NULL;
1912         frontswap_map = frontswap_map_get(p);
1913         spin_unlock(&p->lock);
1914         spin_unlock(&swap_lock);
1915         frontswap_invalidate_area(p->type);
1916         frontswap_map_set(p, NULL);
1917         mutex_unlock(&swapon_mutex);
1918         free_percpu(p->percpu_cluster);
1919         p->percpu_cluster = NULL;
1920         vfree(swap_map);
1921         vfree(cluster_info);
1922         vfree(frontswap_map);
1923         /* Destroy swap account information */
1924         swap_cgroup_swapoff(p->type);
1925
1926         inode = mapping->host;
1927         if (S_ISBLK(inode->i_mode)) {
1928                 struct block_device *bdev = I_BDEV(inode);
1929                 set_blocksize(bdev, old_block_size);
1930                 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1931         } else {
1932                 mutex_lock(&inode->i_mutex);
1933                 inode->i_flags &= ~S_SWAPFILE;
1934                 mutex_unlock(&inode->i_mutex);
1935         }
1936         filp_close(swap_file, NULL);
1937
1938         /*
1939          * Clear the SWP_USED flag after all resources are freed so that swapon
1940          * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
1941          * not hold p->lock after we cleared its SWP_WRITEOK.
1942          */
1943         spin_lock(&swap_lock);
1944         p->flags = 0;
1945         spin_unlock(&swap_lock);
1946
1947         err = 0;
1948         atomic_inc(&proc_poll_event);
1949         wake_up_interruptible(&proc_poll_wait);
1950
1951 out_dput:
1952         filp_close(victim, NULL);
1953 out:
1954         putname(pathname);
1955         return err;
1956 }
1957
1958 #ifdef CONFIG_PROC_FS
1959 static unsigned swaps_poll(struct file *file, poll_table *wait)
1960 {
1961         struct seq_file *seq = file->private_data;
1962
1963         poll_wait(file, &proc_poll_wait, wait);
1964
1965         if (seq->poll_event != atomic_read(&proc_poll_event)) {
1966                 seq->poll_event = atomic_read(&proc_poll_event);
1967                 return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
1968         }
1969
1970         return POLLIN | POLLRDNORM;
1971 }
1972
1973 /* iterator */
1974 static void *swap_start(struct seq_file *swap, loff_t *pos)
1975 {
1976         struct swap_info_struct *si;
1977         int type;
1978         loff_t l = *pos;
1979
1980         mutex_lock(&swapon_mutex);
1981
1982         if (!l)
1983                 return SEQ_START_TOKEN;
1984
1985         for (type = 0; type < nr_swapfiles; type++) {
1986                 smp_rmb();      /* read nr_swapfiles before swap_info[type] */
1987                 si = swap_info[type];
1988                 if (!(si->flags & SWP_USED) || !si->swap_map)
1989                         continue;
1990                 if (!--l)
1991                         return si;
1992         }
1993
1994         return NULL;
1995 }
1996
1997 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1998 {
1999         struct swap_info_struct *si = v;
2000         int type;
2001
2002         if (v == SEQ_START_TOKEN)
2003                 type = 0;
2004         else
2005                 type = si->type + 1;
2006
2007         for (; type < nr_swapfiles; type++) {
2008                 smp_rmb();      /* read nr_swapfiles before swap_info[type] */
2009                 si = swap_info[type];
2010                 if (!(si->flags & SWP_USED) || !si->swap_map)
2011                         continue;
2012                 ++*pos;
2013                 return si;
2014         }
2015
2016         return NULL;
2017 }
2018
2019 static void swap_stop(struct seq_file *swap, void *v)
2020 {
2021         mutex_unlock(&swapon_mutex);
2022 }
2023
2024 static int swap_show(struct seq_file *swap, void *v)
2025 {
2026         struct swap_info_struct *si = v;
2027         struct file *file;
2028         int len;
2029
2030         if (si == SEQ_START_TOKEN) {
2031                 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2032                 return 0;
2033         }
2034
2035         file = si->swap_file;
2036         len = seq_path(swap, &file->f_path, " \t\n\\");
2037         seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
2038                         len < 40 ? 40 - len : 1, " ",
2039                         S_ISBLK(file_inode(file)->i_mode) ?
2040                                 "partition" : "file\t",
2041                         si->pages << (PAGE_SHIFT - 10),
2042                         si->inuse_pages << (PAGE_SHIFT - 10),
2043                         si->prio);
2044         return 0;
2045 }
2046
2047 static const struct seq_operations swaps_op = {
2048         .start =        swap_start,
2049         .next =         swap_next,
2050         .stop =         swap_stop,
2051         .show =         swap_show
2052 };
2053
2054 static int swaps_open(struct inode *inode, struct file *file)
2055 {
2056         struct seq_file *seq;
2057         int ret;
2058
2059         ret = seq_open(file, &swaps_op);
2060         if (ret)
2061                 return ret;
2062
2063         seq = file->private_data;
2064         seq->poll_event = atomic_read(&proc_poll_event);
2065         return 0;
2066 }
2067
2068 static const struct file_operations proc_swaps_operations = {
2069         .open           = swaps_open,
2070         .read           = seq_read,
2071         .llseek         = seq_lseek,
2072         .release        = seq_release,
2073         .poll           = swaps_poll,
2074 };
2075
2076 static int __init procswaps_init(void)
2077 {
2078         proc_create("swaps", 0, NULL, &proc_swaps_operations);
2079         return 0;
2080 }
2081 __initcall(procswaps_init);
2082 #endif /* CONFIG_PROC_FS */
2083
2084 #ifdef MAX_SWAPFILES_CHECK
2085 static int __init max_swapfiles_check(void)
2086 {
2087         MAX_SWAPFILES_CHECK();
2088         return 0;
2089 }
2090 late_initcall(max_swapfiles_check);
2091 #endif
2092
2093 static struct swap_info_struct *alloc_swap_info(void)
2094 {
2095         struct swap_info_struct *p;
2096         unsigned int type;
2097
2098         p = kzalloc(sizeof(*p), GFP_KERNEL);
2099         if (!p)
2100                 return ERR_PTR(-ENOMEM);
2101
2102         spin_lock(&swap_lock);
2103         for (type = 0; type < nr_swapfiles; type++) {
2104                 if (!(swap_info[type]->flags & SWP_USED))
2105                         break;
2106         }
2107         if (type >= MAX_SWAPFILES) {
2108                 spin_unlock(&swap_lock);
2109                 kfree(p);
2110                 return ERR_PTR(-EPERM);
2111         }
2112         if (type >= nr_swapfiles) {
2113                 p->type = type;
2114                 swap_info[type] = p;
2115                 /*
2116                  * Write swap_info[type] before nr_swapfiles, in case a
2117                  * racing procfs swap_start() or swap_next() is reading them.
2118                  * (We never shrink nr_swapfiles, we never free this entry.)
2119                  */
2120                 smp_wmb();
2121                 nr_swapfiles++;
2122         } else {
2123                 kfree(p);
2124                 p = swap_info[type];
2125                 /*
2126                  * Do not memset this entry: a racing procfs swap_next()
2127                  * would be relying on p->type to remain valid.
2128                  */
2129         }
2130         INIT_LIST_HEAD(&p->first_swap_extent.list);
2131         plist_node_init(&p->list, 0);
2132         plist_node_init(&p->avail_list, 0);
2133         p->flags = SWP_USED;
2134         spin_unlock(&swap_lock);
2135         spin_lock_init(&p->lock);
2136
2137         return p;
2138 }
2139
2140 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2141 {
2142         int error;
2143
2144         if (S_ISBLK(inode->i_mode)) {
2145                 p->bdev = bdgrab(I_BDEV(inode));
2146                 error = blkdev_get(p->bdev,
2147                                    FMODE_READ | FMODE_WRITE | FMODE_EXCL,
2148                                    sys_swapon);
2149                 if (error < 0) {
2150                         p->bdev = NULL;
2151                         return -EINVAL;
2152                 }
2153                 p->old_block_size = block_size(p->bdev);
2154                 error = set_blocksize(p->bdev, PAGE_SIZE);
2155                 if (error < 0)
2156                         return error;
2157                 p->flags |= SWP_BLKDEV;
2158         } else if (S_ISREG(inode->i_mode)) {
2159                 p->bdev = inode->i_sb->s_bdev;
2160                 mutex_lock(&inode->i_mutex);
2161                 if (IS_SWAPFILE(inode))
2162                         return -EBUSY;
2163         } else
2164                 return -EINVAL;
2165
2166         return 0;
2167 }
2168
2169 static unsigned long read_swap_header(struct swap_info_struct *p,
2170                                         union swap_header *swap_header,
2171                                         struct inode *inode)
2172 {
2173         int i;
2174         unsigned long maxpages;
2175         unsigned long swapfilepages;
2176         unsigned long last_page;
2177
2178         if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2179                 pr_err("Unable to find swap-space signature\n");
2180                 return 0;
2181         }
2182
2183         /* swap partition endianess hack... */
2184         if (swab32(swap_header->info.version) == 1) {
2185                 swab32s(&swap_header->info.version);
2186                 swab32s(&swap_header->info.last_page);
2187                 swab32s(&swap_header->info.nr_badpages);
2188                 for (i = 0; i < swap_header->info.nr_badpages; i++)
2189                         swab32s(&swap_header->info.badpages[i]);
2190         }
2191         /* Check the swap header's sub-version */
2192         if (swap_header->info.version != 1) {
2193                 pr_warn("Unable to handle swap header version %d\n",
2194                         swap_header->info.version);
2195                 return 0;
2196         }
2197
2198         p->lowest_bit  = 1;
2199         p->cluster_next = 1;
2200         p->cluster_nr = 0;
2201
2202         /*
2203          * Find out how many pages are allowed for a single swap
2204          * device. There are two limiting factors: 1) the number
2205          * of bits for the swap offset in the swp_entry_t type, and
2206          * 2) the number of bits in the swap pte as defined by the
2207          * different architectures. In order to find the
2208          * largest possible bit mask, a swap entry with swap type 0
2209          * and swap offset ~0UL is created, encoded to a swap pte,
2210          * decoded to a swp_entry_t again, and finally the swap
2211          * offset is extracted. This will mask all the bits from
2212          * the initial ~0UL mask that can't be encoded in either
2213          * the swp_entry_t or the architecture definition of a
2214          * swap pte.
2215          */
2216         maxpages = swp_offset(pte_to_swp_entry(
2217                         swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2218         last_page = swap_header->info.last_page;
2219         if (last_page > maxpages) {
2220                 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2221                         maxpages << (PAGE_SHIFT - 10),
2222                         last_page << (PAGE_SHIFT - 10));
2223         }
2224         if (maxpages > last_page) {
2225                 maxpages = last_page + 1;
2226                 /* p->max is an unsigned int: don't overflow it */
2227                 if ((unsigned int)maxpages == 0)
2228                         maxpages = UINT_MAX;
2229         }
2230         p->highest_bit = maxpages - 1;
2231
2232         if (!maxpages)
2233                 return 0;
2234         swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2235         if (swapfilepages && maxpages > swapfilepages) {
2236                 pr_warn("Swap area shorter than signature indicates\n");
2237                 return 0;
2238         }
2239         if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2240                 return 0;
2241         if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2242                 return 0;
2243
2244         return maxpages;
2245 }
2246
2247 static int setup_swap_map_and_extents(struct swap_info_struct *p,
2248                                         union swap_header *swap_header,
2249                                         unsigned char *swap_map,
2250                                         struct swap_cluster_info *cluster_info,
2251                                         unsigned long maxpages,
2252                                         sector_t *span)
2253 {
2254         int i;
2255         unsigned int nr_good_pages;
2256         int nr_extents;
2257         unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2258         unsigned long idx = p->cluster_next / SWAPFILE_CLUSTER;
2259
2260         nr_good_pages = maxpages - 1;   /* omit header page */
2261
2262         cluster_set_null(&p->free_cluster_head);
2263         cluster_set_null(&p->free_cluster_tail);
2264         cluster_set_null(&p->discard_cluster_head);
2265         cluster_set_null(&p->discard_cluster_tail);
2266
2267         for (i = 0; i < swap_header->info.nr_badpages; i++) {
2268                 unsigned int page_nr = swap_header->info.badpages[i];
2269                 if (page_nr == 0 || page_nr > swap_header->info.last_page)
2270                         return -EINVAL;
2271                 if (page_nr < maxpages) {
2272                         swap_map[page_nr] = SWAP_MAP_BAD;
2273                         nr_good_pages--;
2274                         /*
2275                          * Haven't marked the cluster free yet, no list
2276                          * operation involved
2277                          */
2278                         inc_cluster_info_page(p, cluster_info, page_nr);
2279                 }
2280         }
2281
2282         /* Haven't marked the cluster free yet, no list operation involved */
2283         for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
2284                 inc_cluster_info_page(p, cluster_info, i);
2285
2286         if (nr_good_pages) {
2287                 swap_map[0] = SWAP_MAP_BAD;
2288                 /*
2289                  * Not mark the cluster free yet, no list
2290                  * operation involved
2291                  */
2292                 inc_cluster_info_page(p, cluster_info, 0);
2293                 p->max = maxpages;
2294                 p->pages = nr_good_pages;
2295                 nr_extents = setup_swap_extents(p, span);
2296                 if (nr_extents < 0)
2297                         return nr_extents;
2298                 nr_good_pages = p->pages;
2299         }
2300         if (!nr_good_pages) {
2301                 pr_warn("Empty swap-file\n");
2302                 return -EINVAL;
2303         }
2304
2305         if (!cluster_info)
2306                 return nr_extents;
2307
2308         for (i = 0; i < nr_clusters; i++) {
2309                 if (!cluster_count(&cluster_info[idx])) {
2310                         cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
2311                         if (cluster_is_null(&p->free_cluster_head)) {
2312                                 cluster_set_next_flag(&p->free_cluster_head,
2313                                                                 idx, 0);
2314                                 cluster_set_next_flag(&p->free_cluster_tail,
2315                                                                 idx, 0);
2316                         } else {
2317                                 unsigned int tail;
2318
2319                                 tail = cluster_next(&p->free_cluster_tail);
2320                                 cluster_set_next(&cluster_info[tail], idx);
2321                                 cluster_set_next_flag(&p->free_cluster_tail,
2322                                                                 idx, 0);
2323                         }
2324                 }
2325                 idx++;
2326                 if (idx == nr_clusters)
2327                         idx = 0;
2328         }
2329         return nr_extents;
2330 }
2331
2332 /*
2333  * Helper to sys_swapon determining if a given swap
2334  * backing device queue supports DISCARD operations.
2335  */
2336 static bool swap_discardable(struct swap_info_struct *si)
2337 {
2338         struct request_queue *q = bdev_get_queue(si->bdev);
2339
2340         if (!q || !blk_queue_discard(q))
2341                 return false;
2342
2343         return true;
2344 }
2345
2346 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2347 {
2348         struct swap_info_struct *p;
2349         struct filename *name;
2350         struct file *swap_file = NULL;
2351         struct address_space *mapping;
2352         int i;
2353         int prio;
2354         int error;
2355         union swap_header *swap_header;
2356         int nr_extents;
2357         sector_t span;
2358         unsigned long maxpages;
2359         unsigned char *swap_map = NULL;
2360         struct swap_cluster_info *cluster_info = NULL;
2361         unsigned long *frontswap_map = NULL;
2362         struct page *page = NULL;
2363         struct inode *inode = NULL;
2364
2365         if (swap_flags & ~SWAP_FLAGS_VALID)
2366                 return -EINVAL;
2367
2368         if (!capable(CAP_SYS_ADMIN))
2369                 return -EPERM;
2370
2371         p = alloc_swap_info();
2372         if (IS_ERR(p))
2373                 return PTR_ERR(p);
2374
2375         INIT_WORK(&p->discard_work, swap_discard_work);
2376
2377         name = getname(specialfile);
2378         if (IS_ERR(name)) {
2379                 error = PTR_ERR(name);
2380                 name = NULL;
2381                 goto bad_swap;
2382         }
2383         swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
2384         if (IS_ERR(swap_file)) {
2385                 error = PTR_ERR(swap_file);
2386                 swap_file = NULL;
2387                 goto bad_swap;
2388         }
2389
2390         p->swap_file = swap_file;
2391         mapping = swap_file->f_mapping;
2392
2393         for (i = 0; i < nr_swapfiles; i++) {
2394                 struct swap_info_struct *q = swap_info[i];
2395
2396                 if (q == p || !q->swap_file)
2397                         continue;
2398                 if (mapping == q->swap_file->f_mapping) {
2399                         error = -EBUSY;
2400                         goto bad_swap;
2401                 }
2402         }
2403
2404         inode = mapping->host;
2405         /* If S_ISREG(inode->i_mode) will do mutex_lock(&inode->i_mutex); */
2406         error = claim_swapfile(p, inode);
2407         if (unlikely(error))
2408                 goto bad_swap;
2409
2410         /*
2411          * Read the swap header.
2412          */
2413         if (!mapping->a_ops->readpage) {
2414                 error = -EINVAL;
2415                 goto bad_swap;
2416         }
2417         page = read_mapping_page(mapping, 0, swap_file);
2418         if (IS_ERR(page)) {
2419                 error = PTR_ERR(page);
2420                 goto bad_swap;
2421         }
2422         swap_header = kmap(page);
2423
2424         maxpages = read_swap_header(p, swap_header, inode);
2425         if (unlikely(!maxpages)) {
2426                 error = -EINVAL;
2427                 goto bad_swap;
2428         }
2429
2430         /* OK, set up the swap map and apply the bad block list */
2431         swap_map = vzalloc(maxpages);
2432         if (!swap_map) {
2433                 error = -ENOMEM;
2434                 goto bad_swap;
2435         }
2436         if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
2437                 p->flags |= SWP_SOLIDSTATE;
2438                 /*
2439                  * select a random position to start with to help wear leveling
2440                  * SSD
2441                  */
2442                 p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
2443
2444                 cluster_info = vzalloc(DIV_ROUND_UP(maxpages,
2445                         SWAPFILE_CLUSTER) * sizeof(*cluster_info));
2446                 if (!cluster_info) {
2447                         error = -ENOMEM;
2448                         goto bad_swap;
2449                 }
2450                 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
2451                 if (!p->percpu_cluster) {
2452                         error = -ENOMEM;
2453                         goto bad_swap;
2454                 }
2455                 for_each_possible_cpu(i) {
2456                         struct percpu_cluster *cluster;
2457                         cluster = per_cpu_ptr(p->percpu_cluster, i);
2458                         cluster_set_null(&cluster->index);
2459                 }
2460         }
2461
2462         error = swap_cgroup_swapon(p->type, maxpages);
2463         if (error)
2464                 goto bad_swap;
2465
2466         nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
2467                 cluster_info, maxpages, &span);
2468         if (unlikely(nr_extents < 0)) {
2469                 error = nr_extents;
2470                 goto bad_swap;
2471         }
2472         /* frontswap enabled? set up bit-per-page map for frontswap */
2473         if (frontswap_enabled)
2474                 frontswap_map = vzalloc(BITS_TO_LONGS(maxpages) * sizeof(long));
2475
2476         if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
2477                 /*
2478                  * When discard is enabled for swap with no particular
2479                  * policy flagged, we set all swap discard flags here in
2480                  * order to sustain backward compatibility with older
2481                  * swapon(8) releases.
2482                  */
2483                 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
2484                              SWP_PAGE_DISCARD);
2485
2486                 /*
2487                  * By flagging sys_swapon, a sysadmin can tell us to
2488                  * either do single-time area discards only, or to just
2489                  * perform discards for released swap page-clusters.
2490                  * Now it's time to adjust the p->flags accordingly.
2491                  */
2492                 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
2493                         p->flags &= ~SWP_PAGE_DISCARD;
2494                 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
2495                         p->flags &= ~SWP_AREA_DISCARD;
2496
2497                 /* issue a swapon-time discard if it's still required */
2498                 if (p->flags & SWP_AREA_DISCARD) {
2499                         int err = discard_swap(p);
2500                         if (unlikely(err))
2501                                 pr_err("swapon: discard_swap(%p): %d\n",
2502                                         p, err);
2503                 }
2504         }
2505
2506         mutex_lock(&swapon_mutex);
2507         prio = -1;
2508         if (swap_flags & SWAP_FLAG_PREFER)
2509                 prio =
2510                   (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2511         enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
2512
2513         pr_info("Adding %uk swap on %s.  "
2514                         "Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
2515                 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
2516                 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
2517                 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
2518                 (p->flags & SWP_DISCARDABLE) ? "D" : "",
2519                 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
2520                 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
2521                 (frontswap_map) ? "FS" : "");
2522
2523         mutex_unlock(&swapon_mutex);
2524         atomic_inc(&proc_poll_event);
2525         wake_up_interruptible(&proc_poll_wait);
2526
2527         if (S_ISREG(inode->i_mode))
2528                 inode->i_flags |= S_SWAPFILE;
2529         error = 0;
2530         goto out;
2531 bad_swap:
2532         free_percpu(p->percpu_cluster);
2533         p->percpu_cluster = NULL;
2534         if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
2535                 set_blocksize(p->bdev, p->old_block_size);
2536                 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2537         }
2538         destroy_swap_extents(p);
2539         swap_cgroup_swapoff(p->type);
2540         spin_lock(&swap_lock);
2541         p->swap_file = NULL;
2542         p->flags = 0;
2543         spin_unlock(&swap_lock);
2544         vfree(swap_map);
2545         vfree(cluster_info);
2546         if (swap_file) {
2547                 if (inode && S_ISREG(inode->i_mode)) {
2548                         mutex_unlock(&inode->i_mutex);
2549                         inode = NULL;
2550                 }
2551                 filp_close(swap_file, NULL);
2552         }
2553 out:
2554         if (page && !IS_ERR(page)) {
2555                 kunmap(page);
2556                 page_cache_release(page);
2557         }
2558         if (name)
2559                 putname(name);
2560         if (inode && S_ISREG(inode->i_mode))
2561                 mutex_unlock(&inode->i_mutex);
2562         return error;
2563 }
2564
2565 void si_swapinfo(struct sysinfo *val)
2566 {
2567         unsigned int type;
2568         unsigned long nr_to_be_unused = 0;
2569
2570         spin_lock(&swap_lock);
2571         for (type = 0; type < nr_swapfiles; type++) {
2572                 struct swap_info_struct *si = swap_info[type];
2573
2574                 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2575                         nr_to_be_unused += si->inuse_pages;
2576         }
2577         val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
2578         val->totalswap = total_swap_pages + nr_to_be_unused;
2579         spin_unlock(&swap_lock);
2580 }
2581
2582 /*
2583  * Verify that a swap entry is valid and increment its swap map count.
2584  *
2585  * Returns error code in following case.
2586  * - success -> 0
2587  * - swp_entry is invalid -> EINVAL
2588  * - swp_entry is migration entry -> EINVAL
2589  * - swap-cache reference is requested but there is already one. -> EEXIST
2590  * - swap-cache reference is requested but the entry is not used. -> ENOENT
2591  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
2592  */
2593 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
2594 {
2595         struct swap_info_struct *p;
2596         unsigned long offset, type;
2597         unsigned char count;
2598         unsigned char has_cache;
2599         int err = -EINVAL;
2600
2601         if (non_swap_entry(entry))
2602                 goto out;
2603
2604         type = swp_type(entry);
2605         if (type >= nr_swapfiles)
2606                 goto bad_file;
2607         p = swap_info[type];
2608         offset = swp_offset(entry);
2609
2610         spin_lock(&p->lock);
2611         if (unlikely(offset >= p->max))
2612                 goto unlock_out;
2613
2614         count = p->swap_map[offset];
2615
2616         /*
2617          * swapin_readahead() doesn't check if a swap entry is valid, so the
2618          * swap entry could be SWAP_MAP_BAD. Check here with lock held.
2619          */
2620         if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
2621                 err = -ENOENT;
2622                 goto unlock_out;
2623         }
2624
2625         has_cache = count & SWAP_HAS_CACHE;
2626         count &= ~SWAP_HAS_CACHE;
2627         err = 0;
2628
2629         if (usage == SWAP_HAS_CACHE) {
2630
2631                 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
2632                 if (!has_cache && count)
2633                         has_cache = SWAP_HAS_CACHE;
2634                 else if (has_cache)             /* someone else added cache */
2635                         err = -EEXIST;
2636                 else                            /* no users remaining */
2637                         err = -ENOENT;
2638
2639         } else if (count || has_cache) {
2640
2641                 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
2642                         count += usage;
2643                 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
2644                         err = -EINVAL;
2645                 else if (swap_count_continued(p, offset, count))
2646                         count = COUNT_CONTINUED;
2647                 else
2648                         err = -ENOMEM;
2649         } else
2650                 err = -ENOENT;                  /* unused swap entry */
2651
2652         p->swap_map[offset] = count | has_cache;
2653
2654 unlock_out:
2655         spin_unlock(&p->lock);
2656 out:
2657         return err;
2658
2659 bad_file:
2660         pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val);
2661         goto out;
2662 }
2663
2664 /*
2665  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
2666  * (in which case its reference count is never incremented).
2667  */
2668 void swap_shmem_alloc(swp_entry_t entry)
2669 {
2670         __swap_duplicate(entry, SWAP_MAP_SHMEM);
2671 }
2672
2673 /*
2674  * Increase reference count of swap entry by 1.
2675  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
2676  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
2677  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
2678  * might occur if a page table entry has got corrupted.
2679  */
2680 int swap_duplicate(swp_entry_t entry)
2681 {
2682         int err = 0;
2683
2684         while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
2685                 err = add_swap_count_continuation(entry, GFP_ATOMIC);
2686         return err;
2687 }
2688
2689 /*
2690  * @entry: swap entry for which we allocate swap cache.
2691  *
2692  * Called when allocating swap cache for existing swap entry,
2693  * This can return error codes. Returns 0 at success.
2694  * -EBUSY means there is a swap cache.
2695  * Note: return code is different from swap_duplicate().
2696  */
2697 int swapcache_prepare(swp_entry_t entry)
2698 {
2699         return __swap_duplicate(entry, SWAP_HAS_CACHE);
2700 }
2701
2702 struct swap_info_struct *page_swap_info(struct page *page)
2703 {
2704         swp_entry_t swap = { .val = page_private(page) };
2705         BUG_ON(!PageSwapCache(page));
2706         return swap_info[swp_type(swap)];
2707 }
2708
2709 /*
2710  * out-of-line __page_file_ methods to avoid include hell.
2711  */
2712 struct address_space *__page_file_mapping(struct page *page)
2713 {
2714         VM_BUG_ON_PAGE(!PageSwapCache(page), page);
2715         return page_swap_info(page)->swap_file->f_mapping;
2716 }
2717 EXPORT_SYMBOL_GPL(__page_file_mapping);
2718
2719 pgoff_t __page_file_index(struct page *page)
2720 {
2721         swp_entry_t swap = { .val = page_private(page) };
2722         VM_BUG_ON_PAGE(!PageSwapCache(page), page);
2723         return swp_offset(swap);
2724 }
2725 EXPORT_SYMBOL_GPL(__page_file_index);
2726
2727 /*
2728  * add_swap_count_continuation - called when a swap count is duplicated
2729  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
2730  * page of the original vmalloc'ed swap_map, to hold the continuation count
2731  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
2732  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
2733  *
2734  * These continuation pages are seldom referenced: the common paths all work
2735  * on the original swap_map, only referring to a continuation page when the
2736  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
2737  *
2738  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
2739  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
2740  * can be called after dropping locks.
2741  */
2742 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
2743 {
2744         struct swap_info_struct *si;
2745         struct page *head;
2746         struct page *page;
2747         struct page *list_page;
2748         pgoff_t offset;
2749         unsigned char count;
2750
2751         /*
2752          * When debugging, it's easier to use __GFP_ZERO here; but it's better
2753          * for latency not to zero a page while GFP_ATOMIC and holding locks.
2754          */
2755         page = alloc_page(gfp_mask | __GFP_HIGHMEM);
2756
2757         si = swap_info_get(entry);
2758         if (!si) {
2759                 /*
2760                  * An acceptable race has occurred since the failing
2761                  * __swap_duplicate(): the swap entry has been freed,
2762                  * perhaps even the whole swap_map cleared for swapoff.
2763                  */
2764                 goto outer;
2765         }
2766
2767         offset = swp_offset(entry);
2768         count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
2769
2770         if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
2771                 /*
2772                  * The higher the swap count, the more likely it is that tasks
2773                  * will race to add swap count continuation: we need to avoid
2774                  * over-provisioning.
2775                  */
2776                 goto out;
2777         }
2778
2779         if (!page) {
2780                 spin_unlock(&si->lock);
2781                 return -ENOMEM;
2782         }
2783
2784         /*
2785          * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2786          * no architecture is using highmem pages for kernel page tables: so it
2787          * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
2788          */
2789         head = vmalloc_to_page(si->swap_map + offset);
2790         offset &= ~PAGE_MASK;
2791
2792         /*
2793          * Page allocation does not initialize the page's lru field,
2794          * but it does always reset its private field.
2795          */
2796         if (!page_private(head)) {
2797                 BUG_ON(count & COUNT_CONTINUED);
2798                 INIT_LIST_HEAD(&head->lru);
2799                 set_page_private(head, SWP_CONTINUED);
2800                 si->flags |= SWP_CONTINUED;
2801         }
2802
2803         list_for_each_entry(list_page, &head->lru, lru) {
2804                 unsigned char *map;
2805
2806                 /*
2807                  * If the previous map said no continuation, but we've found
2808                  * a continuation page, free our allocation and use this one.
2809                  */
2810                 if (!(count & COUNT_CONTINUED))
2811                         goto out;
2812
2813                 map = kmap_atomic(list_page) + offset;
2814                 count = *map;
2815                 kunmap_atomic(map);
2816
2817                 /*
2818                  * If this continuation count now has some space in it,
2819                  * free our allocation and use this one.
2820                  */
2821                 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2822                         goto out;
2823         }
2824
2825         list_add_tail(&page->lru, &head->lru);
2826         page = NULL;                    /* now it's attached, don't free it */
2827 out:
2828         spin_unlock(&si->lock);
2829 outer:
2830         if (page)
2831                 __free_page(page);
2832         return 0;
2833 }
2834
2835 /*
2836  * swap_count_continued - when the original swap_map count is incremented
2837  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
2838  * into, carry if so, or else fail until a new continuation page is allocated;
2839  * when the original swap_map count is decremented from 0 with continuation,
2840  * borrow from the continuation and report whether it still holds more.
2841  * Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
2842  */
2843 static bool swap_count_continued(struct swap_info_struct *si,
2844                                  pgoff_t offset, unsigned char count)
2845 {
2846         struct page *head;
2847         struct page *page;
2848         unsigned char *map;
2849
2850         head = vmalloc_to_page(si->swap_map + offset);
2851         if (page_private(head) != SWP_CONTINUED) {
2852                 BUG_ON(count & COUNT_CONTINUED);
2853                 return false;           /* need to add count continuation */
2854         }
2855
2856         offset &= ~PAGE_MASK;
2857         page = list_entry(head->lru.next, struct page, lru);
2858         map = kmap_atomic(page) + offset;
2859
2860         if (count == SWAP_MAP_MAX)      /* initial increment from swap_map */
2861                 goto init_map;          /* jump over SWAP_CONT_MAX checks */
2862
2863         if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
2864                 /*
2865                  * Think of how you add 1 to 999
2866                  */
2867                 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
2868                         kunmap_atomic(map);
2869                         page = list_entry(page->lru.next, struct page, lru);
2870                         BUG_ON(page == head);
2871                         map = kmap_atomic(page) + offset;
2872                 }
2873                 if (*map == SWAP_CONT_MAX) {
2874                         kunmap_atomic(map);
2875                         page = list_entry(page->lru.next, struct page, lru);
2876                         if (page == head)
2877                                 return false;   /* add count continuation */
2878                         map = kmap_atomic(page) + offset;
2879 init_map:               *map = 0;               /* we didn't zero the page */
2880                 }
2881                 *map += 1;
2882                 kunmap_atomic(map);
2883                 page = list_entry(page->lru.prev, struct page, lru);
2884                 while (page != head) {
2885                         map = kmap_atomic(page) + offset;
2886                         *map = COUNT_CONTINUED;
2887                         kunmap_atomic(map);
2888                         page = list_entry(page->lru.prev, struct page, lru);
2889                 }
2890                 return true;                    /* incremented */
2891
2892         } else {                                /* decrementing */
2893                 /*
2894                  * Think of how you subtract 1 from 1000
2895                  */
2896                 BUG_ON(count != COUNT_CONTINUED);
2897                 while (*map == COUNT_CONTINUED) {
2898                         kunmap_atomic(map);
2899                         page = list_entry(page->lru.next, struct page, lru);
2900                         BUG_ON(page == head);
2901                         map = kmap_atomic(page) + offset;
2902                 }
2903                 BUG_ON(*map == 0);
2904                 *map -= 1;
2905                 if (*map == 0)
2906                         count = 0;
2907                 kunmap_atomic(map);
2908                 page = list_entry(page->lru.prev, struct page, lru);
2909                 while (page != head) {
2910                         map = kmap_atomic(page) + offset;
2911                         *map = SWAP_CONT_MAX | count;
2912                         count = COUNT_CONTINUED;
2913                         kunmap_atomic(map);
2914                         page = list_entry(page->lru.prev, struct page, lru);
2915                 }
2916                 return count == COUNT_CONTINUED;
2917         }
2918 }
2919
2920 /*
2921  * free_swap_count_continuations - swapoff free all the continuation pages
2922  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
2923  */
2924 static void free_swap_count_continuations(struct swap_info_struct *si)
2925 {
2926         pgoff_t offset;
2927
2928         for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
2929                 struct page *head;
2930                 head = vmalloc_to_page(si->swap_map + offset);
2931                 if (page_private(head)) {
2932                         struct list_head *this, *next;
2933                         list_for_each_safe(this, next, &head->lru) {
2934                                 struct page *page;
2935                                 page = list_entry(this, struct page, lru);
2936                                 list_del(this);
2937                                 __free_page(page);
2938                         }
2939                 }
2940         }
2941 }