]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - mm/swapfile.c
dm: optimize dm_mq_queue_rq()
[karo-tx-linux.git] / mm / swapfile.c
1 /*
2  *  linux/mm/swapfile.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *  Swap reorganised 29.12.95, Stephen Tweedie
6  */
7
8 #include <linux/mm.h>
9 #include <linux/hugetlb.h>
10 #include <linux/mman.h>
11 #include <linux/slab.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/shmem_fs.h>
18 #include <linux/blkdev.h>
19 #include <linux/random.h>
20 #include <linux/writeback.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/init.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/security.h>
27 #include <linux/backing-dev.h>
28 #include <linux/mutex.h>
29 #include <linux/capability.h>
30 #include <linux/syscalls.h>
31 #include <linux/memcontrol.h>
32 #include <linux/poll.h>
33 #include <linux/oom.h>
34 #include <linux/frontswap.h>
35 #include <linux/swapfile.h>
36 #include <linux/export.h>
37
38 #include <asm/pgtable.h>
39 #include <asm/tlbflush.h>
40 #include <linux/swapops.h>
41 #include <linux/swap_cgroup.h>
42
43 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
44                                  unsigned char);
45 static void free_swap_count_continuations(struct swap_info_struct *);
46 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
47
48 DEFINE_SPINLOCK(swap_lock);
49 static unsigned int nr_swapfiles;
50 atomic_long_t nr_swap_pages;
51 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
52 long total_swap_pages;
53 static int least_priority;
54
55 static const char Bad_file[] = "Bad swap file entry ";
56 static const char Unused_file[] = "Unused swap file entry ";
57 static const char Bad_offset[] = "Bad swap offset entry ";
58 static const char Unused_offset[] = "Unused swap offset entry ";
59
60 /*
61  * all active swap_info_structs
62  * protected with swap_lock, and ordered by priority.
63  */
64 PLIST_HEAD(swap_active_head);
65
66 /*
67  * all available (active, not full) swap_info_structs
68  * protected with swap_avail_lock, ordered by priority.
69  * This is used by get_swap_page() instead of swap_active_head
70  * because swap_active_head includes all swap_info_structs,
71  * but get_swap_page() doesn't need to look at full ones.
72  * This uses its own lock instead of swap_lock because when a
73  * swap_info_struct changes between not-full/full, it needs to
74  * add/remove itself to/from this list, but the swap_info_struct->lock
75  * is held and the locking order requires swap_lock to be taken
76  * before any swap_info_struct->lock.
77  */
78 static PLIST_HEAD(swap_avail_head);
79 static DEFINE_SPINLOCK(swap_avail_lock);
80
81 struct swap_info_struct *swap_info[MAX_SWAPFILES];
82
83 static DEFINE_MUTEX(swapon_mutex);
84
85 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
86 /* Activity counter to indicate that a swapon or swapoff has occurred */
87 static atomic_t proc_poll_event = ATOMIC_INIT(0);
88
89 static inline unsigned char swap_count(unsigned char ent)
90 {
91         return ent & ~SWAP_HAS_CACHE;   /* may include SWAP_HAS_CONT flag */
92 }
93
94 /* returns 1 if swap entry is freed */
95 static int
96 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
97 {
98         swp_entry_t entry = swp_entry(si->type, offset);
99         struct page *page;
100         int ret = 0;
101
102         page = find_get_page(swap_address_space(entry), entry.val);
103         if (!page)
104                 return 0;
105         /*
106          * This function is called from scan_swap_map() and it's called
107          * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
108          * We have to use trylock for avoiding deadlock. This is a special
109          * case and you should use try_to_free_swap() with explicit lock_page()
110          * in usual operations.
111          */
112         if (trylock_page(page)) {
113                 ret = try_to_free_swap(page);
114                 unlock_page(page);
115         }
116         page_cache_release(page);
117         return ret;
118 }
119
120 /*
121  * swapon tell device that all the old swap contents can be discarded,
122  * to allow the swap device to optimize its wear-levelling.
123  */
124 static int discard_swap(struct swap_info_struct *si)
125 {
126         struct swap_extent *se;
127         sector_t start_block;
128         sector_t nr_blocks;
129         int err = 0;
130
131         /* Do not discard the swap header page! */
132         se = &si->first_swap_extent;
133         start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
134         nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
135         if (nr_blocks) {
136                 err = blkdev_issue_discard(si->bdev, start_block,
137                                 nr_blocks, GFP_KERNEL, 0);
138                 if (err)
139                         return err;
140                 cond_resched();
141         }
142
143         list_for_each_entry(se, &si->first_swap_extent.list, list) {
144                 start_block = se->start_block << (PAGE_SHIFT - 9);
145                 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
146
147                 err = blkdev_issue_discard(si->bdev, start_block,
148                                 nr_blocks, GFP_KERNEL, 0);
149                 if (err)
150                         break;
151
152                 cond_resched();
153         }
154         return err;             /* That will often be -EOPNOTSUPP */
155 }
156
157 /*
158  * swap allocation tell device that a cluster of swap can now be discarded,
159  * to allow the swap device to optimize its wear-levelling.
160  */
161 static void discard_swap_cluster(struct swap_info_struct *si,
162                                  pgoff_t start_page, pgoff_t nr_pages)
163 {
164         struct swap_extent *se = si->curr_swap_extent;
165         int found_extent = 0;
166
167         while (nr_pages) {
168                 if (se->start_page <= start_page &&
169                     start_page < se->start_page + se->nr_pages) {
170                         pgoff_t offset = start_page - se->start_page;
171                         sector_t start_block = se->start_block + offset;
172                         sector_t nr_blocks = se->nr_pages - offset;
173
174                         if (nr_blocks > nr_pages)
175                                 nr_blocks = nr_pages;
176                         start_page += nr_blocks;
177                         nr_pages -= nr_blocks;
178
179                         if (!found_extent++)
180                                 si->curr_swap_extent = se;
181
182                         start_block <<= PAGE_SHIFT - 9;
183                         nr_blocks <<= PAGE_SHIFT - 9;
184                         if (blkdev_issue_discard(si->bdev, start_block,
185                                     nr_blocks, GFP_NOIO, 0))
186                                 break;
187                 }
188
189                 se = list_next_entry(se, list);
190         }
191 }
192
193 #define SWAPFILE_CLUSTER        256
194 #define LATENCY_LIMIT           256
195
196 static inline void cluster_set_flag(struct swap_cluster_info *info,
197         unsigned int flag)
198 {
199         info->flags = flag;
200 }
201
202 static inline unsigned int cluster_count(struct swap_cluster_info *info)
203 {
204         return info->data;
205 }
206
207 static inline void cluster_set_count(struct swap_cluster_info *info,
208                                      unsigned int c)
209 {
210         info->data = c;
211 }
212
213 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
214                                          unsigned int c, unsigned int f)
215 {
216         info->flags = f;
217         info->data = c;
218 }
219
220 static inline unsigned int cluster_next(struct swap_cluster_info *info)
221 {
222         return info->data;
223 }
224
225 static inline void cluster_set_next(struct swap_cluster_info *info,
226                                     unsigned int n)
227 {
228         info->data = n;
229 }
230
231 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
232                                          unsigned int n, unsigned int f)
233 {
234         info->flags = f;
235         info->data = n;
236 }
237
238 static inline bool cluster_is_free(struct swap_cluster_info *info)
239 {
240         return info->flags & CLUSTER_FLAG_FREE;
241 }
242
243 static inline bool cluster_is_null(struct swap_cluster_info *info)
244 {
245         return info->flags & CLUSTER_FLAG_NEXT_NULL;
246 }
247
248 static inline void cluster_set_null(struct swap_cluster_info *info)
249 {
250         info->flags = CLUSTER_FLAG_NEXT_NULL;
251         info->data = 0;
252 }
253
254 /* Add a cluster to discard list and schedule it to do discard */
255 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
256                 unsigned int idx)
257 {
258         /*
259          * If scan_swap_map() can't find a free cluster, it will check
260          * si->swap_map directly. To make sure the discarding cluster isn't
261          * taken by scan_swap_map(), mark the swap entries bad (occupied). It
262          * will be cleared after discard
263          */
264         memset(si->swap_map + idx * SWAPFILE_CLUSTER,
265                         SWAP_MAP_BAD, SWAPFILE_CLUSTER);
266
267         if (cluster_is_null(&si->discard_cluster_head)) {
268                 cluster_set_next_flag(&si->discard_cluster_head,
269                                                 idx, 0);
270                 cluster_set_next_flag(&si->discard_cluster_tail,
271                                                 idx, 0);
272         } else {
273                 unsigned int tail = cluster_next(&si->discard_cluster_tail);
274                 cluster_set_next(&si->cluster_info[tail], idx);
275                 cluster_set_next_flag(&si->discard_cluster_tail,
276                                                 idx, 0);
277         }
278
279         schedule_work(&si->discard_work);
280 }
281
282 /*
283  * Doing discard actually. After a cluster discard is finished, the cluster
284  * will be added to free cluster list. caller should hold si->lock.
285 */
286 static void swap_do_scheduled_discard(struct swap_info_struct *si)
287 {
288         struct swap_cluster_info *info;
289         unsigned int idx;
290
291         info = si->cluster_info;
292
293         while (!cluster_is_null(&si->discard_cluster_head)) {
294                 idx = cluster_next(&si->discard_cluster_head);
295
296                 cluster_set_next_flag(&si->discard_cluster_head,
297                                                 cluster_next(&info[idx]), 0);
298                 if (cluster_next(&si->discard_cluster_tail) == idx) {
299                         cluster_set_null(&si->discard_cluster_head);
300                         cluster_set_null(&si->discard_cluster_tail);
301                 }
302                 spin_unlock(&si->lock);
303
304                 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
305                                 SWAPFILE_CLUSTER);
306
307                 spin_lock(&si->lock);
308                 cluster_set_flag(&info[idx], CLUSTER_FLAG_FREE);
309                 if (cluster_is_null(&si->free_cluster_head)) {
310                         cluster_set_next_flag(&si->free_cluster_head,
311                                                 idx, 0);
312                         cluster_set_next_flag(&si->free_cluster_tail,
313                                                 idx, 0);
314                 } else {
315                         unsigned int tail;
316
317                         tail = cluster_next(&si->free_cluster_tail);
318                         cluster_set_next(&info[tail], idx);
319                         cluster_set_next_flag(&si->free_cluster_tail,
320                                                 idx, 0);
321                 }
322                 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
323                                 0, SWAPFILE_CLUSTER);
324         }
325 }
326
327 static void swap_discard_work(struct work_struct *work)
328 {
329         struct swap_info_struct *si;
330
331         si = container_of(work, struct swap_info_struct, discard_work);
332
333         spin_lock(&si->lock);
334         swap_do_scheduled_discard(si);
335         spin_unlock(&si->lock);
336 }
337
338 /*
339  * The cluster corresponding to page_nr will be used. The cluster will be
340  * removed from free cluster list and its usage counter will be increased.
341  */
342 static void inc_cluster_info_page(struct swap_info_struct *p,
343         struct swap_cluster_info *cluster_info, unsigned long page_nr)
344 {
345         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
346
347         if (!cluster_info)
348                 return;
349         if (cluster_is_free(&cluster_info[idx])) {
350                 VM_BUG_ON(cluster_next(&p->free_cluster_head) != idx);
351                 cluster_set_next_flag(&p->free_cluster_head,
352                         cluster_next(&cluster_info[idx]), 0);
353                 if (cluster_next(&p->free_cluster_tail) == idx) {
354                         cluster_set_null(&p->free_cluster_tail);
355                         cluster_set_null(&p->free_cluster_head);
356                 }
357                 cluster_set_count_flag(&cluster_info[idx], 0, 0);
358         }
359
360         VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
361         cluster_set_count(&cluster_info[idx],
362                 cluster_count(&cluster_info[idx]) + 1);
363 }
364
365 /*
366  * The cluster corresponding to page_nr decreases one usage. If the usage
367  * counter becomes 0, which means no page in the cluster is in using, we can
368  * optionally discard the cluster and add it to free cluster list.
369  */
370 static void dec_cluster_info_page(struct swap_info_struct *p,
371         struct swap_cluster_info *cluster_info, unsigned long page_nr)
372 {
373         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
374
375         if (!cluster_info)
376                 return;
377
378         VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
379         cluster_set_count(&cluster_info[idx],
380                 cluster_count(&cluster_info[idx]) - 1);
381
382         if (cluster_count(&cluster_info[idx]) == 0) {
383                 /*
384                  * If the swap is discardable, prepare discard the cluster
385                  * instead of free it immediately. The cluster will be freed
386                  * after discard.
387                  */
388                 if ((p->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
389                                  (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
390                         swap_cluster_schedule_discard(p, idx);
391                         return;
392                 }
393
394                 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
395                 if (cluster_is_null(&p->free_cluster_head)) {
396                         cluster_set_next_flag(&p->free_cluster_head, idx, 0);
397                         cluster_set_next_flag(&p->free_cluster_tail, idx, 0);
398                 } else {
399                         unsigned int tail = cluster_next(&p->free_cluster_tail);
400                         cluster_set_next(&cluster_info[tail], idx);
401                         cluster_set_next_flag(&p->free_cluster_tail, idx, 0);
402                 }
403         }
404 }
405
406 /*
407  * It's possible scan_swap_map() uses a free cluster in the middle of free
408  * cluster list. Avoiding such abuse to avoid list corruption.
409  */
410 static bool
411 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
412         unsigned long offset)
413 {
414         struct percpu_cluster *percpu_cluster;
415         bool conflict;
416
417         offset /= SWAPFILE_CLUSTER;
418         conflict = !cluster_is_null(&si->free_cluster_head) &&
419                 offset != cluster_next(&si->free_cluster_head) &&
420                 cluster_is_free(&si->cluster_info[offset]);
421
422         if (!conflict)
423                 return false;
424
425         percpu_cluster = this_cpu_ptr(si->percpu_cluster);
426         cluster_set_null(&percpu_cluster->index);
427         return true;
428 }
429
430 /*
431  * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
432  * might involve allocating a new cluster for current CPU too.
433  */
434 static void scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
435         unsigned long *offset, unsigned long *scan_base)
436 {
437         struct percpu_cluster *cluster;
438         bool found_free;
439         unsigned long tmp;
440
441 new_cluster:
442         cluster = this_cpu_ptr(si->percpu_cluster);
443         if (cluster_is_null(&cluster->index)) {
444                 if (!cluster_is_null(&si->free_cluster_head)) {
445                         cluster->index = si->free_cluster_head;
446                         cluster->next = cluster_next(&cluster->index) *
447                                         SWAPFILE_CLUSTER;
448                 } else if (!cluster_is_null(&si->discard_cluster_head)) {
449                         /*
450                          * we don't have free cluster but have some clusters in
451                          * discarding, do discard now and reclaim them
452                          */
453                         swap_do_scheduled_discard(si);
454                         *scan_base = *offset = si->cluster_next;
455                         goto new_cluster;
456                 } else
457                         return;
458         }
459
460         found_free = false;
461
462         /*
463          * Other CPUs can use our cluster if they can't find a free cluster,
464          * check if there is still free entry in the cluster
465          */
466         tmp = cluster->next;
467         while (tmp < si->max && tmp < (cluster_next(&cluster->index) + 1) *
468                SWAPFILE_CLUSTER) {
469                 if (!si->swap_map[tmp]) {
470                         found_free = true;
471                         break;
472                 }
473                 tmp++;
474         }
475         if (!found_free) {
476                 cluster_set_null(&cluster->index);
477                 goto new_cluster;
478         }
479         cluster->next = tmp + 1;
480         *offset = tmp;
481         *scan_base = tmp;
482 }
483
484 static unsigned long scan_swap_map(struct swap_info_struct *si,
485                                    unsigned char usage)
486 {
487         unsigned long offset;
488         unsigned long scan_base;
489         unsigned long last_in_cluster = 0;
490         int latency_ration = LATENCY_LIMIT;
491
492         /*
493          * We try to cluster swap pages by allocating them sequentially
494          * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
495          * way, however, we resort to first-free allocation, starting
496          * a new cluster.  This prevents us from scattering swap pages
497          * all over the entire swap partition, so that we reduce
498          * overall disk seek times between swap pages.  -- sct
499          * But we do now try to find an empty cluster.  -Andrea
500          * And we let swap pages go all over an SSD partition.  Hugh
501          */
502
503         si->flags += SWP_SCANNING;
504         scan_base = offset = si->cluster_next;
505
506         /* SSD algorithm */
507         if (si->cluster_info) {
508                 scan_swap_map_try_ssd_cluster(si, &offset, &scan_base);
509                 goto checks;
510         }
511
512         if (unlikely(!si->cluster_nr--)) {
513                 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
514                         si->cluster_nr = SWAPFILE_CLUSTER - 1;
515                         goto checks;
516                 }
517
518                 spin_unlock(&si->lock);
519
520                 /*
521                  * If seek is expensive, start searching for new cluster from
522                  * start of partition, to minimize the span of allocated swap.
523                  * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
524                  * case, just handled by scan_swap_map_try_ssd_cluster() above.
525                  */
526                 scan_base = offset = si->lowest_bit;
527                 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
528
529                 /* Locate the first empty (unaligned) cluster */
530                 for (; last_in_cluster <= si->highest_bit; offset++) {
531                         if (si->swap_map[offset])
532                                 last_in_cluster = offset + SWAPFILE_CLUSTER;
533                         else if (offset == last_in_cluster) {
534                                 spin_lock(&si->lock);
535                                 offset -= SWAPFILE_CLUSTER - 1;
536                                 si->cluster_next = offset;
537                                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
538                                 goto checks;
539                         }
540                         if (unlikely(--latency_ration < 0)) {
541                                 cond_resched();
542                                 latency_ration = LATENCY_LIMIT;
543                         }
544                 }
545
546                 offset = scan_base;
547                 spin_lock(&si->lock);
548                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
549         }
550
551 checks:
552         if (si->cluster_info) {
553                 while (scan_swap_map_ssd_cluster_conflict(si, offset))
554                         scan_swap_map_try_ssd_cluster(si, &offset, &scan_base);
555         }
556         if (!(si->flags & SWP_WRITEOK))
557                 goto no_page;
558         if (!si->highest_bit)
559                 goto no_page;
560         if (offset > si->highest_bit)
561                 scan_base = offset = si->lowest_bit;
562
563         /* reuse swap entry of cache-only swap if not busy. */
564         if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
565                 int swap_was_freed;
566                 spin_unlock(&si->lock);
567                 swap_was_freed = __try_to_reclaim_swap(si, offset);
568                 spin_lock(&si->lock);
569                 /* entry was freed successfully, try to use this again */
570                 if (swap_was_freed)
571                         goto checks;
572                 goto scan; /* check next one */
573         }
574
575         if (si->swap_map[offset])
576                 goto scan;
577
578         if (offset == si->lowest_bit)
579                 si->lowest_bit++;
580         if (offset == si->highest_bit)
581                 si->highest_bit--;
582         si->inuse_pages++;
583         if (si->inuse_pages == si->pages) {
584                 si->lowest_bit = si->max;
585                 si->highest_bit = 0;
586                 spin_lock(&swap_avail_lock);
587                 plist_del(&si->avail_list, &swap_avail_head);
588                 spin_unlock(&swap_avail_lock);
589         }
590         si->swap_map[offset] = usage;
591         inc_cluster_info_page(si, si->cluster_info, offset);
592         si->cluster_next = offset + 1;
593         si->flags -= SWP_SCANNING;
594
595         return offset;
596
597 scan:
598         spin_unlock(&si->lock);
599         while (++offset <= si->highest_bit) {
600                 if (!si->swap_map[offset]) {
601                         spin_lock(&si->lock);
602                         goto checks;
603                 }
604                 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
605                         spin_lock(&si->lock);
606                         goto checks;
607                 }
608                 if (unlikely(--latency_ration < 0)) {
609                         cond_resched();
610                         latency_ration = LATENCY_LIMIT;
611                 }
612         }
613         offset = si->lowest_bit;
614         while (offset < scan_base) {
615                 if (!si->swap_map[offset]) {
616                         spin_lock(&si->lock);
617                         goto checks;
618                 }
619                 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
620                         spin_lock(&si->lock);
621                         goto checks;
622                 }
623                 if (unlikely(--latency_ration < 0)) {
624                         cond_resched();
625                         latency_ration = LATENCY_LIMIT;
626                 }
627                 offset++;
628         }
629         spin_lock(&si->lock);
630
631 no_page:
632         si->flags -= SWP_SCANNING;
633         return 0;
634 }
635
636 swp_entry_t get_swap_page(void)
637 {
638         struct swap_info_struct *si, *next;
639         pgoff_t offset;
640
641         if (atomic_long_read(&nr_swap_pages) <= 0)
642                 goto noswap;
643         atomic_long_dec(&nr_swap_pages);
644
645         spin_lock(&swap_avail_lock);
646
647 start_over:
648         plist_for_each_entry_safe(si, next, &swap_avail_head, avail_list) {
649                 /* requeue si to after same-priority siblings */
650                 plist_requeue(&si->avail_list, &swap_avail_head);
651                 spin_unlock(&swap_avail_lock);
652                 spin_lock(&si->lock);
653                 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
654                         spin_lock(&swap_avail_lock);
655                         if (plist_node_empty(&si->avail_list)) {
656                                 spin_unlock(&si->lock);
657                                 goto nextsi;
658                         }
659                         WARN(!si->highest_bit,
660                              "swap_info %d in list but !highest_bit\n",
661                              si->type);
662                         WARN(!(si->flags & SWP_WRITEOK),
663                              "swap_info %d in list but !SWP_WRITEOK\n",
664                              si->type);
665                         plist_del(&si->avail_list, &swap_avail_head);
666                         spin_unlock(&si->lock);
667                         goto nextsi;
668                 }
669
670                 /* This is called for allocating swap entry for cache */
671                 offset = scan_swap_map(si, SWAP_HAS_CACHE);
672                 spin_unlock(&si->lock);
673                 if (offset)
674                         return swp_entry(si->type, offset);
675                 pr_debug("scan_swap_map of si %d failed to find offset\n",
676                        si->type);
677                 spin_lock(&swap_avail_lock);
678 nextsi:
679                 /*
680                  * if we got here, it's likely that si was almost full before,
681                  * and since scan_swap_map() can drop the si->lock, multiple
682                  * callers probably all tried to get a page from the same si
683                  * and it filled up before we could get one; or, the si filled
684                  * up between us dropping swap_avail_lock and taking si->lock.
685                  * Since we dropped the swap_avail_lock, the swap_avail_head
686                  * list may have been modified; so if next is still in the
687                  * swap_avail_head list then try it, otherwise start over.
688                  */
689                 if (plist_node_empty(&next->avail_list))
690                         goto start_over;
691         }
692
693         spin_unlock(&swap_avail_lock);
694
695         atomic_long_inc(&nr_swap_pages);
696 noswap:
697         return (swp_entry_t) {0};
698 }
699
700 /* The only caller of this function is now suspend routine */
701 swp_entry_t get_swap_page_of_type(int type)
702 {
703         struct swap_info_struct *si;
704         pgoff_t offset;
705
706         si = swap_info[type];
707         spin_lock(&si->lock);
708         if (si && (si->flags & SWP_WRITEOK)) {
709                 atomic_long_dec(&nr_swap_pages);
710                 /* This is called for allocating swap entry, not cache */
711                 offset = scan_swap_map(si, 1);
712                 if (offset) {
713                         spin_unlock(&si->lock);
714                         return swp_entry(type, offset);
715                 }
716                 atomic_long_inc(&nr_swap_pages);
717         }
718         spin_unlock(&si->lock);
719         return (swp_entry_t) {0};
720 }
721
722 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
723 {
724         struct swap_info_struct *p;
725         unsigned long offset, type;
726
727         if (!entry.val)
728                 goto out;
729         type = swp_type(entry);
730         if (type >= nr_swapfiles)
731                 goto bad_nofile;
732         p = swap_info[type];
733         if (!(p->flags & SWP_USED))
734                 goto bad_device;
735         offset = swp_offset(entry);
736         if (offset >= p->max)
737                 goto bad_offset;
738         if (!p->swap_map[offset])
739                 goto bad_free;
740         spin_lock(&p->lock);
741         return p;
742
743 bad_free:
744         pr_err("swap_free: %s%08lx\n", Unused_offset, entry.val);
745         goto out;
746 bad_offset:
747         pr_err("swap_free: %s%08lx\n", Bad_offset, entry.val);
748         goto out;
749 bad_device:
750         pr_err("swap_free: %s%08lx\n", Unused_file, entry.val);
751         goto out;
752 bad_nofile:
753         pr_err("swap_free: %s%08lx\n", Bad_file, entry.val);
754 out:
755         return NULL;
756 }
757
758 static unsigned char swap_entry_free(struct swap_info_struct *p,
759                                      swp_entry_t entry, unsigned char usage)
760 {
761         unsigned long offset = swp_offset(entry);
762         unsigned char count;
763         unsigned char has_cache;
764
765         count = p->swap_map[offset];
766         has_cache = count & SWAP_HAS_CACHE;
767         count &= ~SWAP_HAS_CACHE;
768
769         if (usage == SWAP_HAS_CACHE) {
770                 VM_BUG_ON(!has_cache);
771                 has_cache = 0;
772         } else if (count == SWAP_MAP_SHMEM) {
773                 /*
774                  * Or we could insist on shmem.c using a special
775                  * swap_shmem_free() and free_shmem_swap_and_cache()...
776                  */
777                 count = 0;
778         } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
779                 if (count == COUNT_CONTINUED) {
780                         if (swap_count_continued(p, offset, count))
781                                 count = SWAP_MAP_MAX | COUNT_CONTINUED;
782                         else
783                                 count = SWAP_MAP_MAX;
784                 } else
785                         count--;
786         }
787
788         usage = count | has_cache;
789         p->swap_map[offset] = usage;
790
791         /* free if no reference */
792         if (!usage) {
793                 mem_cgroup_uncharge_swap(entry);
794                 dec_cluster_info_page(p, p->cluster_info, offset);
795                 if (offset < p->lowest_bit)
796                         p->lowest_bit = offset;
797                 if (offset > p->highest_bit) {
798                         bool was_full = !p->highest_bit;
799                         p->highest_bit = offset;
800                         if (was_full && (p->flags & SWP_WRITEOK)) {
801                                 spin_lock(&swap_avail_lock);
802                                 WARN_ON(!plist_node_empty(&p->avail_list));
803                                 if (plist_node_empty(&p->avail_list))
804                                         plist_add(&p->avail_list,
805                                                   &swap_avail_head);
806                                 spin_unlock(&swap_avail_lock);
807                         }
808                 }
809                 atomic_long_inc(&nr_swap_pages);
810                 p->inuse_pages--;
811                 frontswap_invalidate_page(p->type, offset);
812                 if (p->flags & SWP_BLKDEV) {
813                         struct gendisk *disk = p->bdev->bd_disk;
814                         if (disk->fops->swap_slot_free_notify)
815                                 disk->fops->swap_slot_free_notify(p->bdev,
816                                                                   offset);
817                 }
818         }
819
820         return usage;
821 }
822
823 /*
824  * Caller has made sure that the swap device corresponding to entry
825  * is still around or has not been recycled.
826  */
827 void swap_free(swp_entry_t entry)
828 {
829         struct swap_info_struct *p;
830
831         p = swap_info_get(entry);
832         if (p) {
833                 swap_entry_free(p, entry, 1);
834                 spin_unlock(&p->lock);
835         }
836 }
837
838 /*
839  * Called after dropping swapcache to decrease refcnt to swap entries.
840  */
841 void swapcache_free(swp_entry_t entry)
842 {
843         struct swap_info_struct *p;
844
845         p = swap_info_get(entry);
846         if (p) {
847                 swap_entry_free(p, entry, SWAP_HAS_CACHE);
848                 spin_unlock(&p->lock);
849         }
850 }
851
852 /*
853  * How many references to page are currently swapped out?
854  * This does not give an exact answer when swap count is continued,
855  * but does include the high COUNT_CONTINUED flag to allow for that.
856  */
857 int page_swapcount(struct page *page)
858 {
859         int count = 0;
860         struct swap_info_struct *p;
861         swp_entry_t entry;
862
863         entry.val = page_private(page);
864         p = swap_info_get(entry);
865         if (p) {
866                 count = swap_count(p->swap_map[swp_offset(entry)]);
867                 spin_unlock(&p->lock);
868         }
869         return count;
870 }
871
872 /*
873  * How many references to @entry are currently swapped out?
874  * This considers COUNT_CONTINUED so it returns exact answer.
875  */
876 int swp_swapcount(swp_entry_t entry)
877 {
878         int count, tmp_count, n;
879         struct swap_info_struct *p;
880         struct page *page;
881         pgoff_t offset;
882         unsigned char *map;
883
884         p = swap_info_get(entry);
885         if (!p)
886                 return 0;
887
888         count = swap_count(p->swap_map[swp_offset(entry)]);
889         if (!(count & COUNT_CONTINUED))
890                 goto out;
891
892         count &= ~COUNT_CONTINUED;
893         n = SWAP_MAP_MAX + 1;
894
895         offset = swp_offset(entry);
896         page = vmalloc_to_page(p->swap_map + offset);
897         offset &= ~PAGE_MASK;
898         VM_BUG_ON(page_private(page) != SWP_CONTINUED);
899
900         do {
901                 page = list_next_entry(page, lru);
902                 map = kmap_atomic(page);
903                 tmp_count = map[offset];
904                 kunmap_atomic(map);
905
906                 count += (tmp_count & ~COUNT_CONTINUED) * n;
907                 n *= (SWAP_CONT_MAX + 1);
908         } while (tmp_count & COUNT_CONTINUED);
909 out:
910         spin_unlock(&p->lock);
911         return count;
912 }
913
914 /*
915  * We can write to an anon page without COW if there are no other references
916  * to it.  And as a side-effect, free up its swap: because the old content
917  * on disk will never be read, and seeking back there to write new content
918  * later would only waste time away from clustering.
919  */
920 int reuse_swap_page(struct page *page)
921 {
922         int count;
923
924         VM_BUG_ON_PAGE(!PageLocked(page), page);
925         if (unlikely(PageKsm(page)))
926                 return 0;
927         /* The page is part of THP and cannot be reused */
928         if (PageTransCompound(page))
929                 return 0;
930         count = page_mapcount(page);
931         if (count <= 1 && PageSwapCache(page)) {
932                 count += page_swapcount(page);
933                 if (count == 1 && !PageWriteback(page)) {
934                         delete_from_swap_cache(page);
935                         SetPageDirty(page);
936                 }
937         }
938         return count <= 1;
939 }
940
941 /*
942  * If swap is getting full, or if there are no more mappings of this page,
943  * then try_to_free_swap is called to free its swap space.
944  */
945 int try_to_free_swap(struct page *page)
946 {
947         VM_BUG_ON_PAGE(!PageLocked(page), page);
948
949         if (!PageSwapCache(page))
950                 return 0;
951         if (PageWriteback(page))
952                 return 0;
953         if (page_swapcount(page))
954                 return 0;
955
956         /*
957          * Once hibernation has begun to create its image of memory,
958          * there's a danger that one of the calls to try_to_free_swap()
959          * - most probably a call from __try_to_reclaim_swap() while
960          * hibernation is allocating its own swap pages for the image,
961          * but conceivably even a call from memory reclaim - will free
962          * the swap from a page which has already been recorded in the
963          * image as a clean swapcache page, and then reuse its swap for
964          * another page of the image.  On waking from hibernation, the
965          * original page might be freed under memory pressure, then
966          * later read back in from swap, now with the wrong data.
967          *
968          * Hibernation suspends storage while it is writing the image
969          * to disk so check that here.
970          */
971         if (pm_suspended_storage())
972                 return 0;
973
974         delete_from_swap_cache(page);
975         SetPageDirty(page);
976         return 1;
977 }
978
979 /*
980  * Free the swap entry like above, but also try to
981  * free the page cache entry if it is the last user.
982  */
983 int free_swap_and_cache(swp_entry_t entry)
984 {
985         struct swap_info_struct *p;
986         struct page *page = NULL;
987
988         if (non_swap_entry(entry))
989                 return 1;
990
991         p = swap_info_get(entry);
992         if (p) {
993                 if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) {
994                         page = find_get_page(swap_address_space(entry),
995                                                 entry.val);
996                         if (page && !trylock_page(page)) {
997                                 page_cache_release(page);
998                                 page = NULL;
999                         }
1000                 }
1001                 spin_unlock(&p->lock);
1002         }
1003         if (page) {
1004                 /*
1005                  * Not mapped elsewhere, or swap space full? Free it!
1006                  * Also recheck PageSwapCache now page is locked (above).
1007                  */
1008                 if (PageSwapCache(page) && !PageWriteback(page) &&
1009                     (!page_mapped(page) || mem_cgroup_swap_full(page))) {
1010                         delete_from_swap_cache(page);
1011                         SetPageDirty(page);
1012                 }
1013                 unlock_page(page);
1014                 page_cache_release(page);
1015         }
1016         return p != NULL;
1017 }
1018
1019 #ifdef CONFIG_HIBERNATION
1020 /*
1021  * Find the swap type that corresponds to given device (if any).
1022  *
1023  * @offset - number of the PAGE_SIZE-sized block of the device, starting
1024  * from 0, in which the swap header is expected to be located.
1025  *
1026  * This is needed for the suspend to disk (aka swsusp).
1027  */
1028 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
1029 {
1030         struct block_device *bdev = NULL;
1031         int type;
1032
1033         if (device)
1034                 bdev = bdget(device);
1035
1036         spin_lock(&swap_lock);
1037         for (type = 0; type < nr_swapfiles; type++) {
1038                 struct swap_info_struct *sis = swap_info[type];
1039
1040                 if (!(sis->flags & SWP_WRITEOK))
1041                         continue;
1042
1043                 if (!bdev) {
1044                         if (bdev_p)
1045                                 *bdev_p = bdgrab(sis->bdev);
1046
1047                         spin_unlock(&swap_lock);
1048                         return type;
1049                 }
1050                 if (bdev == sis->bdev) {
1051                         struct swap_extent *se = &sis->first_swap_extent;
1052
1053                         if (se->start_block == offset) {
1054                                 if (bdev_p)
1055                                         *bdev_p = bdgrab(sis->bdev);
1056
1057                                 spin_unlock(&swap_lock);
1058                                 bdput(bdev);
1059                                 return type;
1060                         }
1061                 }
1062         }
1063         spin_unlock(&swap_lock);
1064         if (bdev)
1065                 bdput(bdev);
1066
1067         return -ENODEV;
1068 }
1069
1070 /*
1071  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1072  * corresponding to given index in swap_info (swap type).
1073  */
1074 sector_t swapdev_block(int type, pgoff_t offset)
1075 {
1076         struct block_device *bdev;
1077
1078         if ((unsigned int)type >= nr_swapfiles)
1079                 return 0;
1080         if (!(swap_info[type]->flags & SWP_WRITEOK))
1081                 return 0;
1082         return map_swap_entry(swp_entry(type, offset), &bdev);
1083 }
1084
1085 /*
1086  * Return either the total number of swap pages of given type, or the number
1087  * of free pages of that type (depending on @free)
1088  *
1089  * This is needed for software suspend
1090  */
1091 unsigned int count_swap_pages(int type, int free)
1092 {
1093         unsigned int n = 0;
1094
1095         spin_lock(&swap_lock);
1096         if ((unsigned int)type < nr_swapfiles) {
1097                 struct swap_info_struct *sis = swap_info[type];
1098
1099                 spin_lock(&sis->lock);
1100                 if (sis->flags & SWP_WRITEOK) {
1101                         n = sis->pages;
1102                         if (free)
1103                                 n -= sis->inuse_pages;
1104                 }
1105                 spin_unlock(&sis->lock);
1106         }
1107         spin_unlock(&swap_lock);
1108         return n;
1109 }
1110 #endif /* CONFIG_HIBERNATION */
1111
1112 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1113 {
1114         return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
1115 }
1116
1117 /*
1118  * No need to decide whether this PTE shares the swap entry with others,
1119  * just let do_wp_page work it out if a write is requested later - to
1120  * force COW, vm_page_prot omits write permission from any private vma.
1121  */
1122 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1123                 unsigned long addr, swp_entry_t entry, struct page *page)
1124 {
1125         struct page *swapcache;
1126         struct mem_cgroup *memcg;
1127         spinlock_t *ptl;
1128         pte_t *pte;
1129         int ret = 1;
1130
1131         swapcache = page;
1132         page = ksm_might_need_to_copy(page, vma, addr);
1133         if (unlikely(!page))
1134                 return -ENOMEM;
1135
1136         if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
1137                                 &memcg, false)) {
1138                 ret = -ENOMEM;
1139                 goto out_nolock;
1140         }
1141
1142         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1143         if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1144                 mem_cgroup_cancel_charge(page, memcg, false);
1145                 ret = 0;
1146                 goto out;
1147         }
1148
1149         dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1150         inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1151         get_page(page);
1152         set_pte_at(vma->vm_mm, addr, pte,
1153                    pte_mkold(mk_pte(page, vma->vm_page_prot)));
1154         if (page == swapcache) {
1155                 page_add_anon_rmap(page, vma, addr, false);
1156                 mem_cgroup_commit_charge(page, memcg, true, false);
1157         } else { /* ksm created a completely new copy */
1158                 page_add_new_anon_rmap(page, vma, addr, false);
1159                 mem_cgroup_commit_charge(page, memcg, false, false);
1160                 lru_cache_add_active_or_unevictable(page, vma);
1161         }
1162         swap_free(entry);
1163         /*
1164          * Move the page to the active list so it is not
1165          * immediately swapped out again after swapon.
1166          */
1167         activate_page(page);
1168 out:
1169         pte_unmap_unlock(pte, ptl);
1170 out_nolock:
1171         if (page != swapcache) {
1172                 unlock_page(page);
1173                 put_page(page);
1174         }
1175         return ret;
1176 }
1177
1178 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1179                                 unsigned long addr, unsigned long end,
1180                                 swp_entry_t entry, struct page *page)
1181 {
1182         pte_t swp_pte = swp_entry_to_pte(entry);
1183         pte_t *pte;
1184         int ret = 0;
1185
1186         /*
1187          * We don't actually need pte lock while scanning for swp_pte: since
1188          * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
1189          * page table while we're scanning; though it could get zapped, and on
1190          * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
1191          * of unmatched parts which look like swp_pte, so unuse_pte must
1192          * recheck under pte lock.  Scanning without pte lock lets it be
1193          * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
1194          */
1195         pte = pte_offset_map(pmd, addr);
1196         do {
1197                 /*
1198                  * swapoff spends a _lot_ of time in this loop!
1199                  * Test inline before going to call unuse_pte.
1200                  */
1201                 if (unlikely(pte_same_as_swp(*pte, swp_pte))) {
1202                         pte_unmap(pte);
1203                         ret = unuse_pte(vma, pmd, addr, entry, page);
1204                         if (ret)
1205                                 goto out;
1206                         pte = pte_offset_map(pmd, addr);
1207                 }
1208         } while (pte++, addr += PAGE_SIZE, addr != end);
1209         pte_unmap(pte - 1);
1210 out:
1211         return ret;
1212 }
1213
1214 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1215                                 unsigned long addr, unsigned long end,
1216                                 swp_entry_t entry, struct page *page)
1217 {
1218         pmd_t *pmd;
1219         unsigned long next;
1220         int ret;
1221
1222         pmd = pmd_offset(pud, addr);
1223         do {
1224                 next = pmd_addr_end(addr, end);
1225                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1226                         continue;
1227                 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
1228                 if (ret)
1229                         return ret;
1230         } while (pmd++, addr = next, addr != end);
1231         return 0;
1232 }
1233
1234 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
1235                                 unsigned long addr, unsigned long end,
1236                                 swp_entry_t entry, struct page *page)
1237 {
1238         pud_t *pud;
1239         unsigned long next;
1240         int ret;
1241
1242         pud = pud_offset(pgd, addr);
1243         do {
1244                 next = pud_addr_end(addr, end);
1245                 if (pud_none_or_clear_bad(pud))
1246                         continue;
1247                 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
1248                 if (ret)
1249                         return ret;
1250         } while (pud++, addr = next, addr != end);
1251         return 0;
1252 }
1253
1254 static int unuse_vma(struct vm_area_struct *vma,
1255                                 swp_entry_t entry, struct page *page)
1256 {
1257         pgd_t *pgd;
1258         unsigned long addr, end, next;
1259         int ret;
1260
1261         if (page_anon_vma(page)) {
1262                 addr = page_address_in_vma(page, vma);
1263                 if (addr == -EFAULT)
1264                         return 0;
1265                 else
1266                         end = addr + PAGE_SIZE;
1267         } else {
1268                 addr = vma->vm_start;
1269                 end = vma->vm_end;
1270         }
1271
1272         pgd = pgd_offset(vma->vm_mm, addr);
1273         do {
1274                 next = pgd_addr_end(addr, end);
1275                 if (pgd_none_or_clear_bad(pgd))
1276                         continue;
1277                 ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
1278                 if (ret)
1279                         return ret;
1280         } while (pgd++, addr = next, addr != end);
1281         return 0;
1282 }
1283
1284 static int unuse_mm(struct mm_struct *mm,
1285                                 swp_entry_t entry, struct page *page)
1286 {
1287         struct vm_area_struct *vma;
1288         int ret = 0;
1289
1290         if (!down_read_trylock(&mm->mmap_sem)) {
1291                 /*
1292                  * Activate page so shrink_inactive_list is unlikely to unmap
1293                  * its ptes while lock is dropped, so swapoff can make progress.
1294                  */
1295                 activate_page(page);
1296                 unlock_page(page);
1297                 down_read(&mm->mmap_sem);
1298                 lock_page(page);
1299         }
1300         for (vma = mm->mmap; vma; vma = vma->vm_next) {
1301                 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1302                         break;
1303         }
1304         up_read(&mm->mmap_sem);
1305         return (ret < 0)? ret: 0;
1306 }
1307
1308 /*
1309  * Scan swap_map (or frontswap_map if frontswap parameter is true)
1310  * from current position to next entry still in use.
1311  * Recycle to start on reaching the end, returning 0 when empty.
1312  */
1313 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1314                                         unsigned int prev, bool frontswap)
1315 {
1316         unsigned int max = si->max;
1317         unsigned int i = prev;
1318         unsigned char count;
1319
1320         /*
1321          * No need for swap_lock here: we're just looking
1322          * for whether an entry is in use, not modifying it; false
1323          * hits are okay, and sys_swapoff() has already prevented new
1324          * allocations from this area (while holding swap_lock).
1325          */
1326         for (;;) {
1327                 if (++i >= max) {
1328                         if (!prev) {
1329                                 i = 0;
1330                                 break;
1331                         }
1332                         /*
1333                          * No entries in use at top of swap_map,
1334                          * loop back to start and recheck there.
1335                          */
1336                         max = prev + 1;
1337                         prev = 0;
1338                         i = 1;
1339                 }
1340                 if (frontswap) {
1341                         if (frontswap_test(si, i))
1342                                 break;
1343                         else
1344                                 continue;
1345                 }
1346                 count = READ_ONCE(si->swap_map[i]);
1347                 if (count && swap_count(count) != SWAP_MAP_BAD)
1348                         break;
1349         }
1350         return i;
1351 }
1352
1353 /*
1354  * We completely avoid races by reading each swap page in advance,
1355  * and then search for the process using it.  All the necessary
1356  * page table adjustments can then be made atomically.
1357  *
1358  * if the boolean frontswap is true, only unuse pages_to_unuse pages;
1359  * pages_to_unuse==0 means all pages; ignored if frontswap is false
1360  */
1361 int try_to_unuse(unsigned int type, bool frontswap,
1362                  unsigned long pages_to_unuse)
1363 {
1364         struct swap_info_struct *si = swap_info[type];
1365         struct mm_struct *start_mm;
1366         volatile unsigned char *swap_map; /* swap_map is accessed without
1367                                            * locking. Mark it as volatile
1368                                            * to prevent compiler doing
1369                                            * something odd.
1370                                            */
1371         unsigned char swcount;
1372         struct page *page;
1373         swp_entry_t entry;
1374         unsigned int i = 0;
1375         int retval = 0;
1376
1377         /*
1378          * When searching mms for an entry, a good strategy is to
1379          * start at the first mm we freed the previous entry from
1380          * (though actually we don't notice whether we or coincidence
1381          * freed the entry).  Initialize this start_mm with a hold.
1382          *
1383          * A simpler strategy would be to start at the last mm we
1384          * freed the previous entry from; but that would take less
1385          * advantage of mmlist ordering, which clusters forked mms
1386          * together, child after parent.  If we race with dup_mmap(), we
1387          * prefer to resolve parent before child, lest we miss entries
1388          * duplicated after we scanned child: using last mm would invert
1389          * that.
1390          */
1391         start_mm = &init_mm;
1392         atomic_inc(&init_mm.mm_users);
1393
1394         /*
1395          * Keep on scanning until all entries have gone.  Usually,
1396          * one pass through swap_map is enough, but not necessarily:
1397          * there are races when an instance of an entry might be missed.
1398          */
1399         while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
1400                 if (signal_pending(current)) {
1401                         retval = -EINTR;
1402                         break;
1403                 }
1404
1405                 /*
1406                  * Get a page for the entry, using the existing swap
1407                  * cache page if there is one.  Otherwise, get a clean
1408                  * page and read the swap into it.
1409                  */
1410                 swap_map = &si->swap_map[i];
1411                 entry = swp_entry(type, i);
1412                 page = read_swap_cache_async(entry,
1413                                         GFP_HIGHUSER_MOVABLE, NULL, 0);
1414                 if (!page) {
1415                         /*
1416                          * Either swap_duplicate() failed because entry
1417                          * has been freed independently, and will not be
1418                          * reused since sys_swapoff() already disabled
1419                          * allocation from here, or alloc_page() failed.
1420                          */
1421                         swcount = *swap_map;
1422                         /*
1423                          * We don't hold lock here, so the swap entry could be
1424                          * SWAP_MAP_BAD (when the cluster is discarding).
1425                          * Instead of fail out, We can just skip the swap
1426                          * entry because swapoff will wait for discarding
1427                          * finish anyway.
1428                          */
1429                         if (!swcount || swcount == SWAP_MAP_BAD)
1430                                 continue;
1431                         retval = -ENOMEM;
1432                         break;
1433                 }
1434
1435                 /*
1436                  * Don't hold on to start_mm if it looks like exiting.
1437                  */
1438                 if (atomic_read(&start_mm->mm_users) == 1) {
1439                         mmput(start_mm);
1440                         start_mm = &init_mm;
1441                         atomic_inc(&init_mm.mm_users);
1442                 }
1443
1444                 /*
1445                  * Wait for and lock page.  When do_swap_page races with
1446                  * try_to_unuse, do_swap_page can handle the fault much
1447                  * faster than try_to_unuse can locate the entry.  This
1448                  * apparently redundant "wait_on_page_locked" lets try_to_unuse
1449                  * defer to do_swap_page in such a case - in some tests,
1450                  * do_swap_page and try_to_unuse repeatedly compete.
1451                  */
1452                 wait_on_page_locked(page);
1453                 wait_on_page_writeback(page);
1454                 lock_page(page);
1455                 wait_on_page_writeback(page);
1456
1457                 /*
1458                  * Remove all references to entry.
1459                  */
1460                 swcount = *swap_map;
1461                 if (swap_count(swcount) == SWAP_MAP_SHMEM) {
1462                         retval = shmem_unuse(entry, page);
1463                         /* page has already been unlocked and released */
1464                         if (retval < 0)
1465                                 break;
1466                         continue;
1467                 }
1468                 if (swap_count(swcount) && start_mm != &init_mm)
1469                         retval = unuse_mm(start_mm, entry, page);
1470
1471                 if (swap_count(*swap_map)) {
1472                         int set_start_mm = (*swap_map >= swcount);
1473                         struct list_head *p = &start_mm->mmlist;
1474                         struct mm_struct *new_start_mm = start_mm;
1475                         struct mm_struct *prev_mm = start_mm;
1476                         struct mm_struct *mm;
1477
1478                         atomic_inc(&new_start_mm->mm_users);
1479                         atomic_inc(&prev_mm->mm_users);
1480                         spin_lock(&mmlist_lock);
1481                         while (swap_count(*swap_map) && !retval &&
1482                                         (p = p->next) != &start_mm->mmlist) {
1483                                 mm = list_entry(p, struct mm_struct, mmlist);
1484                                 if (!atomic_inc_not_zero(&mm->mm_users))
1485                                         continue;
1486                                 spin_unlock(&mmlist_lock);
1487                                 mmput(prev_mm);
1488                                 prev_mm = mm;
1489
1490                                 cond_resched();
1491
1492                                 swcount = *swap_map;
1493                                 if (!swap_count(swcount)) /* any usage ? */
1494                                         ;
1495                                 else if (mm == &init_mm)
1496                                         set_start_mm = 1;
1497                                 else
1498                                         retval = unuse_mm(mm, entry, page);
1499
1500                                 if (set_start_mm && *swap_map < swcount) {
1501                                         mmput(new_start_mm);
1502                                         atomic_inc(&mm->mm_users);
1503                                         new_start_mm = mm;
1504                                         set_start_mm = 0;
1505                                 }
1506                                 spin_lock(&mmlist_lock);
1507                         }
1508                         spin_unlock(&mmlist_lock);
1509                         mmput(prev_mm);
1510                         mmput(start_mm);
1511                         start_mm = new_start_mm;
1512                 }
1513                 if (retval) {
1514                         unlock_page(page);
1515                         page_cache_release(page);
1516                         break;
1517                 }
1518
1519                 /*
1520                  * If a reference remains (rare), we would like to leave
1521                  * the page in the swap cache; but try_to_unmap could
1522                  * then re-duplicate the entry once we drop page lock,
1523                  * so we might loop indefinitely; also, that page could
1524                  * not be swapped out to other storage meanwhile.  So:
1525                  * delete from cache even if there's another reference,
1526                  * after ensuring that the data has been saved to disk -
1527                  * since if the reference remains (rarer), it will be
1528                  * read from disk into another page.  Splitting into two
1529                  * pages would be incorrect if swap supported "shared
1530                  * private" pages, but they are handled by tmpfs files.
1531                  *
1532                  * Given how unuse_vma() targets one particular offset
1533                  * in an anon_vma, once the anon_vma has been determined,
1534                  * this splitting happens to be just what is needed to
1535                  * handle where KSM pages have been swapped out: re-reading
1536                  * is unnecessarily slow, but we can fix that later on.
1537                  */
1538                 if (swap_count(*swap_map) &&
1539                      PageDirty(page) && PageSwapCache(page)) {
1540                         struct writeback_control wbc = {
1541                                 .sync_mode = WB_SYNC_NONE,
1542                         };
1543
1544                         swap_writepage(page, &wbc);
1545                         lock_page(page);
1546                         wait_on_page_writeback(page);
1547                 }
1548
1549                 /*
1550                  * It is conceivable that a racing task removed this page from
1551                  * swap cache just before we acquired the page lock at the top,
1552                  * or while we dropped it in unuse_mm().  The page might even
1553                  * be back in swap cache on another swap area: that we must not
1554                  * delete, since it may not have been written out to swap yet.
1555                  */
1556                 if (PageSwapCache(page) &&
1557                     likely(page_private(page) == entry.val))
1558                         delete_from_swap_cache(page);
1559
1560                 /*
1561                  * So we could skip searching mms once swap count went
1562                  * to 1, we did not mark any present ptes as dirty: must
1563                  * mark page dirty so shrink_page_list will preserve it.
1564                  */
1565                 SetPageDirty(page);
1566                 unlock_page(page);
1567                 page_cache_release(page);
1568
1569                 /*
1570                  * Make sure that we aren't completely killing
1571                  * interactive performance.
1572                  */
1573                 cond_resched();
1574                 if (frontswap && pages_to_unuse > 0) {
1575                         if (!--pages_to_unuse)
1576                                 break;
1577                 }
1578         }
1579
1580         mmput(start_mm);
1581         return retval;
1582 }
1583
1584 /*
1585  * After a successful try_to_unuse, if no swap is now in use, we know
1586  * we can empty the mmlist.  swap_lock must be held on entry and exit.
1587  * Note that mmlist_lock nests inside swap_lock, and an mm must be
1588  * added to the mmlist just after page_duplicate - before would be racy.
1589  */
1590 static void drain_mmlist(void)
1591 {
1592         struct list_head *p, *next;
1593         unsigned int type;
1594
1595         for (type = 0; type < nr_swapfiles; type++)
1596                 if (swap_info[type]->inuse_pages)
1597                         return;
1598         spin_lock(&mmlist_lock);
1599         list_for_each_safe(p, next, &init_mm.mmlist)
1600                 list_del_init(p);
1601         spin_unlock(&mmlist_lock);
1602 }
1603
1604 /*
1605  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1606  * corresponds to page offset for the specified swap entry.
1607  * Note that the type of this function is sector_t, but it returns page offset
1608  * into the bdev, not sector offset.
1609  */
1610 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1611 {
1612         struct swap_info_struct *sis;
1613         struct swap_extent *start_se;
1614         struct swap_extent *se;
1615         pgoff_t offset;
1616
1617         sis = swap_info[swp_type(entry)];
1618         *bdev = sis->bdev;
1619
1620         offset = swp_offset(entry);
1621         start_se = sis->curr_swap_extent;
1622         se = start_se;
1623
1624         for ( ; ; ) {
1625                 if (se->start_page <= offset &&
1626                                 offset < (se->start_page + se->nr_pages)) {
1627                         return se->start_block + (offset - se->start_page);
1628                 }
1629                 se = list_next_entry(se, list);
1630                 sis->curr_swap_extent = se;
1631                 BUG_ON(se == start_se);         /* It *must* be present */
1632         }
1633 }
1634
1635 /*
1636  * Returns the page offset into bdev for the specified page's swap entry.
1637  */
1638 sector_t map_swap_page(struct page *page, struct block_device **bdev)
1639 {
1640         swp_entry_t entry;
1641         entry.val = page_private(page);
1642         return map_swap_entry(entry, bdev);
1643 }
1644
1645 /*
1646  * Free all of a swapdev's extent information
1647  */
1648 static void destroy_swap_extents(struct swap_info_struct *sis)
1649 {
1650         while (!list_empty(&sis->first_swap_extent.list)) {
1651                 struct swap_extent *se;
1652
1653                 se = list_first_entry(&sis->first_swap_extent.list,
1654                                 struct swap_extent, list);
1655                 list_del(&se->list);
1656                 kfree(se);
1657         }
1658
1659         if (sis->flags & SWP_FILE) {
1660                 struct file *swap_file = sis->swap_file;
1661                 struct address_space *mapping = swap_file->f_mapping;
1662
1663                 sis->flags &= ~SWP_FILE;
1664                 mapping->a_ops->swap_deactivate(swap_file);
1665         }
1666 }
1667
1668 /*
1669  * Add a block range (and the corresponding page range) into this swapdev's
1670  * extent list.  The extent list is kept sorted in page order.
1671  *
1672  * This function rather assumes that it is called in ascending page order.
1673  */
1674 int
1675 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1676                 unsigned long nr_pages, sector_t start_block)
1677 {
1678         struct swap_extent *se;
1679         struct swap_extent *new_se;
1680         struct list_head *lh;
1681
1682         if (start_page == 0) {
1683                 se = &sis->first_swap_extent;
1684                 sis->curr_swap_extent = se;
1685                 se->start_page = 0;
1686                 se->nr_pages = nr_pages;
1687                 se->start_block = start_block;
1688                 return 1;
1689         } else {
1690                 lh = sis->first_swap_extent.list.prev;  /* Highest extent */
1691                 se = list_entry(lh, struct swap_extent, list);
1692                 BUG_ON(se->start_page + se->nr_pages != start_page);
1693                 if (se->start_block + se->nr_pages == start_block) {
1694                         /* Merge it */
1695                         se->nr_pages += nr_pages;
1696                         return 0;
1697                 }
1698         }
1699
1700         /*
1701          * No merge.  Insert a new extent, preserving ordering.
1702          */
1703         new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1704         if (new_se == NULL)
1705                 return -ENOMEM;
1706         new_se->start_page = start_page;
1707         new_se->nr_pages = nr_pages;
1708         new_se->start_block = start_block;
1709
1710         list_add_tail(&new_se->list, &sis->first_swap_extent.list);
1711         return 1;
1712 }
1713
1714 /*
1715  * A `swap extent' is a simple thing which maps a contiguous range of pages
1716  * onto a contiguous range of disk blocks.  An ordered list of swap extents
1717  * is built at swapon time and is then used at swap_writepage/swap_readpage
1718  * time for locating where on disk a page belongs.
1719  *
1720  * If the swapfile is an S_ISBLK block device, a single extent is installed.
1721  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1722  * swap files identically.
1723  *
1724  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1725  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
1726  * swapfiles are handled *identically* after swapon time.
1727  *
1728  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1729  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
1730  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1731  * requirements, they are simply tossed out - we will never use those blocks
1732  * for swapping.
1733  *
1734  * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
1735  * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1736  * which will scribble on the fs.
1737  *
1738  * The amount of disk space which a single swap extent represents varies.
1739  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
1740  * extents in the list.  To avoid much list walking, we cache the previous
1741  * search location in `curr_swap_extent', and start new searches from there.
1742  * This is extremely effective.  The average number of iterations in
1743  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
1744  */
1745 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1746 {
1747         struct file *swap_file = sis->swap_file;
1748         struct address_space *mapping = swap_file->f_mapping;
1749         struct inode *inode = mapping->host;
1750         int ret;
1751
1752         if (S_ISBLK(inode->i_mode)) {
1753                 ret = add_swap_extent(sis, 0, sis->max, 0);
1754                 *span = sis->pages;
1755                 return ret;
1756         }
1757
1758         if (mapping->a_ops->swap_activate) {
1759                 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
1760                 if (!ret) {
1761                         sis->flags |= SWP_FILE;
1762                         ret = add_swap_extent(sis, 0, sis->max, 0);
1763                         *span = sis->pages;
1764                 }
1765                 return ret;
1766         }
1767
1768         return generic_swapfile_activate(sis, swap_file, span);
1769 }
1770
1771 static void _enable_swap_info(struct swap_info_struct *p, int prio,
1772                                 unsigned char *swap_map,
1773                                 struct swap_cluster_info *cluster_info)
1774 {
1775         if (prio >= 0)
1776                 p->prio = prio;
1777         else
1778                 p->prio = --least_priority;
1779         /*
1780          * the plist prio is negated because plist ordering is
1781          * low-to-high, while swap ordering is high-to-low
1782          */
1783         p->list.prio = -p->prio;
1784         p->avail_list.prio = -p->prio;
1785         p->swap_map = swap_map;
1786         p->cluster_info = cluster_info;
1787         p->flags |= SWP_WRITEOK;
1788         atomic_long_add(p->pages, &nr_swap_pages);
1789         total_swap_pages += p->pages;
1790
1791         assert_spin_locked(&swap_lock);
1792         /*
1793          * both lists are plists, and thus priority ordered.
1794          * swap_active_head needs to be priority ordered for swapoff(),
1795          * which on removal of any swap_info_struct with an auto-assigned
1796          * (i.e. negative) priority increments the auto-assigned priority
1797          * of any lower-priority swap_info_structs.
1798          * swap_avail_head needs to be priority ordered for get_swap_page(),
1799          * which allocates swap pages from the highest available priority
1800          * swap_info_struct.
1801          */
1802         plist_add(&p->list, &swap_active_head);
1803         spin_lock(&swap_avail_lock);
1804         plist_add(&p->avail_list, &swap_avail_head);
1805         spin_unlock(&swap_avail_lock);
1806 }
1807
1808 static void enable_swap_info(struct swap_info_struct *p, int prio,
1809                                 unsigned char *swap_map,
1810                                 struct swap_cluster_info *cluster_info,
1811                                 unsigned long *frontswap_map)
1812 {
1813         frontswap_init(p->type, frontswap_map);
1814         spin_lock(&swap_lock);
1815         spin_lock(&p->lock);
1816          _enable_swap_info(p, prio, swap_map, cluster_info);
1817         spin_unlock(&p->lock);
1818         spin_unlock(&swap_lock);
1819 }
1820
1821 static void reinsert_swap_info(struct swap_info_struct *p)
1822 {
1823         spin_lock(&swap_lock);
1824         spin_lock(&p->lock);
1825         _enable_swap_info(p, p->prio, p->swap_map, p->cluster_info);
1826         spin_unlock(&p->lock);
1827         spin_unlock(&swap_lock);
1828 }
1829
1830 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1831 {
1832         struct swap_info_struct *p = NULL;
1833         unsigned char *swap_map;
1834         struct swap_cluster_info *cluster_info;
1835         unsigned long *frontswap_map;
1836         struct file *swap_file, *victim;
1837         struct address_space *mapping;
1838         struct inode *inode;
1839         struct filename *pathname;
1840         int err, found = 0;
1841         unsigned int old_block_size;
1842
1843         if (!capable(CAP_SYS_ADMIN))
1844                 return -EPERM;
1845
1846         BUG_ON(!current->mm);
1847
1848         pathname = getname(specialfile);
1849         if (IS_ERR(pathname))
1850                 return PTR_ERR(pathname);
1851
1852         victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
1853         err = PTR_ERR(victim);
1854         if (IS_ERR(victim))
1855                 goto out;
1856
1857         mapping = victim->f_mapping;
1858         spin_lock(&swap_lock);
1859         plist_for_each_entry(p, &swap_active_head, list) {
1860                 if (p->flags & SWP_WRITEOK) {
1861                         if (p->swap_file->f_mapping == mapping) {
1862                                 found = 1;
1863                                 break;
1864                         }
1865                 }
1866         }
1867         if (!found) {
1868                 err = -EINVAL;
1869                 spin_unlock(&swap_lock);
1870                 goto out_dput;
1871         }
1872         if (!security_vm_enough_memory_mm(current->mm, p->pages))
1873                 vm_unacct_memory(p->pages);
1874         else {
1875                 err = -ENOMEM;
1876                 spin_unlock(&swap_lock);
1877                 goto out_dput;
1878         }
1879         spin_lock(&swap_avail_lock);
1880         plist_del(&p->avail_list, &swap_avail_head);
1881         spin_unlock(&swap_avail_lock);
1882         spin_lock(&p->lock);
1883         if (p->prio < 0) {
1884                 struct swap_info_struct *si = p;
1885
1886                 plist_for_each_entry_continue(si, &swap_active_head, list) {
1887                         si->prio++;
1888                         si->list.prio--;
1889                         si->avail_list.prio--;
1890                 }
1891                 least_priority++;
1892         }
1893         plist_del(&p->list, &swap_active_head);
1894         atomic_long_sub(p->pages, &nr_swap_pages);
1895         total_swap_pages -= p->pages;
1896         p->flags &= ~SWP_WRITEOK;
1897         spin_unlock(&p->lock);
1898         spin_unlock(&swap_lock);
1899
1900         set_current_oom_origin();
1901         err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
1902         clear_current_oom_origin();
1903
1904         if (err) {
1905                 /* re-insert swap space back into swap_list */
1906                 reinsert_swap_info(p);
1907                 goto out_dput;
1908         }
1909
1910         flush_work(&p->discard_work);
1911
1912         destroy_swap_extents(p);
1913         if (p->flags & SWP_CONTINUED)
1914                 free_swap_count_continuations(p);
1915
1916         mutex_lock(&swapon_mutex);
1917         spin_lock(&swap_lock);
1918         spin_lock(&p->lock);
1919         drain_mmlist();
1920
1921         /* wait for anyone still in scan_swap_map */
1922         p->highest_bit = 0;             /* cuts scans short */
1923         while (p->flags >= SWP_SCANNING) {
1924                 spin_unlock(&p->lock);
1925                 spin_unlock(&swap_lock);
1926                 schedule_timeout_uninterruptible(1);
1927                 spin_lock(&swap_lock);
1928                 spin_lock(&p->lock);
1929         }
1930
1931         swap_file = p->swap_file;
1932         old_block_size = p->old_block_size;
1933         p->swap_file = NULL;
1934         p->max = 0;
1935         swap_map = p->swap_map;
1936         p->swap_map = NULL;
1937         cluster_info = p->cluster_info;
1938         p->cluster_info = NULL;
1939         frontswap_map = frontswap_map_get(p);
1940         spin_unlock(&p->lock);
1941         spin_unlock(&swap_lock);
1942         frontswap_invalidate_area(p->type);
1943         frontswap_map_set(p, NULL);
1944         mutex_unlock(&swapon_mutex);
1945         free_percpu(p->percpu_cluster);
1946         p->percpu_cluster = NULL;
1947         vfree(swap_map);
1948         vfree(cluster_info);
1949         vfree(frontswap_map);
1950         /* Destroy swap account information */
1951         swap_cgroup_swapoff(p->type);
1952
1953         inode = mapping->host;
1954         if (S_ISBLK(inode->i_mode)) {
1955                 struct block_device *bdev = I_BDEV(inode);
1956                 set_blocksize(bdev, old_block_size);
1957                 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1958         } else {
1959                 inode_lock(inode);
1960                 inode->i_flags &= ~S_SWAPFILE;
1961                 inode_unlock(inode);
1962         }
1963         filp_close(swap_file, NULL);
1964
1965         /*
1966          * Clear the SWP_USED flag after all resources are freed so that swapon
1967          * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
1968          * not hold p->lock after we cleared its SWP_WRITEOK.
1969          */
1970         spin_lock(&swap_lock);
1971         p->flags = 0;
1972         spin_unlock(&swap_lock);
1973
1974         err = 0;
1975         atomic_inc(&proc_poll_event);
1976         wake_up_interruptible(&proc_poll_wait);
1977
1978 out_dput:
1979         filp_close(victim, NULL);
1980 out:
1981         putname(pathname);
1982         return err;
1983 }
1984
1985 #ifdef CONFIG_PROC_FS
1986 static unsigned swaps_poll(struct file *file, poll_table *wait)
1987 {
1988         struct seq_file *seq = file->private_data;
1989
1990         poll_wait(file, &proc_poll_wait, wait);
1991
1992         if (seq->poll_event != atomic_read(&proc_poll_event)) {
1993                 seq->poll_event = atomic_read(&proc_poll_event);
1994                 return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
1995         }
1996
1997         return POLLIN | POLLRDNORM;
1998 }
1999
2000 /* iterator */
2001 static void *swap_start(struct seq_file *swap, loff_t *pos)
2002 {
2003         struct swap_info_struct *si;
2004         int type;
2005         loff_t l = *pos;
2006
2007         mutex_lock(&swapon_mutex);
2008
2009         if (!l)
2010                 return SEQ_START_TOKEN;
2011
2012         for (type = 0; type < nr_swapfiles; type++) {
2013                 smp_rmb();      /* read nr_swapfiles before swap_info[type] */
2014                 si = swap_info[type];
2015                 if (!(si->flags & SWP_USED) || !si->swap_map)
2016                         continue;
2017                 if (!--l)
2018                         return si;
2019         }
2020
2021         return NULL;
2022 }
2023
2024 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2025 {
2026         struct swap_info_struct *si = v;
2027         int type;
2028
2029         if (v == SEQ_START_TOKEN)
2030                 type = 0;
2031         else
2032                 type = si->type + 1;
2033
2034         for (; type < nr_swapfiles; type++) {
2035                 smp_rmb();      /* read nr_swapfiles before swap_info[type] */
2036                 si = swap_info[type];
2037                 if (!(si->flags & SWP_USED) || !si->swap_map)
2038                         continue;
2039                 ++*pos;
2040                 return si;
2041         }
2042
2043         return NULL;
2044 }
2045
2046 static void swap_stop(struct seq_file *swap, void *v)
2047 {
2048         mutex_unlock(&swapon_mutex);
2049 }
2050
2051 static int swap_show(struct seq_file *swap, void *v)
2052 {
2053         struct swap_info_struct *si = v;
2054         struct file *file;
2055         int len;
2056
2057         if (si == SEQ_START_TOKEN) {
2058                 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2059                 return 0;
2060         }
2061
2062         file = si->swap_file;
2063         len = seq_file_path(swap, file, " \t\n\\");
2064         seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
2065                         len < 40 ? 40 - len : 1, " ",
2066                         S_ISBLK(file_inode(file)->i_mode) ?
2067                                 "partition" : "file\t",
2068                         si->pages << (PAGE_SHIFT - 10),
2069                         si->inuse_pages << (PAGE_SHIFT - 10),
2070                         si->prio);
2071         return 0;
2072 }
2073
2074 static const struct seq_operations swaps_op = {
2075         .start =        swap_start,
2076         .next =         swap_next,
2077         .stop =         swap_stop,
2078         .show =         swap_show
2079 };
2080
2081 static int swaps_open(struct inode *inode, struct file *file)
2082 {
2083         struct seq_file *seq;
2084         int ret;
2085
2086         ret = seq_open(file, &swaps_op);
2087         if (ret)
2088                 return ret;
2089
2090         seq = file->private_data;
2091         seq->poll_event = atomic_read(&proc_poll_event);
2092         return 0;
2093 }
2094
2095 static const struct file_operations proc_swaps_operations = {
2096         .open           = swaps_open,
2097         .read           = seq_read,
2098         .llseek         = seq_lseek,
2099         .release        = seq_release,
2100         .poll           = swaps_poll,
2101 };
2102
2103 static int __init procswaps_init(void)
2104 {
2105         proc_create("swaps", 0, NULL, &proc_swaps_operations);
2106         return 0;
2107 }
2108 __initcall(procswaps_init);
2109 #endif /* CONFIG_PROC_FS */
2110
2111 #ifdef MAX_SWAPFILES_CHECK
2112 static int __init max_swapfiles_check(void)
2113 {
2114         MAX_SWAPFILES_CHECK();
2115         return 0;
2116 }
2117 late_initcall(max_swapfiles_check);
2118 #endif
2119
2120 static struct swap_info_struct *alloc_swap_info(void)
2121 {
2122         struct swap_info_struct *p;
2123         unsigned int type;
2124
2125         p = kzalloc(sizeof(*p), GFP_KERNEL);
2126         if (!p)
2127                 return ERR_PTR(-ENOMEM);
2128
2129         spin_lock(&swap_lock);
2130         for (type = 0; type < nr_swapfiles; type++) {
2131                 if (!(swap_info[type]->flags & SWP_USED))
2132                         break;
2133         }
2134         if (type >= MAX_SWAPFILES) {
2135                 spin_unlock(&swap_lock);
2136                 kfree(p);
2137                 return ERR_PTR(-EPERM);
2138         }
2139         if (type >= nr_swapfiles) {
2140                 p->type = type;
2141                 swap_info[type] = p;
2142                 /*
2143                  * Write swap_info[type] before nr_swapfiles, in case a
2144                  * racing procfs swap_start() or swap_next() is reading them.
2145                  * (We never shrink nr_swapfiles, we never free this entry.)
2146                  */
2147                 smp_wmb();
2148                 nr_swapfiles++;
2149         } else {
2150                 kfree(p);
2151                 p = swap_info[type];
2152                 /*
2153                  * Do not memset this entry: a racing procfs swap_next()
2154                  * would be relying on p->type to remain valid.
2155                  */
2156         }
2157         INIT_LIST_HEAD(&p->first_swap_extent.list);
2158         plist_node_init(&p->list, 0);
2159         plist_node_init(&p->avail_list, 0);
2160         p->flags = SWP_USED;
2161         spin_unlock(&swap_lock);
2162         spin_lock_init(&p->lock);
2163
2164         return p;
2165 }
2166
2167 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2168 {
2169         int error;
2170
2171         if (S_ISBLK(inode->i_mode)) {
2172                 p->bdev = bdgrab(I_BDEV(inode));
2173                 error = blkdev_get(p->bdev,
2174                                    FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2175                 if (error < 0) {
2176                         p->bdev = NULL;
2177                         return error;
2178                 }
2179                 p->old_block_size = block_size(p->bdev);
2180                 error = set_blocksize(p->bdev, PAGE_SIZE);
2181                 if (error < 0)
2182                         return error;
2183                 p->flags |= SWP_BLKDEV;
2184         } else if (S_ISREG(inode->i_mode)) {
2185                 p->bdev = inode->i_sb->s_bdev;
2186                 inode_lock(inode);
2187                 if (IS_SWAPFILE(inode))
2188                         return -EBUSY;
2189         } else
2190                 return -EINVAL;
2191
2192         return 0;
2193 }
2194
2195 static unsigned long read_swap_header(struct swap_info_struct *p,
2196                                         union swap_header *swap_header,
2197                                         struct inode *inode)
2198 {
2199         int i;
2200         unsigned long maxpages;
2201         unsigned long swapfilepages;
2202         unsigned long last_page;
2203
2204         if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2205                 pr_err("Unable to find swap-space signature\n");
2206                 return 0;
2207         }
2208
2209         /* swap partition endianess hack... */
2210         if (swab32(swap_header->info.version) == 1) {
2211                 swab32s(&swap_header->info.version);
2212                 swab32s(&swap_header->info.last_page);
2213                 swab32s(&swap_header->info.nr_badpages);
2214                 for (i = 0; i < swap_header->info.nr_badpages; i++)
2215                         swab32s(&swap_header->info.badpages[i]);
2216         }
2217         /* Check the swap header's sub-version */
2218         if (swap_header->info.version != 1) {
2219                 pr_warn("Unable to handle swap header version %d\n",
2220                         swap_header->info.version);
2221                 return 0;
2222         }
2223
2224         p->lowest_bit  = 1;
2225         p->cluster_next = 1;
2226         p->cluster_nr = 0;
2227
2228         /*
2229          * Find out how many pages are allowed for a single swap
2230          * device. There are two limiting factors: 1) the number
2231          * of bits for the swap offset in the swp_entry_t type, and
2232          * 2) the number of bits in the swap pte as defined by the
2233          * different architectures. In order to find the
2234          * largest possible bit mask, a swap entry with swap type 0
2235          * and swap offset ~0UL is created, encoded to a swap pte,
2236          * decoded to a swp_entry_t again, and finally the swap
2237          * offset is extracted. This will mask all the bits from
2238          * the initial ~0UL mask that can't be encoded in either
2239          * the swp_entry_t or the architecture definition of a
2240          * swap pte.
2241          */
2242         maxpages = swp_offset(pte_to_swp_entry(
2243                         swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2244         last_page = swap_header->info.last_page;
2245         if (last_page > maxpages) {
2246                 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2247                         maxpages << (PAGE_SHIFT - 10),
2248                         last_page << (PAGE_SHIFT - 10));
2249         }
2250         if (maxpages > last_page) {
2251                 maxpages = last_page + 1;
2252                 /* p->max is an unsigned int: don't overflow it */
2253                 if ((unsigned int)maxpages == 0)
2254                         maxpages = UINT_MAX;
2255         }
2256         p->highest_bit = maxpages - 1;
2257
2258         if (!maxpages)
2259                 return 0;
2260         swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2261         if (swapfilepages && maxpages > swapfilepages) {
2262                 pr_warn("Swap area shorter than signature indicates\n");
2263                 return 0;
2264         }
2265         if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2266                 return 0;
2267         if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2268                 return 0;
2269
2270         return maxpages;
2271 }
2272
2273 static int setup_swap_map_and_extents(struct swap_info_struct *p,
2274                                         union swap_header *swap_header,
2275                                         unsigned char *swap_map,
2276                                         struct swap_cluster_info *cluster_info,
2277                                         unsigned long maxpages,
2278                                         sector_t *span)
2279 {
2280         int i;
2281         unsigned int nr_good_pages;
2282         int nr_extents;
2283         unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2284         unsigned long idx = p->cluster_next / SWAPFILE_CLUSTER;
2285
2286         nr_good_pages = maxpages - 1;   /* omit header page */
2287
2288         cluster_set_null(&p->free_cluster_head);
2289         cluster_set_null(&p->free_cluster_tail);
2290         cluster_set_null(&p->discard_cluster_head);
2291         cluster_set_null(&p->discard_cluster_tail);
2292
2293         for (i = 0; i < swap_header->info.nr_badpages; i++) {
2294                 unsigned int page_nr = swap_header->info.badpages[i];
2295                 if (page_nr == 0 || page_nr > swap_header->info.last_page)
2296                         return -EINVAL;
2297                 if (page_nr < maxpages) {
2298                         swap_map[page_nr] = SWAP_MAP_BAD;
2299                         nr_good_pages--;
2300                         /*
2301                          * Haven't marked the cluster free yet, no list
2302                          * operation involved
2303                          */
2304                         inc_cluster_info_page(p, cluster_info, page_nr);
2305                 }
2306         }
2307
2308         /* Haven't marked the cluster free yet, no list operation involved */
2309         for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
2310                 inc_cluster_info_page(p, cluster_info, i);
2311
2312         if (nr_good_pages) {
2313                 swap_map[0] = SWAP_MAP_BAD;
2314                 /*
2315                  * Not mark the cluster free yet, no list
2316                  * operation involved
2317                  */
2318                 inc_cluster_info_page(p, cluster_info, 0);
2319                 p->max = maxpages;
2320                 p->pages = nr_good_pages;
2321                 nr_extents = setup_swap_extents(p, span);
2322                 if (nr_extents < 0)
2323                         return nr_extents;
2324                 nr_good_pages = p->pages;
2325         }
2326         if (!nr_good_pages) {
2327                 pr_warn("Empty swap-file\n");
2328                 return -EINVAL;
2329         }
2330
2331         if (!cluster_info)
2332                 return nr_extents;
2333
2334         for (i = 0; i < nr_clusters; i++) {
2335                 if (!cluster_count(&cluster_info[idx])) {
2336                         cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
2337                         if (cluster_is_null(&p->free_cluster_head)) {
2338                                 cluster_set_next_flag(&p->free_cluster_head,
2339                                                                 idx, 0);
2340                                 cluster_set_next_flag(&p->free_cluster_tail,
2341                                                                 idx, 0);
2342                         } else {
2343                                 unsigned int tail;
2344
2345                                 tail = cluster_next(&p->free_cluster_tail);
2346                                 cluster_set_next(&cluster_info[tail], idx);
2347                                 cluster_set_next_flag(&p->free_cluster_tail,
2348                                                                 idx, 0);
2349                         }
2350                 }
2351                 idx++;
2352                 if (idx == nr_clusters)
2353                         idx = 0;
2354         }
2355         return nr_extents;
2356 }
2357
2358 /*
2359  * Helper to sys_swapon determining if a given swap
2360  * backing device queue supports DISCARD operations.
2361  */
2362 static bool swap_discardable(struct swap_info_struct *si)
2363 {
2364         struct request_queue *q = bdev_get_queue(si->bdev);
2365
2366         if (!q || !blk_queue_discard(q))
2367                 return false;
2368
2369         return true;
2370 }
2371
2372 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2373 {
2374         struct swap_info_struct *p;
2375         struct filename *name;
2376         struct file *swap_file = NULL;
2377         struct address_space *mapping;
2378         int prio;
2379         int error;
2380         union swap_header *swap_header;
2381         int nr_extents;
2382         sector_t span;
2383         unsigned long maxpages;
2384         unsigned char *swap_map = NULL;
2385         struct swap_cluster_info *cluster_info = NULL;
2386         unsigned long *frontswap_map = NULL;
2387         struct page *page = NULL;
2388         struct inode *inode = NULL;
2389
2390         if (swap_flags & ~SWAP_FLAGS_VALID)
2391                 return -EINVAL;
2392
2393         if (!capable(CAP_SYS_ADMIN))
2394                 return -EPERM;
2395
2396         p = alloc_swap_info();
2397         if (IS_ERR(p))
2398                 return PTR_ERR(p);
2399
2400         INIT_WORK(&p->discard_work, swap_discard_work);
2401
2402         name = getname(specialfile);
2403         if (IS_ERR(name)) {
2404                 error = PTR_ERR(name);
2405                 name = NULL;
2406                 goto bad_swap;
2407         }
2408         swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
2409         if (IS_ERR(swap_file)) {
2410                 error = PTR_ERR(swap_file);
2411                 swap_file = NULL;
2412                 goto bad_swap;
2413         }
2414
2415         p->swap_file = swap_file;
2416         mapping = swap_file->f_mapping;
2417         inode = mapping->host;
2418
2419         /* If S_ISREG(inode->i_mode) will do inode_lock(inode); */
2420         error = claim_swapfile(p, inode);
2421         if (unlikely(error))
2422                 goto bad_swap;
2423
2424         /*
2425          * Read the swap header.
2426          */
2427         if (!mapping->a_ops->readpage) {
2428                 error = -EINVAL;
2429                 goto bad_swap;
2430         }
2431         page = read_mapping_page(mapping, 0, swap_file);
2432         if (IS_ERR(page)) {
2433                 error = PTR_ERR(page);
2434                 goto bad_swap;
2435         }
2436         swap_header = kmap(page);
2437
2438         maxpages = read_swap_header(p, swap_header, inode);
2439         if (unlikely(!maxpages)) {
2440                 error = -EINVAL;
2441                 goto bad_swap;
2442         }
2443
2444         /* OK, set up the swap map and apply the bad block list */
2445         swap_map = vzalloc(maxpages);
2446         if (!swap_map) {
2447                 error = -ENOMEM;
2448                 goto bad_swap;
2449         }
2450         if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
2451                 int cpu;
2452
2453                 p->flags |= SWP_SOLIDSTATE;
2454                 /*
2455                  * select a random position to start with to help wear leveling
2456                  * SSD
2457                  */
2458                 p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
2459
2460                 cluster_info = vzalloc(DIV_ROUND_UP(maxpages,
2461                         SWAPFILE_CLUSTER) * sizeof(*cluster_info));
2462                 if (!cluster_info) {
2463                         error = -ENOMEM;
2464                         goto bad_swap;
2465                 }
2466                 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
2467                 if (!p->percpu_cluster) {
2468                         error = -ENOMEM;
2469                         goto bad_swap;
2470                 }
2471                 for_each_possible_cpu(cpu) {
2472                         struct percpu_cluster *cluster;
2473                         cluster = per_cpu_ptr(p->percpu_cluster, cpu);
2474                         cluster_set_null(&cluster->index);
2475                 }
2476         }
2477
2478         error = swap_cgroup_swapon(p->type, maxpages);
2479         if (error)
2480                 goto bad_swap;
2481
2482         nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
2483                 cluster_info, maxpages, &span);
2484         if (unlikely(nr_extents < 0)) {
2485                 error = nr_extents;
2486                 goto bad_swap;
2487         }
2488         /* frontswap enabled? set up bit-per-page map for frontswap */
2489         if (frontswap_enabled)
2490                 frontswap_map = vzalloc(BITS_TO_LONGS(maxpages) * sizeof(long));
2491
2492         if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
2493                 /*
2494                  * When discard is enabled for swap with no particular
2495                  * policy flagged, we set all swap discard flags here in
2496                  * order to sustain backward compatibility with older
2497                  * swapon(8) releases.
2498                  */
2499                 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
2500                              SWP_PAGE_DISCARD);
2501
2502                 /*
2503                  * By flagging sys_swapon, a sysadmin can tell us to
2504                  * either do single-time area discards only, or to just
2505                  * perform discards for released swap page-clusters.
2506                  * Now it's time to adjust the p->flags accordingly.
2507                  */
2508                 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
2509                         p->flags &= ~SWP_PAGE_DISCARD;
2510                 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
2511                         p->flags &= ~SWP_AREA_DISCARD;
2512
2513                 /* issue a swapon-time discard if it's still required */
2514                 if (p->flags & SWP_AREA_DISCARD) {
2515                         int err = discard_swap(p);
2516                         if (unlikely(err))
2517                                 pr_err("swapon: discard_swap(%p): %d\n",
2518                                         p, err);
2519                 }
2520         }
2521
2522         mutex_lock(&swapon_mutex);
2523         prio = -1;
2524         if (swap_flags & SWAP_FLAG_PREFER)
2525                 prio =
2526                   (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2527         enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
2528
2529         pr_info("Adding %uk swap on %s.  "
2530                         "Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
2531                 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
2532                 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
2533                 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
2534                 (p->flags & SWP_DISCARDABLE) ? "D" : "",
2535                 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
2536                 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
2537                 (frontswap_map) ? "FS" : "");
2538
2539         mutex_unlock(&swapon_mutex);
2540         atomic_inc(&proc_poll_event);
2541         wake_up_interruptible(&proc_poll_wait);
2542
2543         if (S_ISREG(inode->i_mode))
2544                 inode->i_flags |= S_SWAPFILE;
2545         error = 0;
2546         goto out;
2547 bad_swap:
2548         free_percpu(p->percpu_cluster);
2549         p->percpu_cluster = NULL;
2550         if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
2551                 set_blocksize(p->bdev, p->old_block_size);
2552                 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2553         }
2554         destroy_swap_extents(p);
2555         swap_cgroup_swapoff(p->type);
2556         spin_lock(&swap_lock);
2557         p->swap_file = NULL;
2558         p->flags = 0;
2559         spin_unlock(&swap_lock);
2560         vfree(swap_map);
2561         vfree(cluster_info);
2562         if (swap_file) {
2563                 if (inode && S_ISREG(inode->i_mode)) {
2564                         inode_unlock(inode);
2565                         inode = NULL;
2566                 }
2567                 filp_close(swap_file, NULL);
2568         }
2569 out:
2570         if (page && !IS_ERR(page)) {
2571                 kunmap(page);
2572                 page_cache_release(page);
2573         }
2574         if (name)
2575                 putname(name);
2576         if (inode && S_ISREG(inode->i_mode))
2577                 inode_unlock(inode);
2578         return error;
2579 }
2580
2581 void si_swapinfo(struct sysinfo *val)
2582 {
2583         unsigned int type;
2584         unsigned long nr_to_be_unused = 0;
2585
2586         spin_lock(&swap_lock);
2587         for (type = 0; type < nr_swapfiles; type++) {
2588                 struct swap_info_struct *si = swap_info[type];
2589
2590                 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2591                         nr_to_be_unused += si->inuse_pages;
2592         }
2593         val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
2594         val->totalswap = total_swap_pages + nr_to_be_unused;
2595         spin_unlock(&swap_lock);
2596 }
2597
2598 /*
2599  * Verify that a swap entry is valid and increment its swap map count.
2600  *
2601  * Returns error code in following case.
2602  * - success -> 0
2603  * - swp_entry is invalid -> EINVAL
2604  * - swp_entry is migration entry -> EINVAL
2605  * - swap-cache reference is requested but there is already one. -> EEXIST
2606  * - swap-cache reference is requested but the entry is not used. -> ENOENT
2607  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
2608  */
2609 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
2610 {
2611         struct swap_info_struct *p;
2612         unsigned long offset, type;
2613         unsigned char count;
2614         unsigned char has_cache;
2615         int err = -EINVAL;
2616
2617         if (non_swap_entry(entry))
2618                 goto out;
2619
2620         type = swp_type(entry);
2621         if (type >= nr_swapfiles)
2622                 goto bad_file;
2623         p = swap_info[type];
2624         offset = swp_offset(entry);
2625
2626         spin_lock(&p->lock);
2627         if (unlikely(offset >= p->max))
2628                 goto unlock_out;
2629
2630         count = p->swap_map[offset];
2631
2632         /*
2633          * swapin_readahead() doesn't check if a swap entry is valid, so the
2634          * swap entry could be SWAP_MAP_BAD. Check here with lock held.
2635          */
2636         if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
2637                 err = -ENOENT;
2638                 goto unlock_out;
2639         }
2640
2641         has_cache = count & SWAP_HAS_CACHE;
2642         count &= ~SWAP_HAS_CACHE;
2643         err = 0;
2644
2645         if (usage == SWAP_HAS_CACHE) {
2646
2647                 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
2648                 if (!has_cache && count)
2649                         has_cache = SWAP_HAS_CACHE;
2650                 else if (has_cache)             /* someone else added cache */
2651                         err = -EEXIST;
2652                 else                            /* no users remaining */
2653                         err = -ENOENT;
2654
2655         } else if (count || has_cache) {
2656
2657                 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
2658                         count += usage;
2659                 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
2660                         err = -EINVAL;
2661                 else if (swap_count_continued(p, offset, count))
2662                         count = COUNT_CONTINUED;
2663                 else
2664                         err = -ENOMEM;
2665         } else
2666                 err = -ENOENT;                  /* unused swap entry */
2667
2668         p->swap_map[offset] = count | has_cache;
2669
2670 unlock_out:
2671         spin_unlock(&p->lock);
2672 out:
2673         return err;
2674
2675 bad_file:
2676         pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val);
2677         goto out;
2678 }
2679
2680 /*
2681  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
2682  * (in which case its reference count is never incremented).
2683  */
2684 void swap_shmem_alloc(swp_entry_t entry)
2685 {
2686         __swap_duplicate(entry, SWAP_MAP_SHMEM);
2687 }
2688
2689 /*
2690  * Increase reference count of swap entry by 1.
2691  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
2692  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
2693  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
2694  * might occur if a page table entry has got corrupted.
2695  */
2696 int swap_duplicate(swp_entry_t entry)
2697 {
2698         int err = 0;
2699
2700         while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
2701                 err = add_swap_count_continuation(entry, GFP_ATOMIC);
2702         return err;
2703 }
2704
2705 /*
2706  * @entry: swap entry for which we allocate swap cache.
2707  *
2708  * Called when allocating swap cache for existing swap entry,
2709  * This can return error codes. Returns 0 at success.
2710  * -EBUSY means there is a swap cache.
2711  * Note: return code is different from swap_duplicate().
2712  */
2713 int swapcache_prepare(swp_entry_t entry)
2714 {
2715         return __swap_duplicate(entry, SWAP_HAS_CACHE);
2716 }
2717
2718 struct swap_info_struct *page_swap_info(struct page *page)
2719 {
2720         swp_entry_t swap = { .val = page_private(page) };
2721         BUG_ON(!PageSwapCache(page));
2722         return swap_info[swp_type(swap)];
2723 }
2724
2725 /*
2726  * out-of-line __page_file_ methods to avoid include hell.
2727  */
2728 struct address_space *__page_file_mapping(struct page *page)
2729 {
2730         VM_BUG_ON_PAGE(!PageSwapCache(page), page);
2731         return page_swap_info(page)->swap_file->f_mapping;
2732 }
2733 EXPORT_SYMBOL_GPL(__page_file_mapping);
2734
2735 pgoff_t __page_file_index(struct page *page)
2736 {
2737         swp_entry_t swap = { .val = page_private(page) };
2738         VM_BUG_ON_PAGE(!PageSwapCache(page), page);
2739         return swp_offset(swap);
2740 }
2741 EXPORT_SYMBOL_GPL(__page_file_index);
2742
2743 /*
2744  * add_swap_count_continuation - called when a swap count is duplicated
2745  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
2746  * page of the original vmalloc'ed swap_map, to hold the continuation count
2747  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
2748  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
2749  *
2750  * These continuation pages are seldom referenced: the common paths all work
2751  * on the original swap_map, only referring to a continuation page when the
2752  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
2753  *
2754  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
2755  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
2756  * can be called after dropping locks.
2757  */
2758 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
2759 {
2760         struct swap_info_struct *si;
2761         struct page *head;
2762         struct page *page;
2763         struct page *list_page;
2764         pgoff_t offset;
2765         unsigned char count;
2766
2767         /*
2768          * When debugging, it's easier to use __GFP_ZERO here; but it's better
2769          * for latency not to zero a page while GFP_ATOMIC and holding locks.
2770          */
2771         page = alloc_page(gfp_mask | __GFP_HIGHMEM);
2772
2773         si = swap_info_get(entry);
2774         if (!si) {
2775                 /*
2776                  * An acceptable race has occurred since the failing
2777                  * __swap_duplicate(): the swap entry has been freed,
2778                  * perhaps even the whole swap_map cleared for swapoff.
2779                  */
2780                 goto outer;
2781         }
2782
2783         offset = swp_offset(entry);
2784         count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
2785
2786         if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
2787                 /*
2788                  * The higher the swap count, the more likely it is that tasks
2789                  * will race to add swap count continuation: we need to avoid
2790                  * over-provisioning.
2791                  */
2792                 goto out;
2793         }
2794
2795         if (!page) {
2796                 spin_unlock(&si->lock);
2797                 return -ENOMEM;
2798         }
2799
2800         /*
2801          * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2802          * no architecture is using highmem pages for kernel page tables: so it
2803          * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
2804          */
2805         head = vmalloc_to_page(si->swap_map + offset);
2806         offset &= ~PAGE_MASK;
2807
2808         /*
2809          * Page allocation does not initialize the page's lru field,
2810          * but it does always reset its private field.
2811          */
2812         if (!page_private(head)) {
2813                 BUG_ON(count & COUNT_CONTINUED);
2814                 INIT_LIST_HEAD(&head->lru);
2815                 set_page_private(head, SWP_CONTINUED);
2816                 si->flags |= SWP_CONTINUED;
2817         }
2818
2819         list_for_each_entry(list_page, &head->lru, lru) {
2820                 unsigned char *map;
2821
2822                 /*
2823                  * If the previous map said no continuation, but we've found
2824                  * a continuation page, free our allocation and use this one.
2825                  */
2826                 if (!(count & COUNT_CONTINUED))
2827                         goto out;
2828
2829                 map = kmap_atomic(list_page) + offset;
2830                 count = *map;
2831                 kunmap_atomic(map);
2832
2833                 /*
2834                  * If this continuation count now has some space in it,
2835                  * free our allocation and use this one.
2836                  */
2837                 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2838                         goto out;
2839         }
2840
2841         list_add_tail(&page->lru, &head->lru);
2842         page = NULL;                    /* now it's attached, don't free it */
2843 out:
2844         spin_unlock(&si->lock);
2845 outer:
2846         if (page)
2847                 __free_page(page);
2848         return 0;
2849 }
2850
2851 /*
2852  * swap_count_continued - when the original swap_map count is incremented
2853  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
2854  * into, carry if so, or else fail until a new continuation page is allocated;
2855  * when the original swap_map count is decremented from 0 with continuation,
2856  * borrow from the continuation and report whether it still holds more.
2857  * Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
2858  */
2859 static bool swap_count_continued(struct swap_info_struct *si,
2860                                  pgoff_t offset, unsigned char count)
2861 {
2862         struct page *head;
2863         struct page *page;
2864         unsigned char *map;
2865
2866         head = vmalloc_to_page(si->swap_map + offset);
2867         if (page_private(head) != SWP_CONTINUED) {
2868                 BUG_ON(count & COUNT_CONTINUED);
2869                 return false;           /* need to add count continuation */
2870         }
2871
2872         offset &= ~PAGE_MASK;
2873         page = list_entry(head->lru.next, struct page, lru);
2874         map = kmap_atomic(page) + offset;
2875
2876         if (count == SWAP_MAP_MAX)      /* initial increment from swap_map */
2877                 goto init_map;          /* jump over SWAP_CONT_MAX checks */
2878
2879         if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
2880                 /*
2881                  * Think of how you add 1 to 999
2882                  */
2883                 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
2884                         kunmap_atomic(map);
2885                         page = list_entry(page->lru.next, struct page, lru);
2886                         BUG_ON(page == head);
2887                         map = kmap_atomic(page) + offset;
2888                 }
2889                 if (*map == SWAP_CONT_MAX) {
2890                         kunmap_atomic(map);
2891                         page = list_entry(page->lru.next, struct page, lru);
2892                         if (page == head)
2893                                 return false;   /* add count continuation */
2894                         map = kmap_atomic(page) + offset;
2895 init_map:               *map = 0;               /* we didn't zero the page */
2896                 }
2897                 *map += 1;
2898                 kunmap_atomic(map);
2899                 page = list_entry(page->lru.prev, struct page, lru);
2900                 while (page != head) {
2901                         map = kmap_atomic(page) + offset;
2902                         *map = COUNT_CONTINUED;
2903                         kunmap_atomic(map);
2904                         page = list_entry(page->lru.prev, struct page, lru);
2905                 }
2906                 return true;                    /* incremented */
2907
2908         } else {                                /* decrementing */
2909                 /*
2910                  * Think of how you subtract 1 from 1000
2911                  */
2912                 BUG_ON(count != COUNT_CONTINUED);
2913                 while (*map == COUNT_CONTINUED) {
2914                         kunmap_atomic(map);
2915                         page = list_entry(page->lru.next, struct page, lru);
2916                         BUG_ON(page == head);
2917                         map = kmap_atomic(page) + offset;
2918                 }
2919                 BUG_ON(*map == 0);
2920                 *map -= 1;
2921                 if (*map == 0)
2922                         count = 0;
2923                 kunmap_atomic(map);
2924                 page = list_entry(page->lru.prev, struct page, lru);
2925                 while (page != head) {
2926                         map = kmap_atomic(page) + offset;
2927                         *map = SWAP_CONT_MAX | count;
2928                         count = COUNT_CONTINUED;
2929                         kunmap_atomic(map);
2930                         page = list_entry(page->lru.prev, struct page, lru);
2931                 }
2932                 return count == COUNT_CONTINUED;
2933         }
2934 }
2935
2936 /*
2937  * free_swap_count_continuations - swapoff free all the continuation pages
2938  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
2939  */
2940 static void free_swap_count_continuations(struct swap_info_struct *si)
2941 {
2942         pgoff_t offset;
2943
2944         for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
2945                 struct page *head;
2946                 head = vmalloc_to_page(si->swap_map + offset);
2947                 if (page_private(head)) {
2948                         struct page *page, *next;
2949
2950                         list_for_each_entry_safe(page, next, &head->lru, lru) {
2951                                 list_del(&page->lru);
2952                                 __free_page(page);
2953                         }
2954                 }
2955         }
2956 }