]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - mm/vmstat.c
mm: vmstat: move slab statistics from zone to node counters
[karo-tx-linux.git] / mm / vmstat.c
1 /*
2  *  linux/mm/vmstat.c
3  *
4  *  Manages VM statistics
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *
7  *  zoned VM statistics
8  *  Copyright (C) 2006 Silicon Graphics, Inc.,
9  *              Christoph Lameter <christoph@lameter.com>
10  *  Copyright (C) 2008-2014 Christoph Lameter
11  */
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/err.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/cpu.h>
18 #include <linux/cpumask.h>
19 #include <linux/vmstat.h>
20 #include <linux/proc_fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/debugfs.h>
23 #include <linux/sched.h>
24 #include <linux/math64.h>
25 #include <linux/writeback.h>
26 #include <linux/compaction.h>
27 #include <linux/mm_inline.h>
28 #include <linux/page_ext.h>
29 #include <linux/page_owner.h>
30
31 #include "internal.h"
32
33 #ifdef CONFIG_VM_EVENT_COUNTERS
34 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
35 EXPORT_PER_CPU_SYMBOL(vm_event_states);
36
37 static void sum_vm_events(unsigned long *ret)
38 {
39         int cpu;
40         int i;
41
42         memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
43
44         for_each_online_cpu(cpu) {
45                 struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
46
47                 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
48                         ret[i] += this->event[i];
49         }
50 }
51
52 /*
53  * Accumulate the vm event counters across all CPUs.
54  * The result is unavoidably approximate - it can change
55  * during and after execution of this function.
56 */
57 void all_vm_events(unsigned long *ret)
58 {
59         get_online_cpus();
60         sum_vm_events(ret);
61         put_online_cpus();
62 }
63 EXPORT_SYMBOL_GPL(all_vm_events);
64
65 /*
66  * Fold the foreign cpu events into our own.
67  *
68  * This is adding to the events on one processor
69  * but keeps the global counts constant.
70  */
71 void vm_events_fold_cpu(int cpu)
72 {
73         struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
74         int i;
75
76         for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
77                 count_vm_events(i, fold_state->event[i]);
78                 fold_state->event[i] = 0;
79         }
80 }
81
82 #endif /* CONFIG_VM_EVENT_COUNTERS */
83
84 /*
85  * Manage combined zone based / global counters
86  *
87  * vm_stat contains the global counters
88  */
89 atomic_long_t vm_zone_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
90 atomic_long_t vm_node_stat[NR_VM_NODE_STAT_ITEMS] __cacheline_aligned_in_smp;
91 EXPORT_SYMBOL(vm_zone_stat);
92 EXPORT_SYMBOL(vm_node_stat);
93
94 #ifdef CONFIG_SMP
95
96 int calculate_pressure_threshold(struct zone *zone)
97 {
98         int threshold;
99         int watermark_distance;
100
101         /*
102          * As vmstats are not up to date, there is drift between the estimated
103          * and real values. For high thresholds and a high number of CPUs, it
104          * is possible for the min watermark to be breached while the estimated
105          * value looks fine. The pressure threshold is a reduced value such
106          * that even the maximum amount of drift will not accidentally breach
107          * the min watermark
108          */
109         watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
110         threshold = max(1, (int)(watermark_distance / num_online_cpus()));
111
112         /*
113          * Maximum threshold is 125
114          */
115         threshold = min(125, threshold);
116
117         return threshold;
118 }
119
120 int calculate_normal_threshold(struct zone *zone)
121 {
122         int threshold;
123         int mem;        /* memory in 128 MB units */
124
125         /*
126          * The threshold scales with the number of processors and the amount
127          * of memory per zone. More memory means that we can defer updates for
128          * longer, more processors could lead to more contention.
129          * fls() is used to have a cheap way of logarithmic scaling.
130          *
131          * Some sample thresholds:
132          *
133          * Threshold    Processors      (fls)   Zonesize        fls(mem+1)
134          * ------------------------------------------------------------------
135          * 8            1               1       0.9-1 GB        4
136          * 16           2               2       0.9-1 GB        4
137          * 20           2               2       1-2 GB          5
138          * 24           2               2       2-4 GB          6
139          * 28           2               2       4-8 GB          7
140          * 32           2               2       8-16 GB         8
141          * 4            2               2       <128M           1
142          * 30           4               3       2-4 GB          5
143          * 48           4               3       8-16 GB         8
144          * 32           8               4       1-2 GB          4
145          * 32           8               4       0.9-1GB         4
146          * 10           16              5       <128M           1
147          * 40           16              5       900M            4
148          * 70           64              7       2-4 GB          5
149          * 84           64              7       4-8 GB          6
150          * 108          512             9       4-8 GB          6
151          * 125          1024            10      8-16 GB         8
152          * 125          1024            10      16-32 GB        9
153          */
154
155         mem = zone->managed_pages >> (27 - PAGE_SHIFT);
156
157         threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
158
159         /*
160          * Maximum threshold is 125
161          */
162         threshold = min(125, threshold);
163
164         return threshold;
165 }
166
167 /*
168  * Refresh the thresholds for each zone.
169  */
170 void refresh_zone_stat_thresholds(void)
171 {
172         struct pglist_data *pgdat;
173         struct zone *zone;
174         int cpu;
175         int threshold;
176
177         /* Zero current pgdat thresholds */
178         for_each_online_pgdat(pgdat) {
179                 for_each_online_cpu(cpu) {
180                         per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold = 0;
181                 }
182         }
183
184         for_each_populated_zone(zone) {
185                 struct pglist_data *pgdat = zone->zone_pgdat;
186                 unsigned long max_drift, tolerate_drift;
187
188                 threshold = calculate_normal_threshold(zone);
189
190                 for_each_online_cpu(cpu) {
191                         int pgdat_threshold;
192
193                         per_cpu_ptr(zone->pageset, cpu)->stat_threshold
194                                                         = threshold;
195
196                         /* Base nodestat threshold on the largest populated zone. */
197                         pgdat_threshold = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold;
198                         per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold
199                                 = max(threshold, pgdat_threshold);
200                 }
201
202                 /*
203                  * Only set percpu_drift_mark if there is a danger that
204                  * NR_FREE_PAGES reports the low watermark is ok when in fact
205                  * the min watermark could be breached by an allocation
206                  */
207                 tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
208                 max_drift = num_online_cpus() * threshold;
209                 if (max_drift > tolerate_drift)
210                         zone->percpu_drift_mark = high_wmark_pages(zone) +
211                                         max_drift;
212         }
213 }
214
215 void set_pgdat_percpu_threshold(pg_data_t *pgdat,
216                                 int (*calculate_pressure)(struct zone *))
217 {
218         struct zone *zone;
219         int cpu;
220         int threshold;
221         int i;
222
223         for (i = 0; i < pgdat->nr_zones; i++) {
224                 zone = &pgdat->node_zones[i];
225                 if (!zone->percpu_drift_mark)
226                         continue;
227
228                 threshold = (*calculate_pressure)(zone);
229                 for_each_online_cpu(cpu)
230                         per_cpu_ptr(zone->pageset, cpu)->stat_threshold
231                                                         = threshold;
232         }
233 }
234
235 /*
236  * For use when we know that interrupts are disabled,
237  * or when we know that preemption is disabled and that
238  * particular counter cannot be updated from interrupt context.
239  */
240 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
241                            long delta)
242 {
243         struct per_cpu_pageset __percpu *pcp = zone->pageset;
244         s8 __percpu *p = pcp->vm_stat_diff + item;
245         long x;
246         long t;
247
248         x = delta + __this_cpu_read(*p);
249
250         t = __this_cpu_read(pcp->stat_threshold);
251
252         if (unlikely(x > t || x < -t)) {
253                 zone_page_state_add(x, zone, item);
254                 x = 0;
255         }
256         __this_cpu_write(*p, x);
257 }
258 EXPORT_SYMBOL(__mod_zone_page_state);
259
260 void __mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
261                                 long delta)
262 {
263         struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
264         s8 __percpu *p = pcp->vm_node_stat_diff + item;
265         long x;
266         long t;
267
268         x = delta + __this_cpu_read(*p);
269
270         t = __this_cpu_read(pcp->stat_threshold);
271
272         if (unlikely(x > t || x < -t)) {
273                 node_page_state_add(x, pgdat, item);
274                 x = 0;
275         }
276         __this_cpu_write(*p, x);
277 }
278 EXPORT_SYMBOL(__mod_node_page_state);
279
280 /*
281  * Optimized increment and decrement functions.
282  *
283  * These are only for a single page and therefore can take a struct page *
284  * argument instead of struct zone *. This allows the inclusion of the code
285  * generated for page_zone(page) into the optimized functions.
286  *
287  * No overflow check is necessary and therefore the differential can be
288  * incremented or decremented in place which may allow the compilers to
289  * generate better code.
290  * The increment or decrement is known and therefore one boundary check can
291  * be omitted.
292  *
293  * NOTE: These functions are very performance sensitive. Change only
294  * with care.
295  *
296  * Some processors have inc/dec instructions that are atomic vs an interrupt.
297  * However, the code must first determine the differential location in a zone
298  * based on the processor number and then inc/dec the counter. There is no
299  * guarantee without disabling preemption that the processor will not change
300  * in between and therefore the atomicity vs. interrupt cannot be exploited
301  * in a useful way here.
302  */
303 void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
304 {
305         struct per_cpu_pageset __percpu *pcp = zone->pageset;
306         s8 __percpu *p = pcp->vm_stat_diff + item;
307         s8 v, t;
308
309         v = __this_cpu_inc_return(*p);
310         t = __this_cpu_read(pcp->stat_threshold);
311         if (unlikely(v > t)) {
312                 s8 overstep = t >> 1;
313
314                 zone_page_state_add(v + overstep, zone, item);
315                 __this_cpu_write(*p, -overstep);
316         }
317 }
318
319 void __inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
320 {
321         struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
322         s8 __percpu *p = pcp->vm_node_stat_diff + item;
323         s8 v, t;
324
325         v = __this_cpu_inc_return(*p);
326         t = __this_cpu_read(pcp->stat_threshold);
327         if (unlikely(v > t)) {
328                 s8 overstep = t >> 1;
329
330                 node_page_state_add(v + overstep, pgdat, item);
331                 __this_cpu_write(*p, -overstep);
332         }
333 }
334
335 void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
336 {
337         __inc_zone_state(page_zone(page), item);
338 }
339 EXPORT_SYMBOL(__inc_zone_page_state);
340
341 void __inc_node_page_state(struct page *page, enum node_stat_item item)
342 {
343         __inc_node_state(page_pgdat(page), item);
344 }
345 EXPORT_SYMBOL(__inc_node_page_state);
346
347 void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
348 {
349         struct per_cpu_pageset __percpu *pcp = zone->pageset;
350         s8 __percpu *p = pcp->vm_stat_diff + item;
351         s8 v, t;
352
353         v = __this_cpu_dec_return(*p);
354         t = __this_cpu_read(pcp->stat_threshold);
355         if (unlikely(v < - t)) {
356                 s8 overstep = t >> 1;
357
358                 zone_page_state_add(v - overstep, zone, item);
359                 __this_cpu_write(*p, overstep);
360         }
361 }
362
363 void __dec_node_state(struct pglist_data *pgdat, enum node_stat_item item)
364 {
365         struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
366         s8 __percpu *p = pcp->vm_node_stat_diff + item;
367         s8 v, t;
368
369         v = __this_cpu_dec_return(*p);
370         t = __this_cpu_read(pcp->stat_threshold);
371         if (unlikely(v < - t)) {
372                 s8 overstep = t >> 1;
373
374                 node_page_state_add(v - overstep, pgdat, item);
375                 __this_cpu_write(*p, overstep);
376         }
377 }
378
379 void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
380 {
381         __dec_zone_state(page_zone(page), item);
382 }
383 EXPORT_SYMBOL(__dec_zone_page_state);
384
385 void __dec_node_page_state(struct page *page, enum node_stat_item item)
386 {
387         __dec_node_state(page_pgdat(page), item);
388 }
389 EXPORT_SYMBOL(__dec_node_page_state);
390
391 #ifdef CONFIG_HAVE_CMPXCHG_LOCAL
392 /*
393  * If we have cmpxchg_local support then we do not need to incur the overhead
394  * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
395  *
396  * mod_state() modifies the zone counter state through atomic per cpu
397  * operations.
398  *
399  * Overstep mode specifies how overstep should handled:
400  *     0       No overstepping
401  *     1       Overstepping half of threshold
402  *     -1      Overstepping minus half of threshold
403 */
404 static inline void mod_zone_state(struct zone *zone,
405        enum zone_stat_item item, long delta, int overstep_mode)
406 {
407         struct per_cpu_pageset __percpu *pcp = zone->pageset;
408         s8 __percpu *p = pcp->vm_stat_diff + item;
409         long o, n, t, z;
410
411         do {
412                 z = 0;  /* overflow to zone counters */
413
414                 /*
415                  * The fetching of the stat_threshold is racy. We may apply
416                  * a counter threshold to the wrong the cpu if we get
417                  * rescheduled while executing here. However, the next
418                  * counter update will apply the threshold again and
419                  * therefore bring the counter under the threshold again.
420                  *
421                  * Most of the time the thresholds are the same anyways
422                  * for all cpus in a zone.
423                  */
424                 t = this_cpu_read(pcp->stat_threshold);
425
426                 o = this_cpu_read(*p);
427                 n = delta + o;
428
429                 if (n > t || n < -t) {
430                         int os = overstep_mode * (t >> 1) ;
431
432                         /* Overflow must be added to zone counters */
433                         z = n + os;
434                         n = -os;
435                 }
436         } while (this_cpu_cmpxchg(*p, o, n) != o);
437
438         if (z)
439                 zone_page_state_add(z, zone, item);
440 }
441
442 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
443                          long delta)
444 {
445         mod_zone_state(zone, item, delta, 0);
446 }
447 EXPORT_SYMBOL(mod_zone_page_state);
448
449 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
450 {
451         mod_zone_state(page_zone(page), item, 1, 1);
452 }
453 EXPORT_SYMBOL(inc_zone_page_state);
454
455 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
456 {
457         mod_zone_state(page_zone(page), item, -1, -1);
458 }
459 EXPORT_SYMBOL(dec_zone_page_state);
460
461 static inline void mod_node_state(struct pglist_data *pgdat,
462        enum node_stat_item item, int delta, int overstep_mode)
463 {
464         struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
465         s8 __percpu *p = pcp->vm_node_stat_diff + item;
466         long o, n, t, z;
467
468         do {
469                 z = 0;  /* overflow to node counters */
470
471                 /*
472                  * The fetching of the stat_threshold is racy. We may apply
473                  * a counter threshold to the wrong the cpu if we get
474                  * rescheduled while executing here. However, the next
475                  * counter update will apply the threshold again and
476                  * therefore bring the counter under the threshold again.
477                  *
478                  * Most of the time the thresholds are the same anyways
479                  * for all cpus in a node.
480                  */
481                 t = this_cpu_read(pcp->stat_threshold);
482
483                 o = this_cpu_read(*p);
484                 n = delta + o;
485
486                 if (n > t || n < -t) {
487                         int os = overstep_mode * (t >> 1) ;
488
489                         /* Overflow must be added to node counters */
490                         z = n + os;
491                         n = -os;
492                 }
493         } while (this_cpu_cmpxchg(*p, o, n) != o);
494
495         if (z)
496                 node_page_state_add(z, pgdat, item);
497 }
498
499 void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
500                                         long delta)
501 {
502         mod_node_state(pgdat, item, delta, 0);
503 }
504 EXPORT_SYMBOL(mod_node_page_state);
505
506 void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
507 {
508         mod_node_state(pgdat, item, 1, 1);
509 }
510
511 void inc_node_page_state(struct page *page, enum node_stat_item item)
512 {
513         mod_node_state(page_pgdat(page), item, 1, 1);
514 }
515 EXPORT_SYMBOL(inc_node_page_state);
516
517 void dec_node_page_state(struct page *page, enum node_stat_item item)
518 {
519         mod_node_state(page_pgdat(page), item, -1, -1);
520 }
521 EXPORT_SYMBOL(dec_node_page_state);
522 #else
523 /*
524  * Use interrupt disable to serialize counter updates
525  */
526 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
527                          long delta)
528 {
529         unsigned long flags;
530
531         local_irq_save(flags);
532         __mod_zone_page_state(zone, item, delta);
533         local_irq_restore(flags);
534 }
535 EXPORT_SYMBOL(mod_zone_page_state);
536
537 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
538 {
539         unsigned long flags;
540         struct zone *zone;
541
542         zone = page_zone(page);
543         local_irq_save(flags);
544         __inc_zone_state(zone, item);
545         local_irq_restore(flags);
546 }
547 EXPORT_SYMBOL(inc_zone_page_state);
548
549 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
550 {
551         unsigned long flags;
552
553         local_irq_save(flags);
554         __dec_zone_page_state(page, item);
555         local_irq_restore(flags);
556 }
557 EXPORT_SYMBOL(dec_zone_page_state);
558
559 void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
560 {
561         unsigned long flags;
562
563         local_irq_save(flags);
564         __inc_node_state(pgdat, item);
565         local_irq_restore(flags);
566 }
567 EXPORT_SYMBOL(inc_node_state);
568
569 void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
570                                         long delta)
571 {
572         unsigned long flags;
573
574         local_irq_save(flags);
575         __mod_node_page_state(pgdat, item, delta);
576         local_irq_restore(flags);
577 }
578 EXPORT_SYMBOL(mod_node_page_state);
579
580 void inc_node_page_state(struct page *page, enum node_stat_item item)
581 {
582         unsigned long flags;
583         struct pglist_data *pgdat;
584
585         pgdat = page_pgdat(page);
586         local_irq_save(flags);
587         __inc_node_state(pgdat, item);
588         local_irq_restore(flags);
589 }
590 EXPORT_SYMBOL(inc_node_page_state);
591
592 void dec_node_page_state(struct page *page, enum node_stat_item item)
593 {
594         unsigned long flags;
595
596         local_irq_save(flags);
597         __dec_node_page_state(page, item);
598         local_irq_restore(flags);
599 }
600 EXPORT_SYMBOL(dec_node_page_state);
601 #endif
602
603 /*
604  * Fold a differential into the global counters.
605  * Returns the number of counters updated.
606  */
607 static int fold_diff(int *zone_diff, int *node_diff)
608 {
609         int i;
610         int changes = 0;
611
612         for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
613                 if (zone_diff[i]) {
614                         atomic_long_add(zone_diff[i], &vm_zone_stat[i]);
615                         changes++;
616         }
617
618         for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
619                 if (node_diff[i]) {
620                         atomic_long_add(node_diff[i], &vm_node_stat[i]);
621                         changes++;
622         }
623         return changes;
624 }
625
626 /*
627  * Update the zone counters for the current cpu.
628  *
629  * Note that refresh_cpu_vm_stats strives to only access
630  * node local memory. The per cpu pagesets on remote zones are placed
631  * in the memory local to the processor using that pageset. So the
632  * loop over all zones will access a series of cachelines local to
633  * the processor.
634  *
635  * The call to zone_page_state_add updates the cachelines with the
636  * statistics in the remote zone struct as well as the global cachelines
637  * with the global counters. These could cause remote node cache line
638  * bouncing and will have to be only done when necessary.
639  *
640  * The function returns the number of global counters updated.
641  */
642 static int refresh_cpu_vm_stats(bool do_pagesets)
643 {
644         struct pglist_data *pgdat;
645         struct zone *zone;
646         int i;
647         int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
648         int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
649         int changes = 0;
650
651         for_each_populated_zone(zone) {
652                 struct per_cpu_pageset __percpu *p = zone->pageset;
653
654                 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
655                         int v;
656
657                         v = this_cpu_xchg(p->vm_stat_diff[i], 0);
658                         if (v) {
659
660                                 atomic_long_add(v, &zone->vm_stat[i]);
661                                 global_zone_diff[i] += v;
662 #ifdef CONFIG_NUMA
663                                 /* 3 seconds idle till flush */
664                                 __this_cpu_write(p->expire, 3);
665 #endif
666                         }
667                 }
668 #ifdef CONFIG_NUMA
669                 if (do_pagesets) {
670                         cond_resched();
671                         /*
672                          * Deal with draining the remote pageset of this
673                          * processor
674                          *
675                          * Check if there are pages remaining in this pageset
676                          * if not then there is nothing to expire.
677                          */
678                         if (!__this_cpu_read(p->expire) ||
679                                !__this_cpu_read(p->pcp.count))
680                                 continue;
681
682                         /*
683                          * We never drain zones local to this processor.
684                          */
685                         if (zone_to_nid(zone) == numa_node_id()) {
686                                 __this_cpu_write(p->expire, 0);
687                                 continue;
688                         }
689
690                         if (__this_cpu_dec_return(p->expire))
691                                 continue;
692
693                         if (__this_cpu_read(p->pcp.count)) {
694                                 drain_zone_pages(zone, this_cpu_ptr(&p->pcp));
695                                 changes++;
696                         }
697                 }
698 #endif
699         }
700
701         for_each_online_pgdat(pgdat) {
702                 struct per_cpu_nodestat __percpu *p = pgdat->per_cpu_nodestats;
703
704                 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
705                         int v;
706
707                         v = this_cpu_xchg(p->vm_node_stat_diff[i], 0);
708                         if (v) {
709                                 atomic_long_add(v, &pgdat->vm_stat[i]);
710                                 global_node_diff[i] += v;
711                         }
712                 }
713         }
714
715         changes += fold_diff(global_zone_diff, global_node_diff);
716         return changes;
717 }
718
719 /*
720  * Fold the data for an offline cpu into the global array.
721  * There cannot be any access by the offline cpu and therefore
722  * synchronization is simplified.
723  */
724 void cpu_vm_stats_fold(int cpu)
725 {
726         struct pglist_data *pgdat;
727         struct zone *zone;
728         int i;
729         int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
730         int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
731
732         for_each_populated_zone(zone) {
733                 struct per_cpu_pageset *p;
734
735                 p = per_cpu_ptr(zone->pageset, cpu);
736
737                 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
738                         if (p->vm_stat_diff[i]) {
739                                 int v;
740
741                                 v = p->vm_stat_diff[i];
742                                 p->vm_stat_diff[i] = 0;
743                                 atomic_long_add(v, &zone->vm_stat[i]);
744                                 global_zone_diff[i] += v;
745                         }
746         }
747
748         for_each_online_pgdat(pgdat) {
749                 struct per_cpu_nodestat *p;
750
751                 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
752
753                 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
754                         if (p->vm_node_stat_diff[i]) {
755                                 int v;
756
757                                 v = p->vm_node_stat_diff[i];
758                                 p->vm_node_stat_diff[i] = 0;
759                                 atomic_long_add(v, &pgdat->vm_stat[i]);
760                                 global_node_diff[i] += v;
761                         }
762         }
763
764         fold_diff(global_zone_diff, global_node_diff);
765 }
766
767 /*
768  * this is only called if !populated_zone(zone), which implies no other users of
769  * pset->vm_stat_diff[] exsist.
770  */
771 void drain_zonestat(struct zone *zone, struct per_cpu_pageset *pset)
772 {
773         int i;
774
775         for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
776                 if (pset->vm_stat_diff[i]) {
777                         int v = pset->vm_stat_diff[i];
778                         pset->vm_stat_diff[i] = 0;
779                         atomic_long_add(v, &zone->vm_stat[i]);
780                         atomic_long_add(v, &vm_zone_stat[i]);
781                 }
782 }
783 #endif
784
785 #ifdef CONFIG_NUMA
786 /*
787  * Determine the per node value of a stat item. This function
788  * is called frequently in a NUMA machine, so try to be as
789  * frugal as possible.
790  */
791 unsigned long sum_zone_node_page_state(int node,
792                                  enum zone_stat_item item)
793 {
794         struct zone *zones = NODE_DATA(node)->node_zones;
795         int i;
796         unsigned long count = 0;
797
798         for (i = 0; i < MAX_NR_ZONES; i++)
799                 count += zone_page_state(zones + i, item);
800
801         return count;
802 }
803
804 /*
805  * Determine the per node value of a stat item.
806  */
807 unsigned long node_page_state(struct pglist_data *pgdat,
808                                 enum node_stat_item item)
809 {
810         long x = atomic_long_read(&pgdat->vm_stat[item]);
811 #ifdef CONFIG_SMP
812         if (x < 0)
813                 x = 0;
814 #endif
815         return x;
816 }
817 #endif
818
819 #ifdef CONFIG_COMPACTION
820
821 struct contig_page_info {
822         unsigned long free_pages;
823         unsigned long free_blocks_total;
824         unsigned long free_blocks_suitable;
825 };
826
827 /*
828  * Calculate the number of free pages in a zone, how many contiguous
829  * pages are free and how many are large enough to satisfy an allocation of
830  * the target size. Note that this function makes no attempt to estimate
831  * how many suitable free blocks there *might* be if MOVABLE pages were
832  * migrated. Calculating that is possible, but expensive and can be
833  * figured out from userspace
834  */
835 static void fill_contig_page_info(struct zone *zone,
836                                 unsigned int suitable_order,
837                                 struct contig_page_info *info)
838 {
839         unsigned int order;
840
841         info->free_pages = 0;
842         info->free_blocks_total = 0;
843         info->free_blocks_suitable = 0;
844
845         for (order = 0; order < MAX_ORDER; order++) {
846                 unsigned long blocks;
847
848                 /* Count number of free blocks */
849                 blocks = zone->free_area[order].nr_free;
850                 info->free_blocks_total += blocks;
851
852                 /* Count free base pages */
853                 info->free_pages += blocks << order;
854
855                 /* Count the suitable free blocks */
856                 if (order >= suitable_order)
857                         info->free_blocks_suitable += blocks <<
858                                                 (order - suitable_order);
859         }
860 }
861
862 /*
863  * A fragmentation index only makes sense if an allocation of a requested
864  * size would fail. If that is true, the fragmentation index indicates
865  * whether external fragmentation or a lack of memory was the problem.
866  * The value can be used to determine if page reclaim or compaction
867  * should be used
868  */
869 static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
870 {
871         unsigned long requested = 1UL << order;
872
873         if (!info->free_blocks_total)
874                 return 0;
875
876         /* Fragmentation index only makes sense when a request would fail */
877         if (info->free_blocks_suitable)
878                 return -1000;
879
880         /*
881          * Index is between 0 and 1 so return within 3 decimal places
882          *
883          * 0 => allocation would fail due to lack of memory
884          * 1 => allocation would fail due to fragmentation
885          */
886         return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
887 }
888
889 /* Same as __fragmentation index but allocs contig_page_info on stack */
890 int fragmentation_index(struct zone *zone, unsigned int order)
891 {
892         struct contig_page_info info;
893
894         fill_contig_page_info(zone, order, &info);
895         return __fragmentation_index(order, &info);
896 }
897 #endif
898
899 #if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || defined(CONFIG_NUMA)
900 #ifdef CONFIG_ZONE_DMA
901 #define TEXT_FOR_DMA(xx) xx "_dma",
902 #else
903 #define TEXT_FOR_DMA(xx)
904 #endif
905
906 #ifdef CONFIG_ZONE_DMA32
907 #define TEXT_FOR_DMA32(xx) xx "_dma32",
908 #else
909 #define TEXT_FOR_DMA32(xx)
910 #endif
911
912 #ifdef CONFIG_HIGHMEM
913 #define TEXT_FOR_HIGHMEM(xx) xx "_high",
914 #else
915 #define TEXT_FOR_HIGHMEM(xx)
916 #endif
917
918 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
919                                         TEXT_FOR_HIGHMEM(xx) xx "_movable",
920
921 const char * const vmstat_text[] = {
922         /* enum zone_stat_item countes */
923         "nr_free_pages",
924         "nr_zone_inactive_anon",
925         "nr_zone_active_anon",
926         "nr_zone_inactive_file",
927         "nr_zone_active_file",
928         "nr_zone_unevictable",
929         "nr_zone_write_pending",
930         "nr_mlock",
931         "nr_page_table_pages",
932         "nr_kernel_stack",
933         "nr_bounce",
934 #if IS_ENABLED(CONFIG_ZSMALLOC)
935         "nr_zspages",
936 #endif
937 #ifdef CONFIG_NUMA
938         "numa_hit",
939         "numa_miss",
940         "numa_foreign",
941         "numa_interleave",
942         "numa_local",
943         "numa_other",
944 #endif
945         "nr_free_cma",
946
947         /* Node-based counters */
948         "nr_inactive_anon",
949         "nr_active_anon",
950         "nr_inactive_file",
951         "nr_active_file",
952         "nr_unevictable",
953         "nr_slab_reclaimable",
954         "nr_slab_unreclaimable",
955         "nr_isolated_anon",
956         "nr_isolated_file",
957         "workingset_refault",
958         "workingset_activate",
959         "workingset_nodereclaim",
960         "nr_anon_pages",
961         "nr_mapped",
962         "nr_file_pages",
963         "nr_dirty",
964         "nr_writeback",
965         "nr_writeback_temp",
966         "nr_shmem",
967         "nr_shmem_hugepages",
968         "nr_shmem_pmdmapped",
969         "nr_anon_transparent_hugepages",
970         "nr_unstable",
971         "nr_vmscan_write",
972         "nr_vmscan_immediate_reclaim",
973         "nr_dirtied",
974         "nr_written",
975
976         /* enum writeback_stat_item counters */
977         "nr_dirty_threshold",
978         "nr_dirty_background_threshold",
979
980 #ifdef CONFIG_VM_EVENT_COUNTERS
981         /* enum vm_event_item counters */
982         "pgpgin",
983         "pgpgout",
984         "pswpin",
985         "pswpout",
986
987         TEXTS_FOR_ZONES("pgalloc")
988         TEXTS_FOR_ZONES("allocstall")
989         TEXTS_FOR_ZONES("pgskip")
990
991         "pgfree",
992         "pgactivate",
993         "pgdeactivate",
994         "pglazyfree",
995
996         "pgfault",
997         "pgmajfault",
998         "pglazyfreed",
999
1000         "pgrefill",
1001         "pgsteal_kswapd",
1002         "pgsteal_direct",
1003         "pgscan_kswapd",
1004         "pgscan_direct",
1005         "pgscan_direct_throttle",
1006
1007 #ifdef CONFIG_NUMA
1008         "zone_reclaim_failed",
1009 #endif
1010         "pginodesteal",
1011         "slabs_scanned",
1012         "kswapd_inodesteal",
1013         "kswapd_low_wmark_hit_quickly",
1014         "kswapd_high_wmark_hit_quickly",
1015         "pageoutrun",
1016
1017         "pgrotated",
1018
1019         "drop_pagecache",
1020         "drop_slab",
1021         "oom_kill",
1022
1023 #ifdef CONFIG_NUMA_BALANCING
1024         "numa_pte_updates",
1025         "numa_huge_pte_updates",
1026         "numa_hint_faults",
1027         "numa_hint_faults_local",
1028         "numa_pages_migrated",
1029 #endif
1030 #ifdef CONFIG_MIGRATION
1031         "pgmigrate_success",
1032         "pgmigrate_fail",
1033 #endif
1034 #ifdef CONFIG_COMPACTION
1035         "compact_migrate_scanned",
1036         "compact_free_scanned",
1037         "compact_isolated",
1038         "compact_stall",
1039         "compact_fail",
1040         "compact_success",
1041         "compact_daemon_wake",
1042         "compact_daemon_migrate_scanned",
1043         "compact_daemon_free_scanned",
1044 #endif
1045
1046 #ifdef CONFIG_HUGETLB_PAGE
1047         "htlb_buddy_alloc_success",
1048         "htlb_buddy_alloc_fail",
1049 #endif
1050         "unevictable_pgs_culled",
1051         "unevictable_pgs_scanned",
1052         "unevictable_pgs_rescued",
1053         "unevictable_pgs_mlocked",
1054         "unevictable_pgs_munlocked",
1055         "unevictable_pgs_cleared",
1056         "unevictable_pgs_stranded",
1057
1058 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1059         "thp_fault_alloc",
1060         "thp_fault_fallback",
1061         "thp_collapse_alloc",
1062         "thp_collapse_alloc_failed",
1063         "thp_file_alloc",
1064         "thp_file_mapped",
1065         "thp_split_page",
1066         "thp_split_page_failed",
1067         "thp_deferred_split_page",
1068         "thp_split_pmd",
1069 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1070         "thp_split_pud",
1071 #endif
1072         "thp_zero_page_alloc",
1073         "thp_zero_page_alloc_failed",
1074 #endif
1075 #ifdef CONFIG_MEMORY_BALLOON
1076         "balloon_inflate",
1077         "balloon_deflate",
1078 #ifdef CONFIG_BALLOON_COMPACTION
1079         "balloon_migrate",
1080 #endif
1081 #endif /* CONFIG_MEMORY_BALLOON */
1082 #ifdef CONFIG_DEBUG_TLBFLUSH
1083 #ifdef CONFIG_SMP
1084         "nr_tlb_remote_flush",
1085         "nr_tlb_remote_flush_received",
1086 #endif /* CONFIG_SMP */
1087         "nr_tlb_local_flush_all",
1088         "nr_tlb_local_flush_one",
1089 #endif /* CONFIG_DEBUG_TLBFLUSH */
1090
1091 #ifdef CONFIG_DEBUG_VM_VMACACHE
1092         "vmacache_find_calls",
1093         "vmacache_find_hits",
1094         "vmacache_full_flushes",
1095 #endif
1096 #endif /* CONFIG_VM_EVENTS_COUNTERS */
1097 };
1098 #endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA */
1099
1100
1101 #if (defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)) || \
1102      defined(CONFIG_PROC_FS)
1103 static void *frag_start(struct seq_file *m, loff_t *pos)
1104 {
1105         pg_data_t *pgdat;
1106         loff_t node = *pos;
1107
1108         for (pgdat = first_online_pgdat();
1109              pgdat && node;
1110              pgdat = next_online_pgdat(pgdat))
1111                 --node;
1112
1113         return pgdat;
1114 }
1115
1116 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
1117 {
1118         pg_data_t *pgdat = (pg_data_t *)arg;
1119
1120         (*pos)++;
1121         return next_online_pgdat(pgdat);
1122 }
1123
1124 static void frag_stop(struct seq_file *m, void *arg)
1125 {
1126 }
1127
1128 /*
1129  * Walk zones in a node and print using a callback.
1130  * If @assert_populated is true, only use callback for zones that are populated.
1131  */
1132 static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
1133                 bool assert_populated,
1134                 void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
1135 {
1136         struct zone *zone;
1137         struct zone *node_zones = pgdat->node_zones;
1138         unsigned long flags;
1139
1140         for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
1141                 if (assert_populated && !populated_zone(zone))
1142                         continue;
1143
1144                 spin_lock_irqsave(&zone->lock, flags);
1145                 print(m, pgdat, zone);
1146                 spin_unlock_irqrestore(&zone->lock, flags);
1147         }
1148 }
1149 #endif
1150
1151 #ifdef CONFIG_PROC_FS
1152 static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
1153                                                 struct zone *zone)
1154 {
1155         int order;
1156
1157         seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1158         for (order = 0; order < MAX_ORDER; ++order)
1159                 seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
1160         seq_putc(m, '\n');
1161 }
1162
1163 /*
1164  * This walks the free areas for each zone.
1165  */
1166 static int frag_show(struct seq_file *m, void *arg)
1167 {
1168         pg_data_t *pgdat = (pg_data_t *)arg;
1169         walk_zones_in_node(m, pgdat, true, frag_show_print);
1170         return 0;
1171 }
1172
1173 static void pagetypeinfo_showfree_print(struct seq_file *m,
1174                                         pg_data_t *pgdat, struct zone *zone)
1175 {
1176         int order, mtype;
1177
1178         for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
1179                 seq_printf(m, "Node %4d, zone %8s, type %12s ",
1180                                         pgdat->node_id,
1181                                         zone->name,
1182                                         migratetype_names[mtype]);
1183                 for (order = 0; order < MAX_ORDER; ++order) {
1184                         unsigned long freecount = 0;
1185                         struct free_area *area;
1186                         struct list_head *curr;
1187
1188                         area = &(zone->free_area[order]);
1189
1190                         list_for_each(curr, &area->free_list[mtype])
1191                                 freecount++;
1192                         seq_printf(m, "%6lu ", freecount);
1193                 }
1194                 seq_putc(m, '\n');
1195         }
1196 }
1197
1198 /* Print out the free pages at each order for each migatetype */
1199 static int pagetypeinfo_showfree(struct seq_file *m, void *arg)
1200 {
1201         int order;
1202         pg_data_t *pgdat = (pg_data_t *)arg;
1203
1204         /* Print header */
1205         seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
1206         for (order = 0; order < MAX_ORDER; ++order)
1207                 seq_printf(m, "%6d ", order);
1208         seq_putc(m, '\n');
1209
1210         walk_zones_in_node(m, pgdat, true, pagetypeinfo_showfree_print);
1211
1212         return 0;
1213 }
1214
1215 static void pagetypeinfo_showblockcount_print(struct seq_file *m,
1216                                         pg_data_t *pgdat, struct zone *zone)
1217 {
1218         int mtype;
1219         unsigned long pfn;
1220         unsigned long start_pfn = zone->zone_start_pfn;
1221         unsigned long end_pfn = zone_end_pfn(zone);
1222         unsigned long count[MIGRATE_TYPES] = { 0, };
1223
1224         for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
1225                 struct page *page;
1226
1227                 page = pfn_to_online_page(pfn);
1228                 if (!page)
1229                         continue;
1230
1231                 /* Watch for unexpected holes punched in the memmap */
1232                 if (!memmap_valid_within(pfn, page, zone))
1233                         continue;
1234
1235                 if (page_zone(page) != zone)
1236                         continue;
1237
1238                 mtype = get_pageblock_migratetype(page);
1239
1240                 if (mtype < MIGRATE_TYPES)
1241                         count[mtype]++;
1242         }
1243
1244         /* Print counts */
1245         seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1246         for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1247                 seq_printf(m, "%12lu ", count[mtype]);
1248         seq_putc(m, '\n');
1249 }
1250
1251 /* Print out the free pages at each order for each migratetype */
1252 static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
1253 {
1254         int mtype;
1255         pg_data_t *pgdat = (pg_data_t *)arg;
1256
1257         seq_printf(m, "\n%-23s", "Number of blocks type ");
1258         for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1259                 seq_printf(m, "%12s ", migratetype_names[mtype]);
1260         seq_putc(m, '\n');
1261         walk_zones_in_node(m, pgdat, true, pagetypeinfo_showblockcount_print);
1262
1263         return 0;
1264 }
1265
1266 /*
1267  * Print out the number of pageblocks for each migratetype that contain pages
1268  * of other types. This gives an indication of how well fallbacks are being
1269  * contained by rmqueue_fallback(). It requires information from PAGE_OWNER
1270  * to determine what is going on
1271  */
1272 static void pagetypeinfo_showmixedcount(struct seq_file *m, pg_data_t *pgdat)
1273 {
1274 #ifdef CONFIG_PAGE_OWNER
1275         int mtype;
1276
1277         if (!static_branch_unlikely(&page_owner_inited))
1278                 return;
1279
1280         drain_all_pages(NULL);
1281
1282         seq_printf(m, "\n%-23s", "Number of mixed blocks ");
1283         for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1284                 seq_printf(m, "%12s ", migratetype_names[mtype]);
1285         seq_putc(m, '\n');
1286
1287         walk_zones_in_node(m, pgdat, true, pagetypeinfo_showmixedcount_print);
1288 #endif /* CONFIG_PAGE_OWNER */
1289 }
1290
1291 /*
1292  * This prints out statistics in relation to grouping pages by mobility.
1293  * It is expensive to collect so do not constantly read the file.
1294  */
1295 static int pagetypeinfo_show(struct seq_file *m, void *arg)
1296 {
1297         pg_data_t *pgdat = (pg_data_t *)arg;
1298
1299         /* check memoryless node */
1300         if (!node_state(pgdat->node_id, N_MEMORY))
1301                 return 0;
1302
1303         seq_printf(m, "Page block order: %d\n", pageblock_order);
1304         seq_printf(m, "Pages per block:  %lu\n", pageblock_nr_pages);
1305         seq_putc(m, '\n');
1306         pagetypeinfo_showfree(m, pgdat);
1307         pagetypeinfo_showblockcount(m, pgdat);
1308         pagetypeinfo_showmixedcount(m, pgdat);
1309
1310         return 0;
1311 }
1312
1313 static const struct seq_operations fragmentation_op = {
1314         .start  = frag_start,
1315         .next   = frag_next,
1316         .stop   = frag_stop,
1317         .show   = frag_show,
1318 };
1319
1320 static int fragmentation_open(struct inode *inode, struct file *file)
1321 {
1322         return seq_open(file, &fragmentation_op);
1323 }
1324
1325 static const struct file_operations buddyinfo_file_operations = {
1326         .open           = fragmentation_open,
1327         .read           = seq_read,
1328         .llseek         = seq_lseek,
1329         .release        = seq_release,
1330 };
1331
1332 static const struct seq_operations pagetypeinfo_op = {
1333         .start  = frag_start,
1334         .next   = frag_next,
1335         .stop   = frag_stop,
1336         .show   = pagetypeinfo_show,
1337 };
1338
1339 static int pagetypeinfo_open(struct inode *inode, struct file *file)
1340 {
1341         return seq_open(file, &pagetypeinfo_op);
1342 }
1343
1344 static const struct file_operations pagetypeinfo_file_operations = {
1345         .open           = pagetypeinfo_open,
1346         .read           = seq_read,
1347         .llseek         = seq_lseek,
1348         .release        = seq_release,
1349 };
1350
1351 static bool is_zone_first_populated(pg_data_t *pgdat, struct zone *zone)
1352 {
1353         int zid;
1354
1355         for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1356                 struct zone *compare = &pgdat->node_zones[zid];
1357
1358                 if (populated_zone(compare))
1359                         return zone == compare;
1360         }
1361
1362         return false;
1363 }
1364
1365 static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
1366                                                         struct zone *zone)
1367 {
1368         int i;
1369         seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
1370         if (is_zone_first_populated(pgdat, zone)) {
1371                 seq_printf(m, "\n  per-node stats");
1372                 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1373                         seq_printf(m, "\n      %-12s %lu",
1374                                 vmstat_text[i + NR_VM_ZONE_STAT_ITEMS],
1375                                 node_page_state(pgdat, i));
1376                 }
1377         }
1378         seq_printf(m,
1379                    "\n  pages free     %lu"
1380                    "\n        min      %lu"
1381                    "\n        low      %lu"
1382                    "\n        high     %lu"
1383                    "\n        spanned  %lu"
1384                    "\n        present  %lu"
1385                    "\n        managed  %lu",
1386                    zone_page_state(zone, NR_FREE_PAGES),
1387                    min_wmark_pages(zone),
1388                    low_wmark_pages(zone),
1389                    high_wmark_pages(zone),
1390                    zone->spanned_pages,
1391                    zone->present_pages,
1392                    zone->managed_pages);
1393
1394         seq_printf(m,
1395                    "\n        protection: (%ld",
1396                    zone->lowmem_reserve[0]);
1397         for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
1398                 seq_printf(m, ", %ld", zone->lowmem_reserve[i]);
1399         seq_putc(m, ')');
1400
1401         /* If unpopulated, no other information is useful */
1402         if (!populated_zone(zone)) {
1403                 seq_putc(m, '\n');
1404                 return;
1405         }
1406
1407         for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1408                 seq_printf(m, "\n      %-12s %lu", vmstat_text[i],
1409                                 zone_page_state(zone, i));
1410
1411         seq_printf(m, "\n  pagesets");
1412         for_each_online_cpu(i) {
1413                 struct per_cpu_pageset *pageset;
1414
1415                 pageset = per_cpu_ptr(zone->pageset, i);
1416                 seq_printf(m,
1417                            "\n    cpu: %i"
1418                            "\n              count: %i"
1419                            "\n              high:  %i"
1420                            "\n              batch: %i",
1421                            i,
1422                            pageset->pcp.count,
1423                            pageset->pcp.high,
1424                            pageset->pcp.batch);
1425 #ifdef CONFIG_SMP
1426                 seq_printf(m, "\n  vm stats threshold: %d",
1427                                 pageset->stat_threshold);
1428 #endif
1429         }
1430         seq_printf(m,
1431                    "\n  node_unreclaimable:  %u"
1432                    "\n  start_pfn:           %lu"
1433                    "\n  node_inactive_ratio: %u",
1434                    pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES,
1435                    zone->zone_start_pfn,
1436                    zone->zone_pgdat->inactive_ratio);
1437         seq_putc(m, '\n');
1438 }
1439
1440 /*
1441  * Output information about zones in @pgdat.  All zones are printed regardless
1442  * of whether they are populated or not: lowmem_reserve_ratio operates on the
1443  * set of all zones and userspace would not be aware of such zones if they are
1444  * suppressed here (zoneinfo displays the effect of lowmem_reserve_ratio).
1445  */
1446 static int zoneinfo_show(struct seq_file *m, void *arg)
1447 {
1448         pg_data_t *pgdat = (pg_data_t *)arg;
1449         walk_zones_in_node(m, pgdat, false, zoneinfo_show_print);
1450         return 0;
1451 }
1452
1453 static const struct seq_operations zoneinfo_op = {
1454         .start  = frag_start, /* iterate over all zones. The same as in
1455                                * fragmentation. */
1456         .next   = frag_next,
1457         .stop   = frag_stop,
1458         .show   = zoneinfo_show,
1459 };
1460
1461 static int zoneinfo_open(struct inode *inode, struct file *file)
1462 {
1463         return seq_open(file, &zoneinfo_op);
1464 }
1465
1466 static const struct file_operations zoneinfo_file_operations = {
1467         .open           = zoneinfo_open,
1468         .read           = seq_read,
1469         .llseek         = seq_lseek,
1470         .release        = seq_release,
1471 };
1472
1473 enum writeback_stat_item {
1474         NR_DIRTY_THRESHOLD,
1475         NR_DIRTY_BG_THRESHOLD,
1476         NR_VM_WRITEBACK_STAT_ITEMS,
1477 };
1478
1479 static void *vmstat_start(struct seq_file *m, loff_t *pos)
1480 {
1481         unsigned long *v;
1482         int i, stat_items_size;
1483
1484         if (*pos >= ARRAY_SIZE(vmstat_text))
1485                 return NULL;
1486         stat_items_size = NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long) +
1487                           NR_VM_NODE_STAT_ITEMS * sizeof(unsigned long) +
1488                           NR_VM_WRITEBACK_STAT_ITEMS * sizeof(unsigned long);
1489
1490 #ifdef CONFIG_VM_EVENT_COUNTERS
1491         stat_items_size += sizeof(struct vm_event_state);
1492 #endif
1493
1494         v = kmalloc(stat_items_size, GFP_KERNEL);
1495         m->private = v;
1496         if (!v)
1497                 return ERR_PTR(-ENOMEM);
1498         for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1499                 v[i] = global_page_state(i);
1500         v += NR_VM_ZONE_STAT_ITEMS;
1501
1502         for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
1503                 v[i] = global_node_page_state(i);
1504         v += NR_VM_NODE_STAT_ITEMS;
1505
1506         global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
1507                             v + NR_DIRTY_THRESHOLD);
1508         v += NR_VM_WRITEBACK_STAT_ITEMS;
1509
1510 #ifdef CONFIG_VM_EVENT_COUNTERS
1511         all_vm_events(v);
1512         v[PGPGIN] /= 2;         /* sectors -> kbytes */
1513         v[PGPGOUT] /= 2;
1514 #endif
1515         return (unsigned long *)m->private + *pos;
1516 }
1517
1518 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1519 {
1520         (*pos)++;
1521         if (*pos >= ARRAY_SIZE(vmstat_text))
1522                 return NULL;
1523         return (unsigned long *)m->private + *pos;
1524 }
1525
1526 static int vmstat_show(struct seq_file *m, void *arg)
1527 {
1528         unsigned long *l = arg;
1529         unsigned long off = l - (unsigned long *)m->private;
1530
1531         seq_puts(m, vmstat_text[off]);
1532         seq_put_decimal_ull(m, " ", *l);
1533         seq_putc(m, '\n');
1534         return 0;
1535 }
1536
1537 static void vmstat_stop(struct seq_file *m, void *arg)
1538 {
1539         kfree(m->private);
1540         m->private = NULL;
1541 }
1542
1543 static const struct seq_operations vmstat_op = {
1544         .start  = vmstat_start,
1545         .next   = vmstat_next,
1546         .stop   = vmstat_stop,
1547         .show   = vmstat_show,
1548 };
1549
1550 static int vmstat_open(struct inode *inode, struct file *file)
1551 {
1552         return seq_open(file, &vmstat_op);
1553 }
1554
1555 static const struct file_operations vmstat_file_operations = {
1556         .open           = vmstat_open,
1557         .read           = seq_read,
1558         .llseek         = seq_lseek,
1559         .release        = seq_release,
1560 };
1561 #endif /* CONFIG_PROC_FS */
1562
1563 #ifdef CONFIG_SMP
1564 static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
1565 int sysctl_stat_interval __read_mostly = HZ;
1566
1567 #ifdef CONFIG_PROC_FS
1568 static void refresh_vm_stats(struct work_struct *work)
1569 {
1570         refresh_cpu_vm_stats(true);
1571 }
1572
1573 int vmstat_refresh(struct ctl_table *table, int write,
1574                    void __user *buffer, size_t *lenp, loff_t *ppos)
1575 {
1576         long val;
1577         int err;
1578         int i;
1579
1580         /*
1581          * The regular update, every sysctl_stat_interval, may come later
1582          * than expected: leaving a significant amount in per_cpu buckets.
1583          * This is particularly misleading when checking a quantity of HUGE
1584          * pages, immediately after running a test.  /proc/sys/vm/stat_refresh,
1585          * which can equally be echo'ed to or cat'ted from (by root),
1586          * can be used to update the stats just before reading them.
1587          *
1588          * Oh, and since global_page_state() etc. are so careful to hide
1589          * transiently negative values, report an error here if any of
1590          * the stats is negative, so we know to go looking for imbalance.
1591          */
1592         err = schedule_on_each_cpu(refresh_vm_stats);
1593         if (err)
1594                 return err;
1595         for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
1596                 val = atomic_long_read(&vm_zone_stat[i]);
1597                 if (val < 0) {
1598                         pr_warn("%s: %s %ld\n",
1599                                 __func__, vmstat_text[i], val);
1600                         err = -EINVAL;
1601                 }
1602         }
1603         if (err)
1604                 return err;
1605         if (write)
1606                 *ppos += *lenp;
1607         else
1608                 *lenp = 0;
1609         return 0;
1610 }
1611 #endif /* CONFIG_PROC_FS */
1612
1613 static void vmstat_update(struct work_struct *w)
1614 {
1615         if (refresh_cpu_vm_stats(true)) {
1616                 /*
1617                  * Counters were updated so we expect more updates
1618                  * to occur in the future. Keep on running the
1619                  * update worker thread.
1620                  */
1621                 queue_delayed_work_on(smp_processor_id(), mm_percpu_wq,
1622                                 this_cpu_ptr(&vmstat_work),
1623                                 round_jiffies_relative(sysctl_stat_interval));
1624         }
1625 }
1626
1627 /*
1628  * Switch off vmstat processing and then fold all the remaining differentials
1629  * until the diffs stay at zero. The function is used by NOHZ and can only be
1630  * invoked when tick processing is not active.
1631  */
1632 /*
1633  * Check if the diffs for a certain cpu indicate that
1634  * an update is needed.
1635  */
1636 static bool need_update(int cpu)
1637 {
1638         struct zone *zone;
1639
1640         for_each_populated_zone(zone) {
1641                 struct per_cpu_pageset *p = per_cpu_ptr(zone->pageset, cpu);
1642
1643                 BUILD_BUG_ON(sizeof(p->vm_stat_diff[0]) != 1);
1644                 /*
1645                  * The fast way of checking if there are any vmstat diffs.
1646                  * This works because the diffs are byte sized items.
1647                  */
1648                 if (memchr_inv(p->vm_stat_diff, 0, NR_VM_ZONE_STAT_ITEMS))
1649                         return true;
1650
1651         }
1652         return false;
1653 }
1654
1655 /*
1656  * Switch off vmstat processing and then fold all the remaining differentials
1657  * until the diffs stay at zero. The function is used by NOHZ and can only be
1658  * invoked when tick processing is not active.
1659  */
1660 void quiet_vmstat(void)
1661 {
1662         if (system_state != SYSTEM_RUNNING)
1663                 return;
1664
1665         if (!delayed_work_pending(this_cpu_ptr(&vmstat_work)))
1666                 return;
1667
1668         if (!need_update(smp_processor_id()))
1669                 return;
1670
1671         /*
1672          * Just refresh counters and do not care about the pending delayed
1673          * vmstat_update. It doesn't fire that often to matter and canceling
1674          * it would be too expensive from this path.
1675          * vmstat_shepherd will take care about that for us.
1676          */
1677         refresh_cpu_vm_stats(false);
1678 }
1679
1680 /*
1681  * Shepherd worker thread that checks the
1682  * differentials of processors that have their worker
1683  * threads for vm statistics updates disabled because of
1684  * inactivity.
1685  */
1686 static void vmstat_shepherd(struct work_struct *w);
1687
1688 static DECLARE_DEFERRABLE_WORK(shepherd, vmstat_shepherd);
1689
1690 static void vmstat_shepherd(struct work_struct *w)
1691 {
1692         int cpu;
1693
1694         get_online_cpus();
1695         /* Check processors whose vmstat worker threads have been disabled */
1696         for_each_online_cpu(cpu) {
1697                 struct delayed_work *dw = &per_cpu(vmstat_work, cpu);
1698
1699                 if (!delayed_work_pending(dw) && need_update(cpu))
1700                         queue_delayed_work_on(cpu, mm_percpu_wq, dw, 0);
1701         }
1702         put_online_cpus();
1703
1704         schedule_delayed_work(&shepherd,
1705                 round_jiffies_relative(sysctl_stat_interval));
1706 }
1707
1708 static void __init start_shepherd_timer(void)
1709 {
1710         int cpu;
1711
1712         for_each_possible_cpu(cpu)
1713                 INIT_DEFERRABLE_WORK(per_cpu_ptr(&vmstat_work, cpu),
1714                         vmstat_update);
1715
1716         schedule_delayed_work(&shepherd,
1717                 round_jiffies_relative(sysctl_stat_interval));
1718 }
1719
1720 static void __init init_cpu_node_state(void)
1721 {
1722         int node;
1723
1724         for_each_online_node(node) {
1725                 if (cpumask_weight(cpumask_of_node(node)) > 0)
1726                         node_set_state(node, N_CPU);
1727         }
1728 }
1729
1730 static int vmstat_cpu_online(unsigned int cpu)
1731 {
1732         refresh_zone_stat_thresholds();
1733         node_set_state(cpu_to_node(cpu), N_CPU);
1734         return 0;
1735 }
1736
1737 static int vmstat_cpu_down_prep(unsigned int cpu)
1738 {
1739         cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
1740         return 0;
1741 }
1742
1743 static int vmstat_cpu_dead(unsigned int cpu)
1744 {
1745         const struct cpumask *node_cpus;
1746         int node;
1747
1748         node = cpu_to_node(cpu);
1749
1750         refresh_zone_stat_thresholds();
1751         node_cpus = cpumask_of_node(node);
1752         if (cpumask_weight(node_cpus) > 0)
1753                 return 0;
1754
1755         node_clear_state(node, N_CPU);
1756         return 0;
1757 }
1758
1759 #endif
1760
1761 struct workqueue_struct *mm_percpu_wq;
1762
1763 void __init init_mm_internals(void)
1764 {
1765         int ret __maybe_unused;
1766
1767         mm_percpu_wq = alloc_workqueue("mm_percpu_wq", WQ_MEM_RECLAIM, 0);
1768
1769 #ifdef CONFIG_SMP
1770         ret = cpuhp_setup_state_nocalls(CPUHP_MM_VMSTAT_DEAD, "mm/vmstat:dead",
1771                                         NULL, vmstat_cpu_dead);
1772         if (ret < 0)
1773                 pr_err("vmstat: failed to register 'dead' hotplug state\n");
1774
1775         ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "mm/vmstat:online",
1776                                         vmstat_cpu_online,
1777                                         vmstat_cpu_down_prep);
1778         if (ret < 0)
1779                 pr_err("vmstat: failed to register 'online' hotplug state\n");
1780
1781         get_online_cpus();
1782         init_cpu_node_state();
1783         put_online_cpus();
1784
1785         start_shepherd_timer();
1786 #endif
1787 #ifdef CONFIG_PROC_FS
1788         proc_create("buddyinfo", 0444, NULL, &buddyinfo_file_operations);
1789         proc_create("pagetypeinfo", 0444, NULL, &pagetypeinfo_file_operations);
1790         proc_create("vmstat", 0444, NULL, &vmstat_file_operations);
1791         proc_create("zoneinfo", 0444, NULL, &zoneinfo_file_operations);
1792 #endif
1793 }
1794
1795 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
1796
1797 /*
1798  * Return an index indicating how much of the available free memory is
1799  * unusable for an allocation of the requested size.
1800  */
1801 static int unusable_free_index(unsigned int order,
1802                                 struct contig_page_info *info)
1803 {
1804         /* No free memory is interpreted as all free memory is unusable */
1805         if (info->free_pages == 0)
1806                 return 1000;
1807
1808         /*
1809          * Index should be a value between 0 and 1. Return a value to 3
1810          * decimal places.
1811          *
1812          * 0 => no fragmentation
1813          * 1 => high fragmentation
1814          */
1815         return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
1816
1817 }
1818
1819 static void unusable_show_print(struct seq_file *m,
1820                                         pg_data_t *pgdat, struct zone *zone)
1821 {
1822         unsigned int order;
1823         int index;
1824         struct contig_page_info info;
1825
1826         seq_printf(m, "Node %d, zone %8s ",
1827                                 pgdat->node_id,
1828                                 zone->name);
1829         for (order = 0; order < MAX_ORDER; ++order) {
1830                 fill_contig_page_info(zone, order, &info);
1831                 index = unusable_free_index(order, &info);
1832                 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1833         }
1834
1835         seq_putc(m, '\n');
1836 }
1837
1838 /*
1839  * Display unusable free space index
1840  *
1841  * The unusable free space index measures how much of the available free
1842  * memory cannot be used to satisfy an allocation of a given size and is a
1843  * value between 0 and 1. The higher the value, the more of free memory is
1844  * unusable and by implication, the worse the external fragmentation is. This
1845  * can be expressed as a percentage by multiplying by 100.
1846  */
1847 static int unusable_show(struct seq_file *m, void *arg)
1848 {
1849         pg_data_t *pgdat = (pg_data_t *)arg;
1850
1851         /* check memoryless node */
1852         if (!node_state(pgdat->node_id, N_MEMORY))
1853                 return 0;
1854
1855         walk_zones_in_node(m, pgdat, true, unusable_show_print);
1856
1857         return 0;
1858 }
1859
1860 static const struct seq_operations unusable_op = {
1861         .start  = frag_start,
1862         .next   = frag_next,
1863         .stop   = frag_stop,
1864         .show   = unusable_show,
1865 };
1866
1867 static int unusable_open(struct inode *inode, struct file *file)
1868 {
1869         return seq_open(file, &unusable_op);
1870 }
1871
1872 static const struct file_operations unusable_file_ops = {
1873         .open           = unusable_open,
1874         .read           = seq_read,
1875         .llseek         = seq_lseek,
1876         .release        = seq_release,
1877 };
1878
1879 static void extfrag_show_print(struct seq_file *m,
1880                                         pg_data_t *pgdat, struct zone *zone)
1881 {
1882         unsigned int order;
1883         int index;
1884
1885         /* Alloc on stack as interrupts are disabled for zone walk */
1886         struct contig_page_info info;
1887
1888         seq_printf(m, "Node %d, zone %8s ",
1889                                 pgdat->node_id,
1890                                 zone->name);
1891         for (order = 0; order < MAX_ORDER; ++order) {
1892                 fill_contig_page_info(zone, order, &info);
1893                 index = __fragmentation_index(order, &info);
1894                 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1895         }
1896
1897         seq_putc(m, '\n');
1898 }
1899
1900 /*
1901  * Display fragmentation index for orders that allocations would fail for
1902  */
1903 static int extfrag_show(struct seq_file *m, void *arg)
1904 {
1905         pg_data_t *pgdat = (pg_data_t *)arg;
1906
1907         walk_zones_in_node(m, pgdat, true, extfrag_show_print);
1908
1909         return 0;
1910 }
1911
1912 static const struct seq_operations extfrag_op = {
1913         .start  = frag_start,
1914         .next   = frag_next,
1915         .stop   = frag_stop,
1916         .show   = extfrag_show,
1917 };
1918
1919 static int extfrag_open(struct inode *inode, struct file *file)
1920 {
1921         return seq_open(file, &extfrag_op);
1922 }
1923
1924 static const struct file_operations extfrag_file_ops = {
1925         .open           = extfrag_open,
1926         .read           = seq_read,
1927         .llseek         = seq_lseek,
1928         .release        = seq_release,
1929 };
1930
1931 static int __init extfrag_debug_init(void)
1932 {
1933         struct dentry *extfrag_debug_root;
1934
1935         extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
1936         if (!extfrag_debug_root)
1937                 return -ENOMEM;
1938
1939         if (!debugfs_create_file("unusable_index", 0444,
1940                         extfrag_debug_root, NULL, &unusable_file_ops))
1941                 goto fail;
1942
1943         if (!debugfs_create_file("extfrag_index", 0444,
1944                         extfrag_debug_root, NULL, &extfrag_file_ops))
1945                 goto fail;
1946
1947         return 0;
1948 fail:
1949         debugfs_remove_recursive(extfrag_debug_root);
1950         return -ENOMEM;
1951 }
1952
1953 module_init(extfrag_debug_init);
1954 #endif