]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - mm/zswap.c
ARM: dts: add support for TX6S with LVDS output
[karo-tx-linux.git] / mm / zswap.c
1 /*
2  * zswap.c - zswap driver file
3  *
4  * zswap is a backend for frontswap that takes pages that are in the process
5  * of being swapped out and attempts to compress and store them in a
6  * RAM-based memory pool.  This can result in a significant I/O reduction on
7  * the swap device and, in the case where decompressing from RAM is faster
8  * than reading from the swap device, can also improve workload performance.
9  *
10  * Copyright (C) 2012  Seth Jennings <sjenning@linux.vnet.ibm.com>
11  *
12  * This program is free software; you can redistribute it and/or
13  * modify it under the terms of the GNU General Public License
14  * as published by the Free Software Foundation; either version 2
15  * of the License, or (at your option) any later version.
16  *
17  * This program is distributed in the hope that it will be useful,
18  * but WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  * GNU General Public License for more details.
21 */
22
23 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
24
25 #include <linux/module.h>
26 #include <linux/cpu.h>
27 #include <linux/highmem.h>
28 #include <linux/slab.h>
29 #include <linux/spinlock.h>
30 #include <linux/types.h>
31 #include <linux/atomic.h>
32 #include <linux/frontswap.h>
33 #include <linux/rbtree.h>
34 #include <linux/swap.h>
35 #include <linux/crypto.h>
36 #include <linux/mempool.h>
37 #include <linux/zbud.h>
38
39 #include <linux/mm_types.h>
40 #include <linux/page-flags.h>
41 #include <linux/swapops.h>
42 #include <linux/writeback.h>
43 #include <linux/pagemap.h>
44
45 /*********************************
46 * statistics
47 **********************************/
48 /* Number of memory pages used by the compressed pool */
49 static u64 zswap_pool_pages;
50 /* The number of compressed pages currently stored in zswap */
51 static atomic_t zswap_stored_pages = ATOMIC_INIT(0);
52
53 /*
54  * The statistics below are not protected from concurrent access for
55  * performance reasons so they may not be a 100% accurate.  However,
56  * they do provide useful information on roughly how many times a
57  * certain event is occurring.
58 */
59
60 /* Pool limit was hit (see zswap_max_pool_percent) */
61 static u64 zswap_pool_limit_hit;
62 /* Pages written back when pool limit was reached */
63 static u64 zswap_written_back_pages;
64 /* Store failed due to a reclaim failure after pool limit was reached */
65 static u64 zswap_reject_reclaim_fail;
66 /* Compressed page was too big for the allocator to (optimally) store */
67 static u64 zswap_reject_compress_poor;
68 /* Store failed because underlying allocator could not get memory */
69 static u64 zswap_reject_alloc_fail;
70 /* Store failed because the entry metadata could not be allocated (rare) */
71 static u64 zswap_reject_kmemcache_fail;
72 /* Duplicate store was encountered (rare) */
73 static u64 zswap_duplicate_entry;
74
75 /*********************************
76 * tunables
77 **********************************/
78 /* Enable/disable zswap (disabled by default, fixed at boot for now) */
79 static bool zswap_enabled __read_mostly;
80 module_param_named(enabled, zswap_enabled, bool, 0444);
81
82 /* Compressor to be used by zswap (fixed at boot for now) */
83 #define ZSWAP_COMPRESSOR_DEFAULT "lzo"
84 static char *zswap_compressor = ZSWAP_COMPRESSOR_DEFAULT;
85 module_param_named(compressor, zswap_compressor, charp, 0444);
86
87 /* The maximum percentage of memory that the compressed pool can occupy */
88 static unsigned int zswap_max_pool_percent = 20;
89 module_param_named(max_pool_percent,
90                         zswap_max_pool_percent, uint, 0644);
91
92 /* zbud_pool is shared by all of zswap backend  */
93 static struct zbud_pool *zswap_pool;
94
95 /*********************************
96 * compression functions
97 **********************************/
98 /* per-cpu compression transforms */
99 static struct crypto_comp * __percpu *zswap_comp_pcpu_tfms;
100
101 enum comp_op {
102         ZSWAP_COMPOP_COMPRESS,
103         ZSWAP_COMPOP_DECOMPRESS
104 };
105
106 static int zswap_comp_op(enum comp_op op, const u8 *src, unsigned int slen,
107                                 u8 *dst, unsigned int *dlen)
108 {
109         struct crypto_comp *tfm;
110         int ret;
111
112         tfm = *per_cpu_ptr(zswap_comp_pcpu_tfms, get_cpu());
113         switch (op) {
114         case ZSWAP_COMPOP_COMPRESS:
115                 ret = crypto_comp_compress(tfm, src, slen, dst, dlen);
116                 break;
117         case ZSWAP_COMPOP_DECOMPRESS:
118                 ret = crypto_comp_decompress(tfm, src, slen, dst, dlen);
119                 break;
120         default:
121                 ret = -EINVAL;
122         }
123
124         put_cpu();
125         return ret;
126 }
127
128 static int __init zswap_comp_init(void)
129 {
130         if (!crypto_has_comp(zswap_compressor, 0, 0)) {
131                 pr_info("%s compressor not available\n", zswap_compressor);
132                 /* fall back to default compressor */
133                 zswap_compressor = ZSWAP_COMPRESSOR_DEFAULT;
134                 if (!crypto_has_comp(zswap_compressor, 0, 0))
135                         /* can't even load the default compressor */
136                         return -ENODEV;
137         }
138         pr_info("using %s compressor\n", zswap_compressor);
139
140         /* alloc percpu transforms */
141         zswap_comp_pcpu_tfms = alloc_percpu(struct crypto_comp *);
142         if (!zswap_comp_pcpu_tfms)
143                 return -ENOMEM;
144         return 0;
145 }
146
147 static void zswap_comp_exit(void)
148 {
149         /* free percpu transforms */
150         if (zswap_comp_pcpu_tfms)
151                 free_percpu(zswap_comp_pcpu_tfms);
152 }
153
154 /*********************************
155 * data structures
156 **********************************/
157 /*
158  * struct zswap_entry
159  *
160  * This structure contains the metadata for tracking a single compressed
161  * page within zswap.
162  *
163  * rbnode - links the entry into red-black tree for the appropriate swap type
164  * refcount - the number of outstanding reference to the entry. This is needed
165  *            to protect against premature freeing of the entry by code
166  *            concurrent calls to load, invalidate, and writeback.  The lock
167  *            for the zswap_tree structure that contains the entry must
168  *            be held while changing the refcount.  Since the lock must
169  *            be held, there is no reason to also make refcount atomic.
170  * offset - the swap offset for the entry.  Index into the red-black tree.
171  * handle - zbud allocation handle that stores the compressed page data
172  * length - the length in bytes of the compressed page data.  Needed during
173  *          decompression
174  */
175 struct zswap_entry {
176         struct rb_node rbnode;
177         pgoff_t offset;
178         int refcount;
179         unsigned int length;
180         unsigned long handle;
181 };
182
183 struct zswap_header {
184         swp_entry_t swpentry;
185 };
186
187 /*
188  * The tree lock in the zswap_tree struct protects a few things:
189  * - the rbtree
190  * - the refcount field of each entry in the tree
191  */
192 struct zswap_tree {
193         struct rb_root rbroot;
194         spinlock_t lock;
195 };
196
197 static struct zswap_tree *zswap_trees[MAX_SWAPFILES];
198
199 /*********************************
200 * zswap entry functions
201 **********************************/
202 static struct kmem_cache *zswap_entry_cache;
203
204 static int zswap_entry_cache_create(void)
205 {
206         zswap_entry_cache = KMEM_CACHE(zswap_entry, 0);
207         return zswap_entry_cache == NULL;
208 }
209
210 static void zswap_entry_cache_destory(void)
211 {
212         kmem_cache_destroy(zswap_entry_cache);
213 }
214
215 static struct zswap_entry *zswap_entry_cache_alloc(gfp_t gfp)
216 {
217         struct zswap_entry *entry;
218         entry = kmem_cache_alloc(zswap_entry_cache, gfp);
219         if (!entry)
220                 return NULL;
221         entry->refcount = 1;
222         RB_CLEAR_NODE(&entry->rbnode);
223         return entry;
224 }
225
226 static void zswap_entry_cache_free(struct zswap_entry *entry)
227 {
228         kmem_cache_free(zswap_entry_cache, entry);
229 }
230
231 /*********************************
232 * rbtree functions
233 **********************************/
234 static struct zswap_entry *zswap_rb_search(struct rb_root *root, pgoff_t offset)
235 {
236         struct rb_node *node = root->rb_node;
237         struct zswap_entry *entry;
238
239         while (node) {
240                 entry = rb_entry(node, struct zswap_entry, rbnode);
241                 if (entry->offset > offset)
242                         node = node->rb_left;
243                 else if (entry->offset < offset)
244                         node = node->rb_right;
245                 else
246                         return entry;
247         }
248         return NULL;
249 }
250
251 /*
252  * In the case that a entry with the same offset is found, a pointer to
253  * the existing entry is stored in dupentry and the function returns -EEXIST
254  */
255 static int zswap_rb_insert(struct rb_root *root, struct zswap_entry *entry,
256                         struct zswap_entry **dupentry)
257 {
258         struct rb_node **link = &root->rb_node, *parent = NULL;
259         struct zswap_entry *myentry;
260
261         while (*link) {
262                 parent = *link;
263                 myentry = rb_entry(parent, struct zswap_entry, rbnode);
264                 if (myentry->offset > entry->offset)
265                         link = &(*link)->rb_left;
266                 else if (myentry->offset < entry->offset)
267                         link = &(*link)->rb_right;
268                 else {
269                         *dupentry = myentry;
270                         return -EEXIST;
271                 }
272         }
273         rb_link_node(&entry->rbnode, parent, link);
274         rb_insert_color(&entry->rbnode, root);
275         return 0;
276 }
277
278 static void zswap_rb_erase(struct rb_root *root, struct zswap_entry *entry)
279 {
280         if (!RB_EMPTY_NODE(&entry->rbnode)) {
281                 rb_erase(&entry->rbnode, root);
282                 RB_CLEAR_NODE(&entry->rbnode);
283         }
284 }
285
286 /*
287  * Carries out the common pattern of freeing and entry's zbud allocation,
288  * freeing the entry itself, and decrementing the number of stored pages.
289  */
290 static void zswap_free_entry(struct zswap_entry *entry)
291 {
292         zbud_free(zswap_pool, entry->handle);
293         zswap_entry_cache_free(entry);
294         atomic_dec(&zswap_stored_pages);
295         zswap_pool_pages = zbud_get_pool_size(zswap_pool);
296 }
297
298 /* caller must hold the tree lock */
299 static void zswap_entry_get(struct zswap_entry *entry)
300 {
301         entry->refcount++;
302 }
303
304 /* caller must hold the tree lock
305 * remove from the tree and free it, if nobody reference the entry
306 */
307 static void zswap_entry_put(struct zswap_tree *tree,
308                         struct zswap_entry *entry)
309 {
310         int refcount = --entry->refcount;
311
312         BUG_ON(refcount < 0);
313         if (refcount == 0) {
314                 zswap_rb_erase(&tree->rbroot, entry);
315                 zswap_free_entry(entry);
316         }
317 }
318
319 /* caller must hold the tree lock */
320 static struct zswap_entry *zswap_entry_find_get(struct rb_root *root,
321                                 pgoff_t offset)
322 {
323         struct zswap_entry *entry = NULL;
324
325         entry = zswap_rb_search(root, offset);
326         if (entry)
327                 zswap_entry_get(entry);
328
329         return entry;
330 }
331
332 /*********************************
333 * per-cpu code
334 **********************************/
335 static DEFINE_PER_CPU(u8 *, zswap_dstmem);
336
337 static int __zswap_cpu_notifier(unsigned long action, unsigned long cpu)
338 {
339         struct crypto_comp *tfm;
340         u8 *dst;
341
342         switch (action) {
343         case CPU_UP_PREPARE:
344                 tfm = crypto_alloc_comp(zswap_compressor, 0, 0);
345                 if (IS_ERR(tfm)) {
346                         pr_err("can't allocate compressor transform\n");
347                         return NOTIFY_BAD;
348                 }
349                 *per_cpu_ptr(zswap_comp_pcpu_tfms, cpu) = tfm;
350                 dst = kmalloc_node(PAGE_SIZE * 2, GFP_KERNEL, cpu_to_node(cpu));
351                 if (!dst) {
352                         pr_err("can't allocate compressor buffer\n");
353                         crypto_free_comp(tfm);
354                         *per_cpu_ptr(zswap_comp_pcpu_tfms, cpu) = NULL;
355                         return NOTIFY_BAD;
356                 }
357                 per_cpu(zswap_dstmem, cpu) = dst;
358                 break;
359         case CPU_DEAD:
360         case CPU_UP_CANCELED:
361                 tfm = *per_cpu_ptr(zswap_comp_pcpu_tfms, cpu);
362                 if (tfm) {
363                         crypto_free_comp(tfm);
364                         *per_cpu_ptr(zswap_comp_pcpu_tfms, cpu) = NULL;
365                 }
366                 dst = per_cpu(zswap_dstmem, cpu);
367                 kfree(dst);
368                 per_cpu(zswap_dstmem, cpu) = NULL;
369                 break;
370         default:
371                 break;
372         }
373         return NOTIFY_OK;
374 }
375
376 static int zswap_cpu_notifier(struct notifier_block *nb,
377                                 unsigned long action, void *pcpu)
378 {
379         unsigned long cpu = (unsigned long)pcpu;
380         return __zswap_cpu_notifier(action, cpu);
381 }
382
383 static struct notifier_block zswap_cpu_notifier_block = {
384         .notifier_call = zswap_cpu_notifier
385 };
386
387 static int zswap_cpu_init(void)
388 {
389         unsigned long cpu;
390
391         cpu_notifier_register_begin();
392         for_each_online_cpu(cpu)
393                 if (__zswap_cpu_notifier(CPU_UP_PREPARE, cpu) != NOTIFY_OK)
394                         goto cleanup;
395         __register_cpu_notifier(&zswap_cpu_notifier_block);
396         cpu_notifier_register_done();
397         return 0;
398
399 cleanup:
400         for_each_online_cpu(cpu)
401                 __zswap_cpu_notifier(CPU_UP_CANCELED, cpu);
402         cpu_notifier_register_done();
403         return -ENOMEM;
404 }
405
406 /*********************************
407 * helpers
408 **********************************/
409 static bool zswap_is_full(void)
410 {
411         return totalram_pages * zswap_max_pool_percent / 100 <
412                 zswap_pool_pages;
413 }
414
415 /*********************************
416 * writeback code
417 **********************************/
418 /* return enum for zswap_get_swap_cache_page */
419 enum zswap_get_swap_ret {
420         ZSWAP_SWAPCACHE_NEW,
421         ZSWAP_SWAPCACHE_EXIST,
422         ZSWAP_SWAPCACHE_FAIL,
423 };
424
425 /*
426  * zswap_get_swap_cache_page
427  *
428  * This is an adaption of read_swap_cache_async()
429  *
430  * This function tries to find a page with the given swap entry
431  * in the swapper_space address space (the swap cache).  If the page
432  * is found, it is returned in retpage.  Otherwise, a page is allocated,
433  * added to the swap cache, and returned in retpage.
434  *
435  * If success, the swap cache page is returned in retpage
436  * Returns ZSWAP_SWAPCACHE_EXIST if page was already in the swap cache
437  * Returns ZSWAP_SWAPCACHE_NEW if the new page needs to be populated,
438  *     the new page is added to swapcache and locked
439  * Returns ZSWAP_SWAPCACHE_FAIL on error
440  */
441 static int zswap_get_swap_cache_page(swp_entry_t entry,
442                                 struct page **retpage)
443 {
444         struct page *found_page, *new_page = NULL;
445         struct address_space *swapper_space = swap_address_space(entry);
446         int err;
447
448         *retpage = NULL;
449         do {
450                 /*
451                  * First check the swap cache.  Since this is normally
452                  * called after lookup_swap_cache() failed, re-calling
453                  * that would confuse statistics.
454                  */
455                 found_page = find_get_page(swapper_space, entry.val);
456                 if (found_page)
457                         break;
458
459                 /*
460                  * Get a new page to read into from swap.
461                  */
462                 if (!new_page) {
463                         new_page = alloc_page(GFP_KERNEL);
464                         if (!new_page)
465                                 break; /* Out of memory */
466                 }
467
468                 /*
469                  * call radix_tree_preload() while we can wait.
470                  */
471                 err = radix_tree_preload(GFP_KERNEL);
472                 if (err)
473                         break;
474
475                 /*
476                  * Swap entry may have been freed since our caller observed it.
477                  */
478                 err = swapcache_prepare(entry);
479                 if (err == -EEXIST) { /* seems racy */
480                         radix_tree_preload_end();
481                         continue;
482                 }
483                 if (err) { /* swp entry is obsolete ? */
484                         radix_tree_preload_end();
485                         break;
486                 }
487
488                 /* May fail (-ENOMEM) if radix-tree node allocation failed. */
489                 __set_page_locked(new_page);
490                 SetPageSwapBacked(new_page);
491                 err = __add_to_swap_cache(new_page, entry);
492                 if (likely(!err)) {
493                         radix_tree_preload_end();
494                         lru_cache_add_anon(new_page);
495                         *retpage = new_page;
496                         return ZSWAP_SWAPCACHE_NEW;
497                 }
498                 radix_tree_preload_end();
499                 ClearPageSwapBacked(new_page);
500                 __clear_page_locked(new_page);
501                 /*
502                  * add_to_swap_cache() doesn't return -EEXIST, so we can safely
503                  * clear SWAP_HAS_CACHE flag.
504                  */
505                 swapcache_free(entry, NULL);
506         } while (err != -ENOMEM);
507
508         if (new_page)
509                 page_cache_release(new_page);
510         if (!found_page)
511                 return ZSWAP_SWAPCACHE_FAIL;
512         *retpage = found_page;
513         return ZSWAP_SWAPCACHE_EXIST;
514 }
515
516 /*
517  * Attempts to free an entry by adding a page to the swap cache,
518  * decompressing the entry data into the page, and issuing a
519  * bio write to write the page back to the swap device.
520  *
521  * This can be thought of as a "resumed writeback" of the page
522  * to the swap device.  We are basically resuming the same swap
523  * writeback path that was intercepted with the frontswap_store()
524  * in the first place.  After the page has been decompressed into
525  * the swap cache, the compressed version stored by zswap can be
526  * freed.
527  */
528 static int zswap_writeback_entry(struct zbud_pool *pool, unsigned long handle)
529 {
530         struct zswap_header *zhdr;
531         swp_entry_t swpentry;
532         struct zswap_tree *tree;
533         pgoff_t offset;
534         struct zswap_entry *entry;
535         struct page *page;
536         u8 *src, *dst;
537         unsigned int dlen;
538         int ret;
539         struct writeback_control wbc = {
540                 .sync_mode = WB_SYNC_NONE,
541         };
542
543         /* extract swpentry from data */
544         zhdr = zbud_map(pool, handle);
545         swpentry = zhdr->swpentry; /* here */
546         zbud_unmap(pool, handle);
547         tree = zswap_trees[swp_type(swpentry)];
548         offset = swp_offset(swpentry);
549
550         /* find and ref zswap entry */
551         spin_lock(&tree->lock);
552         entry = zswap_entry_find_get(&tree->rbroot, offset);
553         if (!entry) {
554                 /* entry was invalidated */
555                 spin_unlock(&tree->lock);
556                 return 0;
557         }
558         spin_unlock(&tree->lock);
559         BUG_ON(offset != entry->offset);
560
561         /* try to allocate swap cache page */
562         switch (zswap_get_swap_cache_page(swpentry, &page)) {
563         case ZSWAP_SWAPCACHE_FAIL: /* no memory or invalidate happened */
564                 ret = -ENOMEM;
565                 goto fail;
566
567         case ZSWAP_SWAPCACHE_EXIST:
568                 /* page is already in the swap cache, ignore for now */
569                 page_cache_release(page);
570                 ret = -EEXIST;
571                 goto fail;
572
573         case ZSWAP_SWAPCACHE_NEW: /* page is locked */
574                 /* decompress */
575                 dlen = PAGE_SIZE;
576                 src = (u8 *)zbud_map(zswap_pool, entry->handle) +
577                         sizeof(struct zswap_header);
578                 dst = kmap_atomic(page);
579                 ret = zswap_comp_op(ZSWAP_COMPOP_DECOMPRESS, src,
580                                 entry->length, dst, &dlen);
581                 kunmap_atomic(dst);
582                 zbud_unmap(zswap_pool, entry->handle);
583                 BUG_ON(ret);
584                 BUG_ON(dlen != PAGE_SIZE);
585
586                 /* page is up to date */
587                 SetPageUptodate(page);
588         }
589
590         /* move it to the tail of the inactive list after end_writeback */
591         SetPageReclaim(page);
592
593         /* start writeback */
594         __swap_writepage(page, &wbc, end_swap_bio_write);
595         page_cache_release(page);
596         zswap_written_back_pages++;
597
598         spin_lock(&tree->lock);
599         /* drop local reference */
600         zswap_entry_put(tree, entry);
601
602         /*
603         * There are two possible situations for entry here:
604         * (1) refcount is 1(normal case),  entry is valid and on the tree
605         * (2) refcount is 0, entry is freed and not on the tree
606         *     because invalidate happened during writeback
607         *  search the tree and free the entry if find entry
608         */
609         if (entry == zswap_rb_search(&tree->rbroot, offset))
610                 zswap_entry_put(tree, entry);
611         spin_unlock(&tree->lock);
612
613         goto end;
614
615         /*
616         * if we get here due to ZSWAP_SWAPCACHE_EXIST
617         * a load may happening concurrently
618         * it is safe and okay to not free the entry
619         * if we free the entry in the following put
620         * it it either okay to return !0
621         */
622 fail:
623         spin_lock(&tree->lock);
624         zswap_entry_put(tree, entry);
625         spin_unlock(&tree->lock);
626
627 end:
628         return ret;
629 }
630
631 /*********************************
632 * frontswap hooks
633 **********************************/
634 /* attempts to compress and store an single page */
635 static int zswap_frontswap_store(unsigned type, pgoff_t offset,
636                                 struct page *page)
637 {
638         struct zswap_tree *tree = zswap_trees[type];
639         struct zswap_entry *entry, *dupentry;
640         int ret;
641         unsigned int dlen = PAGE_SIZE, len;
642         unsigned long handle;
643         char *buf;
644         u8 *src, *dst;
645         struct zswap_header *zhdr;
646
647         if (!tree) {
648                 ret = -ENODEV;
649                 goto reject;
650         }
651
652         /* reclaim space if needed */
653         if (zswap_is_full()) {
654                 zswap_pool_limit_hit++;
655                 if (zbud_reclaim_page(zswap_pool, 8)) {
656                         zswap_reject_reclaim_fail++;
657                         ret = -ENOMEM;
658                         goto reject;
659                 }
660         }
661
662         /* allocate entry */
663         entry = zswap_entry_cache_alloc(GFP_KERNEL);
664         if (!entry) {
665                 zswap_reject_kmemcache_fail++;
666                 ret = -ENOMEM;
667                 goto reject;
668         }
669
670         /* compress */
671         dst = get_cpu_var(zswap_dstmem);
672         src = kmap_atomic(page);
673         ret = zswap_comp_op(ZSWAP_COMPOP_COMPRESS, src, PAGE_SIZE, dst, &dlen);
674         kunmap_atomic(src);
675         if (ret) {
676                 ret = -EINVAL;
677                 goto freepage;
678         }
679
680         /* store */
681         len = dlen + sizeof(struct zswap_header);
682         ret = zbud_alloc(zswap_pool, len, __GFP_NORETRY | __GFP_NOWARN,
683                 &handle);
684         if (ret == -ENOSPC) {
685                 zswap_reject_compress_poor++;
686                 goto freepage;
687         }
688         if (ret) {
689                 zswap_reject_alloc_fail++;
690                 goto freepage;
691         }
692         zhdr = zbud_map(zswap_pool, handle);
693         zhdr->swpentry = swp_entry(type, offset);
694         buf = (u8 *)(zhdr + 1);
695         memcpy(buf, dst, dlen);
696         zbud_unmap(zswap_pool, handle);
697         put_cpu_var(zswap_dstmem);
698
699         /* populate entry */
700         entry->offset = offset;
701         entry->handle = handle;
702         entry->length = dlen;
703
704         /* map */
705         spin_lock(&tree->lock);
706         do {
707                 ret = zswap_rb_insert(&tree->rbroot, entry, &dupentry);
708                 if (ret == -EEXIST) {
709                         zswap_duplicate_entry++;
710                         /* remove from rbtree */
711                         zswap_rb_erase(&tree->rbroot, dupentry);
712                         zswap_entry_put(tree, dupentry);
713                 }
714         } while (ret == -EEXIST);
715         spin_unlock(&tree->lock);
716
717         /* update stats */
718         atomic_inc(&zswap_stored_pages);
719         zswap_pool_pages = zbud_get_pool_size(zswap_pool);
720
721         return 0;
722
723 freepage:
724         put_cpu_var(zswap_dstmem);
725         zswap_entry_cache_free(entry);
726 reject:
727         return ret;
728 }
729
730 /*
731  * returns 0 if the page was successfully decompressed
732  * return -1 on entry not found or error
733 */
734 static int zswap_frontswap_load(unsigned type, pgoff_t offset,
735                                 struct page *page)
736 {
737         struct zswap_tree *tree = zswap_trees[type];
738         struct zswap_entry *entry;
739         u8 *src, *dst;
740         unsigned int dlen;
741         int ret;
742
743         /* find */
744         spin_lock(&tree->lock);
745         entry = zswap_entry_find_get(&tree->rbroot, offset);
746         if (!entry) {
747                 /* entry was written back */
748                 spin_unlock(&tree->lock);
749                 return -1;
750         }
751         spin_unlock(&tree->lock);
752
753         /* decompress */
754         dlen = PAGE_SIZE;
755         src = (u8 *)zbud_map(zswap_pool, entry->handle) +
756                         sizeof(struct zswap_header);
757         dst = kmap_atomic(page);
758         ret = zswap_comp_op(ZSWAP_COMPOP_DECOMPRESS, src, entry->length,
759                 dst, &dlen);
760         kunmap_atomic(dst);
761         zbud_unmap(zswap_pool, entry->handle);
762         BUG_ON(ret);
763
764         spin_lock(&tree->lock);
765         zswap_entry_put(tree, entry);
766         spin_unlock(&tree->lock);
767
768         return 0;
769 }
770
771 /* frees an entry in zswap */
772 static void zswap_frontswap_invalidate_page(unsigned type, pgoff_t offset)
773 {
774         struct zswap_tree *tree = zswap_trees[type];
775         struct zswap_entry *entry;
776
777         /* find */
778         spin_lock(&tree->lock);
779         entry = zswap_rb_search(&tree->rbroot, offset);
780         if (!entry) {
781                 /* entry was written back */
782                 spin_unlock(&tree->lock);
783                 return;
784         }
785
786         /* remove from rbtree */
787         zswap_rb_erase(&tree->rbroot, entry);
788
789         /* drop the initial reference from entry creation */
790         zswap_entry_put(tree, entry);
791
792         spin_unlock(&tree->lock);
793 }
794
795 /* frees all zswap entries for the given swap type */
796 static void zswap_frontswap_invalidate_area(unsigned type)
797 {
798         struct zswap_tree *tree = zswap_trees[type];
799         struct zswap_entry *entry, *n;
800
801         if (!tree)
802                 return;
803
804         /* walk the tree and free everything */
805         spin_lock(&tree->lock);
806         rbtree_postorder_for_each_entry_safe(entry, n, &tree->rbroot, rbnode)
807                 zswap_free_entry(entry);
808         tree->rbroot = RB_ROOT;
809         spin_unlock(&tree->lock);
810         kfree(tree);
811         zswap_trees[type] = NULL;
812 }
813
814 static struct zbud_ops zswap_zbud_ops = {
815         .evict = zswap_writeback_entry
816 };
817
818 static void zswap_frontswap_init(unsigned type)
819 {
820         struct zswap_tree *tree;
821
822         tree = kzalloc(sizeof(struct zswap_tree), GFP_KERNEL);
823         if (!tree) {
824                 pr_err("alloc failed, zswap disabled for swap type %d\n", type);
825                 return;
826         }
827
828         tree->rbroot = RB_ROOT;
829         spin_lock_init(&tree->lock);
830         zswap_trees[type] = tree;
831 }
832
833 static struct frontswap_ops zswap_frontswap_ops = {
834         .store = zswap_frontswap_store,
835         .load = zswap_frontswap_load,
836         .invalidate_page = zswap_frontswap_invalidate_page,
837         .invalidate_area = zswap_frontswap_invalidate_area,
838         .init = zswap_frontswap_init
839 };
840
841 /*********************************
842 * debugfs functions
843 **********************************/
844 #ifdef CONFIG_DEBUG_FS
845 #include <linux/debugfs.h>
846
847 static struct dentry *zswap_debugfs_root;
848
849 static int __init zswap_debugfs_init(void)
850 {
851         if (!debugfs_initialized())
852                 return -ENODEV;
853
854         zswap_debugfs_root = debugfs_create_dir("zswap", NULL);
855         if (!zswap_debugfs_root)
856                 return -ENOMEM;
857
858         debugfs_create_u64("pool_limit_hit", S_IRUGO,
859                         zswap_debugfs_root, &zswap_pool_limit_hit);
860         debugfs_create_u64("reject_reclaim_fail", S_IRUGO,
861                         zswap_debugfs_root, &zswap_reject_reclaim_fail);
862         debugfs_create_u64("reject_alloc_fail", S_IRUGO,
863                         zswap_debugfs_root, &zswap_reject_alloc_fail);
864         debugfs_create_u64("reject_kmemcache_fail", S_IRUGO,
865                         zswap_debugfs_root, &zswap_reject_kmemcache_fail);
866         debugfs_create_u64("reject_compress_poor", S_IRUGO,
867                         zswap_debugfs_root, &zswap_reject_compress_poor);
868         debugfs_create_u64("written_back_pages", S_IRUGO,
869                         zswap_debugfs_root, &zswap_written_back_pages);
870         debugfs_create_u64("duplicate_entry", S_IRUGO,
871                         zswap_debugfs_root, &zswap_duplicate_entry);
872         debugfs_create_u64("pool_pages", S_IRUGO,
873                         zswap_debugfs_root, &zswap_pool_pages);
874         debugfs_create_atomic_t("stored_pages", S_IRUGO,
875                         zswap_debugfs_root, &zswap_stored_pages);
876
877         return 0;
878 }
879
880 static void __exit zswap_debugfs_exit(void)
881 {
882         debugfs_remove_recursive(zswap_debugfs_root);
883 }
884 #else
885 static int __init zswap_debugfs_init(void)
886 {
887         return 0;
888 }
889
890 static void __exit zswap_debugfs_exit(void) { }
891 #endif
892
893 /*********************************
894 * module init and exit
895 **********************************/
896 static int __init init_zswap(void)
897 {
898         if (!zswap_enabled)
899                 return 0;
900
901         pr_info("loading zswap\n");
902
903         zswap_pool = zbud_create_pool(GFP_KERNEL, &zswap_zbud_ops);
904         if (!zswap_pool) {
905                 pr_err("zbud pool creation failed\n");
906                 goto error;
907         }
908
909         if (zswap_entry_cache_create()) {
910                 pr_err("entry cache creation failed\n");
911                 goto cachefail;
912         }
913         if (zswap_comp_init()) {
914                 pr_err("compressor initialization failed\n");
915                 goto compfail;
916         }
917         if (zswap_cpu_init()) {
918                 pr_err("per-cpu initialization failed\n");
919                 goto pcpufail;
920         }
921
922         frontswap_register_ops(&zswap_frontswap_ops);
923         if (zswap_debugfs_init())
924                 pr_warn("debugfs initialization failed\n");
925         return 0;
926 pcpufail:
927         zswap_comp_exit();
928 compfail:
929         zswap_entry_cache_destory();
930 cachefail:
931         zbud_destroy_pool(zswap_pool);
932 error:
933         return -ENOMEM;
934 }
935 /* must be late so crypto has time to come up */
936 late_initcall(init_zswap);
937
938 MODULE_LICENSE("GPL");
939 MODULE_AUTHOR("Seth Jennings <sjenning@linux.vnet.ibm.com>");
940 MODULE_DESCRIPTION("Compressed cache for swap pages");