]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - net/core/dev.c
Merge branch 'karo-tx6-mainline' into stable
[karo-tx-linux.git] / net / core / dev.c
1 /*
2  *      NET3    Protocol independent device support routines.
3  *
4  *              This program is free software; you can redistribute it and/or
5  *              modify it under the terms of the GNU General Public License
6  *              as published by the Free Software Foundation; either version
7  *              2 of the License, or (at your option) any later version.
8  *
9  *      Derived from the non IP parts of dev.c 1.0.19
10  *              Authors:        Ross Biro
11  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *      Additional Authors:
15  *              Florian la Roche <rzsfl@rz.uni-sb.de>
16  *              Alan Cox <gw4pts@gw4pts.ampr.org>
17  *              David Hinds <dahinds@users.sourceforge.net>
18  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *              Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *      Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *                                      to 2 if register_netdev gets called
25  *                                      before net_dev_init & also removed a
26  *                                      few lines of code in the process.
27  *              Alan Cox        :       device private ioctl copies fields back.
28  *              Alan Cox        :       Transmit queue code does relevant
29  *                                      stunts to keep the queue safe.
30  *              Alan Cox        :       Fixed double lock.
31  *              Alan Cox        :       Fixed promisc NULL pointer trap
32  *              ????????        :       Support the full private ioctl range
33  *              Alan Cox        :       Moved ioctl permission check into
34  *                                      drivers
35  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
36  *              Alan Cox        :       100 backlog just doesn't cut it when
37  *                                      you start doing multicast video 8)
38  *              Alan Cox        :       Rewrote net_bh and list manager.
39  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
40  *              Alan Cox        :       Took out transmit every packet pass
41  *                                      Saved a few bytes in the ioctl handler
42  *              Alan Cox        :       Network driver sets packet type before
43  *                                      calling netif_rx. Saves a function
44  *                                      call a packet.
45  *              Alan Cox        :       Hashed net_bh()
46  *              Richard Kooijman:       Timestamp fixes.
47  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
48  *              Alan Cox        :       Device lock protection.
49  *              Alan Cox        :       Fixed nasty side effect of device close
50  *                                      changes.
51  *              Rudi Cilibrasi  :       Pass the right thing to
52  *                                      set_mac_address()
53  *              Dave Miller     :       32bit quantity for the device lock to
54  *                                      make it work out on a Sparc.
55  *              Bjorn Ekwall    :       Added KERNELD hack.
56  *              Alan Cox        :       Cleaned up the backlog initialise.
57  *              Craig Metz      :       SIOCGIFCONF fix if space for under
58  *                                      1 device.
59  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
60  *                                      is no device open function.
61  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
62  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
63  *              Cyrus Durgin    :       Cleaned for KMOD
64  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
65  *                                      A network device unload needs to purge
66  *                                      the backlog queue.
67  *      Paul Rusty Russell      :       SIOCSIFNAME
68  *              Pekka Riikonen  :       Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *                                      indefinitely on dev->refcnt
71  *              J Hadi Salim    :       - Backlog queue sampling
72  *                                      - netif_rx() feedback
73  */
74
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dst.h>
102 #include <net/dst_metadata.h>
103 #include <net/pkt_sched.h>
104 #include <net/checksum.h>
105 #include <net/xfrm.h>
106 #include <linux/highmem.h>
107 #include <linux/init.h>
108 #include <linux/module.h>
109 #include <linux/netpoll.h>
110 #include <linux/rcupdate.h>
111 #include <linux/delay.h>
112 #include <net/iw_handler.h>
113 #include <asm/current.h>
114 #include <linux/audit.h>
115 #include <linux/dmaengine.h>
116 #include <linux/err.h>
117 #include <linux/ctype.h>
118 #include <linux/if_arp.h>
119 #include <linux/if_vlan.h>
120 #include <linux/ip.h>
121 #include <net/ip.h>
122 #include <net/mpls.h>
123 #include <linux/ipv6.h>
124 #include <linux/in.h>
125 #include <linux/jhash.h>
126 #include <linux/random.h>
127 #include <trace/events/napi.h>
128 #include <trace/events/net.h>
129 #include <trace/events/skb.h>
130 #include <linux/pci.h>
131 #include <linux/inetdevice.h>
132 #include <linux/cpu_rmap.h>
133 #include <linux/static_key.h>
134 #include <linux/hashtable.h>
135 #include <linux/vmalloc.h>
136 #include <linux/if_macvlan.h>
137 #include <linux/errqueue.h>
138 #include <linux/hrtimer.h>
139 #include <linux/netfilter_ingress.h>
140
141 #include "net-sysfs.h"
142
143 /* Instead of increasing this, you should create a hash table. */
144 #define MAX_GRO_SKBS 8
145
146 /* This should be increased if a protocol with a bigger head is added. */
147 #define GRO_MAX_HEAD (MAX_HEADER + 128)
148
149 static DEFINE_SPINLOCK(ptype_lock);
150 static DEFINE_SPINLOCK(offload_lock);
151 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
152 struct list_head ptype_all __read_mostly;       /* Taps */
153 static struct list_head offload_base __read_mostly;
154
155 static int netif_rx_internal(struct sk_buff *skb);
156 static int call_netdevice_notifiers_info(unsigned long val,
157                                          struct net_device *dev,
158                                          struct netdev_notifier_info *info);
159
160 /*
161  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
162  * semaphore.
163  *
164  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
165  *
166  * Writers must hold the rtnl semaphore while they loop through the
167  * dev_base_head list, and hold dev_base_lock for writing when they do the
168  * actual updates.  This allows pure readers to access the list even
169  * while a writer is preparing to update it.
170  *
171  * To put it another way, dev_base_lock is held for writing only to
172  * protect against pure readers; the rtnl semaphore provides the
173  * protection against other writers.
174  *
175  * See, for example usages, register_netdevice() and
176  * unregister_netdevice(), which must be called with the rtnl
177  * semaphore held.
178  */
179 DEFINE_RWLOCK(dev_base_lock);
180 EXPORT_SYMBOL(dev_base_lock);
181
182 /* protects napi_hash addition/deletion and napi_gen_id */
183 static DEFINE_SPINLOCK(napi_hash_lock);
184
185 static unsigned int napi_gen_id;
186 static DEFINE_HASHTABLE(napi_hash, 8);
187
188 static seqcount_t devnet_rename_seq;
189
190 static inline void dev_base_seq_inc(struct net *net)
191 {
192         while (++net->dev_base_seq == 0);
193 }
194
195 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
196 {
197         unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
198
199         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
200 }
201
202 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
203 {
204         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
205 }
206
207 static inline void rps_lock(struct softnet_data *sd)
208 {
209 #ifdef CONFIG_RPS
210         spin_lock(&sd->input_pkt_queue.lock);
211 #endif
212 }
213
214 static inline void rps_unlock(struct softnet_data *sd)
215 {
216 #ifdef CONFIG_RPS
217         spin_unlock(&sd->input_pkt_queue.lock);
218 #endif
219 }
220
221 /* Device list insertion */
222 static void list_netdevice(struct net_device *dev)
223 {
224         struct net *net = dev_net(dev);
225
226         ASSERT_RTNL();
227
228         write_lock_bh(&dev_base_lock);
229         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
230         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
231         hlist_add_head_rcu(&dev->index_hlist,
232                            dev_index_hash(net, dev->ifindex));
233         write_unlock_bh(&dev_base_lock);
234
235         dev_base_seq_inc(net);
236 }
237
238 /* Device list removal
239  * caller must respect a RCU grace period before freeing/reusing dev
240  */
241 static void unlist_netdevice(struct net_device *dev)
242 {
243         ASSERT_RTNL();
244
245         /* Unlink dev from the device chain */
246         write_lock_bh(&dev_base_lock);
247         list_del_rcu(&dev->dev_list);
248         hlist_del_rcu(&dev->name_hlist);
249         hlist_del_rcu(&dev->index_hlist);
250         write_unlock_bh(&dev_base_lock);
251
252         dev_base_seq_inc(dev_net(dev));
253 }
254
255 /*
256  *      Our notifier list
257  */
258
259 static RAW_NOTIFIER_HEAD(netdev_chain);
260
261 /*
262  *      Device drivers call our routines to queue packets here. We empty the
263  *      queue in the local softnet handler.
264  */
265
266 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
267 EXPORT_PER_CPU_SYMBOL(softnet_data);
268
269 #ifdef CONFIG_LOCKDEP
270 /*
271  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
272  * according to dev->type
273  */
274 static const unsigned short netdev_lock_type[] =
275         {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
276          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
277          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
278          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
279          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
280          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
281          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
282          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
283          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
284          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
285          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
286          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
287          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
288          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
289          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
290
291 static const char *const netdev_lock_name[] =
292         {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
293          "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
294          "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
295          "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
296          "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
297          "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
298          "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
299          "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
300          "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
301          "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
302          "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
303          "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
304          "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
305          "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
306          "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
307
308 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
309 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
310
311 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
312 {
313         int i;
314
315         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
316                 if (netdev_lock_type[i] == dev_type)
317                         return i;
318         /* the last key is used by default */
319         return ARRAY_SIZE(netdev_lock_type) - 1;
320 }
321
322 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
323                                                  unsigned short dev_type)
324 {
325         int i;
326
327         i = netdev_lock_pos(dev_type);
328         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
329                                    netdev_lock_name[i]);
330 }
331
332 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
333 {
334         int i;
335
336         i = netdev_lock_pos(dev->type);
337         lockdep_set_class_and_name(&dev->addr_list_lock,
338                                    &netdev_addr_lock_key[i],
339                                    netdev_lock_name[i]);
340 }
341 #else
342 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
343                                                  unsigned short dev_type)
344 {
345 }
346 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
347 {
348 }
349 #endif
350
351 /*******************************************************************************
352
353                 Protocol management and registration routines
354
355 *******************************************************************************/
356
357 /*
358  *      Add a protocol ID to the list. Now that the input handler is
359  *      smarter we can dispense with all the messy stuff that used to be
360  *      here.
361  *
362  *      BEWARE!!! Protocol handlers, mangling input packets,
363  *      MUST BE last in hash buckets and checking protocol handlers
364  *      MUST start from promiscuous ptype_all chain in net_bh.
365  *      It is true now, do not change it.
366  *      Explanation follows: if protocol handler, mangling packet, will
367  *      be the first on list, it is not able to sense, that packet
368  *      is cloned and should be copied-on-write, so that it will
369  *      change it and subsequent readers will get broken packet.
370  *                                                      --ANK (980803)
371  */
372
373 static inline struct list_head *ptype_head(const struct packet_type *pt)
374 {
375         if (pt->type == htons(ETH_P_ALL))
376                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
377         else
378                 return pt->dev ? &pt->dev->ptype_specific :
379                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
380 }
381
382 /**
383  *      dev_add_pack - add packet handler
384  *      @pt: packet type declaration
385  *
386  *      Add a protocol handler to the networking stack. The passed &packet_type
387  *      is linked into kernel lists and may not be freed until it has been
388  *      removed from the kernel lists.
389  *
390  *      This call does not sleep therefore it can not
391  *      guarantee all CPU's that are in middle of receiving packets
392  *      will see the new packet type (until the next received packet).
393  */
394
395 void dev_add_pack(struct packet_type *pt)
396 {
397         struct list_head *head = ptype_head(pt);
398
399         spin_lock(&ptype_lock);
400         list_add_rcu(&pt->list, head);
401         spin_unlock(&ptype_lock);
402 }
403 EXPORT_SYMBOL(dev_add_pack);
404
405 /**
406  *      __dev_remove_pack        - remove packet handler
407  *      @pt: packet type declaration
408  *
409  *      Remove a protocol handler that was previously added to the kernel
410  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
411  *      from the kernel lists and can be freed or reused once this function
412  *      returns.
413  *
414  *      The packet type might still be in use by receivers
415  *      and must not be freed until after all the CPU's have gone
416  *      through a quiescent state.
417  */
418 void __dev_remove_pack(struct packet_type *pt)
419 {
420         struct list_head *head = ptype_head(pt);
421         struct packet_type *pt1;
422
423         spin_lock(&ptype_lock);
424
425         list_for_each_entry(pt1, head, list) {
426                 if (pt == pt1) {
427                         list_del_rcu(&pt->list);
428                         goto out;
429                 }
430         }
431
432         pr_warn("dev_remove_pack: %p not found\n", pt);
433 out:
434         spin_unlock(&ptype_lock);
435 }
436 EXPORT_SYMBOL(__dev_remove_pack);
437
438 /**
439  *      dev_remove_pack  - remove packet handler
440  *      @pt: packet type declaration
441  *
442  *      Remove a protocol handler that was previously added to the kernel
443  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
444  *      from the kernel lists and can be freed or reused once this function
445  *      returns.
446  *
447  *      This call sleeps to guarantee that no CPU is looking at the packet
448  *      type after return.
449  */
450 void dev_remove_pack(struct packet_type *pt)
451 {
452         __dev_remove_pack(pt);
453
454         synchronize_net();
455 }
456 EXPORT_SYMBOL(dev_remove_pack);
457
458
459 /**
460  *      dev_add_offload - register offload handlers
461  *      @po: protocol offload declaration
462  *
463  *      Add protocol offload handlers to the networking stack. The passed
464  *      &proto_offload is linked into kernel lists and may not be freed until
465  *      it has been removed from the kernel lists.
466  *
467  *      This call does not sleep therefore it can not
468  *      guarantee all CPU's that are in middle of receiving packets
469  *      will see the new offload handlers (until the next received packet).
470  */
471 void dev_add_offload(struct packet_offload *po)
472 {
473         struct packet_offload *elem;
474
475         spin_lock(&offload_lock);
476         list_for_each_entry(elem, &offload_base, list) {
477                 if (po->priority < elem->priority)
478                         break;
479         }
480         list_add_rcu(&po->list, elem->list.prev);
481         spin_unlock(&offload_lock);
482 }
483 EXPORT_SYMBOL(dev_add_offload);
484
485 /**
486  *      __dev_remove_offload     - remove offload handler
487  *      @po: packet offload declaration
488  *
489  *      Remove a protocol offload handler that was previously added to the
490  *      kernel offload handlers by dev_add_offload(). The passed &offload_type
491  *      is removed from the kernel lists and can be freed or reused once this
492  *      function returns.
493  *
494  *      The packet type might still be in use by receivers
495  *      and must not be freed until after all the CPU's have gone
496  *      through a quiescent state.
497  */
498 static void __dev_remove_offload(struct packet_offload *po)
499 {
500         struct list_head *head = &offload_base;
501         struct packet_offload *po1;
502
503         spin_lock(&offload_lock);
504
505         list_for_each_entry(po1, head, list) {
506                 if (po == po1) {
507                         list_del_rcu(&po->list);
508                         goto out;
509                 }
510         }
511
512         pr_warn("dev_remove_offload: %p not found\n", po);
513 out:
514         spin_unlock(&offload_lock);
515 }
516
517 /**
518  *      dev_remove_offload       - remove packet offload handler
519  *      @po: packet offload declaration
520  *
521  *      Remove a packet offload handler that was previously added to the kernel
522  *      offload handlers by dev_add_offload(). The passed &offload_type is
523  *      removed from the kernel lists and can be freed or reused once this
524  *      function returns.
525  *
526  *      This call sleeps to guarantee that no CPU is looking at the packet
527  *      type after return.
528  */
529 void dev_remove_offload(struct packet_offload *po)
530 {
531         __dev_remove_offload(po);
532
533         synchronize_net();
534 }
535 EXPORT_SYMBOL(dev_remove_offload);
536
537 /******************************************************************************
538
539                       Device Boot-time Settings Routines
540
541 *******************************************************************************/
542
543 /* Boot time configuration table */
544 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
545
546 /**
547  *      netdev_boot_setup_add   - add new setup entry
548  *      @name: name of the device
549  *      @map: configured settings for the device
550  *
551  *      Adds new setup entry to the dev_boot_setup list.  The function
552  *      returns 0 on error and 1 on success.  This is a generic routine to
553  *      all netdevices.
554  */
555 static int netdev_boot_setup_add(char *name, struct ifmap *map)
556 {
557         struct netdev_boot_setup *s;
558         int i;
559
560         s = dev_boot_setup;
561         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
562                 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
563                         memset(s[i].name, 0, sizeof(s[i].name));
564                         strlcpy(s[i].name, name, IFNAMSIZ);
565                         memcpy(&s[i].map, map, sizeof(s[i].map));
566                         break;
567                 }
568         }
569
570         return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
571 }
572
573 /**
574  *      netdev_boot_setup_check - check boot time settings
575  *      @dev: the netdevice
576  *
577  *      Check boot time settings for the device.
578  *      The found settings are set for the device to be used
579  *      later in the device probing.
580  *      Returns 0 if no settings found, 1 if they are.
581  */
582 int netdev_boot_setup_check(struct net_device *dev)
583 {
584         struct netdev_boot_setup *s = dev_boot_setup;
585         int i;
586
587         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
588                 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
589                     !strcmp(dev->name, s[i].name)) {
590                         dev->irq        = s[i].map.irq;
591                         dev->base_addr  = s[i].map.base_addr;
592                         dev->mem_start  = s[i].map.mem_start;
593                         dev->mem_end    = s[i].map.mem_end;
594                         return 1;
595                 }
596         }
597         return 0;
598 }
599 EXPORT_SYMBOL(netdev_boot_setup_check);
600
601
602 /**
603  *      netdev_boot_base        - get address from boot time settings
604  *      @prefix: prefix for network device
605  *      @unit: id for network device
606  *
607  *      Check boot time settings for the base address of device.
608  *      The found settings are set for the device to be used
609  *      later in the device probing.
610  *      Returns 0 if no settings found.
611  */
612 unsigned long netdev_boot_base(const char *prefix, int unit)
613 {
614         const struct netdev_boot_setup *s = dev_boot_setup;
615         char name[IFNAMSIZ];
616         int i;
617
618         sprintf(name, "%s%d", prefix, unit);
619
620         /*
621          * If device already registered then return base of 1
622          * to indicate not to probe for this interface
623          */
624         if (__dev_get_by_name(&init_net, name))
625                 return 1;
626
627         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
628                 if (!strcmp(name, s[i].name))
629                         return s[i].map.base_addr;
630         return 0;
631 }
632
633 /*
634  * Saves at boot time configured settings for any netdevice.
635  */
636 int __init netdev_boot_setup(char *str)
637 {
638         int ints[5];
639         struct ifmap map;
640
641         str = get_options(str, ARRAY_SIZE(ints), ints);
642         if (!str || !*str)
643                 return 0;
644
645         /* Save settings */
646         memset(&map, 0, sizeof(map));
647         if (ints[0] > 0)
648                 map.irq = ints[1];
649         if (ints[0] > 1)
650                 map.base_addr = ints[2];
651         if (ints[0] > 2)
652                 map.mem_start = ints[3];
653         if (ints[0] > 3)
654                 map.mem_end = ints[4];
655
656         /* Add new entry to the list */
657         return netdev_boot_setup_add(str, &map);
658 }
659
660 __setup("netdev=", netdev_boot_setup);
661
662 /*******************************************************************************
663
664                             Device Interface Subroutines
665
666 *******************************************************************************/
667
668 /**
669  *      dev_get_iflink  - get 'iflink' value of a interface
670  *      @dev: targeted interface
671  *
672  *      Indicates the ifindex the interface is linked to.
673  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
674  */
675
676 int dev_get_iflink(const struct net_device *dev)
677 {
678         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
679                 return dev->netdev_ops->ndo_get_iflink(dev);
680
681         return dev->ifindex;
682 }
683 EXPORT_SYMBOL(dev_get_iflink);
684
685 /**
686  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
687  *      @dev: targeted interface
688  *      @skb: The packet.
689  *
690  *      For better visibility of tunnel traffic OVS needs to retrieve
691  *      egress tunnel information for a packet. Following API allows
692  *      user to get this info.
693  */
694 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
695 {
696         struct ip_tunnel_info *info;
697
698         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
699                 return -EINVAL;
700
701         info = skb_tunnel_info_unclone(skb);
702         if (!info)
703                 return -ENOMEM;
704         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
705                 return -EINVAL;
706
707         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
708 }
709 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
710
711 /**
712  *      __dev_get_by_name       - find a device by its name
713  *      @net: the applicable net namespace
714  *      @name: name to find
715  *
716  *      Find an interface by name. Must be called under RTNL semaphore
717  *      or @dev_base_lock. If the name is found a pointer to the device
718  *      is returned. If the name is not found then %NULL is returned. The
719  *      reference counters are not incremented so the caller must be
720  *      careful with locks.
721  */
722
723 struct net_device *__dev_get_by_name(struct net *net, const char *name)
724 {
725         struct net_device *dev;
726         struct hlist_head *head = dev_name_hash(net, name);
727
728         hlist_for_each_entry(dev, head, name_hlist)
729                 if (!strncmp(dev->name, name, IFNAMSIZ))
730                         return dev;
731
732         return NULL;
733 }
734 EXPORT_SYMBOL(__dev_get_by_name);
735
736 /**
737  *      dev_get_by_name_rcu     - find a device by its name
738  *      @net: the applicable net namespace
739  *      @name: name to find
740  *
741  *      Find an interface by name.
742  *      If the name is found a pointer to the device is returned.
743  *      If the name is not found then %NULL is returned.
744  *      The reference counters are not incremented so the caller must be
745  *      careful with locks. The caller must hold RCU lock.
746  */
747
748 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
749 {
750         struct net_device *dev;
751         struct hlist_head *head = dev_name_hash(net, name);
752
753         hlist_for_each_entry_rcu(dev, head, name_hlist)
754                 if (!strncmp(dev->name, name, IFNAMSIZ))
755                         return dev;
756
757         return NULL;
758 }
759 EXPORT_SYMBOL(dev_get_by_name_rcu);
760
761 /**
762  *      dev_get_by_name         - find a device by its name
763  *      @net: the applicable net namespace
764  *      @name: name to find
765  *
766  *      Find an interface by name. This can be called from any
767  *      context and does its own locking. The returned handle has
768  *      the usage count incremented and the caller must use dev_put() to
769  *      release it when it is no longer needed. %NULL is returned if no
770  *      matching device is found.
771  */
772
773 struct net_device *dev_get_by_name(struct net *net, const char *name)
774 {
775         struct net_device *dev;
776
777         rcu_read_lock();
778         dev = dev_get_by_name_rcu(net, name);
779         if (dev)
780                 dev_hold(dev);
781         rcu_read_unlock();
782         return dev;
783 }
784 EXPORT_SYMBOL(dev_get_by_name);
785
786 /**
787  *      __dev_get_by_index - find a device by its ifindex
788  *      @net: the applicable net namespace
789  *      @ifindex: index of device
790  *
791  *      Search for an interface by index. Returns %NULL if the device
792  *      is not found or a pointer to the device. The device has not
793  *      had its reference counter increased so the caller must be careful
794  *      about locking. The caller must hold either the RTNL semaphore
795  *      or @dev_base_lock.
796  */
797
798 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
799 {
800         struct net_device *dev;
801         struct hlist_head *head = dev_index_hash(net, ifindex);
802
803         hlist_for_each_entry(dev, head, index_hlist)
804                 if (dev->ifindex == ifindex)
805                         return dev;
806
807         return NULL;
808 }
809 EXPORT_SYMBOL(__dev_get_by_index);
810
811 /**
812  *      dev_get_by_index_rcu - find a device by its ifindex
813  *      @net: the applicable net namespace
814  *      @ifindex: index of device
815  *
816  *      Search for an interface by index. Returns %NULL if the device
817  *      is not found or a pointer to the device. The device has not
818  *      had its reference counter increased so the caller must be careful
819  *      about locking. The caller must hold RCU lock.
820  */
821
822 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
823 {
824         struct net_device *dev;
825         struct hlist_head *head = dev_index_hash(net, ifindex);
826
827         hlist_for_each_entry_rcu(dev, head, index_hlist)
828                 if (dev->ifindex == ifindex)
829                         return dev;
830
831         return NULL;
832 }
833 EXPORT_SYMBOL(dev_get_by_index_rcu);
834
835
836 /**
837  *      dev_get_by_index - find a device by its ifindex
838  *      @net: the applicable net namespace
839  *      @ifindex: index of device
840  *
841  *      Search for an interface by index. Returns NULL if the device
842  *      is not found or a pointer to the device. The device returned has
843  *      had a reference added and the pointer is safe until the user calls
844  *      dev_put to indicate they have finished with it.
845  */
846
847 struct net_device *dev_get_by_index(struct net *net, int ifindex)
848 {
849         struct net_device *dev;
850
851         rcu_read_lock();
852         dev = dev_get_by_index_rcu(net, ifindex);
853         if (dev)
854                 dev_hold(dev);
855         rcu_read_unlock();
856         return dev;
857 }
858 EXPORT_SYMBOL(dev_get_by_index);
859
860 /**
861  *      netdev_get_name - get a netdevice name, knowing its ifindex.
862  *      @net: network namespace
863  *      @name: a pointer to the buffer where the name will be stored.
864  *      @ifindex: the ifindex of the interface to get the name from.
865  *
866  *      The use of raw_seqcount_begin() and cond_resched() before
867  *      retrying is required as we want to give the writers a chance
868  *      to complete when CONFIG_PREEMPT is not set.
869  */
870 int netdev_get_name(struct net *net, char *name, int ifindex)
871 {
872         struct net_device *dev;
873         unsigned int seq;
874
875 retry:
876         seq = raw_seqcount_begin(&devnet_rename_seq);
877         rcu_read_lock();
878         dev = dev_get_by_index_rcu(net, ifindex);
879         if (!dev) {
880                 rcu_read_unlock();
881                 return -ENODEV;
882         }
883
884         strcpy(name, dev->name);
885         rcu_read_unlock();
886         if (read_seqcount_retry(&devnet_rename_seq, seq)) {
887                 cond_resched();
888                 goto retry;
889         }
890
891         return 0;
892 }
893
894 /**
895  *      dev_getbyhwaddr_rcu - find a device by its hardware address
896  *      @net: the applicable net namespace
897  *      @type: media type of device
898  *      @ha: hardware address
899  *
900  *      Search for an interface by MAC address. Returns NULL if the device
901  *      is not found or a pointer to the device.
902  *      The caller must hold RCU or RTNL.
903  *      The returned device has not had its ref count increased
904  *      and the caller must therefore be careful about locking
905  *
906  */
907
908 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
909                                        const char *ha)
910 {
911         struct net_device *dev;
912
913         for_each_netdev_rcu(net, dev)
914                 if (dev->type == type &&
915                     !memcmp(dev->dev_addr, ha, dev->addr_len))
916                         return dev;
917
918         return NULL;
919 }
920 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
921
922 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
923 {
924         struct net_device *dev;
925
926         ASSERT_RTNL();
927         for_each_netdev(net, dev)
928                 if (dev->type == type)
929                         return dev;
930
931         return NULL;
932 }
933 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
934
935 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
936 {
937         struct net_device *dev, *ret = NULL;
938
939         rcu_read_lock();
940         for_each_netdev_rcu(net, dev)
941                 if (dev->type == type) {
942                         dev_hold(dev);
943                         ret = dev;
944                         break;
945                 }
946         rcu_read_unlock();
947         return ret;
948 }
949 EXPORT_SYMBOL(dev_getfirstbyhwtype);
950
951 /**
952  *      __dev_get_by_flags - find any device with given flags
953  *      @net: the applicable net namespace
954  *      @if_flags: IFF_* values
955  *      @mask: bitmask of bits in if_flags to check
956  *
957  *      Search for any interface with the given flags. Returns NULL if a device
958  *      is not found or a pointer to the device. Must be called inside
959  *      rtnl_lock(), and result refcount is unchanged.
960  */
961
962 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
963                                       unsigned short mask)
964 {
965         struct net_device *dev, *ret;
966
967         ASSERT_RTNL();
968
969         ret = NULL;
970         for_each_netdev(net, dev) {
971                 if (((dev->flags ^ if_flags) & mask) == 0) {
972                         ret = dev;
973                         break;
974                 }
975         }
976         return ret;
977 }
978 EXPORT_SYMBOL(__dev_get_by_flags);
979
980 /**
981  *      dev_valid_name - check if name is okay for network device
982  *      @name: name string
983  *
984  *      Network device names need to be valid file names to
985  *      to allow sysfs to work.  We also disallow any kind of
986  *      whitespace.
987  */
988 bool dev_valid_name(const char *name)
989 {
990         if (*name == '\0')
991                 return false;
992         if (strlen(name) >= IFNAMSIZ)
993                 return false;
994         if (!strcmp(name, ".") || !strcmp(name, ".."))
995                 return false;
996
997         while (*name) {
998                 if (*name == '/' || *name == ':' || isspace(*name))
999                         return false;
1000                 name++;
1001         }
1002         return true;
1003 }
1004 EXPORT_SYMBOL(dev_valid_name);
1005
1006 /**
1007  *      __dev_alloc_name - allocate a name for a device
1008  *      @net: network namespace to allocate the device name in
1009  *      @name: name format string
1010  *      @buf:  scratch buffer and result name string
1011  *
1012  *      Passed a format string - eg "lt%d" it will try and find a suitable
1013  *      id. It scans list of devices to build up a free map, then chooses
1014  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1015  *      while allocating the name and adding the device in order to avoid
1016  *      duplicates.
1017  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1018  *      Returns the number of the unit assigned or a negative errno code.
1019  */
1020
1021 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1022 {
1023         int i = 0;
1024         const char *p;
1025         const int max_netdevices = 8*PAGE_SIZE;
1026         unsigned long *inuse;
1027         struct net_device *d;
1028
1029         p = strnchr(name, IFNAMSIZ-1, '%');
1030         if (p) {
1031                 /*
1032                  * Verify the string as this thing may have come from
1033                  * the user.  There must be either one "%d" and no other "%"
1034                  * characters.
1035                  */
1036                 if (p[1] != 'd' || strchr(p + 2, '%'))
1037                         return -EINVAL;
1038
1039                 /* Use one page as a bit array of possible slots */
1040                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1041                 if (!inuse)
1042                         return -ENOMEM;
1043
1044                 for_each_netdev(net, d) {
1045                         if (!sscanf(d->name, name, &i))
1046                                 continue;
1047                         if (i < 0 || i >= max_netdevices)
1048                                 continue;
1049
1050                         /*  avoid cases where sscanf is not exact inverse of printf */
1051                         snprintf(buf, IFNAMSIZ, name, i);
1052                         if (!strncmp(buf, d->name, IFNAMSIZ))
1053                                 set_bit(i, inuse);
1054                 }
1055
1056                 i = find_first_zero_bit(inuse, max_netdevices);
1057                 free_page((unsigned long) inuse);
1058         }
1059
1060         if (buf != name)
1061                 snprintf(buf, IFNAMSIZ, name, i);
1062         if (!__dev_get_by_name(net, buf))
1063                 return i;
1064
1065         /* It is possible to run out of possible slots
1066          * when the name is long and there isn't enough space left
1067          * for the digits, or if all bits are used.
1068          */
1069         return -ENFILE;
1070 }
1071
1072 /**
1073  *      dev_alloc_name - allocate a name for a device
1074  *      @dev: device
1075  *      @name: name format string
1076  *
1077  *      Passed a format string - eg "lt%d" it will try and find a suitable
1078  *      id. It scans list of devices to build up a free map, then chooses
1079  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1080  *      while allocating the name and adding the device in order to avoid
1081  *      duplicates.
1082  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1083  *      Returns the number of the unit assigned or a negative errno code.
1084  */
1085
1086 int dev_alloc_name(struct net_device *dev, const char *name)
1087 {
1088         char buf[IFNAMSIZ];
1089         struct net *net;
1090         int ret;
1091
1092         BUG_ON(!dev_net(dev));
1093         net = dev_net(dev);
1094         ret = __dev_alloc_name(net, name, buf);
1095         if (ret >= 0)
1096                 strlcpy(dev->name, buf, IFNAMSIZ);
1097         return ret;
1098 }
1099 EXPORT_SYMBOL(dev_alloc_name);
1100
1101 static int dev_alloc_name_ns(struct net *net,
1102                              struct net_device *dev,
1103                              const char *name)
1104 {
1105         char buf[IFNAMSIZ];
1106         int ret;
1107
1108         ret = __dev_alloc_name(net, name, buf);
1109         if (ret >= 0)
1110                 strlcpy(dev->name, buf, IFNAMSIZ);
1111         return ret;
1112 }
1113
1114 static int dev_get_valid_name(struct net *net,
1115                               struct net_device *dev,
1116                               const char *name)
1117 {
1118         BUG_ON(!net);
1119
1120         if (!dev_valid_name(name))
1121                 return -EINVAL;
1122
1123         if (strchr(name, '%'))
1124                 return dev_alloc_name_ns(net, dev, name);
1125         else if (__dev_get_by_name(net, name))
1126                 return -EEXIST;
1127         else if (dev->name != name)
1128                 strlcpy(dev->name, name, IFNAMSIZ);
1129
1130         return 0;
1131 }
1132
1133 /**
1134  *      dev_change_name - change name of a device
1135  *      @dev: device
1136  *      @newname: name (or format string) must be at least IFNAMSIZ
1137  *
1138  *      Change name of a device, can pass format strings "eth%d".
1139  *      for wildcarding.
1140  */
1141 int dev_change_name(struct net_device *dev, const char *newname)
1142 {
1143         unsigned char old_assign_type;
1144         char oldname[IFNAMSIZ];
1145         int err = 0;
1146         int ret;
1147         struct net *net;
1148
1149         ASSERT_RTNL();
1150         BUG_ON(!dev_net(dev));
1151
1152         net = dev_net(dev);
1153         if (dev->flags & IFF_UP)
1154                 return -EBUSY;
1155
1156         write_seqcount_begin(&devnet_rename_seq);
1157
1158         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1159                 write_seqcount_end(&devnet_rename_seq);
1160                 return 0;
1161         }
1162
1163         memcpy(oldname, dev->name, IFNAMSIZ);
1164
1165         err = dev_get_valid_name(net, dev, newname);
1166         if (err < 0) {
1167                 write_seqcount_end(&devnet_rename_seq);
1168                 return err;
1169         }
1170
1171         if (oldname[0] && !strchr(oldname, '%'))
1172                 netdev_info(dev, "renamed from %s\n", oldname);
1173
1174         old_assign_type = dev->name_assign_type;
1175         dev->name_assign_type = NET_NAME_RENAMED;
1176
1177 rollback:
1178         ret = device_rename(&dev->dev, dev->name);
1179         if (ret) {
1180                 memcpy(dev->name, oldname, IFNAMSIZ);
1181                 dev->name_assign_type = old_assign_type;
1182                 write_seqcount_end(&devnet_rename_seq);
1183                 return ret;
1184         }
1185
1186         write_seqcount_end(&devnet_rename_seq);
1187
1188         netdev_adjacent_rename_links(dev, oldname);
1189
1190         write_lock_bh(&dev_base_lock);
1191         hlist_del_rcu(&dev->name_hlist);
1192         write_unlock_bh(&dev_base_lock);
1193
1194         synchronize_rcu();
1195
1196         write_lock_bh(&dev_base_lock);
1197         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1198         write_unlock_bh(&dev_base_lock);
1199
1200         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1201         ret = notifier_to_errno(ret);
1202
1203         if (ret) {
1204                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1205                 if (err >= 0) {
1206                         err = ret;
1207                         write_seqcount_begin(&devnet_rename_seq);
1208                         memcpy(dev->name, oldname, IFNAMSIZ);
1209                         memcpy(oldname, newname, IFNAMSIZ);
1210                         dev->name_assign_type = old_assign_type;
1211                         old_assign_type = NET_NAME_RENAMED;
1212                         goto rollback;
1213                 } else {
1214                         pr_err("%s: name change rollback failed: %d\n",
1215                                dev->name, ret);
1216                 }
1217         }
1218
1219         return err;
1220 }
1221
1222 /**
1223  *      dev_set_alias - change ifalias of a device
1224  *      @dev: device
1225  *      @alias: name up to IFALIASZ
1226  *      @len: limit of bytes to copy from info
1227  *
1228  *      Set ifalias for a device,
1229  */
1230 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1231 {
1232         char *new_ifalias;
1233
1234         ASSERT_RTNL();
1235
1236         if (len >= IFALIASZ)
1237                 return -EINVAL;
1238
1239         if (!len) {
1240                 kfree(dev->ifalias);
1241                 dev->ifalias = NULL;
1242                 return 0;
1243         }
1244
1245         new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1246         if (!new_ifalias)
1247                 return -ENOMEM;
1248         dev->ifalias = new_ifalias;
1249
1250         strlcpy(dev->ifalias, alias, len+1);
1251         return len;
1252 }
1253
1254
1255 /**
1256  *      netdev_features_change - device changes features
1257  *      @dev: device to cause notification
1258  *
1259  *      Called to indicate a device has changed features.
1260  */
1261 void netdev_features_change(struct net_device *dev)
1262 {
1263         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1264 }
1265 EXPORT_SYMBOL(netdev_features_change);
1266
1267 /**
1268  *      netdev_state_change - device changes state
1269  *      @dev: device to cause notification
1270  *
1271  *      Called to indicate a device has changed state. This function calls
1272  *      the notifier chains for netdev_chain and sends a NEWLINK message
1273  *      to the routing socket.
1274  */
1275 void netdev_state_change(struct net_device *dev)
1276 {
1277         if (dev->flags & IFF_UP) {
1278                 struct netdev_notifier_change_info change_info;
1279
1280                 change_info.flags_changed = 0;
1281                 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1282                                               &change_info.info);
1283                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1284         }
1285 }
1286 EXPORT_SYMBOL(netdev_state_change);
1287
1288 /**
1289  *      netdev_notify_peers - notify network peers about existence of @dev
1290  *      @dev: network device
1291  *
1292  * Generate traffic such that interested network peers are aware of
1293  * @dev, such as by generating a gratuitous ARP. This may be used when
1294  * a device wants to inform the rest of the network about some sort of
1295  * reconfiguration such as a failover event or virtual machine
1296  * migration.
1297  */
1298 void netdev_notify_peers(struct net_device *dev)
1299 {
1300         rtnl_lock();
1301         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1302         rtnl_unlock();
1303 }
1304 EXPORT_SYMBOL(netdev_notify_peers);
1305
1306 static int __dev_open(struct net_device *dev)
1307 {
1308         const struct net_device_ops *ops = dev->netdev_ops;
1309         int ret;
1310
1311         ASSERT_RTNL();
1312
1313         if (!netif_device_present(dev))
1314                 return -ENODEV;
1315
1316         /* Block netpoll from trying to do any rx path servicing.
1317          * If we don't do this there is a chance ndo_poll_controller
1318          * or ndo_poll may be running while we open the device
1319          */
1320         netpoll_poll_disable(dev);
1321
1322         ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1323         ret = notifier_to_errno(ret);
1324         if (ret)
1325                 return ret;
1326
1327         set_bit(__LINK_STATE_START, &dev->state);
1328
1329         if (ops->ndo_validate_addr)
1330                 ret = ops->ndo_validate_addr(dev);
1331
1332         if (!ret && ops->ndo_open)
1333                 ret = ops->ndo_open(dev);
1334
1335         netpoll_poll_enable(dev);
1336
1337         if (ret)
1338                 clear_bit(__LINK_STATE_START, &dev->state);
1339         else {
1340                 dev->flags |= IFF_UP;
1341                 dev_set_rx_mode(dev);
1342                 dev_activate(dev);
1343                 add_device_randomness(dev->dev_addr, dev->addr_len);
1344         }
1345
1346         return ret;
1347 }
1348
1349 /**
1350  *      dev_open        - prepare an interface for use.
1351  *      @dev:   device to open
1352  *
1353  *      Takes a device from down to up state. The device's private open
1354  *      function is invoked and then the multicast lists are loaded. Finally
1355  *      the device is moved into the up state and a %NETDEV_UP message is
1356  *      sent to the netdev notifier chain.
1357  *
1358  *      Calling this function on an active interface is a nop. On a failure
1359  *      a negative errno code is returned.
1360  */
1361 int dev_open(struct net_device *dev)
1362 {
1363         int ret;
1364
1365         if (dev->flags & IFF_UP)
1366                 return 0;
1367
1368         ret = __dev_open(dev);
1369         if (ret < 0)
1370                 return ret;
1371
1372         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1373         call_netdevice_notifiers(NETDEV_UP, dev);
1374
1375         return ret;
1376 }
1377 EXPORT_SYMBOL(dev_open);
1378
1379 static int __dev_close_many(struct list_head *head)
1380 {
1381         struct net_device *dev;
1382
1383         ASSERT_RTNL();
1384         might_sleep();
1385
1386         list_for_each_entry(dev, head, close_list) {
1387                 /* Temporarily disable netpoll until the interface is down */
1388                 netpoll_poll_disable(dev);
1389
1390                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1391
1392                 clear_bit(__LINK_STATE_START, &dev->state);
1393
1394                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1395                  * can be even on different cpu. So just clear netif_running().
1396                  *
1397                  * dev->stop() will invoke napi_disable() on all of it's
1398                  * napi_struct instances on this device.
1399                  */
1400                 smp_mb__after_atomic(); /* Commit netif_running(). */
1401         }
1402
1403         dev_deactivate_many(head);
1404
1405         list_for_each_entry(dev, head, close_list) {
1406                 const struct net_device_ops *ops = dev->netdev_ops;
1407
1408                 /*
1409                  *      Call the device specific close. This cannot fail.
1410                  *      Only if device is UP
1411                  *
1412                  *      We allow it to be called even after a DETACH hot-plug
1413                  *      event.
1414                  */
1415                 if (ops->ndo_stop)
1416                         ops->ndo_stop(dev);
1417
1418                 dev->flags &= ~IFF_UP;
1419                 netpoll_poll_enable(dev);
1420         }
1421
1422         return 0;
1423 }
1424
1425 static int __dev_close(struct net_device *dev)
1426 {
1427         int retval;
1428         LIST_HEAD(single);
1429
1430         list_add(&dev->close_list, &single);
1431         retval = __dev_close_many(&single);
1432         list_del(&single);
1433
1434         return retval;
1435 }
1436
1437 int dev_close_many(struct list_head *head, bool unlink)
1438 {
1439         struct net_device *dev, *tmp;
1440
1441         /* Remove the devices that don't need to be closed */
1442         list_for_each_entry_safe(dev, tmp, head, close_list)
1443                 if (!(dev->flags & IFF_UP))
1444                         list_del_init(&dev->close_list);
1445
1446         __dev_close_many(head);
1447
1448         list_for_each_entry_safe(dev, tmp, head, close_list) {
1449                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1450                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1451                 if (unlink)
1452                         list_del_init(&dev->close_list);
1453         }
1454
1455         return 0;
1456 }
1457 EXPORT_SYMBOL(dev_close_many);
1458
1459 /**
1460  *      dev_close - shutdown an interface.
1461  *      @dev: device to shutdown
1462  *
1463  *      This function moves an active device into down state. A
1464  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1465  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1466  *      chain.
1467  */
1468 int dev_close(struct net_device *dev)
1469 {
1470         if (dev->flags & IFF_UP) {
1471                 LIST_HEAD(single);
1472
1473                 list_add(&dev->close_list, &single);
1474                 dev_close_many(&single, true);
1475                 list_del(&single);
1476         }
1477         return 0;
1478 }
1479 EXPORT_SYMBOL(dev_close);
1480
1481
1482 /**
1483  *      dev_disable_lro - disable Large Receive Offload on a device
1484  *      @dev: device
1485  *
1486  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1487  *      called under RTNL.  This is needed if received packets may be
1488  *      forwarded to another interface.
1489  */
1490 void dev_disable_lro(struct net_device *dev)
1491 {
1492         struct net_device *lower_dev;
1493         struct list_head *iter;
1494
1495         dev->wanted_features &= ~NETIF_F_LRO;
1496         netdev_update_features(dev);
1497
1498         if (unlikely(dev->features & NETIF_F_LRO))
1499                 netdev_WARN(dev, "failed to disable LRO!\n");
1500
1501         netdev_for_each_lower_dev(dev, lower_dev, iter)
1502                 dev_disable_lro(lower_dev);
1503 }
1504 EXPORT_SYMBOL(dev_disable_lro);
1505
1506 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1507                                    struct net_device *dev)
1508 {
1509         struct netdev_notifier_info info;
1510
1511         netdev_notifier_info_init(&info, dev);
1512         return nb->notifier_call(nb, val, &info);
1513 }
1514
1515 static int dev_boot_phase = 1;
1516
1517 /**
1518  *      register_netdevice_notifier - register a network notifier block
1519  *      @nb: notifier
1520  *
1521  *      Register a notifier to be called when network device events occur.
1522  *      The notifier passed is linked into the kernel structures and must
1523  *      not be reused until it has been unregistered. A negative errno code
1524  *      is returned on a failure.
1525  *
1526  *      When registered all registration and up events are replayed
1527  *      to the new notifier to allow device to have a race free
1528  *      view of the network device list.
1529  */
1530
1531 int register_netdevice_notifier(struct notifier_block *nb)
1532 {
1533         struct net_device *dev;
1534         struct net_device *last;
1535         struct net *net;
1536         int err;
1537
1538         rtnl_lock();
1539         err = raw_notifier_chain_register(&netdev_chain, nb);
1540         if (err)
1541                 goto unlock;
1542         if (dev_boot_phase)
1543                 goto unlock;
1544         for_each_net(net) {
1545                 for_each_netdev(net, dev) {
1546                         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1547                         err = notifier_to_errno(err);
1548                         if (err)
1549                                 goto rollback;
1550
1551                         if (!(dev->flags & IFF_UP))
1552                                 continue;
1553
1554                         call_netdevice_notifier(nb, NETDEV_UP, dev);
1555                 }
1556         }
1557
1558 unlock:
1559         rtnl_unlock();
1560         return err;
1561
1562 rollback:
1563         last = dev;
1564         for_each_net(net) {
1565                 for_each_netdev(net, dev) {
1566                         if (dev == last)
1567                                 goto outroll;
1568
1569                         if (dev->flags & IFF_UP) {
1570                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1571                                                         dev);
1572                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1573                         }
1574                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1575                 }
1576         }
1577
1578 outroll:
1579         raw_notifier_chain_unregister(&netdev_chain, nb);
1580         goto unlock;
1581 }
1582 EXPORT_SYMBOL(register_netdevice_notifier);
1583
1584 /**
1585  *      unregister_netdevice_notifier - unregister a network notifier block
1586  *      @nb: notifier
1587  *
1588  *      Unregister a notifier previously registered by
1589  *      register_netdevice_notifier(). The notifier is unlinked into the
1590  *      kernel structures and may then be reused. A negative errno code
1591  *      is returned on a failure.
1592  *
1593  *      After unregistering unregister and down device events are synthesized
1594  *      for all devices on the device list to the removed notifier to remove
1595  *      the need for special case cleanup code.
1596  */
1597
1598 int unregister_netdevice_notifier(struct notifier_block *nb)
1599 {
1600         struct net_device *dev;
1601         struct net *net;
1602         int err;
1603
1604         rtnl_lock();
1605         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1606         if (err)
1607                 goto unlock;
1608
1609         for_each_net(net) {
1610                 for_each_netdev(net, dev) {
1611                         if (dev->flags & IFF_UP) {
1612                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1613                                                         dev);
1614                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1615                         }
1616                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1617                 }
1618         }
1619 unlock:
1620         rtnl_unlock();
1621         return err;
1622 }
1623 EXPORT_SYMBOL(unregister_netdevice_notifier);
1624
1625 /**
1626  *      call_netdevice_notifiers_info - call all network notifier blocks
1627  *      @val: value passed unmodified to notifier function
1628  *      @dev: net_device pointer passed unmodified to notifier function
1629  *      @info: notifier information data
1630  *
1631  *      Call all network notifier blocks.  Parameters and return value
1632  *      are as for raw_notifier_call_chain().
1633  */
1634
1635 static int call_netdevice_notifiers_info(unsigned long val,
1636                                          struct net_device *dev,
1637                                          struct netdev_notifier_info *info)
1638 {
1639         ASSERT_RTNL();
1640         netdev_notifier_info_init(info, dev);
1641         return raw_notifier_call_chain(&netdev_chain, val, info);
1642 }
1643
1644 /**
1645  *      call_netdevice_notifiers - call all network notifier blocks
1646  *      @val: value passed unmodified to notifier function
1647  *      @dev: net_device pointer passed unmodified to notifier function
1648  *
1649  *      Call all network notifier blocks.  Parameters and return value
1650  *      are as for raw_notifier_call_chain().
1651  */
1652
1653 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1654 {
1655         struct netdev_notifier_info info;
1656
1657         return call_netdevice_notifiers_info(val, dev, &info);
1658 }
1659 EXPORT_SYMBOL(call_netdevice_notifiers);
1660
1661 #ifdef CONFIG_NET_INGRESS
1662 static struct static_key ingress_needed __read_mostly;
1663
1664 void net_inc_ingress_queue(void)
1665 {
1666         static_key_slow_inc(&ingress_needed);
1667 }
1668 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1669
1670 void net_dec_ingress_queue(void)
1671 {
1672         static_key_slow_dec(&ingress_needed);
1673 }
1674 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1675 #endif
1676
1677 static struct static_key netstamp_needed __read_mostly;
1678 #ifdef HAVE_JUMP_LABEL
1679 /* We are not allowed to call static_key_slow_dec() from irq context
1680  * If net_disable_timestamp() is called from irq context, defer the
1681  * static_key_slow_dec() calls.
1682  */
1683 static atomic_t netstamp_needed_deferred;
1684 #endif
1685
1686 void net_enable_timestamp(void)
1687 {
1688 #ifdef HAVE_JUMP_LABEL
1689         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1690
1691         if (deferred) {
1692                 while (--deferred)
1693                         static_key_slow_dec(&netstamp_needed);
1694                 return;
1695         }
1696 #endif
1697         static_key_slow_inc(&netstamp_needed);
1698 }
1699 EXPORT_SYMBOL(net_enable_timestamp);
1700
1701 void net_disable_timestamp(void)
1702 {
1703 #ifdef HAVE_JUMP_LABEL
1704         if (in_interrupt()) {
1705                 atomic_inc(&netstamp_needed_deferred);
1706                 return;
1707         }
1708 #endif
1709         static_key_slow_dec(&netstamp_needed);
1710 }
1711 EXPORT_SYMBOL(net_disable_timestamp);
1712
1713 static inline void net_timestamp_set(struct sk_buff *skb)
1714 {
1715         skb->tstamp.tv64 = 0;
1716         if (static_key_false(&netstamp_needed))
1717                 __net_timestamp(skb);
1718 }
1719
1720 #define net_timestamp_check(COND, SKB)                  \
1721         if (static_key_false(&netstamp_needed)) {               \
1722                 if ((COND) && !(SKB)->tstamp.tv64)      \
1723                         __net_timestamp(SKB);           \
1724         }                                               \
1725
1726 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb)
1727 {
1728         unsigned int len;
1729
1730         if (!(dev->flags & IFF_UP))
1731                 return false;
1732
1733         len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1734         if (skb->len <= len)
1735                 return true;
1736
1737         /* if TSO is enabled, we don't care about the length as the packet
1738          * could be forwarded without being segmented before
1739          */
1740         if (skb_is_gso(skb))
1741                 return true;
1742
1743         return false;
1744 }
1745 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1746
1747 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1748 {
1749         if (skb_orphan_frags(skb, GFP_ATOMIC) ||
1750             unlikely(!is_skb_forwardable(dev, skb))) {
1751                 atomic_long_inc(&dev->rx_dropped);
1752                 kfree_skb(skb);
1753                 return NET_RX_DROP;
1754         }
1755
1756         skb_scrub_packet(skb, true);
1757         skb->priority = 0;
1758         skb->protocol = eth_type_trans(skb, dev);
1759         skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1760
1761         return 0;
1762 }
1763 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1764
1765 /**
1766  * dev_forward_skb - loopback an skb to another netif
1767  *
1768  * @dev: destination network device
1769  * @skb: buffer to forward
1770  *
1771  * return values:
1772  *      NET_RX_SUCCESS  (no congestion)
1773  *      NET_RX_DROP     (packet was dropped, but freed)
1774  *
1775  * dev_forward_skb can be used for injecting an skb from the
1776  * start_xmit function of one device into the receive queue
1777  * of another device.
1778  *
1779  * The receiving device may be in another namespace, so
1780  * we have to clear all information in the skb that could
1781  * impact namespace isolation.
1782  */
1783 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1784 {
1785         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1786 }
1787 EXPORT_SYMBOL_GPL(dev_forward_skb);
1788
1789 static inline int deliver_skb(struct sk_buff *skb,
1790                               struct packet_type *pt_prev,
1791                               struct net_device *orig_dev)
1792 {
1793         if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1794                 return -ENOMEM;
1795         atomic_inc(&skb->users);
1796         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1797 }
1798
1799 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1800                                           struct packet_type **pt,
1801                                           struct net_device *orig_dev,
1802                                           __be16 type,
1803                                           struct list_head *ptype_list)
1804 {
1805         struct packet_type *ptype, *pt_prev = *pt;
1806
1807         list_for_each_entry_rcu(ptype, ptype_list, list) {
1808                 if (ptype->type != type)
1809                         continue;
1810                 if (pt_prev)
1811                         deliver_skb(skb, pt_prev, orig_dev);
1812                 pt_prev = ptype;
1813         }
1814         *pt = pt_prev;
1815 }
1816
1817 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1818 {
1819         if (!ptype->af_packet_priv || !skb->sk)
1820                 return false;
1821
1822         if (ptype->id_match)
1823                 return ptype->id_match(ptype, skb->sk);
1824         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1825                 return true;
1826
1827         return false;
1828 }
1829
1830 /*
1831  *      Support routine. Sends outgoing frames to any network
1832  *      taps currently in use.
1833  */
1834
1835 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1836 {
1837         struct packet_type *ptype;
1838         struct sk_buff *skb2 = NULL;
1839         struct packet_type *pt_prev = NULL;
1840         struct list_head *ptype_list = &ptype_all;
1841
1842         rcu_read_lock();
1843 again:
1844         list_for_each_entry_rcu(ptype, ptype_list, list) {
1845                 /* Never send packets back to the socket
1846                  * they originated from - MvS (miquels@drinkel.ow.org)
1847                  */
1848                 if (skb_loop_sk(ptype, skb))
1849                         continue;
1850
1851                 if (pt_prev) {
1852                         deliver_skb(skb2, pt_prev, skb->dev);
1853                         pt_prev = ptype;
1854                         continue;
1855                 }
1856
1857                 /* need to clone skb, done only once */
1858                 skb2 = skb_clone(skb, GFP_ATOMIC);
1859                 if (!skb2)
1860                         goto out_unlock;
1861
1862                 net_timestamp_set(skb2);
1863
1864                 /* skb->nh should be correctly
1865                  * set by sender, so that the second statement is
1866                  * just protection against buggy protocols.
1867                  */
1868                 skb_reset_mac_header(skb2);
1869
1870                 if (skb_network_header(skb2) < skb2->data ||
1871                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1872                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1873                                              ntohs(skb2->protocol),
1874                                              dev->name);
1875                         skb_reset_network_header(skb2);
1876                 }
1877
1878                 skb2->transport_header = skb2->network_header;
1879                 skb2->pkt_type = PACKET_OUTGOING;
1880                 pt_prev = ptype;
1881         }
1882
1883         if (ptype_list == &ptype_all) {
1884                 ptype_list = &dev->ptype_all;
1885                 goto again;
1886         }
1887 out_unlock:
1888         if (pt_prev)
1889                 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1890         rcu_read_unlock();
1891 }
1892
1893 /**
1894  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1895  * @dev: Network device
1896  * @txq: number of queues available
1897  *
1898  * If real_num_tx_queues is changed the tc mappings may no longer be
1899  * valid. To resolve this verify the tc mapping remains valid and if
1900  * not NULL the mapping. With no priorities mapping to this
1901  * offset/count pair it will no longer be used. In the worst case TC0
1902  * is invalid nothing can be done so disable priority mappings. If is
1903  * expected that drivers will fix this mapping if they can before
1904  * calling netif_set_real_num_tx_queues.
1905  */
1906 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1907 {
1908         int i;
1909         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1910
1911         /* If TC0 is invalidated disable TC mapping */
1912         if (tc->offset + tc->count > txq) {
1913                 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1914                 dev->num_tc = 0;
1915                 return;
1916         }
1917
1918         /* Invalidated prio to tc mappings set to TC0 */
1919         for (i = 1; i < TC_BITMASK + 1; i++) {
1920                 int q = netdev_get_prio_tc_map(dev, i);
1921
1922                 tc = &dev->tc_to_txq[q];
1923                 if (tc->offset + tc->count > txq) {
1924                         pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1925                                 i, q);
1926                         netdev_set_prio_tc_map(dev, i, 0);
1927                 }
1928         }
1929 }
1930
1931 #ifdef CONFIG_XPS
1932 static DEFINE_MUTEX(xps_map_mutex);
1933 #define xmap_dereference(P)             \
1934         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1935
1936 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1937                                         int cpu, u16 index)
1938 {
1939         struct xps_map *map = NULL;
1940         int pos;
1941
1942         if (dev_maps)
1943                 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1944
1945         for (pos = 0; map && pos < map->len; pos++) {
1946                 if (map->queues[pos] == index) {
1947                         if (map->len > 1) {
1948                                 map->queues[pos] = map->queues[--map->len];
1949                         } else {
1950                                 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1951                                 kfree_rcu(map, rcu);
1952                                 map = NULL;
1953                         }
1954                         break;
1955                 }
1956         }
1957
1958         return map;
1959 }
1960
1961 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1962 {
1963         struct xps_dev_maps *dev_maps;
1964         int cpu, i;
1965         bool active = false;
1966
1967         mutex_lock(&xps_map_mutex);
1968         dev_maps = xmap_dereference(dev->xps_maps);
1969
1970         if (!dev_maps)
1971                 goto out_no_maps;
1972
1973         for_each_possible_cpu(cpu) {
1974                 for (i = index; i < dev->num_tx_queues; i++) {
1975                         if (!remove_xps_queue(dev_maps, cpu, i))
1976                                 break;
1977                 }
1978                 if (i == dev->num_tx_queues)
1979                         active = true;
1980         }
1981
1982         if (!active) {
1983                 RCU_INIT_POINTER(dev->xps_maps, NULL);
1984                 kfree_rcu(dev_maps, rcu);
1985         }
1986
1987         for (i = index; i < dev->num_tx_queues; i++)
1988                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1989                                              NUMA_NO_NODE);
1990
1991 out_no_maps:
1992         mutex_unlock(&xps_map_mutex);
1993 }
1994
1995 static struct xps_map *expand_xps_map(struct xps_map *map,
1996                                       int cpu, u16 index)
1997 {
1998         struct xps_map *new_map;
1999         int alloc_len = XPS_MIN_MAP_ALLOC;
2000         int i, pos;
2001
2002         for (pos = 0; map && pos < map->len; pos++) {
2003                 if (map->queues[pos] != index)
2004                         continue;
2005                 return map;
2006         }
2007
2008         /* Need to add queue to this CPU's existing map */
2009         if (map) {
2010                 if (pos < map->alloc_len)
2011                         return map;
2012
2013                 alloc_len = map->alloc_len * 2;
2014         }
2015
2016         /* Need to allocate new map to store queue on this CPU's map */
2017         new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2018                                cpu_to_node(cpu));
2019         if (!new_map)
2020                 return NULL;
2021
2022         for (i = 0; i < pos; i++)
2023                 new_map->queues[i] = map->queues[i];
2024         new_map->alloc_len = alloc_len;
2025         new_map->len = pos;
2026
2027         return new_map;
2028 }
2029
2030 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2031                         u16 index)
2032 {
2033         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2034         struct xps_map *map, *new_map;
2035         int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
2036         int cpu, numa_node_id = -2;
2037         bool active = false;
2038
2039         mutex_lock(&xps_map_mutex);
2040
2041         dev_maps = xmap_dereference(dev->xps_maps);
2042
2043         /* allocate memory for queue storage */
2044         for_each_online_cpu(cpu) {
2045                 if (!cpumask_test_cpu(cpu, mask))
2046                         continue;
2047
2048                 if (!new_dev_maps)
2049                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2050                 if (!new_dev_maps) {
2051                         mutex_unlock(&xps_map_mutex);
2052                         return -ENOMEM;
2053                 }
2054
2055                 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2056                                  NULL;
2057
2058                 map = expand_xps_map(map, cpu, index);
2059                 if (!map)
2060                         goto error;
2061
2062                 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2063         }
2064
2065         if (!new_dev_maps)
2066                 goto out_no_new_maps;
2067
2068         for_each_possible_cpu(cpu) {
2069                 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2070                         /* add queue to CPU maps */
2071                         int pos = 0;
2072
2073                         map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2074                         while ((pos < map->len) && (map->queues[pos] != index))
2075                                 pos++;
2076
2077                         if (pos == map->len)
2078                                 map->queues[map->len++] = index;
2079 #ifdef CONFIG_NUMA
2080                         if (numa_node_id == -2)
2081                                 numa_node_id = cpu_to_node(cpu);
2082                         else if (numa_node_id != cpu_to_node(cpu))
2083                                 numa_node_id = -1;
2084 #endif
2085                 } else if (dev_maps) {
2086                         /* fill in the new device map from the old device map */
2087                         map = xmap_dereference(dev_maps->cpu_map[cpu]);
2088                         RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2089                 }
2090
2091         }
2092
2093         rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2094
2095         /* Cleanup old maps */
2096         if (dev_maps) {
2097                 for_each_possible_cpu(cpu) {
2098                         new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2099                         map = xmap_dereference(dev_maps->cpu_map[cpu]);
2100                         if (map && map != new_map)
2101                                 kfree_rcu(map, rcu);
2102                 }
2103
2104                 kfree_rcu(dev_maps, rcu);
2105         }
2106
2107         dev_maps = new_dev_maps;
2108         active = true;
2109
2110 out_no_new_maps:
2111         /* update Tx queue numa node */
2112         netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2113                                      (numa_node_id >= 0) ? numa_node_id :
2114                                      NUMA_NO_NODE);
2115
2116         if (!dev_maps)
2117                 goto out_no_maps;
2118
2119         /* removes queue from unused CPUs */
2120         for_each_possible_cpu(cpu) {
2121                 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2122                         continue;
2123
2124                 if (remove_xps_queue(dev_maps, cpu, index))
2125                         active = true;
2126         }
2127
2128         /* free map if not active */
2129         if (!active) {
2130                 RCU_INIT_POINTER(dev->xps_maps, NULL);
2131                 kfree_rcu(dev_maps, rcu);
2132         }
2133
2134 out_no_maps:
2135         mutex_unlock(&xps_map_mutex);
2136
2137         return 0;
2138 error:
2139         /* remove any maps that we added */
2140         for_each_possible_cpu(cpu) {
2141                 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2142                 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2143                                  NULL;
2144                 if (new_map && new_map != map)
2145                         kfree(new_map);
2146         }
2147
2148         mutex_unlock(&xps_map_mutex);
2149
2150         kfree(new_dev_maps);
2151         return -ENOMEM;
2152 }
2153 EXPORT_SYMBOL(netif_set_xps_queue);
2154
2155 #endif
2156 /*
2157  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2158  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2159  */
2160 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2161 {
2162         int rc;
2163
2164         if (txq < 1 || txq > dev->num_tx_queues)
2165                 return -EINVAL;
2166
2167         if (dev->reg_state == NETREG_REGISTERED ||
2168             dev->reg_state == NETREG_UNREGISTERING) {
2169                 ASSERT_RTNL();
2170
2171                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2172                                                   txq);
2173                 if (rc)
2174                         return rc;
2175
2176                 if (dev->num_tc)
2177                         netif_setup_tc(dev, txq);
2178
2179                 if (txq < dev->real_num_tx_queues) {
2180                         qdisc_reset_all_tx_gt(dev, txq);
2181 #ifdef CONFIG_XPS
2182                         netif_reset_xps_queues_gt(dev, txq);
2183 #endif
2184                 }
2185         }
2186
2187         dev->real_num_tx_queues = txq;
2188         return 0;
2189 }
2190 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2191
2192 #ifdef CONFIG_SYSFS
2193 /**
2194  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2195  *      @dev: Network device
2196  *      @rxq: Actual number of RX queues
2197  *
2198  *      This must be called either with the rtnl_lock held or before
2199  *      registration of the net device.  Returns 0 on success, or a
2200  *      negative error code.  If called before registration, it always
2201  *      succeeds.
2202  */
2203 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2204 {
2205         int rc;
2206
2207         if (rxq < 1 || rxq > dev->num_rx_queues)
2208                 return -EINVAL;
2209
2210         if (dev->reg_state == NETREG_REGISTERED) {
2211                 ASSERT_RTNL();
2212
2213                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2214                                                   rxq);
2215                 if (rc)
2216                         return rc;
2217         }
2218
2219         dev->real_num_rx_queues = rxq;
2220         return 0;
2221 }
2222 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2223 #endif
2224
2225 /**
2226  * netif_get_num_default_rss_queues - default number of RSS queues
2227  *
2228  * This routine should set an upper limit on the number of RSS queues
2229  * used by default by multiqueue devices.
2230  */
2231 int netif_get_num_default_rss_queues(void)
2232 {
2233         return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2234 }
2235 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2236
2237 static inline void __netif_reschedule(struct Qdisc *q)
2238 {
2239         struct softnet_data *sd;
2240         unsigned long flags;
2241
2242         local_irq_save(flags);
2243         sd = this_cpu_ptr(&softnet_data);
2244         q->next_sched = NULL;
2245         *sd->output_queue_tailp = q;
2246         sd->output_queue_tailp = &q->next_sched;
2247         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2248         local_irq_restore(flags);
2249 }
2250
2251 void __netif_schedule(struct Qdisc *q)
2252 {
2253         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2254                 __netif_reschedule(q);
2255 }
2256 EXPORT_SYMBOL(__netif_schedule);
2257
2258 struct dev_kfree_skb_cb {
2259         enum skb_free_reason reason;
2260 };
2261
2262 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2263 {
2264         return (struct dev_kfree_skb_cb *)skb->cb;
2265 }
2266
2267 void netif_schedule_queue(struct netdev_queue *txq)
2268 {
2269         rcu_read_lock();
2270         if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2271                 struct Qdisc *q = rcu_dereference(txq->qdisc);
2272
2273                 __netif_schedule(q);
2274         }
2275         rcu_read_unlock();
2276 }
2277 EXPORT_SYMBOL(netif_schedule_queue);
2278
2279 /**
2280  *      netif_wake_subqueue - allow sending packets on subqueue
2281  *      @dev: network device
2282  *      @queue_index: sub queue index
2283  *
2284  * Resume individual transmit queue of a device with multiple transmit queues.
2285  */
2286 void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2287 {
2288         struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2289
2290         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2291                 struct Qdisc *q;
2292
2293                 rcu_read_lock();
2294                 q = rcu_dereference(txq->qdisc);
2295                 __netif_schedule(q);
2296                 rcu_read_unlock();
2297         }
2298 }
2299 EXPORT_SYMBOL(netif_wake_subqueue);
2300
2301 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2302 {
2303         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2304                 struct Qdisc *q;
2305
2306                 rcu_read_lock();
2307                 q = rcu_dereference(dev_queue->qdisc);
2308                 __netif_schedule(q);
2309                 rcu_read_unlock();
2310         }
2311 }
2312 EXPORT_SYMBOL(netif_tx_wake_queue);
2313
2314 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2315 {
2316         unsigned long flags;
2317
2318         if (likely(atomic_read(&skb->users) == 1)) {
2319                 smp_rmb();
2320                 atomic_set(&skb->users, 0);
2321         } else if (likely(!atomic_dec_and_test(&skb->users))) {
2322                 return;
2323         }
2324         get_kfree_skb_cb(skb)->reason = reason;
2325         local_irq_save(flags);
2326         skb->next = __this_cpu_read(softnet_data.completion_queue);
2327         __this_cpu_write(softnet_data.completion_queue, skb);
2328         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2329         local_irq_restore(flags);
2330 }
2331 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2332
2333 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2334 {
2335         if (in_irq() || irqs_disabled())
2336                 __dev_kfree_skb_irq(skb, reason);
2337         else
2338                 dev_kfree_skb(skb);
2339 }
2340 EXPORT_SYMBOL(__dev_kfree_skb_any);
2341
2342
2343 /**
2344  * netif_device_detach - mark device as removed
2345  * @dev: network device
2346  *
2347  * Mark device as removed from system and therefore no longer available.
2348  */
2349 void netif_device_detach(struct net_device *dev)
2350 {
2351         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2352             netif_running(dev)) {
2353                 netif_tx_stop_all_queues(dev);
2354         }
2355 }
2356 EXPORT_SYMBOL(netif_device_detach);
2357
2358 /**
2359  * netif_device_attach - mark device as attached
2360  * @dev: network device
2361  *
2362  * Mark device as attached from system and restart if needed.
2363  */
2364 void netif_device_attach(struct net_device *dev)
2365 {
2366         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2367             netif_running(dev)) {
2368                 netif_tx_wake_all_queues(dev);
2369                 __netdev_watchdog_up(dev);
2370         }
2371 }
2372 EXPORT_SYMBOL(netif_device_attach);
2373
2374 /*
2375  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2376  * to be used as a distribution range.
2377  */
2378 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2379                   unsigned int num_tx_queues)
2380 {
2381         u32 hash;
2382         u16 qoffset = 0;
2383         u16 qcount = num_tx_queues;
2384
2385         if (skb_rx_queue_recorded(skb)) {
2386                 hash = skb_get_rx_queue(skb);
2387                 while (unlikely(hash >= num_tx_queues))
2388                         hash -= num_tx_queues;
2389                 return hash;
2390         }
2391
2392         if (dev->num_tc) {
2393                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2394                 qoffset = dev->tc_to_txq[tc].offset;
2395                 qcount = dev->tc_to_txq[tc].count;
2396         }
2397
2398         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2399 }
2400 EXPORT_SYMBOL(__skb_tx_hash);
2401
2402 static void skb_warn_bad_offload(const struct sk_buff *skb)
2403 {
2404         static const netdev_features_t null_features = 0;
2405         struct net_device *dev = skb->dev;
2406         const char *name = "";
2407
2408         if (!net_ratelimit())
2409                 return;
2410
2411         if (dev) {
2412                 if (dev->dev.parent)
2413                         name = dev_driver_string(dev->dev.parent);
2414                 else
2415                         name = netdev_name(dev);
2416         }
2417         WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2418              "gso_type=%d ip_summed=%d\n",
2419              name, dev ? &dev->features : &null_features,
2420              skb->sk ? &skb->sk->sk_route_caps : &null_features,
2421              skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2422              skb_shinfo(skb)->gso_type, skb->ip_summed);
2423 }
2424
2425 /*
2426  * Invalidate hardware checksum when packet is to be mangled, and
2427  * complete checksum manually on outgoing path.
2428  */
2429 int skb_checksum_help(struct sk_buff *skb)
2430 {
2431         __wsum csum;
2432         int ret = 0, offset;
2433
2434         if (skb->ip_summed == CHECKSUM_COMPLETE)
2435                 goto out_set_summed;
2436
2437         if (unlikely(skb_shinfo(skb)->gso_size)) {
2438                 skb_warn_bad_offload(skb);
2439                 return -EINVAL;
2440         }
2441
2442         /* Before computing a checksum, we should make sure no frag could
2443          * be modified by an external entity : checksum could be wrong.
2444          */
2445         if (skb_has_shared_frag(skb)) {
2446                 ret = __skb_linearize(skb);
2447                 if (ret)
2448                         goto out;
2449         }
2450
2451         offset = skb_checksum_start_offset(skb);
2452         BUG_ON(offset >= skb_headlen(skb));
2453         csum = skb_checksum(skb, offset, skb->len - offset, 0);
2454
2455         offset += skb->csum_offset;
2456         BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2457
2458         if (skb_cloned(skb) &&
2459             !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2460                 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2461                 if (ret)
2462                         goto out;
2463         }
2464
2465         *(__sum16 *)(skb->data + offset) = csum_fold(csum);
2466 out_set_summed:
2467         skb->ip_summed = CHECKSUM_NONE;
2468 out:
2469         return ret;
2470 }
2471 EXPORT_SYMBOL(skb_checksum_help);
2472
2473 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2474 {
2475         __be16 type = skb->protocol;
2476
2477         /* Tunnel gso handlers can set protocol to ethernet. */
2478         if (type == htons(ETH_P_TEB)) {
2479                 struct ethhdr *eth;
2480
2481                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2482                         return 0;
2483
2484                 eth = (struct ethhdr *)skb_mac_header(skb);
2485                 type = eth->h_proto;
2486         }
2487
2488         return __vlan_get_protocol(skb, type, depth);
2489 }
2490
2491 /**
2492  *      skb_mac_gso_segment - mac layer segmentation handler.
2493  *      @skb: buffer to segment
2494  *      @features: features for the output path (see dev->features)
2495  */
2496 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2497                                     netdev_features_t features)
2498 {
2499         struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2500         struct packet_offload *ptype;
2501         int vlan_depth = skb->mac_len;
2502         __be16 type = skb_network_protocol(skb, &vlan_depth);
2503
2504         if (unlikely(!type))
2505                 return ERR_PTR(-EINVAL);
2506
2507         __skb_pull(skb, vlan_depth);
2508
2509         rcu_read_lock();
2510         list_for_each_entry_rcu(ptype, &offload_base, list) {
2511                 if (ptype->type == type && ptype->callbacks.gso_segment) {
2512                         segs = ptype->callbacks.gso_segment(skb, features);
2513                         break;
2514                 }
2515         }
2516         rcu_read_unlock();
2517
2518         __skb_push(skb, skb->data - skb_mac_header(skb));
2519
2520         return segs;
2521 }
2522 EXPORT_SYMBOL(skb_mac_gso_segment);
2523
2524
2525 /* openvswitch calls this on rx path, so we need a different check.
2526  */
2527 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2528 {
2529         if (tx_path)
2530                 return skb->ip_summed != CHECKSUM_PARTIAL;
2531         else
2532                 return skb->ip_summed == CHECKSUM_NONE;
2533 }
2534
2535 /**
2536  *      __skb_gso_segment - Perform segmentation on skb.
2537  *      @skb: buffer to segment
2538  *      @features: features for the output path (see dev->features)
2539  *      @tx_path: whether it is called in TX path
2540  *
2541  *      This function segments the given skb and returns a list of segments.
2542  *
2543  *      It may return NULL if the skb requires no segmentation.  This is
2544  *      only possible when GSO is used for verifying header integrity.
2545  *
2546  *      Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2547  */
2548 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2549                                   netdev_features_t features, bool tx_path)
2550 {
2551         if (unlikely(skb_needs_check(skb, tx_path))) {
2552                 int err;
2553
2554                 skb_warn_bad_offload(skb);
2555
2556                 err = skb_cow_head(skb, 0);
2557                 if (err < 0)
2558                         return ERR_PTR(err);
2559         }
2560
2561         BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2562                      sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2563
2564         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2565         SKB_GSO_CB(skb)->encap_level = 0;
2566
2567         skb_reset_mac_header(skb);
2568         skb_reset_mac_len(skb);
2569
2570         return skb_mac_gso_segment(skb, features);
2571 }
2572 EXPORT_SYMBOL(__skb_gso_segment);
2573
2574 /* Take action when hardware reception checksum errors are detected. */
2575 #ifdef CONFIG_BUG
2576 void netdev_rx_csum_fault(struct net_device *dev)
2577 {
2578         if (net_ratelimit()) {
2579                 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2580                 dump_stack();
2581         }
2582 }
2583 EXPORT_SYMBOL(netdev_rx_csum_fault);
2584 #endif
2585
2586 /* Actually, we should eliminate this check as soon as we know, that:
2587  * 1. IOMMU is present and allows to map all the memory.
2588  * 2. No high memory really exists on this machine.
2589  */
2590
2591 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2592 {
2593 #ifdef CONFIG_HIGHMEM
2594         int i;
2595         if (!(dev->features & NETIF_F_HIGHDMA)) {
2596                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2597                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2598                         if (PageHighMem(skb_frag_page(frag)))
2599                                 return 1;
2600                 }
2601         }
2602
2603         if (PCI_DMA_BUS_IS_PHYS) {
2604                 struct device *pdev = dev->dev.parent;
2605
2606                 if (!pdev)
2607                         return 0;
2608                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2609                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2610                         dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2611                         if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2612                                 return 1;
2613                 }
2614         }
2615 #endif
2616         return 0;
2617 }
2618
2619 /* If MPLS offload request, verify we are testing hardware MPLS features
2620  * instead of standard features for the netdev.
2621  */
2622 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2623 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2624                                            netdev_features_t features,
2625                                            __be16 type)
2626 {
2627         if (eth_p_mpls(type))
2628                 features &= skb->dev->mpls_features;
2629
2630         return features;
2631 }
2632 #else
2633 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2634                                            netdev_features_t features,
2635                                            __be16 type)
2636 {
2637         return features;
2638 }
2639 #endif
2640
2641 static netdev_features_t harmonize_features(struct sk_buff *skb,
2642         netdev_features_t features)
2643 {
2644         int tmp;
2645         __be16 type;
2646
2647         type = skb_network_protocol(skb, &tmp);
2648         features = net_mpls_features(skb, features, type);
2649
2650         if (skb->ip_summed != CHECKSUM_NONE &&
2651             !can_checksum_protocol(features, type)) {
2652                 features &= ~NETIF_F_ALL_CSUM;
2653         } else if (illegal_highdma(skb->dev, skb)) {
2654                 features &= ~NETIF_F_SG;
2655         }
2656
2657         return features;
2658 }
2659
2660 netdev_features_t passthru_features_check(struct sk_buff *skb,
2661                                           struct net_device *dev,
2662                                           netdev_features_t features)
2663 {
2664         return features;
2665 }
2666 EXPORT_SYMBOL(passthru_features_check);
2667
2668 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2669                                              struct net_device *dev,
2670                                              netdev_features_t features)
2671 {
2672         return vlan_features_check(skb, features);
2673 }
2674
2675 netdev_features_t netif_skb_features(struct sk_buff *skb)
2676 {
2677         struct net_device *dev = skb->dev;
2678         netdev_features_t features = dev->features;
2679         u16 gso_segs = skb_shinfo(skb)->gso_segs;
2680
2681         if (gso_segs > dev->gso_max_segs || gso_segs < dev->gso_min_segs)
2682                 features &= ~NETIF_F_GSO_MASK;
2683
2684         /* If encapsulation offload request, verify we are testing
2685          * hardware encapsulation features instead of standard
2686          * features for the netdev
2687          */
2688         if (skb->encapsulation)
2689                 features &= dev->hw_enc_features;
2690
2691         if (skb_vlan_tagged(skb))
2692                 features = netdev_intersect_features(features,
2693                                                      dev->vlan_features |
2694                                                      NETIF_F_HW_VLAN_CTAG_TX |
2695                                                      NETIF_F_HW_VLAN_STAG_TX);
2696
2697         if (dev->netdev_ops->ndo_features_check)
2698                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2699                                                                 features);
2700         else
2701                 features &= dflt_features_check(skb, dev, features);
2702
2703         return harmonize_features(skb, features);
2704 }
2705 EXPORT_SYMBOL(netif_skb_features);
2706
2707 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2708                     struct netdev_queue *txq, bool more)
2709 {
2710         unsigned int len;
2711         int rc;
2712
2713         if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2714                 dev_queue_xmit_nit(skb, dev);
2715
2716         len = skb->len;
2717         trace_net_dev_start_xmit(skb, dev);
2718         rc = netdev_start_xmit(skb, dev, txq, more);
2719         trace_net_dev_xmit(skb, rc, dev, len);
2720
2721         return rc;
2722 }
2723
2724 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2725                                     struct netdev_queue *txq, int *ret)
2726 {
2727         struct sk_buff *skb = first;
2728         int rc = NETDEV_TX_OK;
2729
2730         while (skb) {
2731                 struct sk_buff *next = skb->next;
2732
2733                 skb->next = NULL;
2734                 rc = xmit_one(skb, dev, txq, next != NULL);
2735                 if (unlikely(!dev_xmit_complete(rc))) {
2736                         skb->next = next;
2737                         goto out;
2738                 }
2739
2740                 skb = next;
2741                 if (netif_xmit_stopped(txq) && skb) {
2742                         rc = NETDEV_TX_BUSY;
2743                         break;
2744                 }
2745         }
2746
2747 out:
2748         *ret = rc;
2749         return skb;
2750 }
2751
2752 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2753                                           netdev_features_t features)
2754 {
2755         if (skb_vlan_tag_present(skb) &&
2756             !vlan_hw_offload_capable(features, skb->vlan_proto))
2757                 skb = __vlan_hwaccel_push_inside(skb);
2758         return skb;
2759 }
2760
2761 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2762 {
2763         netdev_features_t features;
2764
2765         if (skb->next)
2766                 return skb;
2767
2768         features = netif_skb_features(skb);
2769         skb = validate_xmit_vlan(skb, features);
2770         if (unlikely(!skb))
2771                 goto out_null;
2772
2773         if (netif_needs_gso(skb, features)) {
2774                 struct sk_buff *segs;
2775
2776                 segs = skb_gso_segment(skb, features);
2777                 if (IS_ERR(segs)) {
2778                         goto out_kfree_skb;
2779                 } else if (segs) {
2780                         consume_skb(skb);
2781                         skb = segs;
2782                 }
2783         } else {
2784                 if (skb_needs_linearize(skb, features) &&
2785                     __skb_linearize(skb))
2786                         goto out_kfree_skb;
2787
2788                 /* If packet is not checksummed and device does not
2789                  * support checksumming for this protocol, complete
2790                  * checksumming here.
2791                  */
2792                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2793                         if (skb->encapsulation)
2794                                 skb_set_inner_transport_header(skb,
2795                                                                skb_checksum_start_offset(skb));
2796                         else
2797                                 skb_set_transport_header(skb,
2798                                                          skb_checksum_start_offset(skb));
2799                         if (!(features & NETIF_F_ALL_CSUM) &&
2800                             skb_checksum_help(skb))
2801                                 goto out_kfree_skb;
2802                 }
2803         }
2804
2805         return skb;
2806
2807 out_kfree_skb:
2808         kfree_skb(skb);
2809 out_null:
2810         return NULL;
2811 }
2812
2813 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
2814 {
2815         struct sk_buff *next, *head = NULL, *tail;
2816
2817         for (; skb != NULL; skb = next) {
2818                 next = skb->next;
2819                 skb->next = NULL;
2820
2821                 /* in case skb wont be segmented, point to itself */
2822                 skb->prev = skb;
2823
2824                 skb = validate_xmit_skb(skb, dev);
2825                 if (!skb)
2826                         continue;
2827
2828                 if (!head)
2829                         head = skb;
2830                 else
2831                         tail->next = skb;
2832                 /* If skb was segmented, skb->prev points to
2833                  * the last segment. If not, it still contains skb.
2834                  */
2835                 tail = skb->prev;
2836         }
2837         return head;
2838 }
2839
2840 static void qdisc_pkt_len_init(struct sk_buff *skb)
2841 {
2842         const struct skb_shared_info *shinfo = skb_shinfo(skb);
2843
2844         qdisc_skb_cb(skb)->pkt_len = skb->len;
2845
2846         /* To get more precise estimation of bytes sent on wire,
2847          * we add to pkt_len the headers size of all segments
2848          */
2849         if (shinfo->gso_size)  {
2850                 unsigned int hdr_len;
2851                 u16 gso_segs = shinfo->gso_segs;
2852
2853                 /* mac layer + network layer */
2854                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2855
2856                 /* + transport layer */
2857                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2858                         hdr_len += tcp_hdrlen(skb);
2859                 else
2860                         hdr_len += sizeof(struct udphdr);
2861
2862                 if (shinfo->gso_type & SKB_GSO_DODGY)
2863                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2864                                                 shinfo->gso_size);
2865
2866                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
2867         }
2868 }
2869
2870 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2871                                  struct net_device *dev,
2872                                  struct netdev_queue *txq)
2873 {
2874         spinlock_t *root_lock = qdisc_lock(q);
2875         bool contended;
2876         int rc;
2877
2878         qdisc_pkt_len_init(skb);
2879         qdisc_calculate_pkt_len(skb, q);
2880         /*
2881          * Heuristic to force contended enqueues to serialize on a
2882          * separate lock before trying to get qdisc main lock.
2883          * This permits __QDISC___STATE_RUNNING owner to get the lock more
2884          * often and dequeue packets faster.
2885          */
2886         contended = qdisc_is_running(q);
2887         if (unlikely(contended))
2888                 spin_lock(&q->busylock);
2889
2890         spin_lock(root_lock);
2891         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2892                 kfree_skb(skb);
2893                 rc = NET_XMIT_DROP;
2894         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2895                    qdisc_run_begin(q)) {
2896                 /*
2897                  * This is a work-conserving queue; there are no old skbs
2898                  * waiting to be sent out; and the qdisc is not running -
2899                  * xmit the skb directly.
2900                  */
2901
2902                 qdisc_bstats_update(q, skb);
2903
2904                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
2905                         if (unlikely(contended)) {
2906                                 spin_unlock(&q->busylock);
2907                                 contended = false;
2908                         }
2909                         __qdisc_run(q);
2910                 } else
2911                         qdisc_run_end(q);
2912
2913                 rc = NET_XMIT_SUCCESS;
2914         } else {
2915                 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2916                 if (qdisc_run_begin(q)) {
2917                         if (unlikely(contended)) {
2918                                 spin_unlock(&q->busylock);
2919                                 contended = false;
2920                         }
2921                         __qdisc_run(q);
2922                 }
2923         }
2924         spin_unlock(root_lock);
2925         if (unlikely(contended))
2926                 spin_unlock(&q->busylock);
2927         return rc;
2928 }
2929
2930 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2931 static void skb_update_prio(struct sk_buff *skb)
2932 {
2933         struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2934
2935         if (!skb->priority && skb->sk && map) {
2936                 unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2937
2938                 if (prioidx < map->priomap_len)
2939                         skb->priority = map->priomap[prioidx];
2940         }
2941 }
2942 #else
2943 #define skb_update_prio(skb)
2944 #endif
2945
2946 DEFINE_PER_CPU(int, xmit_recursion);
2947 EXPORT_SYMBOL(xmit_recursion);
2948
2949 #define RECURSION_LIMIT 10
2950
2951 /**
2952  *      dev_loopback_xmit - loop back @skb
2953  *      @net: network namespace this loopback is happening in
2954  *      @sk:  sk needed to be a netfilter okfn
2955  *      @skb: buffer to transmit
2956  */
2957 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
2958 {
2959         skb_reset_mac_header(skb);
2960         __skb_pull(skb, skb_network_offset(skb));
2961         skb->pkt_type = PACKET_LOOPBACK;
2962         skb->ip_summed = CHECKSUM_UNNECESSARY;
2963         WARN_ON(!skb_dst(skb));
2964         skb_dst_force(skb);
2965         netif_rx_ni(skb);
2966         return 0;
2967 }
2968 EXPORT_SYMBOL(dev_loopback_xmit);
2969
2970 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
2971 {
2972 #ifdef CONFIG_XPS
2973         struct xps_dev_maps *dev_maps;
2974         struct xps_map *map;
2975         int queue_index = -1;
2976
2977         rcu_read_lock();
2978         dev_maps = rcu_dereference(dev->xps_maps);
2979         if (dev_maps) {
2980                 map = rcu_dereference(
2981                     dev_maps->cpu_map[skb->sender_cpu - 1]);
2982                 if (map) {
2983                         if (map->len == 1)
2984                                 queue_index = map->queues[0];
2985                         else
2986                                 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
2987                                                                            map->len)];
2988                         if (unlikely(queue_index >= dev->real_num_tx_queues))
2989                                 queue_index = -1;
2990                 }
2991         }
2992         rcu_read_unlock();
2993
2994         return queue_index;
2995 #else
2996         return -1;
2997 #endif
2998 }
2999
3000 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3001 {
3002         struct sock *sk = skb->sk;
3003         int queue_index = sk_tx_queue_get(sk);
3004
3005         if (queue_index < 0 || skb->ooo_okay ||
3006             queue_index >= dev->real_num_tx_queues) {
3007                 int new_index = get_xps_queue(dev, skb);
3008                 if (new_index < 0)
3009                         new_index = skb_tx_hash(dev, skb);
3010
3011                 if (queue_index != new_index && sk &&
3012                     sk_fullsock(sk) &&
3013                     rcu_access_pointer(sk->sk_dst_cache))
3014                         sk_tx_queue_set(sk, new_index);
3015
3016                 queue_index = new_index;
3017         }
3018
3019         return queue_index;
3020 }
3021
3022 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3023                                     struct sk_buff *skb,
3024                                     void *accel_priv)
3025 {
3026         int queue_index = 0;
3027
3028 #ifdef CONFIG_XPS
3029         if (skb->sender_cpu == 0)
3030                 skb->sender_cpu = raw_smp_processor_id() + 1;
3031 #endif
3032
3033         if (dev->real_num_tx_queues != 1) {
3034                 const struct net_device_ops *ops = dev->netdev_ops;
3035                 if (ops->ndo_select_queue)
3036                         queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3037                                                             __netdev_pick_tx);
3038                 else
3039                         queue_index = __netdev_pick_tx(dev, skb);
3040
3041                 if (!accel_priv)
3042                         queue_index = netdev_cap_txqueue(dev, queue_index);
3043         }
3044
3045         skb_set_queue_mapping(skb, queue_index);
3046         return netdev_get_tx_queue(dev, queue_index);
3047 }
3048
3049 /**
3050  *      __dev_queue_xmit - transmit a buffer
3051  *      @skb: buffer to transmit
3052  *      @accel_priv: private data used for L2 forwarding offload
3053  *
3054  *      Queue a buffer for transmission to a network device. The caller must
3055  *      have set the device and priority and built the buffer before calling
3056  *      this function. The function can be called from an interrupt.
3057  *
3058  *      A negative errno code is returned on a failure. A success does not
3059  *      guarantee the frame will be transmitted as it may be dropped due
3060  *      to congestion or traffic shaping.
3061  *
3062  * -----------------------------------------------------------------------------------
3063  *      I notice this method can also return errors from the queue disciplines,
3064  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3065  *      be positive.
3066  *
3067  *      Regardless of the return value, the skb is consumed, so it is currently
3068  *      difficult to retry a send to this method.  (You can bump the ref count
3069  *      before sending to hold a reference for retry if you are careful.)
3070  *
3071  *      When calling this method, interrupts MUST be enabled.  This is because
3072  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3073  *          --BLG
3074  */
3075 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3076 {
3077         struct net_device *dev = skb->dev;
3078         struct netdev_queue *txq;
3079         struct Qdisc *q;
3080         int rc = -ENOMEM;
3081
3082         skb_reset_mac_header(skb);
3083
3084         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3085                 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3086
3087         /* Disable soft irqs for various locks below. Also
3088          * stops preemption for RCU.
3089          */
3090         rcu_read_lock_bh();
3091
3092         skb_update_prio(skb);
3093
3094         /* If device/qdisc don't need skb->dst, release it right now while
3095          * its hot in this cpu cache.
3096          */
3097         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3098                 skb_dst_drop(skb);
3099         else
3100                 skb_dst_force(skb);
3101
3102 #ifdef CONFIG_NET_SWITCHDEV
3103         /* Don't forward if offload device already forwarded */
3104         if (skb->offload_fwd_mark &&
3105             skb->offload_fwd_mark == dev->offload_fwd_mark) {
3106                 consume_skb(skb);
3107                 rc = NET_XMIT_SUCCESS;
3108                 goto out;
3109         }
3110 #endif
3111
3112         txq = netdev_pick_tx(dev, skb, accel_priv);
3113         q = rcu_dereference_bh(txq->qdisc);
3114
3115 #ifdef CONFIG_NET_CLS_ACT
3116         skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
3117 #endif
3118         trace_net_dev_queue(skb);
3119         if (q->enqueue) {
3120                 rc = __dev_xmit_skb(skb, q, dev, txq);
3121                 goto out;
3122         }
3123
3124         /* The device has no queue. Common case for software devices:
3125            loopback, all the sorts of tunnels...
3126
3127            Really, it is unlikely that netif_tx_lock protection is necessary
3128            here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3129            counters.)
3130            However, it is possible, that they rely on protection
3131            made by us here.
3132
3133            Check this and shot the lock. It is not prone from deadlocks.
3134            Either shot noqueue qdisc, it is even simpler 8)
3135          */
3136         if (dev->flags & IFF_UP) {
3137                 int cpu = smp_processor_id(); /* ok because BHs are off */
3138
3139                 if (txq->xmit_lock_owner != cpu) {
3140
3141                         if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
3142                                 goto recursion_alert;
3143
3144                         skb = validate_xmit_skb(skb, dev);
3145                         if (!skb)
3146                                 goto drop;
3147
3148                         HARD_TX_LOCK(dev, txq, cpu);
3149
3150                         if (!netif_xmit_stopped(txq)) {
3151                                 __this_cpu_inc(xmit_recursion);
3152                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3153                                 __this_cpu_dec(xmit_recursion);
3154                                 if (dev_xmit_complete(rc)) {
3155                                         HARD_TX_UNLOCK(dev, txq);
3156                                         goto out;
3157                                 }
3158                         }
3159                         HARD_TX_UNLOCK(dev, txq);
3160                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3161                                              dev->name);
3162                 } else {
3163                         /* Recursion is detected! It is possible,
3164                          * unfortunately
3165                          */
3166 recursion_alert:
3167                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3168                                              dev->name);
3169                 }
3170         }
3171
3172         rc = -ENETDOWN;
3173 drop:
3174         rcu_read_unlock_bh();
3175
3176         atomic_long_inc(&dev->tx_dropped);
3177         kfree_skb_list(skb);
3178         return rc;
3179 out:
3180         rcu_read_unlock_bh();
3181         return rc;
3182 }
3183
3184 int dev_queue_xmit(struct sk_buff *skb)
3185 {
3186         return __dev_queue_xmit(skb, NULL);
3187 }
3188 EXPORT_SYMBOL(dev_queue_xmit);
3189
3190 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3191 {
3192         return __dev_queue_xmit(skb, accel_priv);
3193 }
3194 EXPORT_SYMBOL(dev_queue_xmit_accel);
3195
3196
3197 /*=======================================================================
3198                         Receiver routines
3199   =======================================================================*/
3200
3201 int netdev_max_backlog __read_mostly = 1000;
3202 EXPORT_SYMBOL(netdev_max_backlog);
3203
3204 int netdev_tstamp_prequeue __read_mostly = 1;
3205 int netdev_budget __read_mostly = 300;
3206 int weight_p __read_mostly = 64;            /* old backlog weight */
3207
3208 /* Called with irq disabled */
3209 static inline void ____napi_schedule(struct softnet_data *sd,
3210                                      struct napi_struct *napi)
3211 {
3212         list_add_tail(&napi->poll_list, &sd->poll_list);
3213         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3214 }
3215
3216 #ifdef CONFIG_RPS
3217
3218 /* One global table that all flow-based protocols share. */
3219 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3220 EXPORT_SYMBOL(rps_sock_flow_table);
3221 u32 rps_cpu_mask __read_mostly;
3222 EXPORT_SYMBOL(rps_cpu_mask);
3223
3224 struct static_key rps_needed __read_mostly;
3225
3226 static struct rps_dev_flow *
3227 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3228             struct rps_dev_flow *rflow, u16 next_cpu)
3229 {
3230         if (next_cpu < nr_cpu_ids) {
3231 #ifdef CONFIG_RFS_ACCEL
3232                 struct netdev_rx_queue *rxqueue;
3233                 struct rps_dev_flow_table *flow_table;
3234                 struct rps_dev_flow *old_rflow;
3235                 u32 flow_id;
3236                 u16 rxq_index;
3237                 int rc;
3238
3239                 /* Should we steer this flow to a different hardware queue? */
3240                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3241                     !(dev->features & NETIF_F_NTUPLE))
3242                         goto out;
3243                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3244                 if (rxq_index == skb_get_rx_queue(skb))
3245                         goto out;
3246
3247                 rxqueue = dev->_rx + rxq_index;
3248                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3249                 if (!flow_table)
3250                         goto out;
3251                 flow_id = skb_get_hash(skb) & flow_table->mask;
3252                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3253                                                         rxq_index, flow_id);
3254                 if (rc < 0)
3255                         goto out;
3256                 old_rflow = rflow;
3257                 rflow = &flow_table->flows[flow_id];
3258                 rflow->filter = rc;
3259                 if (old_rflow->filter == rflow->filter)
3260                         old_rflow->filter = RPS_NO_FILTER;
3261         out:
3262 #endif
3263                 rflow->last_qtail =
3264                         per_cpu(softnet_data, next_cpu).input_queue_head;
3265         }
3266
3267         rflow->cpu = next_cpu;
3268         return rflow;
3269 }
3270
3271 /*
3272  * get_rps_cpu is called from netif_receive_skb and returns the target
3273  * CPU from the RPS map of the receiving queue for a given skb.
3274  * rcu_read_lock must be held on entry.
3275  */
3276 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3277                        struct rps_dev_flow **rflowp)
3278 {
3279         const struct rps_sock_flow_table *sock_flow_table;
3280         struct netdev_rx_queue *rxqueue = dev->_rx;
3281         struct rps_dev_flow_table *flow_table;
3282         struct rps_map *map;
3283         int cpu = -1;
3284         u32 tcpu;
3285         u32 hash;
3286
3287         if (skb_rx_queue_recorded(skb)) {
3288                 u16 index = skb_get_rx_queue(skb);
3289
3290                 if (unlikely(index >= dev->real_num_rx_queues)) {
3291                         WARN_ONCE(dev->real_num_rx_queues > 1,
3292                                   "%s received packet on queue %u, but number "
3293                                   "of RX queues is %u\n",
3294                                   dev->name, index, dev->real_num_rx_queues);
3295                         goto done;
3296                 }
3297                 rxqueue += index;
3298         }
3299
3300         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3301
3302         flow_table = rcu_dereference(rxqueue->rps_flow_table);
3303         map = rcu_dereference(rxqueue->rps_map);
3304         if (!flow_table && !map)
3305                 goto done;
3306
3307         skb_reset_network_header(skb);
3308         hash = skb_get_hash(skb);
3309         if (!hash)
3310                 goto done;
3311
3312         sock_flow_table = rcu_dereference(rps_sock_flow_table);
3313         if (flow_table && sock_flow_table) {
3314                 struct rps_dev_flow *rflow;
3315                 u32 next_cpu;
3316                 u32 ident;
3317
3318                 /* First check into global flow table if there is a match */
3319                 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3320                 if ((ident ^ hash) & ~rps_cpu_mask)
3321                         goto try_rps;
3322
3323                 next_cpu = ident & rps_cpu_mask;
3324
3325                 /* OK, now we know there is a match,
3326                  * we can look at the local (per receive queue) flow table
3327                  */
3328                 rflow = &flow_table->flows[hash & flow_table->mask];
3329                 tcpu = rflow->cpu;
3330
3331                 /*
3332                  * If the desired CPU (where last recvmsg was done) is
3333                  * different from current CPU (one in the rx-queue flow
3334                  * table entry), switch if one of the following holds:
3335                  *   - Current CPU is unset (>= nr_cpu_ids).
3336                  *   - Current CPU is offline.
3337                  *   - The current CPU's queue tail has advanced beyond the
3338                  *     last packet that was enqueued using this table entry.
3339                  *     This guarantees that all previous packets for the flow
3340                  *     have been dequeued, thus preserving in order delivery.
3341                  */
3342                 if (unlikely(tcpu != next_cpu) &&
3343                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3344                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3345                       rflow->last_qtail)) >= 0)) {
3346                         tcpu = next_cpu;
3347                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3348                 }
3349
3350                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3351                         *rflowp = rflow;
3352                         cpu = tcpu;
3353                         goto done;
3354                 }
3355         }
3356
3357 try_rps:
3358
3359         if (map) {
3360                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3361                 if (cpu_online(tcpu)) {
3362                         cpu = tcpu;
3363                         goto done;
3364                 }
3365         }
3366
3367 done:
3368         return cpu;
3369 }
3370
3371 #ifdef CONFIG_RFS_ACCEL
3372
3373 /**
3374  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3375  * @dev: Device on which the filter was set
3376  * @rxq_index: RX queue index
3377  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3378  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3379  *
3380  * Drivers that implement ndo_rx_flow_steer() should periodically call
3381  * this function for each installed filter and remove the filters for
3382  * which it returns %true.
3383  */
3384 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3385                          u32 flow_id, u16 filter_id)
3386 {
3387         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3388         struct rps_dev_flow_table *flow_table;
3389         struct rps_dev_flow *rflow;
3390         bool expire = true;
3391         unsigned int cpu;
3392
3393         rcu_read_lock();
3394         flow_table = rcu_dereference(rxqueue->rps_flow_table);
3395         if (flow_table && flow_id <= flow_table->mask) {
3396                 rflow = &flow_table->flows[flow_id];
3397                 cpu = ACCESS_ONCE(rflow->cpu);
3398                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3399                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3400                            rflow->last_qtail) <
3401                      (int)(10 * flow_table->mask)))
3402                         expire = false;
3403         }
3404         rcu_read_unlock();
3405         return expire;
3406 }
3407 EXPORT_SYMBOL(rps_may_expire_flow);
3408
3409 #endif /* CONFIG_RFS_ACCEL */
3410
3411 /* Called from hardirq (IPI) context */
3412 static void rps_trigger_softirq(void *data)
3413 {
3414         struct softnet_data *sd = data;
3415
3416         ____napi_schedule(sd, &sd->backlog);
3417         sd->received_rps++;
3418 }
3419
3420 #endif /* CONFIG_RPS */
3421
3422 /*
3423  * Check if this softnet_data structure is another cpu one
3424  * If yes, queue it to our IPI list and return 1
3425  * If no, return 0
3426  */
3427 static int rps_ipi_queued(struct softnet_data *sd)
3428 {
3429 #ifdef CONFIG_RPS
3430         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3431
3432         if (sd != mysd) {
3433                 sd->rps_ipi_next = mysd->rps_ipi_list;
3434                 mysd->rps_ipi_list = sd;
3435
3436                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3437                 return 1;
3438         }
3439 #endif /* CONFIG_RPS */
3440         return 0;
3441 }
3442
3443 #ifdef CONFIG_NET_FLOW_LIMIT
3444 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3445 #endif
3446
3447 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3448 {
3449 #ifdef CONFIG_NET_FLOW_LIMIT
3450         struct sd_flow_limit *fl;
3451         struct softnet_data *sd;
3452         unsigned int old_flow, new_flow;
3453
3454         if (qlen < (netdev_max_backlog >> 1))
3455                 return false;
3456
3457         sd = this_cpu_ptr(&softnet_data);
3458
3459         rcu_read_lock();
3460         fl = rcu_dereference(sd->flow_limit);
3461         if (fl) {
3462                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3463                 old_flow = fl->history[fl->history_head];
3464                 fl->history[fl->history_head] = new_flow;
3465
3466                 fl->history_head++;
3467                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3468
3469                 if (likely(fl->buckets[old_flow]))
3470                         fl->buckets[old_flow]--;
3471
3472                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3473                         fl->count++;
3474                         rcu_read_unlock();
3475                         return true;
3476                 }
3477         }
3478         rcu_read_unlock();
3479 #endif
3480         return false;
3481 }
3482
3483 /*
3484  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3485  * queue (may be a remote CPU queue).
3486  */
3487 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3488                               unsigned int *qtail)
3489 {
3490         struct softnet_data *sd;
3491         unsigned long flags;
3492         unsigned int qlen;
3493
3494         sd = &per_cpu(softnet_data, cpu);
3495
3496         local_irq_save(flags);
3497
3498         rps_lock(sd);
3499         if (!netif_running(skb->dev))
3500                 goto drop;
3501         qlen = skb_queue_len(&sd->input_pkt_queue);
3502         if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3503                 if (qlen) {
3504 enqueue:
3505                         __skb_queue_tail(&sd->input_pkt_queue, skb);
3506                         input_queue_tail_incr_save(sd, qtail);
3507                         rps_unlock(sd);
3508                         local_irq_restore(flags);
3509                         return NET_RX_SUCCESS;
3510                 }
3511
3512                 /* Schedule NAPI for backlog device
3513                  * We can use non atomic operation since we own the queue lock
3514                  */
3515                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3516                         if (!rps_ipi_queued(sd))
3517                                 ____napi_schedule(sd, &sd->backlog);
3518                 }
3519                 goto enqueue;
3520         }
3521
3522 drop:
3523         sd->dropped++;
3524         rps_unlock(sd);
3525
3526         local_irq_restore(flags);
3527
3528         atomic_long_inc(&skb->dev->rx_dropped);
3529         kfree_skb(skb);
3530         return NET_RX_DROP;
3531 }
3532
3533 static int netif_rx_internal(struct sk_buff *skb)
3534 {
3535         int ret;
3536
3537         net_timestamp_check(netdev_tstamp_prequeue, skb);
3538
3539         trace_netif_rx(skb);
3540 #ifdef CONFIG_RPS
3541         if (static_key_false(&rps_needed)) {
3542                 struct rps_dev_flow voidflow, *rflow = &voidflow;
3543                 int cpu;
3544
3545                 preempt_disable();
3546                 rcu_read_lock();
3547
3548                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3549                 if (cpu < 0)
3550                         cpu = smp_processor_id();
3551
3552                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3553
3554                 rcu_read_unlock();
3555                 preempt_enable();
3556         } else
3557 #endif
3558         {
3559                 unsigned int qtail;
3560                 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3561                 put_cpu();
3562         }
3563         return ret;
3564 }
3565
3566 /**
3567  *      netif_rx        -       post buffer to the network code
3568  *      @skb: buffer to post
3569  *
3570  *      This function receives a packet from a device driver and queues it for
3571  *      the upper (protocol) levels to process.  It always succeeds. The buffer
3572  *      may be dropped during processing for congestion control or by the
3573  *      protocol layers.
3574  *
3575  *      return values:
3576  *      NET_RX_SUCCESS  (no congestion)
3577  *      NET_RX_DROP     (packet was dropped)
3578  *
3579  */
3580
3581 int netif_rx(struct sk_buff *skb)
3582 {
3583         trace_netif_rx_entry(skb);
3584
3585         return netif_rx_internal(skb);
3586 }
3587 EXPORT_SYMBOL(netif_rx);
3588
3589 int netif_rx_ni(struct sk_buff *skb)
3590 {
3591         int err;
3592
3593         trace_netif_rx_ni_entry(skb);
3594
3595         preempt_disable();
3596         err = netif_rx_internal(skb);
3597         if (local_softirq_pending())
3598                 do_softirq();
3599         preempt_enable();
3600
3601         return err;
3602 }
3603 EXPORT_SYMBOL(netif_rx_ni);
3604
3605 static void net_tx_action(struct softirq_action *h)
3606 {
3607         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3608
3609         if (sd->completion_queue) {
3610                 struct sk_buff *clist;
3611
3612                 local_irq_disable();
3613                 clist = sd->completion_queue;
3614                 sd->completion_queue = NULL;
3615                 local_irq_enable();
3616
3617                 while (clist) {
3618                         struct sk_buff *skb = clist;
3619                         clist = clist->next;
3620
3621                         WARN_ON(atomic_read(&skb->users));
3622                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3623                                 trace_consume_skb(skb);
3624                         else
3625                                 trace_kfree_skb(skb, net_tx_action);
3626                         __kfree_skb(skb);
3627                 }
3628         }
3629
3630         if (sd->output_queue) {
3631                 struct Qdisc *head;
3632
3633                 local_irq_disable();
3634                 head = sd->output_queue;
3635                 sd->output_queue = NULL;
3636                 sd->output_queue_tailp = &sd->output_queue;
3637                 local_irq_enable();
3638
3639                 while (head) {
3640                         struct Qdisc *q = head;
3641                         spinlock_t *root_lock;
3642
3643                         head = head->next_sched;
3644
3645                         root_lock = qdisc_lock(q);
3646                         if (spin_trylock(root_lock)) {
3647                                 smp_mb__before_atomic();
3648                                 clear_bit(__QDISC_STATE_SCHED,
3649                                           &q->state);
3650                                 qdisc_run(q);
3651                                 spin_unlock(root_lock);
3652                         } else {
3653                                 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3654                                               &q->state)) {
3655                                         __netif_reschedule(q);
3656                                 } else {
3657                                         smp_mb__before_atomic();
3658                                         clear_bit(__QDISC_STATE_SCHED,
3659                                                   &q->state);
3660                                 }
3661                         }
3662                 }
3663         }
3664 }
3665
3666 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3667     (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3668 /* This hook is defined here for ATM LANE */
3669 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3670                              unsigned char *addr) __read_mostly;
3671 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3672 #endif
3673
3674 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3675                                          struct packet_type **pt_prev,
3676                                          int *ret, struct net_device *orig_dev)
3677 {
3678 #ifdef CONFIG_NET_CLS_ACT
3679         struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3680         struct tcf_result cl_res;
3681
3682         /* If there's at least one ingress present somewhere (so
3683          * we get here via enabled static key), remaining devices
3684          * that are not configured with an ingress qdisc will bail
3685          * out here.
3686          */
3687         if (!cl)
3688                 return skb;
3689         if (*pt_prev) {
3690                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3691                 *pt_prev = NULL;
3692         }
3693
3694         qdisc_skb_cb(skb)->pkt_len = skb->len;
3695         skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3696         qdisc_bstats_cpu_update(cl->q, skb);
3697
3698         switch (tc_classify(skb, cl, &cl_res, false)) {
3699         case TC_ACT_OK:
3700         case TC_ACT_RECLASSIFY:
3701                 skb->tc_index = TC_H_MIN(cl_res.classid);
3702                 break;
3703         case TC_ACT_SHOT:
3704                 qdisc_qstats_cpu_drop(cl->q);
3705         case TC_ACT_STOLEN:
3706         case TC_ACT_QUEUED:
3707                 kfree_skb(skb);
3708                 return NULL;
3709         case TC_ACT_REDIRECT:
3710                 /* skb_mac_header check was done by cls/act_bpf, so
3711                  * we can safely push the L2 header back before
3712                  * redirecting to another netdev
3713                  */
3714                 __skb_push(skb, skb->mac_len);
3715                 skb_do_redirect(skb);
3716                 return NULL;
3717         default:
3718                 break;
3719         }
3720 #endif /* CONFIG_NET_CLS_ACT */
3721         return skb;
3722 }
3723
3724 /**
3725  *      netdev_rx_handler_register - register receive handler
3726  *      @dev: device to register a handler for
3727  *      @rx_handler: receive handler to register
3728  *      @rx_handler_data: data pointer that is used by rx handler
3729  *
3730  *      Register a receive handler for a device. This handler will then be
3731  *      called from __netif_receive_skb. A negative errno code is returned
3732  *      on a failure.
3733  *
3734  *      The caller must hold the rtnl_mutex.
3735  *
3736  *      For a general description of rx_handler, see enum rx_handler_result.
3737  */
3738 int netdev_rx_handler_register(struct net_device *dev,
3739                                rx_handler_func_t *rx_handler,
3740                                void *rx_handler_data)
3741 {
3742         ASSERT_RTNL();
3743
3744         if (dev->rx_handler)
3745                 return -EBUSY;
3746
3747         /* Note: rx_handler_data must be set before rx_handler */
3748         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3749         rcu_assign_pointer(dev->rx_handler, rx_handler);
3750
3751         return 0;
3752 }
3753 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3754
3755 /**
3756  *      netdev_rx_handler_unregister - unregister receive handler
3757  *      @dev: device to unregister a handler from
3758  *
3759  *      Unregister a receive handler from a device.
3760  *
3761  *      The caller must hold the rtnl_mutex.
3762  */
3763 void netdev_rx_handler_unregister(struct net_device *dev)
3764 {
3765
3766         ASSERT_RTNL();
3767         RCU_INIT_POINTER(dev->rx_handler, NULL);
3768         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3769          * section has a guarantee to see a non NULL rx_handler_data
3770          * as well.
3771          */
3772         synchronize_net();
3773         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3774 }
3775 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3776
3777 /*
3778  * Limit the use of PFMEMALLOC reserves to those protocols that implement
3779  * the special handling of PFMEMALLOC skbs.
3780  */
3781 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3782 {
3783         switch (skb->protocol) {
3784         case htons(ETH_P_ARP):
3785         case htons(ETH_P_IP):
3786         case htons(ETH_P_IPV6):
3787         case htons(ETH_P_8021Q):
3788         case htons(ETH_P_8021AD):
3789                 return true;
3790         default:
3791                 return false;
3792         }
3793 }
3794
3795 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
3796                              int *ret, struct net_device *orig_dev)
3797 {
3798 #ifdef CONFIG_NETFILTER_INGRESS
3799         if (nf_hook_ingress_active(skb)) {
3800                 if (*pt_prev) {
3801                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
3802                         *pt_prev = NULL;
3803                 }
3804
3805                 return nf_hook_ingress(skb);
3806         }
3807 #endif /* CONFIG_NETFILTER_INGRESS */
3808         return 0;
3809 }
3810
3811 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
3812 {
3813         struct packet_type *ptype, *pt_prev;
3814         rx_handler_func_t *rx_handler;
3815         struct net_device *orig_dev;
3816         bool deliver_exact = false;
3817         int ret = NET_RX_DROP;
3818         __be16 type;
3819
3820         net_timestamp_check(!netdev_tstamp_prequeue, skb);
3821
3822         trace_netif_receive_skb(skb);
3823
3824         orig_dev = skb->dev;
3825
3826         skb_reset_network_header(skb);
3827         if (!skb_transport_header_was_set(skb))
3828                 skb_reset_transport_header(skb);
3829         skb_reset_mac_len(skb);
3830
3831         pt_prev = NULL;
3832
3833 another_round:
3834         skb->skb_iif = skb->dev->ifindex;
3835
3836         __this_cpu_inc(softnet_data.processed);
3837
3838         if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3839             skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
3840                 skb = skb_vlan_untag(skb);
3841                 if (unlikely(!skb))
3842                         goto out;
3843         }
3844
3845 #ifdef CONFIG_NET_CLS_ACT
3846         if (skb->tc_verd & TC_NCLS) {
3847                 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3848                 goto ncls;
3849         }
3850 #endif
3851
3852         if (pfmemalloc)
3853                 goto skip_taps;
3854
3855         list_for_each_entry_rcu(ptype, &ptype_all, list) {
3856                 if (pt_prev)
3857                         ret = deliver_skb(skb, pt_prev, orig_dev);
3858                 pt_prev = ptype;
3859         }
3860
3861         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
3862                 if (pt_prev)
3863                         ret = deliver_skb(skb, pt_prev, orig_dev);
3864                 pt_prev = ptype;
3865         }
3866
3867 skip_taps:
3868 #ifdef CONFIG_NET_INGRESS
3869         if (static_key_false(&ingress_needed)) {
3870                 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3871                 if (!skb)
3872                         goto out;
3873
3874                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
3875                         goto out;
3876         }
3877 #endif
3878 #ifdef CONFIG_NET_CLS_ACT
3879         skb->tc_verd = 0;
3880 ncls:
3881 #endif
3882         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
3883                 goto drop;
3884
3885         if (skb_vlan_tag_present(skb)) {
3886                 if (pt_prev) {
3887                         ret = deliver_skb(skb, pt_prev, orig_dev);
3888                         pt_prev = NULL;
3889                 }
3890                 if (vlan_do_receive(&skb))
3891                         goto another_round;
3892                 else if (unlikely(!skb))
3893                         goto out;
3894         }
3895
3896         rx_handler = rcu_dereference(skb->dev->rx_handler);
3897         if (rx_handler) {
3898                 if (pt_prev) {
3899                         ret = deliver_skb(skb, pt_prev, orig_dev);
3900                         pt_prev = NULL;
3901                 }
3902                 switch (rx_handler(&skb)) {
3903                 case RX_HANDLER_CONSUMED:
3904                         ret = NET_RX_SUCCESS;
3905                         goto out;
3906                 case RX_HANDLER_ANOTHER:
3907                         goto another_round;
3908                 case RX_HANDLER_EXACT:
3909                         deliver_exact = true;
3910                 case RX_HANDLER_PASS:
3911                         break;
3912                 default:
3913                         BUG();
3914                 }
3915         }
3916
3917         if (unlikely(skb_vlan_tag_present(skb))) {
3918                 if (skb_vlan_tag_get_id(skb))
3919                         skb->pkt_type = PACKET_OTHERHOST;
3920                 /* Note: we might in the future use prio bits
3921                  * and set skb->priority like in vlan_do_receive()
3922                  * For the time being, just ignore Priority Code Point
3923                  */
3924                 skb->vlan_tci = 0;
3925         }
3926
3927         type = skb->protocol;
3928
3929         /* deliver only exact match when indicated */
3930         if (likely(!deliver_exact)) {
3931                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3932                                        &ptype_base[ntohs(type) &
3933                                                    PTYPE_HASH_MASK]);
3934         }
3935
3936         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3937                                &orig_dev->ptype_specific);
3938
3939         if (unlikely(skb->dev != orig_dev)) {
3940                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3941                                        &skb->dev->ptype_specific);
3942         }
3943
3944         if (pt_prev) {
3945                 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3946                         goto drop;
3947                 else
3948                         ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3949         } else {
3950 drop:
3951                 atomic_long_inc(&skb->dev->rx_dropped);
3952                 kfree_skb(skb);
3953                 /* Jamal, now you will not able to escape explaining
3954                  * me how you were going to use this. :-)
3955                  */
3956                 ret = NET_RX_DROP;
3957         }
3958
3959 out:
3960         return ret;
3961 }
3962
3963 static int __netif_receive_skb(struct sk_buff *skb)
3964 {
3965         int ret;
3966
3967         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3968                 unsigned long pflags = current->flags;
3969
3970                 /*
3971                  * PFMEMALLOC skbs are special, they should
3972                  * - be delivered to SOCK_MEMALLOC sockets only
3973                  * - stay away from userspace
3974                  * - have bounded memory usage
3975                  *
3976                  * Use PF_MEMALLOC as this saves us from propagating the allocation
3977                  * context down to all allocation sites.
3978                  */
3979                 current->flags |= PF_MEMALLOC;
3980                 ret = __netif_receive_skb_core(skb, true);
3981                 tsk_restore_flags(current, pflags, PF_MEMALLOC);
3982         } else
3983                 ret = __netif_receive_skb_core(skb, false);
3984
3985         return ret;
3986 }
3987
3988 static int netif_receive_skb_internal(struct sk_buff *skb)
3989 {
3990         int ret;
3991
3992         net_timestamp_check(netdev_tstamp_prequeue, skb);
3993
3994         if (skb_defer_rx_timestamp(skb))
3995                 return NET_RX_SUCCESS;
3996
3997         rcu_read_lock();
3998
3999 #ifdef CONFIG_RPS
4000         if (static_key_false(&rps_needed)) {
4001                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4002                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4003
4004                 if (cpu >= 0) {
4005                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4006                         rcu_read_unlock();
4007                         return ret;
4008                 }
4009         }
4010 #endif
4011         ret = __netif_receive_skb(skb);
4012         rcu_read_unlock();
4013         return ret;
4014 }
4015
4016 /**
4017  *      netif_receive_skb - process receive buffer from network
4018  *      @skb: buffer to process
4019  *
4020  *      netif_receive_skb() is the main receive data processing function.
4021  *      It always succeeds. The buffer may be dropped during processing
4022  *      for congestion control or by the protocol layers.
4023  *
4024  *      This function may only be called from softirq context and interrupts
4025  *      should be enabled.
4026  *
4027  *      Return values (usually ignored):
4028  *      NET_RX_SUCCESS: no congestion
4029  *      NET_RX_DROP: packet was dropped
4030  */
4031 int netif_receive_skb(struct sk_buff *skb)
4032 {
4033         trace_netif_receive_skb_entry(skb);
4034
4035         return netif_receive_skb_internal(skb);
4036 }
4037 EXPORT_SYMBOL(netif_receive_skb);
4038
4039 /* Network device is going away, flush any packets still pending
4040  * Called with irqs disabled.
4041  */
4042 static void flush_backlog(void *arg)
4043 {
4044         struct net_device *dev = arg;
4045         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4046         struct sk_buff *skb, *tmp;
4047
4048         rps_lock(sd);
4049         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4050                 if (skb->dev == dev) {
4051                         __skb_unlink(skb, &sd->input_pkt_queue);
4052                         kfree_skb(skb);
4053                         input_queue_head_incr(sd);
4054                 }
4055         }
4056         rps_unlock(sd);
4057
4058         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4059                 if (skb->dev == dev) {
4060                         __skb_unlink(skb, &sd->process_queue);
4061                         kfree_skb(skb);
4062                         input_queue_head_incr(sd);
4063                 }
4064         }
4065 }
4066
4067 static int napi_gro_complete(struct sk_buff *skb)
4068 {
4069         struct packet_offload *ptype;
4070         __be16 type = skb->protocol;
4071         struct list_head *head = &offload_base;
4072         int err = -ENOENT;
4073
4074         BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4075
4076         if (NAPI_GRO_CB(skb)->count == 1) {
4077                 skb_shinfo(skb)->gso_size = 0;
4078                 goto out;
4079         }
4080
4081         rcu_read_lock();
4082         list_for_each_entry_rcu(ptype, head, list) {
4083                 if (ptype->type != type || !ptype->callbacks.gro_complete)
4084                         continue;
4085
4086                 err = ptype->callbacks.gro_complete(skb, 0);
4087                 break;
4088         }
4089         rcu_read_unlock();
4090
4091         if (err) {
4092                 WARN_ON(&ptype->list == head);
4093                 kfree_skb(skb);
4094                 return NET_RX_SUCCESS;
4095         }
4096
4097 out:
4098         return netif_receive_skb_internal(skb);
4099 }
4100
4101 /* napi->gro_list contains packets ordered by age.
4102  * youngest packets at the head of it.
4103  * Complete skbs in reverse order to reduce latencies.
4104  */
4105 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4106 {
4107         struct sk_buff *skb, *prev = NULL;
4108
4109         /* scan list and build reverse chain */
4110         for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4111                 skb->prev = prev;
4112                 prev = skb;
4113         }
4114
4115         for (skb = prev; skb; skb = prev) {
4116                 skb->next = NULL;
4117
4118                 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4119                         return;
4120
4121                 prev = skb->prev;
4122                 napi_gro_complete(skb);
4123                 napi->gro_count--;
4124         }
4125
4126         napi->gro_list = NULL;
4127 }
4128 EXPORT_SYMBOL(napi_gro_flush);
4129
4130 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4131 {
4132         struct sk_buff *p;
4133         unsigned int maclen = skb->dev->hard_header_len;
4134         u32 hash = skb_get_hash_raw(skb);
4135
4136         for (p = napi->gro_list; p; p = p->next) {
4137                 unsigned long diffs;
4138
4139                 NAPI_GRO_CB(p)->flush = 0;
4140
4141                 if (hash != skb_get_hash_raw(p)) {
4142                         NAPI_GRO_CB(p)->same_flow = 0;
4143                         continue;
4144                 }
4145
4146                 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4147                 diffs |= p->vlan_tci ^ skb->vlan_tci;
4148                 diffs |= skb_metadata_dst_cmp(p, skb);
4149                 if (maclen == ETH_HLEN)
4150                         diffs |= compare_ether_header(skb_mac_header(p),
4151                                                       skb_mac_header(skb));
4152                 else if (!diffs)
4153                         diffs = memcmp(skb_mac_header(p),
4154                                        skb_mac_header(skb),
4155                                        maclen);
4156                 NAPI_GRO_CB(p)->same_flow = !diffs;
4157         }
4158 }
4159
4160 static void skb_gro_reset_offset(struct sk_buff *skb)
4161 {
4162         const struct skb_shared_info *pinfo = skb_shinfo(skb);
4163         const skb_frag_t *frag0 = &pinfo->frags[0];
4164
4165         NAPI_GRO_CB(skb)->data_offset = 0;
4166         NAPI_GRO_CB(skb)->frag0 = NULL;
4167         NAPI_GRO_CB(skb)->frag0_len = 0;
4168
4169         if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4170             pinfo->nr_frags &&
4171             !PageHighMem(skb_frag_page(frag0))) {
4172                 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4173                 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
4174         }
4175 }
4176
4177 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4178 {
4179         struct skb_shared_info *pinfo = skb_shinfo(skb);
4180
4181         BUG_ON(skb->end - skb->tail < grow);
4182
4183         memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4184
4185         skb->data_len -= grow;
4186         skb->tail += grow;
4187
4188         pinfo->frags[0].page_offset += grow;
4189         skb_frag_size_sub(&pinfo->frags[0], grow);
4190
4191         if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4192                 skb_frag_unref(skb, 0);
4193                 memmove(pinfo->frags, pinfo->frags + 1,
4194                         --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4195         }
4196 }
4197
4198 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4199 {
4200         struct sk_buff **pp = NULL;
4201         struct packet_offload *ptype;
4202         __be16 type = skb->protocol;
4203         struct list_head *head = &offload_base;
4204         int same_flow;
4205         enum gro_result ret;
4206         int grow;
4207
4208         if (!(skb->dev->features & NETIF_F_GRO))
4209                 goto normal;
4210
4211         if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
4212                 goto normal;
4213
4214         gro_list_prepare(napi, skb);
4215
4216         rcu_read_lock();
4217         list_for_each_entry_rcu(ptype, head, list) {
4218                 if (ptype->type != type || !ptype->callbacks.gro_receive)
4219                         continue;
4220
4221                 skb_set_network_header(skb, skb_gro_offset(skb));
4222                 skb_reset_mac_len(skb);
4223                 NAPI_GRO_CB(skb)->same_flow = 0;
4224                 NAPI_GRO_CB(skb)->flush = 0;
4225                 NAPI_GRO_CB(skb)->free = 0;
4226                 NAPI_GRO_CB(skb)->udp_mark = 0;
4227                 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4228
4229                 /* Setup for GRO checksum validation */
4230                 switch (skb->ip_summed) {
4231                 case CHECKSUM_COMPLETE:
4232                         NAPI_GRO_CB(skb)->csum = skb->csum;
4233                         NAPI_GRO_CB(skb)->csum_valid = 1;
4234                         NAPI_GRO_CB(skb)->csum_cnt = 0;
4235                         break;
4236                 case CHECKSUM_UNNECESSARY:
4237                         NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4238                         NAPI_GRO_CB(skb)->csum_valid = 0;
4239                         break;
4240                 default:
4241                         NAPI_GRO_CB(skb)->csum_cnt = 0;
4242                         NAPI_GRO_CB(skb)->csum_valid = 0;
4243                 }
4244
4245                 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4246                 break;
4247         }
4248         rcu_read_unlock();
4249
4250         if (&ptype->list == head)
4251                 goto normal;
4252
4253         same_flow = NAPI_GRO_CB(skb)->same_flow;
4254         ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4255
4256         if (pp) {
4257                 struct sk_buff *nskb = *pp;
4258
4259                 *pp = nskb->next;
4260                 nskb->next = NULL;
4261                 napi_gro_complete(nskb);
4262                 napi->gro_count--;
4263         }
4264
4265         if (same_flow)
4266                 goto ok;
4267
4268         if (NAPI_GRO_CB(skb)->flush)
4269                 goto normal;
4270
4271         if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4272                 struct sk_buff *nskb = napi->gro_list;
4273
4274                 /* locate the end of the list to select the 'oldest' flow */
4275                 while (nskb->next) {
4276                         pp = &nskb->next;
4277                         nskb = *pp;
4278                 }
4279                 *pp = NULL;
4280                 nskb->next = NULL;
4281                 napi_gro_complete(nskb);
4282         } else {
4283                 napi->gro_count++;
4284         }
4285         NAPI_GRO_CB(skb)->count = 1;
4286         NAPI_GRO_CB(skb)->age = jiffies;
4287         NAPI_GRO_CB(skb)->last = skb;
4288         skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4289         skb->next = napi->gro_list;
4290         napi->gro_list = skb;
4291         ret = GRO_HELD;
4292
4293 pull:
4294         grow = skb_gro_offset(skb) - skb_headlen(skb);
4295         if (grow > 0)
4296                 gro_pull_from_frag0(skb, grow);
4297 ok:
4298         return ret;
4299
4300 normal:
4301         ret = GRO_NORMAL;
4302         goto pull;
4303 }
4304
4305 struct packet_offload *gro_find_receive_by_type(__be16 type)
4306 {
4307         struct list_head *offload_head = &offload_base;
4308         struct packet_offload *ptype;
4309
4310         list_for_each_entry_rcu(ptype, offload_head, list) {
4311                 if (ptype->type != type || !ptype->callbacks.gro_receive)
4312                         continue;
4313                 return ptype;
4314         }
4315         return NULL;
4316 }
4317 EXPORT_SYMBOL(gro_find_receive_by_type);
4318
4319 struct packet_offload *gro_find_complete_by_type(__be16 type)
4320 {
4321         struct list_head *offload_head = &offload_base;
4322         struct packet_offload *ptype;
4323
4324         list_for_each_entry_rcu(ptype, offload_head, list) {
4325                 if (ptype->type != type || !ptype->callbacks.gro_complete)
4326                         continue;
4327                 return ptype;
4328         }
4329         return NULL;
4330 }
4331 EXPORT_SYMBOL(gro_find_complete_by_type);
4332
4333 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4334 {
4335         switch (ret) {
4336         case GRO_NORMAL:
4337                 if (netif_receive_skb_internal(skb))
4338                         ret = GRO_DROP;
4339                 break;
4340
4341         case GRO_DROP:
4342                 kfree_skb(skb);
4343                 break;
4344
4345         case GRO_MERGED_FREE:
4346                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) {
4347                         skb_dst_drop(skb);
4348                         kmem_cache_free(skbuff_head_cache, skb);
4349                 } else {
4350                         __kfree_skb(skb);
4351                 }
4352                 break;
4353
4354         case GRO_HELD:
4355         case GRO_MERGED:
4356                 break;
4357         }
4358
4359         return ret;
4360 }
4361
4362 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4363 {
4364         trace_napi_gro_receive_entry(skb);
4365
4366         skb_gro_reset_offset(skb);
4367
4368         return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4369 }
4370 EXPORT_SYMBOL(napi_gro_receive);
4371
4372 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4373 {
4374         if (unlikely(skb->pfmemalloc)) {
4375                 consume_skb(skb);
4376                 return;
4377         }
4378         __skb_pull(skb, skb_headlen(skb));
4379         /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4380         skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4381         skb->vlan_tci = 0;
4382         skb->dev = napi->dev;
4383         skb->skb_iif = 0;
4384         skb->encapsulation = 0;
4385         skb_shinfo(skb)->gso_type = 0;
4386         skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4387
4388         napi->skb = skb;
4389 }
4390
4391 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4392 {
4393         struct sk_buff *skb = napi->skb;
4394
4395         if (!skb) {
4396                 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4397                 napi->skb = skb;
4398         }
4399         return skb;
4400 }
4401 EXPORT_SYMBOL(napi_get_frags);
4402
4403 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4404                                       struct sk_buff *skb,
4405                                       gro_result_t ret)
4406 {
4407         switch (ret) {
4408         case GRO_NORMAL:
4409         case GRO_HELD:
4410                 __skb_push(skb, ETH_HLEN);
4411                 skb->protocol = eth_type_trans(skb, skb->dev);
4412                 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4413                         ret = GRO_DROP;
4414                 break;
4415
4416         case GRO_DROP:
4417         case GRO_MERGED_FREE:
4418                 napi_reuse_skb(napi, skb);
4419                 break;
4420
4421         case GRO_MERGED:
4422                 break;
4423         }
4424
4425         return ret;
4426 }
4427
4428 /* Upper GRO stack assumes network header starts at gro_offset=0
4429  * Drivers could call both napi_gro_frags() and napi_gro_receive()
4430  * We copy ethernet header into skb->data to have a common layout.
4431  */
4432 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4433 {
4434         struct sk_buff *skb = napi->skb;
4435         const struct ethhdr *eth;
4436         unsigned int hlen = sizeof(*eth);
4437
4438         napi->skb = NULL;
4439
4440         skb_reset_mac_header(skb);
4441         skb_gro_reset_offset(skb);
4442
4443         eth = skb_gro_header_fast(skb, 0);
4444         if (unlikely(skb_gro_header_hard(skb, hlen))) {
4445                 eth = skb_gro_header_slow(skb, hlen, 0);
4446                 if (unlikely(!eth)) {
4447                         napi_reuse_skb(napi, skb);
4448                         return NULL;
4449                 }
4450         } else {
4451                 gro_pull_from_frag0(skb, hlen);
4452                 NAPI_GRO_CB(skb)->frag0 += hlen;
4453                 NAPI_GRO_CB(skb)->frag0_len -= hlen;
4454         }
4455         __skb_pull(skb, hlen);
4456
4457         /*
4458          * This works because the only protocols we care about don't require
4459          * special handling.
4460          * We'll fix it up properly in napi_frags_finish()
4461          */
4462         skb->protocol = eth->h_proto;
4463
4464         return skb;
4465 }
4466
4467 gro_result_t napi_gro_frags(struct napi_struct *napi)
4468 {
4469         struct sk_buff *skb = napi_frags_skb(napi);
4470
4471         if (!skb)
4472                 return GRO_DROP;
4473
4474         trace_napi_gro_frags_entry(skb);
4475
4476         return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4477 }
4478 EXPORT_SYMBOL(napi_gro_frags);
4479
4480 /* Compute the checksum from gro_offset and return the folded value
4481  * after adding in any pseudo checksum.
4482  */
4483 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4484 {
4485         __wsum wsum;
4486         __sum16 sum;
4487
4488         wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4489
4490         /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4491         sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4492         if (likely(!sum)) {
4493                 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4494                     !skb->csum_complete_sw)
4495                         netdev_rx_csum_fault(skb->dev);
4496         }
4497
4498         NAPI_GRO_CB(skb)->csum = wsum;
4499         NAPI_GRO_CB(skb)->csum_valid = 1;
4500
4501         return sum;
4502 }
4503 EXPORT_SYMBOL(__skb_gro_checksum_complete);
4504
4505 /*
4506  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4507  * Note: called with local irq disabled, but exits with local irq enabled.
4508  */
4509 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4510 {
4511 #ifdef CONFIG_RPS
4512         struct softnet_data *remsd = sd->rps_ipi_list;
4513
4514         if (remsd) {
4515                 sd->rps_ipi_list = NULL;
4516
4517                 local_irq_enable();
4518
4519                 /* Send pending IPI's to kick RPS processing on remote cpus. */
4520                 while (remsd) {
4521                         struct softnet_data *next = remsd->rps_ipi_next;
4522
4523                         if (cpu_online(remsd->cpu))
4524                                 smp_call_function_single_async(remsd->cpu,
4525                                                            &remsd->csd);
4526                         remsd = next;
4527                 }
4528         } else
4529 #endif
4530                 local_irq_enable();
4531 }
4532
4533 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4534 {
4535 #ifdef CONFIG_RPS
4536         return sd->rps_ipi_list != NULL;
4537 #else
4538         return false;
4539 #endif
4540 }
4541
4542 static int process_backlog(struct napi_struct *napi, int quota)
4543 {
4544         int work = 0;
4545         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4546
4547         /* Check if we have pending ipi, its better to send them now,
4548          * not waiting net_rx_action() end.
4549          */
4550         if (sd_has_rps_ipi_waiting(sd)) {
4551                 local_irq_disable();
4552                 net_rps_action_and_irq_enable(sd);
4553         }
4554
4555         napi->weight = weight_p;
4556         local_irq_disable();
4557         while (1) {
4558                 struct sk_buff *skb;
4559
4560                 while ((skb = __skb_dequeue(&sd->process_queue))) {
4561                         rcu_read_lock();
4562                         local_irq_enable();
4563                         __netif_receive_skb(skb);
4564                         rcu_read_unlock();
4565                         local_irq_disable();
4566                         input_queue_head_incr(sd);
4567                         if (++work >= quota) {
4568                                 local_irq_enable();
4569                                 return work;
4570                         }
4571                 }
4572
4573                 rps_lock(sd);
4574                 if (skb_queue_empty(&sd->input_pkt_queue)) {
4575                         /*
4576                          * Inline a custom version of __napi_complete().
4577                          * only current cpu owns and manipulates this napi,
4578                          * and NAPI_STATE_SCHED is the only possible flag set
4579                          * on backlog.
4580                          * We can use a plain write instead of clear_bit(),
4581                          * and we dont need an smp_mb() memory barrier.
4582                          */
4583                         napi->state = 0;
4584                         rps_unlock(sd);
4585
4586                         break;
4587                 }
4588
4589                 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4590                                            &sd->process_queue);
4591                 rps_unlock(sd);
4592         }
4593         local_irq_enable();
4594
4595         return work;
4596 }
4597
4598 /**
4599  * __napi_schedule - schedule for receive
4600  * @n: entry to schedule
4601  *
4602  * The entry's receive function will be scheduled to run.
4603  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
4604  */
4605 void __napi_schedule(struct napi_struct *n)
4606 {
4607         unsigned long flags;
4608
4609         local_irq_save(flags);
4610         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4611         local_irq_restore(flags);
4612 }
4613 EXPORT_SYMBOL(__napi_schedule);
4614
4615 /**
4616  * __napi_schedule_irqoff - schedule for receive
4617  * @n: entry to schedule
4618  *
4619  * Variant of __napi_schedule() assuming hard irqs are masked
4620  */
4621 void __napi_schedule_irqoff(struct napi_struct *n)
4622 {
4623         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4624 }
4625 EXPORT_SYMBOL(__napi_schedule_irqoff);
4626
4627 void __napi_complete(struct napi_struct *n)
4628 {
4629         BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4630
4631         list_del_init(&n->poll_list);
4632         smp_mb__before_atomic();
4633         clear_bit(NAPI_STATE_SCHED, &n->state);
4634 }
4635 EXPORT_SYMBOL(__napi_complete);
4636
4637 void napi_complete_done(struct napi_struct *n, int work_done)
4638 {
4639         unsigned long flags;
4640
4641         /*
4642          * don't let napi dequeue from the cpu poll list
4643          * just in case its running on a different cpu
4644          */
4645         if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4646                 return;
4647
4648         if (n->gro_list) {
4649                 unsigned long timeout = 0;
4650
4651                 if (work_done)
4652                         timeout = n->dev->gro_flush_timeout;
4653
4654                 if (timeout)
4655                         hrtimer_start(&n->timer, ns_to_ktime(timeout),
4656                                       HRTIMER_MODE_REL_PINNED);
4657                 else
4658                         napi_gro_flush(n, false);
4659         }
4660         if (likely(list_empty(&n->poll_list))) {
4661                 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4662         } else {
4663                 /* If n->poll_list is not empty, we need to mask irqs */
4664                 local_irq_save(flags);
4665                 __napi_complete(n);
4666                 local_irq_restore(flags);
4667         }
4668 }
4669 EXPORT_SYMBOL(napi_complete_done);
4670
4671 /* must be called under rcu_read_lock(), as we dont take a reference */
4672 struct napi_struct *napi_by_id(unsigned int napi_id)
4673 {
4674         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4675         struct napi_struct *napi;
4676
4677         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4678                 if (napi->napi_id == napi_id)
4679                         return napi;
4680
4681         return NULL;
4682 }
4683 EXPORT_SYMBOL_GPL(napi_by_id);
4684
4685 void napi_hash_add(struct napi_struct *napi)
4686 {
4687         if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) {
4688
4689                 spin_lock(&napi_hash_lock);
4690
4691                 /* 0 is not a valid id, we also skip an id that is taken
4692                  * we expect both events to be extremely rare
4693                  */
4694                 napi->napi_id = 0;
4695                 while (!napi->napi_id) {
4696                         napi->napi_id = ++napi_gen_id;
4697                         if (napi_by_id(napi->napi_id))
4698                                 napi->napi_id = 0;
4699                 }
4700
4701                 hlist_add_head_rcu(&napi->napi_hash_node,
4702                         &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4703
4704                 spin_unlock(&napi_hash_lock);
4705         }
4706 }
4707 EXPORT_SYMBOL_GPL(napi_hash_add);
4708
4709 /* Warning : caller is responsible to make sure rcu grace period
4710  * is respected before freeing memory containing @napi
4711  */
4712 void napi_hash_del(struct napi_struct *napi)
4713 {
4714         spin_lock(&napi_hash_lock);
4715
4716         if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state))
4717                 hlist_del_rcu(&napi->napi_hash_node);
4718
4719         spin_unlock(&napi_hash_lock);
4720 }
4721 EXPORT_SYMBOL_GPL(napi_hash_del);
4722
4723 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
4724 {
4725         struct napi_struct *napi;
4726
4727         napi = container_of(timer, struct napi_struct, timer);
4728         if (napi->gro_list)
4729                 napi_schedule(napi);
4730
4731         return HRTIMER_NORESTART;
4732 }
4733
4734 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4735                     int (*poll)(struct napi_struct *, int), int weight)
4736 {
4737         INIT_LIST_HEAD(&napi->poll_list);
4738         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
4739         napi->timer.function = napi_watchdog;
4740         napi->gro_count = 0;
4741         napi->gro_list = NULL;
4742         napi->skb = NULL;
4743         napi->poll = poll;
4744         if (weight > NAPI_POLL_WEIGHT)
4745                 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4746                             weight, dev->name);
4747         napi->weight = weight;
4748         list_add(&napi->dev_list, &dev->napi_list);
4749         napi->dev = dev;
4750 #ifdef CONFIG_NETPOLL
4751         spin_lock_init(&napi->poll_lock);
4752         napi->poll_owner = -1;
4753 #endif
4754         set_bit(NAPI_STATE_SCHED, &napi->state);
4755 }
4756 EXPORT_SYMBOL(netif_napi_add);
4757
4758 void napi_disable(struct napi_struct *n)
4759 {
4760         might_sleep();
4761         set_bit(NAPI_STATE_DISABLE, &n->state);
4762
4763         while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
4764                 msleep(1);
4765         while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
4766                 msleep(1);
4767
4768         hrtimer_cancel(&n->timer);
4769
4770         clear_bit(NAPI_STATE_DISABLE, &n->state);
4771 }
4772 EXPORT_SYMBOL(napi_disable);
4773
4774 void netif_napi_del(struct napi_struct *napi)
4775 {
4776         list_del_init(&napi->dev_list);
4777         napi_free_frags(napi);
4778
4779         kfree_skb_list(napi->gro_list);
4780         napi->gro_list = NULL;
4781         napi->gro_count = 0;
4782 }
4783 EXPORT_SYMBOL(netif_napi_del);
4784
4785 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
4786 {
4787         void *have;
4788         int work, weight;
4789
4790         list_del_init(&n->poll_list);
4791
4792         have = netpoll_poll_lock(n);
4793
4794         weight = n->weight;
4795
4796         /* This NAPI_STATE_SCHED test is for avoiding a race
4797          * with netpoll's poll_napi().  Only the entity which
4798          * obtains the lock and sees NAPI_STATE_SCHED set will
4799          * actually make the ->poll() call.  Therefore we avoid
4800          * accidentally calling ->poll() when NAPI is not scheduled.
4801          */
4802         work = 0;
4803         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4804                 work = n->poll(n, weight);
4805                 trace_napi_poll(n);
4806         }
4807
4808         WARN_ON_ONCE(work > weight);
4809
4810         if (likely(work < weight))
4811                 goto out_unlock;
4812
4813         /* Drivers must not modify the NAPI state if they
4814          * consume the entire weight.  In such cases this code
4815          * still "owns" the NAPI instance and therefore can
4816          * move the instance around on the list at-will.
4817          */
4818         if (unlikely(napi_disable_pending(n))) {
4819                 napi_complete(n);
4820                 goto out_unlock;
4821         }
4822
4823         if (n->gro_list) {
4824                 /* flush too old packets
4825                  * If HZ < 1000, flush all packets.
4826                  */
4827                 napi_gro_flush(n, HZ >= 1000);
4828         }
4829
4830         /* Some drivers may have called napi_schedule
4831          * prior to exhausting their budget.
4832          */
4833         if (unlikely(!list_empty(&n->poll_list))) {
4834                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
4835                              n->dev ? n->dev->name : "backlog");
4836                 goto out_unlock;
4837         }
4838
4839         list_add_tail(&n->poll_list, repoll);
4840
4841 out_unlock:
4842         netpoll_poll_unlock(have);
4843
4844         return work;
4845 }
4846
4847 static void net_rx_action(struct softirq_action *h)
4848 {
4849         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4850         unsigned long time_limit = jiffies + 2;
4851         int budget = netdev_budget;
4852         LIST_HEAD(list);
4853         LIST_HEAD(repoll);
4854
4855         local_irq_disable();
4856         list_splice_init(&sd->poll_list, &list);
4857         local_irq_enable();
4858
4859         for (;;) {
4860                 struct napi_struct *n;
4861
4862                 if (list_empty(&list)) {
4863                         if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
4864                                 return;
4865                         break;
4866                 }
4867
4868                 n = list_first_entry(&list, struct napi_struct, poll_list);
4869                 budget -= napi_poll(n, &repoll);
4870
4871                 /* If softirq window is exhausted then punt.
4872                  * Allow this to run for 2 jiffies since which will allow
4873                  * an average latency of 1.5/HZ.
4874                  */
4875                 if (unlikely(budget <= 0 ||
4876                              time_after_eq(jiffies, time_limit))) {
4877                         sd->time_squeeze++;
4878                         break;
4879                 }
4880         }
4881
4882         local_irq_disable();
4883
4884         list_splice_tail_init(&sd->poll_list, &list);
4885         list_splice_tail(&repoll, &list);
4886         list_splice(&list, &sd->poll_list);
4887         if (!list_empty(&sd->poll_list))
4888                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4889
4890         net_rps_action_and_irq_enable(sd);
4891 }
4892
4893 struct netdev_adjacent {
4894         struct net_device *dev;
4895
4896         /* upper master flag, there can only be one master device per list */
4897         bool master;
4898
4899         /* counter for the number of times this device was added to us */
4900         u16 ref_nr;
4901
4902         /* private field for the users */
4903         void *private;
4904
4905         struct list_head list;
4906         struct rcu_head rcu;
4907 };
4908
4909 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
4910                                                  struct list_head *adj_list)
4911 {
4912         struct netdev_adjacent *adj;
4913
4914         list_for_each_entry(adj, adj_list, list) {
4915                 if (adj->dev == adj_dev)
4916                         return adj;
4917         }
4918         return NULL;
4919 }
4920
4921 /**
4922  * netdev_has_upper_dev - Check if device is linked to an upper device
4923  * @dev: device
4924  * @upper_dev: upper device to check
4925  *
4926  * Find out if a device is linked to specified upper device and return true
4927  * in case it is. Note that this checks only immediate upper device,
4928  * not through a complete stack of devices. The caller must hold the RTNL lock.
4929  */
4930 bool netdev_has_upper_dev(struct net_device *dev,
4931                           struct net_device *upper_dev)
4932 {
4933         ASSERT_RTNL();
4934
4935         return __netdev_find_adj(upper_dev, &dev->all_adj_list.upper);
4936 }
4937 EXPORT_SYMBOL(netdev_has_upper_dev);
4938
4939 /**
4940  * netdev_has_any_upper_dev - Check if device is linked to some device
4941  * @dev: device
4942  *
4943  * Find out if a device is linked to an upper device and return true in case
4944  * it is. The caller must hold the RTNL lock.
4945  */
4946 static bool netdev_has_any_upper_dev(struct net_device *dev)
4947 {
4948         ASSERT_RTNL();
4949
4950         return !list_empty(&dev->all_adj_list.upper);
4951 }
4952
4953 /**
4954  * netdev_master_upper_dev_get - Get master upper device
4955  * @dev: device
4956  *
4957  * Find a master upper device and return pointer to it or NULL in case
4958  * it's not there. The caller must hold the RTNL lock.
4959  */
4960 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4961 {
4962         struct netdev_adjacent *upper;
4963
4964         ASSERT_RTNL();
4965
4966         if (list_empty(&dev->adj_list.upper))
4967                 return NULL;
4968
4969         upper = list_first_entry(&dev->adj_list.upper,
4970                                  struct netdev_adjacent, list);
4971         if (likely(upper->master))
4972                 return upper->dev;
4973         return NULL;
4974 }
4975 EXPORT_SYMBOL(netdev_master_upper_dev_get);
4976
4977 void *netdev_adjacent_get_private(struct list_head *adj_list)
4978 {
4979         struct netdev_adjacent *adj;
4980
4981         adj = list_entry(adj_list, struct netdev_adjacent, list);
4982
4983         return adj->private;
4984 }
4985 EXPORT_SYMBOL(netdev_adjacent_get_private);
4986
4987 /**
4988  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
4989  * @dev: device
4990  * @iter: list_head ** of the current position
4991  *
4992  * Gets the next device from the dev's upper list, starting from iter
4993  * position. The caller must hold RCU read lock.
4994  */
4995 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4996                                                  struct list_head **iter)
4997 {
4998         struct netdev_adjacent *upper;
4999
5000         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5001
5002         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5003
5004         if (&upper->list == &dev->adj_list.upper)
5005                 return NULL;
5006
5007         *iter = &upper->list;
5008
5009         return upper->dev;
5010 }
5011 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5012
5013 /**
5014  * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
5015  * @dev: device
5016  * @iter: list_head ** of the current position
5017  *
5018  * Gets the next device from the dev's upper list, starting from iter
5019  * position. The caller must hold RCU read lock.
5020  */
5021 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
5022                                                      struct list_head **iter)
5023 {
5024         struct netdev_adjacent *upper;
5025
5026         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5027
5028         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5029
5030         if (&upper->list == &dev->all_adj_list.upper)
5031                 return NULL;
5032
5033         *iter = &upper->list;
5034
5035         return upper->dev;
5036 }
5037 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
5038
5039 /**
5040  * netdev_lower_get_next_private - Get the next ->private from the
5041  *                                 lower neighbour list
5042  * @dev: device
5043  * @iter: list_head ** of the current position
5044  *
5045  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5046  * list, starting from iter position. The caller must hold either hold the
5047  * RTNL lock or its own locking that guarantees that the neighbour lower
5048  * list will remain unchanged.
5049  */
5050 void *netdev_lower_get_next_private(struct net_device *dev,
5051                                     struct list_head **iter)
5052 {
5053         struct netdev_adjacent *lower;
5054
5055         lower = list_entry(*iter, struct netdev_adjacent, list);
5056
5057         if (&lower->list == &dev->adj_list.lower)
5058                 return NULL;
5059
5060         *iter = lower->list.next;
5061
5062         return lower->private;
5063 }
5064 EXPORT_SYMBOL(netdev_lower_get_next_private);
5065
5066 /**
5067  * netdev_lower_get_next_private_rcu - Get the next ->private from the
5068  *                                     lower neighbour list, RCU
5069  *                                     variant
5070  * @dev: device
5071  * @iter: list_head ** of the current position
5072  *
5073  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5074  * list, starting from iter position. The caller must hold RCU read lock.
5075  */
5076 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5077                                         struct list_head **iter)
5078 {
5079         struct netdev_adjacent *lower;
5080
5081         WARN_ON_ONCE(!rcu_read_lock_held());
5082
5083         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5084
5085         if (&lower->list == &dev->adj_list.lower)
5086                 return NULL;
5087
5088         *iter = &lower->list;
5089
5090         return lower->private;
5091 }
5092 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5093
5094 /**
5095  * netdev_lower_get_next - Get the next device from the lower neighbour
5096  *                         list
5097  * @dev: device
5098  * @iter: list_head ** of the current position
5099  *
5100  * Gets the next netdev_adjacent from the dev's lower neighbour
5101  * list, starting from iter position. The caller must hold RTNL lock or
5102  * its own locking that guarantees that the neighbour lower
5103  * list will remain unchanged.
5104  */
5105 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5106 {
5107         struct netdev_adjacent *lower;
5108
5109         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
5110
5111         if (&lower->list == &dev->adj_list.lower)
5112                 return NULL;
5113
5114         *iter = &lower->list;
5115
5116         return lower->dev;
5117 }
5118 EXPORT_SYMBOL(netdev_lower_get_next);
5119
5120 /**
5121  * netdev_lower_get_first_private_rcu - Get the first ->private from the
5122  *                                     lower neighbour list, RCU
5123  *                                     variant
5124  * @dev: device
5125  *
5126  * Gets the first netdev_adjacent->private from the dev's lower neighbour
5127  * list. The caller must hold RCU read lock.
5128  */
5129 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5130 {
5131         struct netdev_adjacent *lower;
5132
5133         lower = list_first_or_null_rcu(&dev->adj_list.lower,
5134                         struct netdev_adjacent, list);
5135         if (lower)
5136                 return lower->private;
5137         return NULL;
5138 }
5139 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5140
5141 /**
5142  * netdev_master_upper_dev_get_rcu - Get master upper device
5143  * @dev: device
5144  *
5145  * Find a master upper device and return pointer to it or NULL in case
5146  * it's not there. The caller must hold the RCU read lock.
5147  */
5148 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5149 {
5150         struct netdev_adjacent *upper;
5151
5152         upper = list_first_or_null_rcu(&dev->adj_list.upper,
5153                                        struct netdev_adjacent, list);
5154         if (upper && likely(upper->master))
5155                 return upper->dev;
5156         return NULL;
5157 }
5158 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5159
5160 static int netdev_adjacent_sysfs_add(struct net_device *dev,
5161                               struct net_device *adj_dev,
5162                               struct list_head *dev_list)
5163 {
5164         char linkname[IFNAMSIZ+7];
5165         sprintf(linkname, dev_list == &dev->adj_list.upper ?
5166                 "upper_%s" : "lower_%s", adj_dev->name);
5167         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5168                                  linkname);
5169 }
5170 static void netdev_adjacent_sysfs_del(struct net_device *dev,
5171                                char *name,
5172                                struct list_head *dev_list)
5173 {
5174         char linkname[IFNAMSIZ+7];
5175         sprintf(linkname, dev_list == &dev->adj_list.upper ?
5176                 "upper_%s" : "lower_%s", name);
5177         sysfs_remove_link(&(dev->dev.kobj), linkname);
5178 }
5179
5180 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5181                                                  struct net_device *adj_dev,
5182                                                  struct list_head *dev_list)
5183 {
5184         return (dev_list == &dev->adj_list.upper ||
5185                 dev_list == &dev->adj_list.lower) &&
5186                 net_eq(dev_net(dev), dev_net(adj_dev));
5187 }
5188
5189 static int __netdev_adjacent_dev_insert(struct net_device *dev,
5190                                         struct net_device *adj_dev,
5191                                         struct list_head *dev_list,
5192                                         void *private, bool master)
5193 {
5194         struct netdev_adjacent *adj;
5195         int ret;
5196
5197         adj = __netdev_find_adj(adj_dev, dev_list);
5198
5199         if (adj) {
5200                 adj->ref_nr++;
5201                 return 0;
5202         }
5203
5204         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5205         if (!adj)
5206                 return -ENOMEM;
5207
5208         adj->dev = adj_dev;
5209         adj->master = master;
5210         adj->ref_nr = 1;
5211         adj->private = private;
5212         dev_hold(adj_dev);
5213
5214         pr_debug("dev_hold for %s, because of link added from %s to %s\n",
5215                  adj_dev->name, dev->name, adj_dev->name);
5216
5217         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
5218                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5219                 if (ret)
5220                         goto free_adj;
5221         }
5222
5223         /* Ensure that master link is always the first item in list. */
5224         if (master) {
5225                 ret = sysfs_create_link(&(dev->dev.kobj),
5226                                         &(adj_dev->dev.kobj), "master");
5227                 if (ret)
5228                         goto remove_symlinks;
5229
5230                 list_add_rcu(&adj->list, dev_list);
5231         } else {
5232                 list_add_tail_rcu(&adj->list, dev_list);
5233         }
5234
5235         return 0;
5236
5237 remove_symlinks:
5238         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5239                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5240 free_adj:
5241         kfree(adj);
5242         dev_put(adj_dev);
5243
5244         return ret;
5245 }
5246
5247 static void __netdev_adjacent_dev_remove(struct net_device *dev,
5248                                          struct net_device *adj_dev,
5249                                          struct list_head *dev_list)
5250 {
5251         struct netdev_adjacent *adj;
5252
5253         adj = __netdev_find_adj(adj_dev, dev_list);
5254
5255         if (!adj) {
5256                 pr_err("tried to remove device %s from %s\n",
5257                        dev->name, adj_dev->name);
5258                 BUG();
5259         }
5260
5261         if (adj->ref_nr > 1) {
5262                 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
5263                          adj->ref_nr-1);
5264                 adj->ref_nr--;
5265                 return;
5266         }
5267
5268         if (adj->master)
5269                 sysfs_remove_link(&(dev->dev.kobj), "master");
5270
5271         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5272                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5273
5274         list_del_rcu(&adj->list);
5275         pr_debug("dev_put for %s, because link removed from %s to %s\n",
5276                  adj_dev->name, dev->name, adj_dev->name);
5277         dev_put(adj_dev);
5278         kfree_rcu(adj, rcu);
5279 }
5280
5281 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5282                                             struct net_device *upper_dev,
5283                                             struct list_head *up_list,
5284                                             struct list_head *down_list,
5285                                             void *private, bool master)
5286 {
5287         int ret;
5288
5289         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
5290                                            master);
5291         if (ret)
5292                 return ret;
5293
5294         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
5295                                            false);
5296         if (ret) {
5297                 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5298                 return ret;
5299         }
5300
5301         return 0;
5302 }
5303
5304 static int __netdev_adjacent_dev_link(struct net_device *dev,
5305                                       struct net_device *upper_dev)
5306 {
5307         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5308                                                 &dev->all_adj_list.upper,
5309                                                 &upper_dev->all_adj_list.lower,
5310                                                 NULL, false);
5311 }
5312
5313 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5314                                                struct net_device *upper_dev,
5315                                                struct list_head *up_list,
5316                                                struct list_head *down_list)
5317 {
5318         __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5319         __netdev_adjacent_dev_remove(upper_dev, dev, down_list);
5320 }
5321
5322 static void __netdev_adjacent_dev_unlink(struct net_device *dev,
5323                                          struct net_device *upper_dev)
5324 {
5325         __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5326                                            &dev->all_adj_list.upper,
5327                                            &upper_dev->all_adj_list.lower);
5328 }
5329
5330 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5331                                                 struct net_device *upper_dev,
5332                                                 void *private, bool master)
5333 {
5334         int ret = __netdev_adjacent_dev_link(dev, upper_dev);
5335
5336         if (ret)
5337                 return ret;
5338
5339         ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
5340                                                &dev->adj_list.upper,
5341                                                &upper_dev->adj_list.lower,
5342                                                private, master);
5343         if (ret) {
5344                 __netdev_adjacent_dev_unlink(dev, upper_dev);
5345                 return ret;
5346         }
5347
5348         return 0;
5349 }
5350
5351 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5352                                                    struct net_device *upper_dev)
5353 {
5354         __netdev_adjacent_dev_unlink(dev, upper_dev);
5355         __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5356                                            &dev->adj_list.upper,
5357                                            &upper_dev->adj_list.lower);
5358 }
5359
5360 static int __netdev_upper_dev_link(struct net_device *dev,
5361                                    struct net_device *upper_dev, bool master,
5362                                    void *private)
5363 {
5364         struct netdev_notifier_changeupper_info changeupper_info;
5365         struct netdev_adjacent *i, *j, *to_i, *to_j;
5366         int ret = 0;
5367
5368         ASSERT_RTNL();
5369
5370         if (dev == upper_dev)
5371                 return -EBUSY;
5372
5373         /* To prevent loops, check if dev is not upper device to upper_dev. */
5374         if (__netdev_find_adj(dev, &upper_dev->all_adj_list.upper))
5375                 return -EBUSY;
5376
5377         if (__netdev_find_adj(upper_dev, &dev->adj_list.upper))
5378                 return -EEXIST;
5379
5380         if (master && netdev_master_upper_dev_get(dev))
5381                 return -EBUSY;
5382
5383         changeupper_info.upper_dev = upper_dev;
5384         changeupper_info.master = master;
5385         changeupper_info.linking = true;
5386
5387         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5388                                             &changeupper_info.info);
5389         ret = notifier_to_errno(ret);
5390         if (ret)
5391                 return ret;
5392
5393         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private,
5394                                                    master);
5395         if (ret)
5396                 return ret;
5397
5398         /* Now that we linked these devs, make all the upper_dev's
5399          * all_adj_list.upper visible to every dev's all_adj_list.lower an
5400          * versa, and don't forget the devices itself. All of these
5401          * links are non-neighbours.
5402          */
5403         list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5404                 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5405                         pr_debug("Interlinking %s with %s, non-neighbour\n",
5406                                  i->dev->name, j->dev->name);
5407                         ret = __netdev_adjacent_dev_link(i->dev, j->dev);
5408                         if (ret)
5409                                 goto rollback_mesh;
5410                 }
5411         }
5412
5413         /* add dev to every upper_dev's upper device */
5414         list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5415                 pr_debug("linking %s's upper device %s with %s\n",
5416                          upper_dev->name, i->dev->name, dev->name);
5417                 ret = __netdev_adjacent_dev_link(dev, i->dev);
5418                 if (ret)
5419                         goto rollback_upper_mesh;
5420         }
5421
5422         /* add upper_dev to every dev's lower device */
5423         list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5424                 pr_debug("linking %s's lower device %s with %s\n", dev->name,
5425                          i->dev->name, upper_dev->name);
5426                 ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
5427                 if (ret)
5428                         goto rollback_lower_mesh;
5429         }
5430
5431         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5432                                       &changeupper_info.info);
5433         return 0;
5434
5435 rollback_lower_mesh:
5436         to_i = i;
5437         list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5438                 if (i == to_i)
5439                         break;
5440                 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5441         }
5442
5443         i = NULL;
5444
5445 rollback_upper_mesh:
5446         to_i = i;
5447         list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5448                 if (i == to_i)
5449                         break;
5450                 __netdev_adjacent_dev_unlink(dev, i->dev);
5451         }
5452
5453         i = j = NULL;
5454
5455 rollback_mesh:
5456         to_i = i;
5457         to_j = j;
5458         list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5459                 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5460                         if (i == to_i && j == to_j)
5461                                 break;
5462                         __netdev_adjacent_dev_unlink(i->dev, j->dev);
5463                 }
5464                 if (i == to_i)
5465                         break;
5466         }
5467
5468         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5469
5470         return ret;
5471 }
5472
5473 /**
5474  * netdev_upper_dev_link - Add a link to the upper device
5475  * @dev: device
5476  * @upper_dev: new upper device
5477  *
5478  * Adds a link to device which is upper to this one. The caller must hold
5479  * the RTNL lock. On a failure a negative errno code is returned.
5480  * On success the reference counts are adjusted and the function
5481  * returns zero.
5482  */
5483 int netdev_upper_dev_link(struct net_device *dev,
5484                           struct net_device *upper_dev)
5485 {
5486         return __netdev_upper_dev_link(dev, upper_dev, false, NULL);
5487 }
5488 EXPORT_SYMBOL(netdev_upper_dev_link);
5489
5490 /**
5491  * netdev_master_upper_dev_link - Add a master link to the upper device
5492  * @dev: device
5493  * @upper_dev: new upper device
5494  *
5495  * Adds a link to device which is upper to this one. In this case, only
5496  * one master upper device can be linked, although other non-master devices
5497  * might be linked as well. The caller must hold the RTNL lock.
5498  * On a failure a negative errno code is returned. On success the reference
5499  * counts are adjusted and the function returns zero.
5500  */
5501 int netdev_master_upper_dev_link(struct net_device *dev,
5502                                  struct net_device *upper_dev)
5503 {
5504         return __netdev_upper_dev_link(dev, upper_dev, true, NULL);
5505 }
5506 EXPORT_SYMBOL(netdev_master_upper_dev_link);
5507
5508 int netdev_master_upper_dev_link_private(struct net_device *dev,
5509                                          struct net_device *upper_dev,
5510                                          void *private)
5511 {
5512         return __netdev_upper_dev_link(dev, upper_dev, true, private);
5513 }
5514 EXPORT_SYMBOL(netdev_master_upper_dev_link_private);
5515
5516 /**
5517  * netdev_upper_dev_unlink - Removes a link to upper device
5518  * @dev: device
5519  * @upper_dev: new upper device
5520  *
5521  * Removes a link to device which is upper to this one. The caller must hold
5522  * the RTNL lock.
5523  */
5524 void netdev_upper_dev_unlink(struct net_device *dev,
5525                              struct net_device *upper_dev)
5526 {
5527         struct netdev_notifier_changeupper_info changeupper_info;
5528         struct netdev_adjacent *i, *j;
5529         ASSERT_RTNL();
5530
5531         changeupper_info.upper_dev = upper_dev;
5532         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
5533         changeupper_info.linking = false;
5534
5535         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5536                                       &changeupper_info.info);
5537
5538         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5539
5540         /* Here is the tricky part. We must remove all dev's lower
5541          * devices from all upper_dev's upper devices and vice
5542          * versa, to maintain the graph relationship.
5543          */
5544         list_for_each_entry(i, &dev->all_adj_list.lower, list)
5545                 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5546                         __netdev_adjacent_dev_unlink(i->dev, j->dev);
5547
5548         /* remove also the devices itself from lower/upper device
5549          * list
5550          */
5551         list_for_each_entry(i, &dev->all_adj_list.lower, list)
5552                 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5553
5554         list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5555                 __netdev_adjacent_dev_unlink(dev, i->dev);
5556
5557         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5558                                       &changeupper_info.info);
5559 }
5560 EXPORT_SYMBOL(netdev_upper_dev_unlink);
5561
5562 /**
5563  * netdev_bonding_info_change - Dispatch event about slave change
5564  * @dev: device
5565  * @bonding_info: info to dispatch
5566  *
5567  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
5568  * The caller must hold the RTNL lock.
5569  */
5570 void netdev_bonding_info_change(struct net_device *dev,
5571                                 struct netdev_bonding_info *bonding_info)
5572 {
5573         struct netdev_notifier_bonding_info     info;
5574
5575         memcpy(&info.bonding_info, bonding_info,
5576                sizeof(struct netdev_bonding_info));
5577         call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
5578                                       &info.info);
5579 }
5580 EXPORT_SYMBOL(netdev_bonding_info_change);
5581
5582 static void netdev_adjacent_add_links(struct net_device *dev)
5583 {
5584         struct netdev_adjacent *iter;
5585
5586         struct net *net = dev_net(dev);
5587
5588         list_for_each_entry(iter, &dev->adj_list.upper, list) {
5589                 if (!net_eq(net,dev_net(iter->dev)))
5590                         continue;
5591                 netdev_adjacent_sysfs_add(iter->dev, dev,
5592                                           &iter->dev->adj_list.lower);
5593                 netdev_adjacent_sysfs_add(dev, iter->dev,
5594                                           &dev->adj_list.upper);
5595         }
5596
5597         list_for_each_entry(iter, &dev->adj_list.lower, list) {
5598                 if (!net_eq(net,dev_net(iter->dev)))
5599                         continue;
5600                 netdev_adjacent_sysfs_add(iter->dev, dev,
5601                                           &iter->dev->adj_list.upper);
5602                 netdev_adjacent_sysfs_add(dev, iter->dev,
5603                                           &dev->adj_list.lower);
5604         }
5605 }
5606
5607 static void netdev_adjacent_del_links(struct net_device *dev)
5608 {
5609         struct netdev_adjacent *iter;
5610
5611         struct net *net = dev_net(dev);
5612
5613         list_for_each_entry(iter, &dev->adj_list.upper, list) {
5614                 if (!net_eq(net,dev_net(iter->dev)))
5615                         continue;
5616                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5617                                           &iter->dev->adj_list.lower);
5618                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5619                                           &dev->adj_list.upper);
5620         }
5621
5622         list_for_each_entry(iter, &dev->adj_list.lower, list) {
5623                 if (!net_eq(net,dev_net(iter->dev)))
5624                         continue;
5625                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5626                                           &iter->dev->adj_list.upper);
5627                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5628                                           &dev->adj_list.lower);
5629         }
5630 }
5631
5632 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
5633 {
5634         struct netdev_adjacent *iter;
5635
5636         struct net *net = dev_net(dev);
5637
5638         list_for_each_entry(iter, &dev->adj_list.upper, list) {
5639                 if (!net_eq(net,dev_net(iter->dev)))
5640                         continue;
5641                 netdev_adjacent_sysfs_del(iter->dev, oldname,
5642                                           &iter->dev->adj_list.lower);
5643                 netdev_adjacent_sysfs_add(iter->dev, dev,
5644                                           &iter->dev->adj_list.lower);
5645         }
5646
5647         list_for_each_entry(iter, &dev->adj_list.lower, list) {
5648                 if (!net_eq(net,dev_net(iter->dev)))
5649                         continue;
5650                 netdev_adjacent_sysfs_del(iter->dev, oldname,
5651                                           &iter->dev->adj_list.upper);
5652                 netdev_adjacent_sysfs_add(iter->dev, dev,
5653                                           &iter->dev->adj_list.upper);
5654         }
5655 }
5656
5657 void *netdev_lower_dev_get_private(struct net_device *dev,
5658                                    struct net_device *lower_dev)
5659 {
5660         struct netdev_adjacent *lower;
5661
5662         if (!lower_dev)
5663                 return NULL;
5664         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
5665         if (!lower)
5666                 return NULL;
5667
5668         return lower->private;
5669 }
5670 EXPORT_SYMBOL(netdev_lower_dev_get_private);
5671
5672
5673 int dev_get_nest_level(struct net_device *dev,
5674                        bool (*type_check)(struct net_device *dev))
5675 {
5676         struct net_device *lower = NULL;
5677         struct list_head *iter;
5678         int max_nest = -1;
5679         int nest;
5680
5681         ASSERT_RTNL();
5682
5683         netdev_for_each_lower_dev(dev, lower, iter) {
5684                 nest = dev_get_nest_level(lower, type_check);
5685                 if (max_nest < nest)
5686                         max_nest = nest;
5687         }
5688
5689         if (type_check(dev))
5690                 max_nest++;
5691
5692         return max_nest;
5693 }
5694 EXPORT_SYMBOL(dev_get_nest_level);
5695
5696 static void dev_change_rx_flags(struct net_device *dev, int flags)
5697 {
5698         const struct net_device_ops *ops = dev->netdev_ops;
5699
5700         if (ops->ndo_change_rx_flags)
5701                 ops->ndo_change_rx_flags(dev, flags);
5702 }
5703
5704 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
5705 {
5706         unsigned int old_flags = dev->flags;
5707         kuid_t uid;
5708         kgid_t gid;
5709
5710         ASSERT_RTNL();
5711
5712         dev->flags |= IFF_PROMISC;
5713         dev->promiscuity += inc;
5714         if (dev->promiscuity == 0) {
5715                 /*
5716                  * Avoid overflow.
5717                  * If inc causes overflow, untouch promisc and return error.
5718                  */
5719                 if (inc < 0)
5720                         dev->flags &= ~IFF_PROMISC;
5721                 else {
5722                         dev->promiscuity -= inc;
5723                         pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
5724                                 dev->name);
5725                         return -EOVERFLOW;
5726                 }
5727         }
5728         if (dev->flags != old_flags) {
5729                 pr_info("device %s %s promiscuous mode\n",
5730                         dev->name,
5731                         dev->flags & IFF_PROMISC ? "entered" : "left");
5732                 if (audit_enabled) {
5733                         current_uid_gid(&uid, &gid);
5734                         audit_log(current->audit_context, GFP_ATOMIC,
5735                                 AUDIT_ANOM_PROMISCUOUS,
5736                                 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
5737                                 dev->name, (dev->flags & IFF_PROMISC),
5738                                 (old_flags & IFF_PROMISC),
5739                                 from_kuid(&init_user_ns, audit_get_loginuid(current)),
5740                                 from_kuid(&init_user_ns, uid),
5741                                 from_kgid(&init_user_ns, gid),
5742                                 audit_get_sessionid(current));
5743                 }
5744
5745                 dev_change_rx_flags(dev, IFF_PROMISC);
5746         }
5747         if (notify)
5748                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
5749         return 0;
5750 }
5751
5752 /**
5753  *      dev_set_promiscuity     - update promiscuity count on a device
5754  *      @dev: device
5755  *      @inc: modifier
5756  *
5757  *      Add or remove promiscuity from a device. While the count in the device
5758  *      remains above zero the interface remains promiscuous. Once it hits zero
5759  *      the device reverts back to normal filtering operation. A negative inc
5760  *      value is used to drop promiscuity on the device.
5761  *      Return 0 if successful or a negative errno code on error.
5762  */
5763 int dev_set_promiscuity(struct net_device *dev, int inc)
5764 {
5765         unsigned int old_flags = dev->flags;
5766         int err;
5767
5768         err = __dev_set_promiscuity(dev, inc, true);
5769         if (err < 0)
5770                 return err;
5771         if (dev->flags != old_flags)
5772                 dev_set_rx_mode(dev);
5773         return err;
5774 }
5775 EXPORT_SYMBOL(dev_set_promiscuity);
5776
5777 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
5778 {
5779         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
5780
5781         ASSERT_RTNL();
5782
5783         dev->flags |= IFF_ALLMULTI;
5784         dev->allmulti += inc;
5785         if (dev->allmulti == 0) {
5786                 /*
5787                  * Avoid overflow.
5788                  * If inc causes overflow, untouch allmulti and return error.
5789                  */
5790                 if (inc < 0)
5791                         dev->flags &= ~IFF_ALLMULTI;
5792                 else {
5793                         dev->allmulti -= inc;
5794                         pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
5795                                 dev->name);
5796                         return -EOVERFLOW;
5797                 }
5798         }
5799         if (dev->flags ^ old_flags) {
5800                 dev_change_rx_flags(dev, IFF_ALLMULTI);
5801                 dev_set_rx_mode(dev);
5802                 if (notify)
5803                         __dev_notify_flags(dev, old_flags,
5804                                            dev->gflags ^ old_gflags);
5805         }
5806         return 0;
5807 }
5808
5809 /**
5810  *      dev_set_allmulti        - update allmulti count on a device
5811  *      @dev: device
5812  *      @inc: modifier
5813  *
5814  *      Add or remove reception of all multicast frames to a device. While the
5815  *      count in the device remains above zero the interface remains listening
5816  *      to all interfaces. Once it hits zero the device reverts back to normal
5817  *      filtering operation. A negative @inc value is used to drop the counter
5818  *      when releasing a resource needing all multicasts.
5819  *      Return 0 if successful or a negative errno code on error.
5820  */
5821
5822 int dev_set_allmulti(struct net_device *dev, int inc)
5823 {
5824         return __dev_set_allmulti(dev, inc, true);
5825 }
5826 EXPORT_SYMBOL(dev_set_allmulti);
5827
5828 /*
5829  *      Upload unicast and multicast address lists to device and
5830  *      configure RX filtering. When the device doesn't support unicast
5831  *      filtering it is put in promiscuous mode while unicast addresses
5832  *      are present.
5833  */
5834 void __dev_set_rx_mode(struct net_device *dev)
5835 {
5836         const struct net_device_ops *ops = dev->netdev_ops;
5837
5838         /* dev_open will call this function so the list will stay sane. */
5839         if (!(dev->flags&IFF_UP))
5840                 return;
5841
5842         if (!netif_device_present(dev))
5843                 return;
5844
5845         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
5846                 /* Unicast addresses changes may only happen under the rtnl,
5847                  * therefore calling __dev_set_promiscuity here is safe.
5848                  */
5849                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
5850                         __dev_set_promiscuity(dev, 1, false);
5851                         dev->uc_promisc = true;
5852                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
5853                         __dev_set_promiscuity(dev, -1, false);
5854                         dev->uc_promisc = false;
5855                 }
5856         }
5857
5858         if (ops->ndo_set_rx_mode)
5859                 ops->ndo_set_rx_mode(dev);
5860 }
5861
5862 void dev_set_rx_mode(struct net_device *dev)
5863 {
5864         netif_addr_lock_bh(dev);
5865         __dev_set_rx_mode(dev);
5866         netif_addr_unlock_bh(dev);
5867 }
5868
5869 /**
5870  *      dev_get_flags - get flags reported to userspace
5871  *      @dev: device
5872  *
5873  *      Get the combination of flag bits exported through APIs to userspace.
5874  */
5875 unsigned int dev_get_flags(const struct net_device *dev)
5876 {
5877         unsigned int flags;
5878
5879         flags = (dev->flags & ~(IFF_PROMISC |
5880                                 IFF_ALLMULTI |
5881                                 IFF_RUNNING |
5882                                 IFF_LOWER_UP |
5883                                 IFF_DORMANT)) |
5884                 (dev->gflags & (IFF_PROMISC |
5885                                 IFF_ALLMULTI));
5886
5887         if (netif_running(dev)) {
5888                 if (netif_oper_up(dev))
5889                         flags |= IFF_RUNNING;
5890                 if (netif_carrier_ok(dev))
5891                         flags |= IFF_LOWER_UP;
5892                 if (netif_dormant(dev))
5893                         flags |= IFF_DORMANT;
5894         }
5895
5896         return flags;
5897 }
5898 EXPORT_SYMBOL(dev_get_flags);
5899
5900 int __dev_change_flags(struct net_device *dev, unsigned int flags)
5901 {
5902         unsigned int old_flags = dev->flags;
5903         int ret;
5904
5905         ASSERT_RTNL();
5906
5907         /*
5908          *      Set the flags on our device.
5909          */
5910
5911         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
5912                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
5913                                IFF_AUTOMEDIA)) |
5914                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
5915                                     IFF_ALLMULTI));
5916
5917         /*
5918          *      Load in the correct multicast list now the flags have changed.
5919          */
5920
5921         if ((old_flags ^ flags) & IFF_MULTICAST)
5922                 dev_change_rx_flags(dev, IFF_MULTICAST);
5923
5924         dev_set_rx_mode(dev);
5925
5926         /*
5927          *      Have we downed the interface. We handle IFF_UP ourselves
5928          *      according to user attempts to set it, rather than blindly
5929          *      setting it.
5930          */
5931
5932         ret = 0;
5933         if ((old_flags ^ flags) & IFF_UP)
5934                 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
5935
5936         if ((flags ^ dev->gflags) & IFF_PROMISC) {
5937                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
5938                 unsigned int old_flags = dev->flags;
5939
5940                 dev->gflags ^= IFF_PROMISC;
5941
5942                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
5943                         if (dev->flags != old_flags)
5944                                 dev_set_rx_mode(dev);
5945         }
5946
5947         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
5948            is important. Some (broken) drivers set IFF_PROMISC, when
5949            IFF_ALLMULTI is requested not asking us and not reporting.
5950          */
5951         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
5952                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
5953
5954                 dev->gflags ^= IFF_ALLMULTI;
5955                 __dev_set_allmulti(dev, inc, false);
5956         }
5957
5958         return ret;
5959 }
5960
5961 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
5962                         unsigned int gchanges)
5963 {
5964         unsigned int changes = dev->flags ^ old_flags;
5965
5966         if (gchanges)
5967                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
5968
5969         if (changes & IFF_UP) {
5970                 if (dev->flags & IFF_UP)
5971                         call_netdevice_notifiers(NETDEV_UP, dev);
5972                 else
5973                         call_netdevice_notifiers(NETDEV_DOWN, dev);
5974         }
5975
5976         if (dev->flags & IFF_UP &&
5977             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
5978                 struct netdev_notifier_change_info change_info;
5979
5980                 change_info.flags_changed = changes;
5981                 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
5982                                               &change_info.info);
5983         }
5984 }
5985
5986 /**
5987  *      dev_change_flags - change device settings
5988  *      @dev: device
5989  *      @flags: device state flags
5990  *
5991  *      Change settings on device based state flags. The flags are
5992  *      in the userspace exported format.
5993  */
5994 int dev_change_flags(struct net_device *dev, unsigned int flags)
5995 {
5996         int ret;
5997         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
5998
5999         ret = __dev_change_flags(dev, flags);
6000         if (ret < 0)
6001                 return ret;
6002
6003         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
6004         __dev_notify_flags(dev, old_flags, changes);
6005         return ret;
6006 }
6007 EXPORT_SYMBOL(dev_change_flags);
6008
6009 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
6010 {
6011         const struct net_device_ops *ops = dev->netdev_ops;
6012
6013         if (ops->ndo_change_mtu)
6014                 return ops->ndo_change_mtu(dev, new_mtu);
6015
6016         dev->mtu = new_mtu;
6017         return 0;
6018 }
6019
6020 /**
6021  *      dev_set_mtu - Change maximum transfer unit
6022  *      @dev: device
6023  *      @new_mtu: new transfer unit
6024  *
6025  *      Change the maximum transfer size of the network device.
6026  */
6027 int dev_set_mtu(struct net_device *dev, int new_mtu)
6028 {
6029         int err, orig_mtu;
6030
6031         if (new_mtu == dev->mtu)
6032                 return 0;
6033
6034         /*      MTU must be positive.    */
6035         if (new_mtu < 0)
6036                 return -EINVAL;
6037
6038         if (!netif_device_present(dev))
6039                 return -ENODEV;
6040
6041         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6042         err = notifier_to_errno(err);
6043         if (err)
6044                 return err;
6045
6046         orig_mtu = dev->mtu;
6047         err = __dev_set_mtu(dev, new_mtu);
6048
6049         if (!err) {
6050                 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6051                 err = notifier_to_errno(err);
6052                 if (err) {
6053                         /* setting mtu back and notifying everyone again,
6054                          * so that they have a chance to revert changes.
6055                          */
6056                         __dev_set_mtu(dev, orig_mtu);
6057                         call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6058                 }
6059         }
6060         return err;
6061 }
6062 EXPORT_SYMBOL(dev_set_mtu);
6063
6064 /**
6065  *      dev_set_group - Change group this device belongs to
6066  *      @dev: device
6067  *      @new_group: group this device should belong to
6068  */
6069 void dev_set_group(struct net_device *dev, int new_group)
6070 {
6071         dev->group = new_group;
6072 }
6073 EXPORT_SYMBOL(dev_set_group);
6074
6075 /**
6076  *      dev_set_mac_address - Change Media Access Control Address
6077  *      @dev: device
6078  *      @sa: new address
6079  *
6080  *      Change the hardware (MAC) address of the device
6081  */
6082 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6083 {
6084         const struct net_device_ops *ops = dev->netdev_ops;
6085         int err;
6086
6087         if (!ops->ndo_set_mac_address)
6088                 return -EOPNOTSUPP;
6089         if (sa->sa_family != dev->type)
6090                 return -EINVAL;
6091         if (!netif_device_present(dev))
6092                 return -ENODEV;
6093         err = ops->ndo_set_mac_address(dev, sa);
6094         if (err)
6095                 return err;
6096         dev->addr_assign_type = NET_ADDR_SET;
6097         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
6098         add_device_randomness(dev->dev_addr, dev->addr_len);
6099         return 0;
6100 }
6101 EXPORT_SYMBOL(dev_set_mac_address);
6102
6103 /**
6104  *      dev_change_carrier - Change device carrier
6105  *      @dev: device
6106  *      @new_carrier: new value
6107  *
6108  *      Change device carrier
6109  */
6110 int dev_change_carrier(struct net_device *dev, bool new_carrier)
6111 {
6112         const struct net_device_ops *ops = dev->netdev_ops;
6113
6114         if (!ops->ndo_change_carrier)
6115                 return -EOPNOTSUPP;
6116         if (!netif_device_present(dev))
6117                 return -ENODEV;
6118         return ops->ndo_change_carrier(dev, new_carrier);
6119 }
6120 EXPORT_SYMBOL(dev_change_carrier);
6121
6122 /**
6123  *      dev_get_phys_port_id - Get device physical port ID
6124  *      @dev: device
6125  *      @ppid: port ID
6126  *
6127  *      Get device physical port ID
6128  */
6129 int dev_get_phys_port_id(struct net_device *dev,
6130                          struct netdev_phys_item_id *ppid)
6131 {
6132         const struct net_device_ops *ops = dev->netdev_ops;
6133
6134         if (!ops->ndo_get_phys_port_id)
6135                 return -EOPNOTSUPP;
6136         return ops->ndo_get_phys_port_id(dev, ppid);
6137 }
6138 EXPORT_SYMBOL(dev_get_phys_port_id);
6139
6140 /**
6141  *      dev_get_phys_port_name - Get device physical port name
6142  *      @dev: device
6143  *      @name: port name
6144  *
6145  *      Get device physical port name
6146  */
6147 int dev_get_phys_port_name(struct net_device *dev,
6148                            char *name, size_t len)
6149 {
6150         const struct net_device_ops *ops = dev->netdev_ops;
6151
6152         if (!ops->ndo_get_phys_port_name)
6153                 return -EOPNOTSUPP;
6154         return ops->ndo_get_phys_port_name(dev, name, len);
6155 }
6156 EXPORT_SYMBOL(dev_get_phys_port_name);
6157
6158 /**
6159  *      dev_change_proto_down - update protocol port state information
6160  *      @dev: device
6161  *      @proto_down: new value
6162  *
6163  *      This info can be used by switch drivers to set the phys state of the
6164  *      port.
6165  */
6166 int dev_change_proto_down(struct net_device *dev, bool proto_down)
6167 {
6168         const struct net_device_ops *ops = dev->netdev_ops;
6169
6170         if (!ops->ndo_change_proto_down)
6171                 return -EOPNOTSUPP;
6172         if (!netif_device_present(dev))
6173                 return -ENODEV;
6174         return ops->ndo_change_proto_down(dev, proto_down);
6175 }
6176 EXPORT_SYMBOL(dev_change_proto_down);
6177
6178 /**
6179  *      dev_new_index   -       allocate an ifindex
6180  *      @net: the applicable net namespace
6181  *
6182  *      Returns a suitable unique value for a new device interface
6183  *      number.  The caller must hold the rtnl semaphore or the
6184  *      dev_base_lock to be sure it remains unique.
6185  */
6186 static int dev_new_index(struct net *net)
6187 {
6188         int ifindex = net->ifindex;
6189         for (;;) {
6190                 if (++ifindex <= 0)
6191                         ifindex = 1;
6192                 if (!__dev_get_by_index(net, ifindex))
6193                         return net->ifindex = ifindex;
6194         }
6195 }
6196
6197 /* Delayed registration/unregisteration */
6198 static LIST_HEAD(net_todo_list);
6199 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
6200
6201 static void net_set_todo(struct net_device *dev)
6202 {
6203         list_add_tail(&dev->todo_list, &net_todo_list);
6204         dev_net(dev)->dev_unreg_count++;
6205 }
6206
6207 static void rollback_registered_many(struct list_head *head)
6208 {
6209         struct net_device *dev, *tmp;
6210         LIST_HEAD(close_head);
6211
6212         BUG_ON(dev_boot_phase);
6213         ASSERT_RTNL();
6214
6215         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
6216                 /* Some devices call without registering
6217                  * for initialization unwind. Remove those
6218                  * devices and proceed with the remaining.
6219                  */
6220                 if (dev->reg_state == NETREG_UNINITIALIZED) {
6221                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6222                                  dev->name, dev);
6223
6224                         WARN_ON(1);
6225                         list_del(&dev->unreg_list);
6226                         continue;
6227                 }
6228                 dev->dismantle = true;
6229                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
6230         }
6231
6232         /* If device is running, close it first. */
6233         list_for_each_entry(dev, head, unreg_list)
6234                 list_add_tail(&dev->close_list, &close_head);
6235         dev_close_many(&close_head, true);
6236
6237         list_for_each_entry(dev, head, unreg_list) {
6238                 /* And unlink it from device chain. */
6239                 unlist_netdevice(dev);
6240
6241                 dev->reg_state = NETREG_UNREGISTERING;
6242                 on_each_cpu(flush_backlog, dev, 1);
6243         }
6244
6245         synchronize_net();
6246
6247         list_for_each_entry(dev, head, unreg_list) {
6248                 struct sk_buff *skb = NULL;
6249
6250                 /* Shutdown queueing discipline. */
6251                 dev_shutdown(dev);
6252
6253
6254                 /* Notify protocols, that we are about to destroy
6255                    this device. They should clean all the things.
6256                 */
6257                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6258
6259                 if (!dev->rtnl_link_ops ||
6260                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6261                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6262                                                      GFP_KERNEL);
6263
6264                 /*
6265                  *      Flush the unicast and multicast chains
6266                  */
6267                 dev_uc_flush(dev);
6268                 dev_mc_flush(dev);
6269
6270                 if (dev->netdev_ops->ndo_uninit)
6271                         dev->netdev_ops->ndo_uninit(dev);
6272
6273                 if (skb)
6274                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
6275
6276                 /* Notifier chain MUST detach us all upper devices. */
6277                 WARN_ON(netdev_has_any_upper_dev(dev));
6278
6279                 /* Remove entries from kobject tree */
6280                 netdev_unregister_kobject(dev);
6281 #ifdef CONFIG_XPS
6282                 /* Remove XPS queueing entries */
6283                 netif_reset_xps_queues_gt(dev, 0);
6284 #endif
6285         }
6286
6287         synchronize_net();
6288
6289         list_for_each_entry(dev, head, unreg_list)
6290                 dev_put(dev);
6291 }
6292
6293 static void rollback_registered(struct net_device *dev)
6294 {
6295         LIST_HEAD(single);
6296
6297         list_add(&dev->unreg_list, &single);
6298         rollback_registered_many(&single);
6299         list_del(&single);
6300 }
6301
6302 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
6303         struct net_device *upper, netdev_features_t features)
6304 {
6305         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6306         netdev_features_t feature;
6307         int feature_bit;
6308
6309         for_each_netdev_feature(&upper_disables, feature_bit) {
6310                 feature = __NETIF_F_BIT(feature_bit);
6311                 if (!(upper->wanted_features & feature)
6312                     && (features & feature)) {
6313                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
6314                                    &feature, upper->name);
6315                         features &= ~feature;
6316                 }
6317         }
6318
6319         return features;
6320 }
6321
6322 static void netdev_sync_lower_features(struct net_device *upper,
6323         struct net_device *lower, netdev_features_t features)
6324 {
6325         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6326         netdev_features_t feature;
6327         int feature_bit;
6328
6329         for_each_netdev_feature(&upper_disables, feature_bit) {
6330                 feature = __NETIF_F_BIT(feature_bit);
6331                 if (!(features & feature) && (lower->features & feature)) {
6332                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
6333                                    &feature, lower->name);
6334                         lower->wanted_features &= ~feature;
6335                         netdev_update_features(lower);
6336
6337                         if (unlikely(lower->features & feature))
6338                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
6339                                             &feature, lower->name);
6340                 }
6341         }
6342 }
6343
6344 static netdev_features_t netdev_fix_features(struct net_device *dev,
6345         netdev_features_t features)
6346 {
6347         /* Fix illegal checksum combinations */
6348         if ((features & NETIF_F_HW_CSUM) &&
6349             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6350                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
6351                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6352         }
6353
6354         /* TSO requires that SG is present as well. */
6355         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6356                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
6357                 features &= ~NETIF_F_ALL_TSO;
6358         }
6359
6360         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6361                                         !(features & NETIF_F_IP_CSUM)) {
6362                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6363                 features &= ~NETIF_F_TSO;
6364                 features &= ~NETIF_F_TSO_ECN;
6365         }
6366
6367         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6368                                          !(features & NETIF_F_IPV6_CSUM)) {
6369                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6370                 features &= ~NETIF_F_TSO6;
6371         }
6372
6373         /* TSO ECN requires that TSO is present as well. */
6374         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6375                 features &= ~NETIF_F_TSO_ECN;
6376
6377         /* Software GSO depends on SG. */
6378         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6379                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
6380                 features &= ~NETIF_F_GSO;
6381         }
6382
6383         /* UFO needs SG and checksumming */
6384         if (features & NETIF_F_UFO) {
6385                 /* maybe split UFO into V4 and V6? */
6386                 if (!((features & NETIF_F_GEN_CSUM) ||
6387                     (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
6388                             == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6389                         netdev_dbg(dev,
6390                                 "Dropping NETIF_F_UFO since no checksum offload features.\n");
6391                         features &= ~NETIF_F_UFO;
6392                 }
6393
6394                 if (!(features & NETIF_F_SG)) {
6395                         netdev_dbg(dev,
6396                                 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
6397                         features &= ~NETIF_F_UFO;
6398                 }
6399         }
6400
6401 #ifdef CONFIG_NET_RX_BUSY_POLL
6402         if (dev->netdev_ops->ndo_busy_poll)
6403                 features |= NETIF_F_BUSY_POLL;
6404         else
6405 #endif
6406                 features &= ~NETIF_F_BUSY_POLL;
6407
6408         return features;
6409 }
6410
6411 int __netdev_update_features(struct net_device *dev)
6412 {
6413         struct net_device *upper, *lower;
6414         netdev_features_t features;
6415         struct list_head *iter;
6416         int err = -1;
6417
6418         ASSERT_RTNL();
6419
6420         features = netdev_get_wanted_features(dev);
6421
6422         if (dev->netdev_ops->ndo_fix_features)
6423                 features = dev->netdev_ops->ndo_fix_features(dev, features);
6424
6425         /* driver might be less strict about feature dependencies */
6426         features = netdev_fix_features(dev, features);
6427
6428         /* some features can't be enabled if they're off an an upper device */
6429         netdev_for_each_upper_dev_rcu(dev, upper, iter)
6430                 features = netdev_sync_upper_features(dev, upper, features);
6431
6432         if (dev->features == features)
6433                 goto sync_lower;
6434
6435         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6436                 &dev->features, &features);
6437
6438         if (dev->netdev_ops->ndo_set_features)
6439                 err = dev->netdev_ops->ndo_set_features(dev, features);
6440         else
6441                 err = 0;
6442
6443         if (unlikely(err < 0)) {
6444                 netdev_err(dev,
6445                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
6446                         err, &features, &dev->features);
6447                 /* return non-0 since some features might have changed and
6448                  * it's better to fire a spurious notification than miss it
6449                  */
6450                 return -1;
6451         }
6452
6453 sync_lower:
6454         /* some features must be disabled on lower devices when disabled
6455          * on an upper device (think: bonding master or bridge)
6456          */
6457         netdev_for_each_lower_dev(dev, lower, iter)
6458                 netdev_sync_lower_features(dev, lower, features);
6459
6460         if (!err)
6461                 dev->features = features;
6462
6463         return err < 0 ? 0 : 1;
6464 }
6465
6466 /**
6467  *      netdev_update_features - recalculate device features
6468  *      @dev: the device to check
6469  *
6470  *      Recalculate dev->features set and send notifications if it
6471  *      has changed. Should be called after driver or hardware dependent
6472  *      conditions might have changed that influence the features.
6473  */
6474 void netdev_update_features(struct net_device *dev)
6475 {
6476         if (__netdev_update_features(dev))
6477                 netdev_features_change(dev);
6478 }
6479 EXPORT_SYMBOL(netdev_update_features);
6480
6481 /**
6482  *      netdev_change_features - recalculate device features
6483  *      @dev: the device to check
6484  *
6485  *      Recalculate dev->features set and send notifications even
6486  *      if they have not changed. Should be called instead of
6487  *      netdev_update_features() if also dev->vlan_features might
6488  *      have changed to allow the changes to be propagated to stacked
6489  *      VLAN devices.
6490  */
6491 void netdev_change_features(struct net_device *dev)
6492 {
6493         __netdev_update_features(dev);
6494         netdev_features_change(dev);
6495 }
6496 EXPORT_SYMBOL(netdev_change_features);
6497
6498 /**
6499  *      netif_stacked_transfer_operstate -      transfer operstate
6500  *      @rootdev: the root or lower level device to transfer state from
6501  *      @dev: the device to transfer operstate to
6502  *
6503  *      Transfer operational state from root to device. This is normally
6504  *      called when a stacking relationship exists between the root
6505  *      device and the device(a leaf device).
6506  */
6507 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
6508                                         struct net_device *dev)
6509 {
6510         if (rootdev->operstate == IF_OPER_DORMANT)
6511                 netif_dormant_on(dev);
6512         else
6513                 netif_dormant_off(dev);
6514
6515         if (netif_carrier_ok(rootdev)) {
6516                 if (!netif_carrier_ok(dev))
6517                         netif_carrier_on(dev);
6518         } else {
6519                 if (netif_carrier_ok(dev))
6520                         netif_carrier_off(dev);
6521         }
6522 }
6523 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
6524
6525 #ifdef CONFIG_SYSFS
6526 static int netif_alloc_rx_queues(struct net_device *dev)
6527 {
6528         unsigned int i, count = dev->num_rx_queues;
6529         struct netdev_rx_queue *rx;
6530         size_t sz = count * sizeof(*rx);
6531
6532         BUG_ON(count < 1);
6533
6534         rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6535         if (!rx) {
6536                 rx = vzalloc(sz);
6537                 if (!rx)
6538                         return -ENOMEM;
6539         }
6540         dev->_rx = rx;
6541
6542         for (i = 0; i < count; i++)
6543                 rx[i].dev = dev;
6544         return 0;
6545 }
6546 #endif
6547
6548 static void netdev_init_one_queue(struct net_device *dev,
6549                                   struct netdev_queue *queue, void *_unused)
6550 {
6551         /* Initialize queue lock */
6552         spin_lock_init(&queue->_xmit_lock);
6553         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
6554         queue->xmit_lock_owner = -1;
6555         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
6556         queue->dev = dev;
6557 #ifdef CONFIG_BQL
6558         dql_init(&queue->dql, HZ);
6559 #endif
6560 }
6561
6562 static void netif_free_tx_queues(struct net_device *dev)
6563 {
6564         kvfree(dev->_tx);
6565 }
6566
6567 static int netif_alloc_netdev_queues(struct net_device *dev)
6568 {
6569         unsigned int count = dev->num_tx_queues;
6570         struct netdev_queue *tx;
6571         size_t sz = count * sizeof(*tx);
6572
6573         if (count < 1 || count > 0xffff)
6574                 return -EINVAL;
6575
6576         tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6577         if (!tx) {
6578                 tx = vzalloc(sz);
6579                 if (!tx)
6580                         return -ENOMEM;
6581         }
6582         dev->_tx = tx;
6583
6584         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
6585         spin_lock_init(&dev->tx_global_lock);
6586
6587         return 0;
6588 }
6589
6590 void netif_tx_stop_all_queues(struct net_device *dev)
6591 {
6592         unsigned int i;
6593
6594         for (i = 0; i < dev->num_tx_queues; i++) {
6595                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
6596                 netif_tx_stop_queue(txq);
6597         }
6598 }
6599 EXPORT_SYMBOL(netif_tx_stop_all_queues);
6600
6601 /**
6602  *      register_netdevice      - register a network device
6603  *      @dev: device to register
6604  *
6605  *      Take a completed network device structure and add it to the kernel
6606  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6607  *      chain. 0 is returned on success. A negative errno code is returned
6608  *      on a failure to set up the device, or if the name is a duplicate.
6609  *
6610  *      Callers must hold the rtnl semaphore. You may want
6611  *      register_netdev() instead of this.
6612  *
6613  *      BUGS:
6614  *      The locking appears insufficient to guarantee two parallel registers
6615  *      will not get the same name.
6616  */
6617
6618 int register_netdevice(struct net_device *dev)
6619 {
6620         int ret;
6621         struct net *net = dev_net(dev);
6622
6623         BUG_ON(dev_boot_phase);
6624         ASSERT_RTNL();
6625
6626         might_sleep();
6627
6628         /* When net_device's are persistent, this will be fatal. */
6629         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
6630         BUG_ON(!net);
6631
6632         spin_lock_init(&dev->addr_list_lock);
6633         netdev_set_addr_lockdep_class(dev);
6634
6635         ret = dev_get_valid_name(net, dev, dev->name);
6636         if (ret < 0)
6637                 goto out;
6638
6639         /* Init, if this function is available */
6640         if (dev->netdev_ops->ndo_init) {
6641                 ret = dev->netdev_ops->ndo_init(dev);
6642                 if (ret) {
6643                         if (ret > 0)
6644                                 ret = -EIO;
6645                         goto out;
6646                 }
6647         }
6648
6649         if (((dev->hw_features | dev->features) &
6650              NETIF_F_HW_VLAN_CTAG_FILTER) &&
6651             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
6652              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
6653                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
6654                 ret = -EINVAL;
6655                 goto err_uninit;
6656         }
6657
6658         ret = -EBUSY;
6659         if (!dev->ifindex)
6660                 dev->ifindex = dev_new_index(net);
6661         else if (__dev_get_by_index(net, dev->ifindex))
6662                 goto err_uninit;
6663
6664         /* Transfer changeable features to wanted_features and enable
6665          * software offloads (GSO and GRO).
6666          */
6667         dev->hw_features |= NETIF_F_SOFT_FEATURES;
6668         dev->features |= NETIF_F_SOFT_FEATURES;
6669         dev->wanted_features = dev->features & dev->hw_features;
6670
6671         if (!(dev->flags & IFF_LOOPBACK)) {
6672                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
6673         }
6674
6675         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
6676          */
6677         dev->vlan_features |= NETIF_F_HIGHDMA;
6678
6679         /* Make NETIF_F_SG inheritable to tunnel devices.
6680          */
6681         dev->hw_enc_features |= NETIF_F_SG;
6682
6683         /* Make NETIF_F_SG inheritable to MPLS.
6684          */
6685         dev->mpls_features |= NETIF_F_SG;
6686
6687         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
6688         ret = notifier_to_errno(ret);
6689         if (ret)
6690                 goto err_uninit;
6691
6692         ret = netdev_register_kobject(dev);
6693         if (ret)
6694                 goto err_uninit;
6695         dev->reg_state = NETREG_REGISTERED;
6696
6697         __netdev_update_features(dev);
6698
6699         /*
6700          *      Default initial state at registry is that the
6701          *      device is present.
6702          */
6703
6704         set_bit(__LINK_STATE_PRESENT, &dev->state);
6705
6706         linkwatch_init_dev(dev);
6707
6708         dev_init_scheduler(dev);
6709         dev_hold(dev);
6710         list_netdevice(dev);
6711         add_device_randomness(dev->dev_addr, dev->addr_len);
6712
6713         /* If the device has permanent device address, driver should
6714          * set dev_addr and also addr_assign_type should be set to
6715          * NET_ADDR_PERM (default value).
6716          */
6717         if (dev->addr_assign_type == NET_ADDR_PERM)
6718                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
6719
6720         /* Notify protocols, that a new device appeared. */
6721         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
6722         ret = notifier_to_errno(ret);
6723         if (ret) {
6724                 rollback_registered(dev);
6725                 dev->reg_state = NETREG_UNREGISTERED;
6726         }
6727         /*
6728          *      Prevent userspace races by waiting until the network
6729          *      device is fully setup before sending notifications.
6730          */
6731         if (!dev->rtnl_link_ops ||
6732             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6733                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6734
6735 out:
6736         return ret;
6737
6738 err_uninit:
6739         if (dev->netdev_ops->ndo_uninit)
6740                 dev->netdev_ops->ndo_uninit(dev);
6741         goto out;
6742 }
6743 EXPORT_SYMBOL(register_netdevice);
6744
6745 /**
6746  *      init_dummy_netdev       - init a dummy network device for NAPI
6747  *      @dev: device to init
6748  *
6749  *      This takes a network device structure and initialize the minimum
6750  *      amount of fields so it can be used to schedule NAPI polls without
6751  *      registering a full blown interface. This is to be used by drivers
6752  *      that need to tie several hardware interfaces to a single NAPI
6753  *      poll scheduler due to HW limitations.
6754  */
6755 int init_dummy_netdev(struct net_device *dev)
6756 {
6757         /* Clear everything. Note we don't initialize spinlocks
6758          * are they aren't supposed to be taken by any of the
6759          * NAPI code and this dummy netdev is supposed to be
6760          * only ever used for NAPI polls
6761          */
6762         memset(dev, 0, sizeof(struct net_device));
6763
6764         /* make sure we BUG if trying to hit standard
6765          * register/unregister code path
6766          */
6767         dev->reg_state = NETREG_DUMMY;
6768
6769         /* NAPI wants this */
6770         INIT_LIST_HEAD(&dev->napi_list);
6771
6772         /* a dummy interface is started by default */
6773         set_bit(__LINK_STATE_PRESENT, &dev->state);
6774         set_bit(__LINK_STATE_START, &dev->state);
6775
6776         /* Note : We dont allocate pcpu_refcnt for dummy devices,
6777          * because users of this 'device' dont need to change
6778          * its refcount.
6779          */
6780
6781         return 0;
6782 }
6783 EXPORT_SYMBOL_GPL(init_dummy_netdev);
6784
6785
6786 /**
6787  *      register_netdev - register a network device
6788  *      @dev: device to register
6789  *
6790  *      Take a completed network device structure and add it to the kernel
6791  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6792  *      chain. 0 is returned on success. A negative errno code is returned
6793  *      on a failure to set up the device, or if the name is a duplicate.
6794  *
6795  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
6796  *      and expands the device name if you passed a format string to
6797  *      alloc_netdev.
6798  */
6799 int register_netdev(struct net_device *dev)
6800 {
6801         int err;
6802
6803         rtnl_lock();
6804         err = register_netdevice(dev);
6805         rtnl_unlock();
6806         return err;
6807 }
6808 EXPORT_SYMBOL(register_netdev);
6809
6810 int netdev_refcnt_read(const struct net_device *dev)
6811 {
6812         int i, refcnt = 0;
6813
6814         for_each_possible_cpu(i)
6815                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
6816         return refcnt;
6817 }
6818 EXPORT_SYMBOL(netdev_refcnt_read);
6819
6820 /**
6821  * netdev_wait_allrefs - wait until all references are gone.
6822  * @dev: target net_device
6823  *
6824  * This is called when unregistering network devices.
6825  *
6826  * Any protocol or device that holds a reference should register
6827  * for netdevice notification, and cleanup and put back the
6828  * reference if they receive an UNREGISTER event.
6829  * We can get stuck here if buggy protocols don't correctly
6830  * call dev_put.
6831  */
6832 static void netdev_wait_allrefs(struct net_device *dev)
6833 {
6834         unsigned long rebroadcast_time, warning_time;
6835         int refcnt;
6836
6837         linkwatch_forget_dev(dev);
6838
6839         rebroadcast_time = warning_time = jiffies;
6840         refcnt = netdev_refcnt_read(dev);
6841
6842         while (refcnt != 0) {
6843                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6844                         rtnl_lock();
6845
6846                         /* Rebroadcast unregister notification */
6847                         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6848
6849                         __rtnl_unlock();
6850                         rcu_barrier();
6851                         rtnl_lock();
6852
6853                         call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6854                         if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
6855                                      &dev->state)) {
6856                                 /* We must not have linkwatch events
6857                                  * pending on unregister. If this
6858                                  * happens, we simply run the queue
6859                                  * unscheduled, resulting in a noop
6860                                  * for this device.
6861                                  */
6862                                 linkwatch_run_queue();
6863                         }
6864
6865                         __rtnl_unlock();
6866
6867                         rebroadcast_time = jiffies;
6868                 }
6869
6870                 msleep(250);
6871
6872                 refcnt = netdev_refcnt_read(dev);
6873
6874                 if (time_after(jiffies, warning_time + 10 * HZ)) {
6875                         pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
6876                                  dev->name, refcnt);
6877                         warning_time = jiffies;
6878                 }
6879         }
6880 }
6881
6882 /* The sequence is:
6883  *
6884  *      rtnl_lock();
6885  *      ...
6886  *      register_netdevice(x1);
6887  *      register_netdevice(x2);
6888  *      ...
6889  *      unregister_netdevice(y1);
6890  *      unregister_netdevice(y2);
6891  *      ...
6892  *      rtnl_unlock();
6893  *      free_netdev(y1);
6894  *      free_netdev(y2);
6895  *
6896  * We are invoked by rtnl_unlock().
6897  * This allows us to deal with problems:
6898  * 1) We can delete sysfs objects which invoke hotplug
6899  *    without deadlocking with linkwatch via keventd.
6900  * 2) Since we run with the RTNL semaphore not held, we can sleep
6901  *    safely in order to wait for the netdev refcnt to drop to zero.
6902  *
6903  * We must not return until all unregister events added during
6904  * the interval the lock was held have been completed.
6905  */
6906 void netdev_run_todo(void)
6907 {
6908         struct list_head list;
6909
6910         /* Snapshot list, allow later requests */
6911         list_replace_init(&net_todo_list, &list);
6912
6913         __rtnl_unlock();
6914
6915
6916         /* Wait for rcu callbacks to finish before next phase */
6917         if (!list_empty(&list))
6918                 rcu_barrier();
6919
6920         while (!list_empty(&list)) {
6921                 struct net_device *dev
6922                         = list_first_entry(&list, struct net_device, todo_list);
6923                 list_del(&dev->todo_list);
6924
6925                 rtnl_lock();
6926                 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6927                 __rtnl_unlock();
6928
6929                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
6930                         pr_err("network todo '%s' but state %d\n",
6931                                dev->name, dev->reg_state);
6932                         dump_stack();
6933                         continue;
6934                 }
6935
6936                 dev->reg_state = NETREG_UNREGISTERED;
6937
6938                 netdev_wait_allrefs(dev);
6939
6940                 /* paranoia */
6941                 BUG_ON(netdev_refcnt_read(dev));
6942                 BUG_ON(!list_empty(&dev->ptype_all));
6943                 BUG_ON(!list_empty(&dev->ptype_specific));
6944                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
6945                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
6946                 WARN_ON(dev->dn_ptr);
6947
6948                 if (dev->destructor)
6949                         dev->destructor(dev);
6950
6951                 /* Report a network device has been unregistered */
6952                 rtnl_lock();
6953                 dev_net(dev)->dev_unreg_count--;
6954                 __rtnl_unlock();
6955                 wake_up(&netdev_unregistering_wq);
6956
6957                 /* Free network device */
6958                 kobject_put(&dev->dev.kobj);
6959         }
6960 }
6961
6962 /* Convert net_device_stats to rtnl_link_stats64.  They have the same
6963  * fields in the same order, with only the type differing.
6964  */
6965 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
6966                              const struct net_device_stats *netdev_stats)
6967 {
6968 #if BITS_PER_LONG == 64
6969         BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
6970         memcpy(stats64, netdev_stats, sizeof(*stats64));
6971 #else
6972         size_t i, n = sizeof(*stats64) / sizeof(u64);
6973         const unsigned long *src = (const unsigned long *)netdev_stats;
6974         u64 *dst = (u64 *)stats64;
6975
6976         BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
6977                      sizeof(*stats64) / sizeof(u64));
6978         for (i = 0; i < n; i++)
6979                 dst[i] = src[i];
6980 #endif
6981 }
6982 EXPORT_SYMBOL(netdev_stats_to_stats64);
6983
6984 /**
6985  *      dev_get_stats   - get network device statistics
6986  *      @dev: device to get statistics from
6987  *      @storage: place to store stats
6988  *
6989  *      Get network statistics from device. Return @storage.
6990  *      The device driver may provide its own method by setting
6991  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
6992  *      otherwise the internal statistics structure is used.
6993  */
6994 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
6995                                         struct rtnl_link_stats64 *storage)
6996 {
6997         const struct net_device_ops *ops = dev->netdev_ops;
6998
6999         if (ops->ndo_get_stats64) {
7000                 memset(storage, 0, sizeof(*storage));
7001                 ops->ndo_get_stats64(dev, storage);
7002         } else if (ops->ndo_get_stats) {
7003                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
7004         } else {
7005                 netdev_stats_to_stats64(storage, &dev->stats);
7006         }
7007         storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
7008         storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
7009         return storage;
7010 }
7011 EXPORT_SYMBOL(dev_get_stats);
7012
7013 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
7014 {
7015         struct netdev_queue *queue = dev_ingress_queue(dev);
7016
7017 #ifdef CONFIG_NET_CLS_ACT
7018         if (queue)
7019                 return queue;
7020         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7021         if (!queue)
7022                 return NULL;
7023         netdev_init_one_queue(dev, queue, NULL);
7024         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
7025         queue->qdisc_sleeping = &noop_qdisc;
7026         rcu_assign_pointer(dev->ingress_queue, queue);
7027 #endif
7028         return queue;
7029 }
7030
7031 static const struct ethtool_ops default_ethtool_ops;
7032
7033 void netdev_set_default_ethtool_ops(struct net_device *dev,
7034                                     const struct ethtool_ops *ops)
7035 {
7036         if (dev->ethtool_ops == &default_ethtool_ops)
7037                 dev->ethtool_ops = ops;
7038 }
7039 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
7040
7041 void netdev_freemem(struct net_device *dev)
7042 {
7043         char *addr = (char *)dev - dev->padded;
7044
7045         kvfree(addr);
7046 }
7047
7048 /**
7049  *      alloc_netdev_mqs - allocate network device
7050  *      @sizeof_priv:           size of private data to allocate space for
7051  *      @name:                  device name format string
7052  *      @name_assign_type:      origin of device name
7053  *      @setup:                 callback to initialize device
7054  *      @txqs:                  the number of TX subqueues to allocate
7055  *      @rxqs:                  the number of RX subqueues to allocate
7056  *
7057  *      Allocates a struct net_device with private data area for driver use
7058  *      and performs basic initialization.  Also allocates subqueue structs
7059  *      for each queue on the device.
7060  */
7061 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
7062                 unsigned char name_assign_type,
7063                 void (*setup)(struct net_device *),
7064                 unsigned int txqs, unsigned int rxqs)
7065 {
7066         struct net_device *dev;
7067         size_t alloc_size;
7068         struct net_device *p;
7069
7070         BUG_ON(strlen(name) >= sizeof(dev->name));
7071
7072         if (txqs < 1) {
7073                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
7074                 return NULL;
7075         }
7076
7077 #ifdef CONFIG_SYSFS
7078         if (rxqs < 1) {
7079                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
7080                 return NULL;
7081         }
7082 #endif
7083
7084         alloc_size = sizeof(struct net_device);
7085         if (sizeof_priv) {
7086                 /* ensure 32-byte alignment of private area */
7087                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
7088                 alloc_size += sizeof_priv;
7089         }
7090         /* ensure 32-byte alignment of whole construct */
7091         alloc_size += NETDEV_ALIGN - 1;
7092
7093         p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7094         if (!p)
7095                 p = vzalloc(alloc_size);
7096         if (!p)
7097                 return NULL;
7098
7099         dev = PTR_ALIGN(p, NETDEV_ALIGN);
7100         dev->padded = (char *)dev - (char *)p;
7101
7102         dev->pcpu_refcnt = alloc_percpu(int);
7103         if (!dev->pcpu_refcnt)
7104                 goto free_dev;
7105
7106         if (dev_addr_init(dev))
7107                 goto free_pcpu;
7108
7109         dev_mc_init(dev);
7110         dev_uc_init(dev);
7111
7112         dev_net_set(dev, &init_net);
7113
7114         dev->gso_max_size = GSO_MAX_SIZE;
7115         dev->gso_max_segs = GSO_MAX_SEGS;
7116         dev->gso_min_segs = 0;
7117
7118         INIT_LIST_HEAD(&dev->napi_list);
7119         INIT_LIST_HEAD(&dev->unreg_list);
7120         INIT_LIST_HEAD(&dev->close_list);
7121         INIT_LIST_HEAD(&dev->link_watch_list);
7122         INIT_LIST_HEAD(&dev->adj_list.upper);
7123         INIT_LIST_HEAD(&dev->adj_list.lower);
7124         INIT_LIST_HEAD(&dev->all_adj_list.upper);
7125         INIT_LIST_HEAD(&dev->all_adj_list.lower);
7126         INIT_LIST_HEAD(&dev->ptype_all);
7127         INIT_LIST_HEAD(&dev->ptype_specific);
7128         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
7129         setup(dev);
7130
7131         if (!dev->tx_queue_len) {
7132                 dev->priv_flags |= IFF_NO_QUEUE;
7133                 dev->tx_queue_len = 1;
7134         }
7135
7136         dev->num_tx_queues = txqs;
7137         dev->real_num_tx_queues = txqs;
7138         if (netif_alloc_netdev_queues(dev))
7139                 goto free_all;
7140
7141 #ifdef CONFIG_SYSFS
7142         dev->num_rx_queues = rxqs;
7143         dev->real_num_rx_queues = rxqs;
7144         if (netif_alloc_rx_queues(dev))
7145                 goto free_all;
7146 #endif
7147
7148         strcpy(dev->name, name);
7149         dev->name_assign_type = name_assign_type;
7150         dev->group = INIT_NETDEV_GROUP;
7151         if (!dev->ethtool_ops)
7152                 dev->ethtool_ops = &default_ethtool_ops;
7153
7154         nf_hook_ingress_init(dev);
7155
7156         return dev;
7157
7158 free_all:
7159         free_netdev(dev);
7160         return NULL;
7161
7162 free_pcpu:
7163         free_percpu(dev->pcpu_refcnt);
7164 free_dev:
7165         netdev_freemem(dev);
7166         return NULL;
7167 }
7168 EXPORT_SYMBOL(alloc_netdev_mqs);
7169
7170 /**
7171  *      free_netdev - free network device
7172  *      @dev: device
7173  *
7174  *      This function does the last stage of destroying an allocated device
7175  *      interface. The reference to the device object is released.
7176  *      If this is the last reference then it will be freed.
7177  */
7178 void free_netdev(struct net_device *dev)
7179 {
7180         struct napi_struct *p, *n;
7181
7182         netif_free_tx_queues(dev);
7183 #ifdef CONFIG_SYSFS
7184         kvfree(dev->_rx);
7185 #endif
7186
7187         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
7188
7189         /* Flush device addresses */
7190         dev_addr_flush(dev);
7191
7192         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7193                 netif_napi_del(p);
7194
7195         free_percpu(dev->pcpu_refcnt);
7196         dev->pcpu_refcnt = NULL;
7197
7198         /*  Compatibility with error handling in drivers */
7199         if (dev->reg_state == NETREG_UNINITIALIZED) {
7200                 netdev_freemem(dev);
7201                 return;
7202         }
7203
7204         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7205         dev->reg_state = NETREG_RELEASED;
7206
7207         /* will free via device release */
7208         put_device(&dev->dev);
7209 }
7210 EXPORT_SYMBOL(free_netdev);
7211
7212 /**
7213  *      synchronize_net -  Synchronize with packet receive processing
7214  *
7215  *      Wait for packets currently being received to be done.
7216  *      Does not block later packets from starting.
7217  */
7218 void synchronize_net(void)
7219 {
7220         might_sleep();
7221         if (rtnl_is_locked())
7222                 synchronize_rcu_expedited();
7223         else
7224                 synchronize_rcu();
7225 }
7226 EXPORT_SYMBOL(synchronize_net);
7227
7228 /**
7229  *      unregister_netdevice_queue - remove device from the kernel
7230  *      @dev: device
7231  *      @head: list
7232  *
7233  *      This function shuts down a device interface and removes it
7234  *      from the kernel tables.
7235  *      If head not NULL, device is queued to be unregistered later.
7236  *
7237  *      Callers must hold the rtnl semaphore.  You may want
7238  *      unregister_netdev() instead of this.
7239  */
7240
7241 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
7242 {
7243         ASSERT_RTNL();
7244
7245         if (head) {
7246                 list_move_tail(&dev->unreg_list, head);
7247         } else {
7248                 rollback_registered(dev);
7249                 /* Finish processing unregister after unlock */
7250                 net_set_todo(dev);
7251         }
7252 }
7253 EXPORT_SYMBOL(unregister_netdevice_queue);
7254
7255 /**
7256  *      unregister_netdevice_many - unregister many devices
7257  *      @head: list of devices
7258  *
7259  *  Note: As most callers use a stack allocated list_head,
7260  *  we force a list_del() to make sure stack wont be corrupted later.
7261  */
7262 void unregister_netdevice_many(struct list_head *head)
7263 {
7264         struct net_device *dev;
7265
7266         if (!list_empty(head)) {
7267                 rollback_registered_many(head);
7268                 list_for_each_entry(dev, head, unreg_list)
7269                         net_set_todo(dev);
7270                 list_del(head);
7271         }
7272 }
7273 EXPORT_SYMBOL(unregister_netdevice_many);
7274
7275 /**
7276  *      unregister_netdev - remove device from the kernel
7277  *      @dev: device
7278  *
7279  *      This function shuts down a device interface and removes it
7280  *      from the kernel tables.
7281  *
7282  *      This is just a wrapper for unregister_netdevice that takes
7283  *      the rtnl semaphore.  In general you want to use this and not
7284  *      unregister_netdevice.
7285  */
7286 void unregister_netdev(struct net_device *dev)
7287 {
7288         rtnl_lock();
7289         unregister_netdevice(dev);
7290         rtnl_unlock();
7291 }
7292 EXPORT_SYMBOL(unregister_netdev);
7293
7294 /**
7295  *      dev_change_net_namespace - move device to different nethost namespace
7296  *      @dev: device
7297  *      @net: network namespace
7298  *      @pat: If not NULL name pattern to try if the current device name
7299  *            is already taken in the destination network namespace.
7300  *
7301  *      This function shuts down a device interface and moves it
7302  *      to a new network namespace. On success 0 is returned, on
7303  *      a failure a netagive errno code is returned.
7304  *
7305  *      Callers must hold the rtnl semaphore.
7306  */
7307
7308 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7309 {
7310         int err;
7311
7312         ASSERT_RTNL();
7313
7314         /* Don't allow namespace local devices to be moved. */
7315         err = -EINVAL;
7316         if (dev->features & NETIF_F_NETNS_LOCAL)
7317                 goto out;
7318
7319         /* Ensure the device has been registrered */
7320         if (dev->reg_state != NETREG_REGISTERED)
7321                 goto out;
7322
7323         /* Get out if there is nothing todo */
7324         err = 0;
7325         if (net_eq(dev_net(dev), net))
7326                 goto out;
7327
7328         /* Pick the destination device name, and ensure
7329          * we can use it in the destination network namespace.
7330          */
7331         err = -EEXIST;
7332         if (__dev_get_by_name(net, dev->name)) {
7333                 /* We get here if we can't use the current device name */
7334                 if (!pat)
7335                         goto out;
7336                 if (dev_get_valid_name(net, dev, pat) < 0)
7337                         goto out;
7338         }
7339
7340         /*
7341          * And now a mini version of register_netdevice unregister_netdevice.
7342          */
7343
7344         /* If device is running close it first. */
7345         dev_close(dev);
7346
7347         /* And unlink it from device chain */
7348         err = -ENODEV;
7349         unlist_netdevice(dev);
7350
7351         synchronize_net();
7352
7353         /* Shutdown queueing discipline. */
7354         dev_shutdown(dev);
7355
7356         /* Notify protocols, that we are about to destroy
7357            this device. They should clean all the things.
7358
7359            Note that dev->reg_state stays at NETREG_REGISTERED.
7360            This is wanted because this way 8021q and macvlan know
7361            the device is just moving and can keep their slaves up.
7362         */
7363         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7364         rcu_barrier();
7365         call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7366         rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
7367
7368         /*
7369          *      Flush the unicast and multicast chains
7370          */
7371         dev_uc_flush(dev);
7372         dev_mc_flush(dev);
7373
7374         /* Send a netdev-removed uevent to the old namespace */
7375         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
7376         netdev_adjacent_del_links(dev);
7377
7378         /* Actually switch the network namespace */
7379         dev_net_set(dev, net);
7380
7381         /* If there is an ifindex conflict assign a new one */
7382         if (__dev_get_by_index(net, dev->ifindex))
7383                 dev->ifindex = dev_new_index(net);
7384
7385         /* Send a netdev-add uevent to the new namespace */
7386         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
7387         netdev_adjacent_add_links(dev);
7388
7389         /* Fixup kobjects */
7390         err = device_rename(&dev->dev, dev->name);
7391         WARN_ON(err);
7392
7393         /* Add the device back in the hashes */
7394         list_netdevice(dev);
7395
7396         /* Notify protocols, that a new device appeared. */
7397         call_netdevice_notifiers(NETDEV_REGISTER, dev);
7398
7399         /*
7400          *      Prevent userspace races by waiting until the network
7401          *      device is fully setup before sending notifications.
7402          */
7403         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7404
7405         synchronize_net();
7406         err = 0;
7407 out:
7408         return err;
7409 }
7410 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
7411
7412 static int dev_cpu_callback(struct notifier_block *nfb,
7413                             unsigned long action,
7414                             void *ocpu)
7415 {
7416         struct sk_buff **list_skb;
7417         struct sk_buff *skb;
7418         unsigned int cpu, oldcpu = (unsigned long)ocpu;
7419         struct softnet_data *sd, *oldsd;
7420
7421         if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
7422                 return NOTIFY_OK;
7423
7424         local_irq_disable();
7425         cpu = smp_processor_id();
7426         sd = &per_cpu(softnet_data, cpu);
7427         oldsd = &per_cpu(softnet_data, oldcpu);
7428
7429         /* Find end of our completion_queue. */
7430         list_skb = &sd->completion_queue;
7431         while (*list_skb)
7432                 list_skb = &(*list_skb)->next;
7433         /* Append completion queue from offline CPU. */
7434         *list_skb = oldsd->completion_queue;
7435         oldsd->completion_queue = NULL;
7436
7437         /* Append output queue from offline CPU. */
7438         if (oldsd->output_queue) {
7439                 *sd->output_queue_tailp = oldsd->output_queue;
7440                 sd->output_queue_tailp = oldsd->output_queue_tailp;
7441                 oldsd->output_queue = NULL;
7442                 oldsd->output_queue_tailp = &oldsd->output_queue;
7443         }
7444         /* Append NAPI poll list from offline CPU, with one exception :
7445          * process_backlog() must be called by cpu owning percpu backlog.
7446          * We properly handle process_queue & input_pkt_queue later.
7447          */
7448         while (!list_empty(&oldsd->poll_list)) {
7449                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
7450                                                             struct napi_struct,
7451                                                             poll_list);
7452
7453                 list_del_init(&napi->poll_list);
7454                 if (napi->poll == process_backlog)
7455                         napi->state = 0;
7456                 else
7457                         ____napi_schedule(sd, napi);
7458         }
7459
7460         raise_softirq_irqoff(NET_TX_SOFTIRQ);
7461         local_irq_enable();
7462
7463         /* Process offline CPU's input_pkt_queue */
7464         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
7465                 netif_rx_ni(skb);
7466                 input_queue_head_incr(oldsd);
7467         }
7468         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
7469                 netif_rx_ni(skb);
7470                 input_queue_head_incr(oldsd);
7471         }
7472
7473         return NOTIFY_OK;
7474 }
7475
7476
7477 /**
7478  *      netdev_increment_features - increment feature set by one
7479  *      @all: current feature set
7480  *      @one: new feature set
7481  *      @mask: mask feature set
7482  *
7483  *      Computes a new feature set after adding a device with feature set
7484  *      @one to the master device with current feature set @all.  Will not
7485  *      enable anything that is off in @mask. Returns the new feature set.
7486  */
7487 netdev_features_t netdev_increment_features(netdev_features_t all,
7488         netdev_features_t one, netdev_features_t mask)
7489 {
7490         if (mask & NETIF_F_GEN_CSUM)
7491                 mask |= NETIF_F_ALL_CSUM;
7492         mask |= NETIF_F_VLAN_CHALLENGED;
7493
7494         all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
7495         all &= one | ~NETIF_F_ALL_FOR_ALL;
7496
7497         /* If one device supports hw checksumming, set for all. */
7498         if (all & NETIF_F_GEN_CSUM)
7499                 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
7500
7501         return all;
7502 }
7503 EXPORT_SYMBOL(netdev_increment_features);
7504
7505 static struct hlist_head * __net_init netdev_create_hash(void)
7506 {
7507         int i;
7508         struct hlist_head *hash;
7509
7510         hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
7511         if (hash != NULL)
7512                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
7513                         INIT_HLIST_HEAD(&hash[i]);
7514
7515         return hash;
7516 }
7517
7518 /* Initialize per network namespace state */
7519 static int __net_init netdev_init(struct net *net)
7520 {
7521         if (net != &init_net)
7522                 INIT_LIST_HEAD(&net->dev_base_head);
7523
7524         net->dev_name_head = netdev_create_hash();
7525         if (net->dev_name_head == NULL)
7526                 goto err_name;
7527
7528         net->dev_index_head = netdev_create_hash();
7529         if (net->dev_index_head == NULL)
7530                 goto err_idx;
7531
7532         return 0;
7533
7534 err_idx:
7535         kfree(net->dev_name_head);
7536 err_name:
7537         return -ENOMEM;
7538 }
7539
7540 /**
7541  *      netdev_drivername - network driver for the device
7542  *      @dev: network device
7543  *
7544  *      Determine network driver for device.
7545  */
7546 const char *netdev_drivername(const struct net_device *dev)
7547 {
7548         const struct device_driver *driver;
7549         const struct device *parent;
7550         const char *empty = "";
7551
7552         parent = dev->dev.parent;
7553         if (!parent)
7554                 return empty;
7555
7556         driver = parent->driver;
7557         if (driver && driver->name)
7558                 return driver->name;
7559         return empty;
7560 }
7561
7562 static void __netdev_printk(const char *level, const struct net_device *dev,
7563                             struct va_format *vaf)
7564 {
7565         if (dev && dev->dev.parent) {
7566                 dev_printk_emit(level[1] - '0',
7567                                 dev->dev.parent,
7568                                 "%s %s %s%s: %pV",
7569                                 dev_driver_string(dev->dev.parent),
7570                                 dev_name(dev->dev.parent),
7571                                 netdev_name(dev), netdev_reg_state(dev),
7572                                 vaf);
7573         } else if (dev) {
7574                 printk("%s%s%s: %pV",
7575                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
7576         } else {
7577                 printk("%s(NULL net_device): %pV", level, vaf);
7578         }
7579 }
7580
7581 void netdev_printk(const char *level, const struct net_device *dev,
7582                    const char *format, ...)
7583 {
7584         struct va_format vaf;
7585         va_list args;
7586
7587         va_start(args, format);
7588
7589         vaf.fmt = format;
7590         vaf.va = &args;
7591
7592         __netdev_printk(level, dev, &vaf);
7593
7594         va_end(args);
7595 }
7596 EXPORT_SYMBOL(netdev_printk);
7597
7598 #define define_netdev_printk_level(func, level)                 \
7599 void func(const struct net_device *dev, const char *fmt, ...)   \
7600 {                                                               \
7601         struct va_format vaf;                                   \
7602         va_list args;                                           \
7603                                                                 \
7604         va_start(args, fmt);                                    \
7605                                                                 \
7606         vaf.fmt = fmt;                                          \
7607         vaf.va = &args;                                         \
7608                                                                 \
7609         __netdev_printk(level, dev, &vaf);                      \
7610                                                                 \
7611         va_end(args);                                           \
7612 }                                                               \
7613 EXPORT_SYMBOL(func);
7614
7615 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
7616 define_netdev_printk_level(netdev_alert, KERN_ALERT);
7617 define_netdev_printk_level(netdev_crit, KERN_CRIT);
7618 define_netdev_printk_level(netdev_err, KERN_ERR);
7619 define_netdev_printk_level(netdev_warn, KERN_WARNING);
7620 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
7621 define_netdev_printk_level(netdev_info, KERN_INFO);
7622
7623 static void __net_exit netdev_exit(struct net *net)
7624 {
7625         kfree(net->dev_name_head);
7626         kfree(net->dev_index_head);
7627 }
7628
7629 static struct pernet_operations __net_initdata netdev_net_ops = {
7630         .init = netdev_init,
7631         .exit = netdev_exit,
7632 };
7633
7634 static void __net_exit default_device_exit(struct net *net)
7635 {
7636         struct net_device *dev, *aux;
7637         /*
7638          * Push all migratable network devices back to the
7639          * initial network namespace
7640          */
7641         rtnl_lock();
7642         for_each_netdev_safe(net, dev, aux) {
7643                 int err;
7644                 char fb_name[IFNAMSIZ];
7645
7646                 /* Ignore unmoveable devices (i.e. loopback) */
7647                 if (dev->features & NETIF_F_NETNS_LOCAL)
7648                         continue;
7649
7650                 /* Leave virtual devices for the generic cleanup */
7651                 if (dev->rtnl_link_ops)
7652                         continue;
7653
7654                 /* Push remaining network devices to init_net */
7655                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
7656                 err = dev_change_net_namespace(dev, &init_net, fb_name);
7657                 if (err) {
7658                         pr_emerg("%s: failed to move %s to init_net: %d\n",
7659                                  __func__, dev->name, err);
7660                         BUG();
7661                 }
7662         }
7663         rtnl_unlock();
7664 }
7665
7666 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
7667 {
7668         /* Return with the rtnl_lock held when there are no network
7669          * devices unregistering in any network namespace in net_list.
7670          */
7671         struct net *net;
7672         bool unregistering;
7673         DEFINE_WAIT_FUNC(wait, woken_wake_function);
7674
7675         add_wait_queue(&netdev_unregistering_wq, &wait);
7676         for (;;) {
7677                 unregistering = false;
7678                 rtnl_lock();
7679                 list_for_each_entry(net, net_list, exit_list) {
7680                         if (net->dev_unreg_count > 0) {
7681                                 unregistering = true;
7682                                 break;
7683                         }
7684                 }
7685                 if (!unregistering)
7686                         break;
7687                 __rtnl_unlock();
7688
7689                 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
7690         }
7691         remove_wait_queue(&netdev_unregistering_wq, &wait);
7692 }
7693
7694 static void __net_exit default_device_exit_batch(struct list_head *net_list)
7695 {
7696         /* At exit all network devices most be removed from a network
7697          * namespace.  Do this in the reverse order of registration.
7698          * Do this across as many network namespaces as possible to
7699          * improve batching efficiency.
7700          */
7701         struct net_device *dev;
7702         struct net *net;
7703         LIST_HEAD(dev_kill_list);
7704
7705         /* To prevent network device cleanup code from dereferencing
7706          * loopback devices or network devices that have been freed
7707          * wait here for all pending unregistrations to complete,
7708          * before unregistring the loopback device and allowing the
7709          * network namespace be freed.
7710          *
7711          * The netdev todo list containing all network devices
7712          * unregistrations that happen in default_device_exit_batch
7713          * will run in the rtnl_unlock() at the end of
7714          * default_device_exit_batch.
7715          */
7716         rtnl_lock_unregistering(net_list);
7717         list_for_each_entry(net, net_list, exit_list) {
7718                 for_each_netdev_reverse(net, dev) {
7719                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
7720                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
7721                         else
7722                                 unregister_netdevice_queue(dev, &dev_kill_list);
7723                 }
7724         }
7725         unregister_netdevice_many(&dev_kill_list);
7726         rtnl_unlock();
7727 }
7728
7729 static struct pernet_operations __net_initdata default_device_ops = {
7730         .exit = default_device_exit,
7731         .exit_batch = default_device_exit_batch,
7732 };
7733
7734 /*
7735  *      Initialize the DEV module. At boot time this walks the device list and
7736  *      unhooks any devices that fail to initialise (normally hardware not
7737  *      present) and leaves us with a valid list of present and active devices.
7738  *
7739  */
7740
7741 /*
7742  *       This is called single threaded during boot, so no need
7743  *       to take the rtnl semaphore.
7744  */
7745 static int __init net_dev_init(void)
7746 {
7747         int i, rc = -ENOMEM;
7748
7749         BUG_ON(!dev_boot_phase);
7750
7751         if (dev_proc_init())
7752                 goto out;
7753
7754         if (netdev_kobject_init())
7755                 goto out;
7756
7757         INIT_LIST_HEAD(&ptype_all);
7758         for (i = 0; i < PTYPE_HASH_SIZE; i++)
7759                 INIT_LIST_HEAD(&ptype_base[i]);
7760
7761         INIT_LIST_HEAD(&offload_base);
7762
7763         if (register_pernet_subsys(&netdev_net_ops))
7764                 goto out;
7765
7766         /*
7767          *      Initialise the packet receive queues.
7768          */
7769
7770         for_each_possible_cpu(i) {
7771                 struct softnet_data *sd = &per_cpu(softnet_data, i);
7772
7773                 skb_queue_head_init(&sd->input_pkt_queue);
7774                 skb_queue_head_init(&sd->process_queue);
7775                 INIT_LIST_HEAD(&sd->poll_list);
7776                 sd->output_queue_tailp = &sd->output_queue;
7777 #ifdef CONFIG_RPS
7778                 sd->csd.func = rps_trigger_softirq;
7779                 sd->csd.info = sd;
7780                 sd->cpu = i;
7781 #endif
7782
7783                 sd->backlog.poll = process_backlog;
7784                 sd->backlog.weight = weight_p;
7785         }
7786
7787         dev_boot_phase = 0;
7788
7789         /* The loopback device is special if any other network devices
7790          * is present in a network namespace the loopback device must
7791          * be present. Since we now dynamically allocate and free the
7792          * loopback device ensure this invariant is maintained by
7793          * keeping the loopback device as the first device on the
7794          * list of network devices.  Ensuring the loopback devices
7795          * is the first device that appears and the last network device
7796          * that disappears.
7797          */
7798         if (register_pernet_device(&loopback_net_ops))
7799                 goto out;
7800
7801         if (register_pernet_device(&default_device_ops))
7802                 goto out;
7803
7804         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
7805         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
7806
7807         hotcpu_notifier(dev_cpu_callback, 0);
7808         dst_subsys_init();
7809         rc = 0;
7810 out:
7811         return rc;
7812 }
7813
7814 subsys_initcall(net_dev_init);