]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - net/core/filter.c
pwm: imx: indentation cleanup
[karo-tx-linux.git] / net / core / filter.c
1 /*
2  * Linux Socket Filter - Kernel level socket filtering
3  *
4  * Author:
5  *     Jay Schulist <jschlst@samba.org>
6  *
7  * Based on the design of:
8  *     - The Berkeley Packet Filter
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License
12  * as published by the Free Software Foundation; either version
13  * 2 of the License, or (at your option) any later version.
14  *
15  * Andi Kleen - Fix a few bad bugs and races.
16  * Kris Katterjohn - Added many additional checks in sk_chk_filter()
17  */
18
19 #include <linux/module.h>
20 #include <linux/types.h>
21 #include <linux/mm.h>
22 #include <linux/fcntl.h>
23 #include <linux/socket.h>
24 #include <linux/in.h>
25 #include <linux/inet.h>
26 #include <linux/netdevice.h>
27 #include <linux/if_packet.h>
28 #include <linux/gfp.h>
29 #include <net/ip.h>
30 #include <net/protocol.h>
31 #include <net/netlink.h>
32 #include <linux/skbuff.h>
33 #include <net/sock.h>
34 #include <linux/errno.h>
35 #include <linux/timer.h>
36 #include <asm/uaccess.h>
37 #include <asm/unaligned.h>
38 #include <linux/filter.h>
39 #include <linux/reciprocal_div.h>
40 #include <linux/ratelimit.h>
41 #include <linux/seccomp.h>
42 #include <linux/if_vlan.h>
43
44 /* No hurry in this branch
45  *
46  * Exported for the bpf jit load helper.
47  */
48 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size)
49 {
50         u8 *ptr = NULL;
51
52         if (k >= SKF_NET_OFF)
53                 ptr = skb_network_header(skb) + k - SKF_NET_OFF;
54         else if (k >= SKF_LL_OFF)
55                 ptr = skb_mac_header(skb) + k - SKF_LL_OFF;
56
57         if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb))
58                 return ptr;
59         return NULL;
60 }
61
62 static inline void *load_pointer(const struct sk_buff *skb, int k,
63                                  unsigned int size, void *buffer)
64 {
65         if (k >= 0)
66                 return skb_header_pointer(skb, k, size, buffer);
67         return bpf_internal_load_pointer_neg_helper(skb, k, size);
68 }
69
70 /**
71  *      sk_filter - run a packet through a socket filter
72  *      @sk: sock associated with &sk_buff
73  *      @skb: buffer to filter
74  *
75  * Run the filter code and then cut skb->data to correct size returned by
76  * sk_run_filter. If pkt_len is 0 we toss packet. If skb->len is smaller
77  * than pkt_len we keep whole skb->data. This is the socket level
78  * wrapper to sk_run_filter. It returns 0 if the packet should
79  * be accepted or -EPERM if the packet should be tossed.
80  *
81  */
82 int sk_filter(struct sock *sk, struct sk_buff *skb)
83 {
84         int err;
85         struct sk_filter *filter;
86
87         /*
88          * If the skb was allocated from pfmemalloc reserves, only
89          * allow SOCK_MEMALLOC sockets to use it as this socket is
90          * helping free memory
91          */
92         if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
93                 return -ENOMEM;
94
95         err = security_sock_rcv_skb(sk, skb);
96         if (err)
97                 return err;
98
99         rcu_read_lock();
100         filter = rcu_dereference(sk->sk_filter);
101         if (filter) {
102                 unsigned int pkt_len = SK_RUN_FILTER(filter, skb);
103
104                 err = pkt_len ? pskb_trim(skb, pkt_len) : -EPERM;
105         }
106         rcu_read_unlock();
107
108         return err;
109 }
110 EXPORT_SYMBOL(sk_filter);
111
112 /**
113  *      sk_run_filter - run a filter on a socket
114  *      @skb: buffer to run the filter on
115  *      @fentry: filter to apply
116  *
117  * Decode and apply filter instructions to the skb->data.
118  * Return length to keep, 0 for none. @skb is the data we are
119  * filtering, @filter is the array of filter instructions.
120  * Because all jumps are guaranteed to be before last instruction,
121  * and last instruction guaranteed to be a RET, we dont need to check
122  * flen. (We used to pass to this function the length of filter)
123  */
124 unsigned int sk_run_filter(const struct sk_buff *skb,
125                            const struct sock_filter *fentry)
126 {
127         void *ptr;
128         u32 A = 0;                      /* Accumulator */
129         u32 X = 0;                      /* Index Register */
130         u32 mem[BPF_MEMWORDS];          /* Scratch Memory Store */
131         u32 tmp;
132         int k;
133
134         /*
135          * Process array of filter instructions.
136          */
137         for (;; fentry++) {
138 #if defined(CONFIG_X86_32)
139 #define K (fentry->k)
140 #else
141                 const u32 K = fentry->k;
142 #endif
143
144                 switch (fentry->code) {
145                 case BPF_S_ALU_ADD_X:
146                         A += X;
147                         continue;
148                 case BPF_S_ALU_ADD_K:
149                         A += K;
150                         continue;
151                 case BPF_S_ALU_SUB_X:
152                         A -= X;
153                         continue;
154                 case BPF_S_ALU_SUB_K:
155                         A -= K;
156                         continue;
157                 case BPF_S_ALU_MUL_X:
158                         A *= X;
159                         continue;
160                 case BPF_S_ALU_MUL_K:
161                         A *= K;
162                         continue;
163                 case BPF_S_ALU_DIV_X:
164                         if (X == 0)
165                                 return 0;
166                         A /= X;
167                         continue;
168                 case BPF_S_ALU_DIV_K:
169                         A = reciprocal_divide(A, K);
170                         continue;
171                 case BPF_S_ALU_MOD_X:
172                         if (X == 0)
173                                 return 0;
174                         A %= X;
175                         continue;
176                 case BPF_S_ALU_MOD_K:
177                         A %= K;
178                         continue;
179                 case BPF_S_ALU_AND_X:
180                         A &= X;
181                         continue;
182                 case BPF_S_ALU_AND_K:
183                         A &= K;
184                         continue;
185                 case BPF_S_ALU_OR_X:
186                         A |= X;
187                         continue;
188                 case BPF_S_ALU_OR_K:
189                         A |= K;
190                         continue;
191                 case BPF_S_ANC_ALU_XOR_X:
192                 case BPF_S_ALU_XOR_X:
193                         A ^= X;
194                         continue;
195                 case BPF_S_ALU_XOR_K:
196                         A ^= K;
197                         continue;
198                 case BPF_S_ALU_LSH_X:
199                         A <<= X;
200                         continue;
201                 case BPF_S_ALU_LSH_K:
202                         A <<= K;
203                         continue;
204                 case BPF_S_ALU_RSH_X:
205                         A >>= X;
206                         continue;
207                 case BPF_S_ALU_RSH_K:
208                         A >>= K;
209                         continue;
210                 case BPF_S_ALU_NEG:
211                         A = -A;
212                         continue;
213                 case BPF_S_JMP_JA:
214                         fentry += K;
215                         continue;
216                 case BPF_S_JMP_JGT_K:
217                         fentry += (A > K) ? fentry->jt : fentry->jf;
218                         continue;
219                 case BPF_S_JMP_JGE_K:
220                         fentry += (A >= K) ? fentry->jt : fentry->jf;
221                         continue;
222                 case BPF_S_JMP_JEQ_K:
223                         fentry += (A == K) ? fentry->jt : fentry->jf;
224                         continue;
225                 case BPF_S_JMP_JSET_K:
226                         fentry += (A & K) ? fentry->jt : fentry->jf;
227                         continue;
228                 case BPF_S_JMP_JGT_X:
229                         fentry += (A > X) ? fentry->jt : fentry->jf;
230                         continue;
231                 case BPF_S_JMP_JGE_X:
232                         fentry += (A >= X) ? fentry->jt : fentry->jf;
233                         continue;
234                 case BPF_S_JMP_JEQ_X:
235                         fentry += (A == X) ? fentry->jt : fentry->jf;
236                         continue;
237                 case BPF_S_JMP_JSET_X:
238                         fentry += (A & X) ? fentry->jt : fentry->jf;
239                         continue;
240                 case BPF_S_LD_W_ABS:
241                         k = K;
242 load_w:
243                         ptr = load_pointer(skb, k, 4, &tmp);
244                         if (ptr != NULL) {
245                                 A = get_unaligned_be32(ptr);
246                                 continue;
247                         }
248                         return 0;
249                 case BPF_S_LD_H_ABS:
250                         k = K;
251 load_h:
252                         ptr = load_pointer(skb, k, 2, &tmp);
253                         if (ptr != NULL) {
254                                 A = get_unaligned_be16(ptr);
255                                 continue;
256                         }
257                         return 0;
258                 case BPF_S_LD_B_ABS:
259                         k = K;
260 load_b:
261                         ptr = load_pointer(skb, k, 1, &tmp);
262                         if (ptr != NULL) {
263                                 A = *(u8 *)ptr;
264                                 continue;
265                         }
266                         return 0;
267                 case BPF_S_LD_W_LEN:
268                         A = skb->len;
269                         continue;
270                 case BPF_S_LDX_W_LEN:
271                         X = skb->len;
272                         continue;
273                 case BPF_S_LD_W_IND:
274                         k = X + K;
275                         goto load_w;
276                 case BPF_S_LD_H_IND:
277                         k = X + K;
278                         goto load_h;
279                 case BPF_S_LD_B_IND:
280                         k = X + K;
281                         goto load_b;
282                 case BPF_S_LDX_B_MSH:
283                         ptr = load_pointer(skb, K, 1, &tmp);
284                         if (ptr != NULL) {
285                                 X = (*(u8 *)ptr & 0xf) << 2;
286                                 continue;
287                         }
288                         return 0;
289                 case BPF_S_LD_IMM:
290                         A = K;
291                         continue;
292                 case BPF_S_LDX_IMM:
293                         X = K;
294                         continue;
295                 case BPF_S_LD_MEM:
296                         A = mem[K];
297                         continue;
298                 case BPF_S_LDX_MEM:
299                         X = mem[K];
300                         continue;
301                 case BPF_S_MISC_TAX:
302                         X = A;
303                         continue;
304                 case BPF_S_MISC_TXA:
305                         A = X;
306                         continue;
307                 case BPF_S_RET_K:
308                         return K;
309                 case BPF_S_RET_A:
310                         return A;
311                 case BPF_S_ST:
312                         mem[K] = A;
313                         continue;
314                 case BPF_S_STX:
315                         mem[K] = X;
316                         continue;
317                 case BPF_S_ANC_PROTOCOL:
318                         A = ntohs(skb->protocol);
319                         continue;
320                 case BPF_S_ANC_PKTTYPE:
321                         A = skb->pkt_type;
322                         continue;
323                 case BPF_S_ANC_IFINDEX:
324                         if (!skb->dev)
325                                 return 0;
326                         A = skb->dev->ifindex;
327                         continue;
328                 case BPF_S_ANC_MARK:
329                         A = skb->mark;
330                         continue;
331                 case BPF_S_ANC_QUEUE:
332                         A = skb->queue_mapping;
333                         continue;
334                 case BPF_S_ANC_HATYPE:
335                         if (!skb->dev)
336                                 return 0;
337                         A = skb->dev->type;
338                         continue;
339                 case BPF_S_ANC_RXHASH:
340                         A = skb->rxhash;
341                         continue;
342                 case BPF_S_ANC_CPU:
343                         A = raw_smp_processor_id();
344                         continue;
345                 case BPF_S_ANC_VLAN_TAG:
346                         A = vlan_tx_tag_get(skb);
347                         continue;
348                 case BPF_S_ANC_VLAN_TAG_PRESENT:
349                         A = !!vlan_tx_tag_present(skb);
350                         continue;
351                 case BPF_S_ANC_PAY_OFFSET:
352                         A = __skb_get_poff(skb);
353                         continue;
354                 case BPF_S_ANC_NLATTR: {
355                         struct nlattr *nla;
356
357                         if (skb_is_nonlinear(skb))
358                                 return 0;
359                         if (A > skb->len - sizeof(struct nlattr))
360                                 return 0;
361
362                         nla = nla_find((struct nlattr *)&skb->data[A],
363                                        skb->len - A, X);
364                         if (nla)
365                                 A = (void *)nla - (void *)skb->data;
366                         else
367                                 A = 0;
368                         continue;
369                 }
370                 case BPF_S_ANC_NLATTR_NEST: {
371                         struct nlattr *nla;
372
373                         if (skb_is_nonlinear(skb))
374                                 return 0;
375                         if (A > skb->len - sizeof(struct nlattr))
376                                 return 0;
377
378                         nla = (struct nlattr *)&skb->data[A];
379                         if (nla->nla_len > A - skb->len)
380                                 return 0;
381
382                         nla = nla_find_nested(nla, X);
383                         if (nla)
384                                 A = (void *)nla - (void *)skb->data;
385                         else
386                                 A = 0;
387                         continue;
388                 }
389 #ifdef CONFIG_SECCOMP_FILTER
390                 case BPF_S_ANC_SECCOMP_LD_W:
391                         A = seccomp_bpf_load(fentry->k);
392                         continue;
393 #endif
394                 default:
395                         WARN_RATELIMIT(1, "Unknown code:%u jt:%u tf:%u k:%u\n",
396                                        fentry->code, fentry->jt,
397                                        fentry->jf, fentry->k);
398                         return 0;
399                 }
400         }
401
402         return 0;
403 }
404 EXPORT_SYMBOL(sk_run_filter);
405
406 /*
407  * Security :
408  * A BPF program is able to use 16 cells of memory to store intermediate
409  * values (check u32 mem[BPF_MEMWORDS] in sk_run_filter())
410  * As we dont want to clear mem[] array for each packet going through
411  * sk_run_filter(), we check that filter loaded by user never try to read
412  * a cell if not previously written, and we check all branches to be sure
413  * a malicious user doesn't try to abuse us.
414  */
415 static int check_load_and_stores(struct sock_filter *filter, int flen)
416 {
417         u16 *masks, memvalid = 0; /* one bit per cell, 16 cells */
418         int pc, ret = 0;
419
420         BUILD_BUG_ON(BPF_MEMWORDS > 16);
421         masks = kmalloc(flen * sizeof(*masks), GFP_KERNEL);
422         if (!masks)
423                 return -ENOMEM;
424         memset(masks, 0xff, flen * sizeof(*masks));
425
426         for (pc = 0; pc < flen; pc++) {
427                 memvalid &= masks[pc];
428
429                 switch (filter[pc].code) {
430                 case BPF_S_ST:
431                 case BPF_S_STX:
432                         memvalid |= (1 << filter[pc].k);
433                         break;
434                 case BPF_S_LD_MEM:
435                 case BPF_S_LDX_MEM:
436                         if (!(memvalid & (1 << filter[pc].k))) {
437                                 ret = -EINVAL;
438                                 goto error;
439                         }
440                         break;
441                 case BPF_S_JMP_JA:
442                         /* a jump must set masks on target */
443                         masks[pc + 1 + filter[pc].k] &= memvalid;
444                         memvalid = ~0;
445                         break;
446                 case BPF_S_JMP_JEQ_K:
447                 case BPF_S_JMP_JEQ_X:
448                 case BPF_S_JMP_JGE_K:
449                 case BPF_S_JMP_JGE_X:
450                 case BPF_S_JMP_JGT_K:
451                 case BPF_S_JMP_JGT_X:
452                 case BPF_S_JMP_JSET_X:
453                 case BPF_S_JMP_JSET_K:
454                         /* a jump must set masks on targets */
455                         masks[pc + 1 + filter[pc].jt] &= memvalid;
456                         masks[pc + 1 + filter[pc].jf] &= memvalid;
457                         memvalid = ~0;
458                         break;
459                 }
460         }
461 error:
462         kfree(masks);
463         return ret;
464 }
465
466 /**
467  *      sk_chk_filter - verify socket filter code
468  *      @filter: filter to verify
469  *      @flen: length of filter
470  *
471  * Check the user's filter code. If we let some ugly
472  * filter code slip through kaboom! The filter must contain
473  * no references or jumps that are out of range, no illegal
474  * instructions, and must end with a RET instruction.
475  *
476  * All jumps are forward as they are not signed.
477  *
478  * Returns 0 if the rule set is legal or -EINVAL if not.
479  */
480 int sk_chk_filter(struct sock_filter *filter, unsigned int flen)
481 {
482         /*
483          * Valid instructions are initialized to non-0.
484          * Invalid instructions are initialized to 0.
485          */
486         static const u8 codes[] = {
487                 [BPF_ALU|BPF_ADD|BPF_K]  = BPF_S_ALU_ADD_K,
488                 [BPF_ALU|BPF_ADD|BPF_X]  = BPF_S_ALU_ADD_X,
489                 [BPF_ALU|BPF_SUB|BPF_K]  = BPF_S_ALU_SUB_K,
490                 [BPF_ALU|BPF_SUB|BPF_X]  = BPF_S_ALU_SUB_X,
491                 [BPF_ALU|BPF_MUL|BPF_K]  = BPF_S_ALU_MUL_K,
492                 [BPF_ALU|BPF_MUL|BPF_X]  = BPF_S_ALU_MUL_X,
493                 [BPF_ALU|BPF_DIV|BPF_X]  = BPF_S_ALU_DIV_X,
494                 [BPF_ALU|BPF_MOD|BPF_K]  = BPF_S_ALU_MOD_K,
495                 [BPF_ALU|BPF_MOD|BPF_X]  = BPF_S_ALU_MOD_X,
496                 [BPF_ALU|BPF_AND|BPF_K]  = BPF_S_ALU_AND_K,
497                 [BPF_ALU|BPF_AND|BPF_X]  = BPF_S_ALU_AND_X,
498                 [BPF_ALU|BPF_OR|BPF_K]   = BPF_S_ALU_OR_K,
499                 [BPF_ALU|BPF_OR|BPF_X]   = BPF_S_ALU_OR_X,
500                 [BPF_ALU|BPF_XOR|BPF_K]  = BPF_S_ALU_XOR_K,
501                 [BPF_ALU|BPF_XOR|BPF_X]  = BPF_S_ALU_XOR_X,
502                 [BPF_ALU|BPF_LSH|BPF_K]  = BPF_S_ALU_LSH_K,
503                 [BPF_ALU|BPF_LSH|BPF_X]  = BPF_S_ALU_LSH_X,
504                 [BPF_ALU|BPF_RSH|BPF_K]  = BPF_S_ALU_RSH_K,
505                 [BPF_ALU|BPF_RSH|BPF_X]  = BPF_S_ALU_RSH_X,
506                 [BPF_ALU|BPF_NEG]        = BPF_S_ALU_NEG,
507                 [BPF_LD|BPF_W|BPF_ABS]   = BPF_S_LD_W_ABS,
508                 [BPF_LD|BPF_H|BPF_ABS]   = BPF_S_LD_H_ABS,
509                 [BPF_LD|BPF_B|BPF_ABS]   = BPF_S_LD_B_ABS,
510                 [BPF_LD|BPF_W|BPF_LEN]   = BPF_S_LD_W_LEN,
511                 [BPF_LD|BPF_W|BPF_IND]   = BPF_S_LD_W_IND,
512                 [BPF_LD|BPF_H|BPF_IND]   = BPF_S_LD_H_IND,
513                 [BPF_LD|BPF_B|BPF_IND]   = BPF_S_LD_B_IND,
514                 [BPF_LD|BPF_IMM]         = BPF_S_LD_IMM,
515                 [BPF_LDX|BPF_W|BPF_LEN]  = BPF_S_LDX_W_LEN,
516                 [BPF_LDX|BPF_B|BPF_MSH]  = BPF_S_LDX_B_MSH,
517                 [BPF_LDX|BPF_IMM]        = BPF_S_LDX_IMM,
518                 [BPF_MISC|BPF_TAX]       = BPF_S_MISC_TAX,
519                 [BPF_MISC|BPF_TXA]       = BPF_S_MISC_TXA,
520                 [BPF_RET|BPF_K]          = BPF_S_RET_K,
521                 [BPF_RET|BPF_A]          = BPF_S_RET_A,
522                 [BPF_ALU|BPF_DIV|BPF_K]  = BPF_S_ALU_DIV_K,
523                 [BPF_LD|BPF_MEM]         = BPF_S_LD_MEM,
524                 [BPF_LDX|BPF_MEM]        = BPF_S_LDX_MEM,
525                 [BPF_ST]                 = BPF_S_ST,
526                 [BPF_STX]                = BPF_S_STX,
527                 [BPF_JMP|BPF_JA]         = BPF_S_JMP_JA,
528                 [BPF_JMP|BPF_JEQ|BPF_K]  = BPF_S_JMP_JEQ_K,
529                 [BPF_JMP|BPF_JEQ|BPF_X]  = BPF_S_JMP_JEQ_X,
530                 [BPF_JMP|BPF_JGE|BPF_K]  = BPF_S_JMP_JGE_K,
531                 [BPF_JMP|BPF_JGE|BPF_X]  = BPF_S_JMP_JGE_X,
532                 [BPF_JMP|BPF_JGT|BPF_K]  = BPF_S_JMP_JGT_K,
533                 [BPF_JMP|BPF_JGT|BPF_X]  = BPF_S_JMP_JGT_X,
534                 [BPF_JMP|BPF_JSET|BPF_K] = BPF_S_JMP_JSET_K,
535                 [BPF_JMP|BPF_JSET|BPF_X] = BPF_S_JMP_JSET_X,
536         };
537         int pc;
538         bool anc_found;
539
540         if (flen == 0 || flen > BPF_MAXINSNS)
541                 return -EINVAL;
542
543         /* check the filter code now */
544         for (pc = 0; pc < flen; pc++) {
545                 struct sock_filter *ftest = &filter[pc];
546                 u16 code = ftest->code;
547
548                 if (code >= ARRAY_SIZE(codes))
549                         return -EINVAL;
550                 code = codes[code];
551                 if (!code)
552                         return -EINVAL;
553                 /* Some instructions need special checks */
554                 switch (code) {
555                 case BPF_S_ALU_DIV_K:
556                         /* check for division by zero */
557                         if (ftest->k == 0)
558                                 return -EINVAL;
559                         ftest->k = reciprocal_value(ftest->k);
560                         break;
561                 case BPF_S_ALU_MOD_K:
562                         /* check for division by zero */
563                         if (ftest->k == 0)
564                                 return -EINVAL;
565                         break;
566                 case BPF_S_LD_MEM:
567                 case BPF_S_LDX_MEM:
568                 case BPF_S_ST:
569                 case BPF_S_STX:
570                         /* check for invalid memory addresses */
571                         if (ftest->k >= BPF_MEMWORDS)
572                                 return -EINVAL;
573                         break;
574                 case BPF_S_JMP_JA:
575                         /*
576                          * Note, the large ftest->k might cause loops.
577                          * Compare this with conditional jumps below,
578                          * where offsets are limited. --ANK (981016)
579                          */
580                         if (ftest->k >= (unsigned int)(flen-pc-1))
581                                 return -EINVAL;
582                         break;
583                 case BPF_S_JMP_JEQ_K:
584                 case BPF_S_JMP_JEQ_X:
585                 case BPF_S_JMP_JGE_K:
586                 case BPF_S_JMP_JGE_X:
587                 case BPF_S_JMP_JGT_K:
588                 case BPF_S_JMP_JGT_X:
589                 case BPF_S_JMP_JSET_X:
590                 case BPF_S_JMP_JSET_K:
591                         /* for conditionals both must be safe */
592                         if (pc + ftest->jt + 1 >= flen ||
593                             pc + ftest->jf + 1 >= flen)
594                                 return -EINVAL;
595                         break;
596                 case BPF_S_LD_W_ABS:
597                 case BPF_S_LD_H_ABS:
598                 case BPF_S_LD_B_ABS:
599                         anc_found = false;
600 #define ANCILLARY(CODE) case SKF_AD_OFF + SKF_AD_##CODE:        \
601                                 code = BPF_S_ANC_##CODE;        \
602                                 anc_found = true;               \
603                                 break
604                         switch (ftest->k) {
605                         ANCILLARY(PROTOCOL);
606                         ANCILLARY(PKTTYPE);
607                         ANCILLARY(IFINDEX);
608                         ANCILLARY(NLATTR);
609                         ANCILLARY(NLATTR_NEST);
610                         ANCILLARY(MARK);
611                         ANCILLARY(QUEUE);
612                         ANCILLARY(HATYPE);
613                         ANCILLARY(RXHASH);
614                         ANCILLARY(CPU);
615                         ANCILLARY(ALU_XOR_X);
616                         ANCILLARY(VLAN_TAG);
617                         ANCILLARY(VLAN_TAG_PRESENT);
618                         ANCILLARY(PAY_OFFSET);
619                         }
620
621                         /* ancillary operation unknown or unsupported */
622                         if (anc_found == false && ftest->k >= SKF_AD_OFF)
623                                 return -EINVAL;
624                 }
625                 ftest->code = code;
626         }
627
628         /* last instruction must be a RET code */
629         switch (filter[flen - 1].code) {
630         case BPF_S_RET_K:
631         case BPF_S_RET_A:
632                 return check_load_and_stores(filter, flen);
633         }
634         return -EINVAL;
635 }
636 EXPORT_SYMBOL(sk_chk_filter);
637
638 /**
639  *      sk_filter_release_rcu - Release a socket filter by rcu_head
640  *      @rcu: rcu_head that contains the sk_filter to free
641  */
642 void sk_filter_release_rcu(struct rcu_head *rcu)
643 {
644         struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);
645
646         bpf_jit_free(fp);
647 }
648 EXPORT_SYMBOL(sk_filter_release_rcu);
649
650 static int __sk_prepare_filter(struct sk_filter *fp)
651 {
652         int err;
653
654         fp->bpf_func = sk_run_filter;
655
656         err = sk_chk_filter(fp->insns, fp->len);
657         if (err)
658                 return err;
659
660         bpf_jit_compile(fp);
661         return 0;
662 }
663
664 /**
665  *      sk_unattached_filter_create - create an unattached filter
666  *      @fprog: the filter program
667  *      @pfp: the unattached filter that is created
668  *
669  * Create a filter independent of any socket. We first run some
670  * sanity checks on it to make sure it does not explode on us later.
671  * If an error occurs or there is insufficient memory for the filter
672  * a negative errno code is returned. On success the return is zero.
673  */
674 int sk_unattached_filter_create(struct sk_filter **pfp,
675                                 struct sock_fprog *fprog)
676 {
677         struct sk_filter *fp;
678         unsigned int fsize = sizeof(struct sock_filter) * fprog->len;
679         int err;
680
681         /* Make sure new filter is there and in the right amounts. */
682         if (fprog->filter == NULL)
683                 return -EINVAL;
684
685         fp = kmalloc(sk_filter_size(fprog->len), GFP_KERNEL);
686         if (!fp)
687                 return -ENOMEM;
688         memcpy(fp->insns, fprog->filter, fsize);
689
690         atomic_set(&fp->refcnt, 1);
691         fp->len = fprog->len;
692
693         err = __sk_prepare_filter(fp);
694         if (err)
695                 goto free_mem;
696
697         *pfp = fp;
698         return 0;
699 free_mem:
700         kfree(fp);
701         return err;
702 }
703 EXPORT_SYMBOL_GPL(sk_unattached_filter_create);
704
705 void sk_unattached_filter_destroy(struct sk_filter *fp)
706 {
707         sk_filter_release(fp);
708 }
709 EXPORT_SYMBOL_GPL(sk_unattached_filter_destroy);
710
711 /**
712  *      sk_attach_filter - attach a socket filter
713  *      @fprog: the filter program
714  *      @sk: the socket to use
715  *
716  * Attach the user's filter code. We first run some sanity checks on
717  * it to make sure it does not explode on us later. If an error
718  * occurs or there is insufficient memory for the filter a negative
719  * errno code is returned. On success the return is zero.
720  */
721 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
722 {
723         struct sk_filter *fp, *old_fp;
724         unsigned int fsize = sizeof(struct sock_filter) * fprog->len;
725         unsigned int sk_fsize = sk_filter_size(fprog->len);
726         int err;
727
728         if (sock_flag(sk, SOCK_FILTER_LOCKED))
729                 return -EPERM;
730
731         /* Make sure new filter is there and in the right amounts. */
732         if (fprog->filter == NULL)
733                 return -EINVAL;
734
735         fp = sock_kmalloc(sk, sk_fsize, GFP_KERNEL);
736         if (!fp)
737                 return -ENOMEM;
738         if (copy_from_user(fp->insns, fprog->filter, fsize)) {
739                 sock_kfree_s(sk, fp, sk_fsize);
740                 return -EFAULT;
741         }
742
743         atomic_set(&fp->refcnt, 1);
744         fp->len = fprog->len;
745
746         err = __sk_prepare_filter(fp);
747         if (err) {
748                 sk_filter_uncharge(sk, fp);
749                 return err;
750         }
751
752         old_fp = rcu_dereference_protected(sk->sk_filter,
753                                            sock_owned_by_user(sk));
754         rcu_assign_pointer(sk->sk_filter, fp);
755
756         if (old_fp)
757                 sk_filter_uncharge(sk, old_fp);
758         return 0;
759 }
760 EXPORT_SYMBOL_GPL(sk_attach_filter);
761
762 int sk_detach_filter(struct sock *sk)
763 {
764         int ret = -ENOENT;
765         struct sk_filter *filter;
766
767         if (sock_flag(sk, SOCK_FILTER_LOCKED))
768                 return -EPERM;
769
770         filter = rcu_dereference_protected(sk->sk_filter,
771                                            sock_owned_by_user(sk));
772         if (filter) {
773                 RCU_INIT_POINTER(sk->sk_filter, NULL);
774                 sk_filter_uncharge(sk, filter);
775                 ret = 0;
776         }
777         return ret;
778 }
779 EXPORT_SYMBOL_GPL(sk_detach_filter);
780
781 void sk_decode_filter(struct sock_filter *filt, struct sock_filter *to)
782 {
783         static const u16 decodes[] = {
784                 [BPF_S_ALU_ADD_K]       = BPF_ALU|BPF_ADD|BPF_K,
785                 [BPF_S_ALU_ADD_X]       = BPF_ALU|BPF_ADD|BPF_X,
786                 [BPF_S_ALU_SUB_K]       = BPF_ALU|BPF_SUB|BPF_K,
787                 [BPF_S_ALU_SUB_X]       = BPF_ALU|BPF_SUB|BPF_X,
788                 [BPF_S_ALU_MUL_K]       = BPF_ALU|BPF_MUL|BPF_K,
789                 [BPF_S_ALU_MUL_X]       = BPF_ALU|BPF_MUL|BPF_X,
790                 [BPF_S_ALU_DIV_X]       = BPF_ALU|BPF_DIV|BPF_X,
791                 [BPF_S_ALU_MOD_K]       = BPF_ALU|BPF_MOD|BPF_K,
792                 [BPF_S_ALU_MOD_X]       = BPF_ALU|BPF_MOD|BPF_X,
793                 [BPF_S_ALU_AND_K]       = BPF_ALU|BPF_AND|BPF_K,
794                 [BPF_S_ALU_AND_X]       = BPF_ALU|BPF_AND|BPF_X,
795                 [BPF_S_ALU_OR_K]        = BPF_ALU|BPF_OR|BPF_K,
796                 [BPF_S_ALU_OR_X]        = BPF_ALU|BPF_OR|BPF_X,
797                 [BPF_S_ALU_XOR_K]       = BPF_ALU|BPF_XOR|BPF_K,
798                 [BPF_S_ALU_XOR_X]       = BPF_ALU|BPF_XOR|BPF_X,
799                 [BPF_S_ALU_LSH_K]       = BPF_ALU|BPF_LSH|BPF_K,
800                 [BPF_S_ALU_LSH_X]       = BPF_ALU|BPF_LSH|BPF_X,
801                 [BPF_S_ALU_RSH_K]       = BPF_ALU|BPF_RSH|BPF_K,
802                 [BPF_S_ALU_RSH_X]       = BPF_ALU|BPF_RSH|BPF_X,
803                 [BPF_S_ALU_NEG]         = BPF_ALU|BPF_NEG,
804                 [BPF_S_LD_W_ABS]        = BPF_LD|BPF_W|BPF_ABS,
805                 [BPF_S_LD_H_ABS]        = BPF_LD|BPF_H|BPF_ABS,
806                 [BPF_S_LD_B_ABS]        = BPF_LD|BPF_B|BPF_ABS,
807                 [BPF_S_ANC_PROTOCOL]    = BPF_LD|BPF_B|BPF_ABS,
808                 [BPF_S_ANC_PKTTYPE]     = BPF_LD|BPF_B|BPF_ABS,
809                 [BPF_S_ANC_IFINDEX]     = BPF_LD|BPF_B|BPF_ABS,
810                 [BPF_S_ANC_NLATTR]      = BPF_LD|BPF_B|BPF_ABS,
811                 [BPF_S_ANC_NLATTR_NEST] = BPF_LD|BPF_B|BPF_ABS,
812                 [BPF_S_ANC_MARK]        = BPF_LD|BPF_B|BPF_ABS,
813                 [BPF_S_ANC_QUEUE]       = BPF_LD|BPF_B|BPF_ABS,
814                 [BPF_S_ANC_HATYPE]      = BPF_LD|BPF_B|BPF_ABS,
815                 [BPF_S_ANC_RXHASH]      = BPF_LD|BPF_B|BPF_ABS,
816                 [BPF_S_ANC_CPU]         = BPF_LD|BPF_B|BPF_ABS,
817                 [BPF_S_ANC_ALU_XOR_X]   = BPF_LD|BPF_B|BPF_ABS,
818                 [BPF_S_ANC_SECCOMP_LD_W] = BPF_LD|BPF_B|BPF_ABS,
819                 [BPF_S_ANC_VLAN_TAG]    = BPF_LD|BPF_B|BPF_ABS,
820                 [BPF_S_ANC_VLAN_TAG_PRESENT] = BPF_LD|BPF_B|BPF_ABS,
821                 [BPF_S_ANC_PAY_OFFSET]  = BPF_LD|BPF_B|BPF_ABS,
822                 [BPF_S_LD_W_LEN]        = BPF_LD|BPF_W|BPF_LEN,
823                 [BPF_S_LD_W_IND]        = BPF_LD|BPF_W|BPF_IND,
824                 [BPF_S_LD_H_IND]        = BPF_LD|BPF_H|BPF_IND,
825                 [BPF_S_LD_B_IND]        = BPF_LD|BPF_B|BPF_IND,
826                 [BPF_S_LD_IMM]          = BPF_LD|BPF_IMM,
827                 [BPF_S_LDX_W_LEN]       = BPF_LDX|BPF_W|BPF_LEN,
828                 [BPF_S_LDX_B_MSH]       = BPF_LDX|BPF_B|BPF_MSH,
829                 [BPF_S_LDX_IMM]         = BPF_LDX|BPF_IMM,
830                 [BPF_S_MISC_TAX]        = BPF_MISC|BPF_TAX,
831                 [BPF_S_MISC_TXA]        = BPF_MISC|BPF_TXA,
832                 [BPF_S_RET_K]           = BPF_RET|BPF_K,
833                 [BPF_S_RET_A]           = BPF_RET|BPF_A,
834                 [BPF_S_ALU_DIV_K]       = BPF_ALU|BPF_DIV|BPF_K,
835                 [BPF_S_LD_MEM]          = BPF_LD|BPF_MEM,
836                 [BPF_S_LDX_MEM]         = BPF_LDX|BPF_MEM,
837                 [BPF_S_ST]              = BPF_ST,
838                 [BPF_S_STX]             = BPF_STX,
839                 [BPF_S_JMP_JA]          = BPF_JMP|BPF_JA,
840                 [BPF_S_JMP_JEQ_K]       = BPF_JMP|BPF_JEQ|BPF_K,
841                 [BPF_S_JMP_JEQ_X]       = BPF_JMP|BPF_JEQ|BPF_X,
842                 [BPF_S_JMP_JGE_K]       = BPF_JMP|BPF_JGE|BPF_K,
843                 [BPF_S_JMP_JGE_X]       = BPF_JMP|BPF_JGE|BPF_X,
844                 [BPF_S_JMP_JGT_K]       = BPF_JMP|BPF_JGT|BPF_K,
845                 [BPF_S_JMP_JGT_X]       = BPF_JMP|BPF_JGT|BPF_X,
846                 [BPF_S_JMP_JSET_K]      = BPF_JMP|BPF_JSET|BPF_K,
847                 [BPF_S_JMP_JSET_X]      = BPF_JMP|BPF_JSET|BPF_X,
848         };
849         u16 code;
850
851         code = filt->code;
852
853         to->code = decodes[code];
854         to->jt = filt->jt;
855         to->jf = filt->jf;
856
857         if (code == BPF_S_ALU_DIV_K) {
858                 /*
859                  * When loaded this rule user gave us X, which was
860                  * translated into R = r(X). Now we calculate the
861                  * RR = r(R) and report it back. If next time this
862                  * value is loaded and RRR = r(RR) is calculated
863                  * then the R == RRR will be true.
864                  *
865                  * One exception. X == 1 translates into R == 0 and
866                  * we can't calculate RR out of it with r().
867                  */
868
869                 if (filt->k == 0)
870                         to->k = 1;
871                 else
872                         to->k = reciprocal_value(filt->k);
873
874                 BUG_ON(reciprocal_value(to->k) != filt->k);
875         } else
876                 to->k = filt->k;
877 }
878
879 int sk_get_filter(struct sock *sk, struct sock_filter __user *ubuf, unsigned int len)
880 {
881         struct sk_filter *filter;
882         int i, ret;
883
884         lock_sock(sk);
885         filter = rcu_dereference_protected(sk->sk_filter,
886                         sock_owned_by_user(sk));
887         ret = 0;
888         if (!filter)
889                 goto out;
890         ret = filter->len;
891         if (!len)
892                 goto out;
893         ret = -EINVAL;
894         if (len < filter->len)
895                 goto out;
896
897         ret = -EFAULT;
898         for (i = 0; i < filter->len; i++) {
899                 struct sock_filter fb;
900
901                 sk_decode_filter(&filter->insns[i], &fb);
902                 if (copy_to_user(&ubuf[i], &fb, sizeof(fb)))
903                         goto out;
904         }
905
906         ret = filter->len;
907 out:
908         release_sock(sk);
909         return ret;
910 }