]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - net/ipv4/ipmr.c
Merge remote-tracking branch 'remotes/stable/linux-4.4.y' into karo-tx6-mainline
[karo-tx-linux.git] / net / ipv4 / ipmr.c
1 /*
2  *      IP multicast routing support for mrouted 3.6/3.8
3  *
4  *              (c) 1995 Alan Cox, <alan@lxorguk.ukuu.org.uk>
5  *        Linux Consultancy and Custom Driver Development
6  *
7  *      This program is free software; you can redistribute it and/or
8  *      modify it under the terms of the GNU General Public License
9  *      as published by the Free Software Foundation; either version
10  *      2 of the License, or (at your option) any later version.
11  *
12  *      Fixes:
13  *      Michael Chastain        :       Incorrect size of copying.
14  *      Alan Cox                :       Added the cache manager code
15  *      Alan Cox                :       Fixed the clone/copy bug and device race.
16  *      Mike McLagan            :       Routing by source
17  *      Malcolm Beattie         :       Buffer handling fixes.
18  *      Alexey Kuznetsov        :       Double buffer free and other fixes.
19  *      SVR Anand               :       Fixed several multicast bugs and problems.
20  *      Alexey Kuznetsov        :       Status, optimisations and more.
21  *      Brad Parker             :       Better behaviour on mrouted upcall
22  *                                      overflow.
23  *      Carlos Picoto           :       PIMv1 Support
24  *      Pavlin Ivanov Radoslavov:       PIMv2 Registers must checksum only PIM header
25  *                                      Relax this requirement to work with older peers.
26  *
27  */
28
29 #include <asm/uaccess.h>
30 #include <linux/types.h>
31 #include <linux/capability.h>
32 #include <linux/errno.h>
33 #include <linux/timer.h>
34 #include <linux/mm.h>
35 #include <linux/kernel.h>
36 #include <linux/fcntl.h>
37 #include <linux/stat.h>
38 #include <linux/socket.h>
39 #include <linux/in.h>
40 #include <linux/inet.h>
41 #include <linux/netdevice.h>
42 #include <linux/inetdevice.h>
43 #include <linux/igmp.h>
44 #include <linux/proc_fs.h>
45 #include <linux/seq_file.h>
46 #include <linux/mroute.h>
47 #include <linux/init.h>
48 #include <linux/if_ether.h>
49 #include <linux/slab.h>
50 #include <net/net_namespace.h>
51 #include <net/ip.h>
52 #include <net/protocol.h>
53 #include <linux/skbuff.h>
54 #include <net/route.h>
55 #include <net/sock.h>
56 #include <net/icmp.h>
57 #include <net/udp.h>
58 #include <net/raw.h>
59 #include <linux/notifier.h>
60 #include <linux/if_arp.h>
61 #include <linux/netfilter_ipv4.h>
62 #include <linux/compat.h>
63 #include <linux/export.h>
64 #include <net/ip_tunnels.h>
65 #include <net/checksum.h>
66 #include <net/netlink.h>
67 #include <net/fib_rules.h>
68 #include <linux/netconf.h>
69
70 #if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
71 #define CONFIG_IP_PIMSM 1
72 #endif
73
74 struct mr_table {
75         struct list_head        list;
76         possible_net_t          net;
77         u32                     id;
78         struct sock __rcu       *mroute_sk;
79         struct timer_list       ipmr_expire_timer;
80         struct list_head        mfc_unres_queue;
81         struct list_head        mfc_cache_array[MFC_LINES];
82         struct vif_device       vif_table[MAXVIFS];
83         int                     maxvif;
84         atomic_t                cache_resolve_queue_len;
85         bool                    mroute_do_assert;
86         bool                    mroute_do_pim;
87 #if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
88         int                     mroute_reg_vif_num;
89 #endif
90 };
91
92 struct ipmr_rule {
93         struct fib_rule         common;
94 };
95
96 struct ipmr_result {
97         struct mr_table         *mrt;
98 };
99
100 /* Big lock, protecting vif table, mrt cache and mroute socket state.
101  * Note that the changes are semaphored via rtnl_lock.
102  */
103
104 static DEFINE_RWLOCK(mrt_lock);
105
106 /*
107  *      Multicast router control variables
108  */
109
110 #define VIF_EXISTS(_mrt, _idx) ((_mrt)->vif_table[_idx].dev != NULL)
111
112 /* Special spinlock for queue of unresolved entries */
113 static DEFINE_SPINLOCK(mfc_unres_lock);
114
115 /* We return to original Alan's scheme. Hash table of resolved
116  * entries is changed only in process context and protected
117  * with weak lock mrt_lock. Queue of unresolved entries is protected
118  * with strong spinlock mfc_unres_lock.
119  *
120  * In this case data path is free of exclusive locks at all.
121  */
122
123 static struct kmem_cache *mrt_cachep __read_mostly;
124
125 static struct mr_table *ipmr_new_table(struct net *net, u32 id);
126 static void ipmr_free_table(struct mr_table *mrt);
127
128 static void ip_mr_forward(struct net *net, struct mr_table *mrt,
129                           struct sk_buff *skb, struct mfc_cache *cache,
130                           int local);
131 static int ipmr_cache_report(struct mr_table *mrt,
132                              struct sk_buff *pkt, vifi_t vifi, int assert);
133 static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
134                               struct mfc_cache *c, struct rtmsg *rtm);
135 static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
136                                  int cmd);
137 static void mroute_clean_tables(struct mr_table *mrt, bool all);
138 static void ipmr_expire_process(unsigned long arg);
139
140 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
141 #define ipmr_for_each_table(mrt, net) \
142         list_for_each_entry_rcu(mrt, &net->ipv4.mr_tables, list)
143
144 static struct mr_table *ipmr_get_table(struct net *net, u32 id)
145 {
146         struct mr_table *mrt;
147
148         ipmr_for_each_table(mrt, net) {
149                 if (mrt->id == id)
150                         return mrt;
151         }
152         return NULL;
153 }
154
155 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
156                            struct mr_table **mrt)
157 {
158         int err;
159         struct ipmr_result res;
160         struct fib_lookup_arg arg = {
161                 .result = &res,
162                 .flags = FIB_LOOKUP_NOREF,
163         };
164
165         err = fib_rules_lookup(net->ipv4.mr_rules_ops,
166                                flowi4_to_flowi(flp4), 0, &arg);
167         if (err < 0)
168                 return err;
169         *mrt = res.mrt;
170         return 0;
171 }
172
173 static int ipmr_rule_action(struct fib_rule *rule, struct flowi *flp,
174                             int flags, struct fib_lookup_arg *arg)
175 {
176         struct ipmr_result *res = arg->result;
177         struct mr_table *mrt;
178
179         switch (rule->action) {
180         case FR_ACT_TO_TBL:
181                 break;
182         case FR_ACT_UNREACHABLE:
183                 return -ENETUNREACH;
184         case FR_ACT_PROHIBIT:
185                 return -EACCES;
186         case FR_ACT_BLACKHOLE:
187         default:
188                 return -EINVAL;
189         }
190
191         mrt = ipmr_get_table(rule->fr_net, rule->table);
192         if (!mrt)
193                 return -EAGAIN;
194         res->mrt = mrt;
195         return 0;
196 }
197
198 static int ipmr_rule_match(struct fib_rule *rule, struct flowi *fl, int flags)
199 {
200         return 1;
201 }
202
203 static const struct nla_policy ipmr_rule_policy[FRA_MAX + 1] = {
204         FRA_GENERIC_POLICY,
205 };
206
207 static int ipmr_rule_configure(struct fib_rule *rule, struct sk_buff *skb,
208                                struct fib_rule_hdr *frh, struct nlattr **tb)
209 {
210         return 0;
211 }
212
213 static int ipmr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh,
214                              struct nlattr **tb)
215 {
216         return 1;
217 }
218
219 static int ipmr_rule_fill(struct fib_rule *rule, struct sk_buff *skb,
220                           struct fib_rule_hdr *frh)
221 {
222         frh->dst_len = 0;
223         frh->src_len = 0;
224         frh->tos     = 0;
225         return 0;
226 }
227
228 static const struct fib_rules_ops __net_initconst ipmr_rules_ops_template = {
229         .family         = RTNL_FAMILY_IPMR,
230         .rule_size      = sizeof(struct ipmr_rule),
231         .addr_size      = sizeof(u32),
232         .action         = ipmr_rule_action,
233         .match          = ipmr_rule_match,
234         .configure      = ipmr_rule_configure,
235         .compare        = ipmr_rule_compare,
236         .fill           = ipmr_rule_fill,
237         .nlgroup        = RTNLGRP_IPV4_RULE,
238         .policy         = ipmr_rule_policy,
239         .owner          = THIS_MODULE,
240 };
241
242 static int __net_init ipmr_rules_init(struct net *net)
243 {
244         struct fib_rules_ops *ops;
245         struct mr_table *mrt;
246         int err;
247
248         ops = fib_rules_register(&ipmr_rules_ops_template, net);
249         if (IS_ERR(ops))
250                 return PTR_ERR(ops);
251
252         INIT_LIST_HEAD(&net->ipv4.mr_tables);
253
254         mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
255         if (!mrt) {
256                 err = -ENOMEM;
257                 goto err1;
258         }
259
260         err = fib_default_rule_add(ops, 0x7fff, RT_TABLE_DEFAULT, 0);
261         if (err < 0)
262                 goto err2;
263
264         net->ipv4.mr_rules_ops = ops;
265         return 0;
266
267 err2:
268         ipmr_free_table(mrt);
269 err1:
270         fib_rules_unregister(ops);
271         return err;
272 }
273
274 static void __net_exit ipmr_rules_exit(struct net *net)
275 {
276         struct mr_table *mrt, *next;
277
278         rtnl_lock();
279         list_for_each_entry_safe(mrt, next, &net->ipv4.mr_tables, list) {
280                 list_del(&mrt->list);
281                 ipmr_free_table(mrt);
282         }
283         fib_rules_unregister(net->ipv4.mr_rules_ops);
284         rtnl_unlock();
285 }
286 #else
287 #define ipmr_for_each_table(mrt, net) \
288         for (mrt = net->ipv4.mrt; mrt; mrt = NULL)
289
290 static struct mr_table *ipmr_get_table(struct net *net, u32 id)
291 {
292         return net->ipv4.mrt;
293 }
294
295 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
296                            struct mr_table **mrt)
297 {
298         *mrt = net->ipv4.mrt;
299         return 0;
300 }
301
302 static int __net_init ipmr_rules_init(struct net *net)
303 {
304         net->ipv4.mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
305         return net->ipv4.mrt ? 0 : -ENOMEM;
306 }
307
308 static void __net_exit ipmr_rules_exit(struct net *net)
309 {
310         rtnl_lock();
311         ipmr_free_table(net->ipv4.mrt);
312         net->ipv4.mrt = NULL;
313         rtnl_unlock();
314 }
315 #endif
316
317 static struct mr_table *ipmr_new_table(struct net *net, u32 id)
318 {
319         struct mr_table *mrt;
320         unsigned int i;
321
322         mrt = ipmr_get_table(net, id);
323         if (mrt)
324                 return mrt;
325
326         mrt = kzalloc(sizeof(*mrt), GFP_KERNEL);
327         if (!mrt)
328                 return NULL;
329         write_pnet(&mrt->net, net);
330         mrt->id = id;
331
332         /* Forwarding cache */
333         for (i = 0; i < MFC_LINES; i++)
334                 INIT_LIST_HEAD(&mrt->mfc_cache_array[i]);
335
336         INIT_LIST_HEAD(&mrt->mfc_unres_queue);
337
338         setup_timer(&mrt->ipmr_expire_timer, ipmr_expire_process,
339                     (unsigned long)mrt);
340
341 #ifdef CONFIG_IP_PIMSM
342         mrt->mroute_reg_vif_num = -1;
343 #endif
344 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
345         list_add_tail_rcu(&mrt->list, &net->ipv4.mr_tables);
346 #endif
347         return mrt;
348 }
349
350 static void ipmr_free_table(struct mr_table *mrt)
351 {
352         del_timer_sync(&mrt->ipmr_expire_timer);
353         mroute_clean_tables(mrt, true);
354         kfree(mrt);
355 }
356
357 /* Service routines creating virtual interfaces: DVMRP tunnels and PIMREG */
358
359 static void ipmr_del_tunnel(struct net_device *dev, struct vifctl *v)
360 {
361         struct net *net = dev_net(dev);
362
363         dev_close(dev);
364
365         dev = __dev_get_by_name(net, "tunl0");
366         if (dev) {
367                 const struct net_device_ops *ops = dev->netdev_ops;
368                 struct ifreq ifr;
369                 struct ip_tunnel_parm p;
370
371                 memset(&p, 0, sizeof(p));
372                 p.iph.daddr = v->vifc_rmt_addr.s_addr;
373                 p.iph.saddr = v->vifc_lcl_addr.s_addr;
374                 p.iph.version = 4;
375                 p.iph.ihl = 5;
376                 p.iph.protocol = IPPROTO_IPIP;
377                 sprintf(p.name, "dvmrp%d", v->vifc_vifi);
378                 ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
379
380                 if (ops->ndo_do_ioctl) {
381                         mm_segment_t oldfs = get_fs();
382
383                         set_fs(KERNEL_DS);
384                         ops->ndo_do_ioctl(dev, &ifr, SIOCDELTUNNEL);
385                         set_fs(oldfs);
386                 }
387         }
388 }
389
390 static
391 struct net_device *ipmr_new_tunnel(struct net *net, struct vifctl *v)
392 {
393         struct net_device  *dev;
394
395         dev = __dev_get_by_name(net, "tunl0");
396
397         if (dev) {
398                 const struct net_device_ops *ops = dev->netdev_ops;
399                 int err;
400                 struct ifreq ifr;
401                 struct ip_tunnel_parm p;
402                 struct in_device  *in_dev;
403
404                 memset(&p, 0, sizeof(p));
405                 p.iph.daddr = v->vifc_rmt_addr.s_addr;
406                 p.iph.saddr = v->vifc_lcl_addr.s_addr;
407                 p.iph.version = 4;
408                 p.iph.ihl = 5;
409                 p.iph.protocol = IPPROTO_IPIP;
410                 sprintf(p.name, "dvmrp%d", v->vifc_vifi);
411                 ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
412
413                 if (ops->ndo_do_ioctl) {
414                         mm_segment_t oldfs = get_fs();
415
416                         set_fs(KERNEL_DS);
417                         err = ops->ndo_do_ioctl(dev, &ifr, SIOCADDTUNNEL);
418                         set_fs(oldfs);
419                 } else {
420                         err = -EOPNOTSUPP;
421                 }
422                 dev = NULL;
423
424                 if (err == 0 &&
425                     (dev = __dev_get_by_name(net, p.name)) != NULL) {
426                         dev->flags |= IFF_MULTICAST;
427
428                         in_dev = __in_dev_get_rtnl(dev);
429                         if (!in_dev)
430                                 goto failure;
431
432                         ipv4_devconf_setall(in_dev);
433                         neigh_parms_data_state_setall(in_dev->arp_parms);
434                         IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
435
436                         if (dev_open(dev))
437                                 goto failure;
438                         dev_hold(dev);
439                 }
440         }
441         return dev;
442
443 failure:
444         unregister_netdevice(dev);
445         return NULL;
446 }
447
448 #ifdef CONFIG_IP_PIMSM
449
450 static netdev_tx_t reg_vif_xmit(struct sk_buff *skb, struct net_device *dev)
451 {
452         struct net *net = dev_net(dev);
453         struct mr_table *mrt;
454         struct flowi4 fl4 = {
455                 .flowi4_oif     = dev->ifindex,
456                 .flowi4_iif     = skb->skb_iif ? : LOOPBACK_IFINDEX,
457                 .flowi4_mark    = skb->mark,
458         };
459         int err;
460
461         err = ipmr_fib_lookup(net, &fl4, &mrt);
462         if (err < 0) {
463                 kfree_skb(skb);
464                 return err;
465         }
466
467         read_lock(&mrt_lock);
468         dev->stats.tx_bytes += skb->len;
469         dev->stats.tx_packets++;
470         ipmr_cache_report(mrt, skb, mrt->mroute_reg_vif_num, IGMPMSG_WHOLEPKT);
471         read_unlock(&mrt_lock);
472         kfree_skb(skb);
473         return NETDEV_TX_OK;
474 }
475
476 static int reg_vif_get_iflink(const struct net_device *dev)
477 {
478         return 0;
479 }
480
481 static const struct net_device_ops reg_vif_netdev_ops = {
482         .ndo_start_xmit = reg_vif_xmit,
483         .ndo_get_iflink = reg_vif_get_iflink,
484 };
485
486 static void reg_vif_setup(struct net_device *dev)
487 {
488         dev->type               = ARPHRD_PIMREG;
489         dev->mtu                = ETH_DATA_LEN - sizeof(struct iphdr) - 8;
490         dev->flags              = IFF_NOARP;
491         dev->netdev_ops         = &reg_vif_netdev_ops;
492         dev->destructor         = free_netdev;
493         dev->features           |= NETIF_F_NETNS_LOCAL;
494 }
495
496 static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
497 {
498         struct net_device *dev;
499         struct in_device *in_dev;
500         char name[IFNAMSIZ];
501
502         if (mrt->id == RT_TABLE_DEFAULT)
503                 sprintf(name, "pimreg");
504         else
505                 sprintf(name, "pimreg%u", mrt->id);
506
507         dev = alloc_netdev(0, name, NET_NAME_UNKNOWN, reg_vif_setup);
508
509         if (!dev)
510                 return NULL;
511
512         dev_net_set(dev, net);
513
514         if (register_netdevice(dev)) {
515                 free_netdev(dev);
516                 return NULL;
517         }
518
519         rcu_read_lock();
520         in_dev = __in_dev_get_rcu(dev);
521         if (!in_dev) {
522                 rcu_read_unlock();
523                 goto failure;
524         }
525
526         ipv4_devconf_setall(in_dev);
527         neigh_parms_data_state_setall(in_dev->arp_parms);
528         IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
529         rcu_read_unlock();
530
531         if (dev_open(dev))
532                 goto failure;
533
534         dev_hold(dev);
535
536         return dev;
537
538 failure:
539         unregister_netdevice(dev);
540         return NULL;
541 }
542 #endif
543
544 /**
545  *      vif_delete - Delete a VIF entry
546  *      @notify: Set to 1, if the caller is a notifier_call
547  */
548
549 static int vif_delete(struct mr_table *mrt, int vifi, int notify,
550                       struct list_head *head)
551 {
552         struct vif_device *v;
553         struct net_device *dev;
554         struct in_device *in_dev;
555
556         if (vifi < 0 || vifi >= mrt->maxvif)
557                 return -EADDRNOTAVAIL;
558
559         v = &mrt->vif_table[vifi];
560
561         write_lock_bh(&mrt_lock);
562         dev = v->dev;
563         v->dev = NULL;
564
565         if (!dev) {
566                 write_unlock_bh(&mrt_lock);
567                 return -EADDRNOTAVAIL;
568         }
569
570 #ifdef CONFIG_IP_PIMSM
571         if (vifi == mrt->mroute_reg_vif_num)
572                 mrt->mroute_reg_vif_num = -1;
573 #endif
574
575         if (vifi + 1 == mrt->maxvif) {
576                 int tmp;
577
578                 for (tmp = vifi - 1; tmp >= 0; tmp--) {
579                         if (VIF_EXISTS(mrt, tmp))
580                                 break;
581                 }
582                 mrt->maxvif = tmp+1;
583         }
584
585         write_unlock_bh(&mrt_lock);
586
587         dev_set_allmulti(dev, -1);
588
589         in_dev = __in_dev_get_rtnl(dev);
590         if (in_dev) {
591                 IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)--;
592                 inet_netconf_notify_devconf(dev_net(dev),
593                                             NETCONFA_MC_FORWARDING,
594                                             dev->ifindex, &in_dev->cnf);
595                 ip_rt_multicast_event(in_dev);
596         }
597
598         if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER) && !notify)
599                 unregister_netdevice_queue(dev, head);
600
601         dev_put(dev);
602         return 0;
603 }
604
605 static void ipmr_cache_free_rcu(struct rcu_head *head)
606 {
607         struct mfc_cache *c = container_of(head, struct mfc_cache, rcu);
608
609         kmem_cache_free(mrt_cachep, c);
610 }
611
612 static inline void ipmr_cache_free(struct mfc_cache *c)
613 {
614         call_rcu(&c->rcu, ipmr_cache_free_rcu);
615 }
616
617 /* Destroy an unresolved cache entry, killing queued skbs
618  * and reporting error to netlink readers.
619  */
620
621 static void ipmr_destroy_unres(struct mr_table *mrt, struct mfc_cache *c)
622 {
623         struct net *net = read_pnet(&mrt->net);
624         struct sk_buff *skb;
625         struct nlmsgerr *e;
626
627         atomic_dec(&mrt->cache_resolve_queue_len);
628
629         while ((skb = skb_dequeue(&c->mfc_un.unres.unresolved))) {
630                 if (ip_hdr(skb)->version == 0) {
631                         struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr));
632                         nlh->nlmsg_type = NLMSG_ERROR;
633                         nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
634                         skb_trim(skb, nlh->nlmsg_len);
635                         e = nlmsg_data(nlh);
636                         e->error = -ETIMEDOUT;
637                         memset(&e->msg, 0, sizeof(e->msg));
638
639                         rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
640                 } else {
641                         kfree_skb(skb);
642                 }
643         }
644
645         ipmr_cache_free(c);
646 }
647
648
649 /* Timer process for the unresolved queue. */
650
651 static void ipmr_expire_process(unsigned long arg)
652 {
653         struct mr_table *mrt = (struct mr_table *)arg;
654         unsigned long now;
655         unsigned long expires;
656         struct mfc_cache *c, *next;
657
658         if (!spin_trylock(&mfc_unres_lock)) {
659                 mod_timer(&mrt->ipmr_expire_timer, jiffies+HZ/10);
660                 return;
661         }
662
663         if (list_empty(&mrt->mfc_unres_queue))
664                 goto out;
665
666         now = jiffies;
667         expires = 10*HZ;
668
669         list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
670                 if (time_after(c->mfc_un.unres.expires, now)) {
671                         unsigned long interval = c->mfc_un.unres.expires - now;
672                         if (interval < expires)
673                                 expires = interval;
674                         continue;
675                 }
676
677                 list_del(&c->list);
678                 mroute_netlink_event(mrt, c, RTM_DELROUTE);
679                 ipmr_destroy_unres(mrt, c);
680         }
681
682         if (!list_empty(&mrt->mfc_unres_queue))
683                 mod_timer(&mrt->ipmr_expire_timer, jiffies + expires);
684
685 out:
686         spin_unlock(&mfc_unres_lock);
687 }
688
689 /* Fill oifs list. It is called under write locked mrt_lock. */
690
691 static void ipmr_update_thresholds(struct mr_table *mrt, struct mfc_cache *cache,
692                                    unsigned char *ttls)
693 {
694         int vifi;
695
696         cache->mfc_un.res.minvif = MAXVIFS;
697         cache->mfc_un.res.maxvif = 0;
698         memset(cache->mfc_un.res.ttls, 255, MAXVIFS);
699
700         for (vifi = 0; vifi < mrt->maxvif; vifi++) {
701                 if (VIF_EXISTS(mrt, vifi) &&
702                     ttls[vifi] && ttls[vifi] < 255) {
703                         cache->mfc_un.res.ttls[vifi] = ttls[vifi];
704                         if (cache->mfc_un.res.minvif > vifi)
705                                 cache->mfc_un.res.minvif = vifi;
706                         if (cache->mfc_un.res.maxvif <= vifi)
707                                 cache->mfc_un.res.maxvif = vifi + 1;
708                 }
709         }
710 }
711
712 static int vif_add(struct net *net, struct mr_table *mrt,
713                    struct vifctl *vifc, int mrtsock)
714 {
715         int vifi = vifc->vifc_vifi;
716         struct vif_device *v = &mrt->vif_table[vifi];
717         struct net_device *dev;
718         struct in_device *in_dev;
719         int err;
720
721         /* Is vif busy ? */
722         if (VIF_EXISTS(mrt, vifi))
723                 return -EADDRINUSE;
724
725         switch (vifc->vifc_flags) {
726 #ifdef CONFIG_IP_PIMSM
727         case VIFF_REGISTER:
728                 /*
729                  * Special Purpose VIF in PIM
730                  * All the packets will be sent to the daemon
731                  */
732                 if (mrt->mroute_reg_vif_num >= 0)
733                         return -EADDRINUSE;
734                 dev = ipmr_reg_vif(net, mrt);
735                 if (!dev)
736                         return -ENOBUFS;
737                 err = dev_set_allmulti(dev, 1);
738                 if (err) {
739                         unregister_netdevice(dev);
740                         dev_put(dev);
741                         return err;
742                 }
743                 break;
744 #endif
745         case VIFF_TUNNEL:
746                 dev = ipmr_new_tunnel(net, vifc);
747                 if (!dev)
748                         return -ENOBUFS;
749                 err = dev_set_allmulti(dev, 1);
750                 if (err) {
751                         ipmr_del_tunnel(dev, vifc);
752                         dev_put(dev);
753                         return err;
754                 }
755                 break;
756
757         case VIFF_USE_IFINDEX:
758         case 0:
759                 if (vifc->vifc_flags == VIFF_USE_IFINDEX) {
760                         dev = dev_get_by_index(net, vifc->vifc_lcl_ifindex);
761                         if (dev && !__in_dev_get_rtnl(dev)) {
762                                 dev_put(dev);
763                                 return -EADDRNOTAVAIL;
764                         }
765                 } else {
766                         dev = ip_dev_find(net, vifc->vifc_lcl_addr.s_addr);
767                 }
768                 if (!dev)
769                         return -EADDRNOTAVAIL;
770                 err = dev_set_allmulti(dev, 1);
771                 if (err) {
772                         dev_put(dev);
773                         return err;
774                 }
775                 break;
776         default:
777                 return -EINVAL;
778         }
779
780         in_dev = __in_dev_get_rtnl(dev);
781         if (!in_dev) {
782                 dev_put(dev);
783                 return -EADDRNOTAVAIL;
784         }
785         IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)++;
786         inet_netconf_notify_devconf(net, NETCONFA_MC_FORWARDING, dev->ifindex,
787                                     &in_dev->cnf);
788         ip_rt_multicast_event(in_dev);
789
790         /* Fill in the VIF structures */
791
792         v->rate_limit = vifc->vifc_rate_limit;
793         v->local = vifc->vifc_lcl_addr.s_addr;
794         v->remote = vifc->vifc_rmt_addr.s_addr;
795         v->flags = vifc->vifc_flags;
796         if (!mrtsock)
797                 v->flags |= VIFF_STATIC;
798         v->threshold = vifc->vifc_threshold;
799         v->bytes_in = 0;
800         v->bytes_out = 0;
801         v->pkt_in = 0;
802         v->pkt_out = 0;
803         v->link = dev->ifindex;
804         if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER))
805                 v->link = dev_get_iflink(dev);
806
807         /* And finish update writing critical data */
808         write_lock_bh(&mrt_lock);
809         v->dev = dev;
810 #ifdef CONFIG_IP_PIMSM
811         if (v->flags & VIFF_REGISTER)
812                 mrt->mroute_reg_vif_num = vifi;
813 #endif
814         if (vifi+1 > mrt->maxvif)
815                 mrt->maxvif = vifi+1;
816         write_unlock_bh(&mrt_lock);
817         return 0;
818 }
819
820 /* called with rcu_read_lock() */
821 static struct mfc_cache *ipmr_cache_find(struct mr_table *mrt,
822                                          __be32 origin,
823                                          __be32 mcastgrp)
824 {
825         int line = MFC_HASH(mcastgrp, origin);
826         struct mfc_cache *c;
827
828         list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list) {
829                 if (c->mfc_origin == origin && c->mfc_mcastgrp == mcastgrp)
830                         return c;
831         }
832         return NULL;
833 }
834
835 /* Look for a (*,*,oif) entry */
836 static struct mfc_cache *ipmr_cache_find_any_parent(struct mr_table *mrt,
837                                                     int vifi)
838 {
839         int line = MFC_HASH(htonl(INADDR_ANY), htonl(INADDR_ANY));
840         struct mfc_cache *c;
841
842         list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list)
843                 if (c->mfc_origin == htonl(INADDR_ANY) &&
844                     c->mfc_mcastgrp == htonl(INADDR_ANY) &&
845                     c->mfc_un.res.ttls[vifi] < 255)
846                         return c;
847
848         return NULL;
849 }
850
851 /* Look for a (*,G) entry */
852 static struct mfc_cache *ipmr_cache_find_any(struct mr_table *mrt,
853                                              __be32 mcastgrp, int vifi)
854 {
855         int line = MFC_HASH(mcastgrp, htonl(INADDR_ANY));
856         struct mfc_cache *c, *proxy;
857
858         if (mcastgrp == htonl(INADDR_ANY))
859                 goto skip;
860
861         list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list)
862                 if (c->mfc_origin == htonl(INADDR_ANY) &&
863                     c->mfc_mcastgrp == mcastgrp) {
864                         if (c->mfc_un.res.ttls[vifi] < 255)
865                                 return c;
866
867                         /* It's ok if the vifi is part of the static tree */
868                         proxy = ipmr_cache_find_any_parent(mrt,
869                                                            c->mfc_parent);
870                         if (proxy && proxy->mfc_un.res.ttls[vifi] < 255)
871                                 return c;
872                 }
873
874 skip:
875         return ipmr_cache_find_any_parent(mrt, vifi);
876 }
877
878 /*
879  *      Allocate a multicast cache entry
880  */
881 static struct mfc_cache *ipmr_cache_alloc(void)
882 {
883         struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL);
884
885         if (c) {
886                 c->mfc_un.res.last_assert = jiffies - MFC_ASSERT_THRESH - 1;
887                 c->mfc_un.res.minvif = MAXVIFS;
888         }
889         return c;
890 }
891
892 static struct mfc_cache *ipmr_cache_alloc_unres(void)
893 {
894         struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC);
895
896         if (c) {
897                 skb_queue_head_init(&c->mfc_un.unres.unresolved);
898                 c->mfc_un.unres.expires = jiffies + 10*HZ;
899         }
900         return c;
901 }
902
903 /*
904  *      A cache entry has gone into a resolved state from queued
905  */
906
907 static void ipmr_cache_resolve(struct net *net, struct mr_table *mrt,
908                                struct mfc_cache *uc, struct mfc_cache *c)
909 {
910         struct sk_buff *skb;
911         struct nlmsgerr *e;
912
913         /* Play the pending entries through our router */
914
915         while ((skb = __skb_dequeue(&uc->mfc_un.unres.unresolved))) {
916                 if (ip_hdr(skb)->version == 0) {
917                         struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr));
918
919                         if (__ipmr_fill_mroute(mrt, skb, c, nlmsg_data(nlh)) > 0) {
920                                 nlh->nlmsg_len = skb_tail_pointer(skb) -
921                                                  (u8 *)nlh;
922                         } else {
923                                 nlh->nlmsg_type = NLMSG_ERROR;
924                                 nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
925                                 skb_trim(skb, nlh->nlmsg_len);
926                                 e = nlmsg_data(nlh);
927                                 e->error = -EMSGSIZE;
928                                 memset(&e->msg, 0, sizeof(e->msg));
929                         }
930
931                         rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
932                 } else {
933                         ip_mr_forward(net, mrt, skb, c, 0);
934                 }
935         }
936 }
937
938 /*
939  *      Bounce a cache query up to mrouted. We could use netlink for this but mrouted
940  *      expects the following bizarre scheme.
941  *
942  *      Called under mrt_lock.
943  */
944
945 static int ipmr_cache_report(struct mr_table *mrt,
946                              struct sk_buff *pkt, vifi_t vifi, int assert)
947 {
948         struct sk_buff *skb;
949         const int ihl = ip_hdrlen(pkt);
950         struct igmphdr *igmp;
951         struct igmpmsg *msg;
952         struct sock *mroute_sk;
953         int ret;
954
955 #ifdef CONFIG_IP_PIMSM
956         if (assert == IGMPMSG_WHOLEPKT)
957                 skb = skb_realloc_headroom(pkt, sizeof(struct iphdr));
958         else
959 #endif
960                 skb = alloc_skb(128, GFP_ATOMIC);
961
962         if (!skb)
963                 return -ENOBUFS;
964
965 #ifdef CONFIG_IP_PIMSM
966         if (assert == IGMPMSG_WHOLEPKT) {
967                 /* Ugly, but we have no choice with this interface.
968                  * Duplicate old header, fix ihl, length etc.
969                  * And all this only to mangle msg->im_msgtype and
970                  * to set msg->im_mbz to "mbz" :-)
971                  */
972                 skb_push(skb, sizeof(struct iphdr));
973                 skb_reset_network_header(skb);
974                 skb_reset_transport_header(skb);
975                 msg = (struct igmpmsg *)skb_network_header(skb);
976                 memcpy(msg, skb_network_header(pkt), sizeof(struct iphdr));
977                 msg->im_msgtype = IGMPMSG_WHOLEPKT;
978                 msg->im_mbz = 0;
979                 msg->im_vif = mrt->mroute_reg_vif_num;
980                 ip_hdr(skb)->ihl = sizeof(struct iphdr) >> 2;
981                 ip_hdr(skb)->tot_len = htons(ntohs(ip_hdr(pkt)->tot_len) +
982                                              sizeof(struct iphdr));
983         } else
984 #endif
985         {
986
987         /* Copy the IP header */
988
989         skb_set_network_header(skb, skb->len);
990         skb_put(skb, ihl);
991         skb_copy_to_linear_data(skb, pkt->data, ihl);
992         ip_hdr(skb)->protocol = 0;      /* Flag to the kernel this is a route add */
993         msg = (struct igmpmsg *)skb_network_header(skb);
994         msg->im_vif = vifi;
995         skb_dst_set(skb, dst_clone(skb_dst(pkt)));
996
997         /* Add our header */
998
999         igmp = (struct igmphdr *)skb_put(skb, sizeof(struct igmphdr));
1000         igmp->type      =
1001         msg->im_msgtype = assert;
1002         igmp->code      = 0;
1003         ip_hdr(skb)->tot_len = htons(skb->len);         /* Fix the length */
1004         skb->transport_header = skb->network_header;
1005         }
1006
1007         rcu_read_lock();
1008         mroute_sk = rcu_dereference(mrt->mroute_sk);
1009         if (!mroute_sk) {
1010                 rcu_read_unlock();
1011                 kfree_skb(skb);
1012                 return -EINVAL;
1013         }
1014
1015         /* Deliver to mrouted */
1016
1017         ret = sock_queue_rcv_skb(mroute_sk, skb);
1018         rcu_read_unlock();
1019         if (ret < 0) {
1020                 net_warn_ratelimited("mroute: pending queue full, dropping entries\n");
1021                 kfree_skb(skb);
1022         }
1023
1024         return ret;
1025 }
1026
1027 /*
1028  *      Queue a packet for resolution. It gets locked cache entry!
1029  */
1030
1031 static int
1032 ipmr_cache_unresolved(struct mr_table *mrt, vifi_t vifi, struct sk_buff *skb)
1033 {
1034         bool found = false;
1035         int err;
1036         struct mfc_cache *c;
1037         const struct iphdr *iph = ip_hdr(skb);
1038
1039         spin_lock_bh(&mfc_unres_lock);
1040         list_for_each_entry(c, &mrt->mfc_unres_queue, list) {
1041                 if (c->mfc_mcastgrp == iph->daddr &&
1042                     c->mfc_origin == iph->saddr) {
1043                         found = true;
1044                         break;
1045                 }
1046         }
1047
1048         if (!found) {
1049                 /* Create a new entry if allowable */
1050
1051                 if (atomic_read(&mrt->cache_resolve_queue_len) >= 10 ||
1052                     (c = ipmr_cache_alloc_unres()) == NULL) {
1053                         spin_unlock_bh(&mfc_unres_lock);
1054
1055                         kfree_skb(skb);
1056                         return -ENOBUFS;
1057                 }
1058
1059                 /* Fill in the new cache entry */
1060
1061                 c->mfc_parent   = -1;
1062                 c->mfc_origin   = iph->saddr;
1063                 c->mfc_mcastgrp = iph->daddr;
1064
1065                 /* Reflect first query at mrouted. */
1066
1067                 err = ipmr_cache_report(mrt, skb, vifi, IGMPMSG_NOCACHE);
1068                 if (err < 0) {
1069                         /* If the report failed throw the cache entry
1070                            out - Brad Parker
1071                          */
1072                         spin_unlock_bh(&mfc_unres_lock);
1073
1074                         ipmr_cache_free(c);
1075                         kfree_skb(skb);
1076                         return err;
1077                 }
1078
1079                 atomic_inc(&mrt->cache_resolve_queue_len);
1080                 list_add(&c->list, &mrt->mfc_unres_queue);
1081                 mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1082
1083                 if (atomic_read(&mrt->cache_resolve_queue_len) == 1)
1084                         mod_timer(&mrt->ipmr_expire_timer, c->mfc_un.unres.expires);
1085         }
1086
1087         /* See if we can append the packet */
1088
1089         if (c->mfc_un.unres.unresolved.qlen > 3) {
1090                 kfree_skb(skb);
1091                 err = -ENOBUFS;
1092         } else {
1093                 skb_queue_tail(&c->mfc_un.unres.unresolved, skb);
1094                 err = 0;
1095         }
1096
1097         spin_unlock_bh(&mfc_unres_lock);
1098         return err;
1099 }
1100
1101 /*
1102  *      MFC cache manipulation by user space mroute daemon
1103  */
1104
1105 static int ipmr_mfc_delete(struct mr_table *mrt, struct mfcctl *mfc, int parent)
1106 {
1107         int line;
1108         struct mfc_cache *c, *next;
1109
1110         line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr);
1111
1112         list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[line], list) {
1113                 if (c->mfc_origin == mfc->mfcc_origin.s_addr &&
1114                     c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr &&
1115                     (parent == -1 || parent == c->mfc_parent)) {
1116                         list_del_rcu(&c->list);
1117                         mroute_netlink_event(mrt, c, RTM_DELROUTE);
1118                         ipmr_cache_free(c);
1119                         return 0;
1120                 }
1121         }
1122         return -ENOENT;
1123 }
1124
1125 static int ipmr_mfc_add(struct net *net, struct mr_table *mrt,
1126                         struct mfcctl *mfc, int mrtsock, int parent)
1127 {
1128         bool found = false;
1129         int line;
1130         struct mfc_cache *uc, *c;
1131
1132         if (mfc->mfcc_parent >= MAXVIFS)
1133                 return -ENFILE;
1134
1135         line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr);
1136
1137         list_for_each_entry(c, &mrt->mfc_cache_array[line], list) {
1138                 if (c->mfc_origin == mfc->mfcc_origin.s_addr &&
1139                     c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr &&
1140                     (parent == -1 || parent == c->mfc_parent)) {
1141                         found = true;
1142                         break;
1143                 }
1144         }
1145
1146         if (found) {
1147                 write_lock_bh(&mrt_lock);
1148                 c->mfc_parent = mfc->mfcc_parent;
1149                 ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls);
1150                 if (!mrtsock)
1151                         c->mfc_flags |= MFC_STATIC;
1152                 write_unlock_bh(&mrt_lock);
1153                 mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1154                 return 0;
1155         }
1156
1157         if (mfc->mfcc_mcastgrp.s_addr != htonl(INADDR_ANY) &&
1158             !ipv4_is_multicast(mfc->mfcc_mcastgrp.s_addr))
1159                 return -EINVAL;
1160
1161         c = ipmr_cache_alloc();
1162         if (!c)
1163                 return -ENOMEM;
1164
1165         c->mfc_origin = mfc->mfcc_origin.s_addr;
1166         c->mfc_mcastgrp = mfc->mfcc_mcastgrp.s_addr;
1167         c->mfc_parent = mfc->mfcc_parent;
1168         ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls);
1169         if (!mrtsock)
1170                 c->mfc_flags |= MFC_STATIC;
1171
1172         list_add_rcu(&c->list, &mrt->mfc_cache_array[line]);
1173
1174         /*
1175          *      Check to see if we resolved a queued list. If so we
1176          *      need to send on the frames and tidy up.
1177          */
1178         found = false;
1179         spin_lock_bh(&mfc_unres_lock);
1180         list_for_each_entry(uc, &mrt->mfc_unres_queue, list) {
1181                 if (uc->mfc_origin == c->mfc_origin &&
1182                     uc->mfc_mcastgrp == c->mfc_mcastgrp) {
1183                         list_del(&uc->list);
1184                         atomic_dec(&mrt->cache_resolve_queue_len);
1185                         found = true;
1186                         break;
1187                 }
1188         }
1189         if (list_empty(&mrt->mfc_unres_queue))
1190                 del_timer(&mrt->ipmr_expire_timer);
1191         spin_unlock_bh(&mfc_unres_lock);
1192
1193         if (found) {
1194                 ipmr_cache_resolve(net, mrt, uc, c);
1195                 ipmr_cache_free(uc);
1196         }
1197         mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1198         return 0;
1199 }
1200
1201 /*
1202  *      Close the multicast socket, and clear the vif tables etc
1203  */
1204
1205 static void mroute_clean_tables(struct mr_table *mrt, bool all)
1206 {
1207         int i;
1208         LIST_HEAD(list);
1209         struct mfc_cache *c, *next;
1210
1211         /* Shut down all active vif entries */
1212
1213         for (i = 0; i < mrt->maxvif; i++) {
1214                 if (!all && (mrt->vif_table[i].flags & VIFF_STATIC))
1215                         continue;
1216                 vif_delete(mrt, i, 0, &list);
1217         }
1218         unregister_netdevice_many(&list);
1219
1220         /* Wipe the cache */
1221
1222         for (i = 0; i < MFC_LINES; i++) {
1223                 list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[i], list) {
1224                         if (!all && (c->mfc_flags & MFC_STATIC))
1225                                 continue;
1226                         list_del_rcu(&c->list);
1227                         mroute_netlink_event(mrt, c, RTM_DELROUTE);
1228                         ipmr_cache_free(c);
1229                 }
1230         }
1231
1232         if (atomic_read(&mrt->cache_resolve_queue_len) != 0) {
1233                 spin_lock_bh(&mfc_unres_lock);
1234                 list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
1235                         list_del(&c->list);
1236                         mroute_netlink_event(mrt, c, RTM_DELROUTE);
1237                         ipmr_destroy_unres(mrt, c);
1238                 }
1239                 spin_unlock_bh(&mfc_unres_lock);
1240         }
1241 }
1242
1243 /* called from ip_ra_control(), before an RCU grace period,
1244  * we dont need to call synchronize_rcu() here
1245  */
1246 static void mrtsock_destruct(struct sock *sk)
1247 {
1248         struct net *net = sock_net(sk);
1249         struct mr_table *mrt;
1250
1251         rtnl_lock();
1252         ipmr_for_each_table(mrt, net) {
1253                 if (sk == rtnl_dereference(mrt->mroute_sk)) {
1254                         IPV4_DEVCONF_ALL(net, MC_FORWARDING)--;
1255                         inet_netconf_notify_devconf(net, NETCONFA_MC_FORWARDING,
1256                                                     NETCONFA_IFINDEX_ALL,
1257                                                     net->ipv4.devconf_all);
1258                         RCU_INIT_POINTER(mrt->mroute_sk, NULL);
1259                         mroute_clean_tables(mrt, false);
1260                 }
1261         }
1262         rtnl_unlock();
1263 }
1264
1265 /*
1266  *      Socket options and virtual interface manipulation. The whole
1267  *      virtual interface system is a complete heap, but unfortunately
1268  *      that's how BSD mrouted happens to think. Maybe one day with a proper
1269  *      MOSPF/PIM router set up we can clean this up.
1270  */
1271
1272 int ip_mroute_setsockopt(struct sock *sk, int optname, char __user *optval, unsigned int optlen)
1273 {
1274         int ret, parent = 0;
1275         struct vifctl vif;
1276         struct mfcctl mfc;
1277         struct net *net = sock_net(sk);
1278         struct mr_table *mrt;
1279
1280         if (sk->sk_type != SOCK_RAW ||
1281             inet_sk(sk)->inet_num != IPPROTO_IGMP)
1282                 return -EOPNOTSUPP;
1283
1284         mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1285         if (!mrt)
1286                 return -ENOENT;
1287
1288         if (optname != MRT_INIT) {
1289                 if (sk != rcu_access_pointer(mrt->mroute_sk) &&
1290                     !ns_capable(net->user_ns, CAP_NET_ADMIN))
1291                         return -EACCES;
1292         }
1293
1294         switch (optname) {
1295         case MRT_INIT:
1296                 if (optlen != sizeof(int))
1297                         return -EINVAL;
1298
1299                 rtnl_lock();
1300                 if (rtnl_dereference(mrt->mroute_sk)) {
1301                         rtnl_unlock();
1302                         return -EADDRINUSE;
1303                 }
1304
1305                 ret = ip_ra_control(sk, 1, mrtsock_destruct);
1306                 if (ret == 0) {
1307                         rcu_assign_pointer(mrt->mroute_sk, sk);
1308                         IPV4_DEVCONF_ALL(net, MC_FORWARDING)++;
1309                         inet_netconf_notify_devconf(net, NETCONFA_MC_FORWARDING,
1310                                                     NETCONFA_IFINDEX_ALL,
1311                                                     net->ipv4.devconf_all);
1312                 }
1313                 rtnl_unlock();
1314                 return ret;
1315         case MRT_DONE:
1316                 if (sk != rcu_access_pointer(mrt->mroute_sk))
1317                         return -EACCES;
1318                 return ip_ra_control(sk, 0, NULL);
1319         case MRT_ADD_VIF:
1320         case MRT_DEL_VIF:
1321                 if (optlen != sizeof(vif))
1322                         return -EINVAL;
1323                 if (copy_from_user(&vif, optval, sizeof(vif)))
1324                         return -EFAULT;
1325                 if (vif.vifc_vifi >= MAXVIFS)
1326                         return -ENFILE;
1327                 rtnl_lock();
1328                 if (optname == MRT_ADD_VIF) {
1329                         ret = vif_add(net, mrt, &vif,
1330                                       sk == rtnl_dereference(mrt->mroute_sk));
1331                 } else {
1332                         ret = vif_delete(mrt, vif.vifc_vifi, 0, NULL);
1333                 }
1334                 rtnl_unlock();
1335                 return ret;
1336
1337                 /*
1338                  *      Manipulate the forwarding caches. These live
1339                  *      in a sort of kernel/user symbiosis.
1340                  */
1341         case MRT_ADD_MFC:
1342         case MRT_DEL_MFC:
1343                 parent = -1;
1344         case MRT_ADD_MFC_PROXY:
1345         case MRT_DEL_MFC_PROXY:
1346                 if (optlen != sizeof(mfc))
1347                         return -EINVAL;
1348                 if (copy_from_user(&mfc, optval, sizeof(mfc)))
1349                         return -EFAULT;
1350                 if (parent == 0)
1351                         parent = mfc.mfcc_parent;
1352                 rtnl_lock();
1353                 if (optname == MRT_DEL_MFC || optname == MRT_DEL_MFC_PROXY)
1354                         ret = ipmr_mfc_delete(mrt, &mfc, parent);
1355                 else
1356                         ret = ipmr_mfc_add(net, mrt, &mfc,
1357                                            sk == rtnl_dereference(mrt->mroute_sk),
1358                                            parent);
1359                 rtnl_unlock();
1360                 return ret;
1361                 /*
1362                  *      Control PIM assert.
1363                  */
1364         case MRT_ASSERT:
1365         {
1366                 int v;
1367                 if (optlen != sizeof(v))
1368                         return -EINVAL;
1369                 if (get_user(v, (int __user *)optval))
1370                         return -EFAULT;
1371                 mrt->mroute_do_assert = v;
1372                 return 0;
1373         }
1374 #ifdef CONFIG_IP_PIMSM
1375         case MRT_PIM:
1376         {
1377                 int v;
1378
1379                 if (optlen != sizeof(v))
1380                         return -EINVAL;
1381                 if (get_user(v, (int __user *)optval))
1382                         return -EFAULT;
1383                 v = !!v;
1384
1385                 rtnl_lock();
1386                 ret = 0;
1387                 if (v != mrt->mroute_do_pim) {
1388                         mrt->mroute_do_pim = v;
1389                         mrt->mroute_do_assert = v;
1390                 }
1391                 rtnl_unlock();
1392                 return ret;
1393         }
1394 #endif
1395 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
1396         case MRT_TABLE:
1397         {
1398                 u32 v;
1399
1400                 if (optlen != sizeof(u32))
1401                         return -EINVAL;
1402                 if (get_user(v, (u32 __user *)optval))
1403                         return -EFAULT;
1404
1405                 /* "pimreg%u" should not exceed 16 bytes (IFNAMSIZ) */
1406                 if (v != RT_TABLE_DEFAULT && v >= 1000000000)
1407                         return -EINVAL;
1408
1409                 rtnl_lock();
1410                 ret = 0;
1411                 if (sk == rtnl_dereference(mrt->mroute_sk)) {
1412                         ret = -EBUSY;
1413                 } else {
1414                         if (!ipmr_new_table(net, v))
1415                                 ret = -ENOMEM;
1416                         else
1417                                 raw_sk(sk)->ipmr_table = v;
1418                 }
1419                 rtnl_unlock();
1420                 return ret;
1421         }
1422 #endif
1423         /*
1424          *      Spurious command, or MRT_VERSION which you cannot
1425          *      set.
1426          */
1427         default:
1428                 return -ENOPROTOOPT;
1429         }
1430 }
1431
1432 /*
1433  *      Getsock opt support for the multicast routing system.
1434  */
1435
1436 int ip_mroute_getsockopt(struct sock *sk, int optname, char __user *optval, int __user *optlen)
1437 {
1438         int olr;
1439         int val;
1440         struct net *net = sock_net(sk);
1441         struct mr_table *mrt;
1442
1443         if (sk->sk_type != SOCK_RAW ||
1444             inet_sk(sk)->inet_num != IPPROTO_IGMP)
1445                 return -EOPNOTSUPP;
1446
1447         mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1448         if (!mrt)
1449                 return -ENOENT;
1450
1451         if (optname != MRT_VERSION &&
1452 #ifdef CONFIG_IP_PIMSM
1453            optname != MRT_PIM &&
1454 #endif
1455            optname != MRT_ASSERT)
1456                 return -ENOPROTOOPT;
1457
1458         if (get_user(olr, optlen))
1459                 return -EFAULT;
1460
1461         olr = min_t(unsigned int, olr, sizeof(int));
1462         if (olr < 0)
1463                 return -EINVAL;
1464
1465         if (put_user(olr, optlen))
1466                 return -EFAULT;
1467         if (optname == MRT_VERSION)
1468                 val = 0x0305;
1469 #ifdef CONFIG_IP_PIMSM
1470         else if (optname == MRT_PIM)
1471                 val = mrt->mroute_do_pim;
1472 #endif
1473         else
1474                 val = mrt->mroute_do_assert;
1475         if (copy_to_user(optval, &val, olr))
1476                 return -EFAULT;
1477         return 0;
1478 }
1479
1480 /*
1481  *      The IP multicast ioctl support routines.
1482  */
1483
1484 int ipmr_ioctl(struct sock *sk, int cmd, void __user *arg)
1485 {
1486         struct sioc_sg_req sr;
1487         struct sioc_vif_req vr;
1488         struct vif_device *vif;
1489         struct mfc_cache *c;
1490         struct net *net = sock_net(sk);
1491         struct mr_table *mrt;
1492
1493         mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1494         if (!mrt)
1495                 return -ENOENT;
1496
1497         switch (cmd) {
1498         case SIOCGETVIFCNT:
1499                 if (copy_from_user(&vr, arg, sizeof(vr)))
1500                         return -EFAULT;
1501                 if (vr.vifi >= mrt->maxvif)
1502                         return -EINVAL;
1503                 read_lock(&mrt_lock);
1504                 vif = &mrt->vif_table[vr.vifi];
1505                 if (VIF_EXISTS(mrt, vr.vifi)) {
1506                         vr.icount = vif->pkt_in;
1507                         vr.ocount = vif->pkt_out;
1508                         vr.ibytes = vif->bytes_in;
1509                         vr.obytes = vif->bytes_out;
1510                         read_unlock(&mrt_lock);
1511
1512                         if (copy_to_user(arg, &vr, sizeof(vr)))
1513                                 return -EFAULT;
1514                         return 0;
1515                 }
1516                 read_unlock(&mrt_lock);
1517                 return -EADDRNOTAVAIL;
1518         case SIOCGETSGCNT:
1519                 if (copy_from_user(&sr, arg, sizeof(sr)))
1520                         return -EFAULT;
1521
1522                 rcu_read_lock();
1523                 c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1524                 if (c) {
1525                         sr.pktcnt = c->mfc_un.res.pkt;
1526                         sr.bytecnt = c->mfc_un.res.bytes;
1527                         sr.wrong_if = c->mfc_un.res.wrong_if;
1528                         rcu_read_unlock();
1529
1530                         if (copy_to_user(arg, &sr, sizeof(sr)))
1531                                 return -EFAULT;
1532                         return 0;
1533                 }
1534                 rcu_read_unlock();
1535                 return -EADDRNOTAVAIL;
1536         default:
1537                 return -ENOIOCTLCMD;
1538         }
1539 }
1540
1541 #ifdef CONFIG_COMPAT
1542 struct compat_sioc_sg_req {
1543         struct in_addr src;
1544         struct in_addr grp;
1545         compat_ulong_t pktcnt;
1546         compat_ulong_t bytecnt;
1547         compat_ulong_t wrong_if;
1548 };
1549
1550 struct compat_sioc_vif_req {
1551         vifi_t  vifi;           /* Which iface */
1552         compat_ulong_t icount;
1553         compat_ulong_t ocount;
1554         compat_ulong_t ibytes;
1555         compat_ulong_t obytes;
1556 };
1557
1558 int ipmr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
1559 {
1560         struct compat_sioc_sg_req sr;
1561         struct compat_sioc_vif_req vr;
1562         struct vif_device *vif;
1563         struct mfc_cache *c;
1564         struct net *net = sock_net(sk);
1565         struct mr_table *mrt;
1566
1567         mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1568         if (!mrt)
1569                 return -ENOENT;
1570
1571         switch (cmd) {
1572         case SIOCGETVIFCNT:
1573                 if (copy_from_user(&vr, arg, sizeof(vr)))
1574                         return -EFAULT;
1575                 if (vr.vifi >= mrt->maxvif)
1576                         return -EINVAL;
1577                 read_lock(&mrt_lock);
1578                 vif = &mrt->vif_table[vr.vifi];
1579                 if (VIF_EXISTS(mrt, vr.vifi)) {
1580                         vr.icount = vif->pkt_in;
1581                         vr.ocount = vif->pkt_out;
1582                         vr.ibytes = vif->bytes_in;
1583                         vr.obytes = vif->bytes_out;
1584                         read_unlock(&mrt_lock);
1585
1586                         if (copy_to_user(arg, &vr, sizeof(vr)))
1587                                 return -EFAULT;
1588                         return 0;
1589                 }
1590                 read_unlock(&mrt_lock);
1591                 return -EADDRNOTAVAIL;
1592         case SIOCGETSGCNT:
1593                 if (copy_from_user(&sr, arg, sizeof(sr)))
1594                         return -EFAULT;
1595
1596                 rcu_read_lock();
1597                 c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1598                 if (c) {
1599                         sr.pktcnt = c->mfc_un.res.pkt;
1600                         sr.bytecnt = c->mfc_un.res.bytes;
1601                         sr.wrong_if = c->mfc_un.res.wrong_if;
1602                         rcu_read_unlock();
1603
1604                         if (copy_to_user(arg, &sr, sizeof(sr)))
1605                                 return -EFAULT;
1606                         return 0;
1607                 }
1608                 rcu_read_unlock();
1609                 return -EADDRNOTAVAIL;
1610         default:
1611                 return -ENOIOCTLCMD;
1612         }
1613 }
1614 #endif
1615
1616
1617 static int ipmr_device_event(struct notifier_block *this, unsigned long event, void *ptr)
1618 {
1619         struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1620         struct net *net = dev_net(dev);
1621         struct mr_table *mrt;
1622         struct vif_device *v;
1623         int ct;
1624
1625         if (event != NETDEV_UNREGISTER)
1626                 return NOTIFY_DONE;
1627
1628         ipmr_for_each_table(mrt, net) {
1629                 v = &mrt->vif_table[0];
1630                 for (ct = 0; ct < mrt->maxvif; ct++, v++) {
1631                         if (v->dev == dev)
1632                                 vif_delete(mrt, ct, 1, NULL);
1633                 }
1634         }
1635         return NOTIFY_DONE;
1636 }
1637
1638
1639 static struct notifier_block ip_mr_notifier = {
1640         .notifier_call = ipmr_device_event,
1641 };
1642
1643 /*
1644  *      Encapsulate a packet by attaching a valid IPIP header to it.
1645  *      This avoids tunnel drivers and other mess and gives us the speed so
1646  *      important for multicast video.
1647  */
1648
1649 static void ip_encap(struct net *net, struct sk_buff *skb,
1650                      __be32 saddr, __be32 daddr)
1651 {
1652         struct iphdr *iph;
1653         const struct iphdr *old_iph = ip_hdr(skb);
1654
1655         skb_push(skb, sizeof(struct iphdr));
1656         skb->transport_header = skb->network_header;
1657         skb_reset_network_header(skb);
1658         iph = ip_hdr(skb);
1659
1660         iph->version    =       4;
1661         iph->tos        =       old_iph->tos;
1662         iph->ttl        =       old_iph->ttl;
1663         iph->frag_off   =       0;
1664         iph->daddr      =       daddr;
1665         iph->saddr      =       saddr;
1666         iph->protocol   =       IPPROTO_IPIP;
1667         iph->ihl        =       5;
1668         iph->tot_len    =       htons(skb->len);
1669         ip_select_ident(net, skb, NULL);
1670         ip_send_check(iph);
1671
1672         memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt));
1673         nf_reset(skb);
1674 }
1675
1676 static inline int ipmr_forward_finish(struct net *net, struct sock *sk,
1677                                       struct sk_buff *skb)
1678 {
1679         struct ip_options *opt = &(IPCB(skb)->opt);
1680
1681         IP_INC_STATS(net, IPSTATS_MIB_OUTFORWDATAGRAMS);
1682         IP_ADD_STATS(net, IPSTATS_MIB_OUTOCTETS, skb->len);
1683
1684         if (unlikely(opt->optlen))
1685                 ip_forward_options(skb);
1686
1687         return dst_output(net, sk, skb);
1688 }
1689
1690 /*
1691  *      Processing handlers for ipmr_forward
1692  */
1693
1694 static void ipmr_queue_xmit(struct net *net, struct mr_table *mrt,
1695                             struct sk_buff *skb, struct mfc_cache *c, int vifi)
1696 {
1697         const struct iphdr *iph = ip_hdr(skb);
1698         struct vif_device *vif = &mrt->vif_table[vifi];
1699         struct net_device *dev;
1700         struct rtable *rt;
1701         struct flowi4 fl4;
1702         int    encap = 0;
1703
1704         if (!vif->dev)
1705                 goto out_free;
1706
1707 #ifdef CONFIG_IP_PIMSM
1708         if (vif->flags & VIFF_REGISTER) {
1709                 vif->pkt_out++;
1710                 vif->bytes_out += skb->len;
1711                 vif->dev->stats.tx_bytes += skb->len;
1712                 vif->dev->stats.tx_packets++;
1713                 ipmr_cache_report(mrt, skb, vifi, IGMPMSG_WHOLEPKT);
1714                 goto out_free;
1715         }
1716 #endif
1717
1718         if (vif->flags & VIFF_TUNNEL) {
1719                 rt = ip_route_output_ports(net, &fl4, NULL,
1720                                            vif->remote, vif->local,
1721                                            0, 0,
1722                                            IPPROTO_IPIP,
1723                                            RT_TOS(iph->tos), vif->link);
1724                 if (IS_ERR(rt))
1725                         goto out_free;
1726                 encap = sizeof(struct iphdr);
1727         } else {
1728                 rt = ip_route_output_ports(net, &fl4, NULL, iph->daddr, 0,
1729                                            0, 0,
1730                                            IPPROTO_IPIP,
1731                                            RT_TOS(iph->tos), vif->link);
1732                 if (IS_ERR(rt))
1733                         goto out_free;
1734         }
1735
1736         dev = rt->dst.dev;
1737
1738         if (skb->len+encap > dst_mtu(&rt->dst) && (ntohs(iph->frag_off) & IP_DF)) {
1739                 /* Do not fragment multicasts. Alas, IPv4 does not
1740                  * allow to send ICMP, so that packets will disappear
1741                  * to blackhole.
1742                  */
1743
1744                 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
1745                 ip_rt_put(rt);
1746                 goto out_free;
1747         }
1748
1749         encap += LL_RESERVED_SPACE(dev) + rt->dst.header_len;
1750
1751         if (skb_cow(skb, encap)) {
1752                 ip_rt_put(rt);
1753                 goto out_free;
1754         }
1755
1756         vif->pkt_out++;
1757         vif->bytes_out += skb->len;
1758
1759         skb_dst_drop(skb);
1760         skb_dst_set(skb, &rt->dst);
1761         ip_decrease_ttl(ip_hdr(skb));
1762
1763         /* FIXME: forward and output firewalls used to be called here.
1764          * What do we do with netfilter? -- RR
1765          */
1766         if (vif->flags & VIFF_TUNNEL) {
1767                 ip_encap(net, skb, vif->local, vif->remote);
1768                 /* FIXME: extra output firewall step used to be here. --RR */
1769                 vif->dev->stats.tx_packets++;
1770                 vif->dev->stats.tx_bytes += skb->len;
1771         }
1772
1773         IPCB(skb)->flags |= IPSKB_FORWARDED;
1774
1775         /*
1776          * RFC1584 teaches, that DVMRP/PIM router must deliver packets locally
1777          * not only before forwarding, but after forwarding on all output
1778          * interfaces. It is clear, if mrouter runs a multicasting
1779          * program, it should receive packets not depending to what interface
1780          * program is joined.
1781          * If we will not make it, the program will have to join on all
1782          * interfaces. On the other hand, multihoming host (or router, but
1783          * not mrouter) cannot join to more than one interface - it will
1784          * result in receiving multiple packets.
1785          */
1786         NF_HOOK(NFPROTO_IPV4, NF_INET_FORWARD,
1787                 net, NULL, skb, skb->dev, dev,
1788                 ipmr_forward_finish);
1789         return;
1790
1791 out_free:
1792         kfree_skb(skb);
1793 }
1794
1795 static int ipmr_find_vif(struct mr_table *mrt, struct net_device *dev)
1796 {
1797         int ct;
1798
1799         for (ct = mrt->maxvif-1; ct >= 0; ct--) {
1800                 if (mrt->vif_table[ct].dev == dev)
1801                         break;
1802         }
1803         return ct;
1804 }
1805
1806 /* "local" means that we should preserve one skb (for local delivery) */
1807
1808 static void ip_mr_forward(struct net *net, struct mr_table *mrt,
1809                           struct sk_buff *skb, struct mfc_cache *cache,
1810                           int local)
1811 {
1812         int psend = -1;
1813         int vif, ct;
1814         int true_vifi = ipmr_find_vif(mrt, skb->dev);
1815
1816         vif = cache->mfc_parent;
1817         cache->mfc_un.res.pkt++;
1818         cache->mfc_un.res.bytes += skb->len;
1819
1820         if (cache->mfc_origin == htonl(INADDR_ANY) && true_vifi >= 0) {
1821                 struct mfc_cache *cache_proxy;
1822
1823                 /* For an (*,G) entry, we only check that the incomming
1824                  * interface is part of the static tree.
1825                  */
1826                 cache_proxy = ipmr_cache_find_any_parent(mrt, vif);
1827                 if (cache_proxy &&
1828                     cache_proxy->mfc_un.res.ttls[true_vifi] < 255)
1829                         goto forward;
1830         }
1831
1832         /*
1833          * Wrong interface: drop packet and (maybe) send PIM assert.
1834          */
1835         if (mrt->vif_table[vif].dev != skb->dev) {
1836                 if (rt_is_output_route(skb_rtable(skb))) {
1837                         /* It is our own packet, looped back.
1838                          * Very complicated situation...
1839                          *
1840                          * The best workaround until routing daemons will be
1841                          * fixed is not to redistribute packet, if it was
1842                          * send through wrong interface. It means, that
1843                          * multicast applications WILL NOT work for
1844                          * (S,G), which have default multicast route pointing
1845                          * to wrong oif. In any case, it is not a good
1846                          * idea to use multicasting applications on router.
1847                          */
1848                         goto dont_forward;
1849                 }
1850
1851                 cache->mfc_un.res.wrong_if++;
1852
1853                 if (true_vifi >= 0 && mrt->mroute_do_assert &&
1854                     /* pimsm uses asserts, when switching from RPT to SPT,
1855                      * so that we cannot check that packet arrived on an oif.
1856                      * It is bad, but otherwise we would need to move pretty
1857                      * large chunk of pimd to kernel. Ough... --ANK
1858                      */
1859                     (mrt->mroute_do_pim ||
1860                      cache->mfc_un.res.ttls[true_vifi] < 255) &&
1861                     time_after(jiffies,
1862                                cache->mfc_un.res.last_assert + MFC_ASSERT_THRESH)) {
1863                         cache->mfc_un.res.last_assert = jiffies;
1864                         ipmr_cache_report(mrt, skb, true_vifi, IGMPMSG_WRONGVIF);
1865                 }
1866                 goto dont_forward;
1867         }
1868
1869 forward:
1870         mrt->vif_table[vif].pkt_in++;
1871         mrt->vif_table[vif].bytes_in += skb->len;
1872
1873         /*
1874          *      Forward the frame
1875          */
1876         if (cache->mfc_origin == htonl(INADDR_ANY) &&
1877             cache->mfc_mcastgrp == htonl(INADDR_ANY)) {
1878                 if (true_vifi >= 0 &&
1879                     true_vifi != cache->mfc_parent &&
1880                     ip_hdr(skb)->ttl >
1881                                 cache->mfc_un.res.ttls[cache->mfc_parent]) {
1882                         /* It's an (*,*) entry and the packet is not coming from
1883                          * the upstream: forward the packet to the upstream
1884                          * only.
1885                          */
1886                         psend = cache->mfc_parent;
1887                         goto last_forward;
1888                 }
1889                 goto dont_forward;
1890         }
1891         for (ct = cache->mfc_un.res.maxvif - 1;
1892              ct >= cache->mfc_un.res.minvif; ct--) {
1893                 /* For (*,G) entry, don't forward to the incoming interface */
1894                 if ((cache->mfc_origin != htonl(INADDR_ANY) ||
1895                      ct != true_vifi) &&
1896                     ip_hdr(skb)->ttl > cache->mfc_un.res.ttls[ct]) {
1897                         if (psend != -1) {
1898                                 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1899
1900                                 if (skb2)
1901                                         ipmr_queue_xmit(net, mrt, skb2, cache,
1902                                                         psend);
1903                         }
1904                         psend = ct;
1905                 }
1906         }
1907 last_forward:
1908         if (psend != -1) {
1909                 if (local) {
1910                         struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1911
1912                         if (skb2)
1913                                 ipmr_queue_xmit(net, mrt, skb2, cache, psend);
1914                 } else {
1915                         ipmr_queue_xmit(net, mrt, skb, cache, psend);
1916                         return;
1917                 }
1918         }
1919
1920 dont_forward:
1921         if (!local)
1922                 kfree_skb(skb);
1923 }
1924
1925 static struct mr_table *ipmr_rt_fib_lookup(struct net *net, struct sk_buff *skb)
1926 {
1927         struct rtable *rt = skb_rtable(skb);
1928         struct iphdr *iph = ip_hdr(skb);
1929         struct flowi4 fl4 = {
1930                 .daddr = iph->daddr,
1931                 .saddr = iph->saddr,
1932                 .flowi4_tos = RT_TOS(iph->tos),
1933                 .flowi4_oif = (rt_is_output_route(rt) ?
1934                                skb->dev->ifindex : 0),
1935                 .flowi4_iif = (rt_is_output_route(rt) ?
1936                                LOOPBACK_IFINDEX :
1937                                skb->dev->ifindex),
1938                 .flowi4_mark = skb->mark,
1939         };
1940         struct mr_table *mrt;
1941         int err;
1942
1943         err = ipmr_fib_lookup(net, &fl4, &mrt);
1944         if (err)
1945                 return ERR_PTR(err);
1946         return mrt;
1947 }
1948
1949 /*
1950  *      Multicast packets for forwarding arrive here
1951  *      Called with rcu_read_lock();
1952  */
1953
1954 int ip_mr_input(struct sk_buff *skb)
1955 {
1956         struct mfc_cache *cache;
1957         struct net *net = dev_net(skb->dev);
1958         int local = skb_rtable(skb)->rt_flags & RTCF_LOCAL;
1959         struct mr_table *mrt;
1960
1961         /* Packet is looped back after forward, it should not be
1962          * forwarded second time, but still can be delivered locally.
1963          */
1964         if (IPCB(skb)->flags & IPSKB_FORWARDED)
1965                 goto dont_forward;
1966
1967         mrt = ipmr_rt_fib_lookup(net, skb);
1968         if (IS_ERR(mrt)) {
1969                 kfree_skb(skb);
1970                 return PTR_ERR(mrt);
1971         }
1972         if (!local) {
1973                 if (IPCB(skb)->opt.router_alert) {
1974                         if (ip_call_ra_chain(skb))
1975                                 return 0;
1976                 } else if (ip_hdr(skb)->protocol == IPPROTO_IGMP) {
1977                         /* IGMPv1 (and broken IGMPv2 implementations sort of
1978                          * Cisco IOS <= 11.2(8)) do not put router alert
1979                          * option to IGMP packets destined to routable
1980                          * groups. It is very bad, because it means
1981                          * that we can forward NO IGMP messages.
1982                          */
1983                         struct sock *mroute_sk;
1984
1985                         mroute_sk = rcu_dereference(mrt->mroute_sk);
1986                         if (mroute_sk) {
1987                                 nf_reset(skb);
1988                                 raw_rcv(mroute_sk, skb);
1989                                 return 0;
1990                         }
1991                     }
1992         }
1993
1994         /* already under rcu_read_lock() */
1995         cache = ipmr_cache_find(mrt, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr);
1996         if (!cache) {
1997                 int vif = ipmr_find_vif(mrt, skb->dev);
1998
1999                 if (vif >= 0)
2000                         cache = ipmr_cache_find_any(mrt, ip_hdr(skb)->daddr,
2001                                                     vif);
2002         }
2003
2004         /*
2005          *      No usable cache entry
2006          */
2007         if (!cache) {
2008                 int vif;
2009
2010                 if (local) {
2011                         struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
2012                         ip_local_deliver(skb);
2013                         if (!skb2)
2014                                 return -ENOBUFS;
2015                         skb = skb2;
2016                 }
2017
2018                 read_lock(&mrt_lock);
2019                 vif = ipmr_find_vif(mrt, skb->dev);
2020                 if (vif >= 0) {
2021                         int err2 = ipmr_cache_unresolved(mrt, vif, skb);
2022                         read_unlock(&mrt_lock);
2023
2024                         return err2;
2025                 }
2026                 read_unlock(&mrt_lock);
2027                 kfree_skb(skb);
2028                 return -ENODEV;
2029         }
2030
2031         read_lock(&mrt_lock);
2032         ip_mr_forward(net, mrt, skb, cache, local);
2033         read_unlock(&mrt_lock);
2034
2035         if (local)
2036                 return ip_local_deliver(skb);
2037
2038         return 0;
2039
2040 dont_forward:
2041         if (local)
2042                 return ip_local_deliver(skb);
2043         kfree_skb(skb);
2044         return 0;
2045 }
2046
2047 #ifdef CONFIG_IP_PIMSM
2048 /* called with rcu_read_lock() */
2049 static int __pim_rcv(struct mr_table *mrt, struct sk_buff *skb,
2050                      unsigned int pimlen)
2051 {
2052         struct net_device *reg_dev = NULL;
2053         struct iphdr *encap;
2054
2055         encap = (struct iphdr *)(skb_transport_header(skb) + pimlen);
2056         /*
2057          * Check that:
2058          * a. packet is really sent to a multicast group
2059          * b. packet is not a NULL-REGISTER
2060          * c. packet is not truncated
2061          */
2062         if (!ipv4_is_multicast(encap->daddr) ||
2063             encap->tot_len == 0 ||
2064             ntohs(encap->tot_len) + pimlen > skb->len)
2065                 return 1;
2066
2067         read_lock(&mrt_lock);
2068         if (mrt->mroute_reg_vif_num >= 0)
2069                 reg_dev = mrt->vif_table[mrt->mroute_reg_vif_num].dev;
2070         read_unlock(&mrt_lock);
2071
2072         if (!reg_dev)
2073                 return 1;
2074
2075         skb->mac_header = skb->network_header;
2076         skb_pull(skb, (u8 *)encap - skb->data);
2077         skb_reset_network_header(skb);
2078         skb->protocol = htons(ETH_P_IP);
2079         skb->ip_summed = CHECKSUM_NONE;
2080
2081         skb_tunnel_rx(skb, reg_dev, dev_net(reg_dev));
2082
2083         netif_rx(skb);
2084
2085         return NET_RX_SUCCESS;
2086 }
2087 #endif
2088
2089 #ifdef CONFIG_IP_PIMSM_V1
2090 /*
2091  * Handle IGMP messages of PIMv1
2092  */
2093
2094 int pim_rcv_v1(struct sk_buff *skb)
2095 {
2096         struct igmphdr *pim;
2097         struct net *net = dev_net(skb->dev);
2098         struct mr_table *mrt;
2099
2100         if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
2101                 goto drop;
2102
2103         pim = igmp_hdr(skb);
2104
2105         mrt = ipmr_rt_fib_lookup(net, skb);
2106         if (IS_ERR(mrt))
2107                 goto drop;
2108         if (!mrt->mroute_do_pim ||
2109             pim->group != PIM_V1_VERSION || pim->code != PIM_V1_REGISTER)
2110                 goto drop;
2111
2112         if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2113 drop:
2114                 kfree_skb(skb);
2115         }
2116         return 0;
2117 }
2118 #endif
2119
2120 #ifdef CONFIG_IP_PIMSM_V2
2121 static int pim_rcv(struct sk_buff *skb)
2122 {
2123         struct pimreghdr *pim;
2124         struct net *net = dev_net(skb->dev);
2125         struct mr_table *mrt;
2126
2127         if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
2128                 goto drop;
2129
2130         pim = (struct pimreghdr *)skb_transport_header(skb);
2131         if (pim->type != ((PIM_VERSION << 4) | (PIM_REGISTER)) ||
2132             (pim->flags & PIM_NULL_REGISTER) ||
2133             (ip_compute_csum((void *)pim, sizeof(*pim)) != 0 &&
2134              csum_fold(skb_checksum(skb, 0, skb->len, 0))))
2135                 goto drop;
2136
2137         mrt = ipmr_rt_fib_lookup(net, skb);
2138         if (IS_ERR(mrt))
2139                 goto drop;
2140         if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2141 drop:
2142                 kfree_skb(skb);
2143         }
2144         return 0;
2145 }
2146 #endif
2147
2148 static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2149                               struct mfc_cache *c, struct rtmsg *rtm)
2150 {
2151         int ct;
2152         struct rtnexthop *nhp;
2153         struct nlattr *mp_attr;
2154         struct rta_mfc_stats mfcs;
2155
2156         /* If cache is unresolved, don't try to parse IIF and OIF */
2157         if (c->mfc_parent >= MAXVIFS)
2158                 return -ENOENT;
2159
2160         if (VIF_EXISTS(mrt, c->mfc_parent) &&
2161             nla_put_u32(skb, RTA_IIF, mrt->vif_table[c->mfc_parent].dev->ifindex) < 0)
2162                 return -EMSGSIZE;
2163
2164         if (!(mp_attr = nla_nest_start(skb, RTA_MULTIPATH)))
2165                 return -EMSGSIZE;
2166
2167         for (ct = c->mfc_un.res.minvif; ct < c->mfc_un.res.maxvif; ct++) {
2168                 if (VIF_EXISTS(mrt, ct) && c->mfc_un.res.ttls[ct] < 255) {
2169                         if (!(nhp = nla_reserve_nohdr(skb, sizeof(*nhp)))) {
2170                                 nla_nest_cancel(skb, mp_attr);
2171                                 return -EMSGSIZE;
2172                         }
2173
2174                         nhp->rtnh_flags = 0;
2175                         nhp->rtnh_hops = c->mfc_un.res.ttls[ct];
2176                         nhp->rtnh_ifindex = mrt->vif_table[ct].dev->ifindex;
2177                         nhp->rtnh_len = sizeof(*nhp);
2178                 }
2179         }
2180
2181         nla_nest_end(skb, mp_attr);
2182
2183         mfcs.mfcs_packets = c->mfc_un.res.pkt;
2184         mfcs.mfcs_bytes = c->mfc_un.res.bytes;
2185         mfcs.mfcs_wrong_if = c->mfc_un.res.wrong_if;
2186         if (nla_put(skb, RTA_MFC_STATS, sizeof(mfcs), &mfcs) < 0)
2187                 return -EMSGSIZE;
2188
2189         rtm->rtm_type = RTN_MULTICAST;
2190         return 1;
2191 }
2192
2193 int ipmr_get_route(struct net *net, struct sk_buff *skb,
2194                    __be32 saddr, __be32 daddr,
2195                    struct rtmsg *rtm, int nowait)
2196 {
2197         struct mfc_cache *cache;
2198         struct mr_table *mrt;
2199         int err;
2200
2201         mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2202         if (!mrt)
2203                 return -ENOENT;
2204
2205         rcu_read_lock();
2206         cache = ipmr_cache_find(mrt, saddr, daddr);
2207         if (!cache && skb->dev) {
2208                 int vif = ipmr_find_vif(mrt, skb->dev);
2209
2210                 if (vif >= 0)
2211                         cache = ipmr_cache_find_any(mrt, daddr, vif);
2212         }
2213         if (!cache) {
2214                 struct sk_buff *skb2;
2215                 struct iphdr *iph;
2216                 struct net_device *dev;
2217                 int vif = -1;
2218
2219                 if (nowait) {
2220                         rcu_read_unlock();
2221                         return -EAGAIN;
2222                 }
2223
2224                 dev = skb->dev;
2225                 read_lock(&mrt_lock);
2226                 if (dev)
2227                         vif = ipmr_find_vif(mrt, dev);
2228                 if (vif < 0) {
2229                         read_unlock(&mrt_lock);
2230                         rcu_read_unlock();
2231                         return -ENODEV;
2232                 }
2233                 skb2 = skb_clone(skb, GFP_ATOMIC);
2234                 if (!skb2) {
2235                         read_unlock(&mrt_lock);
2236                         rcu_read_unlock();
2237                         return -ENOMEM;
2238                 }
2239
2240                 skb_push(skb2, sizeof(struct iphdr));
2241                 skb_reset_network_header(skb2);
2242                 iph = ip_hdr(skb2);
2243                 iph->ihl = sizeof(struct iphdr) >> 2;
2244                 iph->saddr = saddr;
2245                 iph->daddr = daddr;
2246                 iph->version = 0;
2247                 err = ipmr_cache_unresolved(mrt, vif, skb2);
2248                 read_unlock(&mrt_lock);
2249                 rcu_read_unlock();
2250                 return err;
2251         }
2252
2253         read_lock(&mrt_lock);
2254         if (!nowait && (rtm->rtm_flags & RTM_F_NOTIFY))
2255                 cache->mfc_flags |= MFC_NOTIFY;
2256         err = __ipmr_fill_mroute(mrt, skb, cache, rtm);
2257         read_unlock(&mrt_lock);
2258         rcu_read_unlock();
2259         return err;
2260 }
2261
2262 static int ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2263                             u32 portid, u32 seq, struct mfc_cache *c, int cmd,
2264                             int flags)
2265 {
2266         struct nlmsghdr *nlh;
2267         struct rtmsg *rtm;
2268         int err;
2269
2270         nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rtm), flags);
2271         if (!nlh)
2272                 return -EMSGSIZE;
2273
2274         rtm = nlmsg_data(nlh);
2275         rtm->rtm_family   = RTNL_FAMILY_IPMR;
2276         rtm->rtm_dst_len  = 32;
2277         rtm->rtm_src_len  = 32;
2278         rtm->rtm_tos      = 0;
2279         rtm->rtm_table    = mrt->id;
2280         if (nla_put_u32(skb, RTA_TABLE, mrt->id))
2281                 goto nla_put_failure;
2282         rtm->rtm_type     = RTN_MULTICAST;
2283         rtm->rtm_scope    = RT_SCOPE_UNIVERSE;
2284         if (c->mfc_flags & MFC_STATIC)
2285                 rtm->rtm_protocol = RTPROT_STATIC;
2286         else
2287                 rtm->rtm_protocol = RTPROT_MROUTED;
2288         rtm->rtm_flags    = 0;
2289
2290         if (nla_put_in_addr(skb, RTA_SRC, c->mfc_origin) ||
2291             nla_put_in_addr(skb, RTA_DST, c->mfc_mcastgrp))
2292                 goto nla_put_failure;
2293         err = __ipmr_fill_mroute(mrt, skb, c, rtm);
2294         /* do not break the dump if cache is unresolved */
2295         if (err < 0 && err != -ENOENT)
2296                 goto nla_put_failure;
2297
2298         nlmsg_end(skb, nlh);
2299         return 0;
2300
2301 nla_put_failure:
2302         nlmsg_cancel(skb, nlh);
2303         return -EMSGSIZE;
2304 }
2305
2306 static size_t mroute_msgsize(bool unresolved, int maxvif)
2307 {
2308         size_t len =
2309                 NLMSG_ALIGN(sizeof(struct rtmsg))
2310                 + nla_total_size(4)     /* RTA_TABLE */
2311                 + nla_total_size(4)     /* RTA_SRC */
2312                 + nla_total_size(4)     /* RTA_DST */
2313                 ;
2314
2315         if (!unresolved)
2316                 len = len
2317                       + nla_total_size(4)       /* RTA_IIF */
2318                       + nla_total_size(0)       /* RTA_MULTIPATH */
2319                       + maxvif * NLA_ALIGN(sizeof(struct rtnexthop))
2320                                                 /* RTA_MFC_STATS */
2321                       + nla_total_size(sizeof(struct rta_mfc_stats))
2322                 ;
2323
2324         return len;
2325 }
2326
2327 static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
2328                                  int cmd)
2329 {
2330         struct net *net = read_pnet(&mrt->net);
2331         struct sk_buff *skb;
2332         int err = -ENOBUFS;
2333
2334         skb = nlmsg_new(mroute_msgsize(mfc->mfc_parent >= MAXVIFS, mrt->maxvif),
2335                         GFP_ATOMIC);
2336         if (!skb)
2337                 goto errout;
2338
2339         err = ipmr_fill_mroute(mrt, skb, 0, 0, mfc, cmd, 0);
2340         if (err < 0)
2341                 goto errout;
2342
2343         rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE, NULL, GFP_ATOMIC);
2344         return;
2345
2346 errout:
2347         kfree_skb(skb);
2348         if (err < 0)
2349                 rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE, err);
2350 }
2351
2352 static int ipmr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb)
2353 {
2354         struct net *net = sock_net(skb->sk);
2355         struct mr_table *mrt;
2356         struct mfc_cache *mfc;
2357         unsigned int t = 0, s_t;
2358         unsigned int h = 0, s_h;
2359         unsigned int e = 0, s_e;
2360
2361         s_t = cb->args[0];
2362         s_h = cb->args[1];
2363         s_e = cb->args[2];
2364
2365         rcu_read_lock();
2366         ipmr_for_each_table(mrt, net) {
2367                 if (t < s_t)
2368                         goto next_table;
2369                 if (t > s_t)
2370                         s_h = 0;
2371                 for (h = s_h; h < MFC_LINES; h++) {
2372                         list_for_each_entry_rcu(mfc, &mrt->mfc_cache_array[h], list) {
2373                                 if (e < s_e)
2374                                         goto next_entry;
2375                                 if (ipmr_fill_mroute(mrt, skb,
2376                                                      NETLINK_CB(cb->skb).portid,
2377                                                      cb->nlh->nlmsg_seq,
2378                                                      mfc, RTM_NEWROUTE,
2379                                                      NLM_F_MULTI) < 0)
2380                                         goto done;
2381 next_entry:
2382                                 e++;
2383                         }
2384                         e = s_e = 0;
2385                 }
2386                 spin_lock_bh(&mfc_unres_lock);
2387                 list_for_each_entry(mfc, &mrt->mfc_unres_queue, list) {
2388                         if (e < s_e)
2389                                 goto next_entry2;
2390                         if (ipmr_fill_mroute(mrt, skb,
2391                                              NETLINK_CB(cb->skb).portid,
2392                                              cb->nlh->nlmsg_seq,
2393                                              mfc, RTM_NEWROUTE,
2394                                              NLM_F_MULTI) < 0) {
2395                                 spin_unlock_bh(&mfc_unres_lock);
2396                                 goto done;
2397                         }
2398 next_entry2:
2399                         e++;
2400                 }
2401                 spin_unlock_bh(&mfc_unres_lock);
2402                 e = s_e = 0;
2403                 s_h = 0;
2404 next_table:
2405                 t++;
2406         }
2407 done:
2408         rcu_read_unlock();
2409
2410         cb->args[2] = e;
2411         cb->args[1] = h;
2412         cb->args[0] = t;
2413
2414         return skb->len;
2415 }
2416
2417 #ifdef CONFIG_PROC_FS
2418 /*
2419  *      The /proc interfaces to multicast routing :
2420  *      /proc/net/ip_mr_cache & /proc/net/ip_mr_vif
2421  */
2422 struct ipmr_vif_iter {
2423         struct seq_net_private p;
2424         struct mr_table *mrt;
2425         int ct;
2426 };
2427
2428 static struct vif_device *ipmr_vif_seq_idx(struct net *net,
2429                                            struct ipmr_vif_iter *iter,
2430                                            loff_t pos)
2431 {
2432         struct mr_table *mrt = iter->mrt;
2433
2434         for (iter->ct = 0; iter->ct < mrt->maxvif; ++iter->ct) {
2435                 if (!VIF_EXISTS(mrt, iter->ct))
2436                         continue;
2437                 if (pos-- == 0)
2438                         return &mrt->vif_table[iter->ct];
2439         }
2440         return NULL;
2441 }
2442
2443 static void *ipmr_vif_seq_start(struct seq_file *seq, loff_t *pos)
2444         __acquires(mrt_lock)
2445 {
2446         struct ipmr_vif_iter *iter = seq->private;
2447         struct net *net = seq_file_net(seq);
2448         struct mr_table *mrt;
2449
2450         mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2451         if (!mrt)
2452                 return ERR_PTR(-ENOENT);
2453
2454         iter->mrt = mrt;
2455
2456         read_lock(&mrt_lock);
2457         return *pos ? ipmr_vif_seq_idx(net, seq->private, *pos - 1)
2458                 : SEQ_START_TOKEN;
2459 }
2460
2461 static void *ipmr_vif_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2462 {
2463         struct ipmr_vif_iter *iter = seq->private;
2464         struct net *net = seq_file_net(seq);
2465         struct mr_table *mrt = iter->mrt;
2466
2467         ++*pos;
2468         if (v == SEQ_START_TOKEN)
2469                 return ipmr_vif_seq_idx(net, iter, 0);
2470
2471         while (++iter->ct < mrt->maxvif) {
2472                 if (!VIF_EXISTS(mrt, iter->ct))
2473                         continue;
2474                 return &mrt->vif_table[iter->ct];
2475         }
2476         return NULL;
2477 }
2478
2479 static void ipmr_vif_seq_stop(struct seq_file *seq, void *v)
2480         __releases(mrt_lock)
2481 {
2482         read_unlock(&mrt_lock);
2483 }
2484
2485 static int ipmr_vif_seq_show(struct seq_file *seq, void *v)
2486 {
2487         struct ipmr_vif_iter *iter = seq->private;
2488         struct mr_table *mrt = iter->mrt;
2489
2490         if (v == SEQ_START_TOKEN) {
2491                 seq_puts(seq,
2492                          "Interface      BytesIn  PktsIn  BytesOut PktsOut Flags Local    Remote\n");
2493         } else {
2494                 const struct vif_device *vif = v;
2495                 const char *name =  vif->dev ? vif->dev->name : "none";
2496
2497                 seq_printf(seq,
2498                            "%2Zd %-10s %8ld %7ld  %8ld %7ld %05X %08X %08X\n",
2499                            vif - mrt->vif_table,
2500                            name, vif->bytes_in, vif->pkt_in,
2501                            vif->bytes_out, vif->pkt_out,
2502                            vif->flags, vif->local, vif->remote);
2503         }
2504         return 0;
2505 }
2506
2507 static const struct seq_operations ipmr_vif_seq_ops = {
2508         .start = ipmr_vif_seq_start,
2509         .next  = ipmr_vif_seq_next,
2510         .stop  = ipmr_vif_seq_stop,
2511         .show  = ipmr_vif_seq_show,
2512 };
2513
2514 static int ipmr_vif_open(struct inode *inode, struct file *file)
2515 {
2516         return seq_open_net(inode, file, &ipmr_vif_seq_ops,
2517                             sizeof(struct ipmr_vif_iter));
2518 }
2519
2520 static const struct file_operations ipmr_vif_fops = {
2521         .owner   = THIS_MODULE,
2522         .open    = ipmr_vif_open,
2523         .read    = seq_read,
2524         .llseek  = seq_lseek,
2525         .release = seq_release_net,
2526 };
2527
2528 struct ipmr_mfc_iter {
2529         struct seq_net_private p;
2530         struct mr_table *mrt;
2531         struct list_head *cache;
2532         int ct;
2533 };
2534
2535
2536 static struct mfc_cache *ipmr_mfc_seq_idx(struct net *net,
2537                                           struct ipmr_mfc_iter *it, loff_t pos)
2538 {
2539         struct mr_table *mrt = it->mrt;
2540         struct mfc_cache *mfc;
2541
2542         rcu_read_lock();
2543         for (it->ct = 0; it->ct < MFC_LINES; it->ct++) {
2544                 it->cache = &mrt->mfc_cache_array[it->ct];
2545                 list_for_each_entry_rcu(mfc, it->cache, list)
2546                         if (pos-- == 0)
2547                                 return mfc;
2548         }
2549         rcu_read_unlock();
2550
2551         spin_lock_bh(&mfc_unres_lock);
2552         it->cache = &mrt->mfc_unres_queue;
2553         list_for_each_entry(mfc, it->cache, list)
2554                 if (pos-- == 0)
2555                         return mfc;
2556         spin_unlock_bh(&mfc_unres_lock);
2557
2558         it->cache = NULL;
2559         return NULL;
2560 }
2561
2562
2563 static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos)
2564 {
2565         struct ipmr_mfc_iter *it = seq->private;
2566         struct net *net = seq_file_net(seq);
2567         struct mr_table *mrt;
2568
2569         mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2570         if (!mrt)
2571                 return ERR_PTR(-ENOENT);
2572
2573         it->mrt = mrt;
2574         it->cache = NULL;
2575         it->ct = 0;
2576         return *pos ? ipmr_mfc_seq_idx(net, seq->private, *pos - 1)
2577                 : SEQ_START_TOKEN;
2578 }
2579
2580 static void *ipmr_mfc_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2581 {
2582         struct mfc_cache *mfc = v;
2583         struct ipmr_mfc_iter *it = seq->private;
2584         struct net *net = seq_file_net(seq);
2585         struct mr_table *mrt = it->mrt;
2586
2587         ++*pos;
2588
2589         if (v == SEQ_START_TOKEN)
2590                 return ipmr_mfc_seq_idx(net, seq->private, 0);
2591
2592         if (mfc->list.next != it->cache)
2593                 return list_entry(mfc->list.next, struct mfc_cache, list);
2594
2595         if (it->cache == &mrt->mfc_unres_queue)
2596                 goto end_of_list;
2597
2598         BUG_ON(it->cache != &mrt->mfc_cache_array[it->ct]);
2599
2600         while (++it->ct < MFC_LINES) {
2601                 it->cache = &mrt->mfc_cache_array[it->ct];
2602                 if (list_empty(it->cache))
2603                         continue;
2604                 return list_first_entry(it->cache, struct mfc_cache, list);
2605         }
2606
2607         /* exhausted cache_array, show unresolved */
2608         rcu_read_unlock();
2609         it->cache = &mrt->mfc_unres_queue;
2610         it->ct = 0;
2611
2612         spin_lock_bh(&mfc_unres_lock);
2613         if (!list_empty(it->cache))
2614                 return list_first_entry(it->cache, struct mfc_cache, list);
2615
2616 end_of_list:
2617         spin_unlock_bh(&mfc_unres_lock);
2618         it->cache = NULL;
2619
2620         return NULL;
2621 }
2622
2623 static void ipmr_mfc_seq_stop(struct seq_file *seq, void *v)
2624 {
2625         struct ipmr_mfc_iter *it = seq->private;
2626         struct mr_table *mrt = it->mrt;
2627
2628         if (it->cache == &mrt->mfc_unres_queue)
2629                 spin_unlock_bh(&mfc_unres_lock);
2630         else if (it->cache == &mrt->mfc_cache_array[it->ct])
2631                 rcu_read_unlock();
2632 }
2633
2634 static int ipmr_mfc_seq_show(struct seq_file *seq, void *v)
2635 {
2636         int n;
2637
2638         if (v == SEQ_START_TOKEN) {
2639                 seq_puts(seq,
2640                  "Group    Origin   Iif     Pkts    Bytes    Wrong Oifs\n");
2641         } else {
2642                 const struct mfc_cache *mfc = v;
2643                 const struct ipmr_mfc_iter *it = seq->private;
2644                 const struct mr_table *mrt = it->mrt;
2645
2646                 seq_printf(seq, "%08X %08X %-3hd",
2647                            (__force u32) mfc->mfc_mcastgrp,
2648                            (__force u32) mfc->mfc_origin,
2649                            mfc->mfc_parent);
2650
2651                 if (it->cache != &mrt->mfc_unres_queue) {
2652                         seq_printf(seq, " %8lu %8lu %8lu",
2653                                    mfc->mfc_un.res.pkt,
2654                                    mfc->mfc_un.res.bytes,
2655                                    mfc->mfc_un.res.wrong_if);
2656                         for (n = mfc->mfc_un.res.minvif;
2657                              n < mfc->mfc_un.res.maxvif; n++) {
2658                                 if (VIF_EXISTS(mrt, n) &&
2659                                     mfc->mfc_un.res.ttls[n] < 255)
2660                                         seq_printf(seq,
2661                                            " %2d:%-3d",
2662                                            n, mfc->mfc_un.res.ttls[n]);
2663                         }
2664                 } else {
2665                         /* unresolved mfc_caches don't contain
2666                          * pkt, bytes and wrong_if values
2667                          */
2668                         seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul);
2669                 }
2670                 seq_putc(seq, '\n');
2671         }
2672         return 0;
2673 }
2674
2675 static const struct seq_operations ipmr_mfc_seq_ops = {
2676         .start = ipmr_mfc_seq_start,
2677         .next  = ipmr_mfc_seq_next,
2678         .stop  = ipmr_mfc_seq_stop,
2679         .show  = ipmr_mfc_seq_show,
2680 };
2681
2682 static int ipmr_mfc_open(struct inode *inode, struct file *file)
2683 {
2684         return seq_open_net(inode, file, &ipmr_mfc_seq_ops,
2685                             sizeof(struct ipmr_mfc_iter));
2686 }
2687
2688 static const struct file_operations ipmr_mfc_fops = {
2689         .owner   = THIS_MODULE,
2690         .open    = ipmr_mfc_open,
2691         .read    = seq_read,
2692         .llseek  = seq_lseek,
2693         .release = seq_release_net,
2694 };
2695 #endif
2696
2697 #ifdef CONFIG_IP_PIMSM_V2
2698 static const struct net_protocol pim_protocol = {
2699         .handler        =       pim_rcv,
2700         .netns_ok       =       1,
2701 };
2702 #endif
2703
2704
2705 /*
2706  *      Setup for IP multicast routing
2707  */
2708 static int __net_init ipmr_net_init(struct net *net)
2709 {
2710         int err;
2711
2712         err = ipmr_rules_init(net);
2713         if (err < 0)
2714                 goto fail;
2715
2716 #ifdef CONFIG_PROC_FS
2717         err = -ENOMEM;
2718         if (!proc_create("ip_mr_vif", 0, net->proc_net, &ipmr_vif_fops))
2719                 goto proc_vif_fail;
2720         if (!proc_create("ip_mr_cache", 0, net->proc_net, &ipmr_mfc_fops))
2721                 goto proc_cache_fail;
2722 #endif
2723         return 0;
2724
2725 #ifdef CONFIG_PROC_FS
2726 proc_cache_fail:
2727         remove_proc_entry("ip_mr_vif", net->proc_net);
2728 proc_vif_fail:
2729         ipmr_rules_exit(net);
2730 #endif
2731 fail:
2732         return err;
2733 }
2734
2735 static void __net_exit ipmr_net_exit(struct net *net)
2736 {
2737 #ifdef CONFIG_PROC_FS
2738         remove_proc_entry("ip_mr_cache", net->proc_net);
2739         remove_proc_entry("ip_mr_vif", net->proc_net);
2740 #endif
2741         ipmr_rules_exit(net);
2742 }
2743
2744 static struct pernet_operations ipmr_net_ops = {
2745         .init = ipmr_net_init,
2746         .exit = ipmr_net_exit,
2747 };
2748
2749 int __init ip_mr_init(void)
2750 {
2751         int err;
2752
2753         mrt_cachep = kmem_cache_create("ip_mrt_cache",
2754                                        sizeof(struct mfc_cache),
2755                                        0, SLAB_HWCACHE_ALIGN | SLAB_PANIC,
2756                                        NULL);
2757         if (!mrt_cachep)
2758                 return -ENOMEM;
2759
2760         err = register_pernet_subsys(&ipmr_net_ops);
2761         if (err)
2762                 goto reg_pernet_fail;
2763
2764         err = register_netdevice_notifier(&ip_mr_notifier);
2765         if (err)
2766                 goto reg_notif_fail;
2767 #ifdef CONFIG_IP_PIMSM_V2
2768         if (inet_add_protocol(&pim_protocol, IPPROTO_PIM) < 0) {
2769                 pr_err("%s: can't add PIM protocol\n", __func__);
2770                 err = -EAGAIN;
2771                 goto add_proto_fail;
2772         }
2773 #endif
2774         rtnl_register(RTNL_FAMILY_IPMR, RTM_GETROUTE,
2775                       NULL, ipmr_rtm_dumproute, NULL);
2776         return 0;
2777
2778 #ifdef CONFIG_IP_PIMSM_V2
2779 add_proto_fail:
2780         unregister_netdevice_notifier(&ip_mr_notifier);
2781 #endif
2782 reg_notif_fail:
2783         unregister_pernet_subsys(&ipmr_net_ops);
2784 reg_pernet_fail:
2785         kmem_cache_destroy(mrt_cachep);
2786         return err;
2787 }