]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - net/rfkill/core.c
Merge remote-tracking branch 'remotes/stable/linux-4.4.y' into karo-tx6-mainline
[karo-tx-linux.git] / net / rfkill / core.c
1 /*
2  * Copyright (C) 2006 - 2007 Ivo van Doorn
3  * Copyright (C) 2007 Dmitry Torokhov
4  * Copyright 2009 Johannes Berg <johannes@sipsolutions.net>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see <http://www.gnu.org/licenses/>.
18  */
19
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/init.h>
23 #include <linux/workqueue.h>
24 #include <linux/capability.h>
25 #include <linux/list.h>
26 #include <linux/mutex.h>
27 #include <linux/rfkill.h>
28 #include <linux/sched.h>
29 #include <linux/spinlock.h>
30 #include <linux/device.h>
31 #include <linux/miscdevice.h>
32 #include <linux/wait.h>
33 #include <linux/poll.h>
34 #include <linux/fs.h>
35 #include <linux/slab.h>
36
37 #include "rfkill.h"
38
39 #define POLL_INTERVAL           (5 * HZ)
40
41 #define RFKILL_BLOCK_HW         BIT(0)
42 #define RFKILL_BLOCK_SW         BIT(1)
43 #define RFKILL_BLOCK_SW_PREV    BIT(2)
44 #define RFKILL_BLOCK_ANY        (RFKILL_BLOCK_HW |\
45                                  RFKILL_BLOCK_SW |\
46                                  RFKILL_BLOCK_SW_PREV)
47 #define RFKILL_BLOCK_SW_SETCALL BIT(31)
48
49 struct rfkill {
50         spinlock_t              lock;
51
52         enum rfkill_type        type;
53
54         unsigned long           state;
55
56         u32                     idx;
57
58         bool                    registered;
59         bool                    persistent;
60
61         const struct rfkill_ops *ops;
62         void                    *data;
63
64 #ifdef CONFIG_RFKILL_LEDS
65         struct led_trigger      led_trigger;
66         const char              *ledtrigname;
67 #endif
68
69         struct device           dev;
70         struct list_head        node;
71
72         struct delayed_work     poll_work;
73         struct work_struct      uevent_work;
74         struct work_struct      sync_work;
75         char                    name[];
76 };
77 #define to_rfkill(d)    container_of(d, struct rfkill, dev)
78
79 struct rfkill_int_event {
80         struct list_head        list;
81         struct rfkill_event     ev;
82 };
83
84 struct rfkill_data {
85         struct list_head        list;
86         struct list_head        events;
87         struct mutex            mtx;
88         wait_queue_head_t       read_wait;
89         bool                    input_handler;
90 };
91
92
93 MODULE_AUTHOR("Ivo van Doorn <IvDoorn@gmail.com>");
94 MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>");
95 MODULE_DESCRIPTION("RF switch support");
96 MODULE_LICENSE("GPL");
97
98
99 /*
100  * The locking here should be made much smarter, we currently have
101  * a bit of a stupid situation because drivers might want to register
102  * the rfkill struct under their own lock, and take this lock during
103  * rfkill method calls -- which will cause an AB-BA deadlock situation.
104  *
105  * To fix that, we need to rework this code here to be mostly lock-free
106  * and only use the mutex for list manipulations, not to protect the
107  * various other global variables. Then we can avoid holding the mutex
108  * around driver operations, and all is happy.
109  */
110 static LIST_HEAD(rfkill_list);  /* list of registered rf switches */
111 static DEFINE_MUTEX(rfkill_global_mutex);
112 static LIST_HEAD(rfkill_fds);   /* list of open fds of /dev/rfkill */
113
114 static unsigned int rfkill_default_state = 1;
115 module_param_named(default_state, rfkill_default_state, uint, 0444);
116 MODULE_PARM_DESC(default_state,
117                  "Default initial state for all radio types, 0 = radio off");
118
119 static struct {
120         bool cur, sav;
121 } rfkill_global_states[NUM_RFKILL_TYPES];
122
123 static bool rfkill_epo_lock_active;
124
125
126 #ifdef CONFIG_RFKILL_LEDS
127 static void rfkill_led_trigger_event(struct rfkill *rfkill)
128 {
129         struct led_trigger *trigger;
130
131         if (!rfkill->registered)
132                 return;
133
134         trigger = &rfkill->led_trigger;
135
136         if (rfkill->state & RFKILL_BLOCK_ANY)
137                 led_trigger_event(trigger, LED_OFF);
138         else
139                 led_trigger_event(trigger, LED_FULL);
140 }
141
142 static void rfkill_led_trigger_activate(struct led_classdev *led)
143 {
144         struct rfkill *rfkill;
145
146         rfkill = container_of(led->trigger, struct rfkill, led_trigger);
147
148         rfkill_led_trigger_event(rfkill);
149 }
150
151 const char *rfkill_get_led_trigger_name(struct rfkill *rfkill)
152 {
153         return rfkill->led_trigger.name;
154 }
155 EXPORT_SYMBOL(rfkill_get_led_trigger_name);
156
157 void rfkill_set_led_trigger_name(struct rfkill *rfkill, const char *name)
158 {
159         BUG_ON(!rfkill);
160
161         rfkill->ledtrigname = name;
162 }
163 EXPORT_SYMBOL(rfkill_set_led_trigger_name);
164
165 static int rfkill_led_trigger_register(struct rfkill *rfkill)
166 {
167         rfkill->led_trigger.name = rfkill->ledtrigname
168                                         ? : dev_name(&rfkill->dev);
169         rfkill->led_trigger.activate = rfkill_led_trigger_activate;
170         return led_trigger_register(&rfkill->led_trigger);
171 }
172
173 static void rfkill_led_trigger_unregister(struct rfkill *rfkill)
174 {
175         led_trigger_unregister(&rfkill->led_trigger);
176 }
177 #else
178 static void rfkill_led_trigger_event(struct rfkill *rfkill)
179 {
180 }
181
182 static inline int rfkill_led_trigger_register(struct rfkill *rfkill)
183 {
184         return 0;
185 }
186
187 static inline void rfkill_led_trigger_unregister(struct rfkill *rfkill)
188 {
189 }
190 #endif /* CONFIG_RFKILL_LEDS */
191
192 static void rfkill_fill_event(struct rfkill_event *ev, struct rfkill *rfkill,
193                               enum rfkill_operation op)
194 {
195         unsigned long flags;
196
197         ev->idx = rfkill->idx;
198         ev->type = rfkill->type;
199         ev->op = op;
200
201         spin_lock_irqsave(&rfkill->lock, flags);
202         ev->hard = !!(rfkill->state & RFKILL_BLOCK_HW);
203         ev->soft = !!(rfkill->state & (RFKILL_BLOCK_SW |
204                                         RFKILL_BLOCK_SW_PREV));
205         spin_unlock_irqrestore(&rfkill->lock, flags);
206 }
207
208 static void rfkill_send_events(struct rfkill *rfkill, enum rfkill_operation op)
209 {
210         struct rfkill_data *data;
211         struct rfkill_int_event *ev;
212
213         list_for_each_entry(data, &rfkill_fds, list) {
214                 ev = kzalloc(sizeof(*ev), GFP_KERNEL);
215                 if (!ev)
216                         continue;
217                 rfkill_fill_event(&ev->ev, rfkill, op);
218                 mutex_lock(&data->mtx);
219                 list_add_tail(&ev->list, &data->events);
220                 mutex_unlock(&data->mtx);
221                 wake_up_interruptible(&data->read_wait);
222         }
223 }
224
225 static void rfkill_event(struct rfkill *rfkill)
226 {
227         if (!rfkill->registered)
228                 return;
229
230         kobject_uevent(&rfkill->dev.kobj, KOBJ_CHANGE);
231
232         /* also send event to /dev/rfkill */
233         rfkill_send_events(rfkill, RFKILL_OP_CHANGE);
234 }
235
236 static bool __rfkill_set_hw_state(struct rfkill *rfkill,
237                                   bool blocked, bool *change)
238 {
239         unsigned long flags;
240         bool prev, any;
241
242         BUG_ON(!rfkill);
243
244         spin_lock_irqsave(&rfkill->lock, flags);
245         prev = !!(rfkill->state & RFKILL_BLOCK_HW);
246         if (blocked)
247                 rfkill->state |= RFKILL_BLOCK_HW;
248         else
249                 rfkill->state &= ~RFKILL_BLOCK_HW;
250         *change = prev != blocked;
251         any = !!(rfkill->state & RFKILL_BLOCK_ANY);
252         spin_unlock_irqrestore(&rfkill->lock, flags);
253
254         rfkill_led_trigger_event(rfkill);
255
256         return any;
257 }
258
259 /**
260  * rfkill_set_block - wrapper for set_block method
261  *
262  * @rfkill: the rfkill struct to use
263  * @blocked: the new software state
264  *
265  * Calls the set_block method (when applicable) and handles notifications
266  * etc. as well.
267  */
268 static void rfkill_set_block(struct rfkill *rfkill, bool blocked)
269 {
270         unsigned long flags;
271         bool prev, curr;
272         int err;
273
274         if (unlikely(rfkill->dev.power.power_state.event & PM_EVENT_SLEEP))
275                 return;
276
277         /*
278          * Some platforms (...!) generate input events which affect the
279          * _hard_ kill state -- whenever something tries to change the
280          * current software state query the hardware state too.
281          */
282         if (rfkill->ops->query)
283                 rfkill->ops->query(rfkill, rfkill->data);
284
285         spin_lock_irqsave(&rfkill->lock, flags);
286         prev = rfkill->state & RFKILL_BLOCK_SW;
287
288         if (rfkill->state & RFKILL_BLOCK_SW)
289                 rfkill->state |= RFKILL_BLOCK_SW_PREV;
290         else
291                 rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
292
293         if (blocked)
294                 rfkill->state |= RFKILL_BLOCK_SW;
295         else
296                 rfkill->state &= ~RFKILL_BLOCK_SW;
297
298         rfkill->state |= RFKILL_BLOCK_SW_SETCALL;
299         spin_unlock_irqrestore(&rfkill->lock, flags);
300
301         err = rfkill->ops->set_block(rfkill->data, blocked);
302
303         spin_lock_irqsave(&rfkill->lock, flags);
304         if (err) {
305                 /*
306                  * Failed -- reset status to _prev, this may be different
307                  * from what set set _PREV to earlier in this function
308                  * if rfkill_set_sw_state was invoked.
309                  */
310                 if (rfkill->state & RFKILL_BLOCK_SW_PREV)
311                         rfkill->state |= RFKILL_BLOCK_SW;
312                 else
313                         rfkill->state &= ~RFKILL_BLOCK_SW;
314         }
315         rfkill->state &= ~RFKILL_BLOCK_SW_SETCALL;
316         rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
317         curr = rfkill->state & RFKILL_BLOCK_SW;
318         spin_unlock_irqrestore(&rfkill->lock, flags);
319
320         rfkill_led_trigger_event(rfkill);
321
322         if (prev != curr)
323                 rfkill_event(rfkill);
324 }
325
326 #ifdef CONFIG_RFKILL_INPUT
327 static atomic_t rfkill_input_disabled = ATOMIC_INIT(0);
328
329 /**
330  * __rfkill_switch_all - Toggle state of all switches of given type
331  * @type: type of interfaces to be affected
332  * @blocked: the new state
333  *
334  * This function sets the state of all switches of given type,
335  * unless a specific switch is claimed by userspace (in which case,
336  * that switch is left alone) or suspended.
337  *
338  * Caller must have acquired rfkill_global_mutex.
339  */
340 static void __rfkill_switch_all(const enum rfkill_type type, bool blocked)
341 {
342         struct rfkill *rfkill;
343
344         if (type == RFKILL_TYPE_ALL) {
345                 int i;
346
347                 for (i = 0; i < NUM_RFKILL_TYPES; i++)
348                         rfkill_global_states[i].cur = blocked;
349         } else {
350                 rfkill_global_states[type].cur = blocked;
351         }
352
353         list_for_each_entry(rfkill, &rfkill_list, node) {
354                 if (rfkill->type != type && type != RFKILL_TYPE_ALL)
355                         continue;
356
357                 rfkill_set_block(rfkill, blocked);
358         }
359 }
360
361 /**
362  * rfkill_switch_all - Toggle state of all switches of given type
363  * @type: type of interfaces to be affected
364  * @blocked: the new state
365  *
366  * Acquires rfkill_global_mutex and calls __rfkill_switch_all(@type, @state).
367  * Please refer to __rfkill_switch_all() for details.
368  *
369  * Does nothing if the EPO lock is active.
370  */
371 void rfkill_switch_all(enum rfkill_type type, bool blocked)
372 {
373         if (atomic_read(&rfkill_input_disabled))
374                 return;
375
376         mutex_lock(&rfkill_global_mutex);
377
378         if (!rfkill_epo_lock_active)
379                 __rfkill_switch_all(type, blocked);
380
381         mutex_unlock(&rfkill_global_mutex);
382 }
383
384 /**
385  * rfkill_epo - emergency power off all transmitters
386  *
387  * This kicks all non-suspended rfkill devices to RFKILL_STATE_SOFT_BLOCKED,
388  * ignoring everything in its path but rfkill_global_mutex and rfkill->mutex.
389  *
390  * The global state before the EPO is saved and can be restored later
391  * using rfkill_restore_states().
392  */
393 void rfkill_epo(void)
394 {
395         struct rfkill *rfkill;
396         int i;
397
398         if (atomic_read(&rfkill_input_disabled))
399                 return;
400
401         mutex_lock(&rfkill_global_mutex);
402
403         rfkill_epo_lock_active = true;
404         list_for_each_entry(rfkill, &rfkill_list, node)
405                 rfkill_set_block(rfkill, true);
406
407         for (i = 0; i < NUM_RFKILL_TYPES; i++) {
408                 rfkill_global_states[i].sav = rfkill_global_states[i].cur;
409                 rfkill_global_states[i].cur = true;
410         }
411
412         mutex_unlock(&rfkill_global_mutex);
413 }
414
415 /**
416  * rfkill_restore_states - restore global states
417  *
418  * Restore (and sync switches to) the global state from the
419  * states in rfkill_default_states.  This can undo the effects of
420  * a call to rfkill_epo().
421  */
422 void rfkill_restore_states(void)
423 {
424         int i;
425
426         if (atomic_read(&rfkill_input_disabled))
427                 return;
428
429         mutex_lock(&rfkill_global_mutex);
430
431         rfkill_epo_lock_active = false;
432         for (i = 0; i < NUM_RFKILL_TYPES; i++)
433                 __rfkill_switch_all(i, rfkill_global_states[i].sav);
434         mutex_unlock(&rfkill_global_mutex);
435 }
436
437 /**
438  * rfkill_remove_epo_lock - unlock state changes
439  *
440  * Used by rfkill-input manually unlock state changes, when
441  * the EPO switch is deactivated.
442  */
443 void rfkill_remove_epo_lock(void)
444 {
445         if (atomic_read(&rfkill_input_disabled))
446                 return;
447
448         mutex_lock(&rfkill_global_mutex);
449         rfkill_epo_lock_active = false;
450         mutex_unlock(&rfkill_global_mutex);
451 }
452
453 /**
454  * rfkill_is_epo_lock_active - returns true EPO is active
455  *
456  * Returns 0 (false) if there is NOT an active EPO contidion,
457  * and 1 (true) if there is an active EPO contition, which
458  * locks all radios in one of the BLOCKED states.
459  *
460  * Can be called in atomic context.
461  */
462 bool rfkill_is_epo_lock_active(void)
463 {
464         return rfkill_epo_lock_active;
465 }
466
467 /**
468  * rfkill_get_global_sw_state - returns global state for a type
469  * @type: the type to get the global state of
470  *
471  * Returns the current global state for a given wireless
472  * device type.
473  */
474 bool rfkill_get_global_sw_state(const enum rfkill_type type)
475 {
476         return rfkill_global_states[type].cur;
477 }
478 #endif
479
480
481 bool rfkill_set_hw_state(struct rfkill *rfkill, bool blocked)
482 {
483         bool ret, change;
484
485         ret = __rfkill_set_hw_state(rfkill, blocked, &change);
486
487         if (!rfkill->registered)
488                 return ret;
489
490         if (change)
491                 schedule_work(&rfkill->uevent_work);
492
493         return ret;
494 }
495 EXPORT_SYMBOL(rfkill_set_hw_state);
496
497 static void __rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
498 {
499         u32 bit = RFKILL_BLOCK_SW;
500
501         /* if in a ops->set_block right now, use other bit */
502         if (rfkill->state & RFKILL_BLOCK_SW_SETCALL)
503                 bit = RFKILL_BLOCK_SW_PREV;
504
505         if (blocked)
506                 rfkill->state |= bit;
507         else
508                 rfkill->state &= ~bit;
509 }
510
511 bool rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
512 {
513         unsigned long flags;
514         bool prev, hwblock;
515
516         BUG_ON(!rfkill);
517
518         spin_lock_irqsave(&rfkill->lock, flags);
519         prev = !!(rfkill->state & RFKILL_BLOCK_SW);
520         __rfkill_set_sw_state(rfkill, blocked);
521         hwblock = !!(rfkill->state & RFKILL_BLOCK_HW);
522         blocked = blocked || hwblock;
523         spin_unlock_irqrestore(&rfkill->lock, flags);
524
525         if (!rfkill->registered)
526                 return blocked;
527
528         if (prev != blocked && !hwblock)
529                 schedule_work(&rfkill->uevent_work);
530
531         rfkill_led_trigger_event(rfkill);
532
533         return blocked;
534 }
535 EXPORT_SYMBOL(rfkill_set_sw_state);
536
537 void rfkill_init_sw_state(struct rfkill *rfkill, bool blocked)
538 {
539         unsigned long flags;
540
541         BUG_ON(!rfkill);
542         BUG_ON(rfkill->registered);
543
544         spin_lock_irqsave(&rfkill->lock, flags);
545         __rfkill_set_sw_state(rfkill, blocked);
546         rfkill->persistent = true;
547         spin_unlock_irqrestore(&rfkill->lock, flags);
548 }
549 EXPORT_SYMBOL(rfkill_init_sw_state);
550
551 void rfkill_set_states(struct rfkill *rfkill, bool sw, bool hw)
552 {
553         unsigned long flags;
554         bool swprev, hwprev;
555
556         BUG_ON(!rfkill);
557
558         spin_lock_irqsave(&rfkill->lock, flags);
559
560         /*
561          * No need to care about prev/setblock ... this is for uevent only
562          * and that will get triggered by rfkill_set_block anyway.
563          */
564         swprev = !!(rfkill->state & RFKILL_BLOCK_SW);
565         hwprev = !!(rfkill->state & RFKILL_BLOCK_HW);
566         __rfkill_set_sw_state(rfkill, sw);
567         if (hw)
568                 rfkill->state |= RFKILL_BLOCK_HW;
569         else
570                 rfkill->state &= ~RFKILL_BLOCK_HW;
571
572         spin_unlock_irqrestore(&rfkill->lock, flags);
573
574         if (!rfkill->registered) {
575                 rfkill->persistent = true;
576         } else {
577                 if (swprev != sw || hwprev != hw)
578                         schedule_work(&rfkill->uevent_work);
579
580                 rfkill_led_trigger_event(rfkill);
581         }
582 }
583 EXPORT_SYMBOL(rfkill_set_states);
584
585 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
586                          char *buf)
587 {
588         struct rfkill *rfkill = to_rfkill(dev);
589
590         return sprintf(buf, "%s\n", rfkill->name);
591 }
592 static DEVICE_ATTR_RO(name);
593
594 static const char *rfkill_get_type_str(enum rfkill_type type)
595 {
596         BUILD_BUG_ON(NUM_RFKILL_TYPES != RFKILL_TYPE_NFC + 1);
597
598         switch (type) {
599         case RFKILL_TYPE_WLAN:
600                 return "wlan";
601         case RFKILL_TYPE_BLUETOOTH:
602                 return "bluetooth";
603         case RFKILL_TYPE_UWB:
604                 return "ultrawideband";
605         case RFKILL_TYPE_WIMAX:
606                 return "wimax";
607         case RFKILL_TYPE_WWAN:
608                 return "wwan";
609         case RFKILL_TYPE_GPS:
610                 return "gps";
611         case RFKILL_TYPE_FM:
612                 return "fm";
613         case RFKILL_TYPE_NFC:
614                 return "nfc";
615         default:
616                 BUG();
617         }
618 }
619
620 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
621                          char *buf)
622 {
623         struct rfkill *rfkill = to_rfkill(dev);
624
625         return sprintf(buf, "%s\n", rfkill_get_type_str(rfkill->type));
626 }
627 static DEVICE_ATTR_RO(type);
628
629 static ssize_t index_show(struct device *dev, struct device_attribute *attr,
630                           char *buf)
631 {
632         struct rfkill *rfkill = to_rfkill(dev);
633
634         return sprintf(buf, "%d\n", rfkill->idx);
635 }
636 static DEVICE_ATTR_RO(index);
637
638 static ssize_t persistent_show(struct device *dev,
639                                struct device_attribute *attr, char *buf)
640 {
641         struct rfkill *rfkill = to_rfkill(dev);
642
643         return sprintf(buf, "%d\n", rfkill->persistent);
644 }
645 static DEVICE_ATTR_RO(persistent);
646
647 static ssize_t hard_show(struct device *dev, struct device_attribute *attr,
648                          char *buf)
649 {
650         struct rfkill *rfkill = to_rfkill(dev);
651
652         return sprintf(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_HW) ? 1 : 0 );
653 }
654 static DEVICE_ATTR_RO(hard);
655
656 static ssize_t soft_show(struct device *dev, struct device_attribute *attr,
657                          char *buf)
658 {
659         struct rfkill *rfkill = to_rfkill(dev);
660
661         return sprintf(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_SW) ? 1 : 0 );
662 }
663
664 static ssize_t soft_store(struct device *dev, struct device_attribute *attr,
665                           const char *buf, size_t count)
666 {
667         struct rfkill *rfkill = to_rfkill(dev);
668         unsigned long state;
669         int err;
670
671         if (!capable(CAP_NET_ADMIN))
672                 return -EPERM;
673
674         err = kstrtoul(buf, 0, &state);
675         if (err)
676                 return err;
677
678         if (state > 1 )
679                 return -EINVAL;
680
681         mutex_lock(&rfkill_global_mutex);
682         rfkill_set_block(rfkill, state);
683         mutex_unlock(&rfkill_global_mutex);
684
685         return count;
686 }
687 static DEVICE_ATTR_RW(soft);
688
689 static u8 user_state_from_blocked(unsigned long state)
690 {
691         if (state & RFKILL_BLOCK_HW)
692                 return RFKILL_USER_STATE_HARD_BLOCKED;
693         if (state & RFKILL_BLOCK_SW)
694                 return RFKILL_USER_STATE_SOFT_BLOCKED;
695
696         return RFKILL_USER_STATE_UNBLOCKED;
697 }
698
699 static ssize_t state_show(struct device *dev, struct device_attribute *attr,
700                           char *buf)
701 {
702         struct rfkill *rfkill = to_rfkill(dev);
703
704         return sprintf(buf, "%d\n", user_state_from_blocked(rfkill->state));
705 }
706
707 static ssize_t state_store(struct device *dev, struct device_attribute *attr,
708                            const char *buf, size_t count)
709 {
710         struct rfkill *rfkill = to_rfkill(dev);
711         unsigned long state;
712         int err;
713
714         if (!capable(CAP_NET_ADMIN))
715                 return -EPERM;
716
717         err = kstrtoul(buf, 0, &state);
718         if (err)
719                 return err;
720
721         if (state != RFKILL_USER_STATE_SOFT_BLOCKED &&
722             state != RFKILL_USER_STATE_UNBLOCKED)
723                 return -EINVAL;
724
725         mutex_lock(&rfkill_global_mutex);
726         rfkill_set_block(rfkill, state == RFKILL_USER_STATE_SOFT_BLOCKED);
727         mutex_unlock(&rfkill_global_mutex);
728
729         return count;
730 }
731 static DEVICE_ATTR_RW(state);
732
733 static ssize_t claim_show(struct device *dev, struct device_attribute *attr,
734                           char *buf)
735 {
736         return sprintf(buf, "%d\n", 0);
737 }
738 static DEVICE_ATTR_RO(claim);
739
740 static struct attribute *rfkill_dev_attrs[] = {
741         &dev_attr_name.attr,
742         &dev_attr_type.attr,
743         &dev_attr_index.attr,
744         &dev_attr_persistent.attr,
745         &dev_attr_state.attr,
746         &dev_attr_claim.attr,
747         &dev_attr_soft.attr,
748         &dev_attr_hard.attr,
749         NULL,
750 };
751 ATTRIBUTE_GROUPS(rfkill_dev);
752
753 static void rfkill_release(struct device *dev)
754 {
755         struct rfkill *rfkill = to_rfkill(dev);
756
757         kfree(rfkill);
758 }
759
760 static int rfkill_dev_uevent(struct device *dev, struct kobj_uevent_env *env)
761 {
762         struct rfkill *rfkill = to_rfkill(dev);
763         unsigned long flags;
764         u32 state;
765         int error;
766
767         error = add_uevent_var(env, "RFKILL_NAME=%s", rfkill->name);
768         if (error)
769                 return error;
770         error = add_uevent_var(env, "RFKILL_TYPE=%s",
771                                rfkill_get_type_str(rfkill->type));
772         if (error)
773                 return error;
774         spin_lock_irqsave(&rfkill->lock, flags);
775         state = rfkill->state;
776         spin_unlock_irqrestore(&rfkill->lock, flags);
777         error = add_uevent_var(env, "RFKILL_STATE=%d",
778                                user_state_from_blocked(state));
779         return error;
780 }
781
782 void rfkill_pause_polling(struct rfkill *rfkill)
783 {
784         BUG_ON(!rfkill);
785
786         if (!rfkill->ops->poll)
787                 return;
788
789         cancel_delayed_work_sync(&rfkill->poll_work);
790 }
791 EXPORT_SYMBOL(rfkill_pause_polling);
792
793 void rfkill_resume_polling(struct rfkill *rfkill)
794 {
795         BUG_ON(!rfkill);
796
797         if (!rfkill->ops->poll)
798                 return;
799
800         queue_delayed_work(system_power_efficient_wq,
801                            &rfkill->poll_work, 0);
802 }
803 EXPORT_SYMBOL(rfkill_resume_polling);
804
805 #ifdef CONFIG_PM_SLEEP
806 static int rfkill_suspend(struct device *dev)
807 {
808         struct rfkill *rfkill = to_rfkill(dev);
809
810         rfkill_pause_polling(rfkill);
811
812         return 0;
813 }
814
815 static int rfkill_resume(struct device *dev)
816 {
817         struct rfkill *rfkill = to_rfkill(dev);
818         bool cur;
819
820         if (!rfkill->persistent) {
821                 cur = !!(rfkill->state & RFKILL_BLOCK_SW);
822                 rfkill_set_block(rfkill, cur);
823         }
824
825         rfkill_resume_polling(rfkill);
826
827         return 0;
828 }
829
830 static SIMPLE_DEV_PM_OPS(rfkill_pm_ops, rfkill_suspend, rfkill_resume);
831 #define RFKILL_PM_OPS (&rfkill_pm_ops)
832 #else
833 #define RFKILL_PM_OPS NULL
834 #endif
835
836 static struct class rfkill_class = {
837         .name           = "rfkill",
838         .dev_release    = rfkill_release,
839         .dev_groups     = rfkill_dev_groups,
840         .dev_uevent     = rfkill_dev_uevent,
841         .pm             = RFKILL_PM_OPS,
842 };
843
844 bool rfkill_blocked(struct rfkill *rfkill)
845 {
846         unsigned long flags;
847         u32 state;
848
849         spin_lock_irqsave(&rfkill->lock, flags);
850         state = rfkill->state;
851         spin_unlock_irqrestore(&rfkill->lock, flags);
852
853         return !!(state & RFKILL_BLOCK_ANY);
854 }
855 EXPORT_SYMBOL(rfkill_blocked);
856
857
858 struct rfkill * __must_check rfkill_alloc(const char *name,
859                                           struct device *parent,
860                                           const enum rfkill_type type,
861                                           const struct rfkill_ops *ops,
862                                           void *ops_data)
863 {
864         struct rfkill *rfkill;
865         struct device *dev;
866
867         if (WARN_ON(!ops))
868                 return NULL;
869
870         if (WARN_ON(!ops->set_block))
871                 return NULL;
872
873         if (WARN_ON(!name))
874                 return NULL;
875
876         if (WARN_ON(type == RFKILL_TYPE_ALL || type >= NUM_RFKILL_TYPES))
877                 return NULL;
878
879         rfkill = kzalloc(sizeof(*rfkill) + strlen(name) + 1, GFP_KERNEL);
880         if (!rfkill)
881                 return NULL;
882
883         spin_lock_init(&rfkill->lock);
884         INIT_LIST_HEAD(&rfkill->node);
885         rfkill->type = type;
886         strcpy(rfkill->name, name);
887         rfkill->ops = ops;
888         rfkill->data = ops_data;
889
890         dev = &rfkill->dev;
891         dev->class = &rfkill_class;
892         dev->parent = parent;
893         device_initialize(dev);
894
895         return rfkill;
896 }
897 EXPORT_SYMBOL(rfkill_alloc);
898
899 static void rfkill_poll(struct work_struct *work)
900 {
901         struct rfkill *rfkill;
902
903         rfkill = container_of(work, struct rfkill, poll_work.work);
904
905         /*
906          * Poll hardware state -- driver will use one of the
907          * rfkill_set{,_hw,_sw}_state functions and use its
908          * return value to update the current status.
909          */
910         rfkill->ops->poll(rfkill, rfkill->data);
911
912         queue_delayed_work(system_power_efficient_wq,
913                 &rfkill->poll_work,
914                 round_jiffies_relative(POLL_INTERVAL));
915 }
916
917 static void rfkill_uevent_work(struct work_struct *work)
918 {
919         struct rfkill *rfkill;
920
921         rfkill = container_of(work, struct rfkill, uevent_work);
922
923         mutex_lock(&rfkill_global_mutex);
924         rfkill_event(rfkill);
925         mutex_unlock(&rfkill_global_mutex);
926 }
927
928 static void rfkill_sync_work(struct work_struct *work)
929 {
930         struct rfkill *rfkill;
931         bool cur;
932
933         rfkill = container_of(work, struct rfkill, sync_work);
934
935         mutex_lock(&rfkill_global_mutex);
936         cur = rfkill_global_states[rfkill->type].cur;
937         rfkill_set_block(rfkill, cur);
938         mutex_unlock(&rfkill_global_mutex);
939 }
940
941 int __must_check rfkill_register(struct rfkill *rfkill)
942 {
943         static unsigned long rfkill_no;
944         struct device *dev = &rfkill->dev;
945         int error;
946
947         BUG_ON(!rfkill);
948
949         mutex_lock(&rfkill_global_mutex);
950
951         if (rfkill->registered) {
952                 error = -EALREADY;
953                 goto unlock;
954         }
955
956         rfkill->idx = rfkill_no;
957         dev_set_name(dev, "rfkill%lu", rfkill_no);
958         rfkill_no++;
959
960         list_add_tail(&rfkill->node, &rfkill_list);
961
962         error = device_add(dev);
963         if (error)
964                 goto remove;
965
966         error = rfkill_led_trigger_register(rfkill);
967         if (error)
968                 goto devdel;
969
970         rfkill->registered = true;
971
972         INIT_DELAYED_WORK(&rfkill->poll_work, rfkill_poll);
973         INIT_WORK(&rfkill->uevent_work, rfkill_uevent_work);
974         INIT_WORK(&rfkill->sync_work, rfkill_sync_work);
975
976         if (rfkill->ops->poll)
977                 queue_delayed_work(system_power_efficient_wq,
978                         &rfkill->poll_work,
979                         round_jiffies_relative(POLL_INTERVAL));
980
981         if (!rfkill->persistent || rfkill_epo_lock_active) {
982                 schedule_work(&rfkill->sync_work);
983         } else {
984 #ifdef CONFIG_RFKILL_INPUT
985                 bool soft_blocked = !!(rfkill->state & RFKILL_BLOCK_SW);
986
987                 if (!atomic_read(&rfkill_input_disabled))
988                         __rfkill_switch_all(rfkill->type, soft_blocked);
989 #endif
990         }
991
992         rfkill_send_events(rfkill, RFKILL_OP_ADD);
993
994         mutex_unlock(&rfkill_global_mutex);
995         return 0;
996
997  devdel:
998         device_del(&rfkill->dev);
999  remove:
1000         list_del_init(&rfkill->node);
1001  unlock:
1002         mutex_unlock(&rfkill_global_mutex);
1003         return error;
1004 }
1005 EXPORT_SYMBOL(rfkill_register);
1006
1007 void rfkill_unregister(struct rfkill *rfkill)
1008 {
1009         BUG_ON(!rfkill);
1010
1011         if (rfkill->ops->poll)
1012                 cancel_delayed_work_sync(&rfkill->poll_work);
1013
1014         cancel_work_sync(&rfkill->uevent_work);
1015         cancel_work_sync(&rfkill->sync_work);
1016
1017         rfkill->registered = false;
1018
1019         device_del(&rfkill->dev);
1020
1021         mutex_lock(&rfkill_global_mutex);
1022         rfkill_send_events(rfkill, RFKILL_OP_DEL);
1023         list_del_init(&rfkill->node);
1024         mutex_unlock(&rfkill_global_mutex);
1025
1026         rfkill_led_trigger_unregister(rfkill);
1027 }
1028 EXPORT_SYMBOL(rfkill_unregister);
1029
1030 void rfkill_destroy(struct rfkill *rfkill)
1031 {
1032         if (rfkill)
1033                 put_device(&rfkill->dev);
1034 }
1035 EXPORT_SYMBOL(rfkill_destroy);
1036
1037 static int rfkill_fop_open(struct inode *inode, struct file *file)
1038 {
1039         struct rfkill_data *data;
1040         struct rfkill *rfkill;
1041         struct rfkill_int_event *ev, *tmp;
1042
1043         data = kzalloc(sizeof(*data), GFP_KERNEL);
1044         if (!data)
1045                 return -ENOMEM;
1046
1047         INIT_LIST_HEAD(&data->events);
1048         mutex_init(&data->mtx);
1049         init_waitqueue_head(&data->read_wait);
1050
1051         mutex_lock(&rfkill_global_mutex);
1052         mutex_lock(&data->mtx);
1053         /*
1054          * start getting events from elsewhere but hold mtx to get
1055          * startup events added first
1056          */
1057
1058         list_for_each_entry(rfkill, &rfkill_list, node) {
1059                 ev = kzalloc(sizeof(*ev), GFP_KERNEL);
1060                 if (!ev)
1061                         goto free;
1062                 rfkill_fill_event(&ev->ev, rfkill, RFKILL_OP_ADD);
1063                 list_add_tail(&ev->list, &data->events);
1064         }
1065         list_add(&data->list, &rfkill_fds);
1066         mutex_unlock(&data->mtx);
1067         mutex_unlock(&rfkill_global_mutex);
1068
1069         file->private_data = data;
1070
1071         return nonseekable_open(inode, file);
1072
1073  free:
1074         mutex_unlock(&data->mtx);
1075         mutex_unlock(&rfkill_global_mutex);
1076         mutex_destroy(&data->mtx);
1077         list_for_each_entry_safe(ev, tmp, &data->events, list)
1078                 kfree(ev);
1079         kfree(data);
1080         return -ENOMEM;
1081 }
1082
1083 static unsigned int rfkill_fop_poll(struct file *file, poll_table *wait)
1084 {
1085         struct rfkill_data *data = file->private_data;
1086         unsigned int res = POLLOUT | POLLWRNORM;
1087
1088         poll_wait(file, &data->read_wait, wait);
1089
1090         mutex_lock(&data->mtx);
1091         if (!list_empty(&data->events))
1092                 res = POLLIN | POLLRDNORM;
1093         mutex_unlock(&data->mtx);
1094
1095         return res;
1096 }
1097
1098 static ssize_t rfkill_fop_read(struct file *file, char __user *buf,
1099                                size_t count, loff_t *pos)
1100 {
1101         struct rfkill_data *data = file->private_data;
1102         struct rfkill_int_event *ev;
1103         unsigned long sz;
1104         int ret;
1105
1106         mutex_lock(&data->mtx);
1107
1108         while (list_empty(&data->events)) {
1109                 if (file->f_flags & O_NONBLOCK) {
1110                         ret = -EAGAIN;
1111                         goto out;
1112                 }
1113                 mutex_unlock(&data->mtx);
1114                 /* since we re-check and it just compares pointers,
1115                  * using !list_empty() without locking isn't a problem
1116                  */
1117                 ret = wait_event_interruptible(data->read_wait,
1118                                                !list_empty(&data->events));
1119                 mutex_lock(&data->mtx);
1120
1121                 if (ret)
1122                         goto out;
1123         }
1124
1125         ev = list_first_entry(&data->events, struct rfkill_int_event,
1126                                 list);
1127
1128         sz = min_t(unsigned long, sizeof(ev->ev), count);
1129         ret = sz;
1130         if (copy_to_user(buf, &ev->ev, sz))
1131                 ret = -EFAULT;
1132
1133         list_del(&ev->list);
1134         kfree(ev);
1135  out:
1136         mutex_unlock(&data->mtx);
1137         return ret;
1138 }
1139
1140 static ssize_t rfkill_fop_write(struct file *file, const char __user *buf,
1141                                 size_t count, loff_t *pos)
1142 {
1143         struct rfkill *rfkill;
1144         struct rfkill_event ev;
1145
1146         /* we don't need the 'hard' variable but accept it */
1147         if (count < RFKILL_EVENT_SIZE_V1 - 1)
1148                 return -EINVAL;
1149
1150         /*
1151          * Copy as much data as we can accept into our 'ev' buffer,
1152          * but tell userspace how much we've copied so it can determine
1153          * our API version even in a write() call, if it cares.
1154          */
1155         count = min(count, sizeof(ev));
1156         if (copy_from_user(&ev, buf, count))
1157                 return -EFAULT;
1158
1159         if (ev.op != RFKILL_OP_CHANGE && ev.op != RFKILL_OP_CHANGE_ALL)
1160                 return -EINVAL;
1161
1162         if (ev.type >= NUM_RFKILL_TYPES)
1163                 return -EINVAL;
1164
1165         mutex_lock(&rfkill_global_mutex);
1166
1167         if (ev.op == RFKILL_OP_CHANGE_ALL) {
1168                 if (ev.type == RFKILL_TYPE_ALL) {
1169                         enum rfkill_type i;
1170                         for (i = 0; i < NUM_RFKILL_TYPES; i++)
1171                                 rfkill_global_states[i].cur = ev.soft;
1172                 } else {
1173                         rfkill_global_states[ev.type].cur = ev.soft;
1174                 }
1175         }
1176
1177         list_for_each_entry(rfkill, &rfkill_list, node) {
1178                 if (rfkill->idx != ev.idx && ev.op != RFKILL_OP_CHANGE_ALL)
1179                         continue;
1180
1181                 if (rfkill->type != ev.type && ev.type != RFKILL_TYPE_ALL)
1182                         continue;
1183
1184                 rfkill_set_block(rfkill, ev.soft);
1185         }
1186         mutex_unlock(&rfkill_global_mutex);
1187
1188         return count;
1189 }
1190
1191 static int rfkill_fop_release(struct inode *inode, struct file *file)
1192 {
1193         struct rfkill_data *data = file->private_data;
1194         struct rfkill_int_event *ev, *tmp;
1195
1196         mutex_lock(&rfkill_global_mutex);
1197         list_del(&data->list);
1198         mutex_unlock(&rfkill_global_mutex);
1199
1200         mutex_destroy(&data->mtx);
1201         list_for_each_entry_safe(ev, tmp, &data->events, list)
1202                 kfree(ev);
1203
1204 #ifdef CONFIG_RFKILL_INPUT
1205         if (data->input_handler)
1206                 if (atomic_dec_return(&rfkill_input_disabled) == 0)
1207                         printk(KERN_DEBUG "rfkill: input handler enabled\n");
1208 #endif
1209
1210         kfree(data);
1211
1212         return 0;
1213 }
1214
1215 #ifdef CONFIG_RFKILL_INPUT
1216 static long rfkill_fop_ioctl(struct file *file, unsigned int cmd,
1217                              unsigned long arg)
1218 {
1219         struct rfkill_data *data = file->private_data;
1220
1221         if (_IOC_TYPE(cmd) != RFKILL_IOC_MAGIC)
1222                 return -ENOSYS;
1223
1224         if (_IOC_NR(cmd) != RFKILL_IOC_NOINPUT)
1225                 return -ENOSYS;
1226
1227         mutex_lock(&data->mtx);
1228
1229         if (!data->input_handler) {
1230                 if (atomic_inc_return(&rfkill_input_disabled) == 1)
1231                         printk(KERN_DEBUG "rfkill: input handler disabled\n");
1232                 data->input_handler = true;
1233         }
1234
1235         mutex_unlock(&data->mtx);
1236
1237         return 0;
1238 }
1239 #endif
1240
1241 static const struct file_operations rfkill_fops = {
1242         .owner          = THIS_MODULE,
1243         .open           = rfkill_fop_open,
1244         .read           = rfkill_fop_read,
1245         .write          = rfkill_fop_write,
1246         .poll           = rfkill_fop_poll,
1247         .release        = rfkill_fop_release,
1248 #ifdef CONFIG_RFKILL_INPUT
1249         .unlocked_ioctl = rfkill_fop_ioctl,
1250         .compat_ioctl   = rfkill_fop_ioctl,
1251 #endif
1252         .llseek         = no_llseek,
1253 };
1254
1255 static struct miscdevice rfkill_miscdev = {
1256         .name   = "rfkill",
1257         .fops   = &rfkill_fops,
1258         .minor  = MISC_DYNAMIC_MINOR,
1259 };
1260
1261 static int __init rfkill_init(void)
1262 {
1263         int error;
1264         int i;
1265
1266         for (i = 0; i < NUM_RFKILL_TYPES; i++)
1267                 rfkill_global_states[i].cur = !rfkill_default_state;
1268
1269         error = class_register(&rfkill_class);
1270         if (error)
1271                 goto out;
1272
1273         error = misc_register(&rfkill_miscdev);
1274         if (error) {
1275                 class_unregister(&rfkill_class);
1276                 goto out;
1277         }
1278
1279 #ifdef CONFIG_RFKILL_INPUT
1280         error = rfkill_handler_init();
1281         if (error) {
1282                 misc_deregister(&rfkill_miscdev);
1283                 class_unregister(&rfkill_class);
1284                 goto out;
1285         }
1286 #endif
1287
1288  out:
1289         return error;
1290 }
1291 subsys_initcall(rfkill_init);
1292
1293 static void __exit rfkill_exit(void)
1294 {
1295 #ifdef CONFIG_RFKILL_INPUT
1296         rfkill_handler_exit();
1297 #endif
1298         misc_deregister(&rfkill_miscdev);
1299         class_unregister(&rfkill_class);
1300 }
1301 module_exit(rfkill_exit);