]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - net/wireless/reg.c
regcache: flat: Introduce register strider order
[karo-tx-linux.git] / net / wireless / reg.c
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007       Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008-2011  Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  *
8  * Permission to use, copy, modify, and/or distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20
21
22 /**
23  * DOC: Wireless regulatory infrastructure
24  *
25  * The usual implementation is for a driver to read a device EEPROM to
26  * determine which regulatory domain it should be operating under, then
27  * looking up the allowable channels in a driver-local table and finally
28  * registering those channels in the wiphy structure.
29  *
30  * Another set of compliance enforcement is for drivers to use their
31  * own compliance limits which can be stored on the EEPROM. The host
32  * driver or firmware may ensure these are used.
33  *
34  * In addition to all this we provide an extra layer of regulatory
35  * conformance. For drivers which do not have any regulatory
36  * information CRDA provides the complete regulatory solution.
37  * For others it provides a community effort on further restrictions
38  * to enhance compliance.
39  *
40  * Note: When number of rules --> infinity we will not be able to
41  * index on alpha2 any more, instead we'll probably have to
42  * rely on some SHA1 checksum of the regdomain for example.
43  *
44  */
45
46 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
47
48 #include <linux/kernel.h>
49 #include <linux/export.h>
50 #include <linux/slab.h>
51 #include <linux/list.h>
52 #include <linux/ctype.h>
53 #include <linux/nl80211.h>
54 #include <linux/platform_device.h>
55 #include <linux/moduleparam.h>
56 #include <net/cfg80211.h>
57 #include "core.h"
58 #include "reg.h"
59 #include "rdev-ops.h"
60 #include "regdb.h"
61 #include "nl80211.h"
62
63 #ifdef CONFIG_CFG80211_REG_DEBUG
64 #define REG_DBG_PRINT(format, args...)                  \
65         printk(KERN_DEBUG pr_fmt(format), ##args)
66 #else
67 #define REG_DBG_PRINT(args...)
68 #endif
69
70 /*
71  * Grace period we give before making sure all current interfaces reside on
72  * channels allowed by the current regulatory domain.
73  */
74 #define REG_ENFORCE_GRACE_MS 60000
75
76 /**
77  * enum reg_request_treatment - regulatory request treatment
78  *
79  * @REG_REQ_OK: continue processing the regulatory request
80  * @REG_REQ_IGNORE: ignore the regulatory request
81  * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
82  *      be intersected with the current one.
83  * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
84  *      regulatory settings, and no further processing is required.
85  */
86 enum reg_request_treatment {
87         REG_REQ_OK,
88         REG_REQ_IGNORE,
89         REG_REQ_INTERSECT,
90         REG_REQ_ALREADY_SET,
91 };
92
93 static struct regulatory_request core_request_world = {
94         .initiator = NL80211_REGDOM_SET_BY_CORE,
95         .alpha2[0] = '0',
96         .alpha2[1] = '0',
97         .intersect = false,
98         .processed = true,
99         .country_ie_env = ENVIRON_ANY,
100 };
101
102 /*
103  * Receipt of information from last regulatory request,
104  * protected by RTNL (and can be accessed with RCU protection)
105  */
106 static struct regulatory_request __rcu *last_request =
107         (void __force __rcu *)&core_request_world;
108
109 /* To trigger userspace events */
110 static struct platform_device *reg_pdev;
111
112 /*
113  * Central wireless core regulatory domains, we only need two,
114  * the current one and a world regulatory domain in case we have no
115  * information to give us an alpha2.
116  * (protected by RTNL, can be read under RCU)
117  */
118 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
119
120 /*
121  * Number of devices that registered to the core
122  * that support cellular base station regulatory hints
123  * (protected by RTNL)
124  */
125 static int reg_num_devs_support_basehint;
126
127 /*
128  * State variable indicating if the platform on which the devices
129  * are attached is operating in an indoor environment. The state variable
130  * is relevant for all registered devices.
131  */
132 static bool reg_is_indoor;
133 static spinlock_t reg_indoor_lock;
134
135 /* Used to track the userspace process controlling the indoor setting */
136 static u32 reg_is_indoor_portid;
137
138 static void restore_regulatory_settings(bool reset_user);
139
140 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
141 {
142         return rtnl_dereference(cfg80211_regdomain);
143 }
144
145 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
146 {
147         return rtnl_dereference(wiphy->regd);
148 }
149
150 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
151 {
152         switch (dfs_region) {
153         case NL80211_DFS_UNSET:
154                 return "unset";
155         case NL80211_DFS_FCC:
156                 return "FCC";
157         case NL80211_DFS_ETSI:
158                 return "ETSI";
159         case NL80211_DFS_JP:
160                 return "JP";
161         }
162         return "Unknown";
163 }
164
165 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
166 {
167         const struct ieee80211_regdomain *regd = NULL;
168         const struct ieee80211_regdomain *wiphy_regd = NULL;
169
170         regd = get_cfg80211_regdom();
171         if (!wiphy)
172                 goto out;
173
174         wiphy_regd = get_wiphy_regdom(wiphy);
175         if (!wiphy_regd)
176                 goto out;
177
178         if (wiphy_regd->dfs_region == regd->dfs_region)
179                 goto out;
180
181         REG_DBG_PRINT("%s: device specific dfs_region "
182                       "(%s) disagrees with cfg80211's "
183                       "central dfs_region (%s)\n",
184                       dev_name(&wiphy->dev),
185                       reg_dfs_region_str(wiphy_regd->dfs_region),
186                       reg_dfs_region_str(regd->dfs_region));
187
188 out:
189         return regd->dfs_region;
190 }
191
192 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
193 {
194         if (!r)
195                 return;
196         kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
197 }
198
199 static struct regulatory_request *get_last_request(void)
200 {
201         return rcu_dereference_rtnl(last_request);
202 }
203
204 /* Used to queue up regulatory hints */
205 static LIST_HEAD(reg_requests_list);
206 static spinlock_t reg_requests_lock;
207
208 /* Used to queue up beacon hints for review */
209 static LIST_HEAD(reg_pending_beacons);
210 static spinlock_t reg_pending_beacons_lock;
211
212 /* Used to keep track of processed beacon hints */
213 static LIST_HEAD(reg_beacon_list);
214
215 struct reg_beacon {
216         struct list_head list;
217         struct ieee80211_channel chan;
218 };
219
220 static void reg_check_chans_work(struct work_struct *work);
221 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
222
223 static void reg_todo(struct work_struct *work);
224 static DECLARE_WORK(reg_work, reg_todo);
225
226 /* We keep a static world regulatory domain in case of the absence of CRDA */
227 static const struct ieee80211_regdomain world_regdom = {
228         .n_reg_rules = 8,
229         .alpha2 =  "00",
230         .reg_rules = {
231                 /* IEEE 802.11b/g, channels 1..11 */
232                 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
233                 /* IEEE 802.11b/g, channels 12..13. */
234                 REG_RULE(2467-10, 2472+10, 40, 6, 20,
235                         NL80211_RRF_NO_IR),
236                 /* IEEE 802.11 channel 14 - Only JP enables
237                  * this and for 802.11b only */
238                 REG_RULE(2484-10, 2484+10, 20, 6, 20,
239                         NL80211_RRF_NO_IR |
240                         NL80211_RRF_NO_OFDM),
241                 /* IEEE 802.11a, channel 36..48 */
242                 REG_RULE(5180-10, 5240+10, 160, 6, 20,
243                         NL80211_RRF_NO_IR),
244
245                 /* IEEE 802.11a, channel 52..64 - DFS required */
246                 REG_RULE(5260-10, 5320+10, 160, 6, 20,
247                         NL80211_RRF_NO_IR |
248                         NL80211_RRF_DFS),
249
250                 /* IEEE 802.11a, channel 100..144 - DFS required */
251                 REG_RULE(5500-10, 5720+10, 160, 6, 20,
252                         NL80211_RRF_NO_IR |
253                         NL80211_RRF_DFS),
254
255                 /* IEEE 802.11a, channel 149..165 */
256                 REG_RULE(5745-10, 5825+10, 80, 6, 20,
257                         NL80211_RRF_NO_IR),
258
259                 /* IEEE 802.11ad (60GHz), channels 1..3 */
260                 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
261         }
262 };
263
264 /* protected by RTNL */
265 static const struct ieee80211_regdomain *cfg80211_world_regdom =
266         &world_regdom;
267
268 static char *ieee80211_regdom = "00";
269 static char user_alpha2[2];
270
271 module_param(ieee80211_regdom, charp, 0444);
272 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
273
274 static void reg_free_request(struct regulatory_request *request)
275 {
276         if (request == &core_request_world)
277                 return;
278
279         if (request != get_last_request())
280                 kfree(request);
281 }
282
283 static void reg_free_last_request(void)
284 {
285         struct regulatory_request *lr = get_last_request();
286
287         if (lr != &core_request_world && lr)
288                 kfree_rcu(lr, rcu_head);
289 }
290
291 static void reg_update_last_request(struct regulatory_request *request)
292 {
293         struct regulatory_request *lr;
294
295         lr = get_last_request();
296         if (lr == request)
297                 return;
298
299         reg_free_last_request();
300         rcu_assign_pointer(last_request, request);
301 }
302
303 static void reset_regdomains(bool full_reset,
304                              const struct ieee80211_regdomain *new_regdom)
305 {
306         const struct ieee80211_regdomain *r;
307
308         ASSERT_RTNL();
309
310         r = get_cfg80211_regdom();
311
312         /* avoid freeing static information or freeing something twice */
313         if (r == cfg80211_world_regdom)
314                 r = NULL;
315         if (cfg80211_world_regdom == &world_regdom)
316                 cfg80211_world_regdom = NULL;
317         if (r == &world_regdom)
318                 r = NULL;
319
320         rcu_free_regdom(r);
321         rcu_free_regdom(cfg80211_world_regdom);
322
323         cfg80211_world_regdom = &world_regdom;
324         rcu_assign_pointer(cfg80211_regdomain, new_regdom);
325
326         if (!full_reset)
327                 return;
328
329         reg_update_last_request(&core_request_world);
330 }
331
332 /*
333  * Dynamic world regulatory domain requested by the wireless
334  * core upon initialization
335  */
336 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
337 {
338         struct regulatory_request *lr;
339
340         lr = get_last_request();
341
342         WARN_ON(!lr);
343
344         reset_regdomains(false, rd);
345
346         cfg80211_world_regdom = rd;
347 }
348
349 bool is_world_regdom(const char *alpha2)
350 {
351         if (!alpha2)
352                 return false;
353         return alpha2[0] == '0' && alpha2[1] == '0';
354 }
355
356 static bool is_alpha2_set(const char *alpha2)
357 {
358         if (!alpha2)
359                 return false;
360         return alpha2[0] && alpha2[1];
361 }
362
363 static bool is_unknown_alpha2(const char *alpha2)
364 {
365         if (!alpha2)
366                 return false;
367         /*
368          * Special case where regulatory domain was built by driver
369          * but a specific alpha2 cannot be determined
370          */
371         return alpha2[0] == '9' && alpha2[1] == '9';
372 }
373
374 static bool is_intersected_alpha2(const char *alpha2)
375 {
376         if (!alpha2)
377                 return false;
378         /*
379          * Special case where regulatory domain is the
380          * result of an intersection between two regulatory domain
381          * structures
382          */
383         return alpha2[0] == '9' && alpha2[1] == '8';
384 }
385
386 static bool is_an_alpha2(const char *alpha2)
387 {
388         if (!alpha2)
389                 return false;
390         return isalpha(alpha2[0]) && isalpha(alpha2[1]);
391 }
392
393 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
394 {
395         if (!alpha2_x || !alpha2_y)
396                 return false;
397         return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
398 }
399
400 static bool regdom_changes(const char *alpha2)
401 {
402         const struct ieee80211_regdomain *r = get_cfg80211_regdom();
403
404         if (!r)
405                 return true;
406         return !alpha2_equal(r->alpha2, alpha2);
407 }
408
409 /*
410  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
411  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
412  * has ever been issued.
413  */
414 static bool is_user_regdom_saved(void)
415 {
416         if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
417                 return false;
418
419         /* This would indicate a mistake on the design */
420         if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
421                  "Unexpected user alpha2: %c%c\n",
422                  user_alpha2[0], user_alpha2[1]))
423                 return false;
424
425         return true;
426 }
427
428 static const struct ieee80211_regdomain *
429 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
430 {
431         struct ieee80211_regdomain *regd;
432         int size_of_regd;
433         unsigned int i;
434
435         size_of_regd =
436                 sizeof(struct ieee80211_regdomain) +
437                 src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule);
438
439         regd = kzalloc(size_of_regd, GFP_KERNEL);
440         if (!regd)
441                 return ERR_PTR(-ENOMEM);
442
443         memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
444
445         for (i = 0; i < src_regd->n_reg_rules; i++)
446                 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
447                        sizeof(struct ieee80211_reg_rule));
448
449         return regd;
450 }
451
452 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
453 struct reg_regdb_apply_request {
454         struct list_head list;
455         const struct ieee80211_regdomain *regdom;
456 };
457
458 static LIST_HEAD(reg_regdb_apply_list);
459 static DEFINE_MUTEX(reg_regdb_apply_mutex);
460
461 static void reg_regdb_apply(struct work_struct *work)
462 {
463         struct reg_regdb_apply_request *request;
464
465         rtnl_lock();
466
467         mutex_lock(&reg_regdb_apply_mutex);
468         while (!list_empty(&reg_regdb_apply_list)) {
469                 request = list_first_entry(&reg_regdb_apply_list,
470                                            struct reg_regdb_apply_request,
471                                            list);
472                 list_del(&request->list);
473
474                 set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB);
475                 kfree(request);
476         }
477         mutex_unlock(&reg_regdb_apply_mutex);
478
479         rtnl_unlock();
480 }
481
482 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
483
484 static int reg_query_builtin(const char *alpha2)
485 {
486         const struct ieee80211_regdomain *regdom = NULL;
487         struct reg_regdb_apply_request *request;
488         unsigned int i;
489
490         for (i = 0; i < reg_regdb_size; i++) {
491                 if (alpha2_equal(alpha2, reg_regdb[i]->alpha2)) {
492                         regdom = reg_regdb[i];
493                         break;
494                 }
495         }
496
497         if (!regdom)
498                 return -ENODATA;
499
500         request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
501         if (!request)
502                 return -ENOMEM;
503
504         request->regdom = reg_copy_regd(regdom);
505         if (IS_ERR_OR_NULL(request->regdom)) {
506                 kfree(request);
507                 return -ENOMEM;
508         }
509
510         mutex_lock(&reg_regdb_apply_mutex);
511         list_add_tail(&request->list, &reg_regdb_apply_list);
512         mutex_unlock(&reg_regdb_apply_mutex);
513
514         schedule_work(&reg_regdb_work);
515
516         return 0;
517 }
518
519 /* Feel free to add any other sanity checks here */
520 static void reg_regdb_size_check(void)
521 {
522         /* We should ideally BUILD_BUG_ON() but then random builds would fail */
523         WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it...");
524 }
525 #else
526 static inline void reg_regdb_size_check(void) {}
527 static inline int reg_query_builtin(const char *alpha2)
528 {
529         return -ENODATA;
530 }
531 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
532
533 #ifdef CONFIG_CFG80211_CRDA_SUPPORT
534 /* Max number of consecutive attempts to communicate with CRDA  */
535 #define REG_MAX_CRDA_TIMEOUTS 10
536
537 static u32 reg_crda_timeouts;
538
539 static void crda_timeout_work(struct work_struct *work);
540 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work);
541
542 static void crda_timeout_work(struct work_struct *work)
543 {
544         REG_DBG_PRINT("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
545         rtnl_lock();
546         reg_crda_timeouts++;
547         restore_regulatory_settings(true);
548         rtnl_unlock();
549 }
550
551 static void cancel_crda_timeout(void)
552 {
553         cancel_delayed_work(&crda_timeout);
554 }
555
556 static void cancel_crda_timeout_sync(void)
557 {
558         cancel_delayed_work_sync(&crda_timeout);
559 }
560
561 static void reset_crda_timeouts(void)
562 {
563         reg_crda_timeouts = 0;
564 }
565
566 /*
567  * This lets us keep regulatory code which is updated on a regulatory
568  * basis in userspace.
569  */
570 static int call_crda(const char *alpha2)
571 {
572         char country[12];
573         char *env[] = { country, NULL };
574         int ret;
575
576         snprintf(country, sizeof(country), "COUNTRY=%c%c",
577                  alpha2[0], alpha2[1]);
578
579         if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
580                 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
581                 return -EINVAL;
582         }
583
584         if (!is_world_regdom((char *) alpha2))
585                 pr_debug("Calling CRDA for country: %c%c\n",
586                         alpha2[0], alpha2[1]);
587         else
588                 pr_debug("Calling CRDA to update world regulatory domain\n");
589
590         ret = kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
591         if (ret)
592                 return ret;
593
594         queue_delayed_work(system_power_efficient_wq,
595                            &crda_timeout, msecs_to_jiffies(3142));
596         return 0;
597 }
598 #else
599 static inline void cancel_crda_timeout(void) {}
600 static inline void cancel_crda_timeout_sync(void) {}
601 static inline void reset_crda_timeouts(void) {}
602 static inline int call_crda(const char *alpha2)
603 {
604         return -ENODATA;
605 }
606 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */
607
608 static bool reg_query_database(struct regulatory_request *request)
609 {
610         /* query internal regulatory database (if it exists) */
611         if (reg_query_builtin(request->alpha2) == 0)
612                 return true;
613
614         if (call_crda(request->alpha2) == 0)
615                 return true;
616
617         return false;
618 }
619
620 bool reg_is_valid_request(const char *alpha2)
621 {
622         struct regulatory_request *lr = get_last_request();
623
624         if (!lr || lr->processed)
625                 return false;
626
627         return alpha2_equal(lr->alpha2, alpha2);
628 }
629
630 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
631 {
632         struct regulatory_request *lr = get_last_request();
633
634         /*
635          * Follow the driver's regulatory domain, if present, unless a country
636          * IE has been processed or a user wants to help complaince further
637          */
638         if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
639             lr->initiator != NL80211_REGDOM_SET_BY_USER &&
640             wiphy->regd)
641                 return get_wiphy_regdom(wiphy);
642
643         return get_cfg80211_regdom();
644 }
645
646 static unsigned int
647 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
648                                  const struct ieee80211_reg_rule *rule)
649 {
650         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
651         const struct ieee80211_freq_range *freq_range_tmp;
652         const struct ieee80211_reg_rule *tmp;
653         u32 start_freq, end_freq, idx, no;
654
655         for (idx = 0; idx < rd->n_reg_rules; idx++)
656                 if (rule == &rd->reg_rules[idx])
657                         break;
658
659         if (idx == rd->n_reg_rules)
660                 return 0;
661
662         /* get start_freq */
663         no = idx;
664
665         while (no) {
666                 tmp = &rd->reg_rules[--no];
667                 freq_range_tmp = &tmp->freq_range;
668
669                 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
670                         break;
671
672                 freq_range = freq_range_tmp;
673         }
674
675         start_freq = freq_range->start_freq_khz;
676
677         /* get end_freq */
678         freq_range = &rule->freq_range;
679         no = idx;
680
681         while (no < rd->n_reg_rules - 1) {
682                 tmp = &rd->reg_rules[++no];
683                 freq_range_tmp = &tmp->freq_range;
684
685                 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
686                         break;
687
688                 freq_range = freq_range_tmp;
689         }
690
691         end_freq = freq_range->end_freq_khz;
692
693         return end_freq - start_freq;
694 }
695
696 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
697                                    const struct ieee80211_reg_rule *rule)
698 {
699         unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
700
701         if (rule->flags & NL80211_RRF_NO_160MHZ)
702                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
703         if (rule->flags & NL80211_RRF_NO_80MHZ)
704                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
705
706         /*
707          * HT40+/HT40- limits are handled per-channel. Only limit BW if both
708          * are not allowed.
709          */
710         if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
711             rule->flags & NL80211_RRF_NO_HT40PLUS)
712                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
713
714         return bw;
715 }
716
717 /* Sanity check on a regulatory rule */
718 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
719 {
720         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
721         u32 freq_diff;
722
723         if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
724                 return false;
725
726         if (freq_range->start_freq_khz > freq_range->end_freq_khz)
727                 return false;
728
729         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
730
731         if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
732             freq_range->max_bandwidth_khz > freq_diff)
733                 return false;
734
735         return true;
736 }
737
738 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
739 {
740         const struct ieee80211_reg_rule *reg_rule = NULL;
741         unsigned int i;
742
743         if (!rd->n_reg_rules)
744                 return false;
745
746         if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
747                 return false;
748
749         for (i = 0; i < rd->n_reg_rules; i++) {
750                 reg_rule = &rd->reg_rules[i];
751                 if (!is_valid_reg_rule(reg_rule))
752                         return false;
753         }
754
755         return true;
756 }
757
758 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
759                             u32 center_freq_khz, u32 bw_khz)
760 {
761         u32 start_freq_khz, end_freq_khz;
762
763         start_freq_khz = center_freq_khz - (bw_khz/2);
764         end_freq_khz = center_freq_khz + (bw_khz/2);
765
766         if (start_freq_khz >= freq_range->start_freq_khz &&
767             end_freq_khz <= freq_range->end_freq_khz)
768                 return true;
769
770         return false;
771 }
772
773 /**
774  * freq_in_rule_band - tells us if a frequency is in a frequency band
775  * @freq_range: frequency rule we want to query
776  * @freq_khz: frequency we are inquiring about
777  *
778  * This lets us know if a specific frequency rule is or is not relevant to
779  * a specific frequency's band. Bands are device specific and artificial
780  * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
781  * however it is safe for now to assume that a frequency rule should not be
782  * part of a frequency's band if the start freq or end freq are off by more
783  * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the
784  * 60 GHz band.
785  * This resolution can be lowered and should be considered as we add
786  * regulatory rule support for other "bands".
787  **/
788 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
789                               u32 freq_khz)
790 {
791 #define ONE_GHZ_IN_KHZ  1000000
792         /*
793          * From 802.11ad: directional multi-gigabit (DMG):
794          * Pertaining to operation in a frequency band containing a channel
795          * with the Channel starting frequency above 45 GHz.
796          */
797         u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
798                         10 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
799         if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
800                 return true;
801         if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
802                 return true;
803         return false;
804 #undef ONE_GHZ_IN_KHZ
805 }
806
807 /*
808  * Later on we can perhaps use the more restrictive DFS
809  * region but we don't have information for that yet so
810  * for now simply disallow conflicts.
811  */
812 static enum nl80211_dfs_regions
813 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
814                          const enum nl80211_dfs_regions dfs_region2)
815 {
816         if (dfs_region1 != dfs_region2)
817                 return NL80211_DFS_UNSET;
818         return dfs_region1;
819 }
820
821 /*
822  * Helper for regdom_intersect(), this does the real
823  * mathematical intersection fun
824  */
825 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
826                                const struct ieee80211_regdomain *rd2,
827                                const struct ieee80211_reg_rule *rule1,
828                                const struct ieee80211_reg_rule *rule2,
829                                struct ieee80211_reg_rule *intersected_rule)
830 {
831         const struct ieee80211_freq_range *freq_range1, *freq_range2;
832         struct ieee80211_freq_range *freq_range;
833         const struct ieee80211_power_rule *power_rule1, *power_rule2;
834         struct ieee80211_power_rule *power_rule;
835         u32 freq_diff, max_bandwidth1, max_bandwidth2;
836
837         freq_range1 = &rule1->freq_range;
838         freq_range2 = &rule2->freq_range;
839         freq_range = &intersected_rule->freq_range;
840
841         power_rule1 = &rule1->power_rule;
842         power_rule2 = &rule2->power_rule;
843         power_rule = &intersected_rule->power_rule;
844
845         freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
846                                          freq_range2->start_freq_khz);
847         freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
848                                        freq_range2->end_freq_khz);
849
850         max_bandwidth1 = freq_range1->max_bandwidth_khz;
851         max_bandwidth2 = freq_range2->max_bandwidth_khz;
852
853         if (rule1->flags & NL80211_RRF_AUTO_BW)
854                 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
855         if (rule2->flags & NL80211_RRF_AUTO_BW)
856                 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
857
858         freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
859
860         intersected_rule->flags = rule1->flags | rule2->flags;
861
862         /*
863          * In case NL80211_RRF_AUTO_BW requested for both rules
864          * set AUTO_BW in intersected rule also. Next we will
865          * calculate BW correctly in handle_channel function.
866          * In other case remove AUTO_BW flag while we calculate
867          * maximum bandwidth correctly and auto calculation is
868          * not required.
869          */
870         if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
871             (rule2->flags & NL80211_RRF_AUTO_BW))
872                 intersected_rule->flags |= NL80211_RRF_AUTO_BW;
873         else
874                 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
875
876         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
877         if (freq_range->max_bandwidth_khz > freq_diff)
878                 freq_range->max_bandwidth_khz = freq_diff;
879
880         power_rule->max_eirp = min(power_rule1->max_eirp,
881                 power_rule2->max_eirp);
882         power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
883                 power_rule2->max_antenna_gain);
884
885         intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
886                                            rule2->dfs_cac_ms);
887
888         if (!is_valid_reg_rule(intersected_rule))
889                 return -EINVAL;
890
891         return 0;
892 }
893
894 /* check whether old rule contains new rule */
895 static bool rule_contains(struct ieee80211_reg_rule *r1,
896                           struct ieee80211_reg_rule *r2)
897 {
898         /* for simplicity, currently consider only same flags */
899         if (r1->flags != r2->flags)
900                 return false;
901
902         /* verify r1 is more restrictive */
903         if ((r1->power_rule.max_antenna_gain >
904              r2->power_rule.max_antenna_gain) ||
905             r1->power_rule.max_eirp > r2->power_rule.max_eirp)
906                 return false;
907
908         /* make sure r2's range is contained within r1 */
909         if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
910             r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
911                 return false;
912
913         /* and finally verify that r1.max_bw >= r2.max_bw */
914         if (r1->freq_range.max_bandwidth_khz <
915             r2->freq_range.max_bandwidth_khz)
916                 return false;
917
918         return true;
919 }
920
921 /* add or extend current rules. do nothing if rule is already contained */
922 static void add_rule(struct ieee80211_reg_rule *rule,
923                      struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
924 {
925         struct ieee80211_reg_rule *tmp_rule;
926         int i;
927
928         for (i = 0; i < *n_rules; i++) {
929                 tmp_rule = &reg_rules[i];
930                 /* rule is already contained - do nothing */
931                 if (rule_contains(tmp_rule, rule))
932                         return;
933
934                 /* extend rule if possible */
935                 if (rule_contains(rule, tmp_rule)) {
936                         memcpy(tmp_rule, rule, sizeof(*rule));
937                         return;
938                 }
939         }
940
941         memcpy(&reg_rules[*n_rules], rule, sizeof(*rule));
942         (*n_rules)++;
943 }
944
945 /**
946  * regdom_intersect - do the intersection between two regulatory domains
947  * @rd1: first regulatory domain
948  * @rd2: second regulatory domain
949  *
950  * Use this function to get the intersection between two regulatory domains.
951  * Once completed we will mark the alpha2 for the rd as intersected, "98",
952  * as no one single alpha2 can represent this regulatory domain.
953  *
954  * Returns a pointer to the regulatory domain structure which will hold the
955  * resulting intersection of rules between rd1 and rd2. We will
956  * kzalloc() this structure for you.
957  */
958 static struct ieee80211_regdomain *
959 regdom_intersect(const struct ieee80211_regdomain *rd1,
960                  const struct ieee80211_regdomain *rd2)
961 {
962         int r, size_of_regd;
963         unsigned int x, y;
964         unsigned int num_rules = 0;
965         const struct ieee80211_reg_rule *rule1, *rule2;
966         struct ieee80211_reg_rule intersected_rule;
967         struct ieee80211_regdomain *rd;
968
969         if (!rd1 || !rd2)
970                 return NULL;
971
972         /*
973          * First we get a count of the rules we'll need, then we actually
974          * build them. This is to so we can malloc() and free() a
975          * regdomain once. The reason we use reg_rules_intersect() here
976          * is it will return -EINVAL if the rule computed makes no sense.
977          * All rules that do check out OK are valid.
978          */
979
980         for (x = 0; x < rd1->n_reg_rules; x++) {
981                 rule1 = &rd1->reg_rules[x];
982                 for (y = 0; y < rd2->n_reg_rules; y++) {
983                         rule2 = &rd2->reg_rules[y];
984                         if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
985                                                  &intersected_rule))
986                                 num_rules++;
987                 }
988         }
989
990         if (!num_rules)
991                 return NULL;
992
993         size_of_regd = sizeof(struct ieee80211_regdomain) +
994                        num_rules * sizeof(struct ieee80211_reg_rule);
995
996         rd = kzalloc(size_of_regd, GFP_KERNEL);
997         if (!rd)
998                 return NULL;
999
1000         for (x = 0; x < rd1->n_reg_rules; x++) {
1001                 rule1 = &rd1->reg_rules[x];
1002                 for (y = 0; y < rd2->n_reg_rules; y++) {
1003                         rule2 = &rd2->reg_rules[y];
1004                         r = reg_rules_intersect(rd1, rd2, rule1, rule2,
1005                                                 &intersected_rule);
1006                         /*
1007                          * No need to memset here the intersected rule here as
1008                          * we're not using the stack anymore
1009                          */
1010                         if (r)
1011                                 continue;
1012
1013                         add_rule(&intersected_rule, rd->reg_rules,
1014                                  &rd->n_reg_rules);
1015                 }
1016         }
1017
1018         rd->alpha2[0] = '9';
1019         rd->alpha2[1] = '8';
1020         rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
1021                                                   rd2->dfs_region);
1022
1023         return rd;
1024 }
1025
1026 /*
1027  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1028  * want to just have the channel structure use these
1029  */
1030 static u32 map_regdom_flags(u32 rd_flags)
1031 {
1032         u32 channel_flags = 0;
1033         if (rd_flags & NL80211_RRF_NO_IR_ALL)
1034                 channel_flags |= IEEE80211_CHAN_NO_IR;
1035         if (rd_flags & NL80211_RRF_DFS)
1036                 channel_flags |= IEEE80211_CHAN_RADAR;
1037         if (rd_flags & NL80211_RRF_NO_OFDM)
1038                 channel_flags |= IEEE80211_CHAN_NO_OFDM;
1039         if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1040                 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1041         if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1042                 channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1043         if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1044                 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1045         if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1046                 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1047         if (rd_flags & NL80211_RRF_NO_80MHZ)
1048                 channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1049         if (rd_flags & NL80211_RRF_NO_160MHZ)
1050                 channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1051         return channel_flags;
1052 }
1053
1054 static const struct ieee80211_reg_rule *
1055 freq_reg_info_regd(u32 center_freq,
1056                    const struct ieee80211_regdomain *regd, u32 bw)
1057 {
1058         int i;
1059         bool band_rule_found = false;
1060         bool bw_fits = false;
1061
1062         if (!regd)
1063                 return ERR_PTR(-EINVAL);
1064
1065         for (i = 0; i < regd->n_reg_rules; i++) {
1066                 const struct ieee80211_reg_rule *rr;
1067                 const struct ieee80211_freq_range *fr = NULL;
1068
1069                 rr = &regd->reg_rules[i];
1070                 fr = &rr->freq_range;
1071
1072                 /*
1073                  * We only need to know if one frequency rule was
1074                  * was in center_freq's band, that's enough, so lets
1075                  * not overwrite it once found
1076                  */
1077                 if (!band_rule_found)
1078                         band_rule_found = freq_in_rule_band(fr, center_freq);
1079
1080                 bw_fits = reg_does_bw_fit(fr, center_freq, bw);
1081
1082                 if (band_rule_found && bw_fits)
1083                         return rr;
1084         }
1085
1086         if (!band_rule_found)
1087                 return ERR_PTR(-ERANGE);
1088
1089         return ERR_PTR(-EINVAL);
1090 }
1091
1092 static const struct ieee80211_reg_rule *
1093 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1094 {
1095         const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1096         const struct ieee80211_reg_rule *reg_rule = NULL;
1097         u32 bw;
1098
1099         for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
1100                 reg_rule = freq_reg_info_regd(center_freq, regd, bw);
1101                 if (!IS_ERR(reg_rule))
1102                         return reg_rule;
1103         }
1104
1105         return reg_rule;
1106 }
1107
1108 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1109                                                u32 center_freq)
1110 {
1111         return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(20));
1112 }
1113 EXPORT_SYMBOL(freq_reg_info);
1114
1115 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1116 {
1117         switch (initiator) {
1118         case NL80211_REGDOM_SET_BY_CORE:
1119                 return "core";
1120         case NL80211_REGDOM_SET_BY_USER:
1121                 return "user";
1122         case NL80211_REGDOM_SET_BY_DRIVER:
1123                 return "driver";
1124         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1125                 return "country IE";
1126         default:
1127                 WARN_ON(1);
1128                 return "bug";
1129         }
1130 }
1131 EXPORT_SYMBOL(reg_initiator_name);
1132
1133 static void chan_reg_rule_print_dbg(const struct ieee80211_regdomain *regd,
1134                                     struct ieee80211_channel *chan,
1135                                     const struct ieee80211_reg_rule *reg_rule)
1136 {
1137 #ifdef CONFIG_CFG80211_REG_DEBUG
1138         const struct ieee80211_power_rule *power_rule;
1139         const struct ieee80211_freq_range *freq_range;
1140         char max_antenna_gain[32], bw[32];
1141
1142         power_rule = &reg_rule->power_rule;
1143         freq_range = &reg_rule->freq_range;
1144
1145         if (!power_rule->max_antenna_gain)
1146                 snprintf(max_antenna_gain, sizeof(max_antenna_gain), "N/A");
1147         else
1148                 snprintf(max_antenna_gain, sizeof(max_antenna_gain), "%d mBi",
1149                          power_rule->max_antenna_gain);
1150
1151         if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1152                 snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
1153                          freq_range->max_bandwidth_khz,
1154                          reg_get_max_bandwidth(regd, reg_rule));
1155         else
1156                 snprintf(bw, sizeof(bw), "%d KHz",
1157                          freq_range->max_bandwidth_khz);
1158
1159         REG_DBG_PRINT("Updating information on frequency %d MHz with regulatory rule:\n",
1160                       chan->center_freq);
1161
1162         REG_DBG_PRINT("(%d KHz - %d KHz @ %s), (%s, %d mBm)\n",
1163                       freq_range->start_freq_khz, freq_range->end_freq_khz,
1164                       bw, max_antenna_gain,
1165                       power_rule->max_eirp);
1166 #endif
1167 }
1168
1169 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd,
1170                                           const struct ieee80211_reg_rule *reg_rule,
1171                                           const struct ieee80211_channel *chan)
1172 {
1173         const struct ieee80211_freq_range *freq_range = NULL;
1174         u32 max_bandwidth_khz, bw_flags = 0;
1175
1176         freq_range = &reg_rule->freq_range;
1177
1178         max_bandwidth_khz = freq_range->max_bandwidth_khz;
1179         /* Check if auto calculation requested */
1180         if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1181                 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1182
1183         /* If we get a reg_rule we can assume that at least 5Mhz fit */
1184         if (!reg_does_bw_fit(freq_range, MHZ_TO_KHZ(chan->center_freq),
1185                              MHZ_TO_KHZ(10)))
1186                 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1187         if (!reg_does_bw_fit(freq_range, MHZ_TO_KHZ(chan->center_freq),
1188                              MHZ_TO_KHZ(20)))
1189                 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1190
1191         if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1192                 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1193         if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1194                 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1195         if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1196                 bw_flags |= IEEE80211_CHAN_NO_HT40;
1197         if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1198                 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1199         if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1200                 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1201         return bw_flags;
1202 }
1203
1204 /*
1205  * Note that right now we assume the desired channel bandwidth
1206  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1207  * per channel, the primary and the extension channel).
1208  */
1209 static void handle_channel(struct wiphy *wiphy,
1210                            enum nl80211_reg_initiator initiator,
1211                            struct ieee80211_channel *chan)
1212 {
1213         u32 flags, bw_flags = 0;
1214         const struct ieee80211_reg_rule *reg_rule = NULL;
1215         const struct ieee80211_power_rule *power_rule = NULL;
1216         struct wiphy *request_wiphy = NULL;
1217         struct regulatory_request *lr = get_last_request();
1218         const struct ieee80211_regdomain *regd;
1219
1220         request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1221
1222         flags = chan->orig_flags;
1223
1224         reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq));
1225         if (IS_ERR(reg_rule)) {
1226                 /*
1227                  * We will disable all channels that do not match our
1228                  * received regulatory rule unless the hint is coming
1229                  * from a Country IE and the Country IE had no information
1230                  * about a band. The IEEE 802.11 spec allows for an AP
1231                  * to send only a subset of the regulatory rules allowed,
1232                  * so an AP in the US that only supports 2.4 GHz may only send
1233                  * a country IE with information for the 2.4 GHz band
1234                  * while 5 GHz is still supported.
1235                  */
1236                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1237                     PTR_ERR(reg_rule) == -ERANGE)
1238                         return;
1239
1240                 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1241                     request_wiphy && request_wiphy == wiphy &&
1242                     request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1243                         REG_DBG_PRINT("Disabling freq %d MHz for good\n",
1244                                       chan->center_freq);
1245                         chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1246                         chan->flags = chan->orig_flags;
1247                 } else {
1248                         REG_DBG_PRINT("Disabling freq %d MHz\n",
1249                                       chan->center_freq);
1250                         chan->flags |= IEEE80211_CHAN_DISABLED;
1251                 }
1252                 return;
1253         }
1254
1255         regd = reg_get_regdomain(wiphy);
1256         chan_reg_rule_print_dbg(regd, chan, reg_rule);
1257
1258         power_rule = &reg_rule->power_rule;
1259         bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1260
1261         if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1262             request_wiphy && request_wiphy == wiphy &&
1263             request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1264                 /*
1265                  * This guarantees the driver's requested regulatory domain
1266                  * will always be used as a base for further regulatory
1267                  * settings
1268                  */
1269                 chan->flags = chan->orig_flags =
1270                         map_regdom_flags(reg_rule->flags) | bw_flags;
1271                 chan->max_antenna_gain = chan->orig_mag =
1272                         (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1273                 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1274                         (int) MBM_TO_DBM(power_rule->max_eirp);
1275
1276                 if (chan->flags & IEEE80211_CHAN_RADAR) {
1277                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1278                         if (reg_rule->dfs_cac_ms)
1279                                 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1280                 }
1281
1282                 return;
1283         }
1284
1285         chan->dfs_state = NL80211_DFS_USABLE;
1286         chan->dfs_state_entered = jiffies;
1287
1288         chan->beacon_found = false;
1289         chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1290         chan->max_antenna_gain =
1291                 min_t(int, chan->orig_mag,
1292                       MBI_TO_DBI(power_rule->max_antenna_gain));
1293         chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1294
1295         if (chan->flags & IEEE80211_CHAN_RADAR) {
1296                 if (reg_rule->dfs_cac_ms)
1297                         chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1298                 else
1299                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1300         }
1301
1302         if (chan->orig_mpwr) {
1303                 /*
1304                  * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1305                  * will always follow the passed country IE power settings.
1306                  */
1307                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1308                     wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1309                         chan->max_power = chan->max_reg_power;
1310                 else
1311                         chan->max_power = min(chan->orig_mpwr,
1312                                               chan->max_reg_power);
1313         } else
1314                 chan->max_power = chan->max_reg_power;
1315 }
1316
1317 static void handle_band(struct wiphy *wiphy,
1318                         enum nl80211_reg_initiator initiator,
1319                         struct ieee80211_supported_band *sband)
1320 {
1321         unsigned int i;
1322
1323         if (!sband)
1324                 return;
1325
1326         for (i = 0; i < sband->n_channels; i++)
1327                 handle_channel(wiphy, initiator, &sband->channels[i]);
1328 }
1329
1330 static bool reg_request_cell_base(struct regulatory_request *request)
1331 {
1332         if (request->initiator != NL80211_REGDOM_SET_BY_USER)
1333                 return false;
1334         return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
1335 }
1336
1337 bool reg_last_request_cell_base(void)
1338 {
1339         return reg_request_cell_base(get_last_request());
1340 }
1341
1342 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
1343 /* Core specific check */
1344 static enum reg_request_treatment
1345 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1346 {
1347         struct regulatory_request *lr = get_last_request();
1348
1349         if (!reg_num_devs_support_basehint)
1350                 return REG_REQ_IGNORE;
1351
1352         if (reg_request_cell_base(lr) &&
1353             !regdom_changes(pending_request->alpha2))
1354                 return REG_REQ_ALREADY_SET;
1355
1356         return REG_REQ_OK;
1357 }
1358
1359 /* Device specific check */
1360 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1361 {
1362         return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
1363 }
1364 #else
1365 static enum reg_request_treatment
1366 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1367 {
1368         return REG_REQ_IGNORE;
1369 }
1370
1371 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1372 {
1373         return true;
1374 }
1375 #endif
1376
1377 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
1378 {
1379         if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
1380             !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
1381                 return true;
1382         return false;
1383 }
1384
1385 static bool ignore_reg_update(struct wiphy *wiphy,
1386                               enum nl80211_reg_initiator initiator)
1387 {
1388         struct regulatory_request *lr = get_last_request();
1389
1390         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
1391                 return true;
1392
1393         if (!lr) {
1394                 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1395                               "since last_request is not set\n",
1396                               reg_initiator_name(initiator));
1397                 return true;
1398         }
1399
1400         if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1401             wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
1402                 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1403                               "since the driver uses its own custom "
1404                               "regulatory domain\n",
1405                               reg_initiator_name(initiator));
1406                 return true;
1407         }
1408
1409         /*
1410          * wiphy->regd will be set once the device has its own
1411          * desired regulatory domain set
1412          */
1413         if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
1414             initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1415             !is_world_regdom(lr->alpha2)) {
1416                 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1417                               "since the driver requires its own regulatory "
1418                               "domain to be set first\n",
1419                               reg_initiator_name(initiator));
1420                 return true;
1421         }
1422
1423         if (reg_request_cell_base(lr))
1424                 return reg_dev_ignore_cell_hint(wiphy);
1425
1426         return false;
1427 }
1428
1429 static bool reg_is_world_roaming(struct wiphy *wiphy)
1430 {
1431         const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
1432         const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
1433         struct regulatory_request *lr = get_last_request();
1434
1435         if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
1436                 return true;
1437
1438         if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1439             wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1440                 return true;
1441
1442         return false;
1443 }
1444
1445 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
1446                               struct reg_beacon *reg_beacon)
1447 {
1448         struct ieee80211_supported_band *sband;
1449         struct ieee80211_channel *chan;
1450         bool channel_changed = false;
1451         struct ieee80211_channel chan_before;
1452
1453         sband = wiphy->bands[reg_beacon->chan.band];
1454         chan = &sband->channels[chan_idx];
1455
1456         if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1457                 return;
1458
1459         if (chan->beacon_found)
1460                 return;
1461
1462         chan->beacon_found = true;
1463
1464         if (!reg_is_world_roaming(wiphy))
1465                 return;
1466
1467         if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
1468                 return;
1469
1470         chan_before.center_freq = chan->center_freq;
1471         chan_before.flags = chan->flags;
1472
1473         if (chan->flags & IEEE80211_CHAN_NO_IR) {
1474                 chan->flags &= ~IEEE80211_CHAN_NO_IR;
1475                 channel_changed = true;
1476         }
1477
1478         if (channel_changed)
1479                 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1480 }
1481
1482 /*
1483  * Called when a scan on a wiphy finds a beacon on
1484  * new channel
1485  */
1486 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1487                                     struct reg_beacon *reg_beacon)
1488 {
1489         unsigned int i;
1490         struct ieee80211_supported_band *sband;
1491
1492         if (!wiphy->bands[reg_beacon->chan.band])
1493                 return;
1494
1495         sband = wiphy->bands[reg_beacon->chan.band];
1496
1497         for (i = 0; i < sband->n_channels; i++)
1498                 handle_reg_beacon(wiphy, i, reg_beacon);
1499 }
1500
1501 /*
1502  * Called upon reg changes or a new wiphy is added
1503  */
1504 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1505 {
1506         unsigned int i;
1507         struct ieee80211_supported_band *sband;
1508         struct reg_beacon *reg_beacon;
1509
1510         list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1511                 if (!wiphy->bands[reg_beacon->chan.band])
1512                         continue;
1513                 sband = wiphy->bands[reg_beacon->chan.band];
1514                 for (i = 0; i < sband->n_channels; i++)
1515                         handle_reg_beacon(wiphy, i, reg_beacon);
1516         }
1517 }
1518
1519 /* Reap the advantages of previously found beacons */
1520 static void reg_process_beacons(struct wiphy *wiphy)
1521 {
1522         /*
1523          * Means we are just firing up cfg80211, so no beacons would
1524          * have been processed yet.
1525          */
1526         if (!last_request)
1527                 return;
1528         wiphy_update_beacon_reg(wiphy);
1529 }
1530
1531 static bool is_ht40_allowed(struct ieee80211_channel *chan)
1532 {
1533         if (!chan)
1534                 return false;
1535         if (chan->flags & IEEE80211_CHAN_DISABLED)
1536                 return false;
1537         /* This would happen when regulatory rules disallow HT40 completely */
1538         if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
1539                 return false;
1540         return true;
1541 }
1542
1543 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1544                                          struct ieee80211_channel *channel)
1545 {
1546         struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
1547         struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1548         unsigned int i;
1549
1550         if (!is_ht40_allowed(channel)) {
1551                 channel->flags |= IEEE80211_CHAN_NO_HT40;
1552                 return;
1553         }
1554
1555         /*
1556          * We need to ensure the extension channels exist to
1557          * be able to use HT40- or HT40+, this finds them (or not)
1558          */
1559         for (i = 0; i < sband->n_channels; i++) {
1560                 struct ieee80211_channel *c = &sband->channels[i];
1561
1562                 if (c->center_freq == (channel->center_freq - 20))
1563                         channel_before = c;
1564                 if (c->center_freq == (channel->center_freq + 20))
1565                         channel_after = c;
1566         }
1567
1568         /*
1569          * Please note that this assumes target bandwidth is 20 MHz,
1570          * if that ever changes we also need to change the below logic
1571          * to include that as well.
1572          */
1573         if (!is_ht40_allowed(channel_before))
1574                 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1575         else
1576                 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1577
1578         if (!is_ht40_allowed(channel_after))
1579                 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1580         else
1581                 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1582 }
1583
1584 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1585                                       struct ieee80211_supported_band *sband)
1586 {
1587         unsigned int i;
1588
1589         if (!sband)
1590                 return;
1591
1592         for (i = 0; i < sband->n_channels; i++)
1593                 reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
1594 }
1595
1596 static void reg_process_ht_flags(struct wiphy *wiphy)
1597 {
1598         enum ieee80211_band band;
1599
1600         if (!wiphy)
1601                 return;
1602
1603         for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1604                 reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
1605 }
1606
1607 static void reg_call_notifier(struct wiphy *wiphy,
1608                               struct regulatory_request *request)
1609 {
1610         if (wiphy->reg_notifier)
1611                 wiphy->reg_notifier(wiphy, request);
1612 }
1613
1614 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
1615 {
1616         struct cfg80211_chan_def chandef;
1617         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1618         enum nl80211_iftype iftype;
1619
1620         wdev_lock(wdev);
1621         iftype = wdev->iftype;
1622
1623         /* make sure the interface is active */
1624         if (!wdev->netdev || !netif_running(wdev->netdev))
1625                 goto wdev_inactive_unlock;
1626
1627         switch (iftype) {
1628         case NL80211_IFTYPE_AP:
1629         case NL80211_IFTYPE_P2P_GO:
1630                 if (!wdev->beacon_interval)
1631                         goto wdev_inactive_unlock;
1632                 chandef = wdev->chandef;
1633                 break;
1634         case NL80211_IFTYPE_ADHOC:
1635                 if (!wdev->ssid_len)
1636                         goto wdev_inactive_unlock;
1637                 chandef = wdev->chandef;
1638                 break;
1639         case NL80211_IFTYPE_STATION:
1640         case NL80211_IFTYPE_P2P_CLIENT:
1641                 if (!wdev->current_bss ||
1642                     !wdev->current_bss->pub.channel)
1643                         goto wdev_inactive_unlock;
1644
1645                 if (!rdev->ops->get_channel ||
1646                     rdev_get_channel(rdev, wdev, &chandef))
1647                         cfg80211_chandef_create(&chandef,
1648                                                 wdev->current_bss->pub.channel,
1649                                                 NL80211_CHAN_NO_HT);
1650                 break;
1651         case NL80211_IFTYPE_MONITOR:
1652         case NL80211_IFTYPE_AP_VLAN:
1653         case NL80211_IFTYPE_P2P_DEVICE:
1654                 /* no enforcement required */
1655                 break;
1656         default:
1657                 /* others not implemented for now */
1658                 WARN_ON(1);
1659                 break;
1660         }
1661
1662         wdev_unlock(wdev);
1663
1664         switch (iftype) {
1665         case NL80211_IFTYPE_AP:
1666         case NL80211_IFTYPE_P2P_GO:
1667         case NL80211_IFTYPE_ADHOC:
1668                 return cfg80211_reg_can_beacon_relax(wiphy, &chandef, iftype);
1669         case NL80211_IFTYPE_STATION:
1670         case NL80211_IFTYPE_P2P_CLIENT:
1671                 return cfg80211_chandef_usable(wiphy, &chandef,
1672                                                IEEE80211_CHAN_DISABLED);
1673         default:
1674                 break;
1675         }
1676
1677         return true;
1678
1679 wdev_inactive_unlock:
1680         wdev_unlock(wdev);
1681         return true;
1682 }
1683
1684 static void reg_leave_invalid_chans(struct wiphy *wiphy)
1685 {
1686         struct wireless_dev *wdev;
1687         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1688
1689         ASSERT_RTNL();
1690
1691         list_for_each_entry(wdev, &rdev->wdev_list, list)
1692                 if (!reg_wdev_chan_valid(wiphy, wdev))
1693                         cfg80211_leave(rdev, wdev);
1694 }
1695
1696 static void reg_check_chans_work(struct work_struct *work)
1697 {
1698         struct cfg80211_registered_device *rdev;
1699
1700         REG_DBG_PRINT("Verifying active interfaces after reg change\n");
1701         rtnl_lock();
1702
1703         list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1704                 if (!(rdev->wiphy.regulatory_flags &
1705                       REGULATORY_IGNORE_STALE_KICKOFF))
1706                         reg_leave_invalid_chans(&rdev->wiphy);
1707
1708         rtnl_unlock();
1709 }
1710
1711 static void reg_check_channels(void)
1712 {
1713         /*
1714          * Give usermode a chance to do something nicer (move to another
1715          * channel, orderly disconnection), before forcing a disconnection.
1716          */
1717         mod_delayed_work(system_power_efficient_wq,
1718                          &reg_check_chans,
1719                          msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
1720 }
1721
1722 static void wiphy_update_regulatory(struct wiphy *wiphy,
1723                                     enum nl80211_reg_initiator initiator)
1724 {
1725         enum ieee80211_band band;
1726         struct regulatory_request *lr = get_last_request();
1727
1728         if (ignore_reg_update(wiphy, initiator)) {
1729                 /*
1730                  * Regulatory updates set by CORE are ignored for custom
1731                  * regulatory cards. Let us notify the changes to the driver,
1732                  * as some drivers used this to restore its orig_* reg domain.
1733                  */
1734                 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1735                     wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1736                         reg_call_notifier(wiphy, lr);
1737                 return;
1738         }
1739
1740         lr->dfs_region = get_cfg80211_regdom()->dfs_region;
1741
1742         for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1743                 handle_band(wiphy, initiator, wiphy->bands[band]);
1744
1745         reg_process_beacons(wiphy);
1746         reg_process_ht_flags(wiphy);
1747         reg_call_notifier(wiphy, lr);
1748 }
1749
1750 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1751 {
1752         struct cfg80211_registered_device *rdev;
1753         struct wiphy *wiphy;
1754
1755         ASSERT_RTNL();
1756
1757         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1758                 wiphy = &rdev->wiphy;
1759                 wiphy_update_regulatory(wiphy, initiator);
1760         }
1761
1762         reg_check_channels();
1763 }
1764
1765 static void handle_channel_custom(struct wiphy *wiphy,
1766                                   struct ieee80211_channel *chan,
1767                                   const struct ieee80211_regdomain *regd)
1768 {
1769         u32 bw_flags = 0;
1770         const struct ieee80211_reg_rule *reg_rule = NULL;
1771         const struct ieee80211_power_rule *power_rule = NULL;
1772         u32 bw;
1773
1774         for (bw = MHZ_TO_KHZ(20); bw >= MHZ_TO_KHZ(5); bw = bw / 2) {
1775                 reg_rule = freq_reg_info_regd(MHZ_TO_KHZ(chan->center_freq),
1776                                               regd, bw);
1777                 if (!IS_ERR(reg_rule))
1778                         break;
1779         }
1780
1781         if (IS_ERR(reg_rule)) {
1782                 REG_DBG_PRINT("Disabling freq %d MHz as custom regd has no rule that fits it\n",
1783                               chan->center_freq);
1784                 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
1785                         chan->flags |= IEEE80211_CHAN_DISABLED;
1786                 } else {
1787                         chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1788                         chan->flags = chan->orig_flags;
1789                 }
1790                 return;
1791         }
1792
1793         chan_reg_rule_print_dbg(regd, chan, reg_rule);
1794
1795         power_rule = &reg_rule->power_rule;
1796         bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1797
1798         chan->dfs_state_entered = jiffies;
1799         chan->dfs_state = NL80211_DFS_USABLE;
1800
1801         chan->beacon_found = false;
1802
1803         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
1804                 chan->flags = chan->orig_flags | bw_flags |
1805                               map_regdom_flags(reg_rule->flags);
1806         else
1807                 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1808
1809         chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1810         chan->max_reg_power = chan->max_power =
1811                 (int) MBM_TO_DBM(power_rule->max_eirp);
1812
1813         if (chan->flags & IEEE80211_CHAN_RADAR) {
1814                 if (reg_rule->dfs_cac_ms)
1815                         chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1816                 else
1817                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1818         }
1819
1820         chan->max_power = chan->max_reg_power;
1821 }
1822
1823 static void handle_band_custom(struct wiphy *wiphy,
1824                                struct ieee80211_supported_band *sband,
1825                                const struct ieee80211_regdomain *regd)
1826 {
1827         unsigned int i;
1828
1829         if (!sband)
1830                 return;
1831
1832         for (i = 0; i < sband->n_channels; i++)
1833                 handle_channel_custom(wiphy, &sband->channels[i], regd);
1834 }
1835
1836 /* Used by drivers prior to wiphy registration */
1837 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1838                                    const struct ieee80211_regdomain *regd)
1839 {
1840         enum ieee80211_band band;
1841         unsigned int bands_set = 0;
1842
1843         WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
1844              "wiphy should have REGULATORY_CUSTOM_REG\n");
1845         wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
1846
1847         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1848                 if (!wiphy->bands[band])
1849                         continue;
1850                 handle_band_custom(wiphy, wiphy->bands[band], regd);
1851                 bands_set++;
1852         }
1853
1854         /*
1855          * no point in calling this if it won't have any effect
1856          * on your device's supported bands.
1857          */
1858         WARN_ON(!bands_set);
1859 }
1860 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1861
1862 static void reg_set_request_processed(void)
1863 {
1864         bool need_more_processing = false;
1865         struct regulatory_request *lr = get_last_request();
1866
1867         lr->processed = true;
1868
1869         spin_lock(&reg_requests_lock);
1870         if (!list_empty(&reg_requests_list))
1871                 need_more_processing = true;
1872         spin_unlock(&reg_requests_lock);
1873
1874         cancel_crda_timeout();
1875
1876         if (need_more_processing)
1877                 schedule_work(&reg_work);
1878 }
1879
1880 /**
1881  * reg_process_hint_core - process core regulatory requests
1882  * @pending_request: a pending core regulatory request
1883  *
1884  * The wireless subsystem can use this function to process
1885  * a regulatory request issued by the regulatory core.
1886  */
1887 static enum reg_request_treatment
1888 reg_process_hint_core(struct regulatory_request *core_request)
1889 {
1890         if (reg_query_database(core_request)) {
1891                 core_request->intersect = false;
1892                 core_request->processed = false;
1893                 reg_update_last_request(core_request);
1894                 return REG_REQ_OK;
1895         }
1896
1897         return REG_REQ_IGNORE;
1898 }
1899
1900 static enum reg_request_treatment
1901 __reg_process_hint_user(struct regulatory_request *user_request)
1902 {
1903         struct regulatory_request *lr = get_last_request();
1904
1905         if (reg_request_cell_base(user_request))
1906                 return reg_ignore_cell_hint(user_request);
1907
1908         if (reg_request_cell_base(lr))
1909                 return REG_REQ_IGNORE;
1910
1911         if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1912                 return REG_REQ_INTERSECT;
1913         /*
1914          * If the user knows better the user should set the regdom
1915          * to their country before the IE is picked up
1916          */
1917         if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
1918             lr->intersect)
1919                 return REG_REQ_IGNORE;
1920         /*
1921          * Process user requests only after previous user/driver/core
1922          * requests have been processed
1923          */
1924         if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
1925              lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1926              lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
1927             regdom_changes(lr->alpha2))
1928                 return REG_REQ_IGNORE;
1929
1930         if (!regdom_changes(user_request->alpha2))
1931                 return REG_REQ_ALREADY_SET;
1932
1933         return REG_REQ_OK;
1934 }
1935
1936 /**
1937  * reg_process_hint_user - process user regulatory requests
1938  * @user_request: a pending user regulatory request
1939  *
1940  * The wireless subsystem can use this function to process
1941  * a regulatory request initiated by userspace.
1942  */
1943 static enum reg_request_treatment
1944 reg_process_hint_user(struct regulatory_request *user_request)
1945 {
1946         enum reg_request_treatment treatment;
1947
1948         treatment = __reg_process_hint_user(user_request);
1949         if (treatment == REG_REQ_IGNORE ||
1950             treatment == REG_REQ_ALREADY_SET)
1951                 return REG_REQ_IGNORE;
1952
1953         user_request->intersect = treatment == REG_REQ_INTERSECT;
1954         user_request->processed = false;
1955
1956         if (reg_query_database(user_request)) {
1957                 reg_update_last_request(user_request);
1958                 user_alpha2[0] = user_request->alpha2[0];
1959                 user_alpha2[1] = user_request->alpha2[1];
1960                 return REG_REQ_OK;
1961         }
1962
1963         return REG_REQ_IGNORE;
1964 }
1965
1966 static enum reg_request_treatment
1967 __reg_process_hint_driver(struct regulatory_request *driver_request)
1968 {
1969         struct regulatory_request *lr = get_last_request();
1970
1971         if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
1972                 if (regdom_changes(driver_request->alpha2))
1973                         return REG_REQ_OK;
1974                 return REG_REQ_ALREADY_SET;
1975         }
1976
1977         /*
1978          * This would happen if you unplug and plug your card
1979          * back in or if you add a new device for which the previously
1980          * loaded card also agrees on the regulatory domain.
1981          */
1982         if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1983             !regdom_changes(driver_request->alpha2))
1984                 return REG_REQ_ALREADY_SET;
1985
1986         return REG_REQ_INTERSECT;
1987 }
1988
1989 /**
1990  * reg_process_hint_driver - process driver regulatory requests
1991  * @driver_request: a pending driver regulatory request
1992  *
1993  * The wireless subsystem can use this function to process
1994  * a regulatory request issued by an 802.11 driver.
1995  *
1996  * Returns one of the different reg request treatment values.
1997  */
1998 static enum reg_request_treatment
1999 reg_process_hint_driver(struct wiphy *wiphy,
2000                         struct regulatory_request *driver_request)
2001 {
2002         const struct ieee80211_regdomain *regd, *tmp;
2003         enum reg_request_treatment treatment;
2004
2005         treatment = __reg_process_hint_driver(driver_request);
2006
2007         switch (treatment) {
2008         case REG_REQ_OK:
2009                 break;
2010         case REG_REQ_IGNORE:
2011                 return REG_REQ_IGNORE;
2012         case REG_REQ_INTERSECT:
2013         case REG_REQ_ALREADY_SET:
2014                 regd = reg_copy_regd(get_cfg80211_regdom());
2015                 if (IS_ERR(regd))
2016                         return REG_REQ_IGNORE;
2017
2018                 tmp = get_wiphy_regdom(wiphy);
2019                 rcu_assign_pointer(wiphy->regd, regd);
2020                 rcu_free_regdom(tmp);
2021         }
2022
2023
2024         driver_request->intersect = treatment == REG_REQ_INTERSECT;
2025         driver_request->processed = false;
2026
2027         /*
2028          * Since CRDA will not be called in this case as we already
2029          * have applied the requested regulatory domain before we just
2030          * inform userspace we have processed the request
2031          */
2032         if (treatment == REG_REQ_ALREADY_SET) {
2033                 nl80211_send_reg_change_event(driver_request);
2034                 reg_update_last_request(driver_request);
2035                 reg_set_request_processed();
2036                 return REG_REQ_ALREADY_SET;
2037         }
2038
2039         if (reg_query_database(driver_request)) {
2040                 reg_update_last_request(driver_request);
2041                 return REG_REQ_OK;
2042         }
2043
2044         return REG_REQ_IGNORE;
2045 }
2046
2047 static enum reg_request_treatment
2048 __reg_process_hint_country_ie(struct wiphy *wiphy,
2049                               struct regulatory_request *country_ie_request)
2050 {
2051         struct wiphy *last_wiphy = NULL;
2052         struct regulatory_request *lr = get_last_request();
2053
2054         if (reg_request_cell_base(lr)) {
2055                 /* Trust a Cell base station over the AP's country IE */
2056                 if (regdom_changes(country_ie_request->alpha2))
2057                         return REG_REQ_IGNORE;
2058                 return REG_REQ_ALREADY_SET;
2059         } else {
2060                 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2061                         return REG_REQ_IGNORE;
2062         }
2063
2064         if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2065                 return -EINVAL;
2066
2067         if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2068                 return REG_REQ_OK;
2069
2070         last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2071
2072         if (last_wiphy != wiphy) {
2073                 /*
2074                  * Two cards with two APs claiming different
2075                  * Country IE alpha2s. We could
2076                  * intersect them, but that seems unlikely
2077                  * to be correct. Reject second one for now.
2078                  */
2079                 if (regdom_changes(country_ie_request->alpha2))
2080                         return REG_REQ_IGNORE;
2081                 return REG_REQ_ALREADY_SET;
2082         }
2083
2084         if (regdom_changes(country_ie_request->alpha2))
2085                 return REG_REQ_OK;
2086         return REG_REQ_ALREADY_SET;
2087 }
2088
2089 /**
2090  * reg_process_hint_country_ie - process regulatory requests from country IEs
2091  * @country_ie_request: a regulatory request from a country IE
2092  *
2093  * The wireless subsystem can use this function to process
2094  * a regulatory request issued by a country Information Element.
2095  *
2096  * Returns one of the different reg request treatment values.
2097  */
2098 static enum reg_request_treatment
2099 reg_process_hint_country_ie(struct wiphy *wiphy,
2100                             struct regulatory_request *country_ie_request)
2101 {
2102         enum reg_request_treatment treatment;
2103
2104         treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2105
2106         switch (treatment) {
2107         case REG_REQ_OK:
2108                 break;
2109         case REG_REQ_IGNORE:
2110                 return REG_REQ_IGNORE;
2111         case REG_REQ_ALREADY_SET:
2112                 reg_free_request(country_ie_request);
2113                 return REG_REQ_ALREADY_SET;
2114         case REG_REQ_INTERSECT:
2115                 /*
2116                  * This doesn't happen yet, not sure we
2117                  * ever want to support it for this case.
2118                  */
2119                 WARN_ONCE(1, "Unexpected intersection for country IEs");
2120                 return REG_REQ_IGNORE;
2121         }
2122
2123         country_ie_request->intersect = false;
2124         country_ie_request->processed = false;
2125
2126         if (reg_query_database(country_ie_request)) {
2127                 reg_update_last_request(country_ie_request);
2128                 return REG_REQ_OK;
2129         }
2130
2131         return REG_REQ_IGNORE;
2132 }
2133
2134 /* This processes *all* regulatory hints */
2135 static void reg_process_hint(struct regulatory_request *reg_request)
2136 {
2137         struct wiphy *wiphy = NULL;
2138         enum reg_request_treatment treatment;
2139
2140         if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
2141                 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
2142
2143         switch (reg_request->initiator) {
2144         case NL80211_REGDOM_SET_BY_CORE:
2145                 treatment = reg_process_hint_core(reg_request);
2146                 break;
2147         case NL80211_REGDOM_SET_BY_USER:
2148                 treatment = reg_process_hint_user(reg_request);
2149                 break;
2150         case NL80211_REGDOM_SET_BY_DRIVER:
2151                 if (!wiphy)
2152                         goto out_free;
2153                 treatment = reg_process_hint_driver(wiphy, reg_request);
2154                 break;
2155         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2156                 if (!wiphy)
2157                         goto out_free;
2158                 treatment = reg_process_hint_country_ie(wiphy, reg_request);
2159                 break;
2160         default:
2161                 WARN(1, "invalid initiator %d\n", reg_request->initiator);
2162                 goto out_free;
2163         }
2164
2165         if (treatment == REG_REQ_IGNORE)
2166                 goto out_free;
2167
2168         WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET,
2169              "unexpected treatment value %d\n", treatment);
2170
2171         /* This is required so that the orig_* parameters are saved.
2172          * NOTE: treatment must be set for any case that reaches here!
2173          */
2174         if (treatment == REG_REQ_ALREADY_SET && wiphy &&
2175             wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2176                 wiphy_update_regulatory(wiphy, reg_request->initiator);
2177                 reg_check_channels();
2178         }
2179
2180         return;
2181
2182 out_free:
2183         reg_free_request(reg_request);
2184 }
2185
2186 static bool reg_only_self_managed_wiphys(void)
2187 {
2188         struct cfg80211_registered_device *rdev;
2189         struct wiphy *wiphy;
2190         bool self_managed_found = false;
2191
2192         ASSERT_RTNL();
2193
2194         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2195                 wiphy = &rdev->wiphy;
2196                 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2197                         self_managed_found = true;
2198                 else
2199                         return false;
2200         }
2201
2202         /* make sure at least one self-managed wiphy exists */
2203         return self_managed_found;
2204 }
2205
2206 /*
2207  * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
2208  * Regulatory hints come on a first come first serve basis and we
2209  * must process each one atomically.
2210  */
2211 static void reg_process_pending_hints(void)
2212 {
2213         struct regulatory_request *reg_request, *lr;
2214
2215         lr = get_last_request();
2216
2217         /* When last_request->processed becomes true this will be rescheduled */
2218         if (lr && !lr->processed) {
2219                 reg_process_hint(lr);
2220                 return;
2221         }
2222
2223         spin_lock(&reg_requests_lock);
2224
2225         if (list_empty(&reg_requests_list)) {
2226                 spin_unlock(&reg_requests_lock);
2227                 return;
2228         }
2229
2230         reg_request = list_first_entry(&reg_requests_list,
2231                                        struct regulatory_request,
2232                                        list);
2233         list_del_init(&reg_request->list);
2234
2235         spin_unlock(&reg_requests_lock);
2236
2237         if (reg_only_self_managed_wiphys()) {
2238                 reg_free_request(reg_request);
2239                 return;
2240         }
2241
2242         reg_process_hint(reg_request);
2243
2244         lr = get_last_request();
2245
2246         spin_lock(&reg_requests_lock);
2247         if (!list_empty(&reg_requests_list) && lr && lr->processed)
2248                 schedule_work(&reg_work);
2249         spin_unlock(&reg_requests_lock);
2250 }
2251
2252 /* Processes beacon hints -- this has nothing to do with country IEs */
2253 static void reg_process_pending_beacon_hints(void)
2254 {
2255         struct cfg80211_registered_device *rdev;
2256         struct reg_beacon *pending_beacon, *tmp;
2257
2258         /* This goes through the _pending_ beacon list */
2259         spin_lock_bh(&reg_pending_beacons_lock);
2260
2261         list_for_each_entry_safe(pending_beacon, tmp,
2262                                  &reg_pending_beacons, list) {
2263                 list_del_init(&pending_beacon->list);
2264
2265                 /* Applies the beacon hint to current wiphys */
2266                 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2267                         wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
2268
2269                 /* Remembers the beacon hint for new wiphys or reg changes */
2270                 list_add_tail(&pending_beacon->list, &reg_beacon_list);
2271         }
2272
2273         spin_unlock_bh(&reg_pending_beacons_lock);
2274 }
2275
2276 static void reg_process_self_managed_hints(void)
2277 {
2278         struct cfg80211_registered_device *rdev;
2279         struct wiphy *wiphy;
2280         const struct ieee80211_regdomain *tmp;
2281         const struct ieee80211_regdomain *regd;
2282         enum ieee80211_band band;
2283         struct regulatory_request request = {};
2284
2285         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2286                 wiphy = &rdev->wiphy;
2287
2288                 spin_lock(&reg_requests_lock);
2289                 regd = rdev->requested_regd;
2290                 rdev->requested_regd = NULL;
2291                 spin_unlock(&reg_requests_lock);
2292
2293                 if (regd == NULL)
2294                         continue;
2295
2296                 tmp = get_wiphy_regdom(wiphy);
2297                 rcu_assign_pointer(wiphy->regd, regd);
2298                 rcu_free_regdom(tmp);
2299
2300                 for (band = 0; band < IEEE80211_NUM_BANDS; band++)
2301                         handle_band_custom(wiphy, wiphy->bands[band], regd);
2302
2303                 reg_process_ht_flags(wiphy);
2304
2305                 request.wiphy_idx = get_wiphy_idx(wiphy);
2306                 request.alpha2[0] = regd->alpha2[0];
2307                 request.alpha2[1] = regd->alpha2[1];
2308                 request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
2309
2310                 nl80211_send_wiphy_reg_change_event(&request);
2311         }
2312
2313         reg_check_channels();
2314 }
2315
2316 static void reg_todo(struct work_struct *work)
2317 {
2318         rtnl_lock();
2319         reg_process_pending_hints();
2320         reg_process_pending_beacon_hints();
2321         reg_process_self_managed_hints();
2322         rtnl_unlock();
2323 }
2324
2325 static void queue_regulatory_request(struct regulatory_request *request)
2326 {
2327         request->alpha2[0] = toupper(request->alpha2[0]);
2328         request->alpha2[1] = toupper(request->alpha2[1]);
2329
2330         spin_lock(&reg_requests_lock);
2331         list_add_tail(&request->list, &reg_requests_list);
2332         spin_unlock(&reg_requests_lock);
2333
2334         schedule_work(&reg_work);
2335 }
2336
2337 /*
2338  * Core regulatory hint -- happens during cfg80211_init()
2339  * and when we restore regulatory settings.
2340  */
2341 static int regulatory_hint_core(const char *alpha2)
2342 {
2343         struct regulatory_request *request;
2344
2345         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2346         if (!request)
2347                 return -ENOMEM;
2348
2349         request->alpha2[0] = alpha2[0];
2350         request->alpha2[1] = alpha2[1];
2351         request->initiator = NL80211_REGDOM_SET_BY_CORE;
2352
2353         queue_regulatory_request(request);
2354
2355         return 0;
2356 }
2357
2358 /* User hints */
2359 int regulatory_hint_user(const char *alpha2,
2360                          enum nl80211_user_reg_hint_type user_reg_hint_type)
2361 {
2362         struct regulatory_request *request;
2363
2364         if (WARN_ON(!alpha2))
2365                 return -EINVAL;
2366
2367         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2368         if (!request)
2369                 return -ENOMEM;
2370
2371         request->wiphy_idx = WIPHY_IDX_INVALID;
2372         request->alpha2[0] = alpha2[0];
2373         request->alpha2[1] = alpha2[1];
2374         request->initiator = NL80211_REGDOM_SET_BY_USER;
2375         request->user_reg_hint_type = user_reg_hint_type;
2376
2377         /* Allow calling CRDA again */
2378         reset_crda_timeouts();
2379
2380         queue_regulatory_request(request);
2381
2382         return 0;
2383 }
2384
2385 int regulatory_hint_indoor(bool is_indoor, u32 portid)
2386 {
2387         spin_lock(&reg_indoor_lock);
2388
2389         /* It is possible that more than one user space process is trying to
2390          * configure the indoor setting. To handle such cases, clear the indoor
2391          * setting in case that some process does not think that the device
2392          * is operating in an indoor environment. In addition, if a user space
2393          * process indicates that it is controlling the indoor setting, save its
2394          * portid, i.e., make it the owner.
2395          */
2396         reg_is_indoor = is_indoor;
2397         if (reg_is_indoor) {
2398                 if (!reg_is_indoor_portid)
2399                         reg_is_indoor_portid = portid;
2400         } else {
2401                 reg_is_indoor_portid = 0;
2402         }
2403
2404         spin_unlock(&reg_indoor_lock);
2405
2406         if (!is_indoor)
2407                 reg_check_channels();
2408
2409         return 0;
2410 }
2411
2412 void regulatory_netlink_notify(u32 portid)
2413 {
2414         spin_lock(&reg_indoor_lock);
2415
2416         if (reg_is_indoor_portid != portid) {
2417                 spin_unlock(&reg_indoor_lock);
2418                 return;
2419         }
2420
2421         reg_is_indoor = false;
2422         reg_is_indoor_portid = 0;
2423
2424         spin_unlock(&reg_indoor_lock);
2425
2426         reg_check_channels();
2427 }
2428
2429 /* Driver hints */
2430 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
2431 {
2432         struct regulatory_request *request;
2433
2434         if (WARN_ON(!alpha2 || !wiphy))
2435                 return -EINVAL;
2436
2437         wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
2438
2439         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2440         if (!request)
2441                 return -ENOMEM;
2442
2443         request->wiphy_idx = get_wiphy_idx(wiphy);
2444
2445         request->alpha2[0] = alpha2[0];
2446         request->alpha2[1] = alpha2[1];
2447         request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
2448
2449         /* Allow calling CRDA again */
2450         reset_crda_timeouts();
2451
2452         queue_regulatory_request(request);
2453
2454         return 0;
2455 }
2456 EXPORT_SYMBOL(regulatory_hint);
2457
2458 void regulatory_hint_country_ie(struct wiphy *wiphy, enum ieee80211_band band,
2459                                 const u8 *country_ie, u8 country_ie_len)
2460 {
2461         char alpha2[2];
2462         enum environment_cap env = ENVIRON_ANY;
2463         struct regulatory_request *request = NULL, *lr;
2464
2465         /* IE len must be evenly divisible by 2 */
2466         if (country_ie_len & 0x01)
2467                 return;
2468
2469         if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
2470                 return;
2471
2472         request = kzalloc(sizeof(*request), GFP_KERNEL);
2473         if (!request)
2474                 return;
2475
2476         alpha2[0] = country_ie[0];
2477         alpha2[1] = country_ie[1];
2478
2479         if (country_ie[2] == 'I')
2480                 env = ENVIRON_INDOOR;
2481         else if (country_ie[2] == 'O')
2482                 env = ENVIRON_OUTDOOR;
2483
2484         rcu_read_lock();
2485         lr = get_last_request();
2486
2487         if (unlikely(!lr))
2488                 goto out;
2489
2490         /*
2491          * We will run this only upon a successful connection on cfg80211.
2492          * We leave conflict resolution to the workqueue, where can hold
2493          * the RTNL.
2494          */
2495         if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2496             lr->wiphy_idx != WIPHY_IDX_INVALID)
2497                 goto out;
2498
2499         request->wiphy_idx = get_wiphy_idx(wiphy);
2500         request->alpha2[0] = alpha2[0];
2501         request->alpha2[1] = alpha2[1];
2502         request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
2503         request->country_ie_env = env;
2504
2505         /* Allow calling CRDA again */
2506         reset_crda_timeouts();
2507
2508         queue_regulatory_request(request);
2509         request = NULL;
2510 out:
2511         kfree(request);
2512         rcu_read_unlock();
2513 }
2514
2515 static void restore_alpha2(char *alpha2, bool reset_user)
2516 {
2517         /* indicates there is no alpha2 to consider for restoration */
2518         alpha2[0] = '9';
2519         alpha2[1] = '7';
2520
2521         /* The user setting has precedence over the module parameter */
2522         if (is_user_regdom_saved()) {
2523                 /* Unless we're asked to ignore it and reset it */
2524                 if (reset_user) {
2525                         REG_DBG_PRINT("Restoring regulatory settings including user preference\n");
2526                         user_alpha2[0] = '9';
2527                         user_alpha2[1] = '7';
2528
2529                         /*
2530                          * If we're ignoring user settings, we still need to
2531                          * check the module parameter to ensure we put things
2532                          * back as they were for a full restore.
2533                          */
2534                         if (!is_world_regdom(ieee80211_regdom)) {
2535                                 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2536                                               ieee80211_regdom[0], ieee80211_regdom[1]);
2537                                 alpha2[0] = ieee80211_regdom[0];
2538                                 alpha2[1] = ieee80211_regdom[1];
2539                         }
2540                 } else {
2541                         REG_DBG_PRINT("Restoring regulatory settings while preserving user preference for: %c%c\n",
2542                                       user_alpha2[0], user_alpha2[1]);
2543                         alpha2[0] = user_alpha2[0];
2544                         alpha2[1] = user_alpha2[1];
2545                 }
2546         } else if (!is_world_regdom(ieee80211_regdom)) {
2547                 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2548                               ieee80211_regdom[0], ieee80211_regdom[1]);
2549                 alpha2[0] = ieee80211_regdom[0];
2550                 alpha2[1] = ieee80211_regdom[1];
2551         } else
2552                 REG_DBG_PRINT("Restoring regulatory settings\n");
2553 }
2554
2555 static void restore_custom_reg_settings(struct wiphy *wiphy)
2556 {
2557         struct ieee80211_supported_band *sband;
2558         enum ieee80211_band band;
2559         struct ieee80211_channel *chan;
2560         int i;
2561
2562         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
2563                 sband = wiphy->bands[band];
2564                 if (!sband)
2565                         continue;
2566                 for (i = 0; i < sband->n_channels; i++) {
2567                         chan = &sband->channels[i];
2568                         chan->flags = chan->orig_flags;
2569                         chan->max_antenna_gain = chan->orig_mag;
2570                         chan->max_power = chan->orig_mpwr;
2571                         chan->beacon_found = false;
2572                 }
2573         }
2574 }
2575
2576 /*
2577  * Restoring regulatory settings involves ingoring any
2578  * possibly stale country IE information and user regulatory
2579  * settings if so desired, this includes any beacon hints
2580  * learned as we could have traveled outside to another country
2581  * after disconnection. To restore regulatory settings we do
2582  * exactly what we did at bootup:
2583  *
2584  *   - send a core regulatory hint
2585  *   - send a user regulatory hint if applicable
2586  *
2587  * Device drivers that send a regulatory hint for a specific country
2588  * keep their own regulatory domain on wiphy->regd so that does does
2589  * not need to be remembered.
2590  */
2591 static void restore_regulatory_settings(bool reset_user)
2592 {
2593         char alpha2[2];
2594         char world_alpha2[2];
2595         struct reg_beacon *reg_beacon, *btmp;
2596         LIST_HEAD(tmp_reg_req_list);
2597         struct cfg80211_registered_device *rdev;
2598
2599         ASSERT_RTNL();
2600
2601         /*
2602          * Clear the indoor setting in case that it is not controlled by user
2603          * space, as otherwise there is no guarantee that the device is still
2604          * operating in an indoor environment.
2605          */
2606         spin_lock(&reg_indoor_lock);
2607         if (reg_is_indoor && !reg_is_indoor_portid) {
2608                 reg_is_indoor = false;
2609                 reg_check_channels();
2610         }
2611         spin_unlock(&reg_indoor_lock);
2612
2613         reset_regdomains(true, &world_regdom);
2614         restore_alpha2(alpha2, reset_user);
2615
2616         /*
2617          * If there's any pending requests we simply
2618          * stash them to a temporary pending queue and
2619          * add then after we've restored regulatory
2620          * settings.
2621          */
2622         spin_lock(&reg_requests_lock);
2623         list_splice_tail_init(&reg_requests_list, &tmp_reg_req_list);
2624         spin_unlock(&reg_requests_lock);
2625
2626         /* Clear beacon hints */
2627         spin_lock_bh(&reg_pending_beacons_lock);
2628         list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
2629                 list_del(&reg_beacon->list);
2630                 kfree(reg_beacon);
2631         }
2632         spin_unlock_bh(&reg_pending_beacons_lock);
2633
2634         list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
2635                 list_del(&reg_beacon->list);
2636                 kfree(reg_beacon);
2637         }
2638
2639         /* First restore to the basic regulatory settings */
2640         world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
2641         world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
2642
2643         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2644                 if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2645                         continue;
2646                 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
2647                         restore_custom_reg_settings(&rdev->wiphy);
2648         }
2649
2650         regulatory_hint_core(world_alpha2);
2651
2652         /*
2653          * This restores the ieee80211_regdom module parameter
2654          * preference or the last user requested regulatory
2655          * settings, user regulatory settings takes precedence.
2656          */
2657         if (is_an_alpha2(alpha2))
2658                 regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
2659
2660         spin_lock(&reg_requests_lock);
2661         list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
2662         spin_unlock(&reg_requests_lock);
2663
2664         REG_DBG_PRINT("Kicking the queue\n");
2665
2666         schedule_work(&reg_work);
2667 }
2668
2669 void regulatory_hint_disconnect(void)
2670 {
2671         REG_DBG_PRINT("All devices are disconnected, going to restore regulatory settings\n");
2672         restore_regulatory_settings(false);
2673 }
2674
2675 static bool freq_is_chan_12_13_14(u16 freq)
2676 {
2677         if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
2678             freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
2679             freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
2680                 return true;
2681         return false;
2682 }
2683
2684 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
2685 {
2686         struct reg_beacon *pending_beacon;
2687
2688         list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
2689                 if (beacon_chan->center_freq ==
2690                     pending_beacon->chan.center_freq)
2691                         return true;
2692         return false;
2693 }
2694
2695 int regulatory_hint_found_beacon(struct wiphy *wiphy,
2696                                  struct ieee80211_channel *beacon_chan,
2697                                  gfp_t gfp)
2698 {
2699         struct reg_beacon *reg_beacon;
2700         bool processing;
2701
2702         if (beacon_chan->beacon_found ||
2703             beacon_chan->flags & IEEE80211_CHAN_RADAR ||
2704             (beacon_chan->band == IEEE80211_BAND_2GHZ &&
2705              !freq_is_chan_12_13_14(beacon_chan->center_freq)))
2706                 return 0;
2707
2708         spin_lock_bh(&reg_pending_beacons_lock);
2709         processing = pending_reg_beacon(beacon_chan);
2710         spin_unlock_bh(&reg_pending_beacons_lock);
2711
2712         if (processing)
2713                 return 0;
2714
2715         reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
2716         if (!reg_beacon)
2717                 return -ENOMEM;
2718
2719         REG_DBG_PRINT("Found new beacon on frequency: %d MHz (Ch %d) on %s\n",
2720                       beacon_chan->center_freq,
2721                       ieee80211_frequency_to_channel(beacon_chan->center_freq),
2722                       wiphy_name(wiphy));
2723
2724         memcpy(&reg_beacon->chan, beacon_chan,
2725                sizeof(struct ieee80211_channel));
2726
2727         /*
2728          * Since we can be called from BH or and non-BH context
2729          * we must use spin_lock_bh()
2730          */
2731         spin_lock_bh(&reg_pending_beacons_lock);
2732         list_add_tail(&reg_beacon->list, &reg_pending_beacons);
2733         spin_unlock_bh(&reg_pending_beacons_lock);
2734
2735         schedule_work(&reg_work);
2736
2737         return 0;
2738 }
2739
2740 static void print_rd_rules(const struct ieee80211_regdomain *rd)
2741 {
2742         unsigned int i;
2743         const struct ieee80211_reg_rule *reg_rule = NULL;
2744         const struct ieee80211_freq_range *freq_range = NULL;
2745         const struct ieee80211_power_rule *power_rule = NULL;
2746         char bw[32], cac_time[32];
2747
2748         pr_info("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
2749
2750         for (i = 0; i < rd->n_reg_rules; i++) {
2751                 reg_rule = &rd->reg_rules[i];
2752                 freq_range = &reg_rule->freq_range;
2753                 power_rule = &reg_rule->power_rule;
2754
2755                 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
2756                         snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
2757                                  freq_range->max_bandwidth_khz,
2758                                  reg_get_max_bandwidth(rd, reg_rule));
2759                 else
2760                         snprintf(bw, sizeof(bw), "%d KHz",
2761                                  freq_range->max_bandwidth_khz);
2762
2763                 if (reg_rule->flags & NL80211_RRF_DFS)
2764                         scnprintf(cac_time, sizeof(cac_time), "%u s",
2765                                   reg_rule->dfs_cac_ms/1000);
2766                 else
2767                         scnprintf(cac_time, sizeof(cac_time), "N/A");
2768
2769
2770                 /*
2771                  * There may not be documentation for max antenna gain
2772                  * in certain regions
2773                  */
2774                 if (power_rule->max_antenna_gain)
2775                         pr_info("  (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
2776                                 freq_range->start_freq_khz,
2777                                 freq_range->end_freq_khz,
2778                                 bw,
2779                                 power_rule->max_antenna_gain,
2780                                 power_rule->max_eirp,
2781                                 cac_time);
2782                 else
2783                         pr_info("  (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
2784                                 freq_range->start_freq_khz,
2785                                 freq_range->end_freq_khz,
2786                                 bw,
2787                                 power_rule->max_eirp,
2788                                 cac_time);
2789         }
2790 }
2791
2792 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
2793 {
2794         switch (dfs_region) {
2795         case NL80211_DFS_UNSET:
2796         case NL80211_DFS_FCC:
2797         case NL80211_DFS_ETSI:
2798         case NL80211_DFS_JP:
2799                 return true;
2800         default:
2801                 REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n",
2802                               dfs_region);
2803                 return false;
2804         }
2805 }
2806
2807 static void print_regdomain(const struct ieee80211_regdomain *rd)
2808 {
2809         struct regulatory_request *lr = get_last_request();
2810
2811         if (is_intersected_alpha2(rd->alpha2)) {
2812                 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2813                         struct cfg80211_registered_device *rdev;
2814                         rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
2815                         if (rdev) {
2816                                 pr_info("Current regulatory domain updated by AP to: %c%c\n",
2817                                         rdev->country_ie_alpha2[0],
2818                                         rdev->country_ie_alpha2[1]);
2819                         } else
2820                                 pr_info("Current regulatory domain intersected:\n");
2821                 } else
2822                         pr_info("Current regulatory domain intersected:\n");
2823         } else if (is_world_regdom(rd->alpha2)) {
2824                 pr_info("World regulatory domain updated:\n");
2825         } else {
2826                 if (is_unknown_alpha2(rd->alpha2))
2827                         pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
2828                 else {
2829                         if (reg_request_cell_base(lr))
2830                                 pr_info("Regulatory domain changed to country: %c%c by Cell Station\n",
2831                                         rd->alpha2[0], rd->alpha2[1]);
2832                         else
2833                                 pr_info("Regulatory domain changed to country: %c%c\n",
2834                                         rd->alpha2[0], rd->alpha2[1]);
2835                 }
2836         }
2837
2838         pr_info(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
2839         print_rd_rules(rd);
2840 }
2841
2842 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2843 {
2844         pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
2845         print_rd_rules(rd);
2846 }
2847
2848 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
2849 {
2850         if (!is_world_regdom(rd->alpha2))
2851                 return -EINVAL;
2852         update_world_regdomain(rd);
2853         return 0;
2854 }
2855
2856 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
2857                            struct regulatory_request *user_request)
2858 {
2859         const struct ieee80211_regdomain *intersected_rd = NULL;
2860
2861         if (!regdom_changes(rd->alpha2))
2862                 return -EALREADY;
2863
2864         if (!is_valid_rd(rd)) {
2865                 pr_err("Invalid regulatory domain detected:\n");
2866                 print_regdomain_info(rd);
2867                 return -EINVAL;
2868         }
2869
2870         if (!user_request->intersect) {
2871                 reset_regdomains(false, rd);
2872                 return 0;
2873         }
2874
2875         intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2876         if (!intersected_rd)
2877                 return -EINVAL;
2878
2879         kfree(rd);
2880         rd = NULL;
2881         reset_regdomains(false, intersected_rd);
2882
2883         return 0;
2884 }
2885
2886 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
2887                              struct regulatory_request *driver_request)
2888 {
2889         const struct ieee80211_regdomain *regd;
2890         const struct ieee80211_regdomain *intersected_rd = NULL;
2891         const struct ieee80211_regdomain *tmp;
2892         struct wiphy *request_wiphy;
2893
2894         if (is_world_regdom(rd->alpha2))
2895                 return -EINVAL;
2896
2897         if (!regdom_changes(rd->alpha2))
2898                 return -EALREADY;
2899
2900         if (!is_valid_rd(rd)) {
2901                 pr_err("Invalid regulatory domain detected:\n");
2902                 print_regdomain_info(rd);
2903                 return -EINVAL;
2904         }
2905
2906         request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
2907         if (!request_wiphy)
2908                 return -ENODEV;
2909
2910         if (!driver_request->intersect) {
2911                 if (request_wiphy->regd)
2912                         return -EALREADY;
2913
2914                 regd = reg_copy_regd(rd);
2915                 if (IS_ERR(regd))
2916                         return PTR_ERR(regd);
2917
2918                 rcu_assign_pointer(request_wiphy->regd, regd);
2919                 reset_regdomains(false, rd);
2920                 return 0;
2921         }
2922
2923         intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2924         if (!intersected_rd)
2925                 return -EINVAL;
2926
2927         /*
2928          * We can trash what CRDA provided now.
2929          * However if a driver requested this specific regulatory
2930          * domain we keep it for its private use
2931          */
2932         tmp = get_wiphy_regdom(request_wiphy);
2933         rcu_assign_pointer(request_wiphy->regd, rd);
2934         rcu_free_regdom(tmp);
2935
2936         rd = NULL;
2937
2938         reset_regdomains(false, intersected_rd);
2939
2940         return 0;
2941 }
2942
2943 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
2944                                  struct regulatory_request *country_ie_request)
2945 {
2946         struct wiphy *request_wiphy;
2947
2948         if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2949             !is_unknown_alpha2(rd->alpha2))
2950                 return -EINVAL;
2951
2952         /*
2953          * Lets only bother proceeding on the same alpha2 if the current
2954          * rd is non static (it means CRDA was present and was used last)
2955          * and the pending request came in from a country IE
2956          */
2957
2958         if (!is_valid_rd(rd)) {
2959                 pr_err("Invalid regulatory domain detected:\n");
2960                 print_regdomain_info(rd);
2961                 return -EINVAL;
2962         }
2963
2964         request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
2965         if (!request_wiphy)
2966                 return -ENODEV;
2967
2968         if (country_ie_request->intersect)
2969                 return -EINVAL;
2970
2971         reset_regdomains(false, rd);
2972         return 0;
2973 }
2974
2975 /*
2976  * Use this call to set the current regulatory domain. Conflicts with
2977  * multiple drivers can be ironed out later. Caller must've already
2978  * kmalloc'd the rd structure.
2979  */
2980 int set_regdom(const struct ieee80211_regdomain *rd,
2981                enum ieee80211_regd_source regd_src)
2982 {
2983         struct regulatory_request *lr;
2984         bool user_reset = false;
2985         int r;
2986
2987         if (!reg_is_valid_request(rd->alpha2)) {
2988                 kfree(rd);
2989                 return -EINVAL;
2990         }
2991
2992         if (regd_src == REGD_SOURCE_CRDA)
2993                 reset_crda_timeouts();
2994
2995         lr = get_last_request();
2996
2997         /* Note that this doesn't update the wiphys, this is done below */
2998         switch (lr->initiator) {
2999         case NL80211_REGDOM_SET_BY_CORE:
3000                 r = reg_set_rd_core(rd);
3001                 break;
3002         case NL80211_REGDOM_SET_BY_USER:
3003                 r = reg_set_rd_user(rd, lr);
3004                 user_reset = true;
3005                 break;
3006         case NL80211_REGDOM_SET_BY_DRIVER:
3007                 r = reg_set_rd_driver(rd, lr);
3008                 break;
3009         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3010                 r = reg_set_rd_country_ie(rd, lr);
3011                 break;
3012         default:
3013                 WARN(1, "invalid initiator %d\n", lr->initiator);
3014                 kfree(rd);
3015                 return -EINVAL;
3016         }
3017
3018         if (r) {
3019                 switch (r) {
3020                 case -EALREADY:
3021                         reg_set_request_processed();
3022                         break;
3023                 default:
3024                         /* Back to world regulatory in case of errors */
3025                         restore_regulatory_settings(user_reset);
3026                 }
3027
3028                 kfree(rd);
3029                 return r;
3030         }
3031
3032         /* This would make this whole thing pointless */
3033         if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
3034                 return -EINVAL;
3035
3036         /* update all wiphys now with the new established regulatory domain */
3037         update_all_wiphy_regulatory(lr->initiator);
3038
3039         print_regdomain(get_cfg80211_regdom());
3040
3041         nl80211_send_reg_change_event(lr);
3042
3043         reg_set_request_processed();
3044
3045         return 0;
3046 }
3047
3048 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
3049                                        struct ieee80211_regdomain *rd)
3050 {
3051         const struct ieee80211_regdomain *regd;
3052         const struct ieee80211_regdomain *prev_regd;
3053         struct cfg80211_registered_device *rdev;
3054
3055         if (WARN_ON(!wiphy || !rd))
3056                 return -EINVAL;
3057
3058         if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
3059                  "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
3060                 return -EPERM;
3061
3062         if (WARN(!is_valid_rd(rd), "Invalid regulatory domain detected\n")) {
3063                 print_regdomain_info(rd);
3064                 return -EINVAL;
3065         }
3066
3067         regd = reg_copy_regd(rd);
3068         if (IS_ERR(regd))
3069                 return PTR_ERR(regd);
3070
3071         rdev = wiphy_to_rdev(wiphy);
3072
3073         spin_lock(&reg_requests_lock);
3074         prev_regd = rdev->requested_regd;
3075         rdev->requested_regd = regd;
3076         spin_unlock(&reg_requests_lock);
3077
3078         kfree(prev_regd);
3079         return 0;
3080 }
3081
3082 int regulatory_set_wiphy_regd(struct wiphy *wiphy,
3083                               struct ieee80211_regdomain *rd)
3084 {
3085         int ret = __regulatory_set_wiphy_regd(wiphy, rd);
3086
3087         if (ret)
3088                 return ret;
3089
3090         schedule_work(&reg_work);
3091         return 0;
3092 }
3093 EXPORT_SYMBOL(regulatory_set_wiphy_regd);
3094
3095 int regulatory_set_wiphy_regd_sync_rtnl(struct wiphy *wiphy,
3096                                         struct ieee80211_regdomain *rd)
3097 {
3098         int ret;
3099
3100         ASSERT_RTNL();
3101
3102         ret = __regulatory_set_wiphy_regd(wiphy, rd);
3103         if (ret)
3104                 return ret;
3105
3106         /* process the request immediately */
3107         reg_process_self_managed_hints();
3108         return 0;
3109 }
3110 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync_rtnl);
3111
3112 void wiphy_regulatory_register(struct wiphy *wiphy)
3113 {
3114         struct regulatory_request *lr;
3115
3116         /* self-managed devices ignore external hints */
3117         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3118                 wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
3119                                            REGULATORY_COUNTRY_IE_IGNORE;
3120
3121         if (!reg_dev_ignore_cell_hint(wiphy))
3122                 reg_num_devs_support_basehint++;
3123
3124         lr = get_last_request();
3125         wiphy_update_regulatory(wiphy, lr->initiator);
3126 }
3127
3128 void wiphy_regulatory_deregister(struct wiphy *wiphy)
3129 {
3130         struct wiphy *request_wiphy = NULL;
3131         struct regulatory_request *lr;
3132
3133         lr = get_last_request();
3134
3135         if (!reg_dev_ignore_cell_hint(wiphy))
3136                 reg_num_devs_support_basehint--;
3137
3138         rcu_free_regdom(get_wiphy_regdom(wiphy));
3139         RCU_INIT_POINTER(wiphy->regd, NULL);
3140
3141         if (lr)
3142                 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
3143
3144         if (!request_wiphy || request_wiphy != wiphy)
3145                 return;
3146
3147         lr->wiphy_idx = WIPHY_IDX_INVALID;
3148         lr->country_ie_env = ENVIRON_ANY;
3149 }
3150
3151 /*
3152  * See http://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii, for
3153  * UNII band definitions
3154  */
3155 int cfg80211_get_unii(int freq)
3156 {
3157         /* UNII-1 */
3158         if (freq >= 5150 && freq <= 5250)
3159                 return 0;
3160
3161         /* UNII-2A */
3162         if (freq > 5250 && freq <= 5350)
3163                 return 1;
3164
3165         /* UNII-2B */
3166         if (freq > 5350 && freq <= 5470)
3167                 return 2;
3168
3169         /* UNII-2C */
3170         if (freq > 5470 && freq <= 5725)
3171                 return 3;
3172
3173         /* UNII-3 */
3174         if (freq > 5725 && freq <= 5825)
3175                 return 4;
3176
3177         return -EINVAL;
3178 }
3179
3180 bool regulatory_indoor_allowed(void)
3181 {
3182         return reg_is_indoor;
3183 }
3184
3185 int __init regulatory_init(void)
3186 {
3187         int err = 0;
3188
3189         reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
3190         if (IS_ERR(reg_pdev))
3191                 return PTR_ERR(reg_pdev);
3192
3193         spin_lock_init(&reg_requests_lock);
3194         spin_lock_init(&reg_pending_beacons_lock);
3195         spin_lock_init(&reg_indoor_lock);
3196
3197         reg_regdb_size_check();
3198
3199         rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
3200
3201         user_alpha2[0] = '9';
3202         user_alpha2[1] = '7';
3203
3204         /* We always try to get an update for the static regdomain */
3205         err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
3206         if (err) {
3207                 if (err == -ENOMEM) {
3208                         platform_device_unregister(reg_pdev);
3209                         return err;
3210                 }
3211                 /*
3212                  * N.B. kobject_uevent_env() can fail mainly for when we're out
3213                  * memory which is handled and propagated appropriately above
3214                  * but it can also fail during a netlink_broadcast() or during
3215                  * early boot for call_usermodehelper(). For now treat these
3216                  * errors as non-fatal.
3217                  */
3218                 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
3219         }
3220
3221         /*
3222          * Finally, if the user set the module parameter treat it
3223          * as a user hint.
3224          */
3225         if (!is_world_regdom(ieee80211_regdom))
3226                 regulatory_hint_user(ieee80211_regdom,
3227                                      NL80211_USER_REG_HINT_USER);
3228
3229         return 0;
3230 }
3231
3232 void regulatory_exit(void)
3233 {
3234         struct regulatory_request *reg_request, *tmp;
3235         struct reg_beacon *reg_beacon, *btmp;
3236
3237         cancel_work_sync(&reg_work);
3238         cancel_crda_timeout_sync();
3239         cancel_delayed_work_sync(&reg_check_chans);
3240
3241         /* Lock to suppress warnings */
3242         rtnl_lock();
3243         reset_regdomains(true, NULL);
3244         rtnl_unlock();
3245
3246         dev_set_uevent_suppress(&reg_pdev->dev, true);
3247
3248         platform_device_unregister(reg_pdev);
3249
3250         list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3251                 list_del(&reg_beacon->list);
3252                 kfree(reg_beacon);
3253         }
3254
3255         list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3256                 list_del(&reg_beacon->list);
3257                 kfree(reg_beacon);
3258         }
3259
3260         list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
3261                 list_del(&reg_request->list);
3262                 kfree(reg_request);
3263         }
3264 }