]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - sound/core/pcm_lib.c
Merge branch 'linus' into sched/core, to pick up fixes
[karo-tx-linux.git] / sound / core / pcm_lib.c
1 /*
2  *  Digital Audio (PCM) abstract layer
3  *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
4  *                   Abramo Bagnara <abramo@alsa-project.org>
5  *
6  *
7  *   This program is free software; you can redistribute it and/or modify
8  *   it under the terms of the GNU General Public License as published by
9  *   the Free Software Foundation; either version 2 of the License, or
10  *   (at your option) any later version.
11  *
12  *   This program is distributed in the hope that it will be useful,
13  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  *   GNU General Public License for more details.
16  *
17  *   You should have received a copy of the GNU General Public License
18  *   along with this program; if not, write to the Free Software
19  *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
20  *
21  */
22
23 #include <linux/slab.h>
24 #include <linux/sched/signal.h>
25 #include <linux/time.h>
26 #include <linux/math64.h>
27 #include <linux/export.h>
28 #include <sound/core.h>
29 #include <sound/control.h>
30 #include <sound/tlv.h>
31 #include <sound/info.h>
32 #include <sound/pcm.h>
33 #include <sound/pcm_params.h>
34 #include <sound/timer.h>
35
36 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
37 #define CREATE_TRACE_POINTS
38 #include "pcm_trace.h"
39 #else
40 #define trace_hwptr(substream, pos, in_interrupt)
41 #define trace_xrun(substream)
42 #define trace_hw_ptr_error(substream, reason)
43 #endif
44
45 /*
46  * fill ring buffer with silence
47  * runtime->silence_start: starting pointer to silence area
48  * runtime->silence_filled: size filled with silence
49  * runtime->silence_threshold: threshold from application
50  * runtime->silence_size: maximal size from application
51  *
52  * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
53  */
54 void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
55 {
56         struct snd_pcm_runtime *runtime = substream->runtime;
57         snd_pcm_uframes_t frames, ofs, transfer;
58
59         if (runtime->silence_size < runtime->boundary) {
60                 snd_pcm_sframes_t noise_dist, n;
61                 if (runtime->silence_start != runtime->control->appl_ptr) {
62                         n = runtime->control->appl_ptr - runtime->silence_start;
63                         if (n < 0)
64                                 n += runtime->boundary;
65                         if ((snd_pcm_uframes_t)n < runtime->silence_filled)
66                                 runtime->silence_filled -= n;
67                         else
68                                 runtime->silence_filled = 0;
69                         runtime->silence_start = runtime->control->appl_ptr;
70                 }
71                 if (runtime->silence_filled >= runtime->buffer_size)
72                         return;
73                 noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
74                 if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
75                         return;
76                 frames = runtime->silence_threshold - noise_dist;
77                 if (frames > runtime->silence_size)
78                         frames = runtime->silence_size;
79         } else {
80                 if (new_hw_ptr == ULONG_MAX) {  /* initialization */
81                         snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime);
82                         if (avail > runtime->buffer_size)
83                                 avail = runtime->buffer_size;
84                         runtime->silence_filled = avail > 0 ? avail : 0;
85                         runtime->silence_start = (runtime->status->hw_ptr +
86                                                   runtime->silence_filled) %
87                                                  runtime->boundary;
88                 } else {
89                         ofs = runtime->status->hw_ptr;
90                         frames = new_hw_ptr - ofs;
91                         if ((snd_pcm_sframes_t)frames < 0)
92                                 frames += runtime->boundary;
93                         runtime->silence_filled -= frames;
94                         if ((snd_pcm_sframes_t)runtime->silence_filled < 0) {
95                                 runtime->silence_filled = 0;
96                                 runtime->silence_start = new_hw_ptr;
97                         } else {
98                                 runtime->silence_start = ofs;
99                         }
100                 }
101                 frames = runtime->buffer_size - runtime->silence_filled;
102         }
103         if (snd_BUG_ON(frames > runtime->buffer_size))
104                 return;
105         if (frames == 0)
106                 return;
107         ofs = runtime->silence_start % runtime->buffer_size;
108         while (frames > 0) {
109                 transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
110                 if (runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
111                     runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED) {
112                         if (substream->ops->silence) {
113                                 int err;
114                                 err = substream->ops->silence(substream, -1, ofs, transfer);
115                                 snd_BUG_ON(err < 0);
116                         } else {
117                                 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, ofs);
118                                 snd_pcm_format_set_silence(runtime->format, hwbuf, transfer * runtime->channels);
119                         }
120                 } else {
121                         unsigned int c;
122                         unsigned int channels = runtime->channels;
123                         if (substream->ops->silence) {
124                                 for (c = 0; c < channels; ++c) {
125                                         int err;
126                                         err = substream->ops->silence(substream, c, ofs, transfer);
127                                         snd_BUG_ON(err < 0);
128                                 }
129                         } else {
130                                 size_t dma_csize = runtime->dma_bytes / channels;
131                                 for (c = 0; c < channels; ++c) {
132                                         char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, ofs);
133                                         snd_pcm_format_set_silence(runtime->format, hwbuf, transfer);
134                                 }
135                         }
136                 }
137                 runtime->silence_filled += transfer;
138                 frames -= transfer;
139                 ofs = 0;
140         }
141 }
142
143 #ifdef CONFIG_SND_DEBUG
144 void snd_pcm_debug_name(struct snd_pcm_substream *substream,
145                            char *name, size_t len)
146 {
147         snprintf(name, len, "pcmC%dD%d%c:%d",
148                  substream->pcm->card->number,
149                  substream->pcm->device,
150                  substream->stream ? 'c' : 'p',
151                  substream->number);
152 }
153 EXPORT_SYMBOL(snd_pcm_debug_name);
154 #endif
155
156 #define XRUN_DEBUG_BASIC        (1<<0)
157 #define XRUN_DEBUG_STACK        (1<<1)  /* dump also stack */
158 #define XRUN_DEBUG_JIFFIESCHECK (1<<2)  /* do jiffies check */
159
160 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
161
162 #define xrun_debug(substream, mask) \
163                         ((substream)->pstr->xrun_debug & (mask))
164 #else
165 #define xrun_debug(substream, mask)     0
166 #endif
167
168 #define dump_stack_on_xrun(substream) do {                      \
169                 if (xrun_debug(substream, XRUN_DEBUG_STACK))    \
170                         dump_stack();                           \
171         } while (0)
172
173 static void xrun(struct snd_pcm_substream *substream)
174 {
175         struct snd_pcm_runtime *runtime = substream->runtime;
176
177         trace_xrun(substream);
178         if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
179                 snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
180         snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
181         if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {
182                 char name[16];
183                 snd_pcm_debug_name(substream, name, sizeof(name));
184                 pcm_warn(substream->pcm, "XRUN: %s\n", name);
185                 dump_stack_on_xrun(substream);
186         }
187 }
188
189 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
190 #define hw_ptr_error(substream, in_interrupt, reason, fmt, args...)     \
191         do {                                                            \
192                 trace_hw_ptr_error(substream, reason);  \
193                 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {          \
194                         pr_err_ratelimited("ALSA: PCM: [%c] " reason ": " fmt, \
195                                            (in_interrupt) ? 'Q' : 'P', ##args); \
196                         dump_stack_on_xrun(substream);                  \
197                 }                                                       \
198         } while (0)
199
200 #else /* ! CONFIG_SND_PCM_XRUN_DEBUG */
201
202 #define hw_ptr_error(substream, fmt, args...) do { } while (0)
203
204 #endif
205
206 int snd_pcm_update_state(struct snd_pcm_substream *substream,
207                          struct snd_pcm_runtime *runtime)
208 {
209         snd_pcm_uframes_t avail;
210
211         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
212                 avail = snd_pcm_playback_avail(runtime);
213         else
214                 avail = snd_pcm_capture_avail(runtime);
215         if (avail > runtime->avail_max)
216                 runtime->avail_max = avail;
217         if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
218                 if (avail >= runtime->buffer_size) {
219                         snd_pcm_drain_done(substream);
220                         return -EPIPE;
221                 }
222         } else {
223                 if (avail >= runtime->stop_threshold) {
224                         xrun(substream);
225                         return -EPIPE;
226                 }
227         }
228         if (runtime->twake) {
229                 if (avail >= runtime->twake)
230                         wake_up(&runtime->tsleep);
231         } else if (avail >= runtime->control->avail_min)
232                 wake_up(&runtime->sleep);
233         return 0;
234 }
235
236 static void update_audio_tstamp(struct snd_pcm_substream *substream,
237                                 struct timespec *curr_tstamp,
238                                 struct timespec *audio_tstamp)
239 {
240         struct snd_pcm_runtime *runtime = substream->runtime;
241         u64 audio_frames, audio_nsecs;
242         struct timespec driver_tstamp;
243
244         if (runtime->tstamp_mode != SNDRV_PCM_TSTAMP_ENABLE)
245                 return;
246
247         if (!(substream->ops->get_time_info) ||
248                 (runtime->audio_tstamp_report.actual_type ==
249                         SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) {
250
251                 /*
252                  * provide audio timestamp derived from pointer position
253                  * add delay only if requested
254                  */
255
256                 audio_frames = runtime->hw_ptr_wrap + runtime->status->hw_ptr;
257
258                 if (runtime->audio_tstamp_config.report_delay) {
259                         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
260                                 audio_frames -=  runtime->delay;
261                         else
262                                 audio_frames +=  runtime->delay;
263                 }
264                 audio_nsecs = div_u64(audio_frames * 1000000000LL,
265                                 runtime->rate);
266                 *audio_tstamp = ns_to_timespec(audio_nsecs);
267         }
268         runtime->status->audio_tstamp = *audio_tstamp;
269         runtime->status->tstamp = *curr_tstamp;
270
271         /*
272          * re-take a driver timestamp to let apps detect if the reference tstamp
273          * read by low-level hardware was provided with a delay
274          */
275         snd_pcm_gettime(substream->runtime, (struct timespec *)&driver_tstamp);
276         runtime->driver_tstamp = driver_tstamp;
277 }
278
279 static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream *substream,
280                                   unsigned int in_interrupt)
281 {
282         struct snd_pcm_runtime *runtime = substream->runtime;
283         snd_pcm_uframes_t pos;
284         snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base;
285         snd_pcm_sframes_t hdelta, delta;
286         unsigned long jdelta;
287         unsigned long curr_jiffies;
288         struct timespec curr_tstamp;
289         struct timespec audio_tstamp;
290         int crossed_boundary = 0;
291
292         old_hw_ptr = runtime->status->hw_ptr;
293
294         /*
295          * group pointer, time and jiffies reads to allow for more
296          * accurate correlations/corrections.
297          * The values are stored at the end of this routine after
298          * corrections for hw_ptr position
299          */
300         pos = substream->ops->pointer(substream);
301         curr_jiffies = jiffies;
302         if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) {
303                 if ((substream->ops->get_time_info) &&
304                         (runtime->audio_tstamp_config.type_requested != SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) {
305                         substream->ops->get_time_info(substream, &curr_tstamp,
306                                                 &audio_tstamp,
307                                                 &runtime->audio_tstamp_config,
308                                                 &runtime->audio_tstamp_report);
309
310                         /* re-test in case tstamp type is not supported in hardware and was demoted to DEFAULT */
311                         if (runtime->audio_tstamp_report.actual_type == SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)
312                                 snd_pcm_gettime(runtime, (struct timespec *)&curr_tstamp);
313                 } else
314                         snd_pcm_gettime(runtime, (struct timespec *)&curr_tstamp);
315         }
316
317         if (pos == SNDRV_PCM_POS_XRUN) {
318                 xrun(substream);
319                 return -EPIPE;
320         }
321         if (pos >= runtime->buffer_size) {
322                 if (printk_ratelimit()) {
323                         char name[16];
324                         snd_pcm_debug_name(substream, name, sizeof(name));
325                         pcm_err(substream->pcm,
326                                 "invalid position: %s, pos = %ld, buffer size = %ld, period size = %ld\n",
327                                 name, pos, runtime->buffer_size,
328                                 runtime->period_size);
329                 }
330                 pos = 0;
331         }
332         pos -= pos % runtime->min_align;
333         trace_hwptr(substream, pos, in_interrupt);
334         hw_base = runtime->hw_ptr_base;
335         new_hw_ptr = hw_base + pos;
336         if (in_interrupt) {
337                 /* we know that one period was processed */
338                 /* delta = "expected next hw_ptr" for in_interrupt != 0 */
339                 delta = runtime->hw_ptr_interrupt + runtime->period_size;
340                 if (delta > new_hw_ptr) {
341                         /* check for double acknowledged interrupts */
342                         hdelta = curr_jiffies - runtime->hw_ptr_jiffies;
343                         if (hdelta > runtime->hw_ptr_buffer_jiffies/2 + 1) {
344                                 hw_base += runtime->buffer_size;
345                                 if (hw_base >= runtime->boundary) {
346                                         hw_base = 0;
347                                         crossed_boundary++;
348                                 }
349                                 new_hw_ptr = hw_base + pos;
350                                 goto __delta;
351                         }
352                 }
353         }
354         /* new_hw_ptr might be lower than old_hw_ptr in case when */
355         /* pointer crosses the end of the ring buffer */
356         if (new_hw_ptr < old_hw_ptr) {
357                 hw_base += runtime->buffer_size;
358                 if (hw_base >= runtime->boundary) {
359                         hw_base = 0;
360                         crossed_boundary++;
361                 }
362                 new_hw_ptr = hw_base + pos;
363         }
364       __delta:
365         delta = new_hw_ptr - old_hw_ptr;
366         if (delta < 0)
367                 delta += runtime->boundary;
368
369         if (runtime->no_period_wakeup) {
370                 snd_pcm_sframes_t xrun_threshold;
371                 /*
372                  * Without regular period interrupts, we have to check
373                  * the elapsed time to detect xruns.
374                  */
375                 jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
376                 if (jdelta < runtime->hw_ptr_buffer_jiffies / 2)
377                         goto no_delta_check;
378                 hdelta = jdelta - delta * HZ / runtime->rate;
379                 xrun_threshold = runtime->hw_ptr_buffer_jiffies / 2 + 1;
380                 while (hdelta > xrun_threshold) {
381                         delta += runtime->buffer_size;
382                         hw_base += runtime->buffer_size;
383                         if (hw_base >= runtime->boundary) {
384                                 hw_base = 0;
385                                 crossed_boundary++;
386                         }
387                         new_hw_ptr = hw_base + pos;
388                         hdelta -= runtime->hw_ptr_buffer_jiffies;
389                 }
390                 goto no_delta_check;
391         }
392
393         /* something must be really wrong */
394         if (delta >= runtime->buffer_size + runtime->period_size) {
395                 hw_ptr_error(substream, in_interrupt, "Unexpected hw_ptr",
396                              "(stream=%i, pos=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
397                              substream->stream, (long)pos,
398                              (long)new_hw_ptr, (long)old_hw_ptr);
399                 return 0;
400         }
401
402         /* Do jiffies check only in xrun_debug mode */
403         if (!xrun_debug(substream, XRUN_DEBUG_JIFFIESCHECK))
404                 goto no_jiffies_check;
405
406         /* Skip the jiffies check for hardwares with BATCH flag.
407          * Such hardware usually just increases the position at each IRQ,
408          * thus it can't give any strange position.
409          */
410         if (runtime->hw.info & SNDRV_PCM_INFO_BATCH)
411                 goto no_jiffies_check;
412         hdelta = delta;
413         if (hdelta < runtime->delay)
414                 goto no_jiffies_check;
415         hdelta -= runtime->delay;
416         jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
417         if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) {
418                 delta = jdelta /
419                         (((runtime->period_size * HZ) / runtime->rate)
420                                                                 + HZ/100);
421                 /* move new_hw_ptr according jiffies not pos variable */
422                 new_hw_ptr = old_hw_ptr;
423                 hw_base = delta;
424                 /* use loop to avoid checks for delta overflows */
425                 /* the delta value is small or zero in most cases */
426                 while (delta > 0) {
427                         new_hw_ptr += runtime->period_size;
428                         if (new_hw_ptr >= runtime->boundary) {
429                                 new_hw_ptr -= runtime->boundary;
430                                 crossed_boundary--;
431                         }
432                         delta--;
433                 }
434                 /* align hw_base to buffer_size */
435                 hw_ptr_error(substream, in_interrupt, "hw_ptr skipping",
436                              "(pos=%ld, delta=%ld, period=%ld, jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n",
437                              (long)pos, (long)hdelta,
438                              (long)runtime->period_size, jdelta,
439                              ((hdelta * HZ) / runtime->rate), hw_base,
440                              (unsigned long)old_hw_ptr,
441                              (unsigned long)new_hw_ptr);
442                 /* reset values to proper state */
443                 delta = 0;
444                 hw_base = new_hw_ptr - (new_hw_ptr % runtime->buffer_size);
445         }
446  no_jiffies_check:
447         if (delta > runtime->period_size + runtime->period_size / 2) {
448                 hw_ptr_error(substream, in_interrupt,
449                              "Lost interrupts?",
450                              "(stream=%i, delta=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
451                              substream->stream, (long)delta,
452                              (long)new_hw_ptr,
453                              (long)old_hw_ptr);
454         }
455
456  no_delta_check:
457         if (runtime->status->hw_ptr == new_hw_ptr) {
458                 update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp);
459                 return 0;
460         }
461
462         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
463             runtime->silence_size > 0)
464                 snd_pcm_playback_silence(substream, new_hw_ptr);
465
466         if (in_interrupt) {
467                 delta = new_hw_ptr - runtime->hw_ptr_interrupt;
468                 if (delta < 0)
469                         delta += runtime->boundary;
470                 delta -= (snd_pcm_uframes_t)delta % runtime->period_size;
471                 runtime->hw_ptr_interrupt += delta;
472                 if (runtime->hw_ptr_interrupt >= runtime->boundary)
473                         runtime->hw_ptr_interrupt -= runtime->boundary;
474         }
475         runtime->hw_ptr_base = hw_base;
476         runtime->status->hw_ptr = new_hw_ptr;
477         runtime->hw_ptr_jiffies = curr_jiffies;
478         if (crossed_boundary) {
479                 snd_BUG_ON(crossed_boundary != 1);
480                 runtime->hw_ptr_wrap += runtime->boundary;
481         }
482
483         update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp);
484
485         return snd_pcm_update_state(substream, runtime);
486 }
487
488 /* CAUTION: call it with irq disabled */
489 int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
490 {
491         return snd_pcm_update_hw_ptr0(substream, 0);
492 }
493
494 /**
495  * snd_pcm_set_ops - set the PCM operators
496  * @pcm: the pcm instance
497  * @direction: stream direction, SNDRV_PCM_STREAM_XXX
498  * @ops: the operator table
499  *
500  * Sets the given PCM operators to the pcm instance.
501  */
502 void snd_pcm_set_ops(struct snd_pcm *pcm, int direction,
503                      const struct snd_pcm_ops *ops)
504 {
505         struct snd_pcm_str *stream = &pcm->streams[direction];
506         struct snd_pcm_substream *substream;
507         
508         for (substream = stream->substream; substream != NULL; substream = substream->next)
509                 substream->ops = ops;
510 }
511
512 EXPORT_SYMBOL(snd_pcm_set_ops);
513
514 /**
515  * snd_pcm_sync - set the PCM sync id
516  * @substream: the pcm substream
517  *
518  * Sets the PCM sync identifier for the card.
519  */
520 void snd_pcm_set_sync(struct snd_pcm_substream *substream)
521 {
522         struct snd_pcm_runtime *runtime = substream->runtime;
523         
524         runtime->sync.id32[0] = substream->pcm->card->number;
525         runtime->sync.id32[1] = -1;
526         runtime->sync.id32[2] = -1;
527         runtime->sync.id32[3] = -1;
528 }
529
530 EXPORT_SYMBOL(snd_pcm_set_sync);
531
532 /*
533  *  Standard ioctl routine
534  */
535
536 static inline unsigned int div32(unsigned int a, unsigned int b, 
537                                  unsigned int *r)
538 {
539         if (b == 0) {
540                 *r = 0;
541                 return UINT_MAX;
542         }
543         *r = a % b;
544         return a / b;
545 }
546
547 static inline unsigned int div_down(unsigned int a, unsigned int b)
548 {
549         if (b == 0)
550                 return UINT_MAX;
551         return a / b;
552 }
553
554 static inline unsigned int div_up(unsigned int a, unsigned int b)
555 {
556         unsigned int r;
557         unsigned int q;
558         if (b == 0)
559                 return UINT_MAX;
560         q = div32(a, b, &r);
561         if (r)
562                 ++q;
563         return q;
564 }
565
566 static inline unsigned int mul(unsigned int a, unsigned int b)
567 {
568         if (a == 0)
569                 return 0;
570         if (div_down(UINT_MAX, a) < b)
571                 return UINT_MAX;
572         return a * b;
573 }
574
575 static inline unsigned int muldiv32(unsigned int a, unsigned int b,
576                                     unsigned int c, unsigned int *r)
577 {
578         u_int64_t n = (u_int64_t) a * b;
579         if (c == 0) {
580                 snd_BUG_ON(!n);
581                 *r = 0;
582                 return UINT_MAX;
583         }
584         n = div_u64_rem(n, c, r);
585         if (n >= UINT_MAX) {
586                 *r = 0;
587                 return UINT_MAX;
588         }
589         return n;
590 }
591
592 /**
593  * snd_interval_refine - refine the interval value of configurator
594  * @i: the interval value to refine
595  * @v: the interval value to refer to
596  *
597  * Refines the interval value with the reference value.
598  * The interval is changed to the range satisfying both intervals.
599  * The interval status (min, max, integer, etc.) are evaluated.
600  *
601  * Return: Positive if the value is changed, zero if it's not changed, or a
602  * negative error code.
603  */
604 int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
605 {
606         int changed = 0;
607         if (snd_BUG_ON(snd_interval_empty(i)))
608                 return -EINVAL;
609         if (i->min < v->min) {
610                 i->min = v->min;
611                 i->openmin = v->openmin;
612                 changed = 1;
613         } else if (i->min == v->min && !i->openmin && v->openmin) {
614                 i->openmin = 1;
615                 changed = 1;
616         }
617         if (i->max > v->max) {
618                 i->max = v->max;
619                 i->openmax = v->openmax;
620                 changed = 1;
621         } else if (i->max == v->max && !i->openmax && v->openmax) {
622                 i->openmax = 1;
623                 changed = 1;
624         }
625         if (!i->integer && v->integer) {
626                 i->integer = 1;
627                 changed = 1;
628         }
629         if (i->integer) {
630                 if (i->openmin) {
631                         i->min++;
632                         i->openmin = 0;
633                 }
634                 if (i->openmax) {
635                         i->max--;
636                         i->openmax = 0;
637                 }
638         } else if (!i->openmin && !i->openmax && i->min == i->max)
639                 i->integer = 1;
640         if (snd_interval_checkempty(i)) {
641                 snd_interval_none(i);
642                 return -EINVAL;
643         }
644         return changed;
645 }
646
647 EXPORT_SYMBOL(snd_interval_refine);
648
649 static int snd_interval_refine_first(struct snd_interval *i)
650 {
651         if (snd_BUG_ON(snd_interval_empty(i)))
652                 return -EINVAL;
653         if (snd_interval_single(i))
654                 return 0;
655         i->max = i->min;
656         i->openmax = i->openmin;
657         if (i->openmax)
658                 i->max++;
659         return 1;
660 }
661
662 static int snd_interval_refine_last(struct snd_interval *i)
663 {
664         if (snd_BUG_ON(snd_interval_empty(i)))
665                 return -EINVAL;
666         if (snd_interval_single(i))
667                 return 0;
668         i->min = i->max;
669         i->openmin = i->openmax;
670         if (i->openmin)
671                 i->min--;
672         return 1;
673 }
674
675 void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
676 {
677         if (a->empty || b->empty) {
678                 snd_interval_none(c);
679                 return;
680         }
681         c->empty = 0;
682         c->min = mul(a->min, b->min);
683         c->openmin = (a->openmin || b->openmin);
684         c->max = mul(a->max,  b->max);
685         c->openmax = (a->openmax || b->openmax);
686         c->integer = (a->integer && b->integer);
687 }
688
689 /**
690  * snd_interval_div - refine the interval value with division
691  * @a: dividend
692  * @b: divisor
693  * @c: quotient
694  *
695  * c = a / b
696  *
697  * Returns non-zero if the value is changed, zero if not changed.
698  */
699 void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
700 {
701         unsigned int r;
702         if (a->empty || b->empty) {
703                 snd_interval_none(c);
704                 return;
705         }
706         c->empty = 0;
707         c->min = div32(a->min, b->max, &r);
708         c->openmin = (r || a->openmin || b->openmax);
709         if (b->min > 0) {
710                 c->max = div32(a->max, b->min, &r);
711                 if (r) {
712                         c->max++;
713                         c->openmax = 1;
714                 } else
715                         c->openmax = (a->openmax || b->openmin);
716         } else {
717                 c->max = UINT_MAX;
718                 c->openmax = 0;
719         }
720         c->integer = 0;
721 }
722
723 /**
724  * snd_interval_muldivk - refine the interval value
725  * @a: dividend 1
726  * @b: dividend 2
727  * @k: divisor (as integer)
728  * @c: result
729   *
730  * c = a * b / k
731  *
732  * Returns non-zero if the value is changed, zero if not changed.
733  */
734 void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
735                       unsigned int k, struct snd_interval *c)
736 {
737         unsigned int r;
738         if (a->empty || b->empty) {
739                 snd_interval_none(c);
740                 return;
741         }
742         c->empty = 0;
743         c->min = muldiv32(a->min, b->min, k, &r);
744         c->openmin = (r || a->openmin || b->openmin);
745         c->max = muldiv32(a->max, b->max, k, &r);
746         if (r) {
747                 c->max++;
748                 c->openmax = 1;
749         } else
750                 c->openmax = (a->openmax || b->openmax);
751         c->integer = 0;
752 }
753
754 /**
755  * snd_interval_mulkdiv - refine the interval value
756  * @a: dividend 1
757  * @k: dividend 2 (as integer)
758  * @b: divisor
759  * @c: result
760  *
761  * c = a * k / b
762  *
763  * Returns non-zero if the value is changed, zero if not changed.
764  */
765 void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
766                       const struct snd_interval *b, struct snd_interval *c)
767 {
768         unsigned int r;
769         if (a->empty || b->empty) {
770                 snd_interval_none(c);
771                 return;
772         }
773         c->empty = 0;
774         c->min = muldiv32(a->min, k, b->max, &r);
775         c->openmin = (r || a->openmin || b->openmax);
776         if (b->min > 0) {
777                 c->max = muldiv32(a->max, k, b->min, &r);
778                 if (r) {
779                         c->max++;
780                         c->openmax = 1;
781                 } else
782                         c->openmax = (a->openmax || b->openmin);
783         } else {
784                 c->max = UINT_MAX;
785                 c->openmax = 0;
786         }
787         c->integer = 0;
788 }
789
790 /* ---- */
791
792
793 /**
794  * snd_interval_ratnum - refine the interval value
795  * @i: interval to refine
796  * @rats_count: number of ratnum_t 
797  * @rats: ratnum_t array
798  * @nump: pointer to store the resultant numerator
799  * @denp: pointer to store the resultant denominator
800  *
801  * Return: Positive if the value is changed, zero if it's not changed, or a
802  * negative error code.
803  */
804 int snd_interval_ratnum(struct snd_interval *i,
805                         unsigned int rats_count, const struct snd_ratnum *rats,
806                         unsigned int *nump, unsigned int *denp)
807 {
808         unsigned int best_num, best_den;
809         int best_diff;
810         unsigned int k;
811         struct snd_interval t;
812         int err;
813         unsigned int result_num, result_den;
814         int result_diff;
815
816         best_num = best_den = best_diff = 0;
817         for (k = 0; k < rats_count; ++k) {
818                 unsigned int num = rats[k].num;
819                 unsigned int den;
820                 unsigned int q = i->min;
821                 int diff;
822                 if (q == 0)
823                         q = 1;
824                 den = div_up(num, q);
825                 if (den < rats[k].den_min)
826                         continue;
827                 if (den > rats[k].den_max)
828                         den = rats[k].den_max;
829                 else {
830                         unsigned int r;
831                         r = (den - rats[k].den_min) % rats[k].den_step;
832                         if (r != 0)
833                                 den -= r;
834                 }
835                 diff = num - q * den;
836                 if (diff < 0)
837                         diff = -diff;
838                 if (best_num == 0 ||
839                     diff * best_den < best_diff * den) {
840                         best_diff = diff;
841                         best_den = den;
842                         best_num = num;
843                 }
844         }
845         if (best_den == 0) {
846                 i->empty = 1;
847                 return -EINVAL;
848         }
849         t.min = div_down(best_num, best_den);
850         t.openmin = !!(best_num % best_den);
851         
852         result_num = best_num;
853         result_diff = best_diff;
854         result_den = best_den;
855         best_num = best_den = best_diff = 0;
856         for (k = 0; k < rats_count; ++k) {
857                 unsigned int num = rats[k].num;
858                 unsigned int den;
859                 unsigned int q = i->max;
860                 int diff;
861                 if (q == 0) {
862                         i->empty = 1;
863                         return -EINVAL;
864                 }
865                 den = div_down(num, q);
866                 if (den > rats[k].den_max)
867                         continue;
868                 if (den < rats[k].den_min)
869                         den = rats[k].den_min;
870                 else {
871                         unsigned int r;
872                         r = (den - rats[k].den_min) % rats[k].den_step;
873                         if (r != 0)
874                                 den += rats[k].den_step - r;
875                 }
876                 diff = q * den - num;
877                 if (diff < 0)
878                         diff = -diff;
879                 if (best_num == 0 ||
880                     diff * best_den < best_diff * den) {
881                         best_diff = diff;
882                         best_den = den;
883                         best_num = num;
884                 }
885         }
886         if (best_den == 0) {
887                 i->empty = 1;
888                 return -EINVAL;
889         }
890         t.max = div_up(best_num, best_den);
891         t.openmax = !!(best_num % best_den);
892         t.integer = 0;
893         err = snd_interval_refine(i, &t);
894         if (err < 0)
895                 return err;
896
897         if (snd_interval_single(i)) {
898                 if (best_diff * result_den < result_diff * best_den) {
899                         result_num = best_num;
900                         result_den = best_den;
901                 }
902                 if (nump)
903                         *nump = result_num;
904                 if (denp)
905                         *denp = result_den;
906         }
907         return err;
908 }
909
910 EXPORT_SYMBOL(snd_interval_ratnum);
911
912 /**
913  * snd_interval_ratden - refine the interval value
914  * @i: interval to refine
915  * @rats_count: number of struct ratden
916  * @rats: struct ratden array
917  * @nump: pointer to store the resultant numerator
918  * @denp: pointer to store the resultant denominator
919  *
920  * Return: Positive if the value is changed, zero if it's not changed, or a
921  * negative error code.
922  */
923 static int snd_interval_ratden(struct snd_interval *i,
924                                unsigned int rats_count,
925                                const struct snd_ratden *rats,
926                                unsigned int *nump, unsigned int *denp)
927 {
928         unsigned int best_num, best_diff, best_den;
929         unsigned int k;
930         struct snd_interval t;
931         int err;
932
933         best_num = best_den = best_diff = 0;
934         for (k = 0; k < rats_count; ++k) {
935                 unsigned int num;
936                 unsigned int den = rats[k].den;
937                 unsigned int q = i->min;
938                 int diff;
939                 num = mul(q, den);
940                 if (num > rats[k].num_max)
941                         continue;
942                 if (num < rats[k].num_min)
943                         num = rats[k].num_max;
944                 else {
945                         unsigned int r;
946                         r = (num - rats[k].num_min) % rats[k].num_step;
947                         if (r != 0)
948                                 num += rats[k].num_step - r;
949                 }
950                 diff = num - q * den;
951                 if (best_num == 0 ||
952                     diff * best_den < best_diff * den) {
953                         best_diff = diff;
954                         best_den = den;
955                         best_num = num;
956                 }
957         }
958         if (best_den == 0) {
959                 i->empty = 1;
960                 return -EINVAL;
961         }
962         t.min = div_down(best_num, best_den);
963         t.openmin = !!(best_num % best_den);
964         
965         best_num = best_den = best_diff = 0;
966         for (k = 0; k < rats_count; ++k) {
967                 unsigned int num;
968                 unsigned int den = rats[k].den;
969                 unsigned int q = i->max;
970                 int diff;
971                 num = mul(q, den);
972                 if (num < rats[k].num_min)
973                         continue;
974                 if (num > rats[k].num_max)
975                         num = rats[k].num_max;
976                 else {
977                         unsigned int r;
978                         r = (num - rats[k].num_min) % rats[k].num_step;
979                         if (r != 0)
980                                 num -= r;
981                 }
982                 diff = q * den - num;
983                 if (best_num == 0 ||
984                     diff * best_den < best_diff * den) {
985                         best_diff = diff;
986                         best_den = den;
987                         best_num = num;
988                 }
989         }
990         if (best_den == 0) {
991                 i->empty = 1;
992                 return -EINVAL;
993         }
994         t.max = div_up(best_num, best_den);
995         t.openmax = !!(best_num % best_den);
996         t.integer = 0;
997         err = snd_interval_refine(i, &t);
998         if (err < 0)
999                 return err;
1000
1001         if (snd_interval_single(i)) {
1002                 if (nump)
1003                         *nump = best_num;
1004                 if (denp)
1005                         *denp = best_den;
1006         }
1007         return err;
1008 }
1009
1010 /**
1011  * snd_interval_list - refine the interval value from the list
1012  * @i: the interval value to refine
1013  * @count: the number of elements in the list
1014  * @list: the value list
1015  * @mask: the bit-mask to evaluate
1016  *
1017  * Refines the interval value from the list.
1018  * When mask is non-zero, only the elements corresponding to bit 1 are
1019  * evaluated.
1020  *
1021  * Return: Positive if the value is changed, zero if it's not changed, or a
1022  * negative error code.
1023  */
1024 int snd_interval_list(struct snd_interval *i, unsigned int count,
1025                       const unsigned int *list, unsigned int mask)
1026 {
1027         unsigned int k;
1028         struct snd_interval list_range;
1029
1030         if (!count) {
1031                 i->empty = 1;
1032                 return -EINVAL;
1033         }
1034         snd_interval_any(&list_range);
1035         list_range.min = UINT_MAX;
1036         list_range.max = 0;
1037         for (k = 0; k < count; k++) {
1038                 if (mask && !(mask & (1 << k)))
1039                         continue;
1040                 if (!snd_interval_test(i, list[k]))
1041                         continue;
1042                 list_range.min = min(list_range.min, list[k]);
1043                 list_range.max = max(list_range.max, list[k]);
1044         }
1045         return snd_interval_refine(i, &list_range);
1046 }
1047
1048 EXPORT_SYMBOL(snd_interval_list);
1049
1050 /**
1051  * snd_interval_ranges - refine the interval value from the list of ranges
1052  * @i: the interval value to refine
1053  * @count: the number of elements in the list of ranges
1054  * @ranges: the ranges list
1055  * @mask: the bit-mask to evaluate
1056  *
1057  * Refines the interval value from the list of ranges.
1058  * When mask is non-zero, only the elements corresponding to bit 1 are
1059  * evaluated.
1060  *
1061  * Return: Positive if the value is changed, zero if it's not changed, or a
1062  * negative error code.
1063  */
1064 int snd_interval_ranges(struct snd_interval *i, unsigned int count,
1065                         const struct snd_interval *ranges, unsigned int mask)
1066 {
1067         unsigned int k;
1068         struct snd_interval range_union;
1069         struct snd_interval range;
1070
1071         if (!count) {
1072                 snd_interval_none(i);
1073                 return -EINVAL;
1074         }
1075         snd_interval_any(&range_union);
1076         range_union.min = UINT_MAX;
1077         range_union.max = 0;
1078         for (k = 0; k < count; k++) {
1079                 if (mask && !(mask & (1 << k)))
1080                         continue;
1081                 snd_interval_copy(&range, &ranges[k]);
1082                 if (snd_interval_refine(&range, i) < 0)
1083                         continue;
1084                 if (snd_interval_empty(&range))
1085                         continue;
1086
1087                 if (range.min < range_union.min) {
1088                         range_union.min = range.min;
1089                         range_union.openmin = 1;
1090                 }
1091                 if (range.min == range_union.min && !range.openmin)
1092                         range_union.openmin = 0;
1093                 if (range.max > range_union.max) {
1094                         range_union.max = range.max;
1095                         range_union.openmax = 1;
1096                 }
1097                 if (range.max == range_union.max && !range.openmax)
1098                         range_union.openmax = 0;
1099         }
1100         return snd_interval_refine(i, &range_union);
1101 }
1102 EXPORT_SYMBOL(snd_interval_ranges);
1103
1104 static int snd_interval_step(struct snd_interval *i, unsigned int step)
1105 {
1106         unsigned int n;
1107         int changed = 0;
1108         n = i->min % step;
1109         if (n != 0 || i->openmin) {
1110                 i->min += step - n;
1111                 i->openmin = 0;
1112                 changed = 1;
1113         }
1114         n = i->max % step;
1115         if (n != 0 || i->openmax) {
1116                 i->max -= n;
1117                 i->openmax = 0;
1118                 changed = 1;
1119         }
1120         if (snd_interval_checkempty(i)) {
1121                 i->empty = 1;
1122                 return -EINVAL;
1123         }
1124         return changed;
1125 }
1126
1127 /* Info constraints helpers */
1128
1129 /**
1130  * snd_pcm_hw_rule_add - add the hw-constraint rule
1131  * @runtime: the pcm runtime instance
1132  * @cond: condition bits
1133  * @var: the variable to evaluate
1134  * @func: the evaluation function
1135  * @private: the private data pointer passed to function
1136  * @dep: the dependent variables
1137  *
1138  * Return: Zero if successful, or a negative error code on failure.
1139  */
1140 int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
1141                         int var,
1142                         snd_pcm_hw_rule_func_t func, void *private,
1143                         int dep, ...)
1144 {
1145         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1146         struct snd_pcm_hw_rule *c;
1147         unsigned int k;
1148         va_list args;
1149         va_start(args, dep);
1150         if (constrs->rules_num >= constrs->rules_all) {
1151                 struct snd_pcm_hw_rule *new;
1152                 unsigned int new_rules = constrs->rules_all + 16;
1153                 new = kcalloc(new_rules, sizeof(*c), GFP_KERNEL);
1154                 if (!new) {
1155                         va_end(args);
1156                         return -ENOMEM;
1157                 }
1158                 if (constrs->rules) {
1159                         memcpy(new, constrs->rules,
1160                                constrs->rules_num * sizeof(*c));
1161                         kfree(constrs->rules);
1162                 }
1163                 constrs->rules = new;
1164                 constrs->rules_all = new_rules;
1165         }
1166         c = &constrs->rules[constrs->rules_num];
1167         c->cond = cond;
1168         c->func = func;
1169         c->var = var;
1170         c->private = private;
1171         k = 0;
1172         while (1) {
1173                 if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps))) {
1174                         va_end(args);
1175                         return -EINVAL;
1176                 }
1177                 c->deps[k++] = dep;
1178                 if (dep < 0)
1179                         break;
1180                 dep = va_arg(args, int);
1181         }
1182         constrs->rules_num++;
1183         va_end(args);
1184         return 0;
1185 }
1186
1187 EXPORT_SYMBOL(snd_pcm_hw_rule_add);
1188
1189 /**
1190  * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
1191  * @runtime: PCM runtime instance
1192  * @var: hw_params variable to apply the mask
1193  * @mask: the bitmap mask
1194  *
1195  * Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
1196  *
1197  * Return: Zero if successful, or a negative error code on failure.
1198  */
1199 int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1200                                u_int32_t mask)
1201 {
1202         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1203         struct snd_mask *maskp = constrs_mask(constrs, var);
1204         *maskp->bits &= mask;
1205         memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
1206         if (*maskp->bits == 0)
1207                 return -EINVAL;
1208         return 0;
1209 }
1210
1211 /**
1212  * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
1213  * @runtime: PCM runtime instance
1214  * @var: hw_params variable to apply the mask
1215  * @mask: the 64bit bitmap mask
1216  *
1217  * Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
1218  *
1219  * Return: Zero if successful, or a negative error code on failure.
1220  */
1221 int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1222                                  u_int64_t mask)
1223 {
1224         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1225         struct snd_mask *maskp = constrs_mask(constrs, var);
1226         maskp->bits[0] &= (u_int32_t)mask;
1227         maskp->bits[1] &= (u_int32_t)(mask >> 32);
1228         memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
1229         if (! maskp->bits[0] && ! maskp->bits[1])
1230                 return -EINVAL;
1231         return 0;
1232 }
1233 EXPORT_SYMBOL(snd_pcm_hw_constraint_mask64);
1234
1235 /**
1236  * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
1237  * @runtime: PCM runtime instance
1238  * @var: hw_params variable to apply the integer constraint
1239  *
1240  * Apply the constraint of integer to an interval parameter.
1241  *
1242  * Return: Positive if the value is changed, zero if it's not changed, or a
1243  * negative error code.
1244  */
1245 int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
1246 {
1247         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1248         return snd_interval_setinteger(constrs_interval(constrs, var));
1249 }
1250
1251 EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
1252
1253 /**
1254  * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
1255  * @runtime: PCM runtime instance
1256  * @var: hw_params variable to apply the range
1257  * @min: the minimal value
1258  * @max: the maximal value
1259  * 
1260  * Apply the min/max range constraint to an interval parameter.
1261  *
1262  * Return: Positive if the value is changed, zero if it's not changed, or a
1263  * negative error code.
1264  */
1265 int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1266                                  unsigned int min, unsigned int max)
1267 {
1268         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1269         struct snd_interval t;
1270         t.min = min;
1271         t.max = max;
1272         t.openmin = t.openmax = 0;
1273         t.integer = 0;
1274         return snd_interval_refine(constrs_interval(constrs, var), &t);
1275 }
1276
1277 EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
1278
1279 static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
1280                                 struct snd_pcm_hw_rule *rule)
1281 {
1282         struct snd_pcm_hw_constraint_list *list = rule->private;
1283         return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
1284 }               
1285
1286
1287 /**
1288  * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
1289  * @runtime: PCM runtime instance
1290  * @cond: condition bits
1291  * @var: hw_params variable to apply the list constraint
1292  * @l: list
1293  * 
1294  * Apply the list of constraints to an interval parameter.
1295  *
1296  * Return: Zero if successful, or a negative error code on failure.
1297  */
1298 int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
1299                                unsigned int cond,
1300                                snd_pcm_hw_param_t var,
1301                                const struct snd_pcm_hw_constraint_list *l)
1302 {
1303         return snd_pcm_hw_rule_add(runtime, cond, var,
1304                                    snd_pcm_hw_rule_list, (void *)l,
1305                                    var, -1);
1306 }
1307
1308 EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
1309
1310 static int snd_pcm_hw_rule_ranges(struct snd_pcm_hw_params *params,
1311                                   struct snd_pcm_hw_rule *rule)
1312 {
1313         struct snd_pcm_hw_constraint_ranges *r = rule->private;
1314         return snd_interval_ranges(hw_param_interval(params, rule->var),
1315                                    r->count, r->ranges, r->mask);
1316 }
1317
1318
1319 /**
1320  * snd_pcm_hw_constraint_ranges - apply list of range constraints to a parameter
1321  * @runtime: PCM runtime instance
1322  * @cond: condition bits
1323  * @var: hw_params variable to apply the list of range constraints
1324  * @r: ranges
1325  *
1326  * Apply the list of range constraints to an interval parameter.
1327  *
1328  * Return: Zero if successful, or a negative error code on failure.
1329  */
1330 int snd_pcm_hw_constraint_ranges(struct snd_pcm_runtime *runtime,
1331                                  unsigned int cond,
1332                                  snd_pcm_hw_param_t var,
1333                                  const struct snd_pcm_hw_constraint_ranges *r)
1334 {
1335         return snd_pcm_hw_rule_add(runtime, cond, var,
1336                                    snd_pcm_hw_rule_ranges, (void *)r,
1337                                    var, -1);
1338 }
1339 EXPORT_SYMBOL(snd_pcm_hw_constraint_ranges);
1340
1341 static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
1342                                    struct snd_pcm_hw_rule *rule)
1343 {
1344         const struct snd_pcm_hw_constraint_ratnums *r = rule->private;
1345         unsigned int num = 0, den = 0;
1346         int err;
1347         err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1348                                   r->nrats, r->rats, &num, &den);
1349         if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1350                 params->rate_num = num;
1351                 params->rate_den = den;
1352         }
1353         return err;
1354 }
1355
1356 /**
1357  * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
1358  * @runtime: PCM runtime instance
1359  * @cond: condition bits
1360  * @var: hw_params variable to apply the ratnums constraint
1361  * @r: struct snd_ratnums constriants
1362  *
1363  * Return: Zero if successful, or a negative error code on failure.
1364  */
1365 int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime, 
1366                                   unsigned int cond,
1367                                   snd_pcm_hw_param_t var,
1368                                   const struct snd_pcm_hw_constraint_ratnums *r)
1369 {
1370         return snd_pcm_hw_rule_add(runtime, cond, var,
1371                                    snd_pcm_hw_rule_ratnums, (void *)r,
1372                                    var, -1);
1373 }
1374
1375 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
1376
1377 static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
1378                                    struct snd_pcm_hw_rule *rule)
1379 {
1380         const struct snd_pcm_hw_constraint_ratdens *r = rule->private;
1381         unsigned int num = 0, den = 0;
1382         int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1383                                   r->nrats, r->rats, &num, &den);
1384         if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1385                 params->rate_num = num;
1386                 params->rate_den = den;
1387         }
1388         return err;
1389 }
1390
1391 /**
1392  * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
1393  * @runtime: PCM runtime instance
1394  * @cond: condition bits
1395  * @var: hw_params variable to apply the ratdens constraint
1396  * @r: struct snd_ratdens constriants
1397  *
1398  * Return: Zero if successful, or a negative error code on failure.
1399  */
1400 int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime, 
1401                                   unsigned int cond,
1402                                   snd_pcm_hw_param_t var,
1403                                   const struct snd_pcm_hw_constraint_ratdens *r)
1404 {
1405         return snd_pcm_hw_rule_add(runtime, cond, var,
1406                                    snd_pcm_hw_rule_ratdens, (void *)r,
1407                                    var, -1);
1408 }
1409
1410 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
1411
1412 static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
1413                                   struct snd_pcm_hw_rule *rule)
1414 {
1415         unsigned int l = (unsigned long) rule->private;
1416         int width = l & 0xffff;
1417         unsigned int msbits = l >> 16;
1418         struct snd_interval *i = hw_param_interval(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1419
1420         if (!snd_interval_single(i))
1421                 return 0;
1422
1423         if ((snd_interval_value(i) == width) ||
1424             (width == 0 && snd_interval_value(i) > msbits))
1425                 params->msbits = min_not_zero(params->msbits, msbits);
1426
1427         return 0;
1428 }
1429
1430 /**
1431  * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
1432  * @runtime: PCM runtime instance
1433  * @cond: condition bits
1434  * @width: sample bits width
1435  * @msbits: msbits width
1436  *
1437  * This constraint will set the number of most significant bits (msbits) if a
1438  * sample format with the specified width has been select. If width is set to 0
1439  * the msbits will be set for any sample format with a width larger than the
1440  * specified msbits.
1441  *
1442  * Return: Zero if successful, or a negative error code on failure.
1443  */
1444 int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime, 
1445                                  unsigned int cond,
1446                                  unsigned int width,
1447                                  unsigned int msbits)
1448 {
1449         unsigned long l = (msbits << 16) | width;
1450         return snd_pcm_hw_rule_add(runtime, cond, -1,
1451                                     snd_pcm_hw_rule_msbits,
1452                                     (void*) l,
1453                                     SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1454 }
1455
1456 EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
1457
1458 static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
1459                                 struct snd_pcm_hw_rule *rule)
1460 {
1461         unsigned long step = (unsigned long) rule->private;
1462         return snd_interval_step(hw_param_interval(params, rule->var), step);
1463 }
1464
1465 /**
1466  * snd_pcm_hw_constraint_step - add a hw constraint step rule
1467  * @runtime: PCM runtime instance
1468  * @cond: condition bits
1469  * @var: hw_params variable to apply the step constraint
1470  * @step: step size
1471  *
1472  * Return: Zero if successful, or a negative error code on failure.
1473  */
1474 int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
1475                                unsigned int cond,
1476                                snd_pcm_hw_param_t var,
1477                                unsigned long step)
1478 {
1479         return snd_pcm_hw_rule_add(runtime, cond, var, 
1480                                    snd_pcm_hw_rule_step, (void *) step,
1481                                    var, -1);
1482 }
1483
1484 EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
1485
1486 static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
1487 {
1488         static unsigned int pow2_sizes[] = {
1489                 1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1490                 1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1491                 1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1492                 1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1493         };
1494         return snd_interval_list(hw_param_interval(params, rule->var),
1495                                  ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1496 }               
1497
1498 /**
1499  * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
1500  * @runtime: PCM runtime instance
1501  * @cond: condition bits
1502  * @var: hw_params variable to apply the power-of-2 constraint
1503  *
1504  * Return: Zero if successful, or a negative error code on failure.
1505  */
1506 int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
1507                                unsigned int cond,
1508                                snd_pcm_hw_param_t var)
1509 {
1510         return snd_pcm_hw_rule_add(runtime, cond, var, 
1511                                    snd_pcm_hw_rule_pow2, NULL,
1512                                    var, -1);
1513 }
1514
1515 EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
1516
1517 static int snd_pcm_hw_rule_noresample_func(struct snd_pcm_hw_params *params,
1518                                            struct snd_pcm_hw_rule *rule)
1519 {
1520         unsigned int base_rate = (unsigned int)(uintptr_t)rule->private;
1521         struct snd_interval *rate;
1522
1523         rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
1524         return snd_interval_list(rate, 1, &base_rate, 0);
1525 }
1526
1527 /**
1528  * snd_pcm_hw_rule_noresample - add a rule to allow disabling hw resampling
1529  * @runtime: PCM runtime instance
1530  * @base_rate: the rate at which the hardware does not resample
1531  *
1532  * Return: Zero if successful, or a negative error code on failure.
1533  */
1534 int snd_pcm_hw_rule_noresample(struct snd_pcm_runtime *runtime,
1535                                unsigned int base_rate)
1536 {
1537         return snd_pcm_hw_rule_add(runtime, SNDRV_PCM_HW_PARAMS_NORESAMPLE,
1538                                    SNDRV_PCM_HW_PARAM_RATE,
1539                                    snd_pcm_hw_rule_noresample_func,
1540                                    (void *)(uintptr_t)base_rate,
1541                                    SNDRV_PCM_HW_PARAM_RATE, -1);
1542 }
1543 EXPORT_SYMBOL(snd_pcm_hw_rule_noresample);
1544
1545 static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
1546                                   snd_pcm_hw_param_t var)
1547 {
1548         if (hw_is_mask(var)) {
1549                 snd_mask_any(hw_param_mask(params, var));
1550                 params->cmask |= 1 << var;
1551                 params->rmask |= 1 << var;
1552                 return;
1553         }
1554         if (hw_is_interval(var)) {
1555                 snd_interval_any(hw_param_interval(params, var));
1556                 params->cmask |= 1 << var;
1557                 params->rmask |= 1 << var;
1558                 return;
1559         }
1560         snd_BUG();
1561 }
1562
1563 void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
1564 {
1565         unsigned int k;
1566         memset(params, 0, sizeof(*params));
1567         for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1568                 _snd_pcm_hw_param_any(params, k);
1569         for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1570                 _snd_pcm_hw_param_any(params, k);
1571         params->info = ~0U;
1572 }
1573
1574 EXPORT_SYMBOL(_snd_pcm_hw_params_any);
1575
1576 /**
1577  * snd_pcm_hw_param_value - return @params field @var value
1578  * @params: the hw_params instance
1579  * @var: parameter to retrieve
1580  * @dir: pointer to the direction (-1,0,1) or %NULL
1581  *
1582  * Return: The value for field @var if it's fixed in configuration space
1583  * defined by @params. -%EINVAL otherwise.
1584  */
1585 int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
1586                            snd_pcm_hw_param_t var, int *dir)
1587 {
1588         if (hw_is_mask(var)) {
1589                 const struct snd_mask *mask = hw_param_mask_c(params, var);
1590                 if (!snd_mask_single(mask))
1591                         return -EINVAL;
1592                 if (dir)
1593                         *dir = 0;
1594                 return snd_mask_value(mask);
1595         }
1596         if (hw_is_interval(var)) {
1597                 const struct snd_interval *i = hw_param_interval_c(params, var);
1598                 if (!snd_interval_single(i))
1599                         return -EINVAL;
1600                 if (dir)
1601                         *dir = i->openmin;
1602                 return snd_interval_value(i);
1603         }
1604         return -EINVAL;
1605 }
1606
1607 EXPORT_SYMBOL(snd_pcm_hw_param_value);
1608
1609 void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
1610                                 snd_pcm_hw_param_t var)
1611 {
1612         if (hw_is_mask(var)) {
1613                 snd_mask_none(hw_param_mask(params, var));
1614                 params->cmask |= 1 << var;
1615                 params->rmask |= 1 << var;
1616         } else if (hw_is_interval(var)) {
1617                 snd_interval_none(hw_param_interval(params, var));
1618                 params->cmask |= 1 << var;
1619                 params->rmask |= 1 << var;
1620         } else {
1621                 snd_BUG();
1622         }
1623 }
1624
1625 EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
1626
1627 static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
1628                                    snd_pcm_hw_param_t var)
1629 {
1630         int changed;
1631         if (hw_is_mask(var))
1632                 changed = snd_mask_refine_first(hw_param_mask(params, var));
1633         else if (hw_is_interval(var))
1634                 changed = snd_interval_refine_first(hw_param_interval(params, var));
1635         else
1636                 return -EINVAL;
1637         if (changed) {
1638                 params->cmask |= 1 << var;
1639                 params->rmask |= 1 << var;
1640         }
1641         return changed;
1642 }
1643
1644
1645 /**
1646  * snd_pcm_hw_param_first - refine config space and return minimum value
1647  * @pcm: PCM instance
1648  * @params: the hw_params instance
1649  * @var: parameter to retrieve
1650  * @dir: pointer to the direction (-1,0,1) or %NULL
1651  *
1652  * Inside configuration space defined by @params remove from @var all
1653  * values > minimum. Reduce configuration space accordingly.
1654  *
1655  * Return: The minimum, or a negative error code on failure.
1656  */
1657 int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm, 
1658                            struct snd_pcm_hw_params *params, 
1659                            snd_pcm_hw_param_t var, int *dir)
1660 {
1661         int changed = _snd_pcm_hw_param_first(params, var);
1662         if (changed < 0)
1663                 return changed;
1664         if (params->rmask) {
1665                 int err = snd_pcm_hw_refine(pcm, params);
1666                 if (snd_BUG_ON(err < 0))
1667                         return err;
1668         }
1669         return snd_pcm_hw_param_value(params, var, dir);
1670 }
1671
1672 EXPORT_SYMBOL(snd_pcm_hw_param_first);
1673
1674 static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
1675                                   snd_pcm_hw_param_t var)
1676 {
1677         int changed;
1678         if (hw_is_mask(var))
1679                 changed = snd_mask_refine_last(hw_param_mask(params, var));
1680         else if (hw_is_interval(var))
1681                 changed = snd_interval_refine_last(hw_param_interval(params, var));
1682         else
1683                 return -EINVAL;
1684         if (changed) {
1685                 params->cmask |= 1 << var;
1686                 params->rmask |= 1 << var;
1687         }
1688         return changed;
1689 }
1690
1691
1692 /**
1693  * snd_pcm_hw_param_last - refine config space and return maximum value
1694  * @pcm: PCM instance
1695  * @params: the hw_params instance
1696  * @var: parameter to retrieve
1697  * @dir: pointer to the direction (-1,0,1) or %NULL
1698  *
1699  * Inside configuration space defined by @params remove from @var all
1700  * values < maximum. Reduce configuration space accordingly.
1701  *
1702  * Return: The maximum, or a negative error code on failure.
1703  */
1704 int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm, 
1705                           struct snd_pcm_hw_params *params,
1706                           snd_pcm_hw_param_t var, int *dir)
1707 {
1708         int changed = _snd_pcm_hw_param_last(params, var);
1709         if (changed < 0)
1710                 return changed;
1711         if (params->rmask) {
1712                 int err = snd_pcm_hw_refine(pcm, params);
1713                 if (snd_BUG_ON(err < 0))
1714                         return err;
1715         }
1716         return snd_pcm_hw_param_value(params, var, dir);
1717 }
1718
1719 EXPORT_SYMBOL(snd_pcm_hw_param_last);
1720
1721 /**
1722  * snd_pcm_hw_param_choose - choose a configuration defined by @params
1723  * @pcm: PCM instance
1724  * @params: the hw_params instance
1725  *
1726  * Choose one configuration from configuration space defined by @params.
1727  * The configuration chosen is that obtained fixing in this order:
1728  * first access, first format, first subformat, min channels,
1729  * min rate, min period time, max buffer size, min tick time
1730  *
1731  * Return: Zero if successful, or a negative error code on failure.
1732  */
1733 int snd_pcm_hw_params_choose(struct snd_pcm_substream *pcm,
1734                              struct snd_pcm_hw_params *params)
1735 {
1736         static int vars[] = {
1737                 SNDRV_PCM_HW_PARAM_ACCESS,
1738                 SNDRV_PCM_HW_PARAM_FORMAT,
1739                 SNDRV_PCM_HW_PARAM_SUBFORMAT,
1740                 SNDRV_PCM_HW_PARAM_CHANNELS,
1741                 SNDRV_PCM_HW_PARAM_RATE,
1742                 SNDRV_PCM_HW_PARAM_PERIOD_TIME,
1743                 SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
1744                 SNDRV_PCM_HW_PARAM_TICK_TIME,
1745                 -1
1746         };
1747         int err, *v;
1748
1749         for (v = vars; *v != -1; v++) {
1750                 if (*v != SNDRV_PCM_HW_PARAM_BUFFER_SIZE)
1751                         err = snd_pcm_hw_param_first(pcm, params, *v, NULL);
1752                 else
1753                         err = snd_pcm_hw_param_last(pcm, params, *v, NULL);
1754                 if (snd_BUG_ON(err < 0))
1755                         return err;
1756         }
1757         return 0;
1758 }
1759
1760 static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
1761                                    void *arg)
1762 {
1763         struct snd_pcm_runtime *runtime = substream->runtime;
1764         unsigned long flags;
1765         snd_pcm_stream_lock_irqsave(substream, flags);
1766         if (snd_pcm_running(substream) &&
1767             snd_pcm_update_hw_ptr(substream) >= 0)
1768                 runtime->status->hw_ptr %= runtime->buffer_size;
1769         else {
1770                 runtime->status->hw_ptr = 0;
1771                 runtime->hw_ptr_wrap = 0;
1772         }
1773         snd_pcm_stream_unlock_irqrestore(substream, flags);
1774         return 0;
1775 }
1776
1777 static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
1778                                           void *arg)
1779 {
1780         struct snd_pcm_channel_info *info = arg;
1781         struct snd_pcm_runtime *runtime = substream->runtime;
1782         int width;
1783         if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1784                 info->offset = -1;
1785                 return 0;
1786         }
1787         width = snd_pcm_format_physical_width(runtime->format);
1788         if (width < 0)
1789                 return width;
1790         info->offset = 0;
1791         switch (runtime->access) {
1792         case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1793         case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1794                 info->first = info->channel * width;
1795                 info->step = runtime->channels * width;
1796                 break;
1797         case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1798         case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1799         {
1800                 size_t size = runtime->dma_bytes / runtime->channels;
1801                 info->first = info->channel * size * 8;
1802                 info->step = width;
1803                 break;
1804         }
1805         default:
1806                 snd_BUG();
1807                 break;
1808         }
1809         return 0;
1810 }
1811
1812 static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream,
1813                                        void *arg)
1814 {
1815         struct snd_pcm_hw_params *params = arg;
1816         snd_pcm_format_t format;
1817         int channels;
1818         ssize_t frame_size;
1819
1820         params->fifo_size = substream->runtime->hw.fifo_size;
1821         if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) {
1822                 format = params_format(params);
1823                 channels = params_channels(params);
1824                 frame_size = snd_pcm_format_size(format, channels);
1825                 if (frame_size > 0)
1826                         params->fifo_size /= (unsigned)frame_size;
1827         }
1828         return 0;
1829 }
1830
1831 /**
1832  * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1833  * @substream: the pcm substream instance
1834  * @cmd: ioctl command
1835  * @arg: ioctl argument
1836  *
1837  * Processes the generic ioctl commands for PCM.
1838  * Can be passed as the ioctl callback for PCM ops.
1839  *
1840  * Return: Zero if successful, or a negative error code on failure.
1841  */
1842 int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
1843                       unsigned int cmd, void *arg)
1844 {
1845         switch (cmd) {
1846         case SNDRV_PCM_IOCTL1_INFO:
1847                 return 0;
1848         case SNDRV_PCM_IOCTL1_RESET:
1849                 return snd_pcm_lib_ioctl_reset(substream, arg);
1850         case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1851                 return snd_pcm_lib_ioctl_channel_info(substream, arg);
1852         case SNDRV_PCM_IOCTL1_FIFO_SIZE:
1853                 return snd_pcm_lib_ioctl_fifo_size(substream, arg);
1854         }
1855         return -ENXIO;
1856 }
1857
1858 EXPORT_SYMBOL(snd_pcm_lib_ioctl);
1859
1860 /**
1861  * snd_pcm_period_elapsed - update the pcm status for the next period
1862  * @substream: the pcm substream instance
1863  *
1864  * This function is called from the interrupt handler when the
1865  * PCM has processed the period size.  It will update the current
1866  * pointer, wake up sleepers, etc.
1867  *
1868  * Even if more than one periods have elapsed since the last call, you
1869  * have to call this only once.
1870  */
1871 void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
1872 {
1873         struct snd_pcm_runtime *runtime;
1874         unsigned long flags;
1875
1876         if (PCM_RUNTIME_CHECK(substream))
1877                 return;
1878         runtime = substream->runtime;
1879
1880         snd_pcm_stream_lock_irqsave(substream, flags);
1881         if (!snd_pcm_running(substream) ||
1882             snd_pcm_update_hw_ptr0(substream, 1) < 0)
1883                 goto _end;
1884
1885 #ifdef CONFIG_SND_PCM_TIMER
1886         if (substream->timer_running)
1887                 snd_timer_interrupt(substream->timer, 1);
1888 #endif
1889  _end:
1890         kill_fasync(&runtime->fasync, SIGIO, POLL_IN);
1891         snd_pcm_stream_unlock_irqrestore(substream, flags);
1892 }
1893
1894 EXPORT_SYMBOL(snd_pcm_period_elapsed);
1895
1896 /*
1897  * Wait until avail_min data becomes available
1898  * Returns a negative error code if any error occurs during operation.
1899  * The available space is stored on availp.  When err = 0 and avail = 0
1900  * on the capture stream, it indicates the stream is in DRAINING state.
1901  */
1902 static int wait_for_avail(struct snd_pcm_substream *substream,
1903                               snd_pcm_uframes_t *availp)
1904 {
1905         struct snd_pcm_runtime *runtime = substream->runtime;
1906         int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
1907         wait_queue_entry_t wait;
1908         int err = 0;
1909         snd_pcm_uframes_t avail = 0;
1910         long wait_time, tout;
1911
1912         init_waitqueue_entry(&wait, current);
1913         set_current_state(TASK_INTERRUPTIBLE);
1914         add_wait_queue(&runtime->tsleep, &wait);
1915
1916         if (runtime->no_period_wakeup)
1917                 wait_time = MAX_SCHEDULE_TIMEOUT;
1918         else {
1919                 wait_time = 10;
1920                 if (runtime->rate) {
1921                         long t = runtime->period_size * 2 / runtime->rate;
1922                         wait_time = max(t, wait_time);
1923                 }
1924                 wait_time = msecs_to_jiffies(wait_time * 1000);
1925         }
1926
1927         for (;;) {
1928                 if (signal_pending(current)) {
1929                         err = -ERESTARTSYS;
1930                         break;
1931                 }
1932
1933                 /*
1934                  * We need to check if space became available already
1935                  * (and thus the wakeup happened already) first to close
1936                  * the race of space already having become available.
1937                  * This check must happen after been added to the waitqueue
1938                  * and having current state be INTERRUPTIBLE.
1939                  */
1940                 if (is_playback)
1941                         avail = snd_pcm_playback_avail(runtime);
1942                 else
1943                         avail = snd_pcm_capture_avail(runtime);
1944                 if (avail >= runtime->twake)
1945                         break;
1946                 snd_pcm_stream_unlock_irq(substream);
1947
1948                 tout = schedule_timeout(wait_time);
1949
1950                 snd_pcm_stream_lock_irq(substream);
1951                 set_current_state(TASK_INTERRUPTIBLE);
1952                 switch (runtime->status->state) {
1953                 case SNDRV_PCM_STATE_SUSPENDED:
1954                         err = -ESTRPIPE;
1955                         goto _endloop;
1956                 case SNDRV_PCM_STATE_XRUN:
1957                         err = -EPIPE;
1958                         goto _endloop;
1959                 case SNDRV_PCM_STATE_DRAINING:
1960                         if (is_playback)
1961                                 err = -EPIPE;
1962                         else 
1963                                 avail = 0; /* indicate draining */
1964                         goto _endloop;
1965                 case SNDRV_PCM_STATE_OPEN:
1966                 case SNDRV_PCM_STATE_SETUP:
1967                 case SNDRV_PCM_STATE_DISCONNECTED:
1968                         err = -EBADFD;
1969                         goto _endloop;
1970                 case SNDRV_PCM_STATE_PAUSED:
1971                         continue;
1972                 }
1973                 if (!tout) {
1974                         pcm_dbg(substream->pcm,
1975                                 "%s write error (DMA or IRQ trouble?)\n",
1976                                 is_playback ? "playback" : "capture");
1977                         err = -EIO;
1978                         break;
1979                 }
1980         }
1981  _endloop:
1982         set_current_state(TASK_RUNNING);
1983         remove_wait_queue(&runtime->tsleep, &wait);
1984         *availp = avail;
1985         return err;
1986 }
1987         
1988 static int snd_pcm_lib_write_transfer(struct snd_pcm_substream *substream,
1989                                       unsigned int hwoff,
1990                                       unsigned long data, unsigned int off,
1991                                       snd_pcm_uframes_t frames)
1992 {
1993         struct snd_pcm_runtime *runtime = substream->runtime;
1994         int err;
1995         char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
1996         if (substream->ops->copy) {
1997                 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
1998                         return err;
1999         } else {
2000                 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
2001                 if (copy_from_user(hwbuf, buf, frames_to_bytes(runtime, frames)))
2002                         return -EFAULT;
2003         }
2004         return 0;
2005 }
2006  
2007 typedef int (*transfer_f)(struct snd_pcm_substream *substream, unsigned int hwoff,
2008                           unsigned long data, unsigned int off,
2009                           snd_pcm_uframes_t size);
2010
2011 static snd_pcm_sframes_t snd_pcm_lib_write1(struct snd_pcm_substream *substream, 
2012                                             unsigned long data,
2013                                             snd_pcm_uframes_t size,
2014                                             int nonblock,
2015                                             transfer_f transfer)
2016 {
2017         struct snd_pcm_runtime *runtime = substream->runtime;
2018         snd_pcm_uframes_t xfer = 0;
2019         snd_pcm_uframes_t offset = 0;
2020         snd_pcm_uframes_t avail;
2021         int err = 0;
2022
2023         if (size == 0)
2024                 return 0;
2025
2026         snd_pcm_stream_lock_irq(substream);
2027         switch (runtime->status->state) {
2028         case SNDRV_PCM_STATE_PREPARED:
2029         case SNDRV_PCM_STATE_RUNNING:
2030         case SNDRV_PCM_STATE_PAUSED:
2031                 break;
2032         case SNDRV_PCM_STATE_XRUN:
2033                 err = -EPIPE;
2034                 goto _end_unlock;
2035         case SNDRV_PCM_STATE_SUSPENDED:
2036                 err = -ESTRPIPE;
2037                 goto _end_unlock;
2038         default:
2039                 err = -EBADFD;
2040                 goto _end_unlock;
2041         }
2042
2043         runtime->twake = runtime->control->avail_min ? : 1;
2044         if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2045                 snd_pcm_update_hw_ptr(substream);
2046         avail = snd_pcm_playback_avail(runtime);
2047         while (size > 0) {
2048                 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2049                 snd_pcm_uframes_t cont;
2050                 if (!avail) {
2051                         if (nonblock) {
2052                                 err = -EAGAIN;
2053                                 goto _end_unlock;
2054                         }
2055                         runtime->twake = min_t(snd_pcm_uframes_t, size,
2056                                         runtime->control->avail_min ? : 1);
2057                         err = wait_for_avail(substream, &avail);
2058                         if (err < 0)
2059                                 goto _end_unlock;
2060                 }
2061                 frames = size > avail ? avail : size;
2062                 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
2063                 if (frames > cont)
2064                         frames = cont;
2065                 if (snd_BUG_ON(!frames)) {
2066                         runtime->twake = 0;
2067                         snd_pcm_stream_unlock_irq(substream);
2068                         return -EINVAL;
2069                 }
2070                 appl_ptr = runtime->control->appl_ptr;
2071                 appl_ofs = appl_ptr % runtime->buffer_size;
2072                 snd_pcm_stream_unlock_irq(substream);
2073                 err = transfer(substream, appl_ofs, data, offset, frames);
2074                 snd_pcm_stream_lock_irq(substream);
2075                 if (err < 0)
2076                         goto _end_unlock;
2077                 switch (runtime->status->state) {
2078                 case SNDRV_PCM_STATE_XRUN:
2079                         err = -EPIPE;
2080                         goto _end_unlock;
2081                 case SNDRV_PCM_STATE_SUSPENDED:
2082                         err = -ESTRPIPE;
2083                         goto _end_unlock;
2084                 default:
2085                         break;
2086                 }
2087                 appl_ptr += frames;
2088                 if (appl_ptr >= runtime->boundary)
2089                         appl_ptr -= runtime->boundary;
2090                 runtime->control->appl_ptr = appl_ptr;
2091                 if (substream->ops->ack)
2092                         substream->ops->ack(substream);
2093
2094                 offset += frames;
2095                 size -= frames;
2096                 xfer += frames;
2097                 avail -= frames;
2098                 if (runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
2099                     snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
2100                         err = snd_pcm_start(substream);
2101                         if (err < 0)
2102                                 goto _end_unlock;
2103                 }
2104         }
2105  _end_unlock:
2106         runtime->twake = 0;
2107         if (xfer > 0 && err >= 0)
2108                 snd_pcm_update_state(substream, runtime);
2109         snd_pcm_stream_unlock_irq(substream);
2110         return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2111 }
2112
2113 /* sanity-check for read/write methods */
2114 static int pcm_sanity_check(struct snd_pcm_substream *substream)
2115 {
2116         struct snd_pcm_runtime *runtime;
2117         if (PCM_RUNTIME_CHECK(substream))
2118                 return -ENXIO;
2119         runtime = substream->runtime;
2120         if (snd_BUG_ON(!substream->ops->copy && !runtime->dma_area))
2121                 return -EINVAL;
2122         if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2123                 return -EBADFD;
2124         return 0;
2125 }
2126
2127 snd_pcm_sframes_t snd_pcm_lib_write(struct snd_pcm_substream *substream, const void __user *buf, snd_pcm_uframes_t size)
2128 {
2129         struct snd_pcm_runtime *runtime;
2130         int nonblock;
2131         int err;
2132
2133         err = pcm_sanity_check(substream);
2134         if (err < 0)
2135                 return err;
2136         runtime = substream->runtime;
2137         nonblock = !!(substream->f_flags & O_NONBLOCK);
2138
2139         if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
2140             runtime->channels > 1)
2141                 return -EINVAL;
2142         return snd_pcm_lib_write1(substream, (unsigned long)buf, size, nonblock,
2143                                   snd_pcm_lib_write_transfer);
2144 }
2145
2146 EXPORT_SYMBOL(snd_pcm_lib_write);
2147
2148 static int snd_pcm_lib_writev_transfer(struct snd_pcm_substream *substream,
2149                                        unsigned int hwoff,
2150                                        unsigned long data, unsigned int off,
2151                                        snd_pcm_uframes_t frames)
2152 {
2153         struct snd_pcm_runtime *runtime = substream->runtime;
2154         int err;
2155         void __user **bufs = (void __user **)data;
2156         int channels = runtime->channels;
2157         int c;
2158         if (substream->ops->copy) {
2159                 if (snd_BUG_ON(!substream->ops->silence))
2160                         return -EINVAL;
2161                 for (c = 0; c < channels; ++c, ++bufs) {
2162                         if (*bufs == NULL) {
2163                                 if ((err = substream->ops->silence(substream, c, hwoff, frames)) < 0)
2164                                         return err;
2165                         } else {
2166                                 char __user *buf = *bufs + samples_to_bytes(runtime, off);
2167                                 if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2168                                         return err;
2169                         }
2170                 }
2171         } else {
2172                 /* default transfer behaviour */
2173                 size_t dma_csize = runtime->dma_bytes / channels;
2174                 for (c = 0; c < channels; ++c, ++bufs) {
2175                         char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2176                         if (*bufs == NULL) {
2177                                 snd_pcm_format_set_silence(runtime->format, hwbuf, frames);
2178                         } else {
2179                                 char __user *buf = *bufs + samples_to_bytes(runtime, off);
2180                                 if (copy_from_user(hwbuf, buf, samples_to_bytes(runtime, frames)))
2181                                         return -EFAULT;
2182                         }
2183                 }
2184         }
2185         return 0;
2186 }
2187  
2188 snd_pcm_sframes_t snd_pcm_lib_writev(struct snd_pcm_substream *substream,
2189                                      void __user **bufs,
2190                                      snd_pcm_uframes_t frames)
2191 {
2192         struct snd_pcm_runtime *runtime;
2193         int nonblock;
2194         int err;
2195
2196         err = pcm_sanity_check(substream);
2197         if (err < 0)
2198                 return err;
2199         runtime = substream->runtime;
2200         nonblock = !!(substream->f_flags & O_NONBLOCK);
2201
2202         if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2203                 return -EINVAL;
2204         return snd_pcm_lib_write1(substream, (unsigned long)bufs, frames,
2205                                   nonblock, snd_pcm_lib_writev_transfer);
2206 }
2207
2208 EXPORT_SYMBOL(snd_pcm_lib_writev);
2209
2210 static int snd_pcm_lib_read_transfer(struct snd_pcm_substream *substream, 
2211                                      unsigned int hwoff,
2212                                      unsigned long data, unsigned int off,
2213                                      snd_pcm_uframes_t frames)
2214 {
2215         struct snd_pcm_runtime *runtime = substream->runtime;
2216         int err;
2217         char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
2218         if (substream->ops->copy) {
2219                 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
2220                         return err;
2221         } else {
2222                 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
2223                 if (copy_to_user(buf, hwbuf, frames_to_bytes(runtime, frames)))
2224                         return -EFAULT;
2225         }
2226         return 0;
2227 }
2228
2229 static snd_pcm_sframes_t snd_pcm_lib_read1(struct snd_pcm_substream *substream,
2230                                            unsigned long data,
2231                                            snd_pcm_uframes_t size,
2232                                            int nonblock,
2233                                            transfer_f transfer)
2234 {
2235         struct snd_pcm_runtime *runtime = substream->runtime;
2236         snd_pcm_uframes_t xfer = 0;
2237         snd_pcm_uframes_t offset = 0;
2238         snd_pcm_uframes_t avail;
2239         int err = 0;
2240
2241         if (size == 0)
2242                 return 0;
2243
2244         snd_pcm_stream_lock_irq(substream);
2245         switch (runtime->status->state) {
2246         case SNDRV_PCM_STATE_PREPARED:
2247                 if (size >= runtime->start_threshold) {
2248                         err = snd_pcm_start(substream);
2249                         if (err < 0)
2250                                 goto _end_unlock;
2251                 }
2252                 break;
2253         case SNDRV_PCM_STATE_DRAINING:
2254         case SNDRV_PCM_STATE_RUNNING:
2255         case SNDRV_PCM_STATE_PAUSED:
2256                 break;
2257         case SNDRV_PCM_STATE_XRUN:
2258                 err = -EPIPE;
2259                 goto _end_unlock;
2260         case SNDRV_PCM_STATE_SUSPENDED:
2261                 err = -ESTRPIPE;
2262                 goto _end_unlock;
2263         default:
2264                 err = -EBADFD;
2265                 goto _end_unlock;
2266         }
2267
2268         runtime->twake = runtime->control->avail_min ? : 1;
2269         if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2270                 snd_pcm_update_hw_ptr(substream);
2271         avail = snd_pcm_capture_avail(runtime);
2272         while (size > 0) {
2273                 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2274                 snd_pcm_uframes_t cont;
2275                 if (!avail) {
2276                         if (runtime->status->state ==
2277                             SNDRV_PCM_STATE_DRAINING) {
2278                                 snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
2279                                 goto _end_unlock;
2280                         }
2281                         if (nonblock) {
2282                                 err = -EAGAIN;
2283                                 goto _end_unlock;
2284                         }
2285                         runtime->twake = min_t(snd_pcm_uframes_t, size,
2286                                         runtime->control->avail_min ? : 1);
2287                         err = wait_for_avail(substream, &avail);
2288                         if (err < 0)
2289                                 goto _end_unlock;
2290                         if (!avail)
2291                                 continue; /* draining */
2292                 }
2293                 frames = size > avail ? avail : size;
2294                 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
2295                 if (frames > cont)
2296                         frames = cont;
2297                 if (snd_BUG_ON(!frames)) {
2298                         runtime->twake = 0;
2299                         snd_pcm_stream_unlock_irq(substream);
2300                         return -EINVAL;
2301                 }
2302                 appl_ptr = runtime->control->appl_ptr;
2303                 appl_ofs = appl_ptr % runtime->buffer_size;
2304                 snd_pcm_stream_unlock_irq(substream);
2305                 err = transfer(substream, appl_ofs, data, offset, frames);
2306                 snd_pcm_stream_lock_irq(substream);
2307                 if (err < 0)
2308                         goto _end_unlock;
2309                 switch (runtime->status->state) {
2310                 case SNDRV_PCM_STATE_XRUN:
2311                         err = -EPIPE;
2312                         goto _end_unlock;
2313                 case SNDRV_PCM_STATE_SUSPENDED:
2314                         err = -ESTRPIPE;
2315                         goto _end_unlock;
2316                 default:
2317                         break;
2318                 }
2319                 appl_ptr += frames;
2320                 if (appl_ptr >= runtime->boundary)
2321                         appl_ptr -= runtime->boundary;
2322                 runtime->control->appl_ptr = appl_ptr;
2323                 if (substream->ops->ack)
2324                         substream->ops->ack(substream);
2325
2326                 offset += frames;
2327                 size -= frames;
2328                 xfer += frames;
2329                 avail -= frames;
2330         }
2331  _end_unlock:
2332         runtime->twake = 0;
2333         if (xfer > 0 && err >= 0)
2334                 snd_pcm_update_state(substream, runtime);
2335         snd_pcm_stream_unlock_irq(substream);
2336         return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2337 }
2338
2339 snd_pcm_sframes_t snd_pcm_lib_read(struct snd_pcm_substream *substream, void __user *buf, snd_pcm_uframes_t size)
2340 {
2341         struct snd_pcm_runtime *runtime;
2342         int nonblock;
2343         int err;
2344         
2345         err = pcm_sanity_check(substream);
2346         if (err < 0)
2347                 return err;
2348         runtime = substream->runtime;
2349         nonblock = !!(substream->f_flags & O_NONBLOCK);
2350         if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED)
2351                 return -EINVAL;
2352         return snd_pcm_lib_read1(substream, (unsigned long)buf, size, nonblock, snd_pcm_lib_read_transfer);
2353 }
2354
2355 EXPORT_SYMBOL(snd_pcm_lib_read);
2356
2357 static int snd_pcm_lib_readv_transfer(struct snd_pcm_substream *substream,
2358                                       unsigned int hwoff,
2359                                       unsigned long data, unsigned int off,
2360                                       snd_pcm_uframes_t frames)
2361 {
2362         struct snd_pcm_runtime *runtime = substream->runtime;
2363         int err;
2364         void __user **bufs = (void __user **)data;
2365         int channels = runtime->channels;
2366         int c;
2367         if (substream->ops->copy) {
2368                 for (c = 0; c < channels; ++c, ++bufs) {
2369                         char __user *buf;
2370                         if (*bufs == NULL)
2371                                 continue;
2372                         buf = *bufs + samples_to_bytes(runtime, off);
2373                         if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2374                                 return err;
2375                 }
2376         } else {
2377                 snd_pcm_uframes_t dma_csize = runtime->dma_bytes / channels;
2378                 for (c = 0; c < channels; ++c, ++bufs) {
2379                         char *hwbuf;
2380                         char __user *buf;
2381                         if (*bufs == NULL)
2382                                 continue;
2383
2384                         hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2385                         buf = *bufs + samples_to_bytes(runtime, off);
2386                         if (copy_to_user(buf, hwbuf, samples_to_bytes(runtime, frames)))
2387                                 return -EFAULT;
2388                 }
2389         }
2390         return 0;
2391 }
2392  
2393 snd_pcm_sframes_t snd_pcm_lib_readv(struct snd_pcm_substream *substream,
2394                                     void __user **bufs,
2395                                     snd_pcm_uframes_t frames)
2396 {
2397         struct snd_pcm_runtime *runtime;
2398         int nonblock;
2399         int err;
2400
2401         err = pcm_sanity_check(substream);
2402         if (err < 0)
2403                 return err;
2404         runtime = substream->runtime;
2405         if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2406                 return -EBADFD;
2407
2408         nonblock = !!(substream->f_flags & O_NONBLOCK);
2409         if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2410                 return -EINVAL;
2411         return snd_pcm_lib_read1(substream, (unsigned long)bufs, frames, nonblock, snd_pcm_lib_readv_transfer);
2412 }
2413
2414 EXPORT_SYMBOL(snd_pcm_lib_readv);
2415
2416 /*
2417  * standard channel mapping helpers
2418  */
2419
2420 /* default channel maps for multi-channel playbacks, up to 8 channels */
2421 const struct snd_pcm_chmap_elem snd_pcm_std_chmaps[] = {
2422         { .channels = 1,
2423           .map = { SNDRV_CHMAP_MONO } },
2424         { .channels = 2,
2425           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2426         { .channels = 4,
2427           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2428                    SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2429         { .channels = 6,
2430           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2431                    SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2432                    SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE } },
2433         { .channels = 8,
2434           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2435                    SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2436                    SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2437                    SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2438         { }
2439 };
2440 EXPORT_SYMBOL_GPL(snd_pcm_std_chmaps);
2441
2442 /* alternative channel maps with CLFE <-> surround swapped for 6/8 channels */
2443 const struct snd_pcm_chmap_elem snd_pcm_alt_chmaps[] = {
2444         { .channels = 1,
2445           .map = { SNDRV_CHMAP_MONO } },
2446         { .channels = 2,
2447           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2448         { .channels = 4,
2449           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2450                    SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2451         { .channels = 6,
2452           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2453                    SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2454                    SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2455         { .channels = 8,
2456           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2457                    SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2458                    SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2459                    SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2460         { }
2461 };
2462 EXPORT_SYMBOL_GPL(snd_pcm_alt_chmaps);
2463
2464 static bool valid_chmap_channels(const struct snd_pcm_chmap *info, int ch)
2465 {
2466         if (ch > info->max_channels)
2467                 return false;
2468         return !info->channel_mask || (info->channel_mask & (1U << ch));
2469 }
2470
2471 static int pcm_chmap_ctl_info(struct snd_kcontrol *kcontrol,
2472                               struct snd_ctl_elem_info *uinfo)
2473 {
2474         struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2475
2476         uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2477         uinfo->count = 0;
2478         uinfo->count = info->max_channels;
2479         uinfo->value.integer.min = 0;
2480         uinfo->value.integer.max = SNDRV_CHMAP_LAST;
2481         return 0;
2482 }
2483
2484 /* get callback for channel map ctl element
2485  * stores the channel position firstly matching with the current channels
2486  */
2487 static int pcm_chmap_ctl_get(struct snd_kcontrol *kcontrol,
2488                              struct snd_ctl_elem_value *ucontrol)
2489 {
2490         struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2491         unsigned int idx = snd_ctl_get_ioffidx(kcontrol, &ucontrol->id);
2492         struct snd_pcm_substream *substream;
2493         const struct snd_pcm_chmap_elem *map;
2494
2495         if (!info->chmap)
2496                 return -EINVAL;
2497         substream = snd_pcm_chmap_substream(info, idx);
2498         if (!substream)
2499                 return -ENODEV;
2500         memset(ucontrol->value.integer.value, 0,
2501                sizeof(ucontrol->value.integer.value));
2502         if (!substream->runtime)
2503                 return 0; /* no channels set */
2504         for (map = info->chmap; map->channels; map++) {
2505                 int i;
2506                 if (map->channels == substream->runtime->channels &&
2507                     valid_chmap_channels(info, map->channels)) {
2508                         for (i = 0; i < map->channels; i++)
2509                                 ucontrol->value.integer.value[i] = map->map[i];
2510                         return 0;
2511                 }
2512         }
2513         return -EINVAL;
2514 }
2515
2516 /* tlv callback for channel map ctl element
2517  * expands the pre-defined channel maps in a form of TLV
2518  */
2519 static int pcm_chmap_ctl_tlv(struct snd_kcontrol *kcontrol, int op_flag,
2520                              unsigned int size, unsigned int __user *tlv)
2521 {
2522         struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2523         const struct snd_pcm_chmap_elem *map;
2524         unsigned int __user *dst;
2525         int c, count = 0;
2526
2527         if (!info->chmap)
2528                 return -EINVAL;
2529         if (size < 8)
2530                 return -ENOMEM;
2531         if (put_user(SNDRV_CTL_TLVT_CONTAINER, tlv))
2532                 return -EFAULT;
2533         size -= 8;
2534         dst = tlv + 2;
2535         for (map = info->chmap; map->channels; map++) {
2536                 int chs_bytes = map->channels * 4;
2537                 if (!valid_chmap_channels(info, map->channels))
2538                         continue;
2539                 if (size < 8)
2540                         return -ENOMEM;
2541                 if (put_user(SNDRV_CTL_TLVT_CHMAP_FIXED, dst) ||
2542                     put_user(chs_bytes, dst + 1))
2543                         return -EFAULT;
2544                 dst += 2;
2545                 size -= 8;
2546                 count += 8;
2547                 if (size < chs_bytes)
2548                         return -ENOMEM;
2549                 size -= chs_bytes;
2550                 count += chs_bytes;
2551                 for (c = 0; c < map->channels; c++) {
2552                         if (put_user(map->map[c], dst))
2553                                 return -EFAULT;
2554                         dst++;
2555                 }
2556         }
2557         if (put_user(count, tlv + 1))
2558                 return -EFAULT;
2559         return 0;
2560 }
2561
2562 static void pcm_chmap_ctl_private_free(struct snd_kcontrol *kcontrol)
2563 {
2564         struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2565         info->pcm->streams[info->stream].chmap_kctl = NULL;
2566         kfree(info);
2567 }
2568
2569 /**
2570  * snd_pcm_add_chmap_ctls - create channel-mapping control elements
2571  * @pcm: the assigned PCM instance
2572  * @stream: stream direction
2573  * @chmap: channel map elements (for query)
2574  * @max_channels: the max number of channels for the stream
2575  * @private_value: the value passed to each kcontrol's private_value field
2576  * @info_ret: store struct snd_pcm_chmap instance if non-NULL
2577  *
2578  * Create channel-mapping control elements assigned to the given PCM stream(s).
2579  * Return: Zero if successful, or a negative error value.
2580  */
2581 int snd_pcm_add_chmap_ctls(struct snd_pcm *pcm, int stream,
2582                            const struct snd_pcm_chmap_elem *chmap,
2583                            int max_channels,
2584                            unsigned long private_value,
2585                            struct snd_pcm_chmap **info_ret)
2586 {
2587         struct snd_pcm_chmap *info;
2588         struct snd_kcontrol_new knew = {
2589                 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
2590                 .access = SNDRV_CTL_ELEM_ACCESS_READ |
2591                         SNDRV_CTL_ELEM_ACCESS_TLV_READ |
2592                         SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK,
2593                 .info = pcm_chmap_ctl_info,
2594                 .get = pcm_chmap_ctl_get,
2595                 .tlv.c = pcm_chmap_ctl_tlv,
2596         };
2597         int err;
2598
2599         if (WARN_ON(pcm->streams[stream].chmap_kctl))
2600                 return -EBUSY;
2601         info = kzalloc(sizeof(*info), GFP_KERNEL);
2602         if (!info)
2603                 return -ENOMEM;
2604         info->pcm = pcm;
2605         info->stream = stream;
2606         info->chmap = chmap;
2607         info->max_channels = max_channels;
2608         if (stream == SNDRV_PCM_STREAM_PLAYBACK)
2609                 knew.name = "Playback Channel Map";
2610         else
2611                 knew.name = "Capture Channel Map";
2612         knew.device = pcm->device;
2613         knew.count = pcm->streams[stream].substream_count;
2614         knew.private_value = private_value;
2615         info->kctl = snd_ctl_new1(&knew, info);
2616         if (!info->kctl) {
2617                 kfree(info);
2618                 return -ENOMEM;
2619         }
2620         info->kctl->private_free = pcm_chmap_ctl_private_free;
2621         err = snd_ctl_add(pcm->card, info->kctl);
2622         if (err < 0)
2623                 return err;
2624         pcm->streams[stream].chmap_kctl = info->kctl;
2625         if (info_ret)
2626                 *info_ret = info;
2627         return 0;
2628 }
2629 EXPORT_SYMBOL_GPL(snd_pcm_add_chmap_ctls);