]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - sound/x86/intel_hdmi_audio.c
Merge tag 'scsi-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi
[karo-tx-linux.git] / sound / x86 / intel_hdmi_audio.c
1 /*
2  *   intel_hdmi_audio.c - Intel HDMI audio driver
3  *
4  *  Copyright (C) 2016 Intel Corp
5  *  Authors:    Sailaja Bandarupalli <sailaja.bandarupalli@intel.com>
6  *              Ramesh Babu K V <ramesh.babu@intel.com>
7  *              Vaibhav Agarwal <vaibhav.agarwal@intel.com>
8  *              Jerome Anand <jerome.anand@intel.com>
9  *  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
10  *
11  *  This program is free software; you can redistribute it and/or modify
12  *  it under the terms of the GNU General Public License as published by
13  *  the Free Software Foundation; version 2 of the License.
14  *
15  *  This program is distributed in the hope that it will be useful, but
16  *  WITHOUT ANY WARRANTY; without even the implied warranty of
17  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  *  General Public License for more details.
19  *
20  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
21  * ALSA driver for Intel HDMI audio
22  */
23
24 #include <linux/types.h>
25 #include <linux/platform_device.h>
26 #include <linux/io.h>
27 #include <linux/slab.h>
28 #include <linux/module.h>
29 #include <linux/interrupt.h>
30 #include <linux/pm_runtime.h>
31 #include <linux/dma-mapping.h>
32 #include <linux/delay.h>
33 #include <asm/set_memory.h>
34 #include <sound/core.h>
35 #include <sound/asoundef.h>
36 #include <sound/pcm.h>
37 #include <sound/pcm_params.h>
38 #include <sound/initval.h>
39 #include <sound/control.h>
40 #include <sound/jack.h>
41 #include <drm/drm_edid.h>
42 #include <drm/intel_lpe_audio.h>
43 #include "intel_hdmi_audio.h"
44
45 /*standard module options for ALSA. This module supports only one card*/
46 static int hdmi_card_index = SNDRV_DEFAULT_IDX1;
47 static char *hdmi_card_id = SNDRV_DEFAULT_STR1;
48
49 module_param_named(index, hdmi_card_index, int, 0444);
50 MODULE_PARM_DESC(index,
51                 "Index value for INTEL Intel HDMI Audio controller.");
52 module_param_named(id, hdmi_card_id, charp, 0444);
53 MODULE_PARM_DESC(id,
54                 "ID string for INTEL Intel HDMI Audio controller.");
55
56 /*
57  * ELD SA bits in the CEA Speaker Allocation data block
58  */
59 static const int eld_speaker_allocation_bits[] = {
60         [0] = FL | FR,
61         [1] = LFE,
62         [2] = FC,
63         [3] = RL | RR,
64         [4] = RC,
65         [5] = FLC | FRC,
66         [6] = RLC | RRC,
67         /* the following are not defined in ELD yet */
68         [7] = 0,
69 };
70
71 /*
72  * This is an ordered list!
73  *
74  * The preceding ones have better chances to be selected by
75  * hdmi_channel_allocation().
76  */
77 static struct cea_channel_speaker_allocation channel_allocations[] = {
78 /*                        channel:   7     6    5    4    3     2    1    0  */
79 { .ca_index = 0x00,  .speakers = {   0,    0,   0,   0,   0,    0,  FR,  FL } },
80                                 /* 2.1 */
81 { .ca_index = 0x01,  .speakers = {   0,    0,   0,   0,   0,  LFE,  FR,  FL } },
82                                 /* Dolby Surround */
83 { .ca_index = 0x02,  .speakers = {   0,    0,   0,   0,  FC,    0,  FR,  FL } },
84                                 /* surround40 */
85 { .ca_index = 0x08,  .speakers = {   0,    0,  RR,  RL,   0,    0,  FR,  FL } },
86                                 /* surround41 */
87 { .ca_index = 0x09,  .speakers = {   0,    0,  RR,  RL,   0,  LFE,  FR,  FL } },
88                                 /* surround50 */
89 { .ca_index = 0x0a,  .speakers = {   0,    0,  RR,  RL,  FC,    0,  FR,  FL } },
90                                 /* surround51 */
91 { .ca_index = 0x0b,  .speakers = {   0,    0,  RR,  RL,  FC,  LFE,  FR,  FL } },
92                                 /* 6.1 */
93 { .ca_index = 0x0f,  .speakers = {   0,   RC,  RR,  RL,  FC,  LFE,  FR,  FL } },
94                                 /* surround71 */
95 { .ca_index = 0x13,  .speakers = { RRC,  RLC,  RR,  RL,  FC,  LFE,  FR,  FL } },
96
97 { .ca_index = 0x03,  .speakers = {   0,    0,   0,   0,  FC,  LFE,  FR,  FL } },
98 { .ca_index = 0x04,  .speakers = {   0,    0,   0,  RC,   0,    0,  FR,  FL } },
99 { .ca_index = 0x05,  .speakers = {   0,    0,   0,  RC,   0,  LFE,  FR,  FL } },
100 { .ca_index = 0x06,  .speakers = {   0,    0,   0,  RC,  FC,    0,  FR,  FL } },
101 { .ca_index = 0x07,  .speakers = {   0,    0,   0,  RC,  FC,  LFE,  FR,  FL } },
102 { .ca_index = 0x0c,  .speakers = {   0,   RC,  RR,  RL,   0,    0,  FR,  FL } },
103 { .ca_index = 0x0d,  .speakers = {   0,   RC,  RR,  RL,   0,  LFE,  FR,  FL } },
104 { .ca_index = 0x0e,  .speakers = {   0,   RC,  RR,  RL,  FC,    0,  FR,  FL } },
105 { .ca_index = 0x10,  .speakers = { RRC,  RLC,  RR,  RL,   0,    0,  FR,  FL } },
106 { .ca_index = 0x11,  .speakers = { RRC,  RLC,  RR,  RL,   0,  LFE,  FR,  FL } },
107 { .ca_index = 0x12,  .speakers = { RRC,  RLC,  RR,  RL,  FC,    0,  FR,  FL } },
108 { .ca_index = 0x14,  .speakers = { FRC,  FLC,   0,   0,   0,    0,  FR,  FL } },
109 { .ca_index = 0x15,  .speakers = { FRC,  FLC,   0,   0,   0,  LFE,  FR,  FL } },
110 { .ca_index = 0x16,  .speakers = { FRC,  FLC,   0,   0,  FC,    0,  FR,  FL } },
111 { .ca_index = 0x17,  .speakers = { FRC,  FLC,   0,   0,  FC,  LFE,  FR,  FL } },
112 { .ca_index = 0x18,  .speakers = { FRC,  FLC,   0,  RC,   0,    0,  FR,  FL } },
113 { .ca_index = 0x19,  .speakers = { FRC,  FLC,   0,  RC,   0,  LFE,  FR,  FL } },
114 { .ca_index = 0x1a,  .speakers = { FRC,  FLC,   0,  RC,  FC,    0,  FR,  FL } },
115 { .ca_index = 0x1b,  .speakers = { FRC,  FLC,   0,  RC,  FC,  LFE,  FR,  FL } },
116 { .ca_index = 0x1c,  .speakers = { FRC,  FLC,  RR,  RL,   0,    0,  FR,  FL } },
117 { .ca_index = 0x1d,  .speakers = { FRC,  FLC,  RR,  RL,   0,  LFE,  FR,  FL } },
118 { .ca_index = 0x1e,  .speakers = { FRC,  FLC,  RR,  RL,  FC,    0,  FR,  FL } },
119 { .ca_index = 0x1f,  .speakers = { FRC,  FLC,  RR,  RL,  FC,  LFE,  FR,  FL } },
120 };
121
122 static const struct channel_map_table map_tables[] = {
123         { SNDRV_CHMAP_FL,       0x00,   FL },
124         { SNDRV_CHMAP_FR,       0x01,   FR },
125         { SNDRV_CHMAP_RL,       0x04,   RL },
126         { SNDRV_CHMAP_RR,       0x05,   RR },
127         { SNDRV_CHMAP_LFE,      0x02,   LFE },
128         { SNDRV_CHMAP_FC,       0x03,   FC },
129         { SNDRV_CHMAP_RLC,      0x06,   RLC },
130         { SNDRV_CHMAP_RRC,      0x07,   RRC },
131         {} /* terminator */
132 };
133
134 /* hardware capability structure */
135 static const struct snd_pcm_hardware had_pcm_hardware = {
136         .info = (SNDRV_PCM_INFO_INTERLEAVED |
137                 SNDRV_PCM_INFO_MMAP |
138                 SNDRV_PCM_INFO_MMAP_VALID |
139                 SNDRV_PCM_INFO_NO_PERIOD_WAKEUP),
140         .formats = (SNDRV_PCM_FMTBIT_S16_LE |
141                     SNDRV_PCM_FMTBIT_S24_LE |
142                     SNDRV_PCM_FMTBIT_S32_LE),
143         .rates = SNDRV_PCM_RATE_32000 |
144                 SNDRV_PCM_RATE_44100 |
145                 SNDRV_PCM_RATE_48000 |
146                 SNDRV_PCM_RATE_88200 |
147                 SNDRV_PCM_RATE_96000 |
148                 SNDRV_PCM_RATE_176400 |
149                 SNDRV_PCM_RATE_192000,
150         .rate_min = HAD_MIN_RATE,
151         .rate_max = HAD_MAX_RATE,
152         .channels_min = HAD_MIN_CHANNEL,
153         .channels_max = HAD_MAX_CHANNEL,
154         .buffer_bytes_max = HAD_MAX_BUFFER,
155         .period_bytes_min = HAD_MIN_PERIOD_BYTES,
156         .period_bytes_max = HAD_MAX_PERIOD_BYTES,
157         .periods_min = HAD_MIN_PERIODS,
158         .periods_max = HAD_MAX_PERIODS,
159         .fifo_size = HAD_FIFO_SIZE,
160 };
161
162 /* Get the active PCM substream;
163  * Call had_substream_put() for unreferecing.
164  * Don't call this inside had_spinlock, as it takes by itself
165  */
166 static struct snd_pcm_substream *
167 had_substream_get(struct snd_intelhad *intelhaddata)
168 {
169         struct snd_pcm_substream *substream;
170         unsigned long flags;
171
172         spin_lock_irqsave(&intelhaddata->had_spinlock, flags);
173         substream = intelhaddata->stream_info.substream;
174         if (substream)
175                 intelhaddata->stream_info.substream_refcount++;
176         spin_unlock_irqrestore(&intelhaddata->had_spinlock, flags);
177         return substream;
178 }
179
180 /* Unref the active PCM substream;
181  * Don't call this inside had_spinlock, as it takes by itself
182  */
183 static void had_substream_put(struct snd_intelhad *intelhaddata)
184 {
185         unsigned long flags;
186
187         spin_lock_irqsave(&intelhaddata->had_spinlock, flags);
188         intelhaddata->stream_info.substream_refcount--;
189         spin_unlock_irqrestore(&intelhaddata->had_spinlock, flags);
190 }
191
192 /* Register access functions */
193 static u32 had_read_register_raw(struct snd_intelhad *ctx, u32 reg)
194 {
195         return ioread32(ctx->mmio_start + ctx->had_config_offset + reg);
196 }
197
198 static void had_write_register_raw(struct snd_intelhad *ctx, u32 reg, u32 val)
199 {
200         iowrite32(val, ctx->mmio_start + ctx->had_config_offset + reg);
201 }
202
203 static void had_read_register(struct snd_intelhad *ctx, u32 reg, u32 *val)
204 {
205         if (!ctx->connected)
206                 *val = 0;
207         else
208                 *val = had_read_register_raw(ctx, reg);
209 }
210
211 static void had_write_register(struct snd_intelhad *ctx, u32 reg, u32 val)
212 {
213         if (ctx->connected)
214                 had_write_register_raw(ctx, reg, val);
215 }
216
217 /*
218  * enable / disable audio configuration
219  *
220  * The normal read/modify should not directly be used on VLV2 for
221  * updating AUD_CONFIG register.
222  * This is because:
223  * Bit6 of AUD_CONFIG register is writeonly due to a silicon bug on VLV2
224  * HDMI IP. As a result a read-modify of AUD_CONFIG regiter will always
225  * clear bit6. AUD_CONFIG[6:4] represents the "channels" field of the
226  * register. This field should be 1xy binary for configuration with 6 or
227  * more channels. Read-modify of AUD_CONFIG (Eg. for enabling audio)
228  * causes the "channels" field to be updated as 0xy binary resulting in
229  * bad audio. The fix is to always write the AUD_CONFIG[6:4] with
230  * appropriate value when doing read-modify of AUD_CONFIG register.
231  */
232 static void had_enable_audio(struct snd_intelhad *intelhaddata,
233                              bool enable)
234 {
235         /* update the cached value */
236         intelhaddata->aud_config.regx.aud_en = enable;
237         had_write_register(intelhaddata, AUD_CONFIG,
238                            intelhaddata->aud_config.regval);
239 }
240
241 /* forcibly ACKs to both BUFFER_DONE and BUFFER_UNDERRUN interrupts */
242 static void had_ack_irqs(struct snd_intelhad *ctx)
243 {
244         u32 status_reg;
245
246         if (!ctx->connected)
247                 return;
248         had_read_register(ctx, AUD_HDMI_STATUS, &status_reg);
249         status_reg |= HDMI_AUDIO_BUFFER_DONE | HDMI_AUDIO_UNDERRUN;
250         had_write_register(ctx, AUD_HDMI_STATUS, status_reg);
251         had_read_register(ctx, AUD_HDMI_STATUS, &status_reg);
252 }
253
254 /* Reset buffer pointers */
255 static void had_reset_audio(struct snd_intelhad *intelhaddata)
256 {
257         had_write_register(intelhaddata, AUD_HDMI_STATUS,
258                            AUD_HDMI_STATUSG_MASK_FUNCRST);
259         had_write_register(intelhaddata, AUD_HDMI_STATUS, 0);
260 }
261
262 /*
263  * initialize audio channel status registers
264  * This function is called in the prepare callback
265  */
266 static int had_prog_status_reg(struct snd_pcm_substream *substream,
267                         struct snd_intelhad *intelhaddata)
268 {
269         union aud_cfg cfg_val = {.regval = 0};
270         union aud_ch_status_0 ch_stat0 = {.regval = 0};
271         union aud_ch_status_1 ch_stat1 = {.regval = 0};
272
273         ch_stat0.regx.lpcm_id = (intelhaddata->aes_bits &
274                                           IEC958_AES0_NONAUDIO) >> 1;
275         ch_stat0.regx.clk_acc = (intelhaddata->aes_bits &
276                                           IEC958_AES3_CON_CLOCK) >> 4;
277         cfg_val.regx.val_bit = ch_stat0.regx.lpcm_id;
278
279         switch (substream->runtime->rate) {
280         case AUD_SAMPLE_RATE_32:
281                 ch_stat0.regx.samp_freq = CH_STATUS_MAP_32KHZ;
282                 break;
283
284         case AUD_SAMPLE_RATE_44_1:
285                 ch_stat0.regx.samp_freq = CH_STATUS_MAP_44KHZ;
286                 break;
287         case AUD_SAMPLE_RATE_48:
288                 ch_stat0.regx.samp_freq = CH_STATUS_MAP_48KHZ;
289                 break;
290         case AUD_SAMPLE_RATE_88_2:
291                 ch_stat0.regx.samp_freq = CH_STATUS_MAP_88KHZ;
292                 break;
293         case AUD_SAMPLE_RATE_96:
294                 ch_stat0.regx.samp_freq = CH_STATUS_MAP_96KHZ;
295                 break;
296         case AUD_SAMPLE_RATE_176_4:
297                 ch_stat0.regx.samp_freq = CH_STATUS_MAP_176KHZ;
298                 break;
299         case AUD_SAMPLE_RATE_192:
300                 ch_stat0.regx.samp_freq = CH_STATUS_MAP_192KHZ;
301                 break;
302
303         default:
304                 /* control should never come here */
305                 return -EINVAL;
306         }
307
308         had_write_register(intelhaddata,
309                            AUD_CH_STATUS_0, ch_stat0.regval);
310
311         switch (substream->runtime->format) {
312         case SNDRV_PCM_FORMAT_S16_LE:
313                 ch_stat1.regx.max_wrd_len = MAX_SMPL_WIDTH_20;
314                 ch_stat1.regx.wrd_len = SMPL_WIDTH_16BITS;
315                 break;
316         case SNDRV_PCM_FORMAT_S24_LE:
317         case SNDRV_PCM_FORMAT_S32_LE:
318                 ch_stat1.regx.max_wrd_len = MAX_SMPL_WIDTH_24;
319                 ch_stat1.regx.wrd_len = SMPL_WIDTH_24BITS;
320                 break;
321         default:
322                 return -EINVAL;
323         }
324
325         had_write_register(intelhaddata,
326                            AUD_CH_STATUS_1, ch_stat1.regval);
327         return 0;
328 }
329
330 /*
331  * function to initialize audio
332  * registers and buffer confgiuration registers
333  * This function is called in the prepare callback
334  */
335 static int had_init_audio_ctrl(struct snd_pcm_substream *substream,
336                                struct snd_intelhad *intelhaddata)
337 {
338         union aud_cfg cfg_val = {.regval = 0};
339         union aud_buf_config buf_cfg = {.regval = 0};
340         u8 channels;
341
342         had_prog_status_reg(substream, intelhaddata);
343
344         buf_cfg.regx.audio_fifo_watermark = FIFO_THRESHOLD;
345         buf_cfg.regx.dma_fifo_watermark = DMA_FIFO_THRESHOLD;
346         buf_cfg.regx.aud_delay = 0;
347         had_write_register(intelhaddata, AUD_BUF_CONFIG, buf_cfg.regval);
348
349         channels = substream->runtime->channels;
350         cfg_val.regx.num_ch = channels - 2;
351         if (channels <= 2)
352                 cfg_val.regx.layout = LAYOUT0;
353         else
354                 cfg_val.regx.layout = LAYOUT1;
355
356         if (substream->runtime->format == SNDRV_PCM_FORMAT_S16_LE)
357                 cfg_val.regx.packet_mode = 1;
358
359         if (substream->runtime->format == SNDRV_PCM_FORMAT_S32_LE)
360                 cfg_val.regx.left_align = 1;
361
362         cfg_val.regx.val_bit = 1;
363
364         /* fix up the DP bits */
365         if (intelhaddata->dp_output) {
366                 cfg_val.regx.dp_modei = 1;
367                 cfg_val.regx.set = 1;
368         }
369
370         had_write_register(intelhaddata, AUD_CONFIG, cfg_val.regval);
371         intelhaddata->aud_config = cfg_val;
372         return 0;
373 }
374
375 /*
376  * Compute derived values in channel_allocations[].
377  */
378 static void init_channel_allocations(void)
379 {
380         int i, j;
381         struct cea_channel_speaker_allocation *p;
382
383         for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) {
384                 p = channel_allocations + i;
385                 p->channels = 0;
386                 p->spk_mask = 0;
387                 for (j = 0; j < ARRAY_SIZE(p->speakers); j++)
388                         if (p->speakers[j]) {
389                                 p->channels++;
390                                 p->spk_mask |= p->speakers[j];
391                         }
392         }
393 }
394
395 /*
396  * The transformation takes two steps:
397  *
398  *      eld->spk_alloc => (eld_speaker_allocation_bits[]) => spk_mask
399  *            spk_mask => (channel_allocations[])         => ai->CA
400  *
401  * TODO: it could select the wrong CA from multiple candidates.
402  */
403 static int had_channel_allocation(struct snd_intelhad *intelhaddata,
404                                   int channels)
405 {
406         int i;
407         int ca = 0;
408         int spk_mask = 0;
409
410         /*
411          * CA defaults to 0 for basic stereo audio
412          */
413         if (channels <= 2)
414                 return 0;
415
416         /*
417          * expand ELD's speaker allocation mask
418          *
419          * ELD tells the speaker mask in a compact(paired) form,
420          * expand ELD's notions to match the ones used by Audio InfoFrame.
421          */
422
423         for (i = 0; i < ARRAY_SIZE(eld_speaker_allocation_bits); i++) {
424                 if (intelhaddata->eld[DRM_ELD_SPEAKER] & (1 << i))
425                         spk_mask |= eld_speaker_allocation_bits[i];
426         }
427
428         /* search for the first working match in the CA table */
429         for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) {
430                 if (channels == channel_allocations[i].channels &&
431                 (spk_mask & channel_allocations[i].spk_mask) ==
432                                 channel_allocations[i].spk_mask) {
433                         ca = channel_allocations[i].ca_index;
434                         break;
435                 }
436         }
437
438         dev_dbg(intelhaddata->dev, "select CA 0x%x for %d\n", ca, channels);
439
440         return ca;
441 }
442
443 /* from speaker bit mask to ALSA API channel position */
444 static int spk_to_chmap(int spk)
445 {
446         const struct channel_map_table *t = map_tables;
447
448         for (; t->map; t++) {
449                 if (t->spk_mask == spk)
450                         return t->map;
451         }
452         return 0;
453 }
454
455 static void had_build_channel_allocation_map(struct snd_intelhad *intelhaddata)
456 {
457         int i, c;
458         int spk_mask = 0;
459         struct snd_pcm_chmap_elem *chmap;
460         u8 eld_high, eld_high_mask = 0xF0;
461         u8 high_msb;
462
463         kfree(intelhaddata->chmap->chmap);
464         intelhaddata->chmap->chmap = NULL;
465
466         chmap = kzalloc(sizeof(*chmap), GFP_KERNEL);
467         if (!chmap)
468                 return;
469
470         dev_dbg(intelhaddata->dev, "eld speaker = %x\n",
471                 intelhaddata->eld[DRM_ELD_SPEAKER]);
472
473         /* WA: Fix the max channel supported to 8 */
474
475         /*
476          * Sink may support more than 8 channels, if eld_high has more than
477          * one bit set. SOC supports max 8 channels.
478          * Refer eld_speaker_allocation_bits, for sink speaker allocation
479          */
480
481         /* if 0x2F < eld < 0x4F fall back to 0x2f, else fall back to 0x4F */
482         eld_high = intelhaddata->eld[DRM_ELD_SPEAKER] & eld_high_mask;
483         if ((eld_high & (eld_high-1)) && (eld_high > 0x1F)) {
484                 /* eld_high & (eld_high-1): if more than 1 bit set */
485                 /* 0x1F: 7 channels */
486                 for (i = 1; i < 4; i++) {
487                         high_msb = eld_high & (0x80 >> i);
488                         if (high_msb) {
489                                 intelhaddata->eld[DRM_ELD_SPEAKER] &=
490                                         high_msb | 0xF;
491                                 break;
492                         }
493                 }
494         }
495
496         for (i = 0; i < ARRAY_SIZE(eld_speaker_allocation_bits); i++) {
497                 if (intelhaddata->eld[DRM_ELD_SPEAKER] & (1 << i))
498                         spk_mask |= eld_speaker_allocation_bits[i];
499         }
500
501         for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) {
502                 if (spk_mask == channel_allocations[i].spk_mask) {
503                         for (c = 0; c < channel_allocations[i].channels; c++) {
504                                 chmap->map[c] = spk_to_chmap(
505                                         channel_allocations[i].speakers[
506                                                 (MAX_SPEAKERS - 1) - c]);
507                         }
508                         chmap->channels = channel_allocations[i].channels;
509                         intelhaddata->chmap->chmap = chmap;
510                         break;
511                 }
512         }
513         if (i >= ARRAY_SIZE(channel_allocations))
514                 kfree(chmap);
515 }
516
517 /*
518  * ALSA API channel-map control callbacks
519  */
520 static int had_chmap_ctl_info(struct snd_kcontrol *kcontrol,
521                                 struct snd_ctl_elem_info *uinfo)
522 {
523         uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
524         uinfo->count = HAD_MAX_CHANNEL;
525         uinfo->value.integer.min = 0;
526         uinfo->value.integer.max = SNDRV_CHMAP_LAST;
527         return 0;
528 }
529
530 static int had_chmap_ctl_get(struct snd_kcontrol *kcontrol,
531                                 struct snd_ctl_elem_value *ucontrol)
532 {
533         struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
534         struct snd_intelhad *intelhaddata = info->private_data;
535         int i;
536         const struct snd_pcm_chmap_elem *chmap;
537
538         memset(ucontrol->value.integer.value, 0,
539                sizeof(long) * HAD_MAX_CHANNEL);
540         mutex_lock(&intelhaddata->mutex);
541         if (!intelhaddata->chmap->chmap) {
542                 mutex_unlock(&intelhaddata->mutex);
543                 return 0;
544         }
545
546         chmap = intelhaddata->chmap->chmap;
547         for (i = 0; i < chmap->channels; i++)
548                 ucontrol->value.integer.value[i] = chmap->map[i];
549         mutex_unlock(&intelhaddata->mutex);
550
551         return 0;
552 }
553
554 static int had_register_chmap_ctls(struct snd_intelhad *intelhaddata,
555                                                 struct snd_pcm *pcm)
556 {
557         int err;
558
559         err = snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK,
560                         NULL, 0, (unsigned long)intelhaddata,
561                         &intelhaddata->chmap);
562         if (err < 0)
563                 return err;
564
565         intelhaddata->chmap->private_data = intelhaddata;
566         intelhaddata->chmap->kctl->info = had_chmap_ctl_info;
567         intelhaddata->chmap->kctl->get = had_chmap_ctl_get;
568         intelhaddata->chmap->chmap = NULL;
569         return 0;
570 }
571
572 /*
573  * Initialize Data Island Packets registers
574  * This function is called in the prepare callback
575  */
576 static void had_prog_dip(struct snd_pcm_substream *substream,
577                          struct snd_intelhad *intelhaddata)
578 {
579         int i;
580         union aud_ctrl_st ctrl_state = {.regval = 0};
581         union aud_info_frame2 frame2 = {.regval = 0};
582         union aud_info_frame3 frame3 = {.regval = 0};
583         u8 checksum = 0;
584         u32 info_frame;
585         int channels;
586         int ca;
587
588         channels = substream->runtime->channels;
589
590         had_write_register(intelhaddata, AUD_CNTL_ST, ctrl_state.regval);
591
592         ca = had_channel_allocation(intelhaddata, channels);
593         if (intelhaddata->dp_output) {
594                 info_frame = DP_INFO_FRAME_WORD1;
595                 frame2.regval = (substream->runtime->channels - 1) | (ca << 24);
596         } else {
597                 info_frame = HDMI_INFO_FRAME_WORD1;
598                 frame2.regx.chnl_cnt = substream->runtime->channels - 1;
599                 frame3.regx.chnl_alloc = ca;
600
601                 /* Calculte the byte wide checksum for all valid DIP words */
602                 for (i = 0; i < BYTES_PER_WORD; i++)
603                         checksum += (info_frame >> (i * 8)) & 0xff;
604                 for (i = 0; i < BYTES_PER_WORD; i++)
605                         checksum += (frame2.regval >> (i * 8)) & 0xff;
606                 for (i = 0; i < BYTES_PER_WORD; i++)
607                         checksum += (frame3.regval >> (i * 8)) & 0xff;
608
609                 frame2.regx.chksum = -(checksum);
610         }
611
612         had_write_register(intelhaddata, AUD_HDMIW_INFOFR, info_frame);
613         had_write_register(intelhaddata, AUD_HDMIW_INFOFR, frame2.regval);
614         had_write_register(intelhaddata, AUD_HDMIW_INFOFR, frame3.regval);
615
616         /* program remaining DIP words with zero */
617         for (i = 0; i < HAD_MAX_DIP_WORDS-VALID_DIP_WORDS; i++)
618                 had_write_register(intelhaddata, AUD_HDMIW_INFOFR, 0x0);
619
620         ctrl_state.regx.dip_freq = 1;
621         ctrl_state.regx.dip_en_sta = 1;
622         had_write_register(intelhaddata, AUD_CNTL_ST, ctrl_state.regval);
623 }
624
625 static int had_calculate_maud_value(u32 aud_samp_freq, u32 link_rate)
626 {
627         u32 maud_val;
628
629         /* Select maud according to DP 1.2 spec */
630         if (link_rate == DP_2_7_GHZ) {
631                 switch (aud_samp_freq) {
632                 case AUD_SAMPLE_RATE_32:
633                         maud_val = AUD_SAMPLE_RATE_32_DP_2_7_MAUD_VAL;
634                         break;
635
636                 case AUD_SAMPLE_RATE_44_1:
637                         maud_val = AUD_SAMPLE_RATE_44_1_DP_2_7_MAUD_VAL;
638                         break;
639
640                 case AUD_SAMPLE_RATE_48:
641                         maud_val = AUD_SAMPLE_RATE_48_DP_2_7_MAUD_VAL;
642                         break;
643
644                 case AUD_SAMPLE_RATE_88_2:
645                         maud_val = AUD_SAMPLE_RATE_88_2_DP_2_7_MAUD_VAL;
646                         break;
647
648                 case AUD_SAMPLE_RATE_96:
649                         maud_val = AUD_SAMPLE_RATE_96_DP_2_7_MAUD_VAL;
650                         break;
651
652                 case AUD_SAMPLE_RATE_176_4:
653                         maud_val = AUD_SAMPLE_RATE_176_4_DP_2_7_MAUD_VAL;
654                         break;
655
656                 case HAD_MAX_RATE:
657                         maud_val = HAD_MAX_RATE_DP_2_7_MAUD_VAL;
658                         break;
659
660                 default:
661                         maud_val = -EINVAL;
662                         break;
663                 }
664         } else if (link_rate == DP_1_62_GHZ) {
665                 switch (aud_samp_freq) {
666                 case AUD_SAMPLE_RATE_32:
667                         maud_val = AUD_SAMPLE_RATE_32_DP_1_62_MAUD_VAL;
668                         break;
669
670                 case AUD_SAMPLE_RATE_44_1:
671                         maud_val = AUD_SAMPLE_RATE_44_1_DP_1_62_MAUD_VAL;
672                         break;
673
674                 case AUD_SAMPLE_RATE_48:
675                         maud_val = AUD_SAMPLE_RATE_48_DP_1_62_MAUD_VAL;
676                         break;
677
678                 case AUD_SAMPLE_RATE_88_2:
679                         maud_val = AUD_SAMPLE_RATE_88_2_DP_1_62_MAUD_VAL;
680                         break;
681
682                 case AUD_SAMPLE_RATE_96:
683                         maud_val = AUD_SAMPLE_RATE_96_DP_1_62_MAUD_VAL;
684                         break;
685
686                 case AUD_SAMPLE_RATE_176_4:
687                         maud_val = AUD_SAMPLE_RATE_176_4_DP_1_62_MAUD_VAL;
688                         break;
689
690                 case HAD_MAX_RATE:
691                         maud_val = HAD_MAX_RATE_DP_1_62_MAUD_VAL;
692                         break;
693
694                 default:
695                         maud_val = -EINVAL;
696                         break;
697                 }
698         } else
699                 maud_val = -EINVAL;
700
701         return maud_val;
702 }
703
704 /*
705  * Program HDMI audio CTS value
706  *
707  * @aud_samp_freq: sampling frequency of audio data
708  * @tmds: sampling frequency of the display data
709  * @link_rate: DP link rate
710  * @n_param: N value, depends on aud_samp_freq
711  * @intelhaddata: substream private data
712  *
713  * Program CTS register based on the audio and display sampling frequency
714  */
715 static void had_prog_cts(u32 aud_samp_freq, u32 tmds, u32 link_rate,
716                          u32 n_param, struct snd_intelhad *intelhaddata)
717 {
718         u32 cts_val;
719         u64 dividend, divisor;
720
721         if (intelhaddata->dp_output) {
722                 /* Substitute cts_val with Maud according to DP 1.2 spec*/
723                 cts_val = had_calculate_maud_value(aud_samp_freq, link_rate);
724         } else {
725                 /* Calculate CTS according to HDMI 1.3a spec*/
726                 dividend = (u64)tmds * n_param*1000;
727                 divisor = 128 * aud_samp_freq;
728                 cts_val = div64_u64(dividend, divisor);
729         }
730         dev_dbg(intelhaddata->dev, "TMDS value=%d, N value=%d, CTS Value=%d\n",
731                  tmds, n_param, cts_val);
732         had_write_register(intelhaddata, AUD_HDMI_CTS, (BIT(24) | cts_val));
733 }
734
735 static int had_calculate_n_value(u32 aud_samp_freq)
736 {
737         int n_val;
738
739         /* Select N according to HDMI 1.3a spec*/
740         switch (aud_samp_freq) {
741         case AUD_SAMPLE_RATE_32:
742                 n_val = 4096;
743                 break;
744
745         case AUD_SAMPLE_RATE_44_1:
746                 n_val = 6272;
747                 break;
748
749         case AUD_SAMPLE_RATE_48:
750                 n_val = 6144;
751                 break;
752
753         case AUD_SAMPLE_RATE_88_2:
754                 n_val = 12544;
755                 break;
756
757         case AUD_SAMPLE_RATE_96:
758                 n_val = 12288;
759                 break;
760
761         case AUD_SAMPLE_RATE_176_4:
762                 n_val = 25088;
763                 break;
764
765         case HAD_MAX_RATE:
766                 n_val = 24576;
767                 break;
768
769         default:
770                 n_val = -EINVAL;
771                 break;
772         }
773         return n_val;
774 }
775
776 /*
777  * Program HDMI audio N value
778  *
779  * @aud_samp_freq: sampling frequency of audio data
780  * @n_param: N value, depends on aud_samp_freq
781  * @intelhaddata: substream private data
782  *
783  * This function is called in the prepare callback.
784  * It programs based on the audio and display sampling frequency
785  */
786 static int had_prog_n(u32 aud_samp_freq, u32 *n_param,
787                       struct snd_intelhad *intelhaddata)
788 {
789         int n_val;
790
791         if (intelhaddata->dp_output) {
792                 /*
793                  * According to DP specs, Maud and Naud values hold
794                  * a relationship, which is stated as:
795                  * Maud/Naud = 512 * fs / f_LS_Clk
796                  * where, fs is the sampling frequency of the audio stream
797                  * and Naud is 32768 for Async clock.
798                  */
799
800                 n_val = DP_NAUD_VAL;
801         } else
802                 n_val = had_calculate_n_value(aud_samp_freq);
803
804         if (n_val < 0)
805                 return n_val;
806
807         had_write_register(intelhaddata, AUD_N_ENABLE, (BIT(24) | n_val));
808         *n_param = n_val;
809         return 0;
810 }
811
812 /*
813  * PCM ring buffer handling
814  *
815  * The hardware provides a ring buffer with the fixed 4 buffer descriptors
816  * (BDs).  The driver maps these 4 BDs onto the PCM ring buffer.  The mapping
817  * moves at each period elapsed.  The below illustrates how it works:
818  *
819  * At time=0
820  *  PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
821  *  BD  | 0 | 1 | 2 | 3 |
822  *
823  * At time=1 (period elapsed)
824  *  PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
825  *  BD      | 1 | 2 | 3 | 0 |
826  *
827  * At time=2 (second period elapsed)
828  *  PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
829  *  BD          | 2 | 3 | 0 | 1 |
830  *
831  * The bd_head field points to the index of the BD to be read.  It's also the
832  * position to be filled at next.  The pcm_head and the pcm_filled fields
833  * point to the indices of the current position and of the next position to
834  * be filled, respectively.  For PCM buffer there are both _head and _filled
835  * because they may be difference when nperiods > 4.  For example, in the
836  * example above at t=1, bd_head=1 and pcm_head=1 while pcm_filled=5:
837  *
838  * pcm_head (=1) --v               v-- pcm_filled (=5)
839  *       PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
840  *       BD      | 1 | 2 | 3 | 0 |
841  *  bd_head (=1) --^               ^-- next to fill (= bd_head)
842  *
843  * For nperiods < 4, the remaining BDs out of 4 are marked as invalid, so that
844  * the hardware skips those BDs in the loop.
845  *
846  * An exceptional setup is the case with nperiods=1.  Since we have to update
847  * BDs after finishing one BD processing, we'd need at least two BDs, where
848  * both BDs point to the same content, the same address, the same size of the
849  * whole PCM buffer.
850  */
851
852 #define AUD_BUF_ADDR(x)         (AUD_BUF_A_ADDR + (x) * HAD_REG_WIDTH)
853 #define AUD_BUF_LEN(x)          (AUD_BUF_A_LENGTH + (x) * HAD_REG_WIDTH)
854
855 /* Set up a buffer descriptor at the "filled" position */
856 static void had_prog_bd(struct snd_pcm_substream *substream,
857                         struct snd_intelhad *intelhaddata)
858 {
859         int idx = intelhaddata->bd_head;
860         int ofs = intelhaddata->pcmbuf_filled * intelhaddata->period_bytes;
861         u32 addr = substream->runtime->dma_addr + ofs;
862
863         addr |= AUD_BUF_VALID;
864         if (!substream->runtime->no_period_wakeup)
865                 addr |= AUD_BUF_INTR_EN;
866         had_write_register(intelhaddata, AUD_BUF_ADDR(idx), addr);
867         had_write_register(intelhaddata, AUD_BUF_LEN(idx),
868                            intelhaddata->period_bytes);
869
870         /* advance the indices to the next */
871         intelhaddata->bd_head++;
872         intelhaddata->bd_head %= intelhaddata->num_bds;
873         intelhaddata->pcmbuf_filled++;
874         intelhaddata->pcmbuf_filled %= substream->runtime->periods;
875 }
876
877 /* invalidate a buffer descriptor with the given index */
878 static void had_invalidate_bd(struct snd_intelhad *intelhaddata,
879                               int idx)
880 {
881         had_write_register(intelhaddata, AUD_BUF_ADDR(idx), 0);
882         had_write_register(intelhaddata, AUD_BUF_LEN(idx), 0);
883 }
884
885 /* Initial programming of ring buffer */
886 static void had_init_ringbuf(struct snd_pcm_substream *substream,
887                              struct snd_intelhad *intelhaddata)
888 {
889         struct snd_pcm_runtime *runtime = substream->runtime;
890         int i, num_periods;
891
892         num_periods = runtime->periods;
893         intelhaddata->num_bds = min(num_periods, HAD_NUM_OF_RING_BUFS);
894         /* set the minimum 2 BDs for num_periods=1 */
895         intelhaddata->num_bds = max(intelhaddata->num_bds, 2U);
896         intelhaddata->period_bytes =
897                 frames_to_bytes(runtime, runtime->period_size);
898         WARN_ON(intelhaddata->period_bytes & 0x3f);
899
900         intelhaddata->bd_head = 0;
901         intelhaddata->pcmbuf_head = 0;
902         intelhaddata->pcmbuf_filled = 0;
903
904         for (i = 0; i < HAD_NUM_OF_RING_BUFS; i++) {
905                 if (i < intelhaddata->num_bds)
906                         had_prog_bd(substream, intelhaddata);
907                 else /* invalidate the rest */
908                         had_invalidate_bd(intelhaddata, i);
909         }
910
911         intelhaddata->bd_head = 0; /* reset at head again before starting */
912 }
913
914 /* process a bd, advance to the next */
915 static void had_advance_ringbuf(struct snd_pcm_substream *substream,
916                                 struct snd_intelhad *intelhaddata)
917 {
918         int num_periods = substream->runtime->periods;
919
920         /* reprogram the next buffer */
921         had_prog_bd(substream, intelhaddata);
922
923         /* proceed to next */
924         intelhaddata->pcmbuf_head++;
925         intelhaddata->pcmbuf_head %= num_periods;
926 }
927
928 /* process the current BD(s);
929  * returns the current PCM buffer byte position, or -EPIPE for underrun.
930  */
931 static int had_process_ringbuf(struct snd_pcm_substream *substream,
932                                struct snd_intelhad *intelhaddata)
933 {
934         int len, processed;
935         unsigned long flags;
936
937         processed = 0;
938         spin_lock_irqsave(&intelhaddata->had_spinlock, flags);
939         for (;;) {
940                 /* get the remaining bytes on the buffer */
941                 had_read_register(intelhaddata,
942                                   AUD_BUF_LEN(intelhaddata->bd_head),
943                                   &len);
944                 if (len < 0 || len > intelhaddata->period_bytes) {
945                         dev_dbg(intelhaddata->dev, "Invalid buf length %d\n",
946                                 len);
947                         len = -EPIPE;
948                         goto out;
949                 }
950
951                 if (len > 0) /* OK, this is the current buffer */
952                         break;
953
954                 /* len=0 => already empty, check the next buffer */
955                 if (++processed >= intelhaddata->num_bds) {
956                         len = -EPIPE; /* all empty? - report underrun */
957                         goto out;
958                 }
959                 had_advance_ringbuf(substream, intelhaddata);
960         }
961
962         len = intelhaddata->period_bytes - len;
963         len += intelhaddata->period_bytes * intelhaddata->pcmbuf_head;
964  out:
965         spin_unlock_irqrestore(&intelhaddata->had_spinlock, flags);
966         return len;
967 }
968
969 /* called from irq handler */
970 static void had_process_buffer_done(struct snd_intelhad *intelhaddata)
971 {
972         struct snd_pcm_substream *substream;
973
974         substream = had_substream_get(intelhaddata);
975         if (!substream)
976                 return; /* no stream? - bail out */
977
978         if (!intelhaddata->connected) {
979                 snd_pcm_stop_xrun(substream);
980                 goto out; /* disconnected? - bail out */
981         }
982
983         /* process or stop the stream */
984         if (had_process_ringbuf(substream, intelhaddata) < 0)
985                 snd_pcm_stop_xrun(substream);
986         else
987                 snd_pcm_period_elapsed(substream);
988
989  out:
990         had_substream_put(intelhaddata);
991 }
992
993 /*
994  * The interrupt status 'sticky' bits might not be cleared by
995  * setting '1' to that bit once...
996  */
997 static void wait_clear_underrun_bit(struct snd_intelhad *intelhaddata)
998 {
999         int i;
1000         u32 val;
1001
1002         for (i = 0; i < 100; i++) {
1003                 /* clear bit30, 31 AUD_HDMI_STATUS */
1004                 had_read_register(intelhaddata, AUD_HDMI_STATUS, &val);
1005                 if (!(val & AUD_HDMI_STATUS_MASK_UNDERRUN))
1006                         return;
1007                 udelay(100);
1008                 cond_resched();
1009                 had_write_register(intelhaddata, AUD_HDMI_STATUS, val);
1010         }
1011         dev_err(intelhaddata->dev, "Unable to clear UNDERRUN bits\n");
1012 }
1013
1014 /* Perform some reset procedure but only when need_reset is set;
1015  * this is called from prepare or hw_free callbacks once after trigger STOP
1016  * or underrun has been processed in order to settle down the h/w state.
1017  */
1018 static void had_do_reset(struct snd_intelhad *intelhaddata)
1019 {
1020         if (!intelhaddata->need_reset || !intelhaddata->connected)
1021                 return;
1022
1023         /* Reset buffer pointers */
1024         had_reset_audio(intelhaddata);
1025         wait_clear_underrun_bit(intelhaddata);
1026         intelhaddata->need_reset = false;
1027 }
1028
1029 /* called from irq handler */
1030 static void had_process_buffer_underrun(struct snd_intelhad *intelhaddata)
1031 {
1032         struct snd_pcm_substream *substream;
1033
1034         /* Report UNDERRUN error to above layers */
1035         substream = had_substream_get(intelhaddata);
1036         if (substream) {
1037                 snd_pcm_stop_xrun(substream);
1038                 had_substream_put(intelhaddata);
1039         }
1040         intelhaddata->need_reset = true;
1041 }
1042
1043 /*
1044  * ALSA PCM open callback
1045  */
1046 static int had_pcm_open(struct snd_pcm_substream *substream)
1047 {
1048         struct snd_intelhad *intelhaddata;
1049         struct snd_pcm_runtime *runtime;
1050         int retval;
1051
1052         intelhaddata = snd_pcm_substream_chip(substream);
1053         runtime = substream->runtime;
1054
1055         pm_runtime_get_sync(intelhaddata->dev);
1056
1057         /* set the runtime hw parameter with local snd_pcm_hardware struct */
1058         runtime->hw = had_pcm_hardware;
1059
1060         retval = snd_pcm_hw_constraint_integer(runtime,
1061                          SNDRV_PCM_HW_PARAM_PERIODS);
1062         if (retval < 0)
1063                 goto error;
1064
1065         /* Make sure, that the period size is always aligned
1066          * 64byte boundary
1067          */
1068         retval = snd_pcm_hw_constraint_step(substream->runtime, 0,
1069                         SNDRV_PCM_HW_PARAM_PERIOD_BYTES, 64);
1070         if (retval < 0)
1071                 goto error;
1072
1073         retval = snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24);
1074         if (retval < 0)
1075                 goto error;
1076
1077         /* expose PCM substream */
1078         spin_lock_irq(&intelhaddata->had_spinlock);
1079         intelhaddata->stream_info.substream = substream;
1080         intelhaddata->stream_info.substream_refcount++;
1081         spin_unlock_irq(&intelhaddata->had_spinlock);
1082
1083         return retval;
1084  error:
1085         pm_runtime_mark_last_busy(intelhaddata->dev);
1086         pm_runtime_put_autosuspend(intelhaddata->dev);
1087         return retval;
1088 }
1089
1090 /*
1091  * ALSA PCM close callback
1092  */
1093 static int had_pcm_close(struct snd_pcm_substream *substream)
1094 {
1095         struct snd_intelhad *intelhaddata;
1096
1097         intelhaddata = snd_pcm_substream_chip(substream);
1098
1099         /* unreference and sync with the pending PCM accesses */
1100         spin_lock_irq(&intelhaddata->had_spinlock);
1101         intelhaddata->stream_info.substream = NULL;
1102         intelhaddata->stream_info.substream_refcount--;
1103         while (intelhaddata->stream_info.substream_refcount > 0) {
1104                 spin_unlock_irq(&intelhaddata->had_spinlock);
1105                 cpu_relax();
1106                 spin_lock_irq(&intelhaddata->had_spinlock);
1107         }
1108         spin_unlock_irq(&intelhaddata->had_spinlock);
1109
1110         pm_runtime_mark_last_busy(intelhaddata->dev);
1111         pm_runtime_put_autosuspend(intelhaddata->dev);
1112         return 0;
1113 }
1114
1115 /*
1116  * ALSA PCM hw_params callback
1117  */
1118 static int had_pcm_hw_params(struct snd_pcm_substream *substream,
1119                              struct snd_pcm_hw_params *hw_params)
1120 {
1121         struct snd_intelhad *intelhaddata;
1122         unsigned long addr;
1123         int pages, buf_size, retval;
1124
1125         intelhaddata = snd_pcm_substream_chip(substream);
1126         buf_size = params_buffer_bytes(hw_params);
1127         retval = snd_pcm_lib_malloc_pages(substream, buf_size);
1128         if (retval < 0)
1129                 return retval;
1130         dev_dbg(intelhaddata->dev, "%s:allocated memory = %d\n",
1131                 __func__, buf_size);
1132         /* mark the pages as uncached region */
1133         addr = (unsigned long) substream->runtime->dma_area;
1134         pages = (substream->runtime->dma_bytes + PAGE_SIZE - 1) / PAGE_SIZE;
1135         retval = set_memory_uc(addr, pages);
1136         if (retval) {
1137                 dev_err(intelhaddata->dev, "set_memory_uc failed.Error:%d\n",
1138                         retval);
1139                 return retval;
1140         }
1141         memset(substream->runtime->dma_area, 0, buf_size);
1142
1143         return retval;
1144 }
1145
1146 /*
1147  * ALSA PCM hw_free callback
1148  */
1149 static int had_pcm_hw_free(struct snd_pcm_substream *substream)
1150 {
1151         struct snd_intelhad *intelhaddata;
1152         unsigned long addr;
1153         u32 pages;
1154
1155         intelhaddata = snd_pcm_substream_chip(substream);
1156         had_do_reset(intelhaddata);
1157
1158         /* mark back the pages as cached/writeback region before the free */
1159         if (substream->runtime->dma_area != NULL) {
1160                 addr = (unsigned long) substream->runtime->dma_area;
1161                 pages = (substream->runtime->dma_bytes + PAGE_SIZE - 1) /
1162                                                                 PAGE_SIZE;
1163                 set_memory_wb(addr, pages);
1164                 return snd_pcm_lib_free_pages(substream);
1165         }
1166         return 0;
1167 }
1168
1169 /*
1170  * ALSA PCM trigger callback
1171  */
1172 static int had_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
1173 {
1174         int retval = 0;
1175         struct snd_intelhad *intelhaddata;
1176
1177         intelhaddata = snd_pcm_substream_chip(substream);
1178
1179         spin_lock(&intelhaddata->had_spinlock);
1180         switch (cmd) {
1181         case SNDRV_PCM_TRIGGER_START:
1182         case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
1183         case SNDRV_PCM_TRIGGER_RESUME:
1184                 /* Enable Audio */
1185                 had_ack_irqs(intelhaddata); /* FIXME: do we need this? */
1186                 had_enable_audio(intelhaddata, true);
1187                 break;
1188
1189         case SNDRV_PCM_TRIGGER_STOP:
1190         case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
1191                 /* Disable Audio */
1192                 had_enable_audio(intelhaddata, false);
1193                 intelhaddata->need_reset = true;
1194                 break;
1195
1196         default:
1197                 retval = -EINVAL;
1198         }
1199         spin_unlock(&intelhaddata->had_spinlock);
1200         return retval;
1201 }
1202
1203 /*
1204  * ALSA PCM prepare callback
1205  */
1206 static int had_pcm_prepare(struct snd_pcm_substream *substream)
1207 {
1208         int retval;
1209         u32 disp_samp_freq, n_param;
1210         u32 link_rate = 0;
1211         struct snd_intelhad *intelhaddata;
1212         struct snd_pcm_runtime *runtime;
1213
1214         intelhaddata = snd_pcm_substream_chip(substream);
1215         runtime = substream->runtime;
1216
1217         dev_dbg(intelhaddata->dev, "period_size=%d\n",
1218                 (int)frames_to_bytes(runtime, runtime->period_size));
1219         dev_dbg(intelhaddata->dev, "periods=%d\n", runtime->periods);
1220         dev_dbg(intelhaddata->dev, "buffer_size=%d\n",
1221                 (int)snd_pcm_lib_buffer_bytes(substream));
1222         dev_dbg(intelhaddata->dev, "rate=%d\n", runtime->rate);
1223         dev_dbg(intelhaddata->dev, "channels=%d\n", runtime->channels);
1224
1225         had_do_reset(intelhaddata);
1226
1227         /* Get N value in KHz */
1228         disp_samp_freq = intelhaddata->tmds_clock_speed;
1229
1230         retval = had_prog_n(substream->runtime->rate, &n_param, intelhaddata);
1231         if (retval) {
1232                 dev_err(intelhaddata->dev,
1233                         "programming N value failed %#x\n", retval);
1234                 goto prep_end;
1235         }
1236
1237         if (intelhaddata->dp_output)
1238                 link_rate = intelhaddata->link_rate;
1239
1240         had_prog_cts(substream->runtime->rate, disp_samp_freq, link_rate,
1241                      n_param, intelhaddata);
1242
1243         had_prog_dip(substream, intelhaddata);
1244
1245         retval = had_init_audio_ctrl(substream, intelhaddata);
1246
1247         /* Prog buffer address */
1248         had_init_ringbuf(substream, intelhaddata);
1249
1250         /*
1251          * Program channel mapping in following order:
1252          * FL, FR, C, LFE, RL, RR
1253          */
1254
1255         had_write_register(intelhaddata, AUD_BUF_CH_SWAP, SWAP_LFE_CENTER);
1256
1257 prep_end:
1258         return retval;
1259 }
1260
1261 /*
1262  * ALSA PCM pointer callback
1263  */
1264 static snd_pcm_uframes_t had_pcm_pointer(struct snd_pcm_substream *substream)
1265 {
1266         struct snd_intelhad *intelhaddata;
1267         int len;
1268
1269         intelhaddata = snd_pcm_substream_chip(substream);
1270
1271         if (!intelhaddata->connected)
1272                 return SNDRV_PCM_POS_XRUN;
1273
1274         len = had_process_ringbuf(substream, intelhaddata);
1275         if (len < 0)
1276                 return SNDRV_PCM_POS_XRUN;
1277         len = bytes_to_frames(substream->runtime, len);
1278         /* wrapping may happen when periods=1 */
1279         len %= substream->runtime->buffer_size;
1280         return len;
1281 }
1282
1283 /*
1284  * ALSA PCM mmap callback
1285  */
1286 static int had_pcm_mmap(struct snd_pcm_substream *substream,
1287                         struct vm_area_struct *vma)
1288 {
1289         vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1290         return remap_pfn_range(vma, vma->vm_start,
1291                         substream->dma_buffer.addr >> PAGE_SHIFT,
1292                         vma->vm_end - vma->vm_start, vma->vm_page_prot);
1293 }
1294
1295 /*
1296  * ALSA PCM ops
1297  */
1298 static const struct snd_pcm_ops had_pcm_ops = {
1299         .open =         had_pcm_open,
1300         .close =        had_pcm_close,
1301         .ioctl =        snd_pcm_lib_ioctl,
1302         .hw_params =    had_pcm_hw_params,
1303         .hw_free =      had_pcm_hw_free,
1304         .prepare =      had_pcm_prepare,
1305         .trigger =      had_pcm_trigger,
1306         .pointer =      had_pcm_pointer,
1307         .mmap =         had_pcm_mmap,
1308 };
1309
1310 /* process mode change of the running stream; called in mutex */
1311 static int had_process_mode_change(struct snd_intelhad *intelhaddata)
1312 {
1313         struct snd_pcm_substream *substream;
1314         int retval = 0;
1315         u32 disp_samp_freq, n_param;
1316         u32 link_rate = 0;
1317
1318         substream = had_substream_get(intelhaddata);
1319         if (!substream)
1320                 return 0;
1321
1322         /* Disable Audio */
1323         had_enable_audio(intelhaddata, false);
1324
1325         /* Update CTS value */
1326         disp_samp_freq = intelhaddata->tmds_clock_speed;
1327
1328         retval = had_prog_n(substream->runtime->rate, &n_param, intelhaddata);
1329         if (retval) {
1330                 dev_err(intelhaddata->dev,
1331                         "programming N value failed %#x\n", retval);
1332                 goto out;
1333         }
1334
1335         if (intelhaddata->dp_output)
1336                 link_rate = intelhaddata->link_rate;
1337
1338         had_prog_cts(substream->runtime->rate, disp_samp_freq, link_rate,
1339                      n_param, intelhaddata);
1340
1341         /* Enable Audio */
1342         had_enable_audio(intelhaddata, true);
1343
1344 out:
1345         had_substream_put(intelhaddata);
1346         return retval;
1347 }
1348
1349 /* process hot plug, called from wq with mutex locked */
1350 static void had_process_hot_plug(struct snd_intelhad *intelhaddata)
1351 {
1352         struct snd_pcm_substream *substream;
1353
1354         spin_lock_irq(&intelhaddata->had_spinlock);
1355         if (intelhaddata->connected) {
1356                 dev_dbg(intelhaddata->dev, "Device already connected\n");
1357                 spin_unlock_irq(&intelhaddata->had_spinlock);
1358                 return;
1359         }
1360
1361         intelhaddata->connected = true;
1362         dev_dbg(intelhaddata->dev,
1363                 "%s @ %d:DEBUG PLUG/UNPLUG : HAD_DRV_CONNECTED\n",
1364                         __func__, __LINE__);
1365         spin_unlock_irq(&intelhaddata->had_spinlock);
1366
1367         had_build_channel_allocation_map(intelhaddata);
1368
1369         /* Report to above ALSA layer */
1370         substream = had_substream_get(intelhaddata);
1371         if (substream) {
1372                 snd_pcm_stop_xrun(substream);
1373                 had_substream_put(intelhaddata);
1374         }
1375
1376         snd_jack_report(intelhaddata->jack, SND_JACK_AVOUT);
1377 }
1378
1379 /* process hot unplug, called from wq with mutex locked */
1380 static void had_process_hot_unplug(struct snd_intelhad *intelhaddata)
1381 {
1382         struct snd_pcm_substream *substream;
1383
1384         spin_lock_irq(&intelhaddata->had_spinlock);
1385         if (!intelhaddata->connected) {
1386                 dev_dbg(intelhaddata->dev, "Device already disconnected\n");
1387                 spin_unlock_irq(&intelhaddata->had_spinlock);
1388                 return;
1389
1390         }
1391
1392         /* Disable Audio */
1393         had_enable_audio(intelhaddata, false);
1394
1395         intelhaddata->connected = false;
1396         dev_dbg(intelhaddata->dev,
1397                 "%s @ %d:DEBUG PLUG/UNPLUG : HAD_DRV_DISCONNECTED\n",
1398                         __func__, __LINE__);
1399         spin_unlock_irq(&intelhaddata->had_spinlock);
1400
1401         kfree(intelhaddata->chmap->chmap);
1402         intelhaddata->chmap->chmap = NULL;
1403
1404         /* Report to above ALSA layer */
1405         substream = had_substream_get(intelhaddata);
1406         if (substream) {
1407                 snd_pcm_stop_xrun(substream);
1408                 had_substream_put(intelhaddata);
1409         }
1410
1411         snd_jack_report(intelhaddata->jack, 0);
1412 }
1413
1414 /*
1415  * ALSA iec958 and ELD controls
1416  */
1417
1418 static int had_iec958_info(struct snd_kcontrol *kcontrol,
1419                                 struct snd_ctl_elem_info *uinfo)
1420 {
1421         uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1422         uinfo->count = 1;
1423         return 0;
1424 }
1425
1426 static int had_iec958_get(struct snd_kcontrol *kcontrol,
1427                                 struct snd_ctl_elem_value *ucontrol)
1428 {
1429         struct snd_intelhad *intelhaddata = snd_kcontrol_chip(kcontrol);
1430
1431         mutex_lock(&intelhaddata->mutex);
1432         ucontrol->value.iec958.status[0] = (intelhaddata->aes_bits >> 0) & 0xff;
1433         ucontrol->value.iec958.status[1] = (intelhaddata->aes_bits >> 8) & 0xff;
1434         ucontrol->value.iec958.status[2] =
1435                                         (intelhaddata->aes_bits >> 16) & 0xff;
1436         ucontrol->value.iec958.status[3] =
1437                                         (intelhaddata->aes_bits >> 24) & 0xff;
1438         mutex_unlock(&intelhaddata->mutex);
1439         return 0;
1440 }
1441
1442 static int had_iec958_mask_get(struct snd_kcontrol *kcontrol,
1443                                 struct snd_ctl_elem_value *ucontrol)
1444 {
1445         ucontrol->value.iec958.status[0] = 0xff;
1446         ucontrol->value.iec958.status[1] = 0xff;
1447         ucontrol->value.iec958.status[2] = 0xff;
1448         ucontrol->value.iec958.status[3] = 0xff;
1449         return 0;
1450 }
1451
1452 static int had_iec958_put(struct snd_kcontrol *kcontrol,
1453                                 struct snd_ctl_elem_value *ucontrol)
1454 {
1455         unsigned int val;
1456         struct snd_intelhad *intelhaddata = snd_kcontrol_chip(kcontrol);
1457         int changed = 0;
1458
1459         val = (ucontrol->value.iec958.status[0] << 0) |
1460                 (ucontrol->value.iec958.status[1] << 8) |
1461                 (ucontrol->value.iec958.status[2] << 16) |
1462                 (ucontrol->value.iec958.status[3] << 24);
1463         mutex_lock(&intelhaddata->mutex);
1464         if (intelhaddata->aes_bits != val) {
1465                 intelhaddata->aes_bits = val;
1466                 changed = 1;
1467         }
1468         mutex_unlock(&intelhaddata->mutex);
1469         return changed;
1470 }
1471
1472 static int had_ctl_eld_info(struct snd_kcontrol *kcontrol,
1473                             struct snd_ctl_elem_info *uinfo)
1474 {
1475         uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
1476         uinfo->count = HDMI_MAX_ELD_BYTES;
1477         return 0;
1478 }
1479
1480 static int had_ctl_eld_get(struct snd_kcontrol *kcontrol,
1481                            struct snd_ctl_elem_value *ucontrol)
1482 {
1483         struct snd_intelhad *intelhaddata = snd_kcontrol_chip(kcontrol);
1484
1485         mutex_lock(&intelhaddata->mutex);
1486         memcpy(ucontrol->value.bytes.data, intelhaddata->eld,
1487                HDMI_MAX_ELD_BYTES);
1488         mutex_unlock(&intelhaddata->mutex);
1489         return 0;
1490 }
1491
1492 static const struct snd_kcontrol_new had_controls[] = {
1493         {
1494                 .access = SNDRV_CTL_ELEM_ACCESS_READ,
1495                 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
1496                 .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, MASK),
1497                 .info = had_iec958_info, /* shared */
1498                 .get = had_iec958_mask_get,
1499         },
1500         {
1501                 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
1502                 .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, DEFAULT),
1503                 .info = had_iec958_info,
1504                 .get = had_iec958_get,
1505                 .put = had_iec958_put,
1506         },
1507         {
1508                 .access = (SNDRV_CTL_ELEM_ACCESS_READ |
1509                            SNDRV_CTL_ELEM_ACCESS_VOLATILE),
1510                 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
1511                 .name = "ELD",
1512                 .info = had_ctl_eld_info,
1513                 .get = had_ctl_eld_get,
1514         },
1515 };
1516
1517 /*
1518  * audio interrupt handler
1519  */
1520 static irqreturn_t display_pipe_interrupt_handler(int irq, void *dev_id)
1521 {
1522         struct snd_intelhad *ctx = dev_id;
1523         u32 audio_stat;
1524
1525         /* use raw register access to ack IRQs even while disconnected */
1526         audio_stat = had_read_register_raw(ctx, AUD_HDMI_STATUS);
1527
1528         if (audio_stat & HDMI_AUDIO_UNDERRUN) {
1529                 had_write_register_raw(ctx, AUD_HDMI_STATUS,
1530                                        HDMI_AUDIO_UNDERRUN);
1531                 had_process_buffer_underrun(ctx);
1532         }
1533
1534         if (audio_stat & HDMI_AUDIO_BUFFER_DONE) {
1535                 had_write_register_raw(ctx, AUD_HDMI_STATUS,
1536                                        HDMI_AUDIO_BUFFER_DONE);
1537                 had_process_buffer_done(ctx);
1538         }
1539
1540         return IRQ_HANDLED;
1541 }
1542
1543 /*
1544  * monitor plug/unplug notification from i915; just kick off the work
1545  */
1546 static void notify_audio_lpe(struct platform_device *pdev)
1547 {
1548         struct snd_intelhad *ctx = platform_get_drvdata(pdev);
1549
1550         schedule_work(&ctx->hdmi_audio_wq);
1551 }
1552
1553 /* the work to handle monitor hot plug/unplug */
1554 static void had_audio_wq(struct work_struct *work)
1555 {
1556         struct snd_intelhad *ctx =
1557                 container_of(work, struct snd_intelhad, hdmi_audio_wq);
1558         struct intel_hdmi_lpe_audio_pdata *pdata = ctx->dev->platform_data;
1559
1560         pm_runtime_get_sync(ctx->dev);
1561         mutex_lock(&ctx->mutex);
1562         if (!pdata->hdmi_connected) {
1563                 dev_dbg(ctx->dev, "%s: Event: HAD_NOTIFY_HOT_UNPLUG\n",
1564                         __func__);
1565                 memset(ctx->eld, 0, sizeof(ctx->eld)); /* clear the old ELD */
1566                 had_process_hot_unplug(ctx);
1567         } else {
1568                 struct intel_hdmi_lpe_audio_eld *eld = &pdata->eld;
1569
1570                 dev_dbg(ctx->dev, "%s: HAD_NOTIFY_ELD : port = %d, tmds = %d\n",
1571                         __func__, eld->port_id, pdata->tmds_clock_speed);
1572
1573                 switch (eld->pipe_id) {
1574                 case 0:
1575                         ctx->had_config_offset = AUDIO_HDMI_CONFIG_A;
1576                         break;
1577                 case 1:
1578                         ctx->had_config_offset = AUDIO_HDMI_CONFIG_B;
1579                         break;
1580                 case 2:
1581                         ctx->had_config_offset = AUDIO_HDMI_CONFIG_C;
1582                         break;
1583                 default:
1584                         dev_dbg(ctx->dev, "Invalid pipe %d\n",
1585                                 eld->pipe_id);
1586                         break;
1587                 }
1588
1589                 memcpy(ctx->eld, eld->eld_data, sizeof(ctx->eld));
1590
1591                 ctx->dp_output = pdata->dp_output;
1592                 ctx->tmds_clock_speed = pdata->tmds_clock_speed;
1593                 ctx->link_rate = pdata->link_rate;
1594
1595                 had_process_hot_plug(ctx);
1596
1597                 /* Process mode change if stream is active */
1598                 had_process_mode_change(ctx);
1599         }
1600         mutex_unlock(&ctx->mutex);
1601         pm_runtime_mark_last_busy(ctx->dev);
1602         pm_runtime_put_autosuspend(ctx->dev);
1603 }
1604
1605 /*
1606  * Jack interface
1607  */
1608 static int had_create_jack(struct snd_intelhad *ctx)
1609 {
1610         int err;
1611
1612         err = snd_jack_new(ctx->card, "HDMI/DP", SND_JACK_AVOUT, &ctx->jack,
1613                            true, false);
1614         if (err < 0)
1615                 return err;
1616         ctx->jack->private_data = ctx;
1617         return 0;
1618 }
1619
1620 /*
1621  * PM callbacks
1622  */
1623
1624 static int hdmi_lpe_audio_runtime_suspend(struct device *dev)
1625 {
1626         struct snd_intelhad *ctx = dev_get_drvdata(dev);
1627         struct snd_pcm_substream *substream;
1628
1629         substream = had_substream_get(ctx);
1630         if (substream) {
1631                 snd_pcm_suspend(substream);
1632                 had_substream_put(ctx);
1633         }
1634
1635         return 0;
1636 }
1637
1638 static int __maybe_unused hdmi_lpe_audio_suspend(struct device *dev)
1639 {
1640         struct snd_intelhad *ctx = dev_get_drvdata(dev);
1641         int err;
1642
1643         err = hdmi_lpe_audio_runtime_suspend(dev);
1644         if (!err)
1645                 snd_power_change_state(ctx->card, SNDRV_CTL_POWER_D3hot);
1646         return err;
1647 }
1648
1649 static int hdmi_lpe_audio_runtime_resume(struct device *dev)
1650 {
1651         pm_runtime_mark_last_busy(dev);
1652         return 0;
1653 }
1654
1655 static int __maybe_unused hdmi_lpe_audio_resume(struct device *dev)
1656 {
1657         struct snd_intelhad *ctx = dev_get_drvdata(dev);
1658
1659         hdmi_lpe_audio_runtime_resume(dev);
1660         snd_power_change_state(ctx->card, SNDRV_CTL_POWER_D0);
1661         return 0;
1662 }
1663
1664 /* release resources */
1665 static void hdmi_lpe_audio_free(struct snd_card *card)
1666 {
1667         struct snd_intelhad *ctx = card->private_data;
1668
1669         cancel_work_sync(&ctx->hdmi_audio_wq);
1670
1671         if (ctx->mmio_start)
1672                 iounmap(ctx->mmio_start);
1673         if (ctx->irq >= 0)
1674                 free_irq(ctx->irq, ctx);
1675 }
1676
1677 /*
1678  * hdmi_lpe_audio_probe - start bridge with i915
1679  *
1680  * This function is called when the i915 driver creates the
1681  * hdmi-lpe-audio platform device.
1682  */
1683 static int hdmi_lpe_audio_probe(struct platform_device *pdev)
1684 {
1685         struct snd_card *card;
1686         struct snd_intelhad *ctx;
1687         struct snd_pcm *pcm;
1688         struct intel_hdmi_lpe_audio_pdata *pdata;
1689         int irq;
1690         struct resource *res_mmio;
1691         int i, ret;
1692
1693         pdata = pdev->dev.platform_data;
1694         if (!pdata) {
1695                 dev_err(&pdev->dev, "%s: quit: pdata not allocated by i915!!\n", __func__);
1696                 return -EINVAL;
1697         }
1698
1699         /* get resources */
1700         irq = platform_get_irq(pdev, 0);
1701         if (irq < 0) {
1702                 dev_err(&pdev->dev, "Could not get irq resource\n");
1703                 return -ENODEV;
1704         }
1705
1706         res_mmio = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1707         if (!res_mmio) {
1708                 dev_err(&pdev->dev, "Could not get IO_MEM resources\n");
1709                 return -ENXIO;
1710         }
1711
1712         /* create a card instance with ALSA framework */
1713         ret = snd_card_new(&pdev->dev, hdmi_card_index, hdmi_card_id,
1714                            THIS_MODULE, sizeof(*ctx), &card);
1715         if (ret)
1716                 return ret;
1717
1718         ctx = card->private_data;
1719         spin_lock_init(&ctx->had_spinlock);
1720         mutex_init(&ctx->mutex);
1721         ctx->connected = false;
1722         ctx->dev = &pdev->dev;
1723         ctx->card = card;
1724         ctx->aes_bits = SNDRV_PCM_DEFAULT_CON_SPDIF;
1725         strcpy(card->driver, INTEL_HAD);
1726         strcpy(card->shortname, "Intel HDMI/DP LPE Audio");
1727         strcpy(card->longname, "Intel HDMI/DP LPE Audio");
1728
1729         ctx->irq = -1;
1730         ctx->tmds_clock_speed = DIS_SAMPLE_RATE_148_5;
1731         INIT_WORK(&ctx->hdmi_audio_wq, had_audio_wq);
1732
1733         card->private_free = hdmi_lpe_audio_free;
1734
1735         /* assume pipe A as default */
1736         ctx->had_config_offset = AUDIO_HDMI_CONFIG_A;
1737
1738         platform_set_drvdata(pdev, ctx);
1739
1740         dev_dbg(&pdev->dev, "%s: mmio_start = 0x%x, mmio_end = 0x%x\n",
1741                 __func__, (unsigned int)res_mmio->start,
1742                 (unsigned int)res_mmio->end);
1743
1744         ctx->mmio_start = ioremap_nocache(res_mmio->start,
1745                                           (size_t)(resource_size(res_mmio)));
1746         if (!ctx->mmio_start) {
1747                 dev_err(&pdev->dev, "Could not get ioremap\n");
1748                 ret = -EACCES;
1749                 goto err;
1750         }
1751
1752         /* setup interrupt handler */
1753         ret = request_irq(irq, display_pipe_interrupt_handler, 0,
1754                           pdev->name, ctx);
1755         if (ret < 0) {
1756                 dev_err(&pdev->dev, "request_irq failed\n");
1757                 goto err;
1758         }
1759
1760         ctx->irq = irq;
1761
1762         ret = snd_pcm_new(card, INTEL_HAD, PCM_INDEX, MAX_PB_STREAMS,
1763                           MAX_CAP_STREAMS, &pcm);
1764         if (ret)
1765                 goto err;
1766
1767         /* setup private data which can be retrieved when required */
1768         pcm->private_data = ctx;
1769         pcm->info_flags = 0;
1770         strncpy(pcm->name, card->shortname, strlen(card->shortname));
1771         /* setup the ops for playabck */
1772         snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &had_pcm_ops);
1773
1774         /* only 32bit addressable */
1775         dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
1776         dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
1777
1778         /* allocate dma pages;
1779          * try to allocate 600k buffer as default which is large enough
1780          */
1781         snd_pcm_lib_preallocate_pages_for_all(pcm,
1782                         SNDRV_DMA_TYPE_DEV, NULL,
1783                         HAD_DEFAULT_BUFFER, HAD_MAX_BUFFER);
1784
1785         /* create controls */
1786         for (i = 0; i < ARRAY_SIZE(had_controls); i++) {
1787                 ret = snd_ctl_add(card, snd_ctl_new1(&had_controls[i], ctx));
1788                 if (ret < 0)
1789                         goto err;
1790         }
1791
1792         init_channel_allocations();
1793
1794         /* Register channel map controls */
1795         ret = had_register_chmap_ctls(ctx, pcm);
1796         if (ret < 0)
1797                 goto err;
1798
1799         ret = had_create_jack(ctx);
1800         if (ret < 0)
1801                 goto err;
1802
1803         ret = snd_card_register(card);
1804         if (ret)
1805                 goto err;
1806
1807         spin_lock_irq(&pdata->lpe_audio_slock);
1808         pdata->notify_audio_lpe = notify_audio_lpe;
1809         pdata->notify_pending = false;
1810         spin_unlock_irq(&pdata->lpe_audio_slock);
1811
1812         /* runtime PM isn't enabled as default, since it won't save much on
1813          * BYT/CHT devices; user who want the runtime PM should adjust the
1814          * power/ontrol and power/autosuspend_delay_ms sysfs entries instead
1815          */
1816         pm_runtime_use_autosuspend(&pdev->dev);
1817         pm_runtime_mark_last_busy(&pdev->dev);
1818         pm_runtime_set_active(&pdev->dev);
1819
1820         dev_dbg(&pdev->dev, "%s: handle pending notification\n", __func__);
1821         schedule_work(&ctx->hdmi_audio_wq);
1822
1823         return 0;
1824
1825 err:
1826         snd_card_free(card);
1827         return ret;
1828 }
1829
1830 /*
1831  * hdmi_lpe_audio_remove - stop bridge with i915
1832  *
1833  * This function is called when the platform device is destroyed.
1834  */
1835 static int hdmi_lpe_audio_remove(struct platform_device *pdev)
1836 {
1837         struct snd_intelhad *ctx = platform_get_drvdata(pdev);
1838
1839         snd_card_free(ctx->card);
1840         return 0;
1841 }
1842
1843 static const struct dev_pm_ops hdmi_lpe_audio_pm = {
1844         SET_SYSTEM_SLEEP_PM_OPS(hdmi_lpe_audio_suspend, hdmi_lpe_audio_resume)
1845         SET_RUNTIME_PM_OPS(hdmi_lpe_audio_runtime_suspend,
1846                            hdmi_lpe_audio_runtime_resume, NULL)
1847 };
1848
1849 static struct platform_driver hdmi_lpe_audio_driver = {
1850         .driver         = {
1851                 .name  = "hdmi-lpe-audio",
1852                 .pm = &hdmi_lpe_audio_pm,
1853         },
1854         .probe          = hdmi_lpe_audio_probe,
1855         .remove         = hdmi_lpe_audio_remove,
1856 };
1857
1858 module_platform_driver(hdmi_lpe_audio_driver);
1859 MODULE_ALIAS("platform:hdmi_lpe_audio");
1860
1861 MODULE_AUTHOR("Sailaja Bandarupalli <sailaja.bandarupalli@intel.com>");
1862 MODULE_AUTHOR("Ramesh Babu K V <ramesh.babu@intel.com>");
1863 MODULE_AUTHOR("Vaibhav Agarwal <vaibhav.agarwal@intel.com>");
1864 MODULE_AUTHOR("Jerome Anand <jerome.anand@intel.com>");
1865 MODULE_DESCRIPTION("Intel HDMI Audio driver");
1866 MODULE_LICENSE("GPL v2");
1867 MODULE_SUPPORTED_DEVICE("{Intel,Intel_HAD}");