]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - sound/x86/intel_hdmi_audio.c
Merge tag 'drm-intel-next-2017-05-29' of git://anongit.freedesktop.org/git/drm-intel...
[karo-tx-linux.git] / sound / x86 / intel_hdmi_audio.c
1 /*
2  *   intel_hdmi_audio.c - Intel HDMI audio driver
3  *
4  *  Copyright (C) 2016 Intel Corp
5  *  Authors:    Sailaja Bandarupalli <sailaja.bandarupalli@intel.com>
6  *              Ramesh Babu K V <ramesh.babu@intel.com>
7  *              Vaibhav Agarwal <vaibhav.agarwal@intel.com>
8  *              Jerome Anand <jerome.anand@intel.com>
9  *  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
10  *
11  *  This program is free software; you can redistribute it and/or modify
12  *  it under the terms of the GNU General Public License as published by
13  *  the Free Software Foundation; version 2 of the License.
14  *
15  *  This program is distributed in the hope that it will be useful, but
16  *  WITHOUT ANY WARRANTY; without even the implied warranty of
17  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  *  General Public License for more details.
19  *
20  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
21  * ALSA driver for Intel HDMI audio
22  */
23
24 #include <linux/types.h>
25 #include <linux/platform_device.h>
26 #include <linux/io.h>
27 #include <linux/slab.h>
28 #include <linux/module.h>
29 #include <linux/interrupt.h>
30 #include <linux/pm_runtime.h>
31 #include <linux/dma-mapping.h>
32 #include <linux/delay.h>
33 #include <asm/set_memory.h>
34 #include <sound/core.h>
35 #include <sound/asoundef.h>
36 #include <sound/pcm.h>
37 #include <sound/pcm_params.h>
38 #include <sound/initval.h>
39 #include <sound/control.h>
40 #include <sound/jack.h>
41 #include <drm/drm_edid.h>
42 #include <drm/intel_lpe_audio.h>
43 #include "intel_hdmi_audio.h"
44
45 #define for_each_pipe(card_ctx, pipe) \
46         for ((pipe) = 0; (pipe) < (card_ctx)->num_pipes; (pipe)++)
47 #define for_each_port(card_ctx, port) \
48         for ((port) = 0; (port) < (card_ctx)->num_ports; (port)++)
49
50 /*standard module options for ALSA. This module supports only one card*/
51 static int hdmi_card_index = SNDRV_DEFAULT_IDX1;
52 static char *hdmi_card_id = SNDRV_DEFAULT_STR1;
53
54 module_param_named(index, hdmi_card_index, int, 0444);
55 MODULE_PARM_DESC(index,
56                 "Index value for INTEL Intel HDMI Audio controller.");
57 module_param_named(id, hdmi_card_id, charp, 0444);
58 MODULE_PARM_DESC(id,
59                 "ID string for INTEL Intel HDMI Audio controller.");
60
61 /*
62  * ELD SA bits in the CEA Speaker Allocation data block
63  */
64 static const int eld_speaker_allocation_bits[] = {
65         [0] = FL | FR,
66         [1] = LFE,
67         [2] = FC,
68         [3] = RL | RR,
69         [4] = RC,
70         [5] = FLC | FRC,
71         [6] = RLC | RRC,
72         /* the following are not defined in ELD yet */
73         [7] = 0,
74 };
75
76 /*
77  * This is an ordered list!
78  *
79  * The preceding ones have better chances to be selected by
80  * hdmi_channel_allocation().
81  */
82 static struct cea_channel_speaker_allocation channel_allocations[] = {
83 /*                        channel:   7     6    5    4    3     2    1    0  */
84 { .ca_index = 0x00,  .speakers = {   0,    0,   0,   0,   0,    0,  FR,  FL } },
85                                 /* 2.1 */
86 { .ca_index = 0x01,  .speakers = {   0,    0,   0,   0,   0,  LFE,  FR,  FL } },
87                                 /* Dolby Surround */
88 { .ca_index = 0x02,  .speakers = {   0,    0,   0,   0,  FC,    0,  FR,  FL } },
89                                 /* surround40 */
90 { .ca_index = 0x08,  .speakers = {   0,    0,  RR,  RL,   0,    0,  FR,  FL } },
91                                 /* surround41 */
92 { .ca_index = 0x09,  .speakers = {   0,    0,  RR,  RL,   0,  LFE,  FR,  FL } },
93                                 /* surround50 */
94 { .ca_index = 0x0a,  .speakers = {   0,    0,  RR,  RL,  FC,    0,  FR,  FL } },
95                                 /* surround51 */
96 { .ca_index = 0x0b,  .speakers = {   0,    0,  RR,  RL,  FC,  LFE,  FR,  FL } },
97                                 /* 6.1 */
98 { .ca_index = 0x0f,  .speakers = {   0,   RC,  RR,  RL,  FC,  LFE,  FR,  FL } },
99                                 /* surround71 */
100 { .ca_index = 0x13,  .speakers = { RRC,  RLC,  RR,  RL,  FC,  LFE,  FR,  FL } },
101
102 { .ca_index = 0x03,  .speakers = {   0,    0,   0,   0,  FC,  LFE,  FR,  FL } },
103 { .ca_index = 0x04,  .speakers = {   0,    0,   0,  RC,   0,    0,  FR,  FL } },
104 { .ca_index = 0x05,  .speakers = {   0,    0,   0,  RC,   0,  LFE,  FR,  FL } },
105 { .ca_index = 0x06,  .speakers = {   0,    0,   0,  RC,  FC,    0,  FR,  FL } },
106 { .ca_index = 0x07,  .speakers = {   0,    0,   0,  RC,  FC,  LFE,  FR,  FL } },
107 { .ca_index = 0x0c,  .speakers = {   0,   RC,  RR,  RL,   0,    0,  FR,  FL } },
108 { .ca_index = 0x0d,  .speakers = {   0,   RC,  RR,  RL,   0,  LFE,  FR,  FL } },
109 { .ca_index = 0x0e,  .speakers = {   0,   RC,  RR,  RL,  FC,    0,  FR,  FL } },
110 { .ca_index = 0x10,  .speakers = { RRC,  RLC,  RR,  RL,   0,    0,  FR,  FL } },
111 { .ca_index = 0x11,  .speakers = { RRC,  RLC,  RR,  RL,   0,  LFE,  FR,  FL } },
112 { .ca_index = 0x12,  .speakers = { RRC,  RLC,  RR,  RL,  FC,    0,  FR,  FL } },
113 { .ca_index = 0x14,  .speakers = { FRC,  FLC,   0,   0,   0,    0,  FR,  FL } },
114 { .ca_index = 0x15,  .speakers = { FRC,  FLC,   0,   0,   0,  LFE,  FR,  FL } },
115 { .ca_index = 0x16,  .speakers = { FRC,  FLC,   0,   0,  FC,    0,  FR,  FL } },
116 { .ca_index = 0x17,  .speakers = { FRC,  FLC,   0,   0,  FC,  LFE,  FR,  FL } },
117 { .ca_index = 0x18,  .speakers = { FRC,  FLC,   0,  RC,   0,    0,  FR,  FL } },
118 { .ca_index = 0x19,  .speakers = { FRC,  FLC,   0,  RC,   0,  LFE,  FR,  FL } },
119 { .ca_index = 0x1a,  .speakers = { FRC,  FLC,   0,  RC,  FC,    0,  FR,  FL } },
120 { .ca_index = 0x1b,  .speakers = { FRC,  FLC,   0,  RC,  FC,  LFE,  FR,  FL } },
121 { .ca_index = 0x1c,  .speakers = { FRC,  FLC,  RR,  RL,   0,    0,  FR,  FL } },
122 { .ca_index = 0x1d,  .speakers = { FRC,  FLC,  RR,  RL,   0,  LFE,  FR,  FL } },
123 { .ca_index = 0x1e,  .speakers = { FRC,  FLC,  RR,  RL,  FC,    0,  FR,  FL } },
124 { .ca_index = 0x1f,  .speakers = { FRC,  FLC,  RR,  RL,  FC,  LFE,  FR,  FL } },
125 };
126
127 static const struct channel_map_table map_tables[] = {
128         { SNDRV_CHMAP_FL,       0x00,   FL },
129         { SNDRV_CHMAP_FR,       0x01,   FR },
130         { SNDRV_CHMAP_RL,       0x04,   RL },
131         { SNDRV_CHMAP_RR,       0x05,   RR },
132         { SNDRV_CHMAP_LFE,      0x02,   LFE },
133         { SNDRV_CHMAP_FC,       0x03,   FC },
134         { SNDRV_CHMAP_RLC,      0x06,   RLC },
135         { SNDRV_CHMAP_RRC,      0x07,   RRC },
136         {} /* terminator */
137 };
138
139 /* hardware capability structure */
140 static const struct snd_pcm_hardware had_pcm_hardware = {
141         .info = (SNDRV_PCM_INFO_INTERLEAVED |
142                 SNDRV_PCM_INFO_MMAP |
143                 SNDRV_PCM_INFO_MMAP_VALID |
144                 SNDRV_PCM_INFO_NO_PERIOD_WAKEUP),
145         .formats = (SNDRV_PCM_FMTBIT_S16_LE |
146                     SNDRV_PCM_FMTBIT_S24_LE |
147                     SNDRV_PCM_FMTBIT_S32_LE),
148         .rates = SNDRV_PCM_RATE_32000 |
149                 SNDRV_PCM_RATE_44100 |
150                 SNDRV_PCM_RATE_48000 |
151                 SNDRV_PCM_RATE_88200 |
152                 SNDRV_PCM_RATE_96000 |
153                 SNDRV_PCM_RATE_176400 |
154                 SNDRV_PCM_RATE_192000,
155         .rate_min = HAD_MIN_RATE,
156         .rate_max = HAD_MAX_RATE,
157         .channels_min = HAD_MIN_CHANNEL,
158         .channels_max = HAD_MAX_CHANNEL,
159         .buffer_bytes_max = HAD_MAX_BUFFER,
160         .period_bytes_min = HAD_MIN_PERIOD_BYTES,
161         .period_bytes_max = HAD_MAX_PERIOD_BYTES,
162         .periods_min = HAD_MIN_PERIODS,
163         .periods_max = HAD_MAX_PERIODS,
164         .fifo_size = HAD_FIFO_SIZE,
165 };
166
167 /* Get the active PCM substream;
168  * Call had_substream_put() for unreferecing.
169  * Don't call this inside had_spinlock, as it takes by itself
170  */
171 static struct snd_pcm_substream *
172 had_substream_get(struct snd_intelhad *intelhaddata)
173 {
174         struct snd_pcm_substream *substream;
175         unsigned long flags;
176
177         spin_lock_irqsave(&intelhaddata->had_spinlock, flags);
178         substream = intelhaddata->stream_info.substream;
179         if (substream)
180                 intelhaddata->stream_info.substream_refcount++;
181         spin_unlock_irqrestore(&intelhaddata->had_spinlock, flags);
182         return substream;
183 }
184
185 /* Unref the active PCM substream;
186  * Don't call this inside had_spinlock, as it takes by itself
187  */
188 static void had_substream_put(struct snd_intelhad *intelhaddata)
189 {
190         unsigned long flags;
191
192         spin_lock_irqsave(&intelhaddata->had_spinlock, flags);
193         intelhaddata->stream_info.substream_refcount--;
194         spin_unlock_irqrestore(&intelhaddata->had_spinlock, flags);
195 }
196
197 static u32 had_config_offset(int pipe)
198 {
199         switch (pipe) {
200         default:
201         case 0:
202                 return AUDIO_HDMI_CONFIG_A;
203         case 1:
204                 return AUDIO_HDMI_CONFIG_B;
205         case 2:
206                 return AUDIO_HDMI_CONFIG_C;
207         }
208 }
209
210 /* Register access functions */
211 static u32 had_read_register_raw(struct snd_intelhad_card *card_ctx,
212                                  int pipe, u32 reg)
213 {
214         return ioread32(card_ctx->mmio_start + had_config_offset(pipe) + reg);
215 }
216
217 static void had_write_register_raw(struct snd_intelhad_card *card_ctx,
218                                    int pipe, u32 reg, u32 val)
219 {
220         iowrite32(val, card_ctx->mmio_start + had_config_offset(pipe) + reg);
221 }
222
223 static void had_read_register(struct snd_intelhad *ctx, u32 reg, u32 *val)
224 {
225         if (!ctx->connected)
226                 *val = 0;
227         else
228                 *val = had_read_register_raw(ctx->card_ctx, ctx->pipe, reg);
229 }
230
231 static void had_write_register(struct snd_intelhad *ctx, u32 reg, u32 val)
232 {
233         if (ctx->connected)
234                 had_write_register_raw(ctx->card_ctx, ctx->pipe, reg, val);
235 }
236
237 /*
238  * enable / disable audio configuration
239  *
240  * The normal read/modify should not directly be used on VLV2 for
241  * updating AUD_CONFIG register.
242  * This is because:
243  * Bit6 of AUD_CONFIG register is writeonly due to a silicon bug on VLV2
244  * HDMI IP. As a result a read-modify of AUD_CONFIG regiter will always
245  * clear bit6. AUD_CONFIG[6:4] represents the "channels" field of the
246  * register. This field should be 1xy binary for configuration with 6 or
247  * more channels. Read-modify of AUD_CONFIG (Eg. for enabling audio)
248  * causes the "channels" field to be updated as 0xy binary resulting in
249  * bad audio. The fix is to always write the AUD_CONFIG[6:4] with
250  * appropriate value when doing read-modify of AUD_CONFIG register.
251  */
252 static void had_enable_audio(struct snd_intelhad *intelhaddata,
253                              bool enable)
254 {
255         /* update the cached value */
256         intelhaddata->aud_config.regx.aud_en = enable;
257         had_write_register(intelhaddata, AUD_CONFIG,
258                            intelhaddata->aud_config.regval);
259 }
260
261 /* forcibly ACKs to both BUFFER_DONE and BUFFER_UNDERRUN interrupts */
262 static void had_ack_irqs(struct snd_intelhad *ctx)
263 {
264         u32 status_reg;
265
266         if (!ctx->connected)
267                 return;
268         had_read_register(ctx, AUD_HDMI_STATUS, &status_reg);
269         status_reg |= HDMI_AUDIO_BUFFER_DONE | HDMI_AUDIO_UNDERRUN;
270         had_write_register(ctx, AUD_HDMI_STATUS, status_reg);
271         had_read_register(ctx, AUD_HDMI_STATUS, &status_reg);
272 }
273
274 /* Reset buffer pointers */
275 static void had_reset_audio(struct snd_intelhad *intelhaddata)
276 {
277         had_write_register(intelhaddata, AUD_HDMI_STATUS,
278                            AUD_HDMI_STATUSG_MASK_FUNCRST);
279         had_write_register(intelhaddata, AUD_HDMI_STATUS, 0);
280 }
281
282 /*
283  * initialize audio channel status registers
284  * This function is called in the prepare callback
285  */
286 static int had_prog_status_reg(struct snd_pcm_substream *substream,
287                         struct snd_intelhad *intelhaddata)
288 {
289         union aud_cfg cfg_val = {.regval = 0};
290         union aud_ch_status_0 ch_stat0 = {.regval = 0};
291         union aud_ch_status_1 ch_stat1 = {.regval = 0};
292
293         ch_stat0.regx.lpcm_id = (intelhaddata->aes_bits &
294                                           IEC958_AES0_NONAUDIO) >> 1;
295         ch_stat0.regx.clk_acc = (intelhaddata->aes_bits &
296                                           IEC958_AES3_CON_CLOCK) >> 4;
297         cfg_val.regx.val_bit = ch_stat0.regx.lpcm_id;
298
299         switch (substream->runtime->rate) {
300         case AUD_SAMPLE_RATE_32:
301                 ch_stat0.regx.samp_freq = CH_STATUS_MAP_32KHZ;
302                 break;
303
304         case AUD_SAMPLE_RATE_44_1:
305                 ch_stat0.regx.samp_freq = CH_STATUS_MAP_44KHZ;
306                 break;
307         case AUD_SAMPLE_RATE_48:
308                 ch_stat0.regx.samp_freq = CH_STATUS_MAP_48KHZ;
309                 break;
310         case AUD_SAMPLE_RATE_88_2:
311                 ch_stat0.regx.samp_freq = CH_STATUS_MAP_88KHZ;
312                 break;
313         case AUD_SAMPLE_RATE_96:
314                 ch_stat0.regx.samp_freq = CH_STATUS_MAP_96KHZ;
315                 break;
316         case AUD_SAMPLE_RATE_176_4:
317                 ch_stat0.regx.samp_freq = CH_STATUS_MAP_176KHZ;
318                 break;
319         case AUD_SAMPLE_RATE_192:
320                 ch_stat0.regx.samp_freq = CH_STATUS_MAP_192KHZ;
321                 break;
322
323         default:
324                 /* control should never come here */
325                 return -EINVAL;
326         }
327
328         had_write_register(intelhaddata,
329                            AUD_CH_STATUS_0, ch_stat0.regval);
330
331         switch (substream->runtime->format) {
332         case SNDRV_PCM_FORMAT_S16_LE:
333                 ch_stat1.regx.max_wrd_len = MAX_SMPL_WIDTH_20;
334                 ch_stat1.regx.wrd_len = SMPL_WIDTH_16BITS;
335                 break;
336         case SNDRV_PCM_FORMAT_S24_LE:
337         case SNDRV_PCM_FORMAT_S32_LE:
338                 ch_stat1.regx.max_wrd_len = MAX_SMPL_WIDTH_24;
339                 ch_stat1.regx.wrd_len = SMPL_WIDTH_24BITS;
340                 break;
341         default:
342                 return -EINVAL;
343         }
344
345         had_write_register(intelhaddata,
346                            AUD_CH_STATUS_1, ch_stat1.regval);
347         return 0;
348 }
349
350 /*
351  * function to initialize audio
352  * registers and buffer confgiuration registers
353  * This function is called in the prepare callback
354  */
355 static int had_init_audio_ctrl(struct snd_pcm_substream *substream,
356                                struct snd_intelhad *intelhaddata)
357 {
358         union aud_cfg cfg_val = {.regval = 0};
359         union aud_buf_config buf_cfg = {.regval = 0};
360         u8 channels;
361
362         had_prog_status_reg(substream, intelhaddata);
363
364         buf_cfg.regx.audio_fifo_watermark = FIFO_THRESHOLD;
365         buf_cfg.regx.dma_fifo_watermark = DMA_FIFO_THRESHOLD;
366         buf_cfg.regx.aud_delay = 0;
367         had_write_register(intelhaddata, AUD_BUF_CONFIG, buf_cfg.regval);
368
369         channels = substream->runtime->channels;
370         cfg_val.regx.num_ch = channels - 2;
371         if (channels <= 2)
372                 cfg_val.regx.layout = LAYOUT0;
373         else
374                 cfg_val.regx.layout = LAYOUT1;
375
376         if (substream->runtime->format == SNDRV_PCM_FORMAT_S16_LE)
377                 cfg_val.regx.packet_mode = 1;
378
379         if (substream->runtime->format == SNDRV_PCM_FORMAT_S32_LE)
380                 cfg_val.regx.left_align = 1;
381
382         cfg_val.regx.val_bit = 1;
383
384         /* fix up the DP bits */
385         if (intelhaddata->dp_output) {
386                 cfg_val.regx.dp_modei = 1;
387                 cfg_val.regx.set = 1;
388         }
389
390         had_write_register(intelhaddata, AUD_CONFIG, cfg_val.regval);
391         intelhaddata->aud_config = cfg_val;
392         return 0;
393 }
394
395 /*
396  * Compute derived values in channel_allocations[].
397  */
398 static void init_channel_allocations(void)
399 {
400         int i, j;
401         struct cea_channel_speaker_allocation *p;
402
403         for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) {
404                 p = channel_allocations + i;
405                 p->channels = 0;
406                 p->spk_mask = 0;
407                 for (j = 0; j < ARRAY_SIZE(p->speakers); j++)
408                         if (p->speakers[j]) {
409                                 p->channels++;
410                                 p->spk_mask |= p->speakers[j];
411                         }
412         }
413 }
414
415 /*
416  * The transformation takes two steps:
417  *
418  *      eld->spk_alloc => (eld_speaker_allocation_bits[]) => spk_mask
419  *            spk_mask => (channel_allocations[])         => ai->CA
420  *
421  * TODO: it could select the wrong CA from multiple candidates.
422  */
423 static int had_channel_allocation(struct snd_intelhad *intelhaddata,
424                                   int channels)
425 {
426         int i;
427         int ca = 0;
428         int spk_mask = 0;
429
430         /*
431          * CA defaults to 0 for basic stereo audio
432          */
433         if (channels <= 2)
434                 return 0;
435
436         /*
437          * expand ELD's speaker allocation mask
438          *
439          * ELD tells the speaker mask in a compact(paired) form,
440          * expand ELD's notions to match the ones used by Audio InfoFrame.
441          */
442
443         for (i = 0; i < ARRAY_SIZE(eld_speaker_allocation_bits); i++) {
444                 if (intelhaddata->eld[DRM_ELD_SPEAKER] & (1 << i))
445                         spk_mask |= eld_speaker_allocation_bits[i];
446         }
447
448         /* search for the first working match in the CA table */
449         for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) {
450                 if (channels == channel_allocations[i].channels &&
451                 (spk_mask & channel_allocations[i].spk_mask) ==
452                                 channel_allocations[i].spk_mask) {
453                         ca = channel_allocations[i].ca_index;
454                         break;
455                 }
456         }
457
458         dev_dbg(intelhaddata->dev, "select CA 0x%x for %d\n", ca, channels);
459
460         return ca;
461 }
462
463 /* from speaker bit mask to ALSA API channel position */
464 static int spk_to_chmap(int spk)
465 {
466         const struct channel_map_table *t = map_tables;
467
468         for (; t->map; t++) {
469                 if (t->spk_mask == spk)
470                         return t->map;
471         }
472         return 0;
473 }
474
475 static void had_build_channel_allocation_map(struct snd_intelhad *intelhaddata)
476 {
477         int i, c;
478         int spk_mask = 0;
479         struct snd_pcm_chmap_elem *chmap;
480         u8 eld_high, eld_high_mask = 0xF0;
481         u8 high_msb;
482
483         kfree(intelhaddata->chmap->chmap);
484         intelhaddata->chmap->chmap = NULL;
485
486         chmap = kzalloc(sizeof(*chmap), GFP_KERNEL);
487         if (!chmap)
488                 return;
489
490         dev_dbg(intelhaddata->dev, "eld speaker = %x\n",
491                 intelhaddata->eld[DRM_ELD_SPEAKER]);
492
493         /* WA: Fix the max channel supported to 8 */
494
495         /*
496          * Sink may support more than 8 channels, if eld_high has more than
497          * one bit set. SOC supports max 8 channels.
498          * Refer eld_speaker_allocation_bits, for sink speaker allocation
499          */
500
501         /* if 0x2F < eld < 0x4F fall back to 0x2f, else fall back to 0x4F */
502         eld_high = intelhaddata->eld[DRM_ELD_SPEAKER] & eld_high_mask;
503         if ((eld_high & (eld_high-1)) && (eld_high > 0x1F)) {
504                 /* eld_high & (eld_high-1): if more than 1 bit set */
505                 /* 0x1F: 7 channels */
506                 for (i = 1; i < 4; i++) {
507                         high_msb = eld_high & (0x80 >> i);
508                         if (high_msb) {
509                                 intelhaddata->eld[DRM_ELD_SPEAKER] &=
510                                         high_msb | 0xF;
511                                 break;
512                         }
513                 }
514         }
515
516         for (i = 0; i < ARRAY_SIZE(eld_speaker_allocation_bits); i++) {
517                 if (intelhaddata->eld[DRM_ELD_SPEAKER] & (1 << i))
518                         spk_mask |= eld_speaker_allocation_bits[i];
519         }
520
521         for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) {
522                 if (spk_mask == channel_allocations[i].spk_mask) {
523                         for (c = 0; c < channel_allocations[i].channels; c++) {
524                                 chmap->map[c] = spk_to_chmap(
525                                         channel_allocations[i].speakers[
526                                                 (MAX_SPEAKERS - 1) - c]);
527                         }
528                         chmap->channels = channel_allocations[i].channels;
529                         intelhaddata->chmap->chmap = chmap;
530                         break;
531                 }
532         }
533         if (i >= ARRAY_SIZE(channel_allocations))
534                 kfree(chmap);
535 }
536
537 /*
538  * ALSA API channel-map control callbacks
539  */
540 static int had_chmap_ctl_info(struct snd_kcontrol *kcontrol,
541                                 struct snd_ctl_elem_info *uinfo)
542 {
543         uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
544         uinfo->count = HAD_MAX_CHANNEL;
545         uinfo->value.integer.min = 0;
546         uinfo->value.integer.max = SNDRV_CHMAP_LAST;
547         return 0;
548 }
549
550 static int had_chmap_ctl_get(struct snd_kcontrol *kcontrol,
551                                 struct snd_ctl_elem_value *ucontrol)
552 {
553         struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
554         struct snd_intelhad *intelhaddata = info->private_data;
555         int i;
556         const struct snd_pcm_chmap_elem *chmap;
557
558         memset(ucontrol->value.integer.value, 0,
559                sizeof(long) * HAD_MAX_CHANNEL);
560         mutex_lock(&intelhaddata->mutex);
561         if (!intelhaddata->chmap->chmap) {
562                 mutex_unlock(&intelhaddata->mutex);
563                 return 0;
564         }
565
566         chmap = intelhaddata->chmap->chmap;
567         for (i = 0; i < chmap->channels; i++)
568                 ucontrol->value.integer.value[i] = chmap->map[i];
569         mutex_unlock(&intelhaddata->mutex);
570
571         return 0;
572 }
573
574 static int had_register_chmap_ctls(struct snd_intelhad *intelhaddata,
575                                                 struct snd_pcm *pcm)
576 {
577         int err;
578
579         err = snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK,
580                         NULL, 0, (unsigned long)intelhaddata,
581                         &intelhaddata->chmap);
582         if (err < 0)
583                 return err;
584
585         intelhaddata->chmap->private_data = intelhaddata;
586         intelhaddata->chmap->kctl->info = had_chmap_ctl_info;
587         intelhaddata->chmap->kctl->get = had_chmap_ctl_get;
588         intelhaddata->chmap->chmap = NULL;
589         return 0;
590 }
591
592 /*
593  * Initialize Data Island Packets registers
594  * This function is called in the prepare callback
595  */
596 static void had_prog_dip(struct snd_pcm_substream *substream,
597                          struct snd_intelhad *intelhaddata)
598 {
599         int i;
600         union aud_ctrl_st ctrl_state = {.regval = 0};
601         union aud_info_frame2 frame2 = {.regval = 0};
602         union aud_info_frame3 frame3 = {.regval = 0};
603         u8 checksum = 0;
604         u32 info_frame;
605         int channels;
606         int ca;
607
608         channels = substream->runtime->channels;
609
610         had_write_register(intelhaddata, AUD_CNTL_ST, ctrl_state.regval);
611
612         ca = had_channel_allocation(intelhaddata, channels);
613         if (intelhaddata->dp_output) {
614                 info_frame = DP_INFO_FRAME_WORD1;
615                 frame2.regval = (substream->runtime->channels - 1) | (ca << 24);
616         } else {
617                 info_frame = HDMI_INFO_FRAME_WORD1;
618                 frame2.regx.chnl_cnt = substream->runtime->channels - 1;
619                 frame3.regx.chnl_alloc = ca;
620
621                 /* Calculte the byte wide checksum for all valid DIP words */
622                 for (i = 0; i < BYTES_PER_WORD; i++)
623                         checksum += (info_frame >> (i * 8)) & 0xff;
624                 for (i = 0; i < BYTES_PER_WORD; i++)
625                         checksum += (frame2.regval >> (i * 8)) & 0xff;
626                 for (i = 0; i < BYTES_PER_WORD; i++)
627                         checksum += (frame3.regval >> (i * 8)) & 0xff;
628
629                 frame2.regx.chksum = -(checksum);
630         }
631
632         had_write_register(intelhaddata, AUD_HDMIW_INFOFR, info_frame);
633         had_write_register(intelhaddata, AUD_HDMIW_INFOFR, frame2.regval);
634         had_write_register(intelhaddata, AUD_HDMIW_INFOFR, frame3.regval);
635
636         /* program remaining DIP words with zero */
637         for (i = 0; i < HAD_MAX_DIP_WORDS-VALID_DIP_WORDS; i++)
638                 had_write_register(intelhaddata, AUD_HDMIW_INFOFR, 0x0);
639
640         ctrl_state.regx.dip_freq = 1;
641         ctrl_state.regx.dip_en_sta = 1;
642         had_write_register(intelhaddata, AUD_CNTL_ST, ctrl_state.regval);
643 }
644
645 static int had_calculate_maud_value(u32 aud_samp_freq, u32 link_rate)
646 {
647         u32 maud_val;
648
649         /* Select maud according to DP 1.2 spec */
650         if (link_rate == DP_2_7_GHZ) {
651                 switch (aud_samp_freq) {
652                 case AUD_SAMPLE_RATE_32:
653                         maud_val = AUD_SAMPLE_RATE_32_DP_2_7_MAUD_VAL;
654                         break;
655
656                 case AUD_SAMPLE_RATE_44_1:
657                         maud_val = AUD_SAMPLE_RATE_44_1_DP_2_7_MAUD_VAL;
658                         break;
659
660                 case AUD_SAMPLE_RATE_48:
661                         maud_val = AUD_SAMPLE_RATE_48_DP_2_7_MAUD_VAL;
662                         break;
663
664                 case AUD_SAMPLE_RATE_88_2:
665                         maud_val = AUD_SAMPLE_RATE_88_2_DP_2_7_MAUD_VAL;
666                         break;
667
668                 case AUD_SAMPLE_RATE_96:
669                         maud_val = AUD_SAMPLE_RATE_96_DP_2_7_MAUD_VAL;
670                         break;
671
672                 case AUD_SAMPLE_RATE_176_4:
673                         maud_val = AUD_SAMPLE_RATE_176_4_DP_2_7_MAUD_VAL;
674                         break;
675
676                 case HAD_MAX_RATE:
677                         maud_val = HAD_MAX_RATE_DP_2_7_MAUD_VAL;
678                         break;
679
680                 default:
681                         maud_val = -EINVAL;
682                         break;
683                 }
684         } else if (link_rate == DP_1_62_GHZ) {
685                 switch (aud_samp_freq) {
686                 case AUD_SAMPLE_RATE_32:
687                         maud_val = AUD_SAMPLE_RATE_32_DP_1_62_MAUD_VAL;
688                         break;
689
690                 case AUD_SAMPLE_RATE_44_1:
691                         maud_val = AUD_SAMPLE_RATE_44_1_DP_1_62_MAUD_VAL;
692                         break;
693
694                 case AUD_SAMPLE_RATE_48:
695                         maud_val = AUD_SAMPLE_RATE_48_DP_1_62_MAUD_VAL;
696                         break;
697
698                 case AUD_SAMPLE_RATE_88_2:
699                         maud_val = AUD_SAMPLE_RATE_88_2_DP_1_62_MAUD_VAL;
700                         break;
701
702                 case AUD_SAMPLE_RATE_96:
703                         maud_val = AUD_SAMPLE_RATE_96_DP_1_62_MAUD_VAL;
704                         break;
705
706                 case AUD_SAMPLE_RATE_176_4:
707                         maud_val = AUD_SAMPLE_RATE_176_4_DP_1_62_MAUD_VAL;
708                         break;
709
710                 case HAD_MAX_RATE:
711                         maud_val = HAD_MAX_RATE_DP_1_62_MAUD_VAL;
712                         break;
713
714                 default:
715                         maud_val = -EINVAL;
716                         break;
717                 }
718         } else
719                 maud_val = -EINVAL;
720
721         return maud_val;
722 }
723
724 /*
725  * Program HDMI audio CTS value
726  *
727  * @aud_samp_freq: sampling frequency of audio data
728  * @tmds: sampling frequency of the display data
729  * @link_rate: DP link rate
730  * @n_param: N value, depends on aud_samp_freq
731  * @intelhaddata: substream private data
732  *
733  * Program CTS register based on the audio and display sampling frequency
734  */
735 static void had_prog_cts(u32 aud_samp_freq, u32 tmds, u32 link_rate,
736                          u32 n_param, struct snd_intelhad *intelhaddata)
737 {
738         u32 cts_val;
739         u64 dividend, divisor;
740
741         if (intelhaddata->dp_output) {
742                 /* Substitute cts_val with Maud according to DP 1.2 spec*/
743                 cts_val = had_calculate_maud_value(aud_samp_freq, link_rate);
744         } else {
745                 /* Calculate CTS according to HDMI 1.3a spec*/
746                 dividend = (u64)tmds * n_param*1000;
747                 divisor = 128 * aud_samp_freq;
748                 cts_val = div64_u64(dividend, divisor);
749         }
750         dev_dbg(intelhaddata->dev, "TMDS value=%d, N value=%d, CTS Value=%d\n",
751                  tmds, n_param, cts_val);
752         had_write_register(intelhaddata, AUD_HDMI_CTS, (BIT(24) | cts_val));
753 }
754
755 static int had_calculate_n_value(u32 aud_samp_freq)
756 {
757         int n_val;
758
759         /* Select N according to HDMI 1.3a spec*/
760         switch (aud_samp_freq) {
761         case AUD_SAMPLE_RATE_32:
762                 n_val = 4096;
763                 break;
764
765         case AUD_SAMPLE_RATE_44_1:
766                 n_val = 6272;
767                 break;
768
769         case AUD_SAMPLE_RATE_48:
770                 n_val = 6144;
771                 break;
772
773         case AUD_SAMPLE_RATE_88_2:
774                 n_val = 12544;
775                 break;
776
777         case AUD_SAMPLE_RATE_96:
778                 n_val = 12288;
779                 break;
780
781         case AUD_SAMPLE_RATE_176_4:
782                 n_val = 25088;
783                 break;
784
785         case HAD_MAX_RATE:
786                 n_val = 24576;
787                 break;
788
789         default:
790                 n_val = -EINVAL;
791                 break;
792         }
793         return n_val;
794 }
795
796 /*
797  * Program HDMI audio N value
798  *
799  * @aud_samp_freq: sampling frequency of audio data
800  * @n_param: N value, depends on aud_samp_freq
801  * @intelhaddata: substream private data
802  *
803  * This function is called in the prepare callback.
804  * It programs based on the audio and display sampling frequency
805  */
806 static int had_prog_n(u32 aud_samp_freq, u32 *n_param,
807                       struct snd_intelhad *intelhaddata)
808 {
809         int n_val;
810
811         if (intelhaddata->dp_output) {
812                 /*
813                  * According to DP specs, Maud and Naud values hold
814                  * a relationship, which is stated as:
815                  * Maud/Naud = 512 * fs / f_LS_Clk
816                  * where, fs is the sampling frequency of the audio stream
817                  * and Naud is 32768 for Async clock.
818                  */
819
820                 n_val = DP_NAUD_VAL;
821         } else
822                 n_val = had_calculate_n_value(aud_samp_freq);
823
824         if (n_val < 0)
825                 return n_val;
826
827         had_write_register(intelhaddata, AUD_N_ENABLE, (BIT(24) | n_val));
828         *n_param = n_val;
829         return 0;
830 }
831
832 /*
833  * PCM ring buffer handling
834  *
835  * The hardware provides a ring buffer with the fixed 4 buffer descriptors
836  * (BDs).  The driver maps these 4 BDs onto the PCM ring buffer.  The mapping
837  * moves at each period elapsed.  The below illustrates how it works:
838  *
839  * At time=0
840  *  PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
841  *  BD  | 0 | 1 | 2 | 3 |
842  *
843  * At time=1 (period elapsed)
844  *  PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
845  *  BD      | 1 | 2 | 3 | 0 |
846  *
847  * At time=2 (second period elapsed)
848  *  PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
849  *  BD          | 2 | 3 | 0 | 1 |
850  *
851  * The bd_head field points to the index of the BD to be read.  It's also the
852  * position to be filled at next.  The pcm_head and the pcm_filled fields
853  * point to the indices of the current position and of the next position to
854  * be filled, respectively.  For PCM buffer there are both _head and _filled
855  * because they may be difference when nperiods > 4.  For example, in the
856  * example above at t=1, bd_head=1 and pcm_head=1 while pcm_filled=5:
857  *
858  * pcm_head (=1) --v               v-- pcm_filled (=5)
859  *       PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
860  *       BD      | 1 | 2 | 3 | 0 |
861  *  bd_head (=1) --^               ^-- next to fill (= bd_head)
862  *
863  * For nperiods < 4, the remaining BDs out of 4 are marked as invalid, so that
864  * the hardware skips those BDs in the loop.
865  *
866  * An exceptional setup is the case with nperiods=1.  Since we have to update
867  * BDs after finishing one BD processing, we'd need at least two BDs, where
868  * both BDs point to the same content, the same address, the same size of the
869  * whole PCM buffer.
870  */
871
872 #define AUD_BUF_ADDR(x)         (AUD_BUF_A_ADDR + (x) * HAD_REG_WIDTH)
873 #define AUD_BUF_LEN(x)          (AUD_BUF_A_LENGTH + (x) * HAD_REG_WIDTH)
874
875 /* Set up a buffer descriptor at the "filled" position */
876 static void had_prog_bd(struct snd_pcm_substream *substream,
877                         struct snd_intelhad *intelhaddata)
878 {
879         int idx = intelhaddata->bd_head;
880         int ofs = intelhaddata->pcmbuf_filled * intelhaddata->period_bytes;
881         u32 addr = substream->runtime->dma_addr + ofs;
882
883         addr |= AUD_BUF_VALID;
884         if (!substream->runtime->no_period_wakeup)
885                 addr |= AUD_BUF_INTR_EN;
886         had_write_register(intelhaddata, AUD_BUF_ADDR(idx), addr);
887         had_write_register(intelhaddata, AUD_BUF_LEN(idx),
888                            intelhaddata->period_bytes);
889
890         /* advance the indices to the next */
891         intelhaddata->bd_head++;
892         intelhaddata->bd_head %= intelhaddata->num_bds;
893         intelhaddata->pcmbuf_filled++;
894         intelhaddata->pcmbuf_filled %= substream->runtime->periods;
895 }
896
897 /* invalidate a buffer descriptor with the given index */
898 static void had_invalidate_bd(struct snd_intelhad *intelhaddata,
899                               int idx)
900 {
901         had_write_register(intelhaddata, AUD_BUF_ADDR(idx), 0);
902         had_write_register(intelhaddata, AUD_BUF_LEN(idx), 0);
903 }
904
905 /* Initial programming of ring buffer */
906 static void had_init_ringbuf(struct snd_pcm_substream *substream,
907                              struct snd_intelhad *intelhaddata)
908 {
909         struct snd_pcm_runtime *runtime = substream->runtime;
910         int i, num_periods;
911
912         num_periods = runtime->periods;
913         intelhaddata->num_bds = min(num_periods, HAD_NUM_OF_RING_BUFS);
914         /* set the minimum 2 BDs for num_periods=1 */
915         intelhaddata->num_bds = max(intelhaddata->num_bds, 2U);
916         intelhaddata->period_bytes =
917                 frames_to_bytes(runtime, runtime->period_size);
918         WARN_ON(intelhaddata->period_bytes & 0x3f);
919
920         intelhaddata->bd_head = 0;
921         intelhaddata->pcmbuf_head = 0;
922         intelhaddata->pcmbuf_filled = 0;
923
924         for (i = 0; i < HAD_NUM_OF_RING_BUFS; i++) {
925                 if (i < intelhaddata->num_bds)
926                         had_prog_bd(substream, intelhaddata);
927                 else /* invalidate the rest */
928                         had_invalidate_bd(intelhaddata, i);
929         }
930
931         intelhaddata->bd_head = 0; /* reset at head again before starting */
932 }
933
934 /* process a bd, advance to the next */
935 static void had_advance_ringbuf(struct snd_pcm_substream *substream,
936                                 struct snd_intelhad *intelhaddata)
937 {
938         int num_periods = substream->runtime->periods;
939
940         /* reprogram the next buffer */
941         had_prog_bd(substream, intelhaddata);
942
943         /* proceed to next */
944         intelhaddata->pcmbuf_head++;
945         intelhaddata->pcmbuf_head %= num_periods;
946 }
947
948 /* process the current BD(s);
949  * returns the current PCM buffer byte position, or -EPIPE for underrun.
950  */
951 static int had_process_ringbuf(struct snd_pcm_substream *substream,
952                                struct snd_intelhad *intelhaddata)
953 {
954         int len, processed;
955         unsigned long flags;
956
957         processed = 0;
958         spin_lock_irqsave(&intelhaddata->had_spinlock, flags);
959         for (;;) {
960                 /* get the remaining bytes on the buffer */
961                 had_read_register(intelhaddata,
962                                   AUD_BUF_LEN(intelhaddata->bd_head),
963                                   &len);
964                 if (len < 0 || len > intelhaddata->period_bytes) {
965                         dev_dbg(intelhaddata->dev, "Invalid buf length %d\n",
966                                 len);
967                         len = -EPIPE;
968                         goto out;
969                 }
970
971                 if (len > 0) /* OK, this is the current buffer */
972                         break;
973
974                 /* len=0 => already empty, check the next buffer */
975                 if (++processed >= intelhaddata->num_bds) {
976                         len = -EPIPE; /* all empty? - report underrun */
977                         goto out;
978                 }
979                 had_advance_ringbuf(substream, intelhaddata);
980         }
981
982         len = intelhaddata->period_bytes - len;
983         len += intelhaddata->period_bytes * intelhaddata->pcmbuf_head;
984  out:
985         spin_unlock_irqrestore(&intelhaddata->had_spinlock, flags);
986         return len;
987 }
988
989 /* called from irq handler */
990 static void had_process_buffer_done(struct snd_intelhad *intelhaddata)
991 {
992         struct snd_pcm_substream *substream;
993
994         substream = had_substream_get(intelhaddata);
995         if (!substream)
996                 return; /* no stream? - bail out */
997
998         if (!intelhaddata->connected) {
999                 snd_pcm_stop_xrun(substream);
1000                 goto out; /* disconnected? - bail out */
1001         }
1002
1003         /* process or stop the stream */
1004         if (had_process_ringbuf(substream, intelhaddata) < 0)
1005                 snd_pcm_stop_xrun(substream);
1006         else
1007                 snd_pcm_period_elapsed(substream);
1008
1009  out:
1010         had_substream_put(intelhaddata);
1011 }
1012
1013 /*
1014  * The interrupt status 'sticky' bits might not be cleared by
1015  * setting '1' to that bit once...
1016  */
1017 static void wait_clear_underrun_bit(struct snd_intelhad *intelhaddata)
1018 {
1019         int i;
1020         u32 val;
1021
1022         for (i = 0; i < 100; i++) {
1023                 /* clear bit30, 31 AUD_HDMI_STATUS */
1024                 had_read_register(intelhaddata, AUD_HDMI_STATUS, &val);
1025                 if (!(val & AUD_HDMI_STATUS_MASK_UNDERRUN))
1026                         return;
1027                 udelay(100);
1028                 cond_resched();
1029                 had_write_register(intelhaddata, AUD_HDMI_STATUS, val);
1030         }
1031         dev_err(intelhaddata->dev, "Unable to clear UNDERRUN bits\n");
1032 }
1033
1034 /* Perform some reset procedure but only when need_reset is set;
1035  * this is called from prepare or hw_free callbacks once after trigger STOP
1036  * or underrun has been processed in order to settle down the h/w state.
1037  */
1038 static void had_do_reset(struct snd_intelhad *intelhaddata)
1039 {
1040         if (!intelhaddata->need_reset || !intelhaddata->connected)
1041                 return;
1042
1043         /* Reset buffer pointers */
1044         had_reset_audio(intelhaddata);
1045         wait_clear_underrun_bit(intelhaddata);
1046         intelhaddata->need_reset = false;
1047 }
1048
1049 /* called from irq handler */
1050 static void had_process_buffer_underrun(struct snd_intelhad *intelhaddata)
1051 {
1052         struct snd_pcm_substream *substream;
1053
1054         /* Report UNDERRUN error to above layers */
1055         substream = had_substream_get(intelhaddata);
1056         if (substream) {
1057                 snd_pcm_stop_xrun(substream);
1058                 had_substream_put(intelhaddata);
1059         }
1060         intelhaddata->need_reset = true;
1061 }
1062
1063 /*
1064  * ALSA PCM open callback
1065  */
1066 static int had_pcm_open(struct snd_pcm_substream *substream)
1067 {
1068         struct snd_intelhad *intelhaddata;
1069         struct snd_pcm_runtime *runtime;
1070         int retval;
1071
1072         intelhaddata = snd_pcm_substream_chip(substream);
1073         runtime = substream->runtime;
1074
1075         pm_runtime_get_sync(intelhaddata->dev);
1076
1077         /* set the runtime hw parameter with local snd_pcm_hardware struct */
1078         runtime->hw = had_pcm_hardware;
1079
1080         retval = snd_pcm_hw_constraint_integer(runtime,
1081                          SNDRV_PCM_HW_PARAM_PERIODS);
1082         if (retval < 0)
1083                 goto error;
1084
1085         /* Make sure, that the period size is always aligned
1086          * 64byte boundary
1087          */
1088         retval = snd_pcm_hw_constraint_step(substream->runtime, 0,
1089                         SNDRV_PCM_HW_PARAM_PERIOD_BYTES, 64);
1090         if (retval < 0)
1091                 goto error;
1092
1093         retval = snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24);
1094         if (retval < 0)
1095                 goto error;
1096
1097         /* expose PCM substream */
1098         spin_lock_irq(&intelhaddata->had_spinlock);
1099         intelhaddata->stream_info.substream = substream;
1100         intelhaddata->stream_info.substream_refcount++;
1101         spin_unlock_irq(&intelhaddata->had_spinlock);
1102
1103         return retval;
1104  error:
1105         pm_runtime_mark_last_busy(intelhaddata->dev);
1106         pm_runtime_put_autosuspend(intelhaddata->dev);
1107         return retval;
1108 }
1109
1110 /*
1111  * ALSA PCM close callback
1112  */
1113 static int had_pcm_close(struct snd_pcm_substream *substream)
1114 {
1115         struct snd_intelhad *intelhaddata;
1116
1117         intelhaddata = snd_pcm_substream_chip(substream);
1118
1119         /* unreference and sync with the pending PCM accesses */
1120         spin_lock_irq(&intelhaddata->had_spinlock);
1121         intelhaddata->stream_info.substream = NULL;
1122         intelhaddata->stream_info.substream_refcount--;
1123         while (intelhaddata->stream_info.substream_refcount > 0) {
1124                 spin_unlock_irq(&intelhaddata->had_spinlock);
1125                 cpu_relax();
1126                 spin_lock_irq(&intelhaddata->had_spinlock);
1127         }
1128         spin_unlock_irq(&intelhaddata->had_spinlock);
1129
1130         pm_runtime_mark_last_busy(intelhaddata->dev);
1131         pm_runtime_put_autosuspend(intelhaddata->dev);
1132         return 0;
1133 }
1134
1135 /*
1136  * ALSA PCM hw_params callback
1137  */
1138 static int had_pcm_hw_params(struct snd_pcm_substream *substream,
1139                              struct snd_pcm_hw_params *hw_params)
1140 {
1141         struct snd_intelhad *intelhaddata;
1142         unsigned long addr;
1143         int pages, buf_size, retval;
1144
1145         intelhaddata = snd_pcm_substream_chip(substream);
1146         buf_size = params_buffer_bytes(hw_params);
1147         retval = snd_pcm_lib_malloc_pages(substream, buf_size);
1148         if (retval < 0)
1149                 return retval;
1150         dev_dbg(intelhaddata->dev, "%s:allocated memory = %d\n",
1151                 __func__, buf_size);
1152         /* mark the pages as uncached region */
1153         addr = (unsigned long) substream->runtime->dma_area;
1154         pages = (substream->runtime->dma_bytes + PAGE_SIZE - 1) / PAGE_SIZE;
1155         retval = set_memory_uc(addr, pages);
1156         if (retval) {
1157                 dev_err(intelhaddata->dev, "set_memory_uc failed.Error:%d\n",
1158                         retval);
1159                 return retval;
1160         }
1161         memset(substream->runtime->dma_area, 0, buf_size);
1162
1163         return retval;
1164 }
1165
1166 /*
1167  * ALSA PCM hw_free callback
1168  */
1169 static int had_pcm_hw_free(struct snd_pcm_substream *substream)
1170 {
1171         struct snd_intelhad *intelhaddata;
1172         unsigned long addr;
1173         u32 pages;
1174
1175         intelhaddata = snd_pcm_substream_chip(substream);
1176         had_do_reset(intelhaddata);
1177
1178         /* mark back the pages as cached/writeback region before the free */
1179         if (substream->runtime->dma_area != NULL) {
1180                 addr = (unsigned long) substream->runtime->dma_area;
1181                 pages = (substream->runtime->dma_bytes + PAGE_SIZE - 1) /
1182                                                                 PAGE_SIZE;
1183                 set_memory_wb(addr, pages);
1184                 return snd_pcm_lib_free_pages(substream);
1185         }
1186         return 0;
1187 }
1188
1189 /*
1190  * ALSA PCM trigger callback
1191  */
1192 static int had_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
1193 {
1194         int retval = 0;
1195         struct snd_intelhad *intelhaddata;
1196
1197         intelhaddata = snd_pcm_substream_chip(substream);
1198
1199         spin_lock(&intelhaddata->had_spinlock);
1200         switch (cmd) {
1201         case SNDRV_PCM_TRIGGER_START:
1202         case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
1203         case SNDRV_PCM_TRIGGER_RESUME:
1204                 /* Enable Audio */
1205                 had_ack_irqs(intelhaddata); /* FIXME: do we need this? */
1206                 had_enable_audio(intelhaddata, true);
1207                 break;
1208
1209         case SNDRV_PCM_TRIGGER_STOP:
1210         case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
1211                 /* Disable Audio */
1212                 had_enable_audio(intelhaddata, false);
1213                 intelhaddata->need_reset = true;
1214                 break;
1215
1216         default:
1217                 retval = -EINVAL;
1218         }
1219         spin_unlock(&intelhaddata->had_spinlock);
1220         return retval;
1221 }
1222
1223 /*
1224  * ALSA PCM prepare callback
1225  */
1226 static int had_pcm_prepare(struct snd_pcm_substream *substream)
1227 {
1228         int retval;
1229         u32 disp_samp_freq, n_param;
1230         u32 link_rate = 0;
1231         struct snd_intelhad *intelhaddata;
1232         struct snd_pcm_runtime *runtime;
1233
1234         intelhaddata = snd_pcm_substream_chip(substream);
1235         runtime = substream->runtime;
1236
1237         dev_dbg(intelhaddata->dev, "period_size=%d\n",
1238                 (int)frames_to_bytes(runtime, runtime->period_size));
1239         dev_dbg(intelhaddata->dev, "periods=%d\n", runtime->periods);
1240         dev_dbg(intelhaddata->dev, "buffer_size=%d\n",
1241                 (int)snd_pcm_lib_buffer_bytes(substream));
1242         dev_dbg(intelhaddata->dev, "rate=%d\n", runtime->rate);
1243         dev_dbg(intelhaddata->dev, "channels=%d\n", runtime->channels);
1244
1245         had_do_reset(intelhaddata);
1246
1247         /* Get N value in KHz */
1248         disp_samp_freq = intelhaddata->tmds_clock_speed;
1249
1250         retval = had_prog_n(substream->runtime->rate, &n_param, intelhaddata);
1251         if (retval) {
1252                 dev_err(intelhaddata->dev,
1253                         "programming N value failed %#x\n", retval);
1254                 goto prep_end;
1255         }
1256
1257         if (intelhaddata->dp_output)
1258                 link_rate = intelhaddata->link_rate;
1259
1260         had_prog_cts(substream->runtime->rate, disp_samp_freq, link_rate,
1261                      n_param, intelhaddata);
1262
1263         had_prog_dip(substream, intelhaddata);
1264
1265         retval = had_init_audio_ctrl(substream, intelhaddata);
1266
1267         /* Prog buffer address */
1268         had_init_ringbuf(substream, intelhaddata);
1269
1270         /*
1271          * Program channel mapping in following order:
1272          * FL, FR, C, LFE, RL, RR
1273          */
1274
1275         had_write_register(intelhaddata, AUD_BUF_CH_SWAP, SWAP_LFE_CENTER);
1276
1277 prep_end:
1278         return retval;
1279 }
1280
1281 /*
1282  * ALSA PCM pointer callback
1283  */
1284 static snd_pcm_uframes_t had_pcm_pointer(struct snd_pcm_substream *substream)
1285 {
1286         struct snd_intelhad *intelhaddata;
1287         int len;
1288
1289         intelhaddata = snd_pcm_substream_chip(substream);
1290
1291         if (!intelhaddata->connected)
1292                 return SNDRV_PCM_POS_XRUN;
1293
1294         len = had_process_ringbuf(substream, intelhaddata);
1295         if (len < 0)
1296                 return SNDRV_PCM_POS_XRUN;
1297         len = bytes_to_frames(substream->runtime, len);
1298         /* wrapping may happen when periods=1 */
1299         len %= substream->runtime->buffer_size;
1300         return len;
1301 }
1302
1303 /*
1304  * ALSA PCM mmap callback
1305  */
1306 static int had_pcm_mmap(struct snd_pcm_substream *substream,
1307                         struct vm_area_struct *vma)
1308 {
1309         vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1310         return remap_pfn_range(vma, vma->vm_start,
1311                         substream->dma_buffer.addr >> PAGE_SHIFT,
1312                         vma->vm_end - vma->vm_start, vma->vm_page_prot);
1313 }
1314
1315 /*
1316  * ALSA PCM ops
1317  */
1318 static const struct snd_pcm_ops had_pcm_ops = {
1319         .open =         had_pcm_open,
1320         .close =        had_pcm_close,
1321         .ioctl =        snd_pcm_lib_ioctl,
1322         .hw_params =    had_pcm_hw_params,
1323         .hw_free =      had_pcm_hw_free,
1324         .prepare =      had_pcm_prepare,
1325         .trigger =      had_pcm_trigger,
1326         .pointer =      had_pcm_pointer,
1327         .mmap =         had_pcm_mmap,
1328 };
1329
1330 /* process mode change of the running stream; called in mutex */
1331 static int had_process_mode_change(struct snd_intelhad *intelhaddata)
1332 {
1333         struct snd_pcm_substream *substream;
1334         int retval = 0;
1335         u32 disp_samp_freq, n_param;
1336         u32 link_rate = 0;
1337
1338         substream = had_substream_get(intelhaddata);
1339         if (!substream)
1340                 return 0;
1341
1342         /* Disable Audio */
1343         had_enable_audio(intelhaddata, false);
1344
1345         /* Update CTS value */
1346         disp_samp_freq = intelhaddata->tmds_clock_speed;
1347
1348         retval = had_prog_n(substream->runtime->rate, &n_param, intelhaddata);
1349         if (retval) {
1350                 dev_err(intelhaddata->dev,
1351                         "programming N value failed %#x\n", retval);
1352                 goto out;
1353         }
1354
1355         if (intelhaddata->dp_output)
1356                 link_rate = intelhaddata->link_rate;
1357
1358         had_prog_cts(substream->runtime->rate, disp_samp_freq, link_rate,
1359                      n_param, intelhaddata);
1360
1361         /* Enable Audio */
1362         had_enable_audio(intelhaddata, true);
1363
1364 out:
1365         had_substream_put(intelhaddata);
1366         return retval;
1367 }
1368
1369 /* process hot plug, called from wq with mutex locked */
1370 static void had_process_hot_plug(struct snd_intelhad *intelhaddata)
1371 {
1372         struct snd_pcm_substream *substream;
1373
1374         spin_lock_irq(&intelhaddata->had_spinlock);
1375         if (intelhaddata->connected) {
1376                 dev_dbg(intelhaddata->dev, "Device already connected\n");
1377                 spin_unlock_irq(&intelhaddata->had_spinlock);
1378                 return;
1379         }
1380
1381         /* Disable Audio */
1382         had_enable_audio(intelhaddata, false);
1383
1384         intelhaddata->connected = true;
1385         dev_dbg(intelhaddata->dev,
1386                 "%s @ %d:DEBUG PLUG/UNPLUG : HAD_DRV_CONNECTED\n",
1387                         __func__, __LINE__);
1388         spin_unlock_irq(&intelhaddata->had_spinlock);
1389
1390         had_build_channel_allocation_map(intelhaddata);
1391
1392         /* Report to above ALSA layer */
1393         substream = had_substream_get(intelhaddata);
1394         if (substream) {
1395                 snd_pcm_stop_xrun(substream);
1396                 had_substream_put(intelhaddata);
1397         }
1398
1399         snd_jack_report(intelhaddata->jack, SND_JACK_AVOUT);
1400 }
1401
1402 /* process hot unplug, called from wq with mutex locked */
1403 static void had_process_hot_unplug(struct snd_intelhad *intelhaddata)
1404 {
1405         struct snd_pcm_substream *substream;
1406
1407         spin_lock_irq(&intelhaddata->had_spinlock);
1408         if (!intelhaddata->connected) {
1409                 dev_dbg(intelhaddata->dev, "Device already disconnected\n");
1410                 spin_unlock_irq(&intelhaddata->had_spinlock);
1411                 return;
1412
1413         }
1414
1415         /* Disable Audio */
1416         had_enable_audio(intelhaddata, false);
1417
1418         intelhaddata->connected = false;
1419         dev_dbg(intelhaddata->dev,
1420                 "%s @ %d:DEBUG PLUG/UNPLUG : HAD_DRV_DISCONNECTED\n",
1421                         __func__, __LINE__);
1422         spin_unlock_irq(&intelhaddata->had_spinlock);
1423
1424         kfree(intelhaddata->chmap->chmap);
1425         intelhaddata->chmap->chmap = NULL;
1426
1427         /* Report to above ALSA layer */
1428         substream = had_substream_get(intelhaddata);
1429         if (substream) {
1430                 snd_pcm_stop_xrun(substream);
1431                 had_substream_put(intelhaddata);
1432         }
1433
1434         snd_jack_report(intelhaddata->jack, 0);
1435 }
1436
1437 /*
1438  * ALSA iec958 and ELD controls
1439  */
1440
1441 static int had_iec958_info(struct snd_kcontrol *kcontrol,
1442                                 struct snd_ctl_elem_info *uinfo)
1443 {
1444         uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1445         uinfo->count = 1;
1446         return 0;
1447 }
1448
1449 static int had_iec958_get(struct snd_kcontrol *kcontrol,
1450                                 struct snd_ctl_elem_value *ucontrol)
1451 {
1452         struct snd_intelhad *intelhaddata = snd_kcontrol_chip(kcontrol);
1453
1454         mutex_lock(&intelhaddata->mutex);
1455         ucontrol->value.iec958.status[0] = (intelhaddata->aes_bits >> 0) & 0xff;
1456         ucontrol->value.iec958.status[1] = (intelhaddata->aes_bits >> 8) & 0xff;
1457         ucontrol->value.iec958.status[2] =
1458                                         (intelhaddata->aes_bits >> 16) & 0xff;
1459         ucontrol->value.iec958.status[3] =
1460                                         (intelhaddata->aes_bits >> 24) & 0xff;
1461         mutex_unlock(&intelhaddata->mutex);
1462         return 0;
1463 }
1464
1465 static int had_iec958_mask_get(struct snd_kcontrol *kcontrol,
1466                                 struct snd_ctl_elem_value *ucontrol)
1467 {
1468         ucontrol->value.iec958.status[0] = 0xff;
1469         ucontrol->value.iec958.status[1] = 0xff;
1470         ucontrol->value.iec958.status[2] = 0xff;
1471         ucontrol->value.iec958.status[3] = 0xff;
1472         return 0;
1473 }
1474
1475 static int had_iec958_put(struct snd_kcontrol *kcontrol,
1476                                 struct snd_ctl_elem_value *ucontrol)
1477 {
1478         unsigned int val;
1479         struct snd_intelhad *intelhaddata = snd_kcontrol_chip(kcontrol);
1480         int changed = 0;
1481
1482         val = (ucontrol->value.iec958.status[0] << 0) |
1483                 (ucontrol->value.iec958.status[1] << 8) |
1484                 (ucontrol->value.iec958.status[2] << 16) |
1485                 (ucontrol->value.iec958.status[3] << 24);
1486         mutex_lock(&intelhaddata->mutex);
1487         if (intelhaddata->aes_bits != val) {
1488                 intelhaddata->aes_bits = val;
1489                 changed = 1;
1490         }
1491         mutex_unlock(&intelhaddata->mutex);
1492         return changed;
1493 }
1494
1495 static int had_ctl_eld_info(struct snd_kcontrol *kcontrol,
1496                             struct snd_ctl_elem_info *uinfo)
1497 {
1498         uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
1499         uinfo->count = HDMI_MAX_ELD_BYTES;
1500         return 0;
1501 }
1502
1503 static int had_ctl_eld_get(struct snd_kcontrol *kcontrol,
1504                            struct snd_ctl_elem_value *ucontrol)
1505 {
1506         struct snd_intelhad *intelhaddata = snd_kcontrol_chip(kcontrol);
1507
1508         mutex_lock(&intelhaddata->mutex);
1509         memcpy(ucontrol->value.bytes.data, intelhaddata->eld,
1510                HDMI_MAX_ELD_BYTES);
1511         mutex_unlock(&intelhaddata->mutex);
1512         return 0;
1513 }
1514
1515 static const struct snd_kcontrol_new had_controls[] = {
1516         {
1517                 .access = SNDRV_CTL_ELEM_ACCESS_READ,
1518                 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
1519                 .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, MASK),
1520                 .info = had_iec958_info, /* shared */
1521                 .get = had_iec958_mask_get,
1522         },
1523         {
1524                 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
1525                 .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, DEFAULT),
1526                 .info = had_iec958_info,
1527                 .get = had_iec958_get,
1528                 .put = had_iec958_put,
1529         },
1530         {
1531                 .access = (SNDRV_CTL_ELEM_ACCESS_READ |
1532                            SNDRV_CTL_ELEM_ACCESS_VOLATILE),
1533                 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
1534                 .name = "ELD",
1535                 .info = had_ctl_eld_info,
1536                 .get = had_ctl_eld_get,
1537         },
1538 };
1539
1540 /*
1541  * audio interrupt handler
1542  */
1543 static irqreturn_t display_pipe_interrupt_handler(int irq, void *dev_id)
1544 {
1545         struct snd_intelhad_card *card_ctx = dev_id;
1546         u32 audio_stat[3] = {};
1547         int pipe, port;
1548
1549         for_each_pipe(card_ctx, pipe) {
1550                 /* use raw register access to ack IRQs even while disconnected */
1551                 audio_stat[pipe] = had_read_register_raw(card_ctx, pipe,
1552                                                          AUD_HDMI_STATUS) &
1553                         (HDMI_AUDIO_UNDERRUN | HDMI_AUDIO_BUFFER_DONE);
1554
1555                 if (audio_stat[pipe])
1556                         had_write_register_raw(card_ctx, pipe,
1557                                                AUD_HDMI_STATUS, audio_stat[pipe]);
1558         }
1559
1560         for_each_port(card_ctx, port) {
1561                 struct snd_intelhad *ctx = &card_ctx->pcm_ctx[port];
1562                 int pipe = ctx->pipe;
1563
1564                 if (pipe < 0)
1565                         continue;
1566
1567                 if (audio_stat[pipe] & HDMI_AUDIO_BUFFER_DONE)
1568                         had_process_buffer_done(ctx);
1569                 if (audio_stat[pipe] & HDMI_AUDIO_UNDERRUN)
1570                         had_process_buffer_underrun(ctx);
1571         }
1572
1573         return IRQ_HANDLED;
1574 }
1575
1576 /*
1577  * monitor plug/unplug notification from i915; just kick off the work
1578  */
1579 static void notify_audio_lpe(struct platform_device *pdev, int port)
1580 {
1581         struct snd_intelhad_card *card_ctx = platform_get_drvdata(pdev);
1582         struct snd_intelhad *ctx = &card_ctx->pcm_ctx[port];
1583
1584         schedule_work(&ctx->hdmi_audio_wq);
1585 }
1586
1587 /* the work to handle monitor hot plug/unplug */
1588 static void had_audio_wq(struct work_struct *work)
1589 {
1590         struct snd_intelhad *ctx =
1591                 container_of(work, struct snd_intelhad, hdmi_audio_wq);
1592         struct intel_hdmi_lpe_audio_pdata *pdata = ctx->dev->platform_data;
1593         struct intel_hdmi_lpe_audio_port_pdata *ppdata = &pdata->port[ctx->port];
1594
1595         pm_runtime_get_sync(ctx->dev);
1596         mutex_lock(&ctx->mutex);
1597         if (ppdata->pipe < 0) {
1598                 dev_dbg(ctx->dev, "%s: Event: HAD_NOTIFY_HOT_UNPLUG : port = %d\n",
1599                         __func__, ctx->port);
1600
1601                 memset(ctx->eld, 0, sizeof(ctx->eld)); /* clear the old ELD */
1602
1603                 ctx->dp_output = false;
1604                 ctx->tmds_clock_speed = 0;
1605                 ctx->link_rate = 0;
1606
1607                 /* Shut down the stream */
1608                 had_process_hot_unplug(ctx);
1609
1610                 ctx->pipe = -1;
1611         } else {
1612                 dev_dbg(ctx->dev, "%s: HAD_NOTIFY_ELD : port = %d, tmds = %d\n",
1613                         __func__, ctx->port, ppdata->ls_clock);
1614
1615                 memcpy(ctx->eld, ppdata->eld, sizeof(ctx->eld));
1616
1617                 ctx->dp_output = ppdata->dp_output;
1618                 if (ctx->dp_output) {
1619                         ctx->tmds_clock_speed = 0;
1620                         ctx->link_rate = ppdata->ls_clock;
1621                 } else {
1622                         ctx->tmds_clock_speed = ppdata->ls_clock;
1623                         ctx->link_rate = 0;
1624                 }
1625
1626                 /*
1627                  * Shut down the stream before we change
1628                  * the pipe assignment for this pcm device
1629                  */
1630                 had_process_hot_plug(ctx);
1631
1632                 ctx->pipe = ppdata->pipe;
1633
1634                 /* Restart the stream if necessary */
1635                 had_process_mode_change(ctx);
1636         }
1637
1638         mutex_unlock(&ctx->mutex);
1639         pm_runtime_mark_last_busy(ctx->dev);
1640         pm_runtime_put_autosuspend(ctx->dev);
1641 }
1642
1643 /*
1644  * Jack interface
1645  */
1646 static int had_create_jack(struct snd_intelhad *ctx,
1647                            struct snd_pcm *pcm)
1648 {
1649         char hdmi_str[32];
1650         int err;
1651
1652         snprintf(hdmi_str, sizeof(hdmi_str),
1653                  "HDMI/DP,pcm=%d", pcm->device);
1654
1655         err = snd_jack_new(ctx->card_ctx->card, hdmi_str,
1656                            SND_JACK_AVOUT, &ctx->jack,
1657                            true, false);
1658         if (err < 0)
1659                 return err;
1660         ctx->jack->private_data = ctx;
1661         return 0;
1662 }
1663
1664 /*
1665  * PM callbacks
1666  */
1667
1668 static int hdmi_lpe_audio_runtime_suspend(struct device *dev)
1669 {
1670         struct snd_intelhad_card *card_ctx = dev_get_drvdata(dev);
1671         int port;
1672
1673         for_each_port(card_ctx, port) {
1674                 struct snd_intelhad *ctx = &card_ctx->pcm_ctx[port];
1675                 struct snd_pcm_substream *substream;
1676
1677                 substream = had_substream_get(ctx);
1678                 if (substream) {
1679                         snd_pcm_suspend(substream);
1680                         had_substream_put(ctx);
1681                 }
1682         }
1683
1684         return 0;
1685 }
1686
1687 static int __maybe_unused hdmi_lpe_audio_suspend(struct device *dev)
1688 {
1689         struct snd_intelhad_card *card_ctx = dev_get_drvdata(dev);
1690         int err;
1691
1692         err = hdmi_lpe_audio_runtime_suspend(dev);
1693         if (!err)
1694                 snd_power_change_state(card_ctx->card, SNDRV_CTL_POWER_D3hot);
1695         return err;
1696 }
1697
1698 static int hdmi_lpe_audio_runtime_resume(struct device *dev)
1699 {
1700         pm_runtime_mark_last_busy(dev);
1701         return 0;
1702 }
1703
1704 static int __maybe_unused hdmi_lpe_audio_resume(struct device *dev)
1705 {
1706         struct snd_intelhad_card *card_ctx = dev_get_drvdata(dev);
1707
1708         hdmi_lpe_audio_runtime_resume(dev);
1709         snd_power_change_state(card_ctx->card, SNDRV_CTL_POWER_D0);
1710         return 0;
1711 }
1712
1713 /* release resources */
1714 static void hdmi_lpe_audio_free(struct snd_card *card)
1715 {
1716         struct snd_intelhad_card *card_ctx = card->private_data;
1717         struct intel_hdmi_lpe_audio_pdata *pdata = card_ctx->dev->platform_data;
1718         int port;
1719
1720         spin_lock_irq(&pdata->lpe_audio_slock);
1721         pdata->notify_audio_lpe = NULL;
1722         spin_unlock_irq(&pdata->lpe_audio_slock);
1723
1724         for_each_port(card_ctx, port) {
1725                 struct snd_intelhad *ctx = &card_ctx->pcm_ctx[port];
1726
1727                 cancel_work_sync(&ctx->hdmi_audio_wq);
1728         }
1729
1730         if (card_ctx->mmio_start)
1731                 iounmap(card_ctx->mmio_start);
1732         if (card_ctx->irq >= 0)
1733                 free_irq(card_ctx->irq, card_ctx);
1734 }
1735
1736 /*
1737  * hdmi_lpe_audio_probe - start bridge with i915
1738  *
1739  * This function is called when the i915 driver creates the
1740  * hdmi-lpe-audio platform device.
1741  */
1742 static int hdmi_lpe_audio_probe(struct platform_device *pdev)
1743 {
1744         struct snd_card *card;
1745         struct snd_intelhad_card *card_ctx;
1746         struct snd_pcm *pcm;
1747         struct intel_hdmi_lpe_audio_pdata *pdata;
1748         int irq;
1749         struct resource *res_mmio;
1750         int port, ret;
1751
1752         pdata = pdev->dev.platform_data;
1753         if (!pdata) {
1754                 dev_err(&pdev->dev, "%s: quit: pdata not allocated by i915!!\n", __func__);
1755                 return -EINVAL;
1756         }
1757
1758         /* get resources */
1759         irq = platform_get_irq(pdev, 0);
1760         if (irq < 0) {
1761                 dev_err(&pdev->dev, "Could not get irq resource\n");
1762                 return -ENODEV;
1763         }
1764
1765         res_mmio = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1766         if (!res_mmio) {
1767                 dev_err(&pdev->dev, "Could not get IO_MEM resources\n");
1768                 return -ENXIO;
1769         }
1770
1771         /* create a card instance with ALSA framework */
1772         ret = snd_card_new(&pdev->dev, hdmi_card_index, hdmi_card_id,
1773                            THIS_MODULE, sizeof(*card_ctx), &card);
1774         if (ret)
1775                 return ret;
1776
1777         card_ctx = card->private_data;
1778         card_ctx->dev = &pdev->dev;
1779         card_ctx->card = card;
1780         strcpy(card->driver, INTEL_HAD);
1781         strcpy(card->shortname, "Intel HDMI/DP LPE Audio");
1782         strcpy(card->longname, "Intel HDMI/DP LPE Audio");
1783
1784         card_ctx->irq = -1;
1785
1786         card->private_free = hdmi_lpe_audio_free;
1787
1788         platform_set_drvdata(pdev, card_ctx);
1789
1790         dev_dbg(&pdev->dev, "%s: mmio_start = 0x%x, mmio_end = 0x%x\n",
1791                 __func__, (unsigned int)res_mmio->start,
1792                 (unsigned int)res_mmio->end);
1793
1794         card_ctx->mmio_start = ioremap_nocache(res_mmio->start,
1795                                                (size_t)(resource_size(res_mmio)));
1796         if (!card_ctx->mmio_start) {
1797                 dev_err(&pdev->dev, "Could not get ioremap\n");
1798                 ret = -EACCES;
1799                 goto err;
1800         }
1801
1802         /* setup interrupt handler */
1803         ret = request_irq(irq, display_pipe_interrupt_handler, 0,
1804                           pdev->name, card_ctx);
1805         if (ret < 0) {
1806                 dev_err(&pdev->dev, "request_irq failed\n");
1807                 goto err;
1808         }
1809
1810         card_ctx->irq = irq;
1811
1812         /* only 32bit addressable */
1813         dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
1814         dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
1815
1816         init_channel_allocations();
1817
1818         card_ctx->num_pipes = pdata->num_pipes;
1819         card_ctx->num_ports = pdata->num_ports;
1820
1821         for_each_port(card_ctx, port) {
1822                 struct snd_intelhad *ctx = &card_ctx->pcm_ctx[port];
1823                 int i;
1824
1825                 ctx->card_ctx = card_ctx;
1826                 ctx->dev = card_ctx->dev;
1827                 ctx->port = port;
1828                 ctx->pipe = -1;
1829
1830                 INIT_WORK(&ctx->hdmi_audio_wq, had_audio_wq);
1831
1832                 ret = snd_pcm_new(card, INTEL_HAD, port, MAX_PB_STREAMS,
1833                                   MAX_CAP_STREAMS, &pcm);
1834                 if (ret)
1835                         goto err;
1836
1837                 /* setup private data which can be retrieved when required */
1838                 pcm->private_data = ctx;
1839                 pcm->info_flags = 0;
1840                 strncpy(pcm->name, card->shortname, strlen(card->shortname));
1841                 /* setup the ops for playabck */
1842                 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &had_pcm_ops);
1843
1844                 /* allocate dma pages;
1845                  * try to allocate 600k buffer as default which is large enough
1846                  */
1847                 snd_pcm_lib_preallocate_pages_for_all(pcm,
1848                                                       SNDRV_DMA_TYPE_DEV, NULL,
1849                                                       HAD_DEFAULT_BUFFER, HAD_MAX_BUFFER);
1850
1851                 /* create controls */
1852                 for (i = 0; i < ARRAY_SIZE(had_controls); i++) {
1853                         struct snd_kcontrol *kctl;
1854
1855                         kctl = snd_ctl_new1(&had_controls[i], ctx);
1856                         if (!kctl) {
1857                                 ret = -ENOMEM;
1858                                 goto err;
1859                         }
1860
1861                         kctl->id.device = pcm->device;
1862
1863                         ret = snd_ctl_add(card, kctl);
1864                         if (ret < 0)
1865                                 goto err;
1866                 }
1867
1868                 /* Register channel map controls */
1869                 ret = had_register_chmap_ctls(ctx, pcm);
1870                 if (ret < 0)
1871                         goto err;
1872
1873                 ret = had_create_jack(ctx, pcm);
1874                 if (ret < 0)
1875                         goto err;
1876         }
1877
1878         ret = snd_card_register(card);
1879         if (ret)
1880                 goto err;
1881
1882         spin_lock_irq(&pdata->lpe_audio_slock);
1883         pdata->notify_audio_lpe = notify_audio_lpe;
1884         spin_unlock_irq(&pdata->lpe_audio_slock);
1885
1886         pm_runtime_use_autosuspend(&pdev->dev);
1887         pm_runtime_mark_last_busy(&pdev->dev);
1888         pm_runtime_set_active(&pdev->dev);
1889
1890         dev_dbg(&pdev->dev, "%s: handle pending notification\n", __func__);
1891         for_each_port(card_ctx, port) {
1892                 struct snd_intelhad *ctx = &card_ctx->pcm_ctx[port];
1893
1894                 schedule_work(&ctx->hdmi_audio_wq);
1895         }
1896
1897         return 0;
1898
1899 err:
1900         snd_card_free(card);
1901         return ret;
1902 }
1903
1904 /*
1905  * hdmi_lpe_audio_remove - stop bridge with i915
1906  *
1907  * This function is called when the platform device is destroyed.
1908  */
1909 static int hdmi_lpe_audio_remove(struct platform_device *pdev)
1910 {
1911         struct snd_intelhad_card *card_ctx = platform_get_drvdata(pdev);
1912
1913         snd_card_free(card_ctx->card);
1914         return 0;
1915 }
1916
1917 static const struct dev_pm_ops hdmi_lpe_audio_pm = {
1918         SET_SYSTEM_SLEEP_PM_OPS(hdmi_lpe_audio_suspend, hdmi_lpe_audio_resume)
1919         SET_RUNTIME_PM_OPS(hdmi_lpe_audio_runtime_suspend,
1920                            hdmi_lpe_audio_runtime_resume, NULL)
1921 };
1922
1923 static struct platform_driver hdmi_lpe_audio_driver = {
1924         .driver         = {
1925                 .name  = "hdmi-lpe-audio",
1926                 .pm = &hdmi_lpe_audio_pm,
1927         },
1928         .probe          = hdmi_lpe_audio_probe,
1929         .remove         = hdmi_lpe_audio_remove,
1930 };
1931
1932 module_platform_driver(hdmi_lpe_audio_driver);
1933 MODULE_ALIAS("platform:hdmi_lpe_audio");
1934
1935 MODULE_AUTHOR("Sailaja Bandarupalli <sailaja.bandarupalli@intel.com>");
1936 MODULE_AUTHOR("Ramesh Babu K V <ramesh.babu@intel.com>");
1937 MODULE_AUTHOR("Vaibhav Agarwal <vaibhav.agarwal@intel.com>");
1938 MODULE_AUTHOR("Jerome Anand <jerome.anand@intel.com>");
1939 MODULE_DESCRIPTION("Intel HDMI Audio driver");
1940 MODULE_LICENSE("GPL v2");
1941 MODULE_SUPPORTED_DEVICE("{Intel,Intel_HAD}");