]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - virt/kvm/kvm_main.c
Merge tag 'scsi-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi
[karo-tx-linux.git] / virt / kvm / kvm_main.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18
19 #include <kvm/iodev.h>
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched/signal.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/stat.h>
38 #include <linux/cpumask.h>
39 #include <linux/smp.h>
40 #include <linux/anon_inodes.h>
41 #include <linux/profile.h>
42 #include <linux/kvm_para.h>
43 #include <linux/pagemap.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/bitops.h>
47 #include <linux/spinlock.h>
48 #include <linux/compat.h>
49 #include <linux/srcu.h>
50 #include <linux/hugetlb.h>
51 #include <linux/slab.h>
52 #include <linux/sort.h>
53 #include <linux/bsearch.h>
54
55 #include <asm/processor.h>
56 #include <asm/io.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59 #include <asm/pgtable.h>
60
61 #include "coalesced_mmio.h"
62 #include "async_pf.h"
63 #include "vfio.h"
64
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/kvm.h>
67
68 /* Worst case buffer size needed for holding an integer. */
69 #define ITOA_MAX_LEN 12
70
71 MODULE_AUTHOR("Qumranet");
72 MODULE_LICENSE("GPL");
73
74 /* Architectures should define their poll value according to the halt latency */
75 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
76 module_param(halt_poll_ns, uint, S_IRUGO | S_IWUSR);
77 EXPORT_SYMBOL_GPL(halt_poll_ns);
78
79 /* Default doubles per-vcpu halt_poll_ns. */
80 unsigned int halt_poll_ns_grow = 2;
81 module_param(halt_poll_ns_grow, uint, S_IRUGO | S_IWUSR);
82 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
83
84 /* Default resets per-vcpu halt_poll_ns . */
85 unsigned int halt_poll_ns_shrink;
86 module_param(halt_poll_ns_shrink, uint, S_IRUGO | S_IWUSR);
87 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
88
89 /*
90  * Ordering of locks:
91  *
92  *      kvm->lock --> kvm->slots_lock --> kvm->irq_lock
93  */
94
95 DEFINE_SPINLOCK(kvm_lock);
96 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
97 LIST_HEAD(vm_list);
98
99 static cpumask_var_t cpus_hardware_enabled;
100 static int kvm_usage_count;
101 static atomic_t hardware_enable_failed;
102
103 struct kmem_cache *kvm_vcpu_cache;
104 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
105
106 static __read_mostly struct preempt_ops kvm_preempt_ops;
107
108 struct dentry *kvm_debugfs_dir;
109 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
110
111 static int kvm_debugfs_num_entries;
112 static const struct file_operations *stat_fops_per_vm[];
113
114 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
115                            unsigned long arg);
116 #ifdef CONFIG_KVM_COMPAT
117 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
118                                   unsigned long arg);
119 #endif
120 static int hardware_enable_all(void);
121 static void hardware_disable_all(void);
122
123 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
124
125 static void kvm_release_pfn_dirty(kvm_pfn_t pfn);
126 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
127
128 __visible bool kvm_rebooting;
129 EXPORT_SYMBOL_GPL(kvm_rebooting);
130
131 static bool largepages_enabled = true;
132
133 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
134 {
135         if (pfn_valid(pfn))
136                 return PageReserved(pfn_to_page(pfn));
137
138         return true;
139 }
140
141 /*
142  * Switches to specified vcpu, until a matching vcpu_put()
143  */
144 int vcpu_load(struct kvm_vcpu *vcpu)
145 {
146         int cpu;
147
148         if (mutex_lock_killable(&vcpu->mutex))
149                 return -EINTR;
150         cpu = get_cpu();
151         preempt_notifier_register(&vcpu->preempt_notifier);
152         kvm_arch_vcpu_load(vcpu, cpu);
153         put_cpu();
154         return 0;
155 }
156 EXPORT_SYMBOL_GPL(vcpu_load);
157
158 void vcpu_put(struct kvm_vcpu *vcpu)
159 {
160         preempt_disable();
161         kvm_arch_vcpu_put(vcpu);
162         preempt_notifier_unregister(&vcpu->preempt_notifier);
163         preempt_enable();
164         mutex_unlock(&vcpu->mutex);
165 }
166 EXPORT_SYMBOL_GPL(vcpu_put);
167
168 /* TODO: merge with kvm_arch_vcpu_should_kick */
169 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
170 {
171         int mode = kvm_vcpu_exiting_guest_mode(vcpu);
172
173         /*
174          * We need to wait for the VCPU to reenable interrupts and get out of
175          * READING_SHADOW_PAGE_TABLES mode.
176          */
177         if (req & KVM_REQUEST_WAIT)
178                 return mode != OUTSIDE_GUEST_MODE;
179
180         /*
181          * Need to kick a running VCPU, but otherwise there is nothing to do.
182          */
183         return mode == IN_GUEST_MODE;
184 }
185
186 static void ack_flush(void *_completed)
187 {
188 }
189
190 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
191 {
192         int i, cpu, me;
193         cpumask_var_t cpus;
194         bool called = true;
195         bool wait = req & KVM_REQUEST_WAIT;
196         struct kvm_vcpu *vcpu;
197
198         zalloc_cpumask_var(&cpus, GFP_ATOMIC);
199
200         me = get_cpu();
201         kvm_for_each_vcpu(i, vcpu, kvm) {
202                 kvm_make_request(req, vcpu);
203                 cpu = vcpu->cpu;
204
205                 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
206                         continue;
207
208                 if (cpus != NULL && cpu != -1 && cpu != me &&
209                     kvm_request_needs_ipi(vcpu, req))
210                         cpumask_set_cpu(cpu, cpus);
211         }
212         if (unlikely(cpus == NULL))
213                 smp_call_function_many(cpu_online_mask, ack_flush, NULL, wait);
214         else if (!cpumask_empty(cpus))
215                 smp_call_function_many(cpus, ack_flush, NULL, wait);
216         else
217                 called = false;
218         put_cpu();
219         free_cpumask_var(cpus);
220         return called;
221 }
222
223 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
224 void kvm_flush_remote_tlbs(struct kvm *kvm)
225 {
226         /*
227          * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
228          * kvm_make_all_cpus_request.
229          */
230         long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
231
232         /*
233          * We want to publish modifications to the page tables before reading
234          * mode. Pairs with a memory barrier in arch-specific code.
235          * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
236          * and smp_mb in walk_shadow_page_lockless_begin/end.
237          * - powerpc: smp_mb in kvmppc_prepare_to_enter.
238          *
239          * There is already an smp_mb__after_atomic() before
240          * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
241          * barrier here.
242          */
243         if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
244                 ++kvm->stat.remote_tlb_flush;
245         cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
246 }
247 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
248 #endif
249
250 void kvm_reload_remote_mmus(struct kvm *kvm)
251 {
252         kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
253 }
254
255 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
256 {
257         struct page *page;
258         int r;
259
260         mutex_init(&vcpu->mutex);
261         vcpu->cpu = -1;
262         vcpu->kvm = kvm;
263         vcpu->vcpu_id = id;
264         vcpu->pid = NULL;
265         init_swait_queue_head(&vcpu->wq);
266         kvm_async_pf_vcpu_init(vcpu);
267
268         vcpu->pre_pcpu = -1;
269         INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
270
271         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
272         if (!page) {
273                 r = -ENOMEM;
274                 goto fail;
275         }
276         vcpu->run = page_address(page);
277
278         kvm_vcpu_set_in_spin_loop(vcpu, false);
279         kvm_vcpu_set_dy_eligible(vcpu, false);
280         vcpu->preempted = false;
281
282         r = kvm_arch_vcpu_init(vcpu);
283         if (r < 0)
284                 goto fail_free_run;
285         return 0;
286
287 fail_free_run:
288         free_page((unsigned long)vcpu->run);
289 fail:
290         return r;
291 }
292 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
293
294 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
295 {
296         put_pid(vcpu->pid);
297         kvm_arch_vcpu_uninit(vcpu);
298         free_page((unsigned long)vcpu->run);
299 }
300 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
301
302 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
303 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
304 {
305         return container_of(mn, struct kvm, mmu_notifier);
306 }
307
308 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
309                                              struct mm_struct *mm,
310                                              unsigned long address)
311 {
312         struct kvm *kvm = mmu_notifier_to_kvm(mn);
313         int need_tlb_flush, idx;
314
315         /*
316          * When ->invalidate_page runs, the linux pte has been zapped
317          * already but the page is still allocated until
318          * ->invalidate_page returns. So if we increase the sequence
319          * here the kvm page fault will notice if the spte can't be
320          * established because the page is going to be freed. If
321          * instead the kvm page fault establishes the spte before
322          * ->invalidate_page runs, kvm_unmap_hva will release it
323          * before returning.
324          *
325          * The sequence increase only need to be seen at spin_unlock
326          * time, and not at spin_lock time.
327          *
328          * Increasing the sequence after the spin_unlock would be
329          * unsafe because the kvm page fault could then establish the
330          * pte after kvm_unmap_hva returned, without noticing the page
331          * is going to be freed.
332          */
333         idx = srcu_read_lock(&kvm->srcu);
334         spin_lock(&kvm->mmu_lock);
335
336         kvm->mmu_notifier_seq++;
337         need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
338         /* we've to flush the tlb before the pages can be freed */
339         if (need_tlb_flush)
340                 kvm_flush_remote_tlbs(kvm);
341
342         spin_unlock(&kvm->mmu_lock);
343
344         kvm_arch_mmu_notifier_invalidate_page(kvm, address);
345
346         srcu_read_unlock(&kvm->srcu, idx);
347 }
348
349 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
350                                         struct mm_struct *mm,
351                                         unsigned long address,
352                                         pte_t pte)
353 {
354         struct kvm *kvm = mmu_notifier_to_kvm(mn);
355         int idx;
356
357         idx = srcu_read_lock(&kvm->srcu);
358         spin_lock(&kvm->mmu_lock);
359         kvm->mmu_notifier_seq++;
360         kvm_set_spte_hva(kvm, address, pte);
361         spin_unlock(&kvm->mmu_lock);
362         srcu_read_unlock(&kvm->srcu, idx);
363 }
364
365 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
366                                                     struct mm_struct *mm,
367                                                     unsigned long start,
368                                                     unsigned long end)
369 {
370         struct kvm *kvm = mmu_notifier_to_kvm(mn);
371         int need_tlb_flush = 0, idx;
372
373         idx = srcu_read_lock(&kvm->srcu);
374         spin_lock(&kvm->mmu_lock);
375         /*
376          * The count increase must become visible at unlock time as no
377          * spte can be established without taking the mmu_lock and
378          * count is also read inside the mmu_lock critical section.
379          */
380         kvm->mmu_notifier_count++;
381         need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
382         need_tlb_flush |= kvm->tlbs_dirty;
383         /* we've to flush the tlb before the pages can be freed */
384         if (need_tlb_flush)
385                 kvm_flush_remote_tlbs(kvm);
386
387         spin_unlock(&kvm->mmu_lock);
388         srcu_read_unlock(&kvm->srcu, idx);
389 }
390
391 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
392                                                   struct mm_struct *mm,
393                                                   unsigned long start,
394                                                   unsigned long end)
395 {
396         struct kvm *kvm = mmu_notifier_to_kvm(mn);
397
398         spin_lock(&kvm->mmu_lock);
399         /*
400          * This sequence increase will notify the kvm page fault that
401          * the page that is going to be mapped in the spte could have
402          * been freed.
403          */
404         kvm->mmu_notifier_seq++;
405         smp_wmb();
406         /*
407          * The above sequence increase must be visible before the
408          * below count decrease, which is ensured by the smp_wmb above
409          * in conjunction with the smp_rmb in mmu_notifier_retry().
410          */
411         kvm->mmu_notifier_count--;
412         spin_unlock(&kvm->mmu_lock);
413
414         BUG_ON(kvm->mmu_notifier_count < 0);
415 }
416
417 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
418                                               struct mm_struct *mm,
419                                               unsigned long start,
420                                               unsigned long end)
421 {
422         struct kvm *kvm = mmu_notifier_to_kvm(mn);
423         int young, idx;
424
425         idx = srcu_read_lock(&kvm->srcu);
426         spin_lock(&kvm->mmu_lock);
427
428         young = kvm_age_hva(kvm, start, end);
429         if (young)
430                 kvm_flush_remote_tlbs(kvm);
431
432         spin_unlock(&kvm->mmu_lock);
433         srcu_read_unlock(&kvm->srcu, idx);
434
435         return young;
436 }
437
438 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
439                                         struct mm_struct *mm,
440                                         unsigned long start,
441                                         unsigned long end)
442 {
443         struct kvm *kvm = mmu_notifier_to_kvm(mn);
444         int young, idx;
445
446         idx = srcu_read_lock(&kvm->srcu);
447         spin_lock(&kvm->mmu_lock);
448         /*
449          * Even though we do not flush TLB, this will still adversely
450          * affect performance on pre-Haswell Intel EPT, where there is
451          * no EPT Access Bit to clear so that we have to tear down EPT
452          * tables instead. If we find this unacceptable, we can always
453          * add a parameter to kvm_age_hva so that it effectively doesn't
454          * do anything on clear_young.
455          *
456          * Also note that currently we never issue secondary TLB flushes
457          * from clear_young, leaving this job up to the regular system
458          * cadence. If we find this inaccurate, we might come up with a
459          * more sophisticated heuristic later.
460          */
461         young = kvm_age_hva(kvm, start, end);
462         spin_unlock(&kvm->mmu_lock);
463         srcu_read_unlock(&kvm->srcu, idx);
464
465         return young;
466 }
467
468 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
469                                        struct mm_struct *mm,
470                                        unsigned long address)
471 {
472         struct kvm *kvm = mmu_notifier_to_kvm(mn);
473         int young, idx;
474
475         idx = srcu_read_lock(&kvm->srcu);
476         spin_lock(&kvm->mmu_lock);
477         young = kvm_test_age_hva(kvm, address);
478         spin_unlock(&kvm->mmu_lock);
479         srcu_read_unlock(&kvm->srcu, idx);
480
481         return young;
482 }
483
484 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
485                                      struct mm_struct *mm)
486 {
487         struct kvm *kvm = mmu_notifier_to_kvm(mn);
488         int idx;
489
490         idx = srcu_read_lock(&kvm->srcu);
491         kvm_arch_flush_shadow_all(kvm);
492         srcu_read_unlock(&kvm->srcu, idx);
493 }
494
495 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
496         .invalidate_page        = kvm_mmu_notifier_invalidate_page,
497         .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
498         .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
499         .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
500         .clear_young            = kvm_mmu_notifier_clear_young,
501         .test_young             = kvm_mmu_notifier_test_young,
502         .change_pte             = kvm_mmu_notifier_change_pte,
503         .release                = kvm_mmu_notifier_release,
504 };
505
506 static int kvm_init_mmu_notifier(struct kvm *kvm)
507 {
508         kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
509         return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
510 }
511
512 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
513
514 static int kvm_init_mmu_notifier(struct kvm *kvm)
515 {
516         return 0;
517 }
518
519 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
520
521 static struct kvm_memslots *kvm_alloc_memslots(void)
522 {
523         int i;
524         struct kvm_memslots *slots;
525
526         slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
527         if (!slots)
528                 return NULL;
529
530         for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
531                 slots->id_to_index[i] = slots->memslots[i].id = i;
532
533         return slots;
534 }
535
536 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
537 {
538         if (!memslot->dirty_bitmap)
539                 return;
540
541         kvfree(memslot->dirty_bitmap);
542         memslot->dirty_bitmap = NULL;
543 }
544
545 /*
546  * Free any memory in @free but not in @dont.
547  */
548 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
549                               struct kvm_memory_slot *dont)
550 {
551         if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
552                 kvm_destroy_dirty_bitmap(free);
553
554         kvm_arch_free_memslot(kvm, free, dont);
555
556         free->npages = 0;
557 }
558
559 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
560 {
561         struct kvm_memory_slot *memslot;
562
563         if (!slots)
564                 return;
565
566         kvm_for_each_memslot(memslot, slots)
567                 kvm_free_memslot(kvm, memslot, NULL);
568
569         kvfree(slots);
570 }
571
572 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
573 {
574         int i;
575
576         if (!kvm->debugfs_dentry)
577                 return;
578
579         debugfs_remove_recursive(kvm->debugfs_dentry);
580
581         if (kvm->debugfs_stat_data) {
582                 for (i = 0; i < kvm_debugfs_num_entries; i++)
583                         kfree(kvm->debugfs_stat_data[i]);
584                 kfree(kvm->debugfs_stat_data);
585         }
586 }
587
588 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
589 {
590         char dir_name[ITOA_MAX_LEN * 2];
591         struct kvm_stat_data *stat_data;
592         struct kvm_stats_debugfs_item *p;
593
594         if (!debugfs_initialized())
595                 return 0;
596
597         snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
598         kvm->debugfs_dentry = debugfs_create_dir(dir_name,
599                                                  kvm_debugfs_dir);
600         if (!kvm->debugfs_dentry)
601                 return -ENOMEM;
602
603         kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
604                                          sizeof(*kvm->debugfs_stat_data),
605                                          GFP_KERNEL);
606         if (!kvm->debugfs_stat_data)
607                 return -ENOMEM;
608
609         for (p = debugfs_entries; p->name; p++) {
610                 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL);
611                 if (!stat_data)
612                         return -ENOMEM;
613
614                 stat_data->kvm = kvm;
615                 stat_data->offset = p->offset;
616                 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
617                 if (!debugfs_create_file(p->name, 0644,
618                                          kvm->debugfs_dentry,
619                                          stat_data,
620                                          stat_fops_per_vm[p->kind]))
621                         return -ENOMEM;
622         }
623         return 0;
624 }
625
626 static struct kvm *kvm_create_vm(unsigned long type)
627 {
628         int r, i;
629         struct kvm *kvm = kvm_arch_alloc_vm();
630
631         if (!kvm)
632                 return ERR_PTR(-ENOMEM);
633
634         spin_lock_init(&kvm->mmu_lock);
635         mmgrab(current->mm);
636         kvm->mm = current->mm;
637         kvm_eventfd_init(kvm);
638         mutex_init(&kvm->lock);
639         mutex_init(&kvm->irq_lock);
640         mutex_init(&kvm->slots_lock);
641         refcount_set(&kvm->users_count, 1);
642         INIT_LIST_HEAD(&kvm->devices);
643
644         r = kvm_arch_init_vm(kvm, type);
645         if (r)
646                 goto out_err_no_disable;
647
648         r = hardware_enable_all();
649         if (r)
650                 goto out_err_no_disable;
651
652 #ifdef CONFIG_HAVE_KVM_IRQFD
653         INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
654 #endif
655
656         BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
657
658         r = -ENOMEM;
659         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
660                 struct kvm_memslots *slots = kvm_alloc_memslots();
661                 if (!slots)
662                         goto out_err_no_srcu;
663                 /*
664                  * Generations must be different for each address space.
665                  * Init kvm generation close to the maximum to easily test the
666                  * code of handling generation number wrap-around.
667                  */
668                 slots->generation = i * 2 - 150;
669                 rcu_assign_pointer(kvm->memslots[i], slots);
670         }
671
672         if (init_srcu_struct(&kvm->srcu))
673                 goto out_err_no_srcu;
674         if (init_srcu_struct(&kvm->irq_srcu))
675                 goto out_err_no_irq_srcu;
676         for (i = 0; i < KVM_NR_BUSES; i++) {
677                 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
678                                         GFP_KERNEL);
679                 if (!kvm->buses[i])
680                         goto out_err;
681         }
682
683         r = kvm_init_mmu_notifier(kvm);
684         if (r)
685                 goto out_err;
686
687         spin_lock(&kvm_lock);
688         list_add(&kvm->vm_list, &vm_list);
689         spin_unlock(&kvm_lock);
690
691         preempt_notifier_inc();
692
693         return kvm;
694
695 out_err:
696         cleanup_srcu_struct(&kvm->irq_srcu);
697 out_err_no_irq_srcu:
698         cleanup_srcu_struct(&kvm->srcu);
699 out_err_no_srcu:
700         hardware_disable_all();
701 out_err_no_disable:
702         for (i = 0; i < KVM_NR_BUSES; i++)
703                 kfree(kvm->buses[i]);
704         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
705                 kvm_free_memslots(kvm, kvm->memslots[i]);
706         kvm_arch_free_vm(kvm);
707         mmdrop(current->mm);
708         return ERR_PTR(r);
709 }
710
711 static void kvm_destroy_devices(struct kvm *kvm)
712 {
713         struct kvm_device *dev, *tmp;
714
715         /*
716          * We do not need to take the kvm->lock here, because nobody else
717          * has a reference to the struct kvm at this point and therefore
718          * cannot access the devices list anyhow.
719          */
720         list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
721                 list_del(&dev->vm_node);
722                 dev->ops->destroy(dev);
723         }
724 }
725
726 static void kvm_destroy_vm(struct kvm *kvm)
727 {
728         int i;
729         struct mm_struct *mm = kvm->mm;
730
731         kvm_destroy_vm_debugfs(kvm);
732         kvm_arch_sync_events(kvm);
733         spin_lock(&kvm_lock);
734         list_del(&kvm->vm_list);
735         spin_unlock(&kvm_lock);
736         kvm_free_irq_routing(kvm);
737         for (i = 0; i < KVM_NR_BUSES; i++) {
738                 if (kvm->buses[i])
739                         kvm_io_bus_destroy(kvm->buses[i]);
740                 kvm->buses[i] = NULL;
741         }
742         kvm_coalesced_mmio_free(kvm);
743 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
744         mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
745 #else
746         kvm_arch_flush_shadow_all(kvm);
747 #endif
748         kvm_arch_destroy_vm(kvm);
749         kvm_destroy_devices(kvm);
750         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
751                 kvm_free_memslots(kvm, kvm->memslots[i]);
752         cleanup_srcu_struct(&kvm->irq_srcu);
753         cleanup_srcu_struct(&kvm->srcu);
754         kvm_arch_free_vm(kvm);
755         preempt_notifier_dec();
756         hardware_disable_all();
757         mmdrop(mm);
758 }
759
760 void kvm_get_kvm(struct kvm *kvm)
761 {
762         refcount_inc(&kvm->users_count);
763 }
764 EXPORT_SYMBOL_GPL(kvm_get_kvm);
765
766 void kvm_put_kvm(struct kvm *kvm)
767 {
768         if (refcount_dec_and_test(&kvm->users_count))
769                 kvm_destroy_vm(kvm);
770 }
771 EXPORT_SYMBOL_GPL(kvm_put_kvm);
772
773
774 static int kvm_vm_release(struct inode *inode, struct file *filp)
775 {
776         struct kvm *kvm = filp->private_data;
777
778         kvm_irqfd_release(kvm);
779
780         kvm_put_kvm(kvm);
781         return 0;
782 }
783
784 /*
785  * Allocation size is twice as large as the actual dirty bitmap size.
786  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
787  */
788 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
789 {
790         unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
791
792         memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL);
793         if (!memslot->dirty_bitmap)
794                 return -ENOMEM;
795
796         return 0;
797 }
798
799 /*
800  * Insert memslot and re-sort memslots based on their GFN,
801  * so binary search could be used to lookup GFN.
802  * Sorting algorithm takes advantage of having initially
803  * sorted array and known changed memslot position.
804  */
805 static void update_memslots(struct kvm_memslots *slots,
806                             struct kvm_memory_slot *new)
807 {
808         int id = new->id;
809         int i = slots->id_to_index[id];
810         struct kvm_memory_slot *mslots = slots->memslots;
811
812         WARN_ON(mslots[i].id != id);
813         if (!new->npages) {
814                 WARN_ON(!mslots[i].npages);
815                 if (mslots[i].npages)
816                         slots->used_slots--;
817         } else {
818                 if (!mslots[i].npages)
819                         slots->used_slots++;
820         }
821
822         while (i < KVM_MEM_SLOTS_NUM - 1 &&
823                new->base_gfn <= mslots[i + 1].base_gfn) {
824                 if (!mslots[i + 1].npages)
825                         break;
826                 mslots[i] = mslots[i + 1];
827                 slots->id_to_index[mslots[i].id] = i;
828                 i++;
829         }
830
831         /*
832          * The ">=" is needed when creating a slot with base_gfn == 0,
833          * so that it moves before all those with base_gfn == npages == 0.
834          *
835          * On the other hand, if new->npages is zero, the above loop has
836          * already left i pointing to the beginning of the empty part of
837          * mslots, and the ">=" would move the hole backwards in this
838          * case---which is wrong.  So skip the loop when deleting a slot.
839          */
840         if (new->npages) {
841                 while (i > 0 &&
842                        new->base_gfn >= mslots[i - 1].base_gfn) {
843                         mslots[i] = mslots[i - 1];
844                         slots->id_to_index[mslots[i].id] = i;
845                         i--;
846                 }
847         } else
848                 WARN_ON_ONCE(i != slots->used_slots);
849
850         mslots[i] = *new;
851         slots->id_to_index[mslots[i].id] = i;
852 }
853
854 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
855 {
856         u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
857
858 #ifdef __KVM_HAVE_READONLY_MEM
859         valid_flags |= KVM_MEM_READONLY;
860 #endif
861
862         if (mem->flags & ~valid_flags)
863                 return -EINVAL;
864
865         return 0;
866 }
867
868 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
869                 int as_id, struct kvm_memslots *slots)
870 {
871         struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
872
873         /*
874          * Set the low bit in the generation, which disables SPTE caching
875          * until the end of synchronize_srcu_expedited.
876          */
877         WARN_ON(old_memslots->generation & 1);
878         slots->generation = old_memslots->generation + 1;
879
880         rcu_assign_pointer(kvm->memslots[as_id], slots);
881         synchronize_srcu_expedited(&kvm->srcu);
882
883         /*
884          * Increment the new memslot generation a second time. This prevents
885          * vm exits that race with memslot updates from caching a memslot
886          * generation that will (potentially) be valid forever.
887          *
888          * Generations must be unique even across address spaces.  We do not need
889          * a global counter for that, instead the generation space is evenly split
890          * across address spaces.  For example, with two address spaces, address
891          * space 0 will use generations 0, 4, 8, ... while * address space 1 will
892          * use generations 2, 6, 10, 14, ...
893          */
894         slots->generation += KVM_ADDRESS_SPACE_NUM * 2 - 1;
895
896         kvm_arch_memslots_updated(kvm, slots);
897
898         return old_memslots;
899 }
900
901 /*
902  * Allocate some memory and give it an address in the guest physical address
903  * space.
904  *
905  * Discontiguous memory is allowed, mostly for framebuffers.
906  *
907  * Must be called holding kvm->slots_lock for write.
908  */
909 int __kvm_set_memory_region(struct kvm *kvm,
910                             const struct kvm_userspace_memory_region *mem)
911 {
912         int r;
913         gfn_t base_gfn;
914         unsigned long npages;
915         struct kvm_memory_slot *slot;
916         struct kvm_memory_slot old, new;
917         struct kvm_memslots *slots = NULL, *old_memslots;
918         int as_id, id;
919         enum kvm_mr_change change;
920
921         r = check_memory_region_flags(mem);
922         if (r)
923                 goto out;
924
925         r = -EINVAL;
926         as_id = mem->slot >> 16;
927         id = (u16)mem->slot;
928
929         /* General sanity checks */
930         if (mem->memory_size & (PAGE_SIZE - 1))
931                 goto out;
932         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
933                 goto out;
934         /* We can read the guest memory with __xxx_user() later on. */
935         if ((id < KVM_USER_MEM_SLOTS) &&
936             ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
937              !access_ok(VERIFY_WRITE,
938                         (void __user *)(unsigned long)mem->userspace_addr,
939                         mem->memory_size)))
940                 goto out;
941         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
942                 goto out;
943         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
944                 goto out;
945
946         slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
947         base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
948         npages = mem->memory_size >> PAGE_SHIFT;
949
950         if (npages > KVM_MEM_MAX_NR_PAGES)
951                 goto out;
952
953         new = old = *slot;
954
955         new.id = id;
956         new.base_gfn = base_gfn;
957         new.npages = npages;
958         new.flags = mem->flags;
959
960         if (npages) {
961                 if (!old.npages)
962                         change = KVM_MR_CREATE;
963                 else { /* Modify an existing slot. */
964                         if ((mem->userspace_addr != old.userspace_addr) ||
965                             (npages != old.npages) ||
966                             ((new.flags ^ old.flags) & KVM_MEM_READONLY))
967                                 goto out;
968
969                         if (base_gfn != old.base_gfn)
970                                 change = KVM_MR_MOVE;
971                         else if (new.flags != old.flags)
972                                 change = KVM_MR_FLAGS_ONLY;
973                         else { /* Nothing to change. */
974                                 r = 0;
975                                 goto out;
976                         }
977                 }
978         } else {
979                 if (!old.npages)
980                         goto out;
981
982                 change = KVM_MR_DELETE;
983                 new.base_gfn = 0;
984                 new.flags = 0;
985         }
986
987         if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
988                 /* Check for overlaps */
989                 r = -EEXIST;
990                 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
991                         if ((slot->id >= KVM_USER_MEM_SLOTS) ||
992                             (slot->id == id))
993                                 continue;
994                         if (!((base_gfn + npages <= slot->base_gfn) ||
995                               (base_gfn >= slot->base_gfn + slot->npages)))
996                                 goto out;
997                 }
998         }
999
1000         /* Free page dirty bitmap if unneeded */
1001         if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1002                 new.dirty_bitmap = NULL;
1003
1004         r = -ENOMEM;
1005         if (change == KVM_MR_CREATE) {
1006                 new.userspace_addr = mem->userspace_addr;
1007
1008                 if (kvm_arch_create_memslot(kvm, &new, npages))
1009                         goto out_free;
1010         }
1011
1012         /* Allocate page dirty bitmap if needed */
1013         if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
1014                 if (kvm_create_dirty_bitmap(&new) < 0)
1015                         goto out_free;
1016         }
1017
1018         slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
1019         if (!slots)
1020                 goto out_free;
1021         memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
1022
1023         if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
1024                 slot = id_to_memslot(slots, id);
1025                 slot->flags |= KVM_MEMSLOT_INVALID;
1026
1027                 old_memslots = install_new_memslots(kvm, as_id, slots);
1028
1029                 /* From this point no new shadow pages pointing to a deleted,
1030                  * or moved, memslot will be created.
1031                  *
1032                  * validation of sp->gfn happens in:
1033                  *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1034                  *      - kvm_is_visible_gfn (mmu_check_roots)
1035                  */
1036                 kvm_arch_flush_shadow_memslot(kvm, slot);
1037
1038                 /*
1039                  * We can re-use the old_memslots from above, the only difference
1040                  * from the currently installed memslots is the invalid flag.  This
1041                  * will get overwritten by update_memslots anyway.
1042                  */
1043                 slots = old_memslots;
1044         }
1045
1046         r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1047         if (r)
1048                 goto out_slots;
1049
1050         /* actual memory is freed via old in kvm_free_memslot below */
1051         if (change == KVM_MR_DELETE) {
1052                 new.dirty_bitmap = NULL;
1053                 memset(&new.arch, 0, sizeof(new.arch));
1054         }
1055
1056         update_memslots(slots, &new);
1057         old_memslots = install_new_memslots(kvm, as_id, slots);
1058
1059         kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1060
1061         kvm_free_memslot(kvm, &old, &new);
1062         kvfree(old_memslots);
1063         return 0;
1064
1065 out_slots:
1066         kvfree(slots);
1067 out_free:
1068         kvm_free_memslot(kvm, &new, &old);
1069 out:
1070         return r;
1071 }
1072 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1073
1074 int kvm_set_memory_region(struct kvm *kvm,
1075                           const struct kvm_userspace_memory_region *mem)
1076 {
1077         int r;
1078
1079         mutex_lock(&kvm->slots_lock);
1080         r = __kvm_set_memory_region(kvm, mem);
1081         mutex_unlock(&kvm->slots_lock);
1082         return r;
1083 }
1084 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1085
1086 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1087                                           struct kvm_userspace_memory_region *mem)
1088 {
1089         if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1090                 return -EINVAL;
1091
1092         return kvm_set_memory_region(kvm, mem);
1093 }
1094
1095 int kvm_get_dirty_log(struct kvm *kvm,
1096                         struct kvm_dirty_log *log, int *is_dirty)
1097 {
1098         struct kvm_memslots *slots;
1099         struct kvm_memory_slot *memslot;
1100         int i, as_id, id;
1101         unsigned long n;
1102         unsigned long any = 0;
1103
1104         as_id = log->slot >> 16;
1105         id = (u16)log->slot;
1106         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1107                 return -EINVAL;
1108
1109         slots = __kvm_memslots(kvm, as_id);
1110         memslot = id_to_memslot(slots, id);
1111         if (!memslot->dirty_bitmap)
1112                 return -ENOENT;
1113
1114         n = kvm_dirty_bitmap_bytes(memslot);
1115
1116         for (i = 0; !any && i < n/sizeof(long); ++i)
1117                 any = memslot->dirty_bitmap[i];
1118
1119         if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1120                 return -EFAULT;
1121
1122         if (any)
1123                 *is_dirty = 1;
1124         return 0;
1125 }
1126 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1127
1128 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1129 /**
1130  * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1131  *      are dirty write protect them for next write.
1132  * @kvm:        pointer to kvm instance
1133  * @log:        slot id and address to which we copy the log
1134  * @is_dirty:   flag set if any page is dirty
1135  *
1136  * We need to keep it in mind that VCPU threads can write to the bitmap
1137  * concurrently. So, to avoid losing track of dirty pages we keep the
1138  * following order:
1139  *
1140  *    1. Take a snapshot of the bit and clear it if needed.
1141  *    2. Write protect the corresponding page.
1142  *    3. Copy the snapshot to the userspace.
1143  *    4. Upon return caller flushes TLB's if needed.
1144  *
1145  * Between 2 and 4, the guest may write to the page using the remaining TLB
1146  * entry.  This is not a problem because the page is reported dirty using
1147  * the snapshot taken before and step 4 ensures that writes done after
1148  * exiting to userspace will be logged for the next call.
1149  *
1150  */
1151 int kvm_get_dirty_log_protect(struct kvm *kvm,
1152                         struct kvm_dirty_log *log, bool *is_dirty)
1153 {
1154         struct kvm_memslots *slots;
1155         struct kvm_memory_slot *memslot;
1156         int i, as_id, id;
1157         unsigned long n;
1158         unsigned long *dirty_bitmap;
1159         unsigned long *dirty_bitmap_buffer;
1160
1161         as_id = log->slot >> 16;
1162         id = (u16)log->slot;
1163         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1164                 return -EINVAL;
1165
1166         slots = __kvm_memslots(kvm, as_id);
1167         memslot = id_to_memslot(slots, id);
1168
1169         dirty_bitmap = memslot->dirty_bitmap;
1170         if (!dirty_bitmap)
1171                 return -ENOENT;
1172
1173         n = kvm_dirty_bitmap_bytes(memslot);
1174
1175         dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
1176         memset(dirty_bitmap_buffer, 0, n);
1177
1178         spin_lock(&kvm->mmu_lock);
1179         *is_dirty = false;
1180         for (i = 0; i < n / sizeof(long); i++) {
1181                 unsigned long mask;
1182                 gfn_t offset;
1183
1184                 if (!dirty_bitmap[i])
1185                         continue;
1186
1187                 *is_dirty = true;
1188
1189                 mask = xchg(&dirty_bitmap[i], 0);
1190                 dirty_bitmap_buffer[i] = mask;
1191
1192                 if (mask) {
1193                         offset = i * BITS_PER_LONG;
1194                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1195                                                                 offset, mask);
1196                 }
1197         }
1198
1199         spin_unlock(&kvm->mmu_lock);
1200         if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1201                 return -EFAULT;
1202         return 0;
1203 }
1204 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1205 #endif
1206
1207 bool kvm_largepages_enabled(void)
1208 {
1209         return largepages_enabled;
1210 }
1211
1212 void kvm_disable_largepages(void)
1213 {
1214         largepages_enabled = false;
1215 }
1216 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1217
1218 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1219 {
1220         return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1221 }
1222 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1223
1224 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1225 {
1226         return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1227 }
1228
1229 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1230 {
1231         struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1232
1233         if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1234               memslot->flags & KVM_MEMSLOT_INVALID)
1235                 return false;
1236
1237         return true;
1238 }
1239 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1240
1241 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1242 {
1243         struct vm_area_struct *vma;
1244         unsigned long addr, size;
1245
1246         size = PAGE_SIZE;
1247
1248         addr = gfn_to_hva(kvm, gfn);
1249         if (kvm_is_error_hva(addr))
1250                 return PAGE_SIZE;
1251
1252         down_read(&current->mm->mmap_sem);
1253         vma = find_vma(current->mm, addr);
1254         if (!vma)
1255                 goto out;
1256
1257         size = vma_kernel_pagesize(vma);
1258
1259 out:
1260         up_read(&current->mm->mmap_sem);
1261
1262         return size;
1263 }
1264
1265 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1266 {
1267         return slot->flags & KVM_MEM_READONLY;
1268 }
1269
1270 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1271                                        gfn_t *nr_pages, bool write)
1272 {
1273         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1274                 return KVM_HVA_ERR_BAD;
1275
1276         if (memslot_is_readonly(slot) && write)
1277                 return KVM_HVA_ERR_RO_BAD;
1278
1279         if (nr_pages)
1280                 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1281
1282         return __gfn_to_hva_memslot(slot, gfn);
1283 }
1284
1285 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1286                                      gfn_t *nr_pages)
1287 {
1288         return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1289 }
1290
1291 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1292                                         gfn_t gfn)
1293 {
1294         return gfn_to_hva_many(slot, gfn, NULL);
1295 }
1296 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1297
1298 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1299 {
1300         return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1301 }
1302 EXPORT_SYMBOL_GPL(gfn_to_hva);
1303
1304 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1305 {
1306         return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1307 }
1308 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1309
1310 /*
1311  * If writable is set to false, the hva returned by this function is only
1312  * allowed to be read.
1313  */
1314 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1315                                       gfn_t gfn, bool *writable)
1316 {
1317         unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1318
1319         if (!kvm_is_error_hva(hva) && writable)
1320                 *writable = !memslot_is_readonly(slot);
1321
1322         return hva;
1323 }
1324
1325 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1326 {
1327         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1328
1329         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1330 }
1331
1332 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1333 {
1334         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1335
1336         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1337 }
1338
1339 static int get_user_page_nowait(unsigned long start, int write,
1340                 struct page **page)
1341 {
1342         int flags = FOLL_NOWAIT | FOLL_HWPOISON;
1343
1344         if (write)
1345                 flags |= FOLL_WRITE;
1346
1347         return get_user_pages(start, 1, flags, page, NULL);
1348 }
1349
1350 static inline int check_user_page_hwpoison(unsigned long addr)
1351 {
1352         int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1353
1354         rc = get_user_pages(addr, 1, flags, NULL, NULL);
1355         return rc == -EHWPOISON;
1356 }
1357
1358 /*
1359  * The atomic path to get the writable pfn which will be stored in @pfn,
1360  * true indicates success, otherwise false is returned.
1361  */
1362 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1363                             bool write_fault, bool *writable, kvm_pfn_t *pfn)
1364 {
1365         struct page *page[1];
1366         int npages;
1367
1368         if (!(async || atomic))
1369                 return false;
1370
1371         /*
1372          * Fast pin a writable pfn only if it is a write fault request
1373          * or the caller allows to map a writable pfn for a read fault
1374          * request.
1375          */
1376         if (!(write_fault || writable))
1377                 return false;
1378
1379         npages = __get_user_pages_fast(addr, 1, 1, page);
1380         if (npages == 1) {
1381                 *pfn = page_to_pfn(page[0]);
1382
1383                 if (writable)
1384                         *writable = true;
1385                 return true;
1386         }
1387
1388         return false;
1389 }
1390
1391 /*
1392  * The slow path to get the pfn of the specified host virtual address,
1393  * 1 indicates success, -errno is returned if error is detected.
1394  */
1395 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1396                            bool *writable, kvm_pfn_t *pfn)
1397 {
1398         struct page *page[1];
1399         int npages = 0;
1400
1401         might_sleep();
1402
1403         if (writable)
1404                 *writable = write_fault;
1405
1406         if (async) {
1407                 down_read(&current->mm->mmap_sem);
1408                 npages = get_user_page_nowait(addr, write_fault, page);
1409                 up_read(&current->mm->mmap_sem);
1410         } else {
1411                 unsigned int flags = FOLL_HWPOISON;
1412
1413                 if (write_fault)
1414                         flags |= FOLL_WRITE;
1415
1416                 npages = get_user_pages_unlocked(addr, 1, page, flags);
1417         }
1418         if (npages != 1)
1419                 return npages;
1420
1421         /* map read fault as writable if possible */
1422         if (unlikely(!write_fault) && writable) {
1423                 struct page *wpage[1];
1424
1425                 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1426                 if (npages == 1) {
1427                         *writable = true;
1428                         put_page(page[0]);
1429                         page[0] = wpage[0];
1430                 }
1431
1432                 npages = 1;
1433         }
1434         *pfn = page_to_pfn(page[0]);
1435         return npages;
1436 }
1437
1438 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1439 {
1440         if (unlikely(!(vma->vm_flags & VM_READ)))
1441                 return false;
1442
1443         if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1444                 return false;
1445
1446         return true;
1447 }
1448
1449 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1450                                unsigned long addr, bool *async,
1451                                bool write_fault, kvm_pfn_t *p_pfn)
1452 {
1453         unsigned long pfn;
1454         int r;
1455
1456         r = follow_pfn(vma, addr, &pfn);
1457         if (r) {
1458                 /*
1459                  * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1460                  * not call the fault handler, so do it here.
1461                  */
1462                 bool unlocked = false;
1463                 r = fixup_user_fault(current, current->mm, addr,
1464                                      (write_fault ? FAULT_FLAG_WRITE : 0),
1465                                      &unlocked);
1466                 if (unlocked)
1467                         return -EAGAIN;
1468                 if (r)
1469                         return r;
1470
1471                 r = follow_pfn(vma, addr, &pfn);
1472                 if (r)
1473                         return r;
1474
1475         }
1476
1477
1478         /*
1479          * Get a reference here because callers of *hva_to_pfn* and
1480          * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1481          * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
1482          * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1483          * simply do nothing for reserved pfns.
1484          *
1485          * Whoever called remap_pfn_range is also going to call e.g.
1486          * unmap_mapping_range before the underlying pages are freed,
1487          * causing a call to our MMU notifier.
1488          */ 
1489         kvm_get_pfn(pfn);
1490
1491         *p_pfn = pfn;
1492         return 0;
1493 }
1494
1495 /*
1496  * Pin guest page in memory and return its pfn.
1497  * @addr: host virtual address which maps memory to the guest
1498  * @atomic: whether this function can sleep
1499  * @async: whether this function need to wait IO complete if the
1500  *         host page is not in the memory
1501  * @write_fault: whether we should get a writable host page
1502  * @writable: whether it allows to map a writable host page for !@write_fault
1503  *
1504  * The function will map a writable host page for these two cases:
1505  * 1): @write_fault = true
1506  * 2): @write_fault = false && @writable, @writable will tell the caller
1507  *     whether the mapping is writable.
1508  */
1509 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1510                         bool write_fault, bool *writable)
1511 {
1512         struct vm_area_struct *vma;
1513         kvm_pfn_t pfn = 0;
1514         int npages, r;
1515
1516         /* we can do it either atomically or asynchronously, not both */
1517         BUG_ON(atomic && async);
1518
1519         if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1520                 return pfn;
1521
1522         if (atomic)
1523                 return KVM_PFN_ERR_FAULT;
1524
1525         npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1526         if (npages == 1)
1527                 return pfn;
1528
1529         down_read(&current->mm->mmap_sem);
1530         if (npages == -EHWPOISON ||
1531               (!async && check_user_page_hwpoison(addr))) {
1532                 pfn = KVM_PFN_ERR_HWPOISON;
1533                 goto exit;
1534         }
1535
1536 retry:
1537         vma = find_vma_intersection(current->mm, addr, addr + 1);
1538
1539         if (vma == NULL)
1540                 pfn = KVM_PFN_ERR_FAULT;
1541         else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1542                 r = hva_to_pfn_remapped(vma, addr, async, write_fault, &pfn);
1543                 if (r == -EAGAIN)
1544                         goto retry;
1545                 if (r < 0)
1546                         pfn = KVM_PFN_ERR_FAULT;
1547         } else {
1548                 if (async && vma_is_valid(vma, write_fault))
1549                         *async = true;
1550                 pfn = KVM_PFN_ERR_FAULT;
1551         }
1552 exit:
1553         up_read(&current->mm->mmap_sem);
1554         return pfn;
1555 }
1556
1557 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1558                                bool atomic, bool *async, bool write_fault,
1559                                bool *writable)
1560 {
1561         unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1562
1563         if (addr == KVM_HVA_ERR_RO_BAD) {
1564                 if (writable)
1565                         *writable = false;
1566                 return KVM_PFN_ERR_RO_FAULT;
1567         }
1568
1569         if (kvm_is_error_hva(addr)) {
1570                 if (writable)
1571                         *writable = false;
1572                 return KVM_PFN_NOSLOT;
1573         }
1574
1575         /* Do not map writable pfn in the readonly memslot. */
1576         if (writable && memslot_is_readonly(slot)) {
1577                 *writable = false;
1578                 writable = NULL;
1579         }
1580
1581         return hva_to_pfn(addr, atomic, async, write_fault,
1582                           writable);
1583 }
1584 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1585
1586 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1587                       bool *writable)
1588 {
1589         return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1590                                     write_fault, writable);
1591 }
1592 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1593
1594 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1595 {
1596         return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1597 }
1598 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1599
1600 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1601 {
1602         return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1603 }
1604 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1605
1606 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1607 {
1608         return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1609 }
1610 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1611
1612 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1613 {
1614         return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1615 }
1616 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1617
1618 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1619 {
1620         return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1621 }
1622 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1623
1624 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1625 {
1626         return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1627 }
1628 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1629
1630 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1631                             struct page **pages, int nr_pages)
1632 {
1633         unsigned long addr;
1634         gfn_t entry;
1635
1636         addr = gfn_to_hva_many(slot, gfn, &entry);
1637         if (kvm_is_error_hva(addr))
1638                 return -1;
1639
1640         if (entry < nr_pages)
1641                 return 0;
1642
1643         return __get_user_pages_fast(addr, nr_pages, 1, pages);
1644 }
1645 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1646
1647 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1648 {
1649         if (is_error_noslot_pfn(pfn))
1650                 return KVM_ERR_PTR_BAD_PAGE;
1651
1652         if (kvm_is_reserved_pfn(pfn)) {
1653                 WARN_ON(1);
1654                 return KVM_ERR_PTR_BAD_PAGE;
1655         }
1656
1657         return pfn_to_page(pfn);
1658 }
1659
1660 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1661 {
1662         kvm_pfn_t pfn;
1663
1664         pfn = gfn_to_pfn(kvm, gfn);
1665
1666         return kvm_pfn_to_page(pfn);
1667 }
1668 EXPORT_SYMBOL_GPL(gfn_to_page);
1669
1670 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1671 {
1672         kvm_pfn_t pfn;
1673
1674         pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1675
1676         return kvm_pfn_to_page(pfn);
1677 }
1678 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1679
1680 void kvm_release_page_clean(struct page *page)
1681 {
1682         WARN_ON(is_error_page(page));
1683
1684         kvm_release_pfn_clean(page_to_pfn(page));
1685 }
1686 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1687
1688 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1689 {
1690         if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1691                 put_page(pfn_to_page(pfn));
1692 }
1693 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1694
1695 void kvm_release_page_dirty(struct page *page)
1696 {
1697         WARN_ON(is_error_page(page));
1698
1699         kvm_release_pfn_dirty(page_to_pfn(page));
1700 }
1701 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1702
1703 static void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1704 {
1705         kvm_set_pfn_dirty(pfn);
1706         kvm_release_pfn_clean(pfn);
1707 }
1708
1709 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1710 {
1711         if (!kvm_is_reserved_pfn(pfn)) {
1712                 struct page *page = pfn_to_page(pfn);
1713
1714                 if (!PageReserved(page))
1715                         SetPageDirty(page);
1716         }
1717 }
1718 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1719
1720 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1721 {
1722         if (!kvm_is_reserved_pfn(pfn))
1723                 mark_page_accessed(pfn_to_page(pfn));
1724 }
1725 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1726
1727 void kvm_get_pfn(kvm_pfn_t pfn)
1728 {
1729         if (!kvm_is_reserved_pfn(pfn))
1730                 get_page(pfn_to_page(pfn));
1731 }
1732 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1733
1734 static int next_segment(unsigned long len, int offset)
1735 {
1736         if (len > PAGE_SIZE - offset)
1737                 return PAGE_SIZE - offset;
1738         else
1739                 return len;
1740 }
1741
1742 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1743                                  void *data, int offset, int len)
1744 {
1745         int r;
1746         unsigned long addr;
1747
1748         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1749         if (kvm_is_error_hva(addr))
1750                 return -EFAULT;
1751         r = __copy_from_user(data, (void __user *)addr + offset, len);
1752         if (r)
1753                 return -EFAULT;
1754         return 0;
1755 }
1756
1757 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1758                         int len)
1759 {
1760         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1761
1762         return __kvm_read_guest_page(slot, gfn, data, offset, len);
1763 }
1764 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1765
1766 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1767                              int offset, int len)
1768 {
1769         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1770
1771         return __kvm_read_guest_page(slot, gfn, data, offset, len);
1772 }
1773 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1774
1775 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1776 {
1777         gfn_t gfn = gpa >> PAGE_SHIFT;
1778         int seg;
1779         int offset = offset_in_page(gpa);
1780         int ret;
1781
1782         while ((seg = next_segment(len, offset)) != 0) {
1783                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1784                 if (ret < 0)
1785                         return ret;
1786                 offset = 0;
1787                 len -= seg;
1788                 data += seg;
1789                 ++gfn;
1790         }
1791         return 0;
1792 }
1793 EXPORT_SYMBOL_GPL(kvm_read_guest);
1794
1795 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1796 {
1797         gfn_t gfn = gpa >> PAGE_SHIFT;
1798         int seg;
1799         int offset = offset_in_page(gpa);
1800         int ret;
1801
1802         while ((seg = next_segment(len, offset)) != 0) {
1803                 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1804                 if (ret < 0)
1805                         return ret;
1806                 offset = 0;
1807                 len -= seg;
1808                 data += seg;
1809                 ++gfn;
1810         }
1811         return 0;
1812 }
1813 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1814
1815 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1816                                    void *data, int offset, unsigned long len)
1817 {
1818         int r;
1819         unsigned long addr;
1820
1821         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1822         if (kvm_is_error_hva(addr))
1823                 return -EFAULT;
1824         pagefault_disable();
1825         r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1826         pagefault_enable();
1827         if (r)
1828                 return -EFAULT;
1829         return 0;
1830 }
1831
1832 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1833                           unsigned long len)
1834 {
1835         gfn_t gfn = gpa >> PAGE_SHIFT;
1836         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1837         int offset = offset_in_page(gpa);
1838
1839         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1840 }
1841 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1842
1843 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1844                                void *data, unsigned long len)
1845 {
1846         gfn_t gfn = gpa >> PAGE_SHIFT;
1847         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1848         int offset = offset_in_page(gpa);
1849
1850         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1851 }
1852 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1853
1854 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1855                                   const void *data, int offset, int len)
1856 {
1857         int r;
1858         unsigned long addr;
1859
1860         addr = gfn_to_hva_memslot(memslot, gfn);
1861         if (kvm_is_error_hva(addr))
1862                 return -EFAULT;
1863         r = __copy_to_user((void __user *)addr + offset, data, len);
1864         if (r)
1865                 return -EFAULT;
1866         mark_page_dirty_in_slot(memslot, gfn);
1867         return 0;
1868 }
1869
1870 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1871                          const void *data, int offset, int len)
1872 {
1873         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1874
1875         return __kvm_write_guest_page(slot, gfn, data, offset, len);
1876 }
1877 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1878
1879 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1880                               const void *data, int offset, int len)
1881 {
1882         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1883
1884         return __kvm_write_guest_page(slot, gfn, data, offset, len);
1885 }
1886 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1887
1888 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1889                     unsigned long len)
1890 {
1891         gfn_t gfn = gpa >> PAGE_SHIFT;
1892         int seg;
1893         int offset = offset_in_page(gpa);
1894         int ret;
1895
1896         while ((seg = next_segment(len, offset)) != 0) {
1897                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1898                 if (ret < 0)
1899                         return ret;
1900                 offset = 0;
1901                 len -= seg;
1902                 data += seg;
1903                 ++gfn;
1904         }
1905         return 0;
1906 }
1907 EXPORT_SYMBOL_GPL(kvm_write_guest);
1908
1909 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1910                          unsigned long len)
1911 {
1912         gfn_t gfn = gpa >> PAGE_SHIFT;
1913         int seg;
1914         int offset = offset_in_page(gpa);
1915         int ret;
1916
1917         while ((seg = next_segment(len, offset)) != 0) {
1918                 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1919                 if (ret < 0)
1920                         return ret;
1921                 offset = 0;
1922                 len -= seg;
1923                 data += seg;
1924                 ++gfn;
1925         }
1926         return 0;
1927 }
1928 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
1929
1930 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
1931                                        struct gfn_to_hva_cache *ghc,
1932                                        gpa_t gpa, unsigned long len)
1933 {
1934         int offset = offset_in_page(gpa);
1935         gfn_t start_gfn = gpa >> PAGE_SHIFT;
1936         gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1937         gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1938         gfn_t nr_pages_avail;
1939
1940         ghc->gpa = gpa;
1941         ghc->generation = slots->generation;
1942         ghc->len = len;
1943         ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1944         ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1945         if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1946                 ghc->hva += offset;
1947         } else {
1948                 /*
1949                  * If the requested region crosses two memslots, we still
1950                  * verify that the entire region is valid here.
1951                  */
1952                 while (start_gfn <= end_gfn) {
1953                         ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1954                         ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1955                                                    &nr_pages_avail);
1956                         if (kvm_is_error_hva(ghc->hva))
1957                                 return -EFAULT;
1958                         start_gfn += nr_pages_avail;
1959                 }
1960                 /* Use the slow path for cross page reads and writes. */
1961                 ghc->memslot = NULL;
1962         }
1963         return 0;
1964 }
1965
1966 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1967                               gpa_t gpa, unsigned long len)
1968 {
1969         struct kvm_memslots *slots = kvm_memslots(kvm);
1970         return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
1971 }
1972 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1973
1974 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1975                            void *data, int offset, unsigned long len)
1976 {
1977         struct kvm_memslots *slots = kvm_memslots(kvm);
1978         int r;
1979         gpa_t gpa = ghc->gpa + offset;
1980
1981         BUG_ON(len + offset > ghc->len);
1982
1983         if (slots->generation != ghc->generation)
1984                 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
1985
1986         if (unlikely(!ghc->memslot))
1987                 return kvm_write_guest(kvm, gpa, data, len);
1988
1989         if (kvm_is_error_hva(ghc->hva))
1990                 return -EFAULT;
1991
1992         r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
1993         if (r)
1994                 return -EFAULT;
1995         mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
1996
1997         return 0;
1998 }
1999 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
2000
2001 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2002                            void *data, unsigned long len)
2003 {
2004         return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
2005 }
2006 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2007
2008 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2009                            void *data, unsigned long len)
2010 {
2011         struct kvm_memslots *slots = kvm_memslots(kvm);
2012         int r;
2013
2014         BUG_ON(len > ghc->len);
2015
2016         if (slots->generation != ghc->generation)
2017                 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2018
2019         if (unlikely(!ghc->memslot))
2020                 return kvm_read_guest(kvm, ghc->gpa, data, len);
2021
2022         if (kvm_is_error_hva(ghc->hva))
2023                 return -EFAULT;
2024
2025         r = __copy_from_user(data, (void __user *)ghc->hva, len);
2026         if (r)
2027                 return -EFAULT;
2028
2029         return 0;
2030 }
2031 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2032
2033 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2034 {
2035         const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2036
2037         return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2038 }
2039 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2040
2041 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2042 {
2043         gfn_t gfn = gpa >> PAGE_SHIFT;
2044         int seg;
2045         int offset = offset_in_page(gpa);
2046         int ret;
2047
2048         while ((seg = next_segment(len, offset)) != 0) {
2049                 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2050                 if (ret < 0)
2051                         return ret;
2052                 offset = 0;
2053                 len -= seg;
2054                 ++gfn;
2055         }
2056         return 0;
2057 }
2058 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2059
2060 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2061                                     gfn_t gfn)
2062 {
2063         if (memslot && memslot->dirty_bitmap) {
2064                 unsigned long rel_gfn = gfn - memslot->base_gfn;
2065
2066                 set_bit_le(rel_gfn, memslot->dirty_bitmap);
2067         }
2068 }
2069
2070 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2071 {
2072         struct kvm_memory_slot *memslot;
2073
2074         memslot = gfn_to_memslot(kvm, gfn);
2075         mark_page_dirty_in_slot(memslot, gfn);
2076 }
2077 EXPORT_SYMBOL_GPL(mark_page_dirty);
2078
2079 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2080 {
2081         struct kvm_memory_slot *memslot;
2082
2083         memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2084         mark_page_dirty_in_slot(memslot, gfn);
2085 }
2086 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2087
2088 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2089 {
2090         unsigned int old, val, grow;
2091
2092         old = val = vcpu->halt_poll_ns;
2093         grow = READ_ONCE(halt_poll_ns_grow);
2094         /* 10us base */
2095         if (val == 0 && grow)
2096                 val = 10000;
2097         else
2098                 val *= grow;
2099
2100         if (val > halt_poll_ns)
2101                 val = halt_poll_ns;
2102
2103         vcpu->halt_poll_ns = val;
2104         trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2105 }
2106
2107 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2108 {
2109         unsigned int old, val, shrink;
2110
2111         old = val = vcpu->halt_poll_ns;
2112         shrink = READ_ONCE(halt_poll_ns_shrink);
2113         if (shrink == 0)
2114                 val = 0;
2115         else
2116                 val /= shrink;
2117
2118         vcpu->halt_poll_ns = val;
2119         trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2120 }
2121
2122 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2123 {
2124         if (kvm_arch_vcpu_runnable(vcpu)) {
2125                 kvm_make_request(KVM_REQ_UNHALT, vcpu);
2126                 return -EINTR;
2127         }
2128         if (kvm_cpu_has_pending_timer(vcpu))
2129                 return -EINTR;
2130         if (signal_pending(current))
2131                 return -EINTR;
2132
2133         return 0;
2134 }
2135
2136 /*
2137  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2138  */
2139 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2140 {
2141         ktime_t start, cur;
2142         DECLARE_SWAITQUEUE(wait);
2143         bool waited = false;
2144         u64 block_ns;
2145
2146         start = cur = ktime_get();
2147         if (vcpu->halt_poll_ns) {
2148                 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2149
2150                 ++vcpu->stat.halt_attempted_poll;
2151                 do {
2152                         /*
2153                          * This sets KVM_REQ_UNHALT if an interrupt
2154                          * arrives.
2155                          */
2156                         if (kvm_vcpu_check_block(vcpu) < 0) {
2157                                 ++vcpu->stat.halt_successful_poll;
2158                                 if (!vcpu_valid_wakeup(vcpu))
2159                                         ++vcpu->stat.halt_poll_invalid;
2160                                 goto out;
2161                         }
2162                         cur = ktime_get();
2163                 } while (single_task_running() && ktime_before(cur, stop));
2164         }
2165
2166         kvm_arch_vcpu_blocking(vcpu);
2167
2168         for (;;) {
2169                 prepare_to_swait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2170
2171                 if (kvm_vcpu_check_block(vcpu) < 0)
2172                         break;
2173
2174                 waited = true;
2175                 schedule();
2176         }
2177
2178         finish_swait(&vcpu->wq, &wait);
2179         cur = ktime_get();
2180
2181         kvm_arch_vcpu_unblocking(vcpu);
2182 out:
2183         block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2184
2185         if (!vcpu_valid_wakeup(vcpu))
2186                 shrink_halt_poll_ns(vcpu);
2187         else if (halt_poll_ns) {
2188                 if (block_ns <= vcpu->halt_poll_ns)
2189                         ;
2190                 /* we had a long block, shrink polling */
2191                 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2192                         shrink_halt_poll_ns(vcpu);
2193                 /* we had a short halt and our poll time is too small */
2194                 else if (vcpu->halt_poll_ns < halt_poll_ns &&
2195                         block_ns < halt_poll_ns)
2196                         grow_halt_poll_ns(vcpu);
2197         } else
2198                 vcpu->halt_poll_ns = 0;
2199
2200         trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2201         kvm_arch_vcpu_block_finish(vcpu);
2202 }
2203 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2204
2205 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2206 {
2207         struct swait_queue_head *wqp;
2208
2209         wqp = kvm_arch_vcpu_wq(vcpu);
2210         if (swait_active(wqp)) {
2211                 swake_up(wqp);
2212                 ++vcpu->stat.halt_wakeup;
2213                 return true;
2214         }
2215
2216         return false;
2217 }
2218 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2219
2220 #ifndef CONFIG_S390
2221 /*
2222  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2223  */
2224 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2225 {
2226         int me;
2227         int cpu = vcpu->cpu;
2228
2229         if (kvm_vcpu_wake_up(vcpu))
2230                 return;
2231
2232         me = get_cpu();
2233         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2234                 if (kvm_arch_vcpu_should_kick(vcpu))
2235                         smp_send_reschedule(cpu);
2236         put_cpu();
2237 }
2238 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2239 #endif /* !CONFIG_S390 */
2240
2241 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2242 {
2243         struct pid *pid;
2244         struct task_struct *task = NULL;
2245         int ret = 0;
2246
2247         rcu_read_lock();
2248         pid = rcu_dereference(target->pid);
2249         if (pid)
2250                 task = get_pid_task(pid, PIDTYPE_PID);
2251         rcu_read_unlock();
2252         if (!task)
2253                 return ret;
2254         ret = yield_to(task, 1);
2255         put_task_struct(task);
2256
2257         return ret;
2258 }
2259 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2260
2261 /*
2262  * Helper that checks whether a VCPU is eligible for directed yield.
2263  * Most eligible candidate to yield is decided by following heuristics:
2264  *
2265  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2266  *  (preempted lock holder), indicated by @in_spin_loop.
2267  *  Set at the beiginning and cleared at the end of interception/PLE handler.
2268  *
2269  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2270  *  chance last time (mostly it has become eligible now since we have probably
2271  *  yielded to lockholder in last iteration. This is done by toggling
2272  *  @dy_eligible each time a VCPU checked for eligibility.)
2273  *
2274  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2275  *  to preempted lock-holder could result in wrong VCPU selection and CPU
2276  *  burning. Giving priority for a potential lock-holder increases lock
2277  *  progress.
2278  *
2279  *  Since algorithm is based on heuristics, accessing another VCPU data without
2280  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2281  *  and continue with next VCPU and so on.
2282  */
2283 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2284 {
2285 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2286         bool eligible;
2287
2288         eligible = !vcpu->spin_loop.in_spin_loop ||
2289                     vcpu->spin_loop.dy_eligible;
2290
2291         if (vcpu->spin_loop.in_spin_loop)
2292                 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2293
2294         return eligible;
2295 #else
2296         return true;
2297 #endif
2298 }
2299
2300 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
2301 {
2302         struct kvm *kvm = me->kvm;
2303         struct kvm_vcpu *vcpu;
2304         int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2305         int yielded = 0;
2306         int try = 3;
2307         int pass;
2308         int i;
2309
2310         kvm_vcpu_set_in_spin_loop(me, true);
2311         /*
2312          * We boost the priority of a VCPU that is runnable but not
2313          * currently running, because it got preempted by something
2314          * else and called schedule in __vcpu_run.  Hopefully that
2315          * VCPU is holding the lock that we need and will release it.
2316          * We approximate round-robin by starting at the last boosted VCPU.
2317          */
2318         for (pass = 0; pass < 2 && !yielded && try; pass++) {
2319                 kvm_for_each_vcpu(i, vcpu, kvm) {
2320                         if (!pass && i <= last_boosted_vcpu) {
2321                                 i = last_boosted_vcpu;
2322                                 continue;
2323                         } else if (pass && i > last_boosted_vcpu)
2324                                 break;
2325                         if (!ACCESS_ONCE(vcpu->preempted))
2326                                 continue;
2327                         if (vcpu == me)
2328                                 continue;
2329                         if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2330                                 continue;
2331                         if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2332                                 continue;
2333
2334                         yielded = kvm_vcpu_yield_to(vcpu);
2335                         if (yielded > 0) {
2336                                 kvm->last_boosted_vcpu = i;
2337                                 break;
2338                         } else if (yielded < 0) {
2339                                 try--;
2340                                 if (!try)
2341                                         break;
2342                         }
2343                 }
2344         }
2345         kvm_vcpu_set_in_spin_loop(me, false);
2346
2347         /* Ensure vcpu is not eligible during next spinloop */
2348         kvm_vcpu_set_dy_eligible(me, false);
2349 }
2350 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2351
2352 static int kvm_vcpu_fault(struct vm_fault *vmf)
2353 {
2354         struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
2355         struct page *page;
2356
2357         if (vmf->pgoff == 0)
2358                 page = virt_to_page(vcpu->run);
2359 #ifdef CONFIG_X86
2360         else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2361                 page = virt_to_page(vcpu->arch.pio_data);
2362 #endif
2363 #ifdef CONFIG_KVM_MMIO
2364         else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2365                 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2366 #endif
2367         else
2368                 return kvm_arch_vcpu_fault(vcpu, vmf);
2369         get_page(page);
2370         vmf->page = page;
2371         return 0;
2372 }
2373
2374 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2375         .fault = kvm_vcpu_fault,
2376 };
2377
2378 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2379 {
2380         vma->vm_ops = &kvm_vcpu_vm_ops;
2381         return 0;
2382 }
2383
2384 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2385 {
2386         struct kvm_vcpu *vcpu = filp->private_data;
2387
2388         debugfs_remove_recursive(vcpu->debugfs_dentry);
2389         kvm_put_kvm(vcpu->kvm);
2390         return 0;
2391 }
2392
2393 static struct file_operations kvm_vcpu_fops = {
2394         .release        = kvm_vcpu_release,
2395         .unlocked_ioctl = kvm_vcpu_ioctl,
2396 #ifdef CONFIG_KVM_COMPAT
2397         .compat_ioctl   = kvm_vcpu_compat_ioctl,
2398 #endif
2399         .mmap           = kvm_vcpu_mmap,
2400         .llseek         = noop_llseek,
2401 };
2402
2403 /*
2404  * Allocates an inode for the vcpu.
2405  */
2406 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2407 {
2408         return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2409 }
2410
2411 static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2412 {
2413         char dir_name[ITOA_MAX_LEN * 2];
2414         int ret;
2415
2416         if (!kvm_arch_has_vcpu_debugfs())
2417                 return 0;
2418
2419         if (!debugfs_initialized())
2420                 return 0;
2421
2422         snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2423         vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2424                                                                 vcpu->kvm->debugfs_dentry);
2425         if (!vcpu->debugfs_dentry)
2426                 return -ENOMEM;
2427
2428         ret = kvm_arch_create_vcpu_debugfs(vcpu);
2429         if (ret < 0) {
2430                 debugfs_remove_recursive(vcpu->debugfs_dentry);
2431                 return ret;
2432         }
2433
2434         return 0;
2435 }
2436
2437 /*
2438  * Creates some virtual cpus.  Good luck creating more than one.
2439  */
2440 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2441 {
2442         int r;
2443         struct kvm_vcpu *vcpu;
2444
2445         if (id >= KVM_MAX_VCPU_ID)
2446                 return -EINVAL;
2447
2448         mutex_lock(&kvm->lock);
2449         if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2450                 mutex_unlock(&kvm->lock);
2451                 return -EINVAL;
2452         }
2453
2454         kvm->created_vcpus++;
2455         mutex_unlock(&kvm->lock);
2456
2457         vcpu = kvm_arch_vcpu_create(kvm, id);
2458         if (IS_ERR(vcpu)) {
2459                 r = PTR_ERR(vcpu);
2460                 goto vcpu_decrement;
2461         }
2462
2463         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2464
2465         r = kvm_arch_vcpu_setup(vcpu);
2466         if (r)
2467                 goto vcpu_destroy;
2468
2469         r = kvm_create_vcpu_debugfs(vcpu);
2470         if (r)
2471                 goto vcpu_destroy;
2472
2473         mutex_lock(&kvm->lock);
2474         if (kvm_get_vcpu_by_id(kvm, id)) {
2475                 r = -EEXIST;
2476                 goto unlock_vcpu_destroy;
2477         }
2478
2479         BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2480
2481         /* Now it's all set up, let userspace reach it */
2482         kvm_get_kvm(kvm);
2483         r = create_vcpu_fd(vcpu);
2484         if (r < 0) {
2485                 kvm_put_kvm(kvm);
2486                 goto unlock_vcpu_destroy;
2487         }
2488
2489         kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2490
2491         /*
2492          * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
2493          * before kvm->online_vcpu's incremented value.
2494          */
2495         smp_wmb();
2496         atomic_inc(&kvm->online_vcpus);
2497
2498         mutex_unlock(&kvm->lock);
2499         kvm_arch_vcpu_postcreate(vcpu);
2500         return r;
2501
2502 unlock_vcpu_destroy:
2503         mutex_unlock(&kvm->lock);
2504         debugfs_remove_recursive(vcpu->debugfs_dentry);
2505 vcpu_destroy:
2506         kvm_arch_vcpu_destroy(vcpu);
2507 vcpu_decrement:
2508         mutex_lock(&kvm->lock);
2509         kvm->created_vcpus--;
2510         mutex_unlock(&kvm->lock);
2511         return r;
2512 }
2513
2514 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2515 {
2516         if (sigset) {
2517                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2518                 vcpu->sigset_active = 1;
2519                 vcpu->sigset = *sigset;
2520         } else
2521                 vcpu->sigset_active = 0;
2522         return 0;
2523 }
2524
2525 static long kvm_vcpu_ioctl(struct file *filp,
2526                            unsigned int ioctl, unsigned long arg)
2527 {
2528         struct kvm_vcpu *vcpu = filp->private_data;
2529         void __user *argp = (void __user *)arg;
2530         int r;
2531         struct kvm_fpu *fpu = NULL;
2532         struct kvm_sregs *kvm_sregs = NULL;
2533
2534         if (vcpu->kvm->mm != current->mm)
2535                 return -EIO;
2536
2537         if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2538                 return -EINVAL;
2539
2540 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2541         /*
2542          * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2543          * so vcpu_load() would break it.
2544          */
2545         if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT)
2546                 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2547 #endif
2548
2549
2550         r = vcpu_load(vcpu);
2551         if (r)
2552                 return r;
2553         switch (ioctl) {
2554         case KVM_RUN:
2555                 r = -EINVAL;
2556                 if (arg)
2557                         goto out;
2558                 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
2559                         /* The thread running this VCPU changed. */
2560                         struct pid *oldpid = vcpu->pid;
2561                         struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
2562
2563                         rcu_assign_pointer(vcpu->pid, newpid);
2564                         if (oldpid)
2565                                 synchronize_rcu();
2566                         put_pid(oldpid);
2567                 }
2568                 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2569                 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2570                 break;
2571         case KVM_GET_REGS: {
2572                 struct kvm_regs *kvm_regs;
2573
2574                 r = -ENOMEM;
2575                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2576                 if (!kvm_regs)
2577                         goto out;
2578                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2579                 if (r)
2580                         goto out_free1;
2581                 r = -EFAULT;
2582                 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2583                         goto out_free1;
2584                 r = 0;
2585 out_free1:
2586                 kfree(kvm_regs);
2587                 break;
2588         }
2589         case KVM_SET_REGS: {
2590                 struct kvm_regs *kvm_regs;
2591
2592                 r = -ENOMEM;
2593                 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2594                 if (IS_ERR(kvm_regs)) {
2595                         r = PTR_ERR(kvm_regs);
2596                         goto out;
2597                 }
2598                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2599                 kfree(kvm_regs);
2600                 break;
2601         }
2602         case KVM_GET_SREGS: {
2603                 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2604                 r = -ENOMEM;
2605                 if (!kvm_sregs)
2606                         goto out;
2607                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2608                 if (r)
2609                         goto out;
2610                 r = -EFAULT;
2611                 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2612                         goto out;
2613                 r = 0;
2614                 break;
2615         }
2616         case KVM_SET_SREGS: {
2617                 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2618                 if (IS_ERR(kvm_sregs)) {
2619                         r = PTR_ERR(kvm_sregs);
2620                         kvm_sregs = NULL;
2621                         goto out;
2622                 }
2623                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2624                 break;
2625         }
2626         case KVM_GET_MP_STATE: {
2627                 struct kvm_mp_state mp_state;
2628
2629                 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2630                 if (r)
2631                         goto out;
2632                 r = -EFAULT;
2633                 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2634                         goto out;
2635                 r = 0;
2636                 break;
2637         }
2638         case KVM_SET_MP_STATE: {
2639                 struct kvm_mp_state mp_state;
2640
2641                 r = -EFAULT;
2642                 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2643                         goto out;
2644                 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2645                 break;
2646         }
2647         case KVM_TRANSLATE: {
2648                 struct kvm_translation tr;
2649
2650                 r = -EFAULT;
2651                 if (copy_from_user(&tr, argp, sizeof(tr)))
2652                         goto out;
2653                 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2654                 if (r)
2655                         goto out;
2656                 r = -EFAULT;
2657                 if (copy_to_user(argp, &tr, sizeof(tr)))
2658                         goto out;
2659                 r = 0;
2660                 break;
2661         }
2662         case KVM_SET_GUEST_DEBUG: {
2663                 struct kvm_guest_debug dbg;
2664
2665                 r = -EFAULT;
2666                 if (copy_from_user(&dbg, argp, sizeof(dbg)))
2667                         goto out;
2668                 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2669                 break;
2670         }
2671         case KVM_SET_SIGNAL_MASK: {
2672                 struct kvm_signal_mask __user *sigmask_arg = argp;
2673                 struct kvm_signal_mask kvm_sigmask;
2674                 sigset_t sigset, *p;
2675
2676                 p = NULL;
2677                 if (argp) {
2678                         r = -EFAULT;
2679                         if (copy_from_user(&kvm_sigmask, argp,
2680                                            sizeof(kvm_sigmask)))
2681                                 goto out;
2682                         r = -EINVAL;
2683                         if (kvm_sigmask.len != sizeof(sigset))
2684                                 goto out;
2685                         r = -EFAULT;
2686                         if (copy_from_user(&sigset, sigmask_arg->sigset,
2687                                            sizeof(sigset)))
2688                                 goto out;
2689                         p = &sigset;
2690                 }
2691                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2692                 break;
2693         }
2694         case KVM_GET_FPU: {
2695                 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2696                 r = -ENOMEM;
2697                 if (!fpu)
2698                         goto out;
2699                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2700                 if (r)
2701                         goto out;
2702                 r = -EFAULT;
2703                 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2704                         goto out;
2705                 r = 0;
2706                 break;
2707         }
2708         case KVM_SET_FPU: {
2709                 fpu = memdup_user(argp, sizeof(*fpu));
2710                 if (IS_ERR(fpu)) {
2711                         r = PTR_ERR(fpu);
2712                         fpu = NULL;
2713                         goto out;
2714                 }
2715                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2716                 break;
2717         }
2718         default:
2719                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2720         }
2721 out:
2722         vcpu_put(vcpu);
2723         kfree(fpu);
2724         kfree(kvm_sregs);
2725         return r;
2726 }
2727
2728 #ifdef CONFIG_KVM_COMPAT
2729 static long kvm_vcpu_compat_ioctl(struct file *filp,
2730                                   unsigned int ioctl, unsigned long arg)
2731 {
2732         struct kvm_vcpu *vcpu = filp->private_data;
2733         void __user *argp = compat_ptr(arg);
2734         int r;
2735
2736         if (vcpu->kvm->mm != current->mm)
2737                 return -EIO;
2738
2739         switch (ioctl) {
2740         case KVM_SET_SIGNAL_MASK: {
2741                 struct kvm_signal_mask __user *sigmask_arg = argp;
2742                 struct kvm_signal_mask kvm_sigmask;
2743                 compat_sigset_t csigset;
2744                 sigset_t sigset;
2745
2746                 if (argp) {
2747                         r = -EFAULT;
2748                         if (copy_from_user(&kvm_sigmask, argp,
2749                                            sizeof(kvm_sigmask)))
2750                                 goto out;
2751                         r = -EINVAL;
2752                         if (kvm_sigmask.len != sizeof(csigset))
2753                                 goto out;
2754                         r = -EFAULT;
2755                         if (copy_from_user(&csigset, sigmask_arg->sigset,
2756                                            sizeof(csigset)))
2757                                 goto out;
2758                         sigset_from_compat(&sigset, &csigset);
2759                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2760                 } else
2761                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2762                 break;
2763         }
2764         default:
2765                 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2766         }
2767
2768 out:
2769         return r;
2770 }
2771 #endif
2772
2773 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2774                                  int (*accessor)(struct kvm_device *dev,
2775                                                  struct kvm_device_attr *attr),
2776                                  unsigned long arg)
2777 {
2778         struct kvm_device_attr attr;
2779
2780         if (!accessor)
2781                 return -EPERM;
2782
2783         if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2784                 return -EFAULT;
2785
2786         return accessor(dev, &attr);
2787 }
2788
2789 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2790                              unsigned long arg)
2791 {
2792         struct kvm_device *dev = filp->private_data;
2793
2794         switch (ioctl) {
2795         case KVM_SET_DEVICE_ATTR:
2796                 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2797         case KVM_GET_DEVICE_ATTR:
2798                 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2799         case KVM_HAS_DEVICE_ATTR:
2800                 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2801         default:
2802                 if (dev->ops->ioctl)
2803                         return dev->ops->ioctl(dev, ioctl, arg);
2804
2805                 return -ENOTTY;
2806         }
2807 }
2808
2809 static int kvm_device_release(struct inode *inode, struct file *filp)
2810 {
2811         struct kvm_device *dev = filp->private_data;
2812         struct kvm *kvm = dev->kvm;
2813
2814         kvm_put_kvm(kvm);
2815         return 0;
2816 }
2817
2818 static const struct file_operations kvm_device_fops = {
2819         .unlocked_ioctl = kvm_device_ioctl,
2820 #ifdef CONFIG_KVM_COMPAT
2821         .compat_ioctl = kvm_device_ioctl,
2822 #endif
2823         .release = kvm_device_release,
2824 };
2825
2826 struct kvm_device *kvm_device_from_filp(struct file *filp)
2827 {
2828         if (filp->f_op != &kvm_device_fops)
2829                 return NULL;
2830
2831         return filp->private_data;
2832 }
2833
2834 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2835 #ifdef CONFIG_KVM_MPIC
2836         [KVM_DEV_TYPE_FSL_MPIC_20]      = &kvm_mpic_ops,
2837         [KVM_DEV_TYPE_FSL_MPIC_42]      = &kvm_mpic_ops,
2838 #endif
2839 };
2840
2841 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2842 {
2843         if (type >= ARRAY_SIZE(kvm_device_ops_table))
2844                 return -ENOSPC;
2845
2846         if (kvm_device_ops_table[type] != NULL)
2847                 return -EEXIST;
2848
2849         kvm_device_ops_table[type] = ops;
2850         return 0;
2851 }
2852
2853 void kvm_unregister_device_ops(u32 type)
2854 {
2855         if (kvm_device_ops_table[type] != NULL)
2856                 kvm_device_ops_table[type] = NULL;
2857 }
2858
2859 static int kvm_ioctl_create_device(struct kvm *kvm,
2860                                    struct kvm_create_device *cd)
2861 {
2862         struct kvm_device_ops *ops = NULL;
2863         struct kvm_device *dev;
2864         bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2865         int ret;
2866
2867         if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2868                 return -ENODEV;
2869
2870         ops = kvm_device_ops_table[cd->type];
2871         if (ops == NULL)
2872                 return -ENODEV;
2873
2874         if (test)
2875                 return 0;
2876
2877         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2878         if (!dev)
2879                 return -ENOMEM;
2880
2881         dev->ops = ops;
2882         dev->kvm = kvm;
2883
2884         mutex_lock(&kvm->lock);
2885         ret = ops->create(dev, cd->type);
2886         if (ret < 0) {
2887                 mutex_unlock(&kvm->lock);
2888                 kfree(dev);
2889                 return ret;
2890         }
2891         list_add(&dev->vm_node, &kvm->devices);
2892         mutex_unlock(&kvm->lock);
2893
2894         if (ops->init)
2895                 ops->init(dev);
2896
2897         ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2898         if (ret < 0) {
2899                 mutex_lock(&kvm->lock);
2900                 list_del(&dev->vm_node);
2901                 mutex_unlock(&kvm->lock);
2902                 ops->destroy(dev);
2903                 return ret;
2904         }
2905
2906         kvm_get_kvm(kvm);
2907         cd->fd = ret;
2908         return 0;
2909 }
2910
2911 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2912 {
2913         switch (arg) {
2914         case KVM_CAP_USER_MEMORY:
2915         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2916         case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2917         case KVM_CAP_INTERNAL_ERROR_DATA:
2918 #ifdef CONFIG_HAVE_KVM_MSI
2919         case KVM_CAP_SIGNAL_MSI:
2920 #endif
2921 #ifdef CONFIG_HAVE_KVM_IRQFD
2922         case KVM_CAP_IRQFD:
2923         case KVM_CAP_IRQFD_RESAMPLE:
2924 #endif
2925         case KVM_CAP_IOEVENTFD_ANY_LENGTH:
2926         case KVM_CAP_CHECK_EXTENSION_VM:
2927                 return 1;
2928 #ifdef CONFIG_KVM_MMIO
2929         case KVM_CAP_COALESCED_MMIO:
2930                 return KVM_COALESCED_MMIO_PAGE_OFFSET;
2931 #endif
2932 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2933         case KVM_CAP_IRQ_ROUTING:
2934                 return KVM_MAX_IRQ_ROUTES;
2935 #endif
2936 #if KVM_ADDRESS_SPACE_NUM > 1
2937         case KVM_CAP_MULTI_ADDRESS_SPACE:
2938                 return KVM_ADDRESS_SPACE_NUM;
2939 #endif
2940         case KVM_CAP_MAX_VCPU_ID:
2941                 return KVM_MAX_VCPU_ID;
2942         default:
2943                 break;
2944         }
2945         return kvm_vm_ioctl_check_extension(kvm, arg);
2946 }
2947
2948 static long kvm_vm_ioctl(struct file *filp,
2949                            unsigned int ioctl, unsigned long arg)
2950 {
2951         struct kvm *kvm = filp->private_data;
2952         void __user *argp = (void __user *)arg;
2953         int r;
2954
2955         if (kvm->mm != current->mm)
2956                 return -EIO;
2957         switch (ioctl) {
2958         case KVM_CREATE_VCPU:
2959                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2960                 break;
2961         case KVM_SET_USER_MEMORY_REGION: {
2962                 struct kvm_userspace_memory_region kvm_userspace_mem;
2963
2964                 r = -EFAULT;
2965                 if (copy_from_user(&kvm_userspace_mem, argp,
2966                                                 sizeof(kvm_userspace_mem)))
2967                         goto out;
2968
2969                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2970                 break;
2971         }
2972         case KVM_GET_DIRTY_LOG: {
2973                 struct kvm_dirty_log log;
2974
2975                 r = -EFAULT;
2976                 if (copy_from_user(&log, argp, sizeof(log)))
2977                         goto out;
2978                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2979                 break;
2980         }
2981 #ifdef CONFIG_KVM_MMIO
2982         case KVM_REGISTER_COALESCED_MMIO: {
2983                 struct kvm_coalesced_mmio_zone zone;
2984
2985                 r = -EFAULT;
2986                 if (copy_from_user(&zone, argp, sizeof(zone)))
2987                         goto out;
2988                 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2989                 break;
2990         }
2991         case KVM_UNREGISTER_COALESCED_MMIO: {
2992                 struct kvm_coalesced_mmio_zone zone;
2993
2994                 r = -EFAULT;
2995                 if (copy_from_user(&zone, argp, sizeof(zone)))
2996                         goto out;
2997                 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2998                 break;
2999         }
3000 #endif
3001         case KVM_IRQFD: {
3002                 struct kvm_irqfd data;
3003
3004                 r = -EFAULT;
3005                 if (copy_from_user(&data, argp, sizeof(data)))
3006                         goto out;
3007                 r = kvm_irqfd(kvm, &data);
3008                 break;
3009         }
3010         case KVM_IOEVENTFD: {
3011                 struct kvm_ioeventfd data;
3012
3013                 r = -EFAULT;
3014                 if (copy_from_user(&data, argp, sizeof(data)))
3015                         goto out;
3016                 r = kvm_ioeventfd(kvm, &data);
3017                 break;
3018         }
3019 #ifdef CONFIG_HAVE_KVM_MSI
3020         case KVM_SIGNAL_MSI: {
3021                 struct kvm_msi msi;
3022
3023                 r = -EFAULT;
3024                 if (copy_from_user(&msi, argp, sizeof(msi)))
3025                         goto out;
3026                 r = kvm_send_userspace_msi(kvm, &msi);
3027                 break;
3028         }
3029 #endif
3030 #ifdef __KVM_HAVE_IRQ_LINE
3031         case KVM_IRQ_LINE_STATUS:
3032         case KVM_IRQ_LINE: {
3033                 struct kvm_irq_level irq_event;
3034
3035                 r = -EFAULT;
3036                 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3037                         goto out;
3038
3039                 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3040                                         ioctl == KVM_IRQ_LINE_STATUS);
3041                 if (r)
3042                         goto out;
3043
3044                 r = -EFAULT;
3045                 if (ioctl == KVM_IRQ_LINE_STATUS) {
3046                         if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3047                                 goto out;
3048                 }
3049
3050                 r = 0;
3051                 break;
3052         }
3053 #endif
3054 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3055         case KVM_SET_GSI_ROUTING: {
3056                 struct kvm_irq_routing routing;
3057                 struct kvm_irq_routing __user *urouting;
3058                 struct kvm_irq_routing_entry *entries = NULL;
3059
3060                 r = -EFAULT;
3061                 if (copy_from_user(&routing, argp, sizeof(routing)))
3062                         goto out;
3063                 r = -EINVAL;
3064                 if (!kvm_arch_can_set_irq_routing(kvm))
3065                         goto out;
3066                 if (routing.nr > KVM_MAX_IRQ_ROUTES)
3067                         goto out;
3068                 if (routing.flags)
3069                         goto out;
3070                 if (routing.nr) {
3071                         r = -ENOMEM;
3072                         entries = vmalloc(routing.nr * sizeof(*entries));
3073                         if (!entries)
3074                                 goto out;
3075                         r = -EFAULT;
3076                         urouting = argp;
3077                         if (copy_from_user(entries, urouting->entries,
3078                                            routing.nr * sizeof(*entries)))
3079                                 goto out_free_irq_routing;
3080                 }
3081                 r = kvm_set_irq_routing(kvm, entries, routing.nr,
3082                                         routing.flags);
3083 out_free_irq_routing:
3084                 vfree(entries);
3085                 break;
3086         }
3087 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3088         case KVM_CREATE_DEVICE: {
3089                 struct kvm_create_device cd;
3090
3091                 r = -EFAULT;
3092                 if (copy_from_user(&cd, argp, sizeof(cd)))
3093                         goto out;
3094
3095                 r = kvm_ioctl_create_device(kvm, &cd);
3096                 if (r)
3097                         goto out;
3098
3099                 r = -EFAULT;
3100                 if (copy_to_user(argp, &cd, sizeof(cd)))
3101                         goto out;
3102
3103                 r = 0;
3104                 break;
3105         }
3106         case KVM_CHECK_EXTENSION:
3107                 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3108                 break;
3109         default:
3110                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3111         }
3112 out:
3113         return r;
3114 }
3115
3116 #ifdef CONFIG_KVM_COMPAT
3117 struct compat_kvm_dirty_log {
3118         __u32 slot;
3119         __u32 padding1;
3120         union {
3121                 compat_uptr_t dirty_bitmap; /* one bit per page */
3122                 __u64 padding2;
3123         };
3124 };
3125
3126 static long kvm_vm_compat_ioctl(struct file *filp,
3127                            unsigned int ioctl, unsigned long arg)
3128 {
3129         struct kvm *kvm = filp->private_data;
3130         int r;
3131
3132         if (kvm->mm != current->mm)
3133                 return -EIO;
3134         switch (ioctl) {
3135         case KVM_GET_DIRTY_LOG: {
3136                 struct compat_kvm_dirty_log compat_log;
3137                 struct kvm_dirty_log log;
3138
3139                 if (copy_from_user(&compat_log, (void __user *)arg,
3140                                    sizeof(compat_log)))
3141                         return -EFAULT;
3142                 log.slot         = compat_log.slot;
3143                 log.padding1     = compat_log.padding1;
3144                 log.padding2     = compat_log.padding2;
3145                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3146
3147                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3148                 break;
3149         }
3150         default:
3151                 r = kvm_vm_ioctl(filp, ioctl, arg);
3152         }
3153         return r;
3154 }
3155 #endif
3156
3157 static struct file_operations kvm_vm_fops = {
3158         .release        = kvm_vm_release,
3159         .unlocked_ioctl = kvm_vm_ioctl,
3160 #ifdef CONFIG_KVM_COMPAT
3161         .compat_ioctl   = kvm_vm_compat_ioctl,
3162 #endif
3163         .llseek         = noop_llseek,
3164 };
3165
3166 static int kvm_dev_ioctl_create_vm(unsigned long type)
3167 {
3168         int r;
3169         struct kvm *kvm;
3170         struct file *file;
3171
3172         kvm = kvm_create_vm(type);
3173         if (IS_ERR(kvm))
3174                 return PTR_ERR(kvm);
3175 #ifdef CONFIG_KVM_MMIO
3176         r = kvm_coalesced_mmio_init(kvm);
3177         if (r < 0) {
3178                 kvm_put_kvm(kvm);
3179                 return r;
3180         }
3181 #endif
3182         r = get_unused_fd_flags(O_CLOEXEC);
3183         if (r < 0) {
3184                 kvm_put_kvm(kvm);
3185                 return r;
3186         }
3187         file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3188         if (IS_ERR(file)) {
3189                 put_unused_fd(r);
3190                 kvm_put_kvm(kvm);
3191                 return PTR_ERR(file);
3192         }
3193
3194         if (kvm_create_vm_debugfs(kvm, r) < 0) {
3195                 put_unused_fd(r);
3196                 fput(file);
3197                 return -ENOMEM;
3198         }
3199
3200         fd_install(r, file);
3201         return r;
3202 }
3203
3204 static long kvm_dev_ioctl(struct file *filp,
3205                           unsigned int ioctl, unsigned long arg)
3206 {
3207         long r = -EINVAL;
3208
3209         switch (ioctl) {
3210         case KVM_GET_API_VERSION:
3211                 if (arg)
3212                         goto out;
3213                 r = KVM_API_VERSION;
3214                 break;
3215         case KVM_CREATE_VM:
3216                 r = kvm_dev_ioctl_create_vm(arg);
3217                 break;
3218         case KVM_CHECK_EXTENSION:
3219                 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3220                 break;
3221         case KVM_GET_VCPU_MMAP_SIZE:
3222                 if (arg)
3223                         goto out;
3224                 r = PAGE_SIZE;     /* struct kvm_run */
3225 #ifdef CONFIG_X86
3226                 r += PAGE_SIZE;    /* pio data page */
3227 #endif
3228 #ifdef CONFIG_KVM_MMIO
3229                 r += PAGE_SIZE;    /* coalesced mmio ring page */
3230 #endif
3231                 break;
3232         case KVM_TRACE_ENABLE:
3233         case KVM_TRACE_PAUSE:
3234         case KVM_TRACE_DISABLE:
3235                 r = -EOPNOTSUPP;
3236                 break;
3237         default:
3238                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
3239         }
3240 out:
3241         return r;
3242 }
3243
3244 static struct file_operations kvm_chardev_ops = {
3245         .unlocked_ioctl = kvm_dev_ioctl,
3246         .compat_ioctl   = kvm_dev_ioctl,
3247         .llseek         = noop_llseek,
3248 };
3249
3250 static struct miscdevice kvm_dev = {
3251         KVM_MINOR,
3252         "kvm",
3253         &kvm_chardev_ops,
3254 };
3255
3256 static void hardware_enable_nolock(void *junk)
3257 {
3258         int cpu = raw_smp_processor_id();
3259         int r;
3260
3261         if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3262                 return;
3263
3264         cpumask_set_cpu(cpu, cpus_hardware_enabled);
3265
3266         r = kvm_arch_hardware_enable();
3267
3268         if (r) {
3269                 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3270                 atomic_inc(&hardware_enable_failed);
3271                 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3272         }
3273 }
3274
3275 static int kvm_starting_cpu(unsigned int cpu)
3276 {
3277         raw_spin_lock(&kvm_count_lock);
3278         if (kvm_usage_count)
3279                 hardware_enable_nolock(NULL);
3280         raw_spin_unlock(&kvm_count_lock);
3281         return 0;
3282 }
3283
3284 static void hardware_disable_nolock(void *junk)
3285 {
3286         int cpu = raw_smp_processor_id();
3287
3288         if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3289                 return;
3290         cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3291         kvm_arch_hardware_disable();
3292 }
3293
3294 static int kvm_dying_cpu(unsigned int cpu)
3295 {
3296         raw_spin_lock(&kvm_count_lock);
3297         if (kvm_usage_count)
3298                 hardware_disable_nolock(NULL);
3299         raw_spin_unlock(&kvm_count_lock);
3300         return 0;
3301 }
3302
3303 static void hardware_disable_all_nolock(void)
3304 {
3305         BUG_ON(!kvm_usage_count);
3306
3307         kvm_usage_count--;
3308         if (!kvm_usage_count)
3309                 on_each_cpu(hardware_disable_nolock, NULL, 1);
3310 }
3311
3312 static void hardware_disable_all(void)
3313 {
3314         raw_spin_lock(&kvm_count_lock);
3315         hardware_disable_all_nolock();
3316         raw_spin_unlock(&kvm_count_lock);
3317 }
3318
3319 static int hardware_enable_all(void)
3320 {
3321         int r = 0;
3322
3323         raw_spin_lock(&kvm_count_lock);
3324
3325         kvm_usage_count++;
3326         if (kvm_usage_count == 1) {
3327                 atomic_set(&hardware_enable_failed, 0);
3328                 on_each_cpu(hardware_enable_nolock, NULL, 1);
3329
3330                 if (atomic_read(&hardware_enable_failed)) {
3331                         hardware_disable_all_nolock();
3332                         r = -EBUSY;
3333                 }
3334         }
3335
3336         raw_spin_unlock(&kvm_count_lock);
3337
3338         return r;
3339 }
3340
3341 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3342                       void *v)
3343 {
3344         /*
3345          * Some (well, at least mine) BIOSes hang on reboot if
3346          * in vmx root mode.
3347          *
3348          * And Intel TXT required VMX off for all cpu when system shutdown.
3349          */
3350         pr_info("kvm: exiting hardware virtualization\n");
3351         kvm_rebooting = true;
3352         on_each_cpu(hardware_disable_nolock, NULL, 1);
3353         return NOTIFY_OK;
3354 }
3355
3356 static struct notifier_block kvm_reboot_notifier = {
3357         .notifier_call = kvm_reboot,
3358         .priority = 0,
3359 };
3360
3361 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3362 {
3363         int i;
3364
3365         for (i = 0; i < bus->dev_count; i++) {
3366                 struct kvm_io_device *pos = bus->range[i].dev;
3367
3368                 kvm_iodevice_destructor(pos);
3369         }
3370         kfree(bus);
3371 }
3372
3373 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3374                                  const struct kvm_io_range *r2)
3375 {
3376         gpa_t addr1 = r1->addr;
3377         gpa_t addr2 = r2->addr;
3378
3379         if (addr1 < addr2)
3380                 return -1;
3381
3382         /* If r2->len == 0, match the exact address.  If r2->len != 0,
3383          * accept any overlapping write.  Any order is acceptable for
3384          * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3385          * we process all of them.
3386          */
3387         if (r2->len) {
3388                 addr1 += r1->len;
3389                 addr2 += r2->len;
3390         }
3391
3392         if (addr1 > addr2)
3393                 return 1;
3394
3395         return 0;
3396 }
3397
3398 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3399 {
3400         return kvm_io_bus_cmp(p1, p2);
3401 }
3402
3403 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
3404                           gpa_t addr, int len)
3405 {
3406         bus->range[bus->dev_count++] = (struct kvm_io_range) {
3407                 .addr = addr,
3408                 .len = len,
3409                 .dev = dev,
3410         };
3411
3412         sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
3413                 kvm_io_bus_sort_cmp, NULL);
3414
3415         return 0;
3416 }
3417
3418 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3419                              gpa_t addr, int len)
3420 {
3421         struct kvm_io_range *range, key;
3422         int off;
3423
3424         key = (struct kvm_io_range) {
3425                 .addr = addr,
3426                 .len = len,
3427         };
3428
3429         range = bsearch(&key, bus->range, bus->dev_count,
3430                         sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3431         if (range == NULL)
3432                 return -ENOENT;
3433
3434         off = range - bus->range;
3435
3436         while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3437                 off--;
3438
3439         return off;
3440 }
3441
3442 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3443                               struct kvm_io_range *range, const void *val)
3444 {
3445         int idx;
3446
3447         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3448         if (idx < 0)
3449                 return -EOPNOTSUPP;
3450
3451         while (idx < bus->dev_count &&
3452                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3453                 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3454                                         range->len, val))
3455                         return idx;
3456                 idx++;
3457         }
3458
3459         return -EOPNOTSUPP;
3460 }
3461
3462 /* kvm_io_bus_write - called under kvm->slots_lock */
3463 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3464                      int len, const void *val)
3465 {
3466         struct kvm_io_bus *bus;
3467         struct kvm_io_range range;
3468         int r;
3469
3470         range = (struct kvm_io_range) {
3471                 .addr = addr,
3472                 .len = len,
3473         };
3474
3475         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3476         if (!bus)
3477                 return -ENOMEM;
3478         r = __kvm_io_bus_write(vcpu, bus, &range, val);
3479         return r < 0 ? r : 0;
3480 }
3481
3482 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3483 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3484                             gpa_t addr, int len, const void *val, long cookie)
3485 {
3486         struct kvm_io_bus *bus;
3487         struct kvm_io_range range;
3488
3489         range = (struct kvm_io_range) {
3490                 .addr = addr,
3491                 .len = len,
3492         };
3493
3494         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3495         if (!bus)
3496                 return -ENOMEM;
3497
3498         /* First try the device referenced by cookie. */
3499         if ((cookie >= 0) && (cookie < bus->dev_count) &&
3500             (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3501                 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3502                                         val))
3503                         return cookie;
3504
3505         /*
3506          * cookie contained garbage; fall back to search and return the
3507          * correct cookie value.
3508          */
3509         return __kvm_io_bus_write(vcpu, bus, &range, val);
3510 }
3511
3512 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3513                              struct kvm_io_range *range, void *val)
3514 {
3515         int idx;
3516
3517         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3518         if (idx < 0)
3519                 return -EOPNOTSUPP;
3520
3521         while (idx < bus->dev_count &&
3522                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3523                 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3524                                        range->len, val))
3525                         return idx;
3526                 idx++;
3527         }
3528
3529         return -EOPNOTSUPP;
3530 }
3531 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3532
3533 /* kvm_io_bus_read - called under kvm->slots_lock */
3534 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3535                     int len, void *val)
3536 {
3537         struct kvm_io_bus *bus;
3538         struct kvm_io_range range;
3539         int r;
3540
3541         range = (struct kvm_io_range) {
3542                 .addr = addr,
3543                 .len = len,
3544         };
3545
3546         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3547         if (!bus)
3548                 return -ENOMEM;
3549         r = __kvm_io_bus_read(vcpu, bus, &range, val);
3550         return r < 0 ? r : 0;
3551 }
3552
3553
3554 /* Caller must hold slots_lock. */
3555 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3556                             int len, struct kvm_io_device *dev)
3557 {
3558         struct kvm_io_bus *new_bus, *bus;
3559
3560         bus = kvm->buses[bus_idx];
3561         if (!bus)
3562                 return -ENOMEM;
3563
3564         /* exclude ioeventfd which is limited by maximum fd */
3565         if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3566                 return -ENOSPC;
3567
3568         new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3569                           sizeof(struct kvm_io_range)), GFP_KERNEL);
3570         if (!new_bus)
3571                 return -ENOMEM;
3572         memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3573                sizeof(struct kvm_io_range)));
3574         kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3575         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3576         synchronize_srcu_expedited(&kvm->srcu);
3577         kfree(bus);
3578
3579         return 0;
3580 }
3581
3582 /* Caller must hold slots_lock. */
3583 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3584                                struct kvm_io_device *dev)
3585 {
3586         int i;
3587         struct kvm_io_bus *new_bus, *bus;
3588
3589         bus = kvm->buses[bus_idx];
3590         if (!bus)
3591                 return;
3592
3593         for (i = 0; i < bus->dev_count; i++)
3594                 if (bus->range[i].dev == dev) {
3595                         break;
3596                 }
3597
3598         if (i == bus->dev_count)
3599                 return;
3600
3601         new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3602                           sizeof(struct kvm_io_range)), GFP_KERNEL);
3603         if (!new_bus)  {
3604                 pr_err("kvm: failed to shrink bus, removing it completely\n");
3605                 goto broken;
3606         }
3607
3608         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3609         new_bus->dev_count--;
3610         memcpy(new_bus->range + i, bus->range + i + 1,
3611                (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3612
3613 broken:
3614         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3615         synchronize_srcu_expedited(&kvm->srcu);
3616         kfree(bus);
3617         return;
3618 }
3619
3620 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3621                                          gpa_t addr)
3622 {
3623         struct kvm_io_bus *bus;
3624         int dev_idx, srcu_idx;
3625         struct kvm_io_device *iodev = NULL;
3626
3627         srcu_idx = srcu_read_lock(&kvm->srcu);
3628
3629         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3630         if (!bus)
3631                 goto out_unlock;
3632
3633         dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3634         if (dev_idx < 0)
3635                 goto out_unlock;
3636
3637         iodev = bus->range[dev_idx].dev;
3638
3639 out_unlock:
3640         srcu_read_unlock(&kvm->srcu, srcu_idx);
3641
3642         return iodev;
3643 }
3644 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3645
3646 static int kvm_debugfs_open(struct inode *inode, struct file *file,
3647                            int (*get)(void *, u64 *), int (*set)(void *, u64),
3648                            const char *fmt)
3649 {
3650         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3651                                           inode->i_private;
3652
3653         /* The debugfs files are a reference to the kvm struct which
3654          * is still valid when kvm_destroy_vm is called.
3655          * To avoid the race between open and the removal of the debugfs
3656          * directory we test against the users count.
3657          */
3658         if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
3659                 return -ENOENT;
3660
3661         if (simple_attr_open(inode, file, get, set, fmt)) {
3662                 kvm_put_kvm(stat_data->kvm);
3663                 return -ENOMEM;
3664         }
3665
3666         return 0;
3667 }
3668
3669 static int kvm_debugfs_release(struct inode *inode, struct file *file)
3670 {
3671         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3672                                           inode->i_private;
3673
3674         simple_attr_release(inode, file);
3675         kvm_put_kvm(stat_data->kvm);
3676
3677         return 0;
3678 }
3679
3680 static int vm_stat_get_per_vm(void *data, u64 *val)
3681 {
3682         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3683
3684         *val = *(ulong *)((void *)stat_data->kvm + stat_data->offset);
3685
3686         return 0;
3687 }
3688
3689 static int vm_stat_clear_per_vm(void *data, u64 val)
3690 {
3691         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3692
3693         if (val)
3694                 return -EINVAL;
3695
3696         *(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0;
3697
3698         return 0;
3699 }
3700
3701 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
3702 {
3703         __simple_attr_check_format("%llu\n", 0ull);
3704         return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
3705                                 vm_stat_clear_per_vm, "%llu\n");
3706 }
3707
3708 static const struct file_operations vm_stat_get_per_vm_fops = {
3709         .owner   = THIS_MODULE,
3710         .open    = vm_stat_get_per_vm_open,
3711         .release = kvm_debugfs_release,
3712         .read    = simple_attr_read,
3713         .write   = simple_attr_write,
3714         .llseek  = no_llseek,
3715 };
3716
3717 static int vcpu_stat_get_per_vm(void *data, u64 *val)
3718 {
3719         int i;
3720         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3721         struct kvm_vcpu *vcpu;
3722
3723         *val = 0;
3724
3725         kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3726                 *val += *(u64 *)((void *)vcpu + stat_data->offset);
3727
3728         return 0;
3729 }
3730
3731 static int vcpu_stat_clear_per_vm(void *data, u64 val)
3732 {
3733         int i;
3734         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3735         struct kvm_vcpu *vcpu;
3736
3737         if (val)
3738                 return -EINVAL;
3739
3740         kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3741                 *(u64 *)((void *)vcpu + stat_data->offset) = 0;
3742
3743         return 0;
3744 }
3745
3746 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
3747 {
3748         __simple_attr_check_format("%llu\n", 0ull);
3749         return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
3750                                  vcpu_stat_clear_per_vm, "%llu\n");
3751 }
3752
3753 static const struct file_operations vcpu_stat_get_per_vm_fops = {
3754         .owner   = THIS_MODULE,
3755         .open    = vcpu_stat_get_per_vm_open,
3756         .release = kvm_debugfs_release,
3757         .read    = simple_attr_read,
3758         .write   = simple_attr_write,
3759         .llseek  = no_llseek,
3760 };
3761
3762 static const struct file_operations *stat_fops_per_vm[] = {
3763         [KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
3764         [KVM_STAT_VM]   = &vm_stat_get_per_vm_fops,
3765 };
3766
3767 static int vm_stat_get(void *_offset, u64 *val)
3768 {
3769         unsigned offset = (long)_offset;
3770         struct kvm *kvm;
3771         struct kvm_stat_data stat_tmp = {.offset = offset};
3772         u64 tmp_val;
3773
3774         *val = 0;
3775         spin_lock(&kvm_lock);
3776         list_for_each_entry(kvm, &vm_list, vm_list) {
3777                 stat_tmp.kvm = kvm;
3778                 vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3779                 *val += tmp_val;
3780         }
3781         spin_unlock(&kvm_lock);
3782         return 0;
3783 }
3784
3785 static int vm_stat_clear(void *_offset, u64 val)
3786 {
3787         unsigned offset = (long)_offset;
3788         struct kvm *kvm;
3789         struct kvm_stat_data stat_tmp = {.offset = offset};
3790
3791         if (val)
3792                 return -EINVAL;
3793
3794         spin_lock(&kvm_lock);
3795         list_for_each_entry(kvm, &vm_list, vm_list) {
3796                 stat_tmp.kvm = kvm;
3797                 vm_stat_clear_per_vm((void *)&stat_tmp, 0);
3798         }
3799         spin_unlock(&kvm_lock);
3800
3801         return 0;
3802 }
3803
3804 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
3805
3806 static int vcpu_stat_get(void *_offset, u64 *val)
3807 {
3808         unsigned offset = (long)_offset;
3809         struct kvm *kvm;
3810         struct kvm_stat_data stat_tmp = {.offset = offset};
3811         u64 tmp_val;
3812
3813         *val = 0;
3814         spin_lock(&kvm_lock);
3815         list_for_each_entry(kvm, &vm_list, vm_list) {
3816                 stat_tmp.kvm = kvm;
3817                 vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3818                 *val += tmp_val;
3819         }
3820         spin_unlock(&kvm_lock);
3821         return 0;
3822 }
3823
3824 static int vcpu_stat_clear(void *_offset, u64 val)
3825 {
3826         unsigned offset = (long)_offset;
3827         struct kvm *kvm;
3828         struct kvm_stat_data stat_tmp = {.offset = offset};
3829
3830         if (val)
3831                 return -EINVAL;
3832
3833         spin_lock(&kvm_lock);
3834         list_for_each_entry(kvm, &vm_list, vm_list) {
3835                 stat_tmp.kvm = kvm;
3836                 vcpu_stat_clear_per_vm((void *)&stat_tmp, 0);
3837         }
3838         spin_unlock(&kvm_lock);
3839
3840         return 0;
3841 }
3842
3843 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
3844                         "%llu\n");
3845
3846 static const struct file_operations *stat_fops[] = {
3847         [KVM_STAT_VCPU] = &vcpu_stat_fops,
3848         [KVM_STAT_VM]   = &vm_stat_fops,
3849 };
3850
3851 static int kvm_init_debug(void)
3852 {
3853         int r = -EEXIST;
3854         struct kvm_stats_debugfs_item *p;
3855
3856         kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3857         if (kvm_debugfs_dir == NULL)
3858                 goto out;
3859
3860         kvm_debugfs_num_entries = 0;
3861         for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
3862                 if (!debugfs_create_file(p->name, 0644, kvm_debugfs_dir,
3863                                          (void *)(long)p->offset,
3864                                          stat_fops[p->kind]))
3865                         goto out_dir;
3866         }
3867
3868         return 0;
3869
3870 out_dir:
3871         debugfs_remove_recursive(kvm_debugfs_dir);
3872 out:
3873         return r;
3874 }
3875
3876 static int kvm_suspend(void)
3877 {
3878         if (kvm_usage_count)
3879                 hardware_disable_nolock(NULL);
3880         return 0;
3881 }
3882
3883 static void kvm_resume(void)
3884 {
3885         if (kvm_usage_count) {
3886                 WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3887                 hardware_enable_nolock(NULL);
3888         }
3889 }
3890
3891 static struct syscore_ops kvm_syscore_ops = {
3892         .suspend = kvm_suspend,
3893         .resume = kvm_resume,
3894 };
3895
3896 static inline
3897 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3898 {
3899         return container_of(pn, struct kvm_vcpu, preempt_notifier);
3900 }
3901
3902 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3903 {
3904         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3905
3906         if (vcpu->preempted)
3907                 vcpu->preempted = false;
3908
3909         kvm_arch_sched_in(vcpu, cpu);
3910
3911         kvm_arch_vcpu_load(vcpu, cpu);
3912 }
3913
3914 static void kvm_sched_out(struct preempt_notifier *pn,
3915                           struct task_struct *next)
3916 {
3917         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3918
3919         if (current->state == TASK_RUNNING)
3920                 vcpu->preempted = true;
3921         kvm_arch_vcpu_put(vcpu);
3922 }
3923
3924 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3925                   struct module *module)
3926 {
3927         int r;
3928         int cpu;
3929
3930         r = kvm_arch_init(opaque);
3931         if (r)
3932                 goto out_fail;
3933
3934         /*
3935          * kvm_arch_init makes sure there's at most one caller
3936          * for architectures that support multiple implementations,
3937          * like intel and amd on x86.
3938          * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3939          * conflicts in case kvm is already setup for another implementation.
3940          */
3941         r = kvm_irqfd_init();
3942         if (r)
3943                 goto out_irqfd;
3944
3945         if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3946                 r = -ENOMEM;
3947                 goto out_free_0;
3948         }
3949
3950         r = kvm_arch_hardware_setup();
3951         if (r < 0)
3952                 goto out_free_0a;
3953
3954         for_each_online_cpu(cpu) {
3955                 smp_call_function_single(cpu,
3956                                 kvm_arch_check_processor_compat,
3957                                 &r, 1);
3958                 if (r < 0)
3959                         goto out_free_1;
3960         }
3961
3962         r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
3963                                       kvm_starting_cpu, kvm_dying_cpu);
3964         if (r)
3965                 goto out_free_2;
3966         register_reboot_notifier(&kvm_reboot_notifier);
3967
3968         /* A kmem cache lets us meet the alignment requirements of fx_save. */
3969         if (!vcpu_align)
3970                 vcpu_align = __alignof__(struct kvm_vcpu);
3971         kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3972                                            0, NULL);
3973         if (!kvm_vcpu_cache) {
3974                 r = -ENOMEM;
3975                 goto out_free_3;
3976         }
3977
3978         r = kvm_async_pf_init();
3979         if (r)
3980                 goto out_free;
3981
3982         kvm_chardev_ops.owner = module;
3983         kvm_vm_fops.owner = module;
3984         kvm_vcpu_fops.owner = module;
3985
3986         r = misc_register(&kvm_dev);
3987         if (r) {
3988                 pr_err("kvm: misc device register failed\n");
3989                 goto out_unreg;
3990         }
3991
3992         register_syscore_ops(&kvm_syscore_ops);
3993
3994         kvm_preempt_ops.sched_in = kvm_sched_in;
3995         kvm_preempt_ops.sched_out = kvm_sched_out;
3996
3997         r = kvm_init_debug();
3998         if (r) {
3999                 pr_err("kvm: create debugfs files failed\n");
4000                 goto out_undebugfs;
4001         }
4002
4003         r = kvm_vfio_ops_init();
4004         WARN_ON(r);
4005
4006         return 0;
4007
4008 out_undebugfs:
4009         unregister_syscore_ops(&kvm_syscore_ops);
4010         misc_deregister(&kvm_dev);
4011 out_unreg:
4012         kvm_async_pf_deinit();
4013 out_free:
4014         kmem_cache_destroy(kvm_vcpu_cache);
4015 out_free_3:
4016         unregister_reboot_notifier(&kvm_reboot_notifier);
4017         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4018 out_free_2:
4019 out_free_1:
4020         kvm_arch_hardware_unsetup();
4021 out_free_0a:
4022         free_cpumask_var(cpus_hardware_enabled);
4023 out_free_0:
4024         kvm_irqfd_exit();
4025 out_irqfd:
4026         kvm_arch_exit();
4027 out_fail:
4028         return r;
4029 }
4030 EXPORT_SYMBOL_GPL(kvm_init);
4031
4032 void kvm_exit(void)
4033 {
4034         debugfs_remove_recursive(kvm_debugfs_dir);
4035         misc_deregister(&kvm_dev);
4036         kmem_cache_destroy(kvm_vcpu_cache);
4037         kvm_async_pf_deinit();
4038         unregister_syscore_ops(&kvm_syscore_ops);
4039         unregister_reboot_notifier(&kvm_reboot_notifier);
4040         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4041         on_each_cpu(hardware_disable_nolock, NULL, 1);
4042         kvm_arch_hardware_unsetup();
4043         kvm_arch_exit();
4044         kvm_irqfd_exit();
4045         free_cpumask_var(cpus_hardware_enabled);
4046         kvm_vfio_ops_exit();
4047 }
4048 EXPORT_SYMBOL_GPL(kvm_exit);