]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - virt/kvm/kvm_main.c
Merge branch 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[karo-tx-linux.git] / virt / kvm / kvm_main.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18
19 #include <kvm/iodev.h>
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched/signal.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/stat.h>
38 #include <linux/cpumask.h>
39 #include <linux/smp.h>
40 #include <linux/anon_inodes.h>
41 #include <linux/profile.h>
42 #include <linux/kvm_para.h>
43 #include <linux/pagemap.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/bitops.h>
47 #include <linux/spinlock.h>
48 #include <linux/compat.h>
49 #include <linux/srcu.h>
50 #include <linux/hugetlb.h>
51 #include <linux/slab.h>
52 #include <linux/sort.h>
53 #include <linux/bsearch.h>
54
55 #include <asm/processor.h>
56 #include <asm/io.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59 #include <asm/pgtable.h>
60
61 #include "coalesced_mmio.h"
62 #include "async_pf.h"
63 #include "vfio.h"
64
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/kvm.h>
67
68 /* Worst case buffer size needed for holding an integer. */
69 #define ITOA_MAX_LEN 12
70
71 MODULE_AUTHOR("Qumranet");
72 MODULE_LICENSE("GPL");
73
74 /* Architectures should define their poll value according to the halt latency */
75 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
76 module_param(halt_poll_ns, uint, 0644);
77 EXPORT_SYMBOL_GPL(halt_poll_ns);
78
79 /* Default doubles per-vcpu halt_poll_ns. */
80 unsigned int halt_poll_ns_grow = 2;
81 module_param(halt_poll_ns_grow, uint, 0644);
82 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
83
84 /* Default resets per-vcpu halt_poll_ns . */
85 unsigned int halt_poll_ns_shrink;
86 module_param(halt_poll_ns_shrink, uint, 0644);
87 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
88
89 /*
90  * Ordering of locks:
91  *
92  *      kvm->lock --> kvm->slots_lock --> kvm->irq_lock
93  */
94
95 DEFINE_SPINLOCK(kvm_lock);
96 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
97 LIST_HEAD(vm_list);
98
99 static cpumask_var_t cpus_hardware_enabled;
100 static int kvm_usage_count;
101 static atomic_t hardware_enable_failed;
102
103 struct kmem_cache *kvm_vcpu_cache;
104 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
105
106 static __read_mostly struct preempt_ops kvm_preempt_ops;
107
108 struct dentry *kvm_debugfs_dir;
109 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
110
111 static int kvm_debugfs_num_entries;
112 static const struct file_operations *stat_fops_per_vm[];
113
114 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
115                            unsigned long arg);
116 #ifdef CONFIG_KVM_COMPAT
117 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
118                                   unsigned long arg);
119 #endif
120 static int hardware_enable_all(void);
121 static void hardware_disable_all(void);
122
123 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
124
125 static void kvm_release_pfn_dirty(kvm_pfn_t pfn);
126 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
127
128 __visible bool kvm_rebooting;
129 EXPORT_SYMBOL_GPL(kvm_rebooting);
130
131 static bool largepages_enabled = true;
132
133 #define KVM_EVENT_CREATE_VM 0
134 #define KVM_EVENT_DESTROY_VM 1
135 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
136 static unsigned long long kvm_createvm_count;
137 static unsigned long long kvm_active_vms;
138
139 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
140 {
141         if (pfn_valid(pfn))
142                 return PageReserved(pfn_to_page(pfn));
143
144         return true;
145 }
146
147 /*
148  * Switches to specified vcpu, until a matching vcpu_put()
149  */
150 int vcpu_load(struct kvm_vcpu *vcpu)
151 {
152         int cpu;
153
154         if (mutex_lock_killable(&vcpu->mutex))
155                 return -EINTR;
156         cpu = get_cpu();
157         preempt_notifier_register(&vcpu->preempt_notifier);
158         kvm_arch_vcpu_load(vcpu, cpu);
159         put_cpu();
160         return 0;
161 }
162 EXPORT_SYMBOL_GPL(vcpu_load);
163
164 void vcpu_put(struct kvm_vcpu *vcpu)
165 {
166         preempt_disable();
167         kvm_arch_vcpu_put(vcpu);
168         preempt_notifier_unregister(&vcpu->preempt_notifier);
169         preempt_enable();
170         mutex_unlock(&vcpu->mutex);
171 }
172 EXPORT_SYMBOL_GPL(vcpu_put);
173
174 /* TODO: merge with kvm_arch_vcpu_should_kick */
175 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
176 {
177         int mode = kvm_vcpu_exiting_guest_mode(vcpu);
178
179         /*
180          * We need to wait for the VCPU to reenable interrupts and get out of
181          * READING_SHADOW_PAGE_TABLES mode.
182          */
183         if (req & KVM_REQUEST_WAIT)
184                 return mode != OUTSIDE_GUEST_MODE;
185
186         /*
187          * Need to kick a running VCPU, but otherwise there is nothing to do.
188          */
189         return mode == IN_GUEST_MODE;
190 }
191
192 static void ack_flush(void *_completed)
193 {
194 }
195
196 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
197 {
198         if (unlikely(!cpus))
199                 cpus = cpu_online_mask;
200
201         if (cpumask_empty(cpus))
202                 return false;
203
204         smp_call_function_many(cpus, ack_flush, NULL, wait);
205         return true;
206 }
207
208 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
209 {
210         int i, cpu, me;
211         cpumask_var_t cpus;
212         bool called;
213         struct kvm_vcpu *vcpu;
214
215         zalloc_cpumask_var(&cpus, GFP_ATOMIC);
216
217         me = get_cpu();
218         kvm_for_each_vcpu(i, vcpu, kvm) {
219                 kvm_make_request(req, vcpu);
220                 cpu = vcpu->cpu;
221
222                 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
223                         continue;
224
225                 if (cpus != NULL && cpu != -1 && cpu != me &&
226                     kvm_request_needs_ipi(vcpu, req))
227                         __cpumask_set_cpu(cpu, cpus);
228         }
229         called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
230         put_cpu();
231         free_cpumask_var(cpus);
232         return called;
233 }
234
235 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
236 void kvm_flush_remote_tlbs(struct kvm *kvm)
237 {
238         /*
239          * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
240          * kvm_make_all_cpus_request.
241          */
242         long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
243
244         /*
245          * We want to publish modifications to the page tables before reading
246          * mode. Pairs with a memory barrier in arch-specific code.
247          * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
248          * and smp_mb in walk_shadow_page_lockless_begin/end.
249          * - powerpc: smp_mb in kvmppc_prepare_to_enter.
250          *
251          * There is already an smp_mb__after_atomic() before
252          * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
253          * barrier here.
254          */
255         if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
256                 ++kvm->stat.remote_tlb_flush;
257         cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
258 }
259 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
260 #endif
261
262 void kvm_reload_remote_mmus(struct kvm *kvm)
263 {
264         kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
265 }
266
267 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
268 {
269         struct page *page;
270         int r;
271
272         mutex_init(&vcpu->mutex);
273         vcpu->cpu = -1;
274         vcpu->kvm = kvm;
275         vcpu->vcpu_id = id;
276         vcpu->pid = NULL;
277         init_swait_queue_head(&vcpu->wq);
278         kvm_async_pf_vcpu_init(vcpu);
279
280         vcpu->pre_pcpu = -1;
281         INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
282
283         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
284         if (!page) {
285                 r = -ENOMEM;
286                 goto fail;
287         }
288         vcpu->run = page_address(page);
289
290         kvm_vcpu_set_in_spin_loop(vcpu, false);
291         kvm_vcpu_set_dy_eligible(vcpu, false);
292         vcpu->preempted = false;
293
294         r = kvm_arch_vcpu_init(vcpu);
295         if (r < 0)
296                 goto fail_free_run;
297         return 0;
298
299 fail_free_run:
300         free_page((unsigned long)vcpu->run);
301 fail:
302         return r;
303 }
304 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
305
306 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
307 {
308         /*
309          * no need for rcu_read_lock as VCPU_RUN is the only place that
310          * will change the vcpu->pid pointer and on uninit all file
311          * descriptors are already gone.
312          */
313         put_pid(rcu_dereference_protected(vcpu->pid, 1));
314         kvm_arch_vcpu_uninit(vcpu);
315         free_page((unsigned long)vcpu->run);
316 }
317 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
318
319 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
320 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
321 {
322         return container_of(mn, struct kvm, mmu_notifier);
323 }
324
325 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
326                                              struct mm_struct *mm,
327                                              unsigned long address)
328 {
329         struct kvm *kvm = mmu_notifier_to_kvm(mn);
330         int need_tlb_flush, idx;
331
332         /*
333          * When ->invalidate_page runs, the linux pte has been zapped
334          * already but the page is still allocated until
335          * ->invalidate_page returns. So if we increase the sequence
336          * here the kvm page fault will notice if the spte can't be
337          * established because the page is going to be freed. If
338          * instead the kvm page fault establishes the spte before
339          * ->invalidate_page runs, kvm_unmap_hva will release it
340          * before returning.
341          *
342          * The sequence increase only need to be seen at spin_unlock
343          * time, and not at spin_lock time.
344          *
345          * Increasing the sequence after the spin_unlock would be
346          * unsafe because the kvm page fault could then establish the
347          * pte after kvm_unmap_hva returned, without noticing the page
348          * is going to be freed.
349          */
350         idx = srcu_read_lock(&kvm->srcu);
351         spin_lock(&kvm->mmu_lock);
352
353         kvm->mmu_notifier_seq++;
354         need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
355         /* we've to flush the tlb before the pages can be freed */
356         if (need_tlb_flush)
357                 kvm_flush_remote_tlbs(kvm);
358
359         spin_unlock(&kvm->mmu_lock);
360
361         kvm_arch_mmu_notifier_invalidate_page(kvm, address);
362
363         srcu_read_unlock(&kvm->srcu, idx);
364 }
365
366 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
367                                         struct mm_struct *mm,
368                                         unsigned long address,
369                                         pte_t pte)
370 {
371         struct kvm *kvm = mmu_notifier_to_kvm(mn);
372         int idx;
373
374         idx = srcu_read_lock(&kvm->srcu);
375         spin_lock(&kvm->mmu_lock);
376         kvm->mmu_notifier_seq++;
377         kvm_set_spte_hva(kvm, address, pte);
378         spin_unlock(&kvm->mmu_lock);
379         srcu_read_unlock(&kvm->srcu, idx);
380 }
381
382 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
383                                                     struct mm_struct *mm,
384                                                     unsigned long start,
385                                                     unsigned long end)
386 {
387         struct kvm *kvm = mmu_notifier_to_kvm(mn);
388         int need_tlb_flush = 0, idx;
389
390         idx = srcu_read_lock(&kvm->srcu);
391         spin_lock(&kvm->mmu_lock);
392         /*
393          * The count increase must become visible at unlock time as no
394          * spte can be established without taking the mmu_lock and
395          * count is also read inside the mmu_lock critical section.
396          */
397         kvm->mmu_notifier_count++;
398         need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
399         need_tlb_flush |= kvm->tlbs_dirty;
400         /* we've to flush the tlb before the pages can be freed */
401         if (need_tlb_flush)
402                 kvm_flush_remote_tlbs(kvm);
403
404         spin_unlock(&kvm->mmu_lock);
405         srcu_read_unlock(&kvm->srcu, idx);
406 }
407
408 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
409                                                   struct mm_struct *mm,
410                                                   unsigned long start,
411                                                   unsigned long end)
412 {
413         struct kvm *kvm = mmu_notifier_to_kvm(mn);
414
415         spin_lock(&kvm->mmu_lock);
416         /*
417          * This sequence increase will notify the kvm page fault that
418          * the page that is going to be mapped in the spte could have
419          * been freed.
420          */
421         kvm->mmu_notifier_seq++;
422         smp_wmb();
423         /*
424          * The above sequence increase must be visible before the
425          * below count decrease, which is ensured by the smp_wmb above
426          * in conjunction with the smp_rmb in mmu_notifier_retry().
427          */
428         kvm->mmu_notifier_count--;
429         spin_unlock(&kvm->mmu_lock);
430
431         BUG_ON(kvm->mmu_notifier_count < 0);
432 }
433
434 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
435                                               struct mm_struct *mm,
436                                               unsigned long start,
437                                               unsigned long end)
438 {
439         struct kvm *kvm = mmu_notifier_to_kvm(mn);
440         int young, idx;
441
442         idx = srcu_read_lock(&kvm->srcu);
443         spin_lock(&kvm->mmu_lock);
444
445         young = kvm_age_hva(kvm, start, end);
446         if (young)
447                 kvm_flush_remote_tlbs(kvm);
448
449         spin_unlock(&kvm->mmu_lock);
450         srcu_read_unlock(&kvm->srcu, idx);
451
452         return young;
453 }
454
455 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
456                                         struct mm_struct *mm,
457                                         unsigned long start,
458                                         unsigned long end)
459 {
460         struct kvm *kvm = mmu_notifier_to_kvm(mn);
461         int young, idx;
462
463         idx = srcu_read_lock(&kvm->srcu);
464         spin_lock(&kvm->mmu_lock);
465         /*
466          * Even though we do not flush TLB, this will still adversely
467          * affect performance on pre-Haswell Intel EPT, where there is
468          * no EPT Access Bit to clear so that we have to tear down EPT
469          * tables instead. If we find this unacceptable, we can always
470          * add a parameter to kvm_age_hva so that it effectively doesn't
471          * do anything on clear_young.
472          *
473          * Also note that currently we never issue secondary TLB flushes
474          * from clear_young, leaving this job up to the regular system
475          * cadence. If we find this inaccurate, we might come up with a
476          * more sophisticated heuristic later.
477          */
478         young = kvm_age_hva(kvm, start, end);
479         spin_unlock(&kvm->mmu_lock);
480         srcu_read_unlock(&kvm->srcu, idx);
481
482         return young;
483 }
484
485 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
486                                        struct mm_struct *mm,
487                                        unsigned long address)
488 {
489         struct kvm *kvm = mmu_notifier_to_kvm(mn);
490         int young, idx;
491
492         idx = srcu_read_lock(&kvm->srcu);
493         spin_lock(&kvm->mmu_lock);
494         young = kvm_test_age_hva(kvm, address);
495         spin_unlock(&kvm->mmu_lock);
496         srcu_read_unlock(&kvm->srcu, idx);
497
498         return young;
499 }
500
501 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
502                                      struct mm_struct *mm)
503 {
504         struct kvm *kvm = mmu_notifier_to_kvm(mn);
505         int idx;
506
507         idx = srcu_read_lock(&kvm->srcu);
508         kvm_arch_flush_shadow_all(kvm);
509         srcu_read_unlock(&kvm->srcu, idx);
510 }
511
512 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
513         .invalidate_page        = kvm_mmu_notifier_invalidate_page,
514         .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
515         .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
516         .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
517         .clear_young            = kvm_mmu_notifier_clear_young,
518         .test_young             = kvm_mmu_notifier_test_young,
519         .change_pte             = kvm_mmu_notifier_change_pte,
520         .release                = kvm_mmu_notifier_release,
521 };
522
523 static int kvm_init_mmu_notifier(struct kvm *kvm)
524 {
525         kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
526         return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
527 }
528
529 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
530
531 static int kvm_init_mmu_notifier(struct kvm *kvm)
532 {
533         return 0;
534 }
535
536 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
537
538 static struct kvm_memslots *kvm_alloc_memslots(void)
539 {
540         int i;
541         struct kvm_memslots *slots;
542
543         slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
544         if (!slots)
545                 return NULL;
546
547         for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
548                 slots->id_to_index[i] = slots->memslots[i].id = i;
549
550         return slots;
551 }
552
553 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
554 {
555         if (!memslot->dirty_bitmap)
556                 return;
557
558         kvfree(memslot->dirty_bitmap);
559         memslot->dirty_bitmap = NULL;
560 }
561
562 /*
563  * Free any memory in @free but not in @dont.
564  */
565 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
566                               struct kvm_memory_slot *dont)
567 {
568         if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
569                 kvm_destroy_dirty_bitmap(free);
570
571         kvm_arch_free_memslot(kvm, free, dont);
572
573         free->npages = 0;
574 }
575
576 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
577 {
578         struct kvm_memory_slot *memslot;
579
580         if (!slots)
581                 return;
582
583         kvm_for_each_memslot(memslot, slots)
584                 kvm_free_memslot(kvm, memslot, NULL);
585
586         kvfree(slots);
587 }
588
589 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
590 {
591         int i;
592
593         if (!kvm->debugfs_dentry)
594                 return;
595
596         debugfs_remove_recursive(kvm->debugfs_dentry);
597
598         if (kvm->debugfs_stat_data) {
599                 for (i = 0; i < kvm_debugfs_num_entries; i++)
600                         kfree(kvm->debugfs_stat_data[i]);
601                 kfree(kvm->debugfs_stat_data);
602         }
603 }
604
605 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
606 {
607         char dir_name[ITOA_MAX_LEN * 2];
608         struct kvm_stat_data *stat_data;
609         struct kvm_stats_debugfs_item *p;
610
611         if (!debugfs_initialized())
612                 return 0;
613
614         snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
615         kvm->debugfs_dentry = debugfs_create_dir(dir_name,
616                                                  kvm_debugfs_dir);
617         if (!kvm->debugfs_dentry)
618                 return -ENOMEM;
619
620         kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
621                                          sizeof(*kvm->debugfs_stat_data),
622                                          GFP_KERNEL);
623         if (!kvm->debugfs_stat_data)
624                 return -ENOMEM;
625
626         for (p = debugfs_entries; p->name; p++) {
627                 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL);
628                 if (!stat_data)
629                         return -ENOMEM;
630
631                 stat_data->kvm = kvm;
632                 stat_data->offset = p->offset;
633                 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
634                 if (!debugfs_create_file(p->name, 0644,
635                                          kvm->debugfs_dentry,
636                                          stat_data,
637                                          stat_fops_per_vm[p->kind]))
638                         return -ENOMEM;
639         }
640         return 0;
641 }
642
643 static struct kvm *kvm_create_vm(unsigned long type)
644 {
645         int r, i;
646         struct kvm *kvm = kvm_arch_alloc_vm();
647
648         if (!kvm)
649                 return ERR_PTR(-ENOMEM);
650
651         spin_lock_init(&kvm->mmu_lock);
652         mmgrab(current->mm);
653         kvm->mm = current->mm;
654         kvm_eventfd_init(kvm);
655         mutex_init(&kvm->lock);
656         mutex_init(&kvm->irq_lock);
657         mutex_init(&kvm->slots_lock);
658         refcount_set(&kvm->users_count, 1);
659         INIT_LIST_HEAD(&kvm->devices);
660
661         r = kvm_arch_init_vm(kvm, type);
662         if (r)
663                 goto out_err_no_disable;
664
665         r = hardware_enable_all();
666         if (r)
667                 goto out_err_no_disable;
668
669 #ifdef CONFIG_HAVE_KVM_IRQFD
670         INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
671 #endif
672
673         BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
674
675         r = -ENOMEM;
676         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
677                 struct kvm_memslots *slots = kvm_alloc_memslots();
678                 if (!slots)
679                         goto out_err_no_srcu;
680                 /*
681                  * Generations must be different for each address space.
682                  * Init kvm generation close to the maximum to easily test the
683                  * code of handling generation number wrap-around.
684                  */
685                 slots->generation = i * 2 - 150;
686                 rcu_assign_pointer(kvm->memslots[i], slots);
687         }
688
689         if (init_srcu_struct(&kvm->srcu))
690                 goto out_err_no_srcu;
691         if (init_srcu_struct(&kvm->irq_srcu))
692                 goto out_err_no_irq_srcu;
693         for (i = 0; i < KVM_NR_BUSES; i++) {
694                 rcu_assign_pointer(kvm->buses[i],
695                         kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL));
696                 if (!kvm->buses[i])
697                         goto out_err;
698         }
699
700         r = kvm_init_mmu_notifier(kvm);
701         if (r)
702                 goto out_err;
703
704         spin_lock(&kvm_lock);
705         list_add(&kvm->vm_list, &vm_list);
706         spin_unlock(&kvm_lock);
707
708         preempt_notifier_inc();
709
710         return kvm;
711
712 out_err:
713         cleanup_srcu_struct(&kvm->irq_srcu);
714 out_err_no_irq_srcu:
715         cleanup_srcu_struct(&kvm->srcu);
716 out_err_no_srcu:
717         hardware_disable_all();
718 out_err_no_disable:
719         for (i = 0; i < KVM_NR_BUSES; i++)
720                 kfree(rcu_access_pointer(kvm->buses[i]));
721         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
722                 kvm_free_memslots(kvm,
723                         rcu_dereference_protected(kvm->memslots[i], 1));
724         kvm_arch_free_vm(kvm);
725         mmdrop(current->mm);
726         return ERR_PTR(r);
727 }
728
729 static void kvm_destroy_devices(struct kvm *kvm)
730 {
731         struct kvm_device *dev, *tmp;
732
733         /*
734          * We do not need to take the kvm->lock here, because nobody else
735          * has a reference to the struct kvm at this point and therefore
736          * cannot access the devices list anyhow.
737          */
738         list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
739                 list_del(&dev->vm_node);
740                 dev->ops->destroy(dev);
741         }
742 }
743
744 static void kvm_destroy_vm(struct kvm *kvm)
745 {
746         int i;
747         struct mm_struct *mm = kvm->mm;
748
749         kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
750         kvm_destroy_vm_debugfs(kvm);
751         kvm_arch_sync_events(kvm);
752         spin_lock(&kvm_lock);
753         list_del(&kvm->vm_list);
754         spin_unlock(&kvm_lock);
755         kvm_free_irq_routing(kvm);
756         for (i = 0; i < KVM_NR_BUSES; i++) {
757                 struct kvm_io_bus *bus;
758
759                 bus = rcu_dereference_protected(kvm->buses[i], 1);
760                 if (bus)
761                         kvm_io_bus_destroy(bus);
762                 kvm->buses[i] = NULL;
763         }
764         kvm_coalesced_mmio_free(kvm);
765 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
766         mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
767 #else
768         kvm_arch_flush_shadow_all(kvm);
769 #endif
770         kvm_arch_destroy_vm(kvm);
771         kvm_destroy_devices(kvm);
772         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
773                 kvm_free_memslots(kvm,
774                         rcu_dereference_protected(kvm->memslots[i], 1));
775         cleanup_srcu_struct(&kvm->irq_srcu);
776         cleanup_srcu_struct(&kvm->srcu);
777         kvm_arch_free_vm(kvm);
778         preempt_notifier_dec();
779         hardware_disable_all();
780         mmdrop(mm);
781 }
782
783 void kvm_get_kvm(struct kvm *kvm)
784 {
785         refcount_inc(&kvm->users_count);
786 }
787 EXPORT_SYMBOL_GPL(kvm_get_kvm);
788
789 void kvm_put_kvm(struct kvm *kvm)
790 {
791         if (refcount_dec_and_test(&kvm->users_count))
792                 kvm_destroy_vm(kvm);
793 }
794 EXPORT_SYMBOL_GPL(kvm_put_kvm);
795
796
797 static int kvm_vm_release(struct inode *inode, struct file *filp)
798 {
799         struct kvm *kvm = filp->private_data;
800
801         kvm_irqfd_release(kvm);
802
803         kvm_put_kvm(kvm);
804         return 0;
805 }
806
807 /*
808  * Allocation size is twice as large as the actual dirty bitmap size.
809  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
810  */
811 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
812 {
813         unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
814
815         memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL);
816         if (!memslot->dirty_bitmap)
817                 return -ENOMEM;
818
819         return 0;
820 }
821
822 /*
823  * Insert memslot and re-sort memslots based on their GFN,
824  * so binary search could be used to lookup GFN.
825  * Sorting algorithm takes advantage of having initially
826  * sorted array and known changed memslot position.
827  */
828 static void update_memslots(struct kvm_memslots *slots,
829                             struct kvm_memory_slot *new)
830 {
831         int id = new->id;
832         int i = slots->id_to_index[id];
833         struct kvm_memory_slot *mslots = slots->memslots;
834
835         WARN_ON(mslots[i].id != id);
836         if (!new->npages) {
837                 WARN_ON(!mslots[i].npages);
838                 if (mslots[i].npages)
839                         slots->used_slots--;
840         } else {
841                 if (!mslots[i].npages)
842                         slots->used_slots++;
843         }
844
845         while (i < KVM_MEM_SLOTS_NUM - 1 &&
846                new->base_gfn <= mslots[i + 1].base_gfn) {
847                 if (!mslots[i + 1].npages)
848                         break;
849                 mslots[i] = mslots[i + 1];
850                 slots->id_to_index[mslots[i].id] = i;
851                 i++;
852         }
853
854         /*
855          * The ">=" is needed when creating a slot with base_gfn == 0,
856          * so that it moves before all those with base_gfn == npages == 0.
857          *
858          * On the other hand, if new->npages is zero, the above loop has
859          * already left i pointing to the beginning of the empty part of
860          * mslots, and the ">=" would move the hole backwards in this
861          * case---which is wrong.  So skip the loop when deleting a slot.
862          */
863         if (new->npages) {
864                 while (i > 0 &&
865                        new->base_gfn >= mslots[i - 1].base_gfn) {
866                         mslots[i] = mslots[i - 1];
867                         slots->id_to_index[mslots[i].id] = i;
868                         i--;
869                 }
870         } else
871                 WARN_ON_ONCE(i != slots->used_slots);
872
873         mslots[i] = *new;
874         slots->id_to_index[mslots[i].id] = i;
875 }
876
877 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
878 {
879         u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
880
881 #ifdef __KVM_HAVE_READONLY_MEM
882         valid_flags |= KVM_MEM_READONLY;
883 #endif
884
885         if (mem->flags & ~valid_flags)
886                 return -EINVAL;
887
888         return 0;
889 }
890
891 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
892                 int as_id, struct kvm_memslots *slots)
893 {
894         struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
895
896         /*
897          * Set the low bit in the generation, which disables SPTE caching
898          * until the end of synchronize_srcu_expedited.
899          */
900         WARN_ON(old_memslots->generation & 1);
901         slots->generation = old_memslots->generation + 1;
902
903         rcu_assign_pointer(kvm->memslots[as_id], slots);
904         synchronize_srcu_expedited(&kvm->srcu);
905
906         /*
907          * Increment the new memslot generation a second time. This prevents
908          * vm exits that race with memslot updates from caching a memslot
909          * generation that will (potentially) be valid forever.
910          *
911          * Generations must be unique even across address spaces.  We do not need
912          * a global counter for that, instead the generation space is evenly split
913          * across address spaces.  For example, with two address spaces, address
914          * space 0 will use generations 0, 4, 8, ... while * address space 1 will
915          * use generations 2, 6, 10, 14, ...
916          */
917         slots->generation += KVM_ADDRESS_SPACE_NUM * 2 - 1;
918
919         kvm_arch_memslots_updated(kvm, slots);
920
921         return old_memslots;
922 }
923
924 /*
925  * Allocate some memory and give it an address in the guest physical address
926  * space.
927  *
928  * Discontiguous memory is allowed, mostly for framebuffers.
929  *
930  * Must be called holding kvm->slots_lock for write.
931  */
932 int __kvm_set_memory_region(struct kvm *kvm,
933                             const struct kvm_userspace_memory_region *mem)
934 {
935         int r;
936         gfn_t base_gfn;
937         unsigned long npages;
938         struct kvm_memory_slot *slot;
939         struct kvm_memory_slot old, new;
940         struct kvm_memslots *slots = NULL, *old_memslots;
941         int as_id, id;
942         enum kvm_mr_change change;
943
944         r = check_memory_region_flags(mem);
945         if (r)
946                 goto out;
947
948         r = -EINVAL;
949         as_id = mem->slot >> 16;
950         id = (u16)mem->slot;
951
952         /* General sanity checks */
953         if (mem->memory_size & (PAGE_SIZE - 1))
954                 goto out;
955         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
956                 goto out;
957         /* We can read the guest memory with __xxx_user() later on. */
958         if ((id < KVM_USER_MEM_SLOTS) &&
959             ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
960              !access_ok(VERIFY_WRITE,
961                         (void __user *)(unsigned long)mem->userspace_addr,
962                         mem->memory_size)))
963                 goto out;
964         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
965                 goto out;
966         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
967                 goto out;
968
969         slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
970         base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
971         npages = mem->memory_size >> PAGE_SHIFT;
972
973         if (npages > KVM_MEM_MAX_NR_PAGES)
974                 goto out;
975
976         new = old = *slot;
977
978         new.id = id;
979         new.base_gfn = base_gfn;
980         new.npages = npages;
981         new.flags = mem->flags;
982
983         if (npages) {
984                 if (!old.npages)
985                         change = KVM_MR_CREATE;
986                 else { /* Modify an existing slot. */
987                         if ((mem->userspace_addr != old.userspace_addr) ||
988                             (npages != old.npages) ||
989                             ((new.flags ^ old.flags) & KVM_MEM_READONLY))
990                                 goto out;
991
992                         if (base_gfn != old.base_gfn)
993                                 change = KVM_MR_MOVE;
994                         else if (new.flags != old.flags)
995                                 change = KVM_MR_FLAGS_ONLY;
996                         else { /* Nothing to change. */
997                                 r = 0;
998                                 goto out;
999                         }
1000                 }
1001         } else {
1002                 if (!old.npages)
1003                         goto out;
1004
1005                 change = KVM_MR_DELETE;
1006                 new.base_gfn = 0;
1007                 new.flags = 0;
1008         }
1009
1010         if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
1011                 /* Check for overlaps */
1012                 r = -EEXIST;
1013                 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
1014                         if ((slot->id >= KVM_USER_MEM_SLOTS) ||
1015                             (slot->id == id))
1016                                 continue;
1017                         if (!((base_gfn + npages <= slot->base_gfn) ||
1018                               (base_gfn >= slot->base_gfn + slot->npages)))
1019                                 goto out;
1020                 }
1021         }
1022
1023         /* Free page dirty bitmap if unneeded */
1024         if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1025                 new.dirty_bitmap = NULL;
1026
1027         r = -ENOMEM;
1028         if (change == KVM_MR_CREATE) {
1029                 new.userspace_addr = mem->userspace_addr;
1030
1031                 if (kvm_arch_create_memslot(kvm, &new, npages))
1032                         goto out_free;
1033         }
1034
1035         /* Allocate page dirty bitmap if needed */
1036         if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
1037                 if (kvm_create_dirty_bitmap(&new) < 0)
1038                         goto out_free;
1039         }
1040
1041         slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
1042         if (!slots)
1043                 goto out_free;
1044         memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
1045
1046         if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
1047                 slot = id_to_memslot(slots, id);
1048                 slot->flags |= KVM_MEMSLOT_INVALID;
1049
1050                 old_memslots = install_new_memslots(kvm, as_id, slots);
1051
1052                 /* From this point no new shadow pages pointing to a deleted,
1053                  * or moved, memslot will be created.
1054                  *
1055                  * validation of sp->gfn happens in:
1056                  *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1057                  *      - kvm_is_visible_gfn (mmu_check_roots)
1058                  */
1059                 kvm_arch_flush_shadow_memslot(kvm, slot);
1060
1061                 /*
1062                  * We can re-use the old_memslots from above, the only difference
1063                  * from the currently installed memslots is the invalid flag.  This
1064                  * will get overwritten by update_memslots anyway.
1065                  */
1066                 slots = old_memslots;
1067         }
1068
1069         r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1070         if (r)
1071                 goto out_slots;
1072
1073         /* actual memory is freed via old in kvm_free_memslot below */
1074         if (change == KVM_MR_DELETE) {
1075                 new.dirty_bitmap = NULL;
1076                 memset(&new.arch, 0, sizeof(new.arch));
1077         }
1078
1079         update_memslots(slots, &new);
1080         old_memslots = install_new_memslots(kvm, as_id, slots);
1081
1082         kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1083
1084         kvm_free_memslot(kvm, &old, &new);
1085         kvfree(old_memslots);
1086         return 0;
1087
1088 out_slots:
1089         kvfree(slots);
1090 out_free:
1091         kvm_free_memslot(kvm, &new, &old);
1092 out:
1093         return r;
1094 }
1095 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1096
1097 int kvm_set_memory_region(struct kvm *kvm,
1098                           const struct kvm_userspace_memory_region *mem)
1099 {
1100         int r;
1101
1102         mutex_lock(&kvm->slots_lock);
1103         r = __kvm_set_memory_region(kvm, mem);
1104         mutex_unlock(&kvm->slots_lock);
1105         return r;
1106 }
1107 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1108
1109 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1110                                           struct kvm_userspace_memory_region *mem)
1111 {
1112         if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1113                 return -EINVAL;
1114
1115         return kvm_set_memory_region(kvm, mem);
1116 }
1117
1118 int kvm_get_dirty_log(struct kvm *kvm,
1119                         struct kvm_dirty_log *log, int *is_dirty)
1120 {
1121         struct kvm_memslots *slots;
1122         struct kvm_memory_slot *memslot;
1123         int i, as_id, id;
1124         unsigned long n;
1125         unsigned long any = 0;
1126
1127         as_id = log->slot >> 16;
1128         id = (u16)log->slot;
1129         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1130                 return -EINVAL;
1131
1132         slots = __kvm_memslots(kvm, as_id);
1133         memslot = id_to_memslot(slots, id);
1134         if (!memslot->dirty_bitmap)
1135                 return -ENOENT;
1136
1137         n = kvm_dirty_bitmap_bytes(memslot);
1138
1139         for (i = 0; !any && i < n/sizeof(long); ++i)
1140                 any = memslot->dirty_bitmap[i];
1141
1142         if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1143                 return -EFAULT;
1144
1145         if (any)
1146                 *is_dirty = 1;
1147         return 0;
1148 }
1149 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1150
1151 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1152 /**
1153  * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1154  *      are dirty write protect them for next write.
1155  * @kvm:        pointer to kvm instance
1156  * @log:        slot id and address to which we copy the log
1157  * @is_dirty:   flag set if any page is dirty
1158  *
1159  * We need to keep it in mind that VCPU threads can write to the bitmap
1160  * concurrently. So, to avoid losing track of dirty pages we keep the
1161  * following order:
1162  *
1163  *    1. Take a snapshot of the bit and clear it if needed.
1164  *    2. Write protect the corresponding page.
1165  *    3. Copy the snapshot to the userspace.
1166  *    4. Upon return caller flushes TLB's if needed.
1167  *
1168  * Between 2 and 4, the guest may write to the page using the remaining TLB
1169  * entry.  This is not a problem because the page is reported dirty using
1170  * the snapshot taken before and step 4 ensures that writes done after
1171  * exiting to userspace will be logged for the next call.
1172  *
1173  */
1174 int kvm_get_dirty_log_protect(struct kvm *kvm,
1175                         struct kvm_dirty_log *log, bool *is_dirty)
1176 {
1177         struct kvm_memslots *slots;
1178         struct kvm_memory_slot *memslot;
1179         int i, as_id, id;
1180         unsigned long n;
1181         unsigned long *dirty_bitmap;
1182         unsigned long *dirty_bitmap_buffer;
1183
1184         as_id = log->slot >> 16;
1185         id = (u16)log->slot;
1186         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1187                 return -EINVAL;
1188
1189         slots = __kvm_memslots(kvm, as_id);
1190         memslot = id_to_memslot(slots, id);
1191
1192         dirty_bitmap = memslot->dirty_bitmap;
1193         if (!dirty_bitmap)
1194                 return -ENOENT;
1195
1196         n = kvm_dirty_bitmap_bytes(memslot);
1197
1198         dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
1199         memset(dirty_bitmap_buffer, 0, n);
1200
1201         spin_lock(&kvm->mmu_lock);
1202         *is_dirty = false;
1203         for (i = 0; i < n / sizeof(long); i++) {
1204                 unsigned long mask;
1205                 gfn_t offset;
1206
1207                 if (!dirty_bitmap[i])
1208                         continue;
1209
1210                 *is_dirty = true;
1211
1212                 mask = xchg(&dirty_bitmap[i], 0);
1213                 dirty_bitmap_buffer[i] = mask;
1214
1215                 if (mask) {
1216                         offset = i * BITS_PER_LONG;
1217                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1218                                                                 offset, mask);
1219                 }
1220         }
1221
1222         spin_unlock(&kvm->mmu_lock);
1223         if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1224                 return -EFAULT;
1225         return 0;
1226 }
1227 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1228 #endif
1229
1230 bool kvm_largepages_enabled(void)
1231 {
1232         return largepages_enabled;
1233 }
1234
1235 void kvm_disable_largepages(void)
1236 {
1237         largepages_enabled = false;
1238 }
1239 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1240
1241 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1242 {
1243         return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1244 }
1245 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1246
1247 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1248 {
1249         return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1250 }
1251
1252 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1253 {
1254         struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1255
1256         if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1257               memslot->flags & KVM_MEMSLOT_INVALID)
1258                 return false;
1259
1260         return true;
1261 }
1262 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1263
1264 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1265 {
1266         struct vm_area_struct *vma;
1267         unsigned long addr, size;
1268
1269         size = PAGE_SIZE;
1270
1271         addr = gfn_to_hva(kvm, gfn);
1272         if (kvm_is_error_hva(addr))
1273                 return PAGE_SIZE;
1274
1275         down_read(&current->mm->mmap_sem);
1276         vma = find_vma(current->mm, addr);
1277         if (!vma)
1278                 goto out;
1279
1280         size = vma_kernel_pagesize(vma);
1281
1282 out:
1283         up_read(&current->mm->mmap_sem);
1284
1285         return size;
1286 }
1287
1288 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1289 {
1290         return slot->flags & KVM_MEM_READONLY;
1291 }
1292
1293 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1294                                        gfn_t *nr_pages, bool write)
1295 {
1296         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1297                 return KVM_HVA_ERR_BAD;
1298
1299         if (memslot_is_readonly(slot) && write)
1300                 return KVM_HVA_ERR_RO_BAD;
1301
1302         if (nr_pages)
1303                 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1304
1305         return __gfn_to_hva_memslot(slot, gfn);
1306 }
1307
1308 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1309                                      gfn_t *nr_pages)
1310 {
1311         return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1312 }
1313
1314 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1315                                         gfn_t gfn)
1316 {
1317         return gfn_to_hva_many(slot, gfn, NULL);
1318 }
1319 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1320
1321 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1322 {
1323         return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1324 }
1325 EXPORT_SYMBOL_GPL(gfn_to_hva);
1326
1327 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1328 {
1329         return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1330 }
1331 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1332
1333 /*
1334  * If writable is set to false, the hva returned by this function is only
1335  * allowed to be read.
1336  */
1337 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1338                                       gfn_t gfn, bool *writable)
1339 {
1340         unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1341
1342         if (!kvm_is_error_hva(hva) && writable)
1343                 *writable = !memslot_is_readonly(slot);
1344
1345         return hva;
1346 }
1347
1348 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1349 {
1350         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1351
1352         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1353 }
1354
1355 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1356 {
1357         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1358
1359         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1360 }
1361
1362 static int get_user_page_nowait(unsigned long start, int write,
1363                 struct page **page)
1364 {
1365         int flags = FOLL_NOWAIT | FOLL_HWPOISON;
1366
1367         if (write)
1368                 flags |= FOLL_WRITE;
1369
1370         return get_user_pages(start, 1, flags, page, NULL);
1371 }
1372
1373 static inline int check_user_page_hwpoison(unsigned long addr)
1374 {
1375         int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1376
1377         rc = get_user_pages(addr, 1, flags, NULL, NULL);
1378         return rc == -EHWPOISON;
1379 }
1380
1381 /*
1382  * The atomic path to get the writable pfn which will be stored in @pfn,
1383  * true indicates success, otherwise false is returned.
1384  */
1385 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1386                             bool write_fault, bool *writable, kvm_pfn_t *pfn)
1387 {
1388         struct page *page[1];
1389         int npages;
1390
1391         if (!(async || atomic))
1392                 return false;
1393
1394         /*
1395          * Fast pin a writable pfn only if it is a write fault request
1396          * or the caller allows to map a writable pfn for a read fault
1397          * request.
1398          */
1399         if (!(write_fault || writable))
1400                 return false;
1401
1402         npages = __get_user_pages_fast(addr, 1, 1, page);
1403         if (npages == 1) {
1404                 *pfn = page_to_pfn(page[0]);
1405
1406                 if (writable)
1407                         *writable = true;
1408                 return true;
1409         }
1410
1411         return false;
1412 }
1413
1414 /*
1415  * The slow path to get the pfn of the specified host virtual address,
1416  * 1 indicates success, -errno is returned if error is detected.
1417  */
1418 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1419                            bool *writable, kvm_pfn_t *pfn)
1420 {
1421         struct page *page[1];
1422         int npages = 0;
1423
1424         might_sleep();
1425
1426         if (writable)
1427                 *writable = write_fault;
1428
1429         if (async) {
1430                 down_read(&current->mm->mmap_sem);
1431                 npages = get_user_page_nowait(addr, write_fault, page);
1432                 up_read(&current->mm->mmap_sem);
1433         } else {
1434                 unsigned int flags = FOLL_HWPOISON;
1435
1436                 if (write_fault)
1437                         flags |= FOLL_WRITE;
1438
1439                 npages = get_user_pages_unlocked(addr, 1, page, flags);
1440         }
1441         if (npages != 1)
1442                 return npages;
1443
1444         /* map read fault as writable if possible */
1445         if (unlikely(!write_fault) && writable) {
1446                 struct page *wpage[1];
1447
1448                 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1449                 if (npages == 1) {
1450                         *writable = true;
1451                         put_page(page[0]);
1452                         page[0] = wpage[0];
1453                 }
1454
1455                 npages = 1;
1456         }
1457         *pfn = page_to_pfn(page[0]);
1458         return npages;
1459 }
1460
1461 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1462 {
1463         if (unlikely(!(vma->vm_flags & VM_READ)))
1464                 return false;
1465
1466         if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1467                 return false;
1468
1469         return true;
1470 }
1471
1472 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1473                                unsigned long addr, bool *async,
1474                                bool write_fault, kvm_pfn_t *p_pfn)
1475 {
1476         unsigned long pfn;
1477         int r;
1478
1479         r = follow_pfn(vma, addr, &pfn);
1480         if (r) {
1481                 /*
1482                  * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1483                  * not call the fault handler, so do it here.
1484                  */
1485                 bool unlocked = false;
1486                 r = fixup_user_fault(current, current->mm, addr,
1487                                      (write_fault ? FAULT_FLAG_WRITE : 0),
1488                                      &unlocked);
1489                 if (unlocked)
1490                         return -EAGAIN;
1491                 if (r)
1492                         return r;
1493
1494                 r = follow_pfn(vma, addr, &pfn);
1495                 if (r)
1496                         return r;
1497
1498         }
1499
1500
1501         /*
1502          * Get a reference here because callers of *hva_to_pfn* and
1503          * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1504          * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
1505          * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1506          * simply do nothing for reserved pfns.
1507          *
1508          * Whoever called remap_pfn_range is also going to call e.g.
1509          * unmap_mapping_range before the underlying pages are freed,
1510          * causing a call to our MMU notifier.
1511          */ 
1512         kvm_get_pfn(pfn);
1513
1514         *p_pfn = pfn;
1515         return 0;
1516 }
1517
1518 /*
1519  * Pin guest page in memory and return its pfn.
1520  * @addr: host virtual address which maps memory to the guest
1521  * @atomic: whether this function can sleep
1522  * @async: whether this function need to wait IO complete if the
1523  *         host page is not in the memory
1524  * @write_fault: whether we should get a writable host page
1525  * @writable: whether it allows to map a writable host page for !@write_fault
1526  *
1527  * The function will map a writable host page for these two cases:
1528  * 1): @write_fault = true
1529  * 2): @write_fault = false && @writable, @writable will tell the caller
1530  *     whether the mapping is writable.
1531  */
1532 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1533                         bool write_fault, bool *writable)
1534 {
1535         struct vm_area_struct *vma;
1536         kvm_pfn_t pfn = 0;
1537         int npages, r;
1538
1539         /* we can do it either atomically or asynchronously, not both */
1540         BUG_ON(atomic && async);
1541
1542         if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1543                 return pfn;
1544
1545         if (atomic)
1546                 return KVM_PFN_ERR_FAULT;
1547
1548         npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1549         if (npages == 1)
1550                 return pfn;
1551
1552         down_read(&current->mm->mmap_sem);
1553         if (npages == -EHWPOISON ||
1554               (!async && check_user_page_hwpoison(addr))) {
1555                 pfn = KVM_PFN_ERR_HWPOISON;
1556                 goto exit;
1557         }
1558
1559 retry:
1560         vma = find_vma_intersection(current->mm, addr, addr + 1);
1561
1562         if (vma == NULL)
1563                 pfn = KVM_PFN_ERR_FAULT;
1564         else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1565                 r = hva_to_pfn_remapped(vma, addr, async, write_fault, &pfn);
1566                 if (r == -EAGAIN)
1567                         goto retry;
1568                 if (r < 0)
1569                         pfn = KVM_PFN_ERR_FAULT;
1570         } else {
1571                 if (async && vma_is_valid(vma, write_fault))
1572                         *async = true;
1573                 pfn = KVM_PFN_ERR_FAULT;
1574         }
1575 exit:
1576         up_read(&current->mm->mmap_sem);
1577         return pfn;
1578 }
1579
1580 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1581                                bool atomic, bool *async, bool write_fault,
1582                                bool *writable)
1583 {
1584         unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1585
1586         if (addr == KVM_HVA_ERR_RO_BAD) {
1587                 if (writable)
1588                         *writable = false;
1589                 return KVM_PFN_ERR_RO_FAULT;
1590         }
1591
1592         if (kvm_is_error_hva(addr)) {
1593                 if (writable)
1594                         *writable = false;
1595                 return KVM_PFN_NOSLOT;
1596         }
1597
1598         /* Do not map writable pfn in the readonly memslot. */
1599         if (writable && memslot_is_readonly(slot)) {
1600                 *writable = false;
1601                 writable = NULL;
1602         }
1603
1604         return hva_to_pfn(addr, atomic, async, write_fault,
1605                           writable);
1606 }
1607 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1608
1609 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1610                       bool *writable)
1611 {
1612         return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1613                                     write_fault, writable);
1614 }
1615 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1616
1617 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1618 {
1619         return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1620 }
1621 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1622
1623 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1624 {
1625         return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1626 }
1627 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1628
1629 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1630 {
1631         return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1632 }
1633 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1634
1635 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1636 {
1637         return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1638 }
1639 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1640
1641 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1642 {
1643         return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1644 }
1645 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1646
1647 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1648 {
1649         return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1650 }
1651 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1652
1653 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1654                             struct page **pages, int nr_pages)
1655 {
1656         unsigned long addr;
1657         gfn_t entry;
1658
1659         addr = gfn_to_hva_many(slot, gfn, &entry);
1660         if (kvm_is_error_hva(addr))
1661                 return -1;
1662
1663         if (entry < nr_pages)
1664                 return 0;
1665
1666         return __get_user_pages_fast(addr, nr_pages, 1, pages);
1667 }
1668 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1669
1670 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1671 {
1672         if (is_error_noslot_pfn(pfn))
1673                 return KVM_ERR_PTR_BAD_PAGE;
1674
1675         if (kvm_is_reserved_pfn(pfn)) {
1676                 WARN_ON(1);
1677                 return KVM_ERR_PTR_BAD_PAGE;
1678         }
1679
1680         return pfn_to_page(pfn);
1681 }
1682
1683 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1684 {
1685         kvm_pfn_t pfn;
1686
1687         pfn = gfn_to_pfn(kvm, gfn);
1688
1689         return kvm_pfn_to_page(pfn);
1690 }
1691 EXPORT_SYMBOL_GPL(gfn_to_page);
1692
1693 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1694 {
1695         kvm_pfn_t pfn;
1696
1697         pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1698
1699         return kvm_pfn_to_page(pfn);
1700 }
1701 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1702
1703 void kvm_release_page_clean(struct page *page)
1704 {
1705         WARN_ON(is_error_page(page));
1706
1707         kvm_release_pfn_clean(page_to_pfn(page));
1708 }
1709 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1710
1711 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1712 {
1713         if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1714                 put_page(pfn_to_page(pfn));
1715 }
1716 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1717
1718 void kvm_release_page_dirty(struct page *page)
1719 {
1720         WARN_ON(is_error_page(page));
1721
1722         kvm_release_pfn_dirty(page_to_pfn(page));
1723 }
1724 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1725
1726 static void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1727 {
1728         kvm_set_pfn_dirty(pfn);
1729         kvm_release_pfn_clean(pfn);
1730 }
1731
1732 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1733 {
1734         if (!kvm_is_reserved_pfn(pfn)) {
1735                 struct page *page = pfn_to_page(pfn);
1736
1737                 if (!PageReserved(page))
1738                         SetPageDirty(page);
1739         }
1740 }
1741 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1742
1743 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1744 {
1745         if (!kvm_is_reserved_pfn(pfn))
1746                 mark_page_accessed(pfn_to_page(pfn));
1747 }
1748 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1749
1750 void kvm_get_pfn(kvm_pfn_t pfn)
1751 {
1752         if (!kvm_is_reserved_pfn(pfn))
1753                 get_page(pfn_to_page(pfn));
1754 }
1755 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1756
1757 static int next_segment(unsigned long len, int offset)
1758 {
1759         if (len > PAGE_SIZE - offset)
1760                 return PAGE_SIZE - offset;
1761         else
1762                 return len;
1763 }
1764
1765 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1766                                  void *data, int offset, int len)
1767 {
1768         int r;
1769         unsigned long addr;
1770
1771         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1772         if (kvm_is_error_hva(addr))
1773                 return -EFAULT;
1774         r = __copy_from_user(data, (void __user *)addr + offset, len);
1775         if (r)
1776                 return -EFAULT;
1777         return 0;
1778 }
1779
1780 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1781                         int len)
1782 {
1783         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1784
1785         return __kvm_read_guest_page(slot, gfn, data, offset, len);
1786 }
1787 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1788
1789 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1790                              int offset, int len)
1791 {
1792         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1793
1794         return __kvm_read_guest_page(slot, gfn, data, offset, len);
1795 }
1796 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1797
1798 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1799 {
1800         gfn_t gfn = gpa >> PAGE_SHIFT;
1801         int seg;
1802         int offset = offset_in_page(gpa);
1803         int ret;
1804
1805         while ((seg = next_segment(len, offset)) != 0) {
1806                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1807                 if (ret < 0)
1808                         return ret;
1809                 offset = 0;
1810                 len -= seg;
1811                 data += seg;
1812                 ++gfn;
1813         }
1814         return 0;
1815 }
1816 EXPORT_SYMBOL_GPL(kvm_read_guest);
1817
1818 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1819 {
1820         gfn_t gfn = gpa >> PAGE_SHIFT;
1821         int seg;
1822         int offset = offset_in_page(gpa);
1823         int ret;
1824
1825         while ((seg = next_segment(len, offset)) != 0) {
1826                 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1827                 if (ret < 0)
1828                         return ret;
1829                 offset = 0;
1830                 len -= seg;
1831                 data += seg;
1832                 ++gfn;
1833         }
1834         return 0;
1835 }
1836 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1837
1838 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1839                                    void *data, int offset, unsigned long len)
1840 {
1841         int r;
1842         unsigned long addr;
1843
1844         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1845         if (kvm_is_error_hva(addr))
1846                 return -EFAULT;
1847         pagefault_disable();
1848         r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1849         pagefault_enable();
1850         if (r)
1851                 return -EFAULT;
1852         return 0;
1853 }
1854
1855 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1856                           unsigned long len)
1857 {
1858         gfn_t gfn = gpa >> PAGE_SHIFT;
1859         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1860         int offset = offset_in_page(gpa);
1861
1862         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1863 }
1864 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1865
1866 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1867                                void *data, unsigned long len)
1868 {
1869         gfn_t gfn = gpa >> PAGE_SHIFT;
1870         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1871         int offset = offset_in_page(gpa);
1872
1873         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1874 }
1875 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1876
1877 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1878                                   const void *data, int offset, int len)
1879 {
1880         int r;
1881         unsigned long addr;
1882
1883         addr = gfn_to_hva_memslot(memslot, gfn);
1884         if (kvm_is_error_hva(addr))
1885                 return -EFAULT;
1886         r = __copy_to_user((void __user *)addr + offset, data, len);
1887         if (r)
1888                 return -EFAULT;
1889         mark_page_dirty_in_slot(memslot, gfn);
1890         return 0;
1891 }
1892
1893 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1894                          const void *data, int offset, int len)
1895 {
1896         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1897
1898         return __kvm_write_guest_page(slot, gfn, data, offset, len);
1899 }
1900 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1901
1902 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1903                               const void *data, int offset, int len)
1904 {
1905         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1906
1907         return __kvm_write_guest_page(slot, gfn, data, offset, len);
1908 }
1909 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1910
1911 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1912                     unsigned long len)
1913 {
1914         gfn_t gfn = gpa >> PAGE_SHIFT;
1915         int seg;
1916         int offset = offset_in_page(gpa);
1917         int ret;
1918
1919         while ((seg = next_segment(len, offset)) != 0) {
1920                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1921                 if (ret < 0)
1922                         return ret;
1923                 offset = 0;
1924                 len -= seg;
1925                 data += seg;
1926                 ++gfn;
1927         }
1928         return 0;
1929 }
1930 EXPORT_SYMBOL_GPL(kvm_write_guest);
1931
1932 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1933                          unsigned long len)
1934 {
1935         gfn_t gfn = gpa >> PAGE_SHIFT;
1936         int seg;
1937         int offset = offset_in_page(gpa);
1938         int ret;
1939
1940         while ((seg = next_segment(len, offset)) != 0) {
1941                 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1942                 if (ret < 0)
1943                         return ret;
1944                 offset = 0;
1945                 len -= seg;
1946                 data += seg;
1947                 ++gfn;
1948         }
1949         return 0;
1950 }
1951 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
1952
1953 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
1954                                        struct gfn_to_hva_cache *ghc,
1955                                        gpa_t gpa, unsigned long len)
1956 {
1957         int offset = offset_in_page(gpa);
1958         gfn_t start_gfn = gpa >> PAGE_SHIFT;
1959         gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1960         gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1961         gfn_t nr_pages_avail;
1962
1963         ghc->gpa = gpa;
1964         ghc->generation = slots->generation;
1965         ghc->len = len;
1966         ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1967         ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1968         if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1969                 ghc->hva += offset;
1970         } else {
1971                 /*
1972                  * If the requested region crosses two memslots, we still
1973                  * verify that the entire region is valid here.
1974                  */
1975                 while (start_gfn <= end_gfn) {
1976                         ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1977                         ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1978                                                    &nr_pages_avail);
1979                         if (kvm_is_error_hva(ghc->hva))
1980                                 return -EFAULT;
1981                         start_gfn += nr_pages_avail;
1982                 }
1983                 /* Use the slow path for cross page reads and writes. */
1984                 ghc->memslot = NULL;
1985         }
1986         return 0;
1987 }
1988
1989 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1990                               gpa_t gpa, unsigned long len)
1991 {
1992         struct kvm_memslots *slots = kvm_memslots(kvm);
1993         return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
1994 }
1995 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1996
1997 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1998                            void *data, int offset, unsigned long len)
1999 {
2000         struct kvm_memslots *slots = kvm_memslots(kvm);
2001         int r;
2002         gpa_t gpa = ghc->gpa + offset;
2003
2004         BUG_ON(len + offset > ghc->len);
2005
2006         if (slots->generation != ghc->generation)
2007                 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2008
2009         if (unlikely(!ghc->memslot))
2010                 return kvm_write_guest(kvm, gpa, data, len);
2011
2012         if (kvm_is_error_hva(ghc->hva))
2013                 return -EFAULT;
2014
2015         r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
2016         if (r)
2017                 return -EFAULT;
2018         mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
2019
2020         return 0;
2021 }
2022 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
2023
2024 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2025                            void *data, unsigned long len)
2026 {
2027         return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
2028 }
2029 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2030
2031 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2032                            void *data, unsigned long len)
2033 {
2034         struct kvm_memslots *slots = kvm_memslots(kvm);
2035         int r;
2036
2037         BUG_ON(len > ghc->len);
2038
2039         if (slots->generation != ghc->generation)
2040                 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2041
2042         if (unlikely(!ghc->memslot))
2043                 return kvm_read_guest(kvm, ghc->gpa, data, len);
2044
2045         if (kvm_is_error_hva(ghc->hva))
2046                 return -EFAULT;
2047
2048         r = __copy_from_user(data, (void __user *)ghc->hva, len);
2049         if (r)
2050                 return -EFAULT;
2051
2052         return 0;
2053 }
2054 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2055
2056 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2057 {
2058         const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2059
2060         return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2061 }
2062 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2063
2064 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2065 {
2066         gfn_t gfn = gpa >> PAGE_SHIFT;
2067         int seg;
2068         int offset = offset_in_page(gpa);
2069         int ret;
2070
2071         while ((seg = next_segment(len, offset)) != 0) {
2072                 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2073                 if (ret < 0)
2074                         return ret;
2075                 offset = 0;
2076                 len -= seg;
2077                 ++gfn;
2078         }
2079         return 0;
2080 }
2081 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2082
2083 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2084                                     gfn_t gfn)
2085 {
2086         if (memslot && memslot->dirty_bitmap) {
2087                 unsigned long rel_gfn = gfn - memslot->base_gfn;
2088
2089                 set_bit_le(rel_gfn, memslot->dirty_bitmap);
2090         }
2091 }
2092
2093 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2094 {
2095         struct kvm_memory_slot *memslot;
2096
2097         memslot = gfn_to_memslot(kvm, gfn);
2098         mark_page_dirty_in_slot(memslot, gfn);
2099 }
2100 EXPORT_SYMBOL_GPL(mark_page_dirty);
2101
2102 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2103 {
2104         struct kvm_memory_slot *memslot;
2105
2106         memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2107         mark_page_dirty_in_slot(memslot, gfn);
2108 }
2109 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2110
2111 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2112 {
2113         unsigned int old, val, grow;
2114
2115         old = val = vcpu->halt_poll_ns;
2116         grow = READ_ONCE(halt_poll_ns_grow);
2117         /* 10us base */
2118         if (val == 0 && grow)
2119                 val = 10000;
2120         else
2121                 val *= grow;
2122
2123         if (val > halt_poll_ns)
2124                 val = halt_poll_ns;
2125
2126         vcpu->halt_poll_ns = val;
2127         trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2128 }
2129
2130 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2131 {
2132         unsigned int old, val, shrink;
2133
2134         old = val = vcpu->halt_poll_ns;
2135         shrink = READ_ONCE(halt_poll_ns_shrink);
2136         if (shrink == 0)
2137                 val = 0;
2138         else
2139                 val /= shrink;
2140
2141         vcpu->halt_poll_ns = val;
2142         trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2143 }
2144
2145 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2146 {
2147         if (kvm_arch_vcpu_runnable(vcpu)) {
2148                 kvm_make_request(KVM_REQ_UNHALT, vcpu);
2149                 return -EINTR;
2150         }
2151         if (kvm_cpu_has_pending_timer(vcpu))
2152                 return -EINTR;
2153         if (signal_pending(current))
2154                 return -EINTR;
2155
2156         return 0;
2157 }
2158
2159 /*
2160  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2161  */
2162 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2163 {
2164         ktime_t start, cur;
2165         DECLARE_SWAITQUEUE(wait);
2166         bool waited = false;
2167         u64 block_ns;
2168
2169         start = cur = ktime_get();
2170         if (vcpu->halt_poll_ns) {
2171                 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2172
2173                 ++vcpu->stat.halt_attempted_poll;
2174                 do {
2175                         /*
2176                          * This sets KVM_REQ_UNHALT if an interrupt
2177                          * arrives.
2178                          */
2179                         if (kvm_vcpu_check_block(vcpu) < 0) {
2180                                 ++vcpu->stat.halt_successful_poll;
2181                                 if (!vcpu_valid_wakeup(vcpu))
2182                                         ++vcpu->stat.halt_poll_invalid;
2183                                 goto out;
2184                         }
2185                         cur = ktime_get();
2186                 } while (single_task_running() && ktime_before(cur, stop));
2187         }
2188
2189         kvm_arch_vcpu_blocking(vcpu);
2190
2191         for (;;) {
2192                 prepare_to_swait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2193
2194                 if (kvm_vcpu_check_block(vcpu) < 0)
2195                         break;
2196
2197                 waited = true;
2198                 schedule();
2199         }
2200
2201         finish_swait(&vcpu->wq, &wait);
2202         cur = ktime_get();
2203
2204         kvm_arch_vcpu_unblocking(vcpu);
2205 out:
2206         block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2207
2208         if (!vcpu_valid_wakeup(vcpu))
2209                 shrink_halt_poll_ns(vcpu);
2210         else if (halt_poll_ns) {
2211                 if (block_ns <= vcpu->halt_poll_ns)
2212                         ;
2213                 /* we had a long block, shrink polling */
2214                 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2215                         shrink_halt_poll_ns(vcpu);
2216                 /* we had a short halt and our poll time is too small */
2217                 else if (vcpu->halt_poll_ns < halt_poll_ns &&
2218                         block_ns < halt_poll_ns)
2219                         grow_halt_poll_ns(vcpu);
2220         } else
2221                 vcpu->halt_poll_ns = 0;
2222
2223         trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2224         kvm_arch_vcpu_block_finish(vcpu);
2225 }
2226 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2227
2228 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2229 {
2230         struct swait_queue_head *wqp;
2231
2232         wqp = kvm_arch_vcpu_wq(vcpu);
2233         if (swait_active(wqp)) {
2234                 swake_up(wqp);
2235                 ++vcpu->stat.halt_wakeup;
2236                 return true;
2237         }
2238
2239         return false;
2240 }
2241 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2242
2243 #ifndef CONFIG_S390
2244 /*
2245  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2246  */
2247 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2248 {
2249         int me;
2250         int cpu = vcpu->cpu;
2251
2252         if (kvm_vcpu_wake_up(vcpu))
2253                 return;
2254
2255         me = get_cpu();
2256         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2257                 if (kvm_arch_vcpu_should_kick(vcpu))
2258                         smp_send_reschedule(cpu);
2259         put_cpu();
2260 }
2261 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2262 #endif /* !CONFIG_S390 */
2263
2264 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2265 {
2266         struct pid *pid;
2267         struct task_struct *task = NULL;
2268         int ret = 0;
2269
2270         rcu_read_lock();
2271         pid = rcu_dereference(target->pid);
2272         if (pid)
2273                 task = get_pid_task(pid, PIDTYPE_PID);
2274         rcu_read_unlock();
2275         if (!task)
2276                 return ret;
2277         ret = yield_to(task, 1);
2278         put_task_struct(task);
2279
2280         return ret;
2281 }
2282 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2283
2284 /*
2285  * Helper that checks whether a VCPU is eligible for directed yield.
2286  * Most eligible candidate to yield is decided by following heuristics:
2287  *
2288  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2289  *  (preempted lock holder), indicated by @in_spin_loop.
2290  *  Set at the beiginning and cleared at the end of interception/PLE handler.
2291  *
2292  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2293  *  chance last time (mostly it has become eligible now since we have probably
2294  *  yielded to lockholder in last iteration. This is done by toggling
2295  *  @dy_eligible each time a VCPU checked for eligibility.)
2296  *
2297  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2298  *  to preempted lock-holder could result in wrong VCPU selection and CPU
2299  *  burning. Giving priority for a potential lock-holder increases lock
2300  *  progress.
2301  *
2302  *  Since algorithm is based on heuristics, accessing another VCPU data without
2303  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2304  *  and continue with next VCPU and so on.
2305  */
2306 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2307 {
2308 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2309         bool eligible;
2310
2311         eligible = !vcpu->spin_loop.in_spin_loop ||
2312                     vcpu->spin_loop.dy_eligible;
2313
2314         if (vcpu->spin_loop.in_spin_loop)
2315                 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2316
2317         return eligible;
2318 #else
2319         return true;
2320 #endif
2321 }
2322
2323 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
2324 {
2325         struct kvm *kvm = me->kvm;
2326         struct kvm_vcpu *vcpu;
2327         int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2328         int yielded = 0;
2329         int try = 3;
2330         int pass;
2331         int i;
2332
2333         kvm_vcpu_set_in_spin_loop(me, true);
2334         /*
2335          * We boost the priority of a VCPU that is runnable but not
2336          * currently running, because it got preempted by something
2337          * else and called schedule in __vcpu_run.  Hopefully that
2338          * VCPU is holding the lock that we need and will release it.
2339          * We approximate round-robin by starting at the last boosted VCPU.
2340          */
2341         for (pass = 0; pass < 2 && !yielded && try; pass++) {
2342                 kvm_for_each_vcpu(i, vcpu, kvm) {
2343                         if (!pass && i <= last_boosted_vcpu) {
2344                                 i = last_boosted_vcpu;
2345                                 continue;
2346                         } else if (pass && i > last_boosted_vcpu)
2347                                 break;
2348                         if (!ACCESS_ONCE(vcpu->preempted))
2349                                 continue;
2350                         if (vcpu == me)
2351                                 continue;
2352                         if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2353                                 continue;
2354                         if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2355                                 continue;
2356
2357                         yielded = kvm_vcpu_yield_to(vcpu);
2358                         if (yielded > 0) {
2359                                 kvm->last_boosted_vcpu = i;
2360                                 break;
2361                         } else if (yielded < 0) {
2362                                 try--;
2363                                 if (!try)
2364                                         break;
2365                         }
2366                 }
2367         }
2368         kvm_vcpu_set_in_spin_loop(me, false);
2369
2370         /* Ensure vcpu is not eligible during next spinloop */
2371         kvm_vcpu_set_dy_eligible(me, false);
2372 }
2373 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2374
2375 static int kvm_vcpu_fault(struct vm_fault *vmf)
2376 {
2377         struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
2378         struct page *page;
2379
2380         if (vmf->pgoff == 0)
2381                 page = virt_to_page(vcpu->run);
2382 #ifdef CONFIG_X86
2383         else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2384                 page = virt_to_page(vcpu->arch.pio_data);
2385 #endif
2386 #ifdef CONFIG_KVM_MMIO
2387         else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2388                 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2389 #endif
2390         else
2391                 return kvm_arch_vcpu_fault(vcpu, vmf);
2392         get_page(page);
2393         vmf->page = page;
2394         return 0;
2395 }
2396
2397 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2398         .fault = kvm_vcpu_fault,
2399 };
2400
2401 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2402 {
2403         vma->vm_ops = &kvm_vcpu_vm_ops;
2404         return 0;
2405 }
2406
2407 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2408 {
2409         struct kvm_vcpu *vcpu = filp->private_data;
2410
2411         debugfs_remove_recursive(vcpu->debugfs_dentry);
2412         kvm_put_kvm(vcpu->kvm);
2413         return 0;
2414 }
2415
2416 static struct file_operations kvm_vcpu_fops = {
2417         .release        = kvm_vcpu_release,
2418         .unlocked_ioctl = kvm_vcpu_ioctl,
2419 #ifdef CONFIG_KVM_COMPAT
2420         .compat_ioctl   = kvm_vcpu_compat_ioctl,
2421 #endif
2422         .mmap           = kvm_vcpu_mmap,
2423         .llseek         = noop_llseek,
2424 };
2425
2426 /*
2427  * Allocates an inode for the vcpu.
2428  */
2429 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2430 {
2431         return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2432 }
2433
2434 static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2435 {
2436         char dir_name[ITOA_MAX_LEN * 2];
2437         int ret;
2438
2439         if (!kvm_arch_has_vcpu_debugfs())
2440                 return 0;
2441
2442         if (!debugfs_initialized())
2443                 return 0;
2444
2445         snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2446         vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2447                                                                 vcpu->kvm->debugfs_dentry);
2448         if (!vcpu->debugfs_dentry)
2449                 return -ENOMEM;
2450
2451         ret = kvm_arch_create_vcpu_debugfs(vcpu);
2452         if (ret < 0) {
2453                 debugfs_remove_recursive(vcpu->debugfs_dentry);
2454                 return ret;
2455         }
2456
2457         return 0;
2458 }
2459
2460 /*
2461  * Creates some virtual cpus.  Good luck creating more than one.
2462  */
2463 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2464 {
2465         int r;
2466         struct kvm_vcpu *vcpu;
2467
2468         if (id >= KVM_MAX_VCPU_ID)
2469                 return -EINVAL;
2470
2471         mutex_lock(&kvm->lock);
2472         if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2473                 mutex_unlock(&kvm->lock);
2474                 return -EINVAL;
2475         }
2476
2477         kvm->created_vcpus++;
2478         mutex_unlock(&kvm->lock);
2479
2480         vcpu = kvm_arch_vcpu_create(kvm, id);
2481         if (IS_ERR(vcpu)) {
2482                 r = PTR_ERR(vcpu);
2483                 goto vcpu_decrement;
2484         }
2485
2486         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2487
2488         r = kvm_arch_vcpu_setup(vcpu);
2489         if (r)
2490                 goto vcpu_destroy;
2491
2492         r = kvm_create_vcpu_debugfs(vcpu);
2493         if (r)
2494                 goto vcpu_destroy;
2495
2496         mutex_lock(&kvm->lock);
2497         if (kvm_get_vcpu_by_id(kvm, id)) {
2498                 r = -EEXIST;
2499                 goto unlock_vcpu_destroy;
2500         }
2501
2502         BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2503
2504         /* Now it's all set up, let userspace reach it */
2505         kvm_get_kvm(kvm);
2506         r = create_vcpu_fd(vcpu);
2507         if (r < 0) {
2508                 kvm_put_kvm(kvm);
2509                 goto unlock_vcpu_destroy;
2510         }
2511
2512         kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2513
2514         /*
2515          * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
2516          * before kvm->online_vcpu's incremented value.
2517          */
2518         smp_wmb();
2519         atomic_inc(&kvm->online_vcpus);
2520
2521         mutex_unlock(&kvm->lock);
2522         kvm_arch_vcpu_postcreate(vcpu);
2523         return r;
2524
2525 unlock_vcpu_destroy:
2526         mutex_unlock(&kvm->lock);
2527         debugfs_remove_recursive(vcpu->debugfs_dentry);
2528 vcpu_destroy:
2529         kvm_arch_vcpu_destroy(vcpu);
2530 vcpu_decrement:
2531         mutex_lock(&kvm->lock);
2532         kvm->created_vcpus--;
2533         mutex_unlock(&kvm->lock);
2534         return r;
2535 }
2536
2537 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2538 {
2539         if (sigset) {
2540                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2541                 vcpu->sigset_active = 1;
2542                 vcpu->sigset = *sigset;
2543         } else
2544                 vcpu->sigset_active = 0;
2545         return 0;
2546 }
2547
2548 static long kvm_vcpu_ioctl(struct file *filp,
2549                            unsigned int ioctl, unsigned long arg)
2550 {
2551         struct kvm_vcpu *vcpu = filp->private_data;
2552         void __user *argp = (void __user *)arg;
2553         int r;
2554         struct kvm_fpu *fpu = NULL;
2555         struct kvm_sregs *kvm_sregs = NULL;
2556
2557         if (vcpu->kvm->mm != current->mm)
2558                 return -EIO;
2559
2560         if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2561                 return -EINVAL;
2562
2563 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2564         /*
2565          * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2566          * so vcpu_load() would break it.
2567          */
2568         if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT)
2569                 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2570 #endif
2571
2572
2573         r = vcpu_load(vcpu);
2574         if (r)
2575                 return r;
2576         switch (ioctl) {
2577         case KVM_RUN: {
2578                 struct pid *oldpid;
2579                 r = -EINVAL;
2580                 if (arg)
2581                         goto out;
2582                 oldpid = rcu_access_pointer(vcpu->pid);
2583                 if (unlikely(oldpid != current->pids[PIDTYPE_PID].pid)) {
2584                         /* The thread running this VCPU changed. */
2585                         struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
2586
2587                         rcu_assign_pointer(vcpu->pid, newpid);
2588                         if (oldpid)
2589                                 synchronize_rcu();
2590                         put_pid(oldpid);
2591                 }
2592                 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2593                 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2594                 break;
2595         }
2596         case KVM_GET_REGS: {
2597                 struct kvm_regs *kvm_regs;
2598
2599                 r = -ENOMEM;
2600                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2601                 if (!kvm_regs)
2602                         goto out;
2603                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2604                 if (r)
2605                         goto out_free1;
2606                 r = -EFAULT;
2607                 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2608                         goto out_free1;
2609                 r = 0;
2610 out_free1:
2611                 kfree(kvm_regs);
2612                 break;
2613         }
2614         case KVM_SET_REGS: {
2615                 struct kvm_regs *kvm_regs;
2616
2617                 r = -ENOMEM;
2618                 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2619                 if (IS_ERR(kvm_regs)) {
2620                         r = PTR_ERR(kvm_regs);
2621                         goto out;
2622                 }
2623                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2624                 kfree(kvm_regs);
2625                 break;
2626         }
2627         case KVM_GET_SREGS: {
2628                 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2629                 r = -ENOMEM;
2630                 if (!kvm_sregs)
2631                         goto out;
2632                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2633                 if (r)
2634                         goto out;
2635                 r = -EFAULT;
2636                 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2637                         goto out;
2638                 r = 0;
2639                 break;
2640         }
2641         case KVM_SET_SREGS: {
2642                 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2643                 if (IS_ERR(kvm_sregs)) {
2644                         r = PTR_ERR(kvm_sregs);
2645                         kvm_sregs = NULL;
2646                         goto out;
2647                 }
2648                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2649                 break;
2650         }
2651         case KVM_GET_MP_STATE: {
2652                 struct kvm_mp_state mp_state;
2653
2654                 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2655                 if (r)
2656                         goto out;
2657                 r = -EFAULT;
2658                 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2659                         goto out;
2660                 r = 0;
2661                 break;
2662         }
2663         case KVM_SET_MP_STATE: {
2664                 struct kvm_mp_state mp_state;
2665
2666                 r = -EFAULT;
2667                 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2668                         goto out;
2669                 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2670                 break;
2671         }
2672         case KVM_TRANSLATE: {
2673                 struct kvm_translation tr;
2674
2675                 r = -EFAULT;
2676                 if (copy_from_user(&tr, argp, sizeof(tr)))
2677                         goto out;
2678                 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2679                 if (r)
2680                         goto out;
2681                 r = -EFAULT;
2682                 if (copy_to_user(argp, &tr, sizeof(tr)))
2683                         goto out;
2684                 r = 0;
2685                 break;
2686         }
2687         case KVM_SET_GUEST_DEBUG: {
2688                 struct kvm_guest_debug dbg;
2689
2690                 r = -EFAULT;
2691                 if (copy_from_user(&dbg, argp, sizeof(dbg)))
2692                         goto out;
2693                 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2694                 break;
2695         }
2696         case KVM_SET_SIGNAL_MASK: {
2697                 struct kvm_signal_mask __user *sigmask_arg = argp;
2698                 struct kvm_signal_mask kvm_sigmask;
2699                 sigset_t sigset, *p;
2700
2701                 p = NULL;
2702                 if (argp) {
2703                         r = -EFAULT;
2704                         if (copy_from_user(&kvm_sigmask, argp,
2705                                            sizeof(kvm_sigmask)))
2706                                 goto out;
2707                         r = -EINVAL;
2708                         if (kvm_sigmask.len != sizeof(sigset))
2709                                 goto out;
2710                         r = -EFAULT;
2711                         if (copy_from_user(&sigset, sigmask_arg->sigset,
2712                                            sizeof(sigset)))
2713                                 goto out;
2714                         p = &sigset;
2715                 }
2716                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2717                 break;
2718         }
2719         case KVM_GET_FPU: {
2720                 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2721                 r = -ENOMEM;
2722                 if (!fpu)
2723                         goto out;
2724                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2725                 if (r)
2726                         goto out;
2727                 r = -EFAULT;
2728                 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2729                         goto out;
2730                 r = 0;
2731                 break;
2732         }
2733         case KVM_SET_FPU: {
2734                 fpu = memdup_user(argp, sizeof(*fpu));
2735                 if (IS_ERR(fpu)) {
2736                         r = PTR_ERR(fpu);
2737                         fpu = NULL;
2738                         goto out;
2739                 }
2740                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2741                 break;
2742         }
2743         default:
2744                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2745         }
2746 out:
2747         vcpu_put(vcpu);
2748         kfree(fpu);
2749         kfree(kvm_sregs);
2750         return r;
2751 }
2752
2753 #ifdef CONFIG_KVM_COMPAT
2754 static long kvm_vcpu_compat_ioctl(struct file *filp,
2755                                   unsigned int ioctl, unsigned long arg)
2756 {
2757         struct kvm_vcpu *vcpu = filp->private_data;
2758         void __user *argp = compat_ptr(arg);
2759         int r;
2760
2761         if (vcpu->kvm->mm != current->mm)
2762                 return -EIO;
2763
2764         switch (ioctl) {
2765         case KVM_SET_SIGNAL_MASK: {
2766                 struct kvm_signal_mask __user *sigmask_arg = argp;
2767                 struct kvm_signal_mask kvm_sigmask;
2768                 compat_sigset_t csigset;
2769                 sigset_t sigset;
2770
2771                 if (argp) {
2772                         r = -EFAULT;
2773                         if (copy_from_user(&kvm_sigmask, argp,
2774                                            sizeof(kvm_sigmask)))
2775                                 goto out;
2776                         r = -EINVAL;
2777                         if (kvm_sigmask.len != sizeof(csigset))
2778                                 goto out;
2779                         r = -EFAULT;
2780                         if (copy_from_user(&csigset, sigmask_arg->sigset,
2781                                            sizeof(csigset)))
2782                                 goto out;
2783                         sigset_from_compat(&sigset, &csigset);
2784                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2785                 } else
2786                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2787                 break;
2788         }
2789         default:
2790                 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2791         }
2792
2793 out:
2794         return r;
2795 }
2796 #endif
2797
2798 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2799                                  int (*accessor)(struct kvm_device *dev,
2800                                                  struct kvm_device_attr *attr),
2801                                  unsigned long arg)
2802 {
2803         struct kvm_device_attr attr;
2804
2805         if (!accessor)
2806                 return -EPERM;
2807
2808         if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2809                 return -EFAULT;
2810
2811         return accessor(dev, &attr);
2812 }
2813
2814 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2815                              unsigned long arg)
2816 {
2817         struct kvm_device *dev = filp->private_data;
2818
2819         switch (ioctl) {
2820         case KVM_SET_DEVICE_ATTR:
2821                 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2822         case KVM_GET_DEVICE_ATTR:
2823                 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2824         case KVM_HAS_DEVICE_ATTR:
2825                 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2826         default:
2827                 if (dev->ops->ioctl)
2828                         return dev->ops->ioctl(dev, ioctl, arg);
2829
2830                 return -ENOTTY;
2831         }
2832 }
2833
2834 static int kvm_device_release(struct inode *inode, struct file *filp)
2835 {
2836         struct kvm_device *dev = filp->private_data;
2837         struct kvm *kvm = dev->kvm;
2838
2839         kvm_put_kvm(kvm);
2840         return 0;
2841 }
2842
2843 static const struct file_operations kvm_device_fops = {
2844         .unlocked_ioctl = kvm_device_ioctl,
2845 #ifdef CONFIG_KVM_COMPAT
2846         .compat_ioctl = kvm_device_ioctl,
2847 #endif
2848         .release = kvm_device_release,
2849 };
2850
2851 struct kvm_device *kvm_device_from_filp(struct file *filp)
2852 {
2853         if (filp->f_op != &kvm_device_fops)
2854                 return NULL;
2855
2856         return filp->private_data;
2857 }
2858
2859 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2860 #ifdef CONFIG_KVM_MPIC
2861         [KVM_DEV_TYPE_FSL_MPIC_20]      = &kvm_mpic_ops,
2862         [KVM_DEV_TYPE_FSL_MPIC_42]      = &kvm_mpic_ops,
2863 #endif
2864 };
2865
2866 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2867 {
2868         if (type >= ARRAY_SIZE(kvm_device_ops_table))
2869                 return -ENOSPC;
2870
2871         if (kvm_device_ops_table[type] != NULL)
2872                 return -EEXIST;
2873
2874         kvm_device_ops_table[type] = ops;
2875         return 0;
2876 }
2877
2878 void kvm_unregister_device_ops(u32 type)
2879 {
2880         if (kvm_device_ops_table[type] != NULL)
2881                 kvm_device_ops_table[type] = NULL;
2882 }
2883
2884 static int kvm_ioctl_create_device(struct kvm *kvm,
2885                                    struct kvm_create_device *cd)
2886 {
2887         struct kvm_device_ops *ops = NULL;
2888         struct kvm_device *dev;
2889         bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2890         int ret;
2891
2892         if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2893                 return -ENODEV;
2894
2895         ops = kvm_device_ops_table[cd->type];
2896         if (ops == NULL)
2897                 return -ENODEV;
2898
2899         if (test)
2900                 return 0;
2901
2902         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2903         if (!dev)
2904                 return -ENOMEM;
2905
2906         dev->ops = ops;
2907         dev->kvm = kvm;
2908
2909         mutex_lock(&kvm->lock);
2910         ret = ops->create(dev, cd->type);
2911         if (ret < 0) {
2912                 mutex_unlock(&kvm->lock);
2913                 kfree(dev);
2914                 return ret;
2915         }
2916         list_add(&dev->vm_node, &kvm->devices);
2917         mutex_unlock(&kvm->lock);
2918
2919         if (ops->init)
2920                 ops->init(dev);
2921
2922         ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2923         if (ret < 0) {
2924                 mutex_lock(&kvm->lock);
2925                 list_del(&dev->vm_node);
2926                 mutex_unlock(&kvm->lock);
2927                 ops->destroy(dev);
2928                 return ret;
2929         }
2930
2931         kvm_get_kvm(kvm);
2932         cd->fd = ret;
2933         return 0;
2934 }
2935
2936 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2937 {
2938         switch (arg) {
2939         case KVM_CAP_USER_MEMORY:
2940         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2941         case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2942         case KVM_CAP_INTERNAL_ERROR_DATA:
2943 #ifdef CONFIG_HAVE_KVM_MSI
2944         case KVM_CAP_SIGNAL_MSI:
2945 #endif
2946 #ifdef CONFIG_HAVE_KVM_IRQFD
2947         case KVM_CAP_IRQFD:
2948         case KVM_CAP_IRQFD_RESAMPLE:
2949 #endif
2950         case KVM_CAP_IOEVENTFD_ANY_LENGTH:
2951         case KVM_CAP_CHECK_EXTENSION_VM:
2952                 return 1;
2953 #ifdef CONFIG_KVM_MMIO
2954         case KVM_CAP_COALESCED_MMIO:
2955                 return KVM_COALESCED_MMIO_PAGE_OFFSET;
2956 #endif
2957 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2958         case KVM_CAP_IRQ_ROUTING:
2959                 return KVM_MAX_IRQ_ROUTES;
2960 #endif
2961 #if KVM_ADDRESS_SPACE_NUM > 1
2962         case KVM_CAP_MULTI_ADDRESS_SPACE:
2963                 return KVM_ADDRESS_SPACE_NUM;
2964 #endif
2965         case KVM_CAP_MAX_VCPU_ID:
2966                 return KVM_MAX_VCPU_ID;
2967         default:
2968                 break;
2969         }
2970         return kvm_vm_ioctl_check_extension(kvm, arg);
2971 }
2972
2973 static long kvm_vm_ioctl(struct file *filp,
2974                            unsigned int ioctl, unsigned long arg)
2975 {
2976         struct kvm *kvm = filp->private_data;
2977         void __user *argp = (void __user *)arg;
2978         int r;
2979
2980         if (kvm->mm != current->mm)
2981                 return -EIO;
2982         switch (ioctl) {
2983         case KVM_CREATE_VCPU:
2984                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2985                 break;
2986         case KVM_SET_USER_MEMORY_REGION: {
2987                 struct kvm_userspace_memory_region kvm_userspace_mem;
2988
2989                 r = -EFAULT;
2990                 if (copy_from_user(&kvm_userspace_mem, argp,
2991                                                 sizeof(kvm_userspace_mem)))
2992                         goto out;
2993
2994                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2995                 break;
2996         }
2997         case KVM_GET_DIRTY_LOG: {
2998                 struct kvm_dirty_log log;
2999
3000                 r = -EFAULT;
3001                 if (copy_from_user(&log, argp, sizeof(log)))
3002                         goto out;
3003                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3004                 break;
3005         }
3006 #ifdef CONFIG_KVM_MMIO
3007         case KVM_REGISTER_COALESCED_MMIO: {
3008                 struct kvm_coalesced_mmio_zone zone;
3009
3010                 r = -EFAULT;
3011                 if (copy_from_user(&zone, argp, sizeof(zone)))
3012                         goto out;
3013                 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
3014                 break;
3015         }
3016         case KVM_UNREGISTER_COALESCED_MMIO: {
3017                 struct kvm_coalesced_mmio_zone zone;
3018
3019                 r = -EFAULT;
3020                 if (copy_from_user(&zone, argp, sizeof(zone)))
3021                         goto out;
3022                 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
3023                 break;
3024         }
3025 #endif
3026         case KVM_IRQFD: {
3027                 struct kvm_irqfd data;
3028
3029                 r = -EFAULT;
3030                 if (copy_from_user(&data, argp, sizeof(data)))
3031                         goto out;
3032                 r = kvm_irqfd(kvm, &data);
3033                 break;
3034         }
3035         case KVM_IOEVENTFD: {
3036                 struct kvm_ioeventfd data;
3037
3038                 r = -EFAULT;
3039                 if (copy_from_user(&data, argp, sizeof(data)))
3040                         goto out;
3041                 r = kvm_ioeventfd(kvm, &data);
3042                 break;
3043         }
3044 #ifdef CONFIG_HAVE_KVM_MSI
3045         case KVM_SIGNAL_MSI: {
3046                 struct kvm_msi msi;
3047
3048                 r = -EFAULT;
3049                 if (copy_from_user(&msi, argp, sizeof(msi)))
3050                         goto out;
3051                 r = kvm_send_userspace_msi(kvm, &msi);
3052                 break;
3053         }
3054 #endif
3055 #ifdef __KVM_HAVE_IRQ_LINE
3056         case KVM_IRQ_LINE_STATUS:
3057         case KVM_IRQ_LINE: {
3058                 struct kvm_irq_level irq_event;
3059
3060                 r = -EFAULT;
3061                 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3062                         goto out;
3063
3064                 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3065                                         ioctl == KVM_IRQ_LINE_STATUS);
3066                 if (r)
3067                         goto out;
3068
3069                 r = -EFAULT;
3070                 if (ioctl == KVM_IRQ_LINE_STATUS) {
3071                         if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3072                                 goto out;
3073                 }
3074
3075                 r = 0;
3076                 break;
3077         }
3078 #endif
3079 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3080         case KVM_SET_GSI_ROUTING: {
3081                 struct kvm_irq_routing routing;
3082                 struct kvm_irq_routing __user *urouting;
3083                 struct kvm_irq_routing_entry *entries = NULL;
3084
3085                 r = -EFAULT;
3086                 if (copy_from_user(&routing, argp, sizeof(routing)))
3087                         goto out;
3088                 r = -EINVAL;
3089                 if (!kvm_arch_can_set_irq_routing(kvm))
3090                         goto out;
3091                 if (routing.nr > KVM_MAX_IRQ_ROUTES)
3092                         goto out;
3093                 if (routing.flags)
3094                         goto out;
3095                 if (routing.nr) {
3096                         r = -ENOMEM;
3097                         entries = vmalloc(routing.nr * sizeof(*entries));
3098                         if (!entries)
3099                                 goto out;
3100                         r = -EFAULT;
3101                         urouting = argp;
3102                         if (copy_from_user(entries, urouting->entries,
3103                                            routing.nr * sizeof(*entries)))
3104                                 goto out_free_irq_routing;
3105                 }
3106                 r = kvm_set_irq_routing(kvm, entries, routing.nr,
3107                                         routing.flags);
3108 out_free_irq_routing:
3109                 vfree(entries);
3110                 break;
3111         }
3112 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3113         case KVM_CREATE_DEVICE: {
3114                 struct kvm_create_device cd;
3115
3116                 r = -EFAULT;
3117                 if (copy_from_user(&cd, argp, sizeof(cd)))
3118                         goto out;
3119
3120                 r = kvm_ioctl_create_device(kvm, &cd);
3121                 if (r)
3122                         goto out;
3123
3124                 r = -EFAULT;
3125                 if (copy_to_user(argp, &cd, sizeof(cd)))
3126                         goto out;
3127
3128                 r = 0;
3129                 break;
3130         }
3131         case KVM_CHECK_EXTENSION:
3132                 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3133                 break;
3134         default:
3135                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3136         }
3137 out:
3138         return r;
3139 }
3140
3141 #ifdef CONFIG_KVM_COMPAT
3142 struct compat_kvm_dirty_log {
3143         __u32 slot;
3144         __u32 padding1;
3145         union {
3146                 compat_uptr_t dirty_bitmap; /* one bit per page */
3147                 __u64 padding2;
3148         };
3149 };
3150
3151 static long kvm_vm_compat_ioctl(struct file *filp,
3152                            unsigned int ioctl, unsigned long arg)
3153 {
3154         struct kvm *kvm = filp->private_data;
3155         int r;
3156
3157         if (kvm->mm != current->mm)
3158                 return -EIO;
3159         switch (ioctl) {
3160         case KVM_GET_DIRTY_LOG: {
3161                 struct compat_kvm_dirty_log compat_log;
3162                 struct kvm_dirty_log log;
3163
3164                 if (copy_from_user(&compat_log, (void __user *)arg,
3165                                    sizeof(compat_log)))
3166                         return -EFAULT;
3167                 log.slot         = compat_log.slot;
3168                 log.padding1     = compat_log.padding1;
3169                 log.padding2     = compat_log.padding2;
3170                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3171
3172                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3173                 break;
3174         }
3175         default:
3176                 r = kvm_vm_ioctl(filp, ioctl, arg);
3177         }
3178         return r;
3179 }
3180 #endif
3181
3182 static struct file_operations kvm_vm_fops = {
3183         .release        = kvm_vm_release,
3184         .unlocked_ioctl = kvm_vm_ioctl,
3185 #ifdef CONFIG_KVM_COMPAT
3186         .compat_ioctl   = kvm_vm_compat_ioctl,
3187 #endif
3188         .llseek         = noop_llseek,
3189 };
3190
3191 static int kvm_dev_ioctl_create_vm(unsigned long type)
3192 {
3193         int r;
3194         struct kvm *kvm;
3195         struct file *file;
3196
3197         kvm = kvm_create_vm(type);
3198         if (IS_ERR(kvm))
3199                 return PTR_ERR(kvm);
3200 #ifdef CONFIG_KVM_MMIO
3201         r = kvm_coalesced_mmio_init(kvm);
3202         if (r < 0) {
3203                 kvm_put_kvm(kvm);
3204                 return r;
3205         }
3206 #endif
3207         r = get_unused_fd_flags(O_CLOEXEC);
3208         if (r < 0) {
3209                 kvm_put_kvm(kvm);
3210                 return r;
3211         }
3212         file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3213         if (IS_ERR(file)) {
3214                 put_unused_fd(r);
3215                 kvm_put_kvm(kvm);
3216                 return PTR_ERR(file);
3217         }
3218
3219         /*
3220          * Don't call kvm_put_kvm anymore at this point; file->f_op is
3221          * already set, with ->release() being kvm_vm_release().  In error
3222          * cases it will be called by the final fput(file) and will take
3223          * care of doing kvm_put_kvm(kvm).
3224          */
3225         if (kvm_create_vm_debugfs(kvm, r) < 0) {
3226                 put_unused_fd(r);
3227                 fput(file);
3228                 return -ENOMEM;
3229         }
3230         kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
3231
3232         fd_install(r, file);
3233         return r;
3234 }
3235
3236 static long kvm_dev_ioctl(struct file *filp,
3237                           unsigned int ioctl, unsigned long arg)
3238 {
3239         long r = -EINVAL;
3240
3241         switch (ioctl) {
3242         case KVM_GET_API_VERSION:
3243                 if (arg)
3244                         goto out;
3245                 r = KVM_API_VERSION;
3246                 break;
3247         case KVM_CREATE_VM:
3248                 r = kvm_dev_ioctl_create_vm(arg);
3249                 break;
3250         case KVM_CHECK_EXTENSION:
3251                 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3252                 break;
3253         case KVM_GET_VCPU_MMAP_SIZE:
3254                 if (arg)
3255                         goto out;
3256                 r = PAGE_SIZE;     /* struct kvm_run */
3257 #ifdef CONFIG_X86
3258                 r += PAGE_SIZE;    /* pio data page */
3259 #endif
3260 #ifdef CONFIG_KVM_MMIO
3261                 r += PAGE_SIZE;    /* coalesced mmio ring page */
3262 #endif
3263                 break;
3264         case KVM_TRACE_ENABLE:
3265         case KVM_TRACE_PAUSE:
3266         case KVM_TRACE_DISABLE:
3267                 r = -EOPNOTSUPP;
3268                 break;
3269         default:
3270                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
3271         }
3272 out:
3273         return r;
3274 }
3275
3276 static struct file_operations kvm_chardev_ops = {
3277         .unlocked_ioctl = kvm_dev_ioctl,
3278         .compat_ioctl   = kvm_dev_ioctl,
3279         .llseek         = noop_llseek,
3280 };
3281
3282 static struct miscdevice kvm_dev = {
3283         KVM_MINOR,
3284         "kvm",
3285         &kvm_chardev_ops,
3286 };
3287
3288 static void hardware_enable_nolock(void *junk)
3289 {
3290         int cpu = raw_smp_processor_id();
3291         int r;
3292
3293         if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3294                 return;
3295
3296         cpumask_set_cpu(cpu, cpus_hardware_enabled);
3297
3298         r = kvm_arch_hardware_enable();
3299
3300         if (r) {
3301                 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3302                 atomic_inc(&hardware_enable_failed);
3303                 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3304         }
3305 }
3306
3307 static int kvm_starting_cpu(unsigned int cpu)
3308 {
3309         raw_spin_lock(&kvm_count_lock);
3310         if (kvm_usage_count)
3311                 hardware_enable_nolock(NULL);
3312         raw_spin_unlock(&kvm_count_lock);
3313         return 0;
3314 }
3315
3316 static void hardware_disable_nolock(void *junk)
3317 {
3318         int cpu = raw_smp_processor_id();
3319
3320         if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3321                 return;
3322         cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3323         kvm_arch_hardware_disable();
3324 }
3325
3326 static int kvm_dying_cpu(unsigned int cpu)
3327 {
3328         raw_spin_lock(&kvm_count_lock);
3329         if (kvm_usage_count)
3330                 hardware_disable_nolock(NULL);
3331         raw_spin_unlock(&kvm_count_lock);
3332         return 0;
3333 }
3334
3335 static void hardware_disable_all_nolock(void)
3336 {
3337         BUG_ON(!kvm_usage_count);
3338
3339         kvm_usage_count--;
3340         if (!kvm_usage_count)
3341                 on_each_cpu(hardware_disable_nolock, NULL, 1);
3342 }
3343
3344 static void hardware_disable_all(void)
3345 {
3346         raw_spin_lock(&kvm_count_lock);
3347         hardware_disable_all_nolock();
3348         raw_spin_unlock(&kvm_count_lock);
3349 }
3350
3351 static int hardware_enable_all(void)
3352 {
3353         int r = 0;
3354
3355         raw_spin_lock(&kvm_count_lock);
3356
3357         kvm_usage_count++;
3358         if (kvm_usage_count == 1) {
3359                 atomic_set(&hardware_enable_failed, 0);
3360                 on_each_cpu(hardware_enable_nolock, NULL, 1);
3361
3362                 if (atomic_read(&hardware_enable_failed)) {
3363                         hardware_disable_all_nolock();
3364                         r = -EBUSY;
3365                 }
3366         }
3367
3368         raw_spin_unlock(&kvm_count_lock);
3369
3370         return r;
3371 }
3372
3373 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3374                       void *v)
3375 {
3376         /*
3377          * Some (well, at least mine) BIOSes hang on reboot if
3378          * in vmx root mode.
3379          *
3380          * And Intel TXT required VMX off for all cpu when system shutdown.
3381          */
3382         pr_info("kvm: exiting hardware virtualization\n");
3383         kvm_rebooting = true;
3384         on_each_cpu(hardware_disable_nolock, NULL, 1);
3385         return NOTIFY_OK;
3386 }
3387
3388 static struct notifier_block kvm_reboot_notifier = {
3389         .notifier_call = kvm_reboot,
3390         .priority = 0,
3391 };
3392
3393 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3394 {
3395         int i;
3396
3397         for (i = 0; i < bus->dev_count; i++) {
3398                 struct kvm_io_device *pos = bus->range[i].dev;
3399
3400                 kvm_iodevice_destructor(pos);
3401         }
3402         kfree(bus);
3403 }
3404
3405 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3406                                  const struct kvm_io_range *r2)
3407 {
3408         gpa_t addr1 = r1->addr;
3409         gpa_t addr2 = r2->addr;
3410
3411         if (addr1 < addr2)
3412                 return -1;
3413
3414         /* If r2->len == 0, match the exact address.  If r2->len != 0,
3415          * accept any overlapping write.  Any order is acceptable for
3416          * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3417          * we process all of them.
3418          */
3419         if (r2->len) {
3420                 addr1 += r1->len;
3421                 addr2 += r2->len;
3422         }
3423
3424         if (addr1 > addr2)
3425                 return 1;
3426
3427         return 0;
3428 }
3429
3430 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3431 {
3432         return kvm_io_bus_cmp(p1, p2);
3433 }
3434
3435 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
3436                           gpa_t addr, int len)
3437 {
3438         bus->range[bus->dev_count++] = (struct kvm_io_range) {
3439                 .addr = addr,
3440                 .len = len,
3441                 .dev = dev,
3442         };
3443
3444         sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
3445                 kvm_io_bus_sort_cmp, NULL);
3446
3447         return 0;
3448 }
3449
3450 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3451                              gpa_t addr, int len)
3452 {
3453         struct kvm_io_range *range, key;
3454         int off;
3455
3456         key = (struct kvm_io_range) {
3457                 .addr = addr,
3458                 .len = len,
3459         };
3460
3461         range = bsearch(&key, bus->range, bus->dev_count,
3462                         sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3463         if (range == NULL)
3464                 return -ENOENT;
3465
3466         off = range - bus->range;
3467
3468         while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3469                 off--;
3470
3471         return off;
3472 }
3473
3474 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3475                               struct kvm_io_range *range, const void *val)
3476 {
3477         int idx;
3478
3479         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3480         if (idx < 0)
3481                 return -EOPNOTSUPP;
3482
3483         while (idx < bus->dev_count &&
3484                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3485                 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3486                                         range->len, val))
3487                         return idx;
3488                 idx++;
3489         }
3490
3491         return -EOPNOTSUPP;
3492 }
3493
3494 /* kvm_io_bus_write - called under kvm->slots_lock */
3495 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3496                      int len, const void *val)
3497 {
3498         struct kvm_io_bus *bus;
3499         struct kvm_io_range range;
3500         int r;
3501
3502         range = (struct kvm_io_range) {
3503                 .addr = addr,
3504                 .len = len,
3505         };
3506
3507         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3508         if (!bus)
3509                 return -ENOMEM;
3510         r = __kvm_io_bus_write(vcpu, bus, &range, val);
3511         return r < 0 ? r : 0;
3512 }
3513
3514 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3515 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3516                             gpa_t addr, int len, const void *val, long cookie)
3517 {
3518         struct kvm_io_bus *bus;
3519         struct kvm_io_range range;
3520
3521         range = (struct kvm_io_range) {
3522                 .addr = addr,
3523                 .len = len,
3524         };
3525
3526         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3527         if (!bus)
3528                 return -ENOMEM;
3529
3530         /* First try the device referenced by cookie. */
3531         if ((cookie >= 0) && (cookie < bus->dev_count) &&
3532             (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3533                 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3534                                         val))
3535                         return cookie;
3536
3537         /*
3538          * cookie contained garbage; fall back to search and return the
3539          * correct cookie value.
3540          */
3541         return __kvm_io_bus_write(vcpu, bus, &range, val);
3542 }
3543
3544 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3545                              struct kvm_io_range *range, void *val)
3546 {
3547         int idx;
3548
3549         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3550         if (idx < 0)
3551                 return -EOPNOTSUPP;
3552
3553         while (idx < bus->dev_count &&
3554                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3555                 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3556                                        range->len, val))
3557                         return idx;
3558                 idx++;
3559         }
3560
3561         return -EOPNOTSUPP;
3562 }
3563 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3564
3565 /* kvm_io_bus_read - called under kvm->slots_lock */
3566 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3567                     int len, void *val)
3568 {
3569         struct kvm_io_bus *bus;
3570         struct kvm_io_range range;
3571         int r;
3572
3573         range = (struct kvm_io_range) {
3574                 .addr = addr,
3575                 .len = len,
3576         };
3577
3578         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3579         if (!bus)
3580                 return -ENOMEM;
3581         r = __kvm_io_bus_read(vcpu, bus, &range, val);
3582         return r < 0 ? r : 0;
3583 }
3584
3585
3586 /* Caller must hold slots_lock. */
3587 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3588                             int len, struct kvm_io_device *dev)
3589 {
3590         struct kvm_io_bus *new_bus, *bus;
3591
3592         bus = kvm_get_bus(kvm, bus_idx);
3593         if (!bus)
3594                 return -ENOMEM;
3595
3596         /* exclude ioeventfd which is limited by maximum fd */
3597         if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3598                 return -ENOSPC;
3599
3600         new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3601                           sizeof(struct kvm_io_range)), GFP_KERNEL);
3602         if (!new_bus)
3603                 return -ENOMEM;
3604         memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3605                sizeof(struct kvm_io_range)));
3606         kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3607         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3608         synchronize_srcu_expedited(&kvm->srcu);
3609         kfree(bus);
3610
3611         return 0;
3612 }
3613
3614 /* Caller must hold slots_lock. */
3615 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3616                                struct kvm_io_device *dev)
3617 {
3618         int i;
3619         struct kvm_io_bus *new_bus, *bus;
3620
3621         bus = kvm_get_bus(kvm, bus_idx);
3622         if (!bus)
3623                 return;
3624
3625         for (i = 0; i < bus->dev_count; i++)
3626                 if (bus->range[i].dev == dev) {
3627                         break;
3628                 }
3629
3630         if (i == bus->dev_count)
3631                 return;
3632
3633         new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3634                           sizeof(struct kvm_io_range)), GFP_KERNEL);
3635         if (!new_bus)  {
3636                 pr_err("kvm: failed to shrink bus, removing it completely\n");
3637                 goto broken;
3638         }
3639
3640         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3641         new_bus->dev_count--;
3642         memcpy(new_bus->range + i, bus->range + i + 1,
3643                (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3644
3645 broken:
3646         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3647         synchronize_srcu_expedited(&kvm->srcu);
3648         kfree(bus);
3649         return;
3650 }
3651
3652 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3653                                          gpa_t addr)
3654 {
3655         struct kvm_io_bus *bus;
3656         int dev_idx, srcu_idx;
3657         struct kvm_io_device *iodev = NULL;
3658
3659         srcu_idx = srcu_read_lock(&kvm->srcu);
3660
3661         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3662         if (!bus)
3663                 goto out_unlock;
3664
3665         dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3666         if (dev_idx < 0)
3667                 goto out_unlock;
3668
3669         iodev = bus->range[dev_idx].dev;
3670
3671 out_unlock:
3672         srcu_read_unlock(&kvm->srcu, srcu_idx);
3673
3674         return iodev;
3675 }
3676 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3677
3678 static int kvm_debugfs_open(struct inode *inode, struct file *file,
3679                            int (*get)(void *, u64 *), int (*set)(void *, u64),
3680                            const char *fmt)
3681 {
3682         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3683                                           inode->i_private;
3684
3685         /* The debugfs files are a reference to the kvm struct which
3686          * is still valid when kvm_destroy_vm is called.
3687          * To avoid the race between open and the removal of the debugfs
3688          * directory we test against the users count.
3689          */
3690         if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
3691                 return -ENOENT;
3692
3693         if (simple_attr_open(inode, file, get, set, fmt)) {
3694                 kvm_put_kvm(stat_data->kvm);
3695                 return -ENOMEM;
3696         }
3697
3698         return 0;
3699 }
3700
3701 static int kvm_debugfs_release(struct inode *inode, struct file *file)
3702 {
3703         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3704                                           inode->i_private;
3705
3706         simple_attr_release(inode, file);
3707         kvm_put_kvm(stat_data->kvm);
3708
3709         return 0;
3710 }
3711
3712 static int vm_stat_get_per_vm(void *data, u64 *val)
3713 {
3714         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3715
3716         *val = *(ulong *)((void *)stat_data->kvm + stat_data->offset);
3717
3718         return 0;
3719 }
3720
3721 static int vm_stat_clear_per_vm(void *data, u64 val)
3722 {
3723         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3724
3725         if (val)
3726                 return -EINVAL;
3727
3728         *(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0;
3729
3730         return 0;
3731 }
3732
3733 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
3734 {
3735         __simple_attr_check_format("%llu\n", 0ull);
3736         return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
3737                                 vm_stat_clear_per_vm, "%llu\n");
3738 }
3739
3740 static const struct file_operations vm_stat_get_per_vm_fops = {
3741         .owner   = THIS_MODULE,
3742         .open    = vm_stat_get_per_vm_open,
3743         .release = kvm_debugfs_release,
3744         .read    = simple_attr_read,
3745         .write   = simple_attr_write,
3746         .llseek  = no_llseek,
3747 };
3748
3749 static int vcpu_stat_get_per_vm(void *data, u64 *val)
3750 {
3751         int i;
3752         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3753         struct kvm_vcpu *vcpu;
3754
3755         *val = 0;
3756
3757         kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3758                 *val += *(u64 *)((void *)vcpu + stat_data->offset);
3759
3760         return 0;
3761 }
3762
3763 static int vcpu_stat_clear_per_vm(void *data, u64 val)
3764 {
3765         int i;
3766         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3767         struct kvm_vcpu *vcpu;
3768
3769         if (val)
3770                 return -EINVAL;
3771
3772         kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3773                 *(u64 *)((void *)vcpu + stat_data->offset) = 0;
3774
3775         return 0;
3776 }
3777
3778 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
3779 {
3780         __simple_attr_check_format("%llu\n", 0ull);
3781         return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
3782                                  vcpu_stat_clear_per_vm, "%llu\n");
3783 }
3784
3785 static const struct file_operations vcpu_stat_get_per_vm_fops = {
3786         .owner   = THIS_MODULE,
3787         .open    = vcpu_stat_get_per_vm_open,
3788         .release = kvm_debugfs_release,
3789         .read    = simple_attr_read,
3790         .write   = simple_attr_write,
3791         .llseek  = no_llseek,
3792 };
3793
3794 static const struct file_operations *stat_fops_per_vm[] = {
3795         [KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
3796         [KVM_STAT_VM]   = &vm_stat_get_per_vm_fops,
3797 };
3798
3799 static int vm_stat_get(void *_offset, u64 *val)
3800 {
3801         unsigned offset = (long)_offset;
3802         struct kvm *kvm;
3803         struct kvm_stat_data stat_tmp = {.offset = offset};
3804         u64 tmp_val;
3805
3806         *val = 0;
3807         spin_lock(&kvm_lock);
3808         list_for_each_entry(kvm, &vm_list, vm_list) {
3809                 stat_tmp.kvm = kvm;
3810                 vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3811                 *val += tmp_val;
3812         }
3813         spin_unlock(&kvm_lock);
3814         return 0;
3815 }
3816
3817 static int vm_stat_clear(void *_offset, u64 val)
3818 {
3819         unsigned offset = (long)_offset;
3820         struct kvm *kvm;
3821         struct kvm_stat_data stat_tmp = {.offset = offset};
3822
3823         if (val)
3824                 return -EINVAL;
3825
3826         spin_lock(&kvm_lock);
3827         list_for_each_entry(kvm, &vm_list, vm_list) {
3828                 stat_tmp.kvm = kvm;
3829                 vm_stat_clear_per_vm((void *)&stat_tmp, 0);
3830         }
3831         spin_unlock(&kvm_lock);
3832
3833         return 0;
3834 }
3835
3836 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
3837
3838 static int vcpu_stat_get(void *_offset, u64 *val)
3839 {
3840         unsigned offset = (long)_offset;
3841         struct kvm *kvm;
3842         struct kvm_stat_data stat_tmp = {.offset = offset};
3843         u64 tmp_val;
3844
3845         *val = 0;
3846         spin_lock(&kvm_lock);
3847         list_for_each_entry(kvm, &vm_list, vm_list) {
3848                 stat_tmp.kvm = kvm;
3849                 vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3850                 *val += tmp_val;
3851         }
3852         spin_unlock(&kvm_lock);
3853         return 0;
3854 }
3855
3856 static int vcpu_stat_clear(void *_offset, u64 val)
3857 {
3858         unsigned offset = (long)_offset;
3859         struct kvm *kvm;
3860         struct kvm_stat_data stat_tmp = {.offset = offset};
3861
3862         if (val)
3863                 return -EINVAL;
3864
3865         spin_lock(&kvm_lock);
3866         list_for_each_entry(kvm, &vm_list, vm_list) {
3867                 stat_tmp.kvm = kvm;
3868                 vcpu_stat_clear_per_vm((void *)&stat_tmp, 0);
3869         }
3870         spin_unlock(&kvm_lock);
3871
3872         return 0;
3873 }
3874
3875 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
3876                         "%llu\n");
3877
3878 static const struct file_operations *stat_fops[] = {
3879         [KVM_STAT_VCPU] = &vcpu_stat_fops,
3880         [KVM_STAT_VM]   = &vm_stat_fops,
3881 };
3882
3883 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
3884 {
3885         struct kobj_uevent_env *env;
3886         unsigned long long created, active;
3887
3888         if (!kvm_dev.this_device || !kvm)
3889                 return;
3890
3891         spin_lock(&kvm_lock);
3892         if (type == KVM_EVENT_CREATE_VM) {
3893                 kvm_createvm_count++;
3894                 kvm_active_vms++;
3895         } else if (type == KVM_EVENT_DESTROY_VM) {
3896                 kvm_active_vms--;
3897         }
3898         created = kvm_createvm_count;
3899         active = kvm_active_vms;
3900         spin_unlock(&kvm_lock);
3901
3902         env = kzalloc(sizeof(*env), GFP_KERNEL);
3903         if (!env)
3904                 return;
3905
3906         add_uevent_var(env, "CREATED=%llu", created);
3907         add_uevent_var(env, "COUNT=%llu", active);
3908
3909         if (type == KVM_EVENT_CREATE_VM) {
3910                 add_uevent_var(env, "EVENT=create");
3911                 kvm->userspace_pid = task_pid_nr(current);
3912         } else if (type == KVM_EVENT_DESTROY_VM) {
3913                 add_uevent_var(env, "EVENT=destroy");
3914         }
3915         add_uevent_var(env, "PID=%d", kvm->userspace_pid);
3916
3917         if (kvm->debugfs_dentry) {
3918                 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL);
3919
3920                 if (p) {
3921                         tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
3922                         if (!IS_ERR(tmp))
3923                                 add_uevent_var(env, "STATS_PATH=%s", tmp);
3924                         kfree(p);
3925                 }
3926         }
3927         /* no need for checks, since we are adding at most only 5 keys */
3928         env->envp[env->envp_idx++] = NULL;
3929         kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
3930         kfree(env);
3931 }
3932
3933 static int kvm_init_debug(void)
3934 {
3935         int r = -EEXIST;
3936         struct kvm_stats_debugfs_item *p;
3937
3938         kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3939         if (kvm_debugfs_dir == NULL)
3940                 goto out;
3941
3942         kvm_debugfs_num_entries = 0;
3943         for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
3944                 if (!debugfs_create_file(p->name, 0644, kvm_debugfs_dir,
3945                                          (void *)(long)p->offset,
3946                                          stat_fops[p->kind]))
3947                         goto out_dir;
3948         }
3949
3950         return 0;
3951
3952 out_dir:
3953         debugfs_remove_recursive(kvm_debugfs_dir);
3954 out:
3955         return r;
3956 }
3957
3958 static int kvm_suspend(void)
3959 {
3960         if (kvm_usage_count)
3961                 hardware_disable_nolock(NULL);
3962         return 0;
3963 }
3964
3965 static void kvm_resume(void)
3966 {
3967         if (kvm_usage_count) {
3968                 WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3969                 hardware_enable_nolock(NULL);
3970         }
3971 }
3972
3973 static struct syscore_ops kvm_syscore_ops = {
3974         .suspend = kvm_suspend,
3975         .resume = kvm_resume,
3976 };
3977
3978 static inline
3979 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3980 {
3981         return container_of(pn, struct kvm_vcpu, preempt_notifier);
3982 }
3983
3984 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3985 {
3986         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3987
3988         if (vcpu->preempted)
3989                 vcpu->preempted = false;
3990
3991         kvm_arch_sched_in(vcpu, cpu);
3992
3993         kvm_arch_vcpu_load(vcpu, cpu);
3994 }
3995
3996 static void kvm_sched_out(struct preempt_notifier *pn,
3997                           struct task_struct *next)
3998 {
3999         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4000
4001         if (current->state == TASK_RUNNING)
4002                 vcpu->preempted = true;
4003         kvm_arch_vcpu_put(vcpu);
4004 }
4005
4006 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
4007                   struct module *module)
4008 {
4009         int r;
4010         int cpu;
4011
4012         r = kvm_arch_init(opaque);
4013         if (r)
4014                 goto out_fail;
4015
4016         /*
4017          * kvm_arch_init makes sure there's at most one caller
4018          * for architectures that support multiple implementations,
4019          * like intel and amd on x86.
4020          * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
4021          * conflicts in case kvm is already setup for another implementation.
4022          */
4023         r = kvm_irqfd_init();
4024         if (r)
4025                 goto out_irqfd;
4026
4027         if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
4028                 r = -ENOMEM;
4029                 goto out_free_0;
4030         }
4031
4032         r = kvm_arch_hardware_setup();
4033         if (r < 0)
4034                 goto out_free_0a;
4035
4036         for_each_online_cpu(cpu) {
4037                 smp_call_function_single(cpu,
4038                                 kvm_arch_check_processor_compat,
4039                                 &r, 1);
4040                 if (r < 0)
4041                         goto out_free_1;
4042         }
4043
4044         r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4045                                       kvm_starting_cpu, kvm_dying_cpu);
4046         if (r)
4047                 goto out_free_2;
4048         register_reboot_notifier(&kvm_reboot_notifier);
4049
4050         /* A kmem cache lets us meet the alignment requirements of fx_save. */
4051         if (!vcpu_align)
4052                 vcpu_align = __alignof__(struct kvm_vcpu);
4053         kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
4054                                            0, NULL);
4055         if (!kvm_vcpu_cache) {
4056                 r = -ENOMEM;
4057                 goto out_free_3;
4058         }
4059
4060         r = kvm_async_pf_init();
4061         if (r)
4062                 goto out_free;
4063
4064         kvm_chardev_ops.owner = module;
4065         kvm_vm_fops.owner = module;
4066         kvm_vcpu_fops.owner = module;
4067
4068         r = misc_register(&kvm_dev);
4069         if (r) {
4070                 pr_err("kvm: misc device register failed\n");
4071                 goto out_unreg;
4072         }
4073
4074         register_syscore_ops(&kvm_syscore_ops);
4075
4076         kvm_preempt_ops.sched_in = kvm_sched_in;
4077         kvm_preempt_ops.sched_out = kvm_sched_out;
4078
4079         r = kvm_init_debug();
4080         if (r) {
4081                 pr_err("kvm: create debugfs files failed\n");
4082                 goto out_undebugfs;
4083         }
4084
4085         r = kvm_vfio_ops_init();
4086         WARN_ON(r);
4087
4088         return 0;
4089
4090 out_undebugfs:
4091         unregister_syscore_ops(&kvm_syscore_ops);
4092         misc_deregister(&kvm_dev);
4093 out_unreg:
4094         kvm_async_pf_deinit();
4095 out_free:
4096         kmem_cache_destroy(kvm_vcpu_cache);
4097 out_free_3:
4098         unregister_reboot_notifier(&kvm_reboot_notifier);
4099         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4100 out_free_2:
4101 out_free_1:
4102         kvm_arch_hardware_unsetup();
4103 out_free_0a:
4104         free_cpumask_var(cpus_hardware_enabled);
4105 out_free_0:
4106         kvm_irqfd_exit();
4107 out_irqfd:
4108         kvm_arch_exit();
4109 out_fail:
4110         return r;
4111 }
4112 EXPORT_SYMBOL_GPL(kvm_init);
4113
4114 void kvm_exit(void)
4115 {
4116         debugfs_remove_recursive(kvm_debugfs_dir);
4117         misc_deregister(&kvm_dev);
4118         kmem_cache_destroy(kvm_vcpu_cache);
4119         kvm_async_pf_deinit();
4120         unregister_syscore_ops(&kvm_syscore_ops);
4121         unregister_reboot_notifier(&kvm_reboot_notifier);
4122         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4123         on_each_cpu(hardware_disable_nolock, NULL, 1);
4124         kvm_arch_hardware_unsetup();
4125         kvm_arch_exit();
4126         kvm_irqfd_exit();
4127         free_cpumask_var(cpus_hardware_enabled);
4128         kvm_vfio_ops_exit();
4129 }
4130 EXPORT_SYMBOL_GPL(kvm_exit);