]> git.kernelconcepts.de Git - karo-tx-linux.git/commitdiff
Merge branch 'upstream' of git://lost.foo-projects.org/~ahkok/git/netdev-2.6 into...
authorJeff Garzik <jeff@garzik.org>
Wed, 5 Jul 2006 18:32:39 +0000 (14:32 -0400)
committerJeff Garzik <jeff@garzik.org>
Wed, 5 Jul 2006 18:32:39 +0000 (14:32 -0400)
Conflicts:

drivers/net/e1000/e1000_main.c

drivers/net/e1000/e1000.h
drivers/net/e1000/e1000_ethtool.c
drivers/net/e1000/e1000_hw.c
drivers/net/e1000/e1000_hw.h
drivers/net/e1000/e1000_main.c
drivers/net/e1000/e1000_osdep.h
drivers/net/e1000/e1000_param.c

index 3042d33e2d4d9458dbd6ab6ab869063c6eded0bd..f411bbb44f860152ce18697e447c10971ad9bd77 100644 (file)
@@ -68,7 +68,6 @@
 #ifdef NETIF_F_TSO
 #include <net/checksum.h>
 #endif
-#include <linux/workqueue.h>
 #include <linux/mii.h>
 #include <linux/ethtool.h>
 #include <linux/if_vlan.h>
@@ -143,6 +142,7 @@ struct e1000_adapter;
 
 #define AUTO_ALL_MODES            0
 #define E1000_EEPROM_82544_APM    0x0004
+#define E1000_EEPROM_ICH8_APME    0x0004
 #define E1000_EEPROM_APME         0x0400
 
 #ifndef E1000_MASTER_SLAVE
@@ -254,7 +254,6 @@ struct e1000_adapter {
        spinlock_t tx_queue_lock;
 #endif
        atomic_t irq_sem;
-       struct work_struct watchdog_task;
        struct work_struct reset_task;
        uint8_t fc_autoneg;
 
@@ -339,8 +338,14 @@ struct e1000_adapter {
 #ifdef NETIF_F_TSO
        boolean_t tso_force;
 #endif
+       boolean_t smart_power_down;     /* phy smart power down */
+       unsigned long flags;
 };
 
+enum e1000_state_t {
+       __E1000_DRIVER_TESTING,
+       __E1000_RESETTING,
+};
 
 /*  e1000_main.c  */
 extern char e1000_driver_name[];
@@ -348,6 +353,7 @@ extern char e1000_driver_version[];
 int e1000_up(struct e1000_adapter *adapter);
 void e1000_down(struct e1000_adapter *adapter);
 void e1000_reset(struct e1000_adapter *adapter);
+void e1000_reinit_locked(struct e1000_adapter *adapter);
 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
index d19664891768799690fbbc624d9a589a3c26e707..88a82ba88f578b0216f213ca6ca1b4d525e741e7 100644 (file)
@@ -109,7 +109,8 @@ e1000_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
                                   SUPPORTED_1000baseT_Full|
                                   SUPPORTED_Autoneg |
                                   SUPPORTED_TP);
-
+               if (hw->phy_type == e1000_phy_ife)
+                       ecmd->supported &= ~SUPPORTED_1000baseT_Full;
                ecmd->advertising = ADVERTISED_TP;
 
                if (hw->autoneg == 1) {
@@ -203,11 +204,9 @@ e1000_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
 
        /* reset the link */
 
-       if (netif_running(adapter->netdev)) {
-               e1000_down(adapter);
-               e1000_reset(adapter);
-               e1000_up(adapter);
-       } else
+       if (netif_running(adapter->netdev))
+               e1000_reinit_locked(adapter);
+       else
                e1000_reset(adapter);
 
        return 0;
@@ -254,10 +253,9 @@ e1000_set_pauseparam(struct net_device *netdev,
        hw->original_fc = hw->fc;
 
        if (adapter->fc_autoneg == AUTONEG_ENABLE) {
-               if (netif_running(adapter->netdev)) {
-                       e1000_down(adapter);
-                       e1000_up(adapter);
-               } else
+               if (netif_running(adapter->netdev))
+                       e1000_reinit_locked(adapter);
+               else
                        e1000_reset(adapter);
        } else
                return ((hw->media_type == e1000_media_type_fiber) ?
@@ -279,10 +277,9 @@ e1000_set_rx_csum(struct net_device *netdev, uint32_t data)
        struct e1000_adapter *adapter = netdev_priv(netdev);
        adapter->rx_csum = data;
 
-       if (netif_running(netdev)) {
-               e1000_down(adapter);
-               e1000_up(adapter);
-       } else
+       if (netif_running(netdev))
+               e1000_reinit_locked(adapter);
+       else
                e1000_reset(adapter);
        return 0;
 }
@@ -577,6 +574,7 @@ e1000_get_drvinfo(struct net_device *netdev,
        case e1000_82572:
        case e1000_82573:
        case e1000_80003es2lan:
+       case e1000_ich8lan:
                sprintf(firmware_version, "%d.%d-%d",
                        (eeprom_data & 0xF000) >> 12,
                        (eeprom_data & 0x0FF0) >> 4,
@@ -631,6 +629,9 @@ e1000_set_ringparam(struct net_device *netdev,
        tx_ring_size = sizeof(struct e1000_tx_ring) * adapter->num_tx_queues;
        rx_ring_size = sizeof(struct e1000_rx_ring) * adapter->num_rx_queues;
 
+       while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
+               msleep(1);
+
        if (netif_running(adapter->netdev))
                e1000_down(adapter);
 
@@ -691,9 +692,11 @@ e1000_set_ringparam(struct net_device *netdev,
                adapter->rx_ring = rx_new;
                adapter->tx_ring = tx_new;
                if ((err = e1000_up(adapter)))
-                       return err;
+                       goto err_setup;
        }
 
+       clear_bit(__E1000_RESETTING, &adapter->flags);
+
        return 0;
 err_setup_tx:
        e1000_free_all_rx_resources(adapter);
@@ -701,6 +704,8 @@ err_setup_rx:
        adapter->rx_ring = rx_old;
        adapter->tx_ring = tx_old;
        e1000_up(adapter);
+err_setup:
+       clear_bit(__E1000_RESETTING, &adapter->flags);
        return err;
 }
 
@@ -754,6 +759,7 @@ e1000_reg_test(struct e1000_adapter *adapter, uint64_t *data)
                toggle = 0x7FFFF3FF;
                break;
        case e1000_82573:
+       case e1000_ich8lan:
                toggle = 0x7FFFF033;
                break;
        default:
@@ -773,11 +779,12 @@ e1000_reg_test(struct e1000_adapter *adapter, uint64_t *data)
        }
        /* restore previous status */
        E1000_WRITE_REG(&adapter->hw, STATUS, before);
-
-       REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
-       REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF);
-       REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF);
-       REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF);
+       if (adapter->hw.mac_type != e1000_ich8lan) {
+               REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
+               REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF);
+               REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF);
+               REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF);
+       }
        REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF);
        REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
        REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF);
@@ -790,20 +797,22 @@ e1000_reg_test(struct e1000_adapter *adapter, uint64_t *data)
        REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF);
 
        REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000);
-       REG_SET_AND_CHECK(RCTL, 0x06DFB3FE, 0x003FFFFB);
+       before = (adapter->hw.mac_type == e1000_ich8lan ?
+                       0x06C3B33E : 0x06DFB3FE);
+       REG_SET_AND_CHECK(RCTL, before, 0x003FFFFB);
        REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000);
 
        if (adapter->hw.mac_type >= e1000_82543) {
 
-               REG_SET_AND_CHECK(RCTL, 0x06DFB3FE, 0xFFFFFFFF);
+               REG_SET_AND_CHECK(RCTL, before, 0xFFFFFFFF);
                REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
-               REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF);
+               if (adapter->hw.mac_type != e1000_ich8lan)
+                       REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF);
                REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
                REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF);
-
-               for (i = 0; i < E1000_RAR_ENTRIES; i++) {
-                       REG_PATTERN_TEST(RA + ((i << 1) << 2), 0xFFFFFFFF,
-                                        0xFFFFFFFF);
+               value = (adapter->hw.mac_type == e1000_ich8lan ?
+                               E1000_RAR_ENTRIES_ICH8LAN : E1000_RAR_ENTRIES);
+               for (i = 0; i < value; i++) {
                        REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2), 0x8003FFFF,
                                         0xFFFFFFFF);
                }
@@ -817,7 +826,9 @@ e1000_reg_test(struct e1000_adapter *adapter, uint64_t *data)
 
        }
 
-       for (i = 0; i < E1000_MC_TBL_SIZE; i++)
+       value = (adapter->hw.mac_type == e1000_ich8lan ?
+                       E1000_MC_TBL_SIZE_ICH8LAN : E1000_MC_TBL_SIZE);
+       for (i = 0; i < value; i++)
                REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF);
 
        *data = 0;
@@ -889,6 +900,8 @@ e1000_intr_test(struct e1000_adapter *adapter, uint64_t *data)
        /* Test each interrupt */
        for (; i < 10; i++) {
 
+               if (adapter->hw.mac_type == e1000_ich8lan && i == 8)
+                       continue;
                /* Interrupt to test */
                mask = 1 << i;
 
@@ -1246,18 +1259,33 @@ e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
        } else if (adapter->hw.phy_type == e1000_phy_gg82563) {
                e1000_write_phy_reg(&adapter->hw,
                                    GG82563_PHY_KMRN_MODE_CTRL,
-                                   0x1CE);
+                                   0x1CC);
        }
-       /* force 1000, set loopback */
-       e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x4140);
 
-       /* Now set up the MAC to the same speed/duplex as the PHY. */
        ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL);
-       ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
-       ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
-                    E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
-                    E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
-                    E1000_CTRL_FD);     /* Force Duplex to FULL */
+
+       if (adapter->hw.phy_type == e1000_phy_ife) {
+               /* force 100, set loopback */
+               e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x6100);
+
+               /* Now set up the MAC to the same speed/duplex as the PHY. */
+               ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
+               ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
+                            E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
+                            E1000_CTRL_SPD_100 |/* Force Speed to 100 */
+                            E1000_CTRL_FD);     /* Force Duplex to FULL */
+       } else {
+               /* force 1000, set loopback */
+               e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x4140);
+
+               /* Now set up the MAC to the same speed/duplex as the PHY. */
+               ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL);
+               ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
+               ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
+                            E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
+                            E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
+                            E1000_CTRL_FD);     /* Force Duplex to FULL */
+       }
 
        if (adapter->hw.media_type == e1000_media_type_copper &&
           adapter->hw.phy_type == e1000_phy_m88) {
@@ -1317,6 +1345,7 @@ e1000_set_phy_loopback(struct e1000_adapter *adapter)
        case e1000_82572:
        case e1000_82573:
        case e1000_80003es2lan:
+       case e1000_ich8lan:
                return e1000_integrated_phy_loopback(adapter);
                break;
 
@@ -1568,6 +1597,7 @@ e1000_diag_test(struct net_device *netdev,
        struct e1000_adapter *adapter = netdev_priv(netdev);
        boolean_t if_running = netif_running(netdev);
 
+       set_bit(__E1000_DRIVER_TESTING, &adapter->flags);
        if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
                /* Offline tests */
 
@@ -1582,7 +1612,8 @@ e1000_diag_test(struct net_device *netdev,
                        eth_test->flags |= ETH_TEST_FL_FAILED;
 
                if (if_running)
-                       e1000_down(adapter);
+                       /* indicate we're in test mode */
+                       dev_close(netdev);
                else
                        e1000_reset(adapter);
 
@@ -1607,8 +1638,9 @@ e1000_diag_test(struct net_device *netdev,
                adapter->hw.autoneg = autoneg;
 
                e1000_reset(adapter);
+               clear_bit(__E1000_DRIVER_TESTING, &adapter->flags);
                if (if_running)
-                       e1000_up(adapter);
+                       dev_open(netdev);
        } else {
                /* Online tests */
                if (e1000_link_test(adapter, &data[4]))
@@ -1619,6 +1651,8 @@ e1000_diag_test(struct net_device *netdev,
                data[1] = 0;
                data[2] = 0;
                data[3] = 0;
+
+               clear_bit(__E1000_DRIVER_TESTING, &adapter->flags);
        }
        msleep_interruptible(4 * 1000);
 }
@@ -1778,21 +1812,18 @@ e1000_phys_id(struct net_device *netdev, uint32_t data)
                mod_timer(&adapter->blink_timer, jiffies);
                msleep_interruptible(data * 1000);
                del_timer_sync(&adapter->blink_timer);
-       } else if (adapter->hw.mac_type < e1000_82573) {
-               E1000_WRITE_REG(&adapter->hw, LEDCTL,
-                       (E1000_LEDCTL_LED2_BLINK_RATE |
-                        E1000_LEDCTL_LED0_BLINK | E1000_LEDCTL_LED2_BLINK |
-                        (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED2_MODE_SHIFT) |
-                        (E1000_LEDCTL_MODE_LINK_ACTIVITY << E1000_LEDCTL_LED0_MODE_SHIFT) |
-                        (E1000_LEDCTL_MODE_LED_OFF << E1000_LEDCTL_LED1_MODE_SHIFT)));
+       } else if (adapter->hw.phy_type == e1000_phy_ife) {
+               if (!adapter->blink_timer.function) {
+                       init_timer(&adapter->blink_timer);
+                       adapter->blink_timer.function = e1000_led_blink_callback;
+                       adapter->blink_timer.data = (unsigned long) adapter;
+               }
+               mod_timer(&adapter->blink_timer, jiffies);
                msleep_interruptible(data * 1000);
+               del_timer_sync(&adapter->blink_timer);
+               e1000_write_phy_reg(&(adapter->hw), IFE_PHY_SPECIAL_CONTROL_LED, 0);
        } else {
-               E1000_WRITE_REG(&adapter->hw, LEDCTL,
-                       (E1000_LEDCTL_LED2_BLINK_RATE |
-                        E1000_LEDCTL_LED1_BLINK | E1000_LEDCTL_LED2_BLINK |
-                        (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED2_MODE_SHIFT) |
-                        (E1000_LEDCTL_MODE_LINK_ACTIVITY << E1000_LEDCTL_LED1_MODE_SHIFT) |
-                        (E1000_LEDCTL_MODE_LED_OFF << E1000_LEDCTL_LED0_MODE_SHIFT)));
+               e1000_blink_led_start(&adapter->hw);
                msleep_interruptible(data * 1000);
        }
 
@@ -1807,10 +1838,8 @@ static int
 e1000_nway_reset(struct net_device *netdev)
 {
        struct e1000_adapter *adapter = netdev_priv(netdev);
-       if (netif_running(netdev)) {
-               e1000_down(adapter);
-               e1000_up(adapter);
-       }
+       if (netif_running(netdev))
+               e1000_reinit_locked(adapter);
        return 0;
 }
 
index 3959039b16ec375e9fcd798666494082ac5fa506..583518ae49ce930e5869866237380931b71d268a 100644 (file)
@@ -101,7 +101,8 @@ static void e1000_write_reg_io(struct e1000_hw *hw, uint32_t offset,
 
 #define E1000_WRITE_REG_IO(a, reg, val) \
            e1000_write_reg_io((a), E1000_##reg, val)
-static int32_t e1000_configure_kmrn_for_10_100(struct e1000_hw *hw);
+static int32_t e1000_configure_kmrn_for_10_100(struct e1000_hw *hw,
+                                               uint16_t duplex);
 static int32_t e1000_configure_kmrn_for_1000(struct e1000_hw *hw);
 
 /* IGP cable length table */
@@ -156,6 +157,14 @@ e1000_set_phy_type(struct e1000_hw *hw)
             hw->phy_type = e1000_phy_igp;
             break;
         }
+    case IGP03E1000_E_PHY_ID:
+        hw->phy_type = e1000_phy_igp_3;
+        break;
+    case IFE_E_PHY_ID:
+    case IFE_PLUS_E_PHY_ID:
+    case IFE_C_E_PHY_ID:
+        hw->phy_type = e1000_phy_ife;
+        break;
     case GG82563_E_PHY_ID:
         if (hw->mac_type == e1000_80003es2lan) {
             hw->phy_type = e1000_phy_gg82563;
@@ -332,6 +341,7 @@ e1000_set_mac_type(struct e1000_hw *hw)
         break;
     case E1000_DEV_ID_82541EI:
     case E1000_DEV_ID_82541EI_MOBILE:
+    case E1000_DEV_ID_82541ER_LOM:
         hw->mac_type = e1000_82541;
         break;
     case E1000_DEV_ID_82541ER:
@@ -341,6 +351,7 @@ e1000_set_mac_type(struct e1000_hw *hw)
         hw->mac_type = e1000_82541_rev_2;
         break;
     case E1000_DEV_ID_82547EI:
+    case E1000_DEV_ID_82547EI_MOBILE:
         hw->mac_type = e1000_82547;
         break;
     case E1000_DEV_ID_82547GI:
@@ -354,6 +365,7 @@ e1000_set_mac_type(struct e1000_hw *hw)
     case E1000_DEV_ID_82572EI_COPPER:
     case E1000_DEV_ID_82572EI_FIBER:
     case E1000_DEV_ID_82572EI_SERDES:
+    case E1000_DEV_ID_82572EI:
         hw->mac_type = e1000_82572;
         break;
     case E1000_DEV_ID_82573E:
@@ -361,16 +373,29 @@ e1000_set_mac_type(struct e1000_hw *hw)
     case E1000_DEV_ID_82573L:
         hw->mac_type = e1000_82573;
         break;
+    case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
+    case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
     case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
     case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
         hw->mac_type = e1000_80003es2lan;
         break;
+    case E1000_DEV_ID_ICH8_IGP_M_AMT:
+    case E1000_DEV_ID_ICH8_IGP_AMT:
+    case E1000_DEV_ID_ICH8_IGP_C:
+    case E1000_DEV_ID_ICH8_IFE:
+    case E1000_DEV_ID_ICH8_IGP_M:
+        hw->mac_type = e1000_ich8lan;
+        break;
     default:
         /* Should never have loaded on this device */
         return -E1000_ERR_MAC_TYPE;
     }
 
     switch(hw->mac_type) {
+    case e1000_ich8lan:
+        hw->swfwhw_semaphore_present = TRUE;
+        hw->asf_firmware_present = TRUE;
+        break;
     case e1000_80003es2lan:
         hw->swfw_sync_present = TRUE;
         /* fall through */
@@ -423,6 +448,7 @@ e1000_set_media_type(struct e1000_hw *hw)
         case e1000_82542_rev2_1:
             hw->media_type = e1000_media_type_fiber;
             break;
+        case e1000_ich8lan:
         case e1000_82573:
             /* The STATUS_TBIMODE bit is reserved or reused for the this
              * device.
@@ -527,6 +553,14 @@ e1000_reset_hw(struct e1000_hw *hw)
         } while(timeout);
     }
 
+    /* Workaround for ICH8 bit corruption issue in FIFO memory */
+    if (hw->mac_type == e1000_ich8lan) {
+        /* Set Tx and Rx buffer allocation to 8k apiece. */
+        E1000_WRITE_REG(hw, PBA, E1000_PBA_8K);
+        /* Set Packet Buffer Size to 16k. */
+        E1000_WRITE_REG(hw, PBS, E1000_PBS_16K);
+    }
+
     /* Issue a global reset to the MAC.  This will reset the chip's
      * transmit, receive, DMA, and link units.  It will not effect
      * the current PCI configuration.  The global reset bit is self-
@@ -550,6 +584,20 @@ e1000_reset_hw(struct e1000_hw *hw)
             /* Reset is performed on a shadow of the control register */
             E1000_WRITE_REG(hw, CTRL_DUP, (ctrl | E1000_CTRL_RST));
             break;
+        case e1000_ich8lan:
+            if (!hw->phy_reset_disable &&
+                e1000_check_phy_reset_block(hw) == E1000_SUCCESS) {
+                /* e1000_ich8lan PHY HW reset requires MAC CORE reset
+                 * at the same time to make sure the interface between
+                 * MAC and the external PHY is reset.
+                 */
+                ctrl |= E1000_CTRL_PHY_RST;
+            }
+
+            e1000_get_software_flag(hw);
+            E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST));
+            msec_delay(5);
+            break;
         default:
             E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST));
             break;
@@ -591,6 +639,7 @@ e1000_reset_hw(struct e1000_hw *hw)
             /* fall through */
         case e1000_82571:
         case e1000_82572:
+        case e1000_ich8lan:
         case e1000_80003es2lan:
             ret_val = e1000_get_auto_rd_done(hw);
             if(ret_val)
@@ -633,6 +682,12 @@ e1000_reset_hw(struct e1000_hw *hw)
             e1000_pci_set_mwi(hw);
     }
 
+    if (hw->mac_type == e1000_ich8lan) {
+        uint32_t kab = E1000_READ_REG(hw, KABGTXD);
+        kab |= E1000_KABGTXD_BGSQLBIAS;
+        E1000_WRITE_REG(hw, KABGTXD, kab);
+    }
+
     return E1000_SUCCESS;
 }
 
@@ -675,9 +730,12 @@ e1000_init_hw(struct e1000_hw *hw)
 
     /* Disabling VLAN filtering. */
     DEBUGOUT("Initializing the IEEE VLAN\n");
-    if (hw->mac_type < e1000_82545_rev_3)
-        E1000_WRITE_REG(hw, VET, 0);
-    e1000_clear_vfta(hw);
+    /* VET hardcoded to standard value and VFTA removed in ICH8 LAN */
+    if (hw->mac_type != e1000_ich8lan) {
+        if (hw->mac_type < e1000_82545_rev_3)
+            E1000_WRITE_REG(hw, VET, 0);
+        e1000_clear_vfta(hw);
+    }
 
     /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
     if(hw->mac_type == e1000_82542_rev2_0) {
@@ -705,8 +763,14 @@ e1000_init_hw(struct e1000_hw *hw)
     /* Zero out the Multicast HASH table */
     DEBUGOUT("Zeroing the MTA\n");
     mta_size = E1000_MC_TBL_SIZE;
-    for(i = 0; i < mta_size; i++)
+    if (hw->mac_type == e1000_ich8lan)
+        mta_size = E1000_MC_TBL_SIZE_ICH8LAN;
+    for(i = 0; i < mta_size; i++) {
         E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
+        /* use write flush to prevent Memory Write Block (MWB) from
+         * occuring when accessing our register space */
+        E1000_WRITE_FLUSH(hw);
+    }
 
     /* Set the PCI priority bit correctly in the CTRL register.  This
      * determines if the adapter gives priority to receives, or if it
@@ -744,6 +808,10 @@ e1000_init_hw(struct e1000_hw *hw)
         break;
     }
 
+    /* More time needed for PHY to initialize */
+    if (hw->mac_type == e1000_ich8lan)
+        msec_delay(15);
+
     /* Call a subroutine to configure the link and setup flow control. */
     ret_val = e1000_setup_link(hw);
 
@@ -757,6 +825,7 @@ e1000_init_hw(struct e1000_hw *hw)
         case e1000_82571:
         case e1000_82572:
         case e1000_82573:
+        case e1000_ich8lan:
         case e1000_80003es2lan:
             ctrl |= E1000_TXDCTL_COUNT_DESC;
             break;
@@ -795,6 +864,7 @@ e1000_init_hw(struct e1000_hw *hw)
         /* Fall through */
     case e1000_82571:
     case e1000_82572:
+    case e1000_ich8lan:
         ctrl = E1000_READ_REG(hw, TXDCTL1);
         ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB;
         if(hw->mac_type >= e1000_82571)
@@ -818,6 +888,11 @@ e1000_init_hw(struct e1000_hw *hw)
      */
     e1000_clear_hw_cntrs(hw);
 
+    /* ICH8 No-snoop bits are opposite polarity.
+     * Set to snoop by default after reset. */
+    if (hw->mac_type == e1000_ich8lan)
+        e1000_set_pci_ex_no_snoop(hw, PCI_EX_82566_SNOOP_ALL);
+
     if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER ||
         hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) {
         ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
@@ -905,6 +980,7 @@ e1000_setup_link(struct e1000_hw *hw)
      */
     if (hw->fc == e1000_fc_default) {
         switch (hw->mac_type) {
+        case e1000_ich8lan:
         case e1000_82573:
             hw->fc = e1000_fc_full;
             break;
@@ -971,9 +1047,12 @@ e1000_setup_link(struct e1000_hw *hw)
      */
     DEBUGOUT("Initializing the Flow Control address, type and timer regs\n");
 
-    E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW);
-    E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH);
-    E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE);
+    /* FCAL/H and FCT are hardcoded to standard values in e1000_ich8lan. */
+    if (hw->mac_type != e1000_ich8lan) {
+        E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE);
+        E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH);
+        E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW);
+    }
 
     E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time);
 
@@ -1237,12 +1316,13 @@ e1000_copper_link_igp_setup(struct e1000_hw *hw)
 
     /* Wait 10ms for MAC to configure PHY from eeprom settings */
     msec_delay(15);
-
+    if (hw->mac_type != e1000_ich8lan) {
     /* Configure activity LED after PHY reset */
     led_ctrl = E1000_READ_REG(hw, LEDCTL);
     led_ctrl &= IGP_ACTIVITY_LED_MASK;
     led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
     E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
+    }
 
     /* disable lplu d3 during driver init */
     ret_val = e1000_set_d3_lplu_state(hw, FALSE);
@@ -1478,8 +1558,7 @@ e1000_copper_link_ggp_setup(struct e1000_hw *hw)
             if (ret_val)
                 return ret_val;
 
-            /* Enable Pass False Carrier on the PHY */
-            phy_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
+            phy_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
 
             ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
                                           phy_data);
@@ -1561,28 +1640,40 @@ e1000_copper_link_mgp_setup(struct e1000_hw *hw)
     phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
     if(hw->disable_polarity_correction == 1)
         phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
-        ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
-        if(ret_val)
-            return ret_val;
-
-    /* Force TX_CLK in the Extended PHY Specific Control Register
-     * to 25MHz clock.
-     */
-    ret_val = e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
-    if(ret_val)
+    ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
+    if (ret_val)
         return ret_val;
 
-    phy_data |= M88E1000_EPSCR_TX_CLK_25;
-
     if (hw->phy_revision < M88E1011_I_REV_4) {
-        /* Configure Master and Slave downshift values */
-        phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
+        /* Force TX_CLK in the Extended PHY Specific Control Register
+         * to 25MHz clock.
+         */
+        ret_val = e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
+        if (ret_val)
+            return ret_val;
+
+        phy_data |= M88E1000_EPSCR_TX_CLK_25;
+
+        if ((hw->phy_revision == E1000_REVISION_2) &&
+            (hw->phy_id == M88E1111_I_PHY_ID)) {
+            /* Vidalia Phy, set the downshift counter to 5x */
+            phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK);
+            phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
+            ret_val = e1000_write_phy_reg(hw,
+                                        M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
+            if (ret_val)
+                return ret_val;
+        } else {
+            /* Configure Master and Slave downshift values */
+            phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
                               M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
-        phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
+            phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
                              M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
-        ret_val = e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
-        if(ret_val)
-            return ret_val;
+            ret_val = e1000_write_phy_reg(hw,
+                                        M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
+            if (ret_val)
+               return ret_val;
+        }
     }
 
     /* SW Reset the PHY so all changes take effect */
@@ -1620,6 +1711,10 @@ e1000_copper_link_autoneg(struct e1000_hw *hw)
     if(hw->autoneg_advertised == 0)
         hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
 
+    /* IFE phy only supports 10/100 */
+    if (hw->phy_type == e1000_phy_ife)
+        hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL;
+
     DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
     ret_val = e1000_phy_setup_autoneg(hw);
     if(ret_val) {
@@ -1717,6 +1812,26 @@ e1000_setup_copper_link(struct e1000_hw *hw)
 
     DEBUGFUNC("e1000_setup_copper_link");
 
+    switch (hw->mac_type) {
+    case e1000_80003es2lan:
+    case e1000_ich8lan:
+        /* Set the mac to wait the maximum time between each
+         * iteration and increase the max iterations when
+         * polling the phy; this fixes erroneous timeouts at 10Mbps. */
+        ret_val = e1000_write_kmrn_reg(hw, GG82563_REG(0x34, 4), 0xFFFF);
+        if (ret_val)
+            return ret_val;
+        ret_val = e1000_read_kmrn_reg(hw, GG82563_REG(0x34, 9), &reg_data);
+        if (ret_val)
+            return ret_val;
+        reg_data |= 0x3F;
+        ret_val = e1000_write_kmrn_reg(hw, GG82563_REG(0x34, 9), reg_data);
+        if (ret_val)
+            return ret_val;
+    default:
+        break;
+    }
+
     /* Check if it is a valid PHY and set PHY mode if necessary. */
     ret_val = e1000_copper_link_preconfig(hw);
     if(ret_val)
@@ -1724,10 +1839,8 @@ e1000_setup_copper_link(struct e1000_hw *hw)
 
     switch (hw->mac_type) {
     case e1000_80003es2lan:
-        ret_val = e1000_read_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_INB_CTRL,
-                                      &reg_data);
-        if (ret_val)
-            return ret_val;
+        /* Kumeran registers are written-only */
+        reg_data = E1000_KUMCTRLSTA_INB_CTRL_LINK_STATUS_TX_TIMEOUT_DEFAULT;
         reg_data |= E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING;
         ret_val = e1000_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_INB_CTRL,
                                        reg_data);
@@ -1739,6 +1852,7 @@ e1000_setup_copper_link(struct e1000_hw *hw)
     }
 
     if (hw->phy_type == e1000_phy_igp ||
+        hw->phy_type == e1000_phy_igp_3 ||
         hw->phy_type == e1000_phy_igp_2) {
         ret_val = e1000_copper_link_igp_setup(hw);
         if(ret_val)
@@ -1803,7 +1917,7 @@ e1000_setup_copper_link(struct e1000_hw *hw)
 * hw - Struct containing variables accessed by shared code
 ******************************************************************************/
 static int32_t
-e1000_configure_kmrn_for_10_100(struct e1000_hw *hw)
+e1000_configure_kmrn_for_10_100(struct e1000_hw *hw, uint16_t duplex)
 {
     int32_t ret_val = E1000_SUCCESS;
     uint32_t tipg;
@@ -1823,6 +1937,18 @@ e1000_configure_kmrn_for_10_100(struct e1000_hw *hw)
     tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_10_100;
     E1000_WRITE_REG(hw, TIPG, tipg);
 
+    ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
+
+    if (ret_val)
+        return ret_val;
+
+    if (duplex == HALF_DUPLEX)
+        reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
+    else
+        reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
+
+    ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
+
     return ret_val;
 }
 
@@ -1847,6 +1973,14 @@ e1000_configure_kmrn_for_1000(struct e1000_hw *hw)
     tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
     E1000_WRITE_REG(hw, TIPG, tipg);
 
+    ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
+
+    if (ret_val)
+        return ret_val;
+
+    reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
+    ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
+
     return ret_val;
 }
 
@@ -1869,10 +2003,13 @@ e1000_phy_setup_autoneg(struct e1000_hw *hw)
     if(ret_val)
         return ret_val;
 
-    /* Read the MII 1000Base-T Control Register (Address 9). */
-    ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg);
-    if(ret_val)
-        return ret_val;
+    if (hw->phy_type != e1000_phy_ife) {
+        /* Read the MII 1000Base-T Control Register (Address 9). */
+        ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg);
+        if (ret_val)
+            return ret_val;
+    } else
+        mii_1000t_ctrl_reg=0;
 
     /* Need to parse both autoneg_advertised and fc and set up
      * the appropriate PHY registers.  First we will parse for
@@ -1923,6 +2060,9 @@ e1000_phy_setup_autoneg(struct e1000_hw *hw)
     if(hw->autoneg_advertised & ADVERTISE_1000_FULL) {
         DEBUGOUT("Advertise 1000mb Full duplex\n");
         mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
+        if (hw->phy_type == e1000_phy_ife) {
+            DEBUGOUT("e1000_phy_ife is a 10/100 PHY. Gigabit speed is not supported.\n");
+        }
     }
 
     /* Check for a software override of the flow control settings, and
@@ -1984,9 +2124,11 @@ e1000_phy_setup_autoneg(struct e1000_hw *hw)
 
     DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
 
-    ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg);
-    if(ret_val)
-        return ret_val;
+    if (hw->phy_type != e1000_phy_ife) {
+        ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg);
+        if (ret_val)
+            return ret_val;
+    }
 
     return E1000_SUCCESS;
 }
@@ -2089,6 +2231,18 @@ e1000_phy_force_speed_duplex(struct e1000_hw *hw)
 
         /* Need to reset the PHY or these changes will be ignored */
         mii_ctrl_reg |= MII_CR_RESET;
+    /* Disable MDI-X support for 10/100 */
+    } else if (hw->phy_type == e1000_phy_ife) {
+        ret_val = e1000_read_phy_reg(hw, IFE_PHY_MDIX_CONTROL, &phy_data);
+        if (ret_val)
+            return ret_val;
+
+        phy_data &= ~IFE_PMC_AUTO_MDIX;
+        phy_data &= ~IFE_PMC_FORCE_MDIX;
+
+        ret_val = e1000_write_phy_reg(hw, IFE_PHY_MDIX_CONTROL, phy_data);
+        if (ret_val)
+            return ret_val;
     } else {
         /* Clear Auto-Crossover to force MDI manually.  IGP requires MDI
          * forced whenever speed or duplex are forced.
@@ -2721,8 +2875,12 @@ e1000_check_for_link(struct e1000_hw *hw)
          */
         if(hw->tbi_compatibility_en) {
             uint16_t speed, duplex;
-            e1000_get_speed_and_duplex(hw, &speed, &duplex);
-            if(speed != SPEED_1000) {
+            ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex);
+            if (ret_val) {
+                DEBUGOUT("Error getting link speed and duplex\n");
+                return ret_val;
+            }
+            if (speed != SPEED_1000) {
                 /* If link speed is not set to gigabit speed, we do not need
                  * to enable TBI compatibility.
                  */
@@ -2889,7 +3047,13 @@ e1000_get_speed_and_duplex(struct e1000_hw *hw,
         if (*speed == SPEED_1000)
             ret_val = e1000_configure_kmrn_for_1000(hw);
         else
-            ret_val = e1000_configure_kmrn_for_10_100(hw);
+            ret_val = e1000_configure_kmrn_for_10_100(hw, *duplex);
+        if (ret_val)
+            return ret_val;
+    }
+
+    if ((hw->phy_type == e1000_phy_igp_3) && (*speed == SPEED_1000)) {
+        ret_val = e1000_kumeran_lock_loss_workaround(hw);
         if (ret_val)
             return ret_val;
     }
@@ -3079,6 +3243,9 @@ e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask)
 
     DEBUGFUNC("e1000_swfw_sync_acquire");
 
+    if (hw->swfwhw_semaphore_present)
+        return e1000_get_software_flag(hw);
+
     if (!hw->swfw_sync_present)
         return e1000_get_hw_eeprom_semaphore(hw);
 
@@ -3118,6 +3285,11 @@ e1000_swfw_sync_release(struct e1000_hw *hw, uint16_t mask)
 
     DEBUGFUNC("e1000_swfw_sync_release");
 
+    if (hw->swfwhw_semaphore_present) {
+        e1000_release_software_flag(hw);
+        return;
+    }
+
     if (!hw->swfw_sync_present) {
         e1000_put_hw_eeprom_semaphore(hw);
         return;
@@ -3160,7 +3332,8 @@ e1000_read_phy_reg(struct e1000_hw *hw,
     if (e1000_swfw_sync_acquire(hw, swfw))
         return -E1000_ERR_SWFW_SYNC;
 
-    if((hw->phy_type == e1000_phy_igp ||
+    if ((hw->phy_type == e1000_phy_igp ||
+        hw->phy_type == e1000_phy_igp_3 ||
         hw->phy_type == e1000_phy_igp_2) &&
        (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
         ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
@@ -3299,7 +3472,8 @@ e1000_write_phy_reg(struct e1000_hw *hw,
     if (e1000_swfw_sync_acquire(hw, swfw))
         return -E1000_ERR_SWFW_SYNC;
 
-    if((hw->phy_type == e1000_phy_igp ||
+    if ((hw->phy_type == e1000_phy_igp ||
+        hw->phy_type == e1000_phy_igp_3 ||
         hw->phy_type == e1000_phy_igp_2) &&
        (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
         ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
@@ -3514,7 +3688,7 @@ e1000_phy_hw_reset(struct e1000_hw *hw)
         E1000_WRITE_FLUSH(hw);
 
         if (hw->mac_type >= e1000_82571)
-            msec_delay(10);
+            msec_delay_irq(10);
         e1000_swfw_sync_release(hw, swfw);
     } else {
         /* Read the Extended Device Control Register, assert the PHY_RESET_DIR
@@ -3544,6 +3718,12 @@ e1000_phy_hw_reset(struct e1000_hw *hw)
     ret_val = e1000_get_phy_cfg_done(hw);
     e1000_release_software_semaphore(hw);
 
+        if ((hw->mac_type == e1000_ich8lan) &&
+            (hw->phy_type == e1000_phy_igp_3)) {
+            ret_val = e1000_init_lcd_from_nvm(hw);
+            if (ret_val)
+                return ret_val;
+        }
     return ret_val;
 }
 
@@ -3572,9 +3752,11 @@ e1000_phy_reset(struct e1000_hw *hw)
     case e1000_82541_rev_2:
     case e1000_82571:
     case e1000_82572:
+    case e1000_ich8lan:
         ret_val = e1000_phy_hw_reset(hw);
         if(ret_val)
             return ret_val;
+
         break;
     default:
         ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
@@ -3596,12 +3778,121 @@ e1000_phy_reset(struct e1000_hw *hw)
     return E1000_SUCCESS;
 }
 
+/******************************************************************************
+* Work-around for 82566 power-down: on D3 entry-
+* 1) disable gigabit link
+* 2) write VR power-down enable
+* 3) read it back
+* if successful continue, else issue LCD reset and repeat
+*
+* hw - struct containing variables accessed by shared code
+******************************************************************************/
+void
+e1000_phy_powerdown_workaround(struct e1000_hw *hw)
+{
+    int32_t reg;
+    uint16_t phy_data;
+    int32_t retry = 0;
+
+    DEBUGFUNC("e1000_phy_powerdown_workaround");
+
+    if (hw->phy_type != e1000_phy_igp_3)
+        return;
+
+    do {
+        /* Disable link */
+        reg = E1000_READ_REG(hw, PHY_CTRL);
+        E1000_WRITE_REG(hw, PHY_CTRL, reg | E1000_PHY_CTRL_GBE_DISABLE |
+                        E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
+
+        /* Write VR power-down enable */
+        e1000_read_phy_reg(hw, IGP3_VR_CTRL, &phy_data);
+        e1000_write_phy_reg(hw, IGP3_VR_CTRL, phy_data |
+                            IGP3_VR_CTRL_MODE_SHUT);
+
+        /* Read it back and test */
+        e1000_read_phy_reg(hw, IGP3_VR_CTRL, &phy_data);
+        if ((phy_data & IGP3_VR_CTRL_MODE_SHUT) || retry)
+            break;
+
+        /* Issue PHY reset and repeat at most one more time */
+        reg = E1000_READ_REG(hw, CTRL);
+        E1000_WRITE_REG(hw, CTRL, reg | E1000_CTRL_PHY_RST);
+        retry++;
+    } while (retry);
+
+    return;
+
+}
+
+/******************************************************************************
+* Work-around for 82566 Kumeran PCS lock loss:
+* On link status change (i.e. PCI reset, speed change) and link is up and
+* speed is gigabit-
+* 0) if workaround is optionally disabled do nothing
+* 1) wait 1ms for Kumeran link to come up
+* 2) check Kumeran Diagnostic register PCS lock loss bit
+* 3) if not set the link is locked (all is good), otherwise...
+* 4) reset the PHY
+* 5) repeat up to 10 times
+* Note: this is only called for IGP3 copper when speed is 1gb.
+*
+* hw - struct containing variables accessed by shared code
+******************************************************************************/
+int32_t
+e1000_kumeran_lock_loss_workaround(struct e1000_hw *hw)
+{
+    int32_t ret_val;
+    int32_t reg;
+    int32_t cnt;
+    uint16_t phy_data;
+
+    if (hw->kmrn_lock_loss_workaround_disabled)
+        return E1000_SUCCESS;
+
+    /* Make sure link is up before proceeding. If not just return.
+     * Attempting this while link is negotiating fouls up link
+     * stability */
+    ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
+    ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
+
+    if (phy_data & MII_SR_LINK_STATUS) {
+        for (cnt = 0; cnt < 10; cnt++) {
+            /* read once to clear */
+            ret_val = e1000_read_phy_reg(hw, IGP3_KMRN_DIAG, &phy_data);
+            if (ret_val)
+                return ret_val;
+            /* and again to get new status */
+            ret_val = e1000_read_phy_reg(hw, IGP3_KMRN_DIAG, &phy_data);
+            if (ret_val)
+                return ret_val;
+
+            /* check for PCS lock */
+            if (!(phy_data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
+                return E1000_SUCCESS;
+
+            /* Issue PHY reset */
+            e1000_phy_hw_reset(hw);
+            msec_delay_irq(5);
+        }
+        /* Disable GigE link negotiation */
+        reg = E1000_READ_REG(hw, PHY_CTRL);
+        E1000_WRITE_REG(hw, PHY_CTRL, reg | E1000_PHY_CTRL_GBE_DISABLE |
+                        E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
+
+        /* unable to acquire PCS lock */
+        return E1000_ERR_PHY;
+    }
+
+    return E1000_SUCCESS;
+}
+
 /******************************************************************************
 * Probes the expected PHY address for known PHY IDs
 *
 * hw - Struct containing variables accessed by shared code
 ******************************************************************************/
-static int32_t
+int32_t
 e1000_detect_gig_phy(struct e1000_hw *hw)
 {
     int32_t phy_init_status, ret_val;
@@ -3613,8 +3904,8 @@ e1000_detect_gig_phy(struct e1000_hw *hw)
     /* The 82571 firmware may still be configuring the PHY.  In this
      * case, we cannot access the PHY until the configuration is done.  So
      * we explicitly set the PHY values. */
-    if(hw->mac_type == e1000_82571 ||
-       hw->mac_type == e1000_82572) {
+    if (hw->mac_type == e1000_82571 ||
+        hw->mac_type == e1000_82572) {
         hw->phy_id = IGP01E1000_I_PHY_ID;
         hw->phy_type = e1000_phy_igp_2;
         return E1000_SUCCESS;
@@ -3631,7 +3922,7 @@ e1000_detect_gig_phy(struct e1000_hw *hw)
 
     /* Read the PHY ID Registers to identify which PHY is onboard. */
     ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high);
-    if(ret_val)
+    if (ret_val)
         return ret_val;
 
     hw->phy_id = (uint32_t) (phy_id_high << 16);
@@ -3669,6 +3960,12 @@ e1000_detect_gig_phy(struct e1000_hw *hw)
     case e1000_80003es2lan:
         if (hw->phy_id == GG82563_E_PHY_ID) match = TRUE;
         break;
+    case e1000_ich8lan:
+        if (hw->phy_id == IGP03E1000_E_PHY_ID) match = TRUE;
+        if (hw->phy_id == IFE_E_PHY_ID) match = TRUE;
+        if (hw->phy_id == IFE_PLUS_E_PHY_ID) match = TRUE;
+        if (hw->phy_id == IFE_C_E_PHY_ID) match = TRUE;
+        break;
     default:
         DEBUGOUT1("Invalid MAC type %d\n", hw->mac_type);
         return -E1000_ERR_CONFIG;
@@ -3783,6 +4080,53 @@ e1000_phy_igp_get_info(struct e1000_hw *hw,
     return E1000_SUCCESS;
 }
 
+/******************************************************************************
+* Get PHY information from various PHY registers for ife PHY only.
+*
+* hw - Struct containing variables accessed by shared code
+* phy_info - PHY information structure
+******************************************************************************/
+int32_t
+e1000_phy_ife_get_info(struct e1000_hw *hw,
+                       struct e1000_phy_info *phy_info)
+{
+    int32_t ret_val;
+    uint16_t phy_data, polarity;
+
+    DEBUGFUNC("e1000_phy_ife_get_info");
+
+    phy_info->downshift = (e1000_downshift)hw->speed_downgraded;
+    phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_normal;
+
+    ret_val = e1000_read_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL, &phy_data);
+    if (ret_val)
+        return ret_val;
+    phy_info->polarity_correction =
+                        (phy_data & IFE_PSC_AUTO_POLARITY_DISABLE) >>
+                        IFE_PSC_AUTO_POLARITY_DISABLE_SHIFT;
+
+    if (phy_info->polarity_correction == e1000_polarity_reversal_enabled) {
+        ret_val = e1000_check_polarity(hw, &polarity);
+        if (ret_val)
+            return ret_val;
+    } else {
+        /* Polarity is forced. */
+        polarity = (phy_data & IFE_PSC_FORCE_POLARITY) >>
+                       IFE_PSC_FORCE_POLARITY_SHIFT;
+    }
+    phy_info->cable_polarity = polarity;
+
+    ret_val = e1000_read_phy_reg(hw, IFE_PHY_MDIX_CONTROL, &phy_data);
+    if (ret_val)
+        return ret_val;
+
+    phy_info->mdix_mode =
+                     (phy_data & (IFE_PMC_AUTO_MDIX | IFE_PMC_FORCE_MDIX)) >>
+                     IFE_PMC_MDIX_MODE_SHIFT;
+
+    return E1000_SUCCESS;
+}
+
 /******************************************************************************
 * Get PHY information from various PHY registers fot m88 PHY only.
 *
@@ -3898,9 +4242,12 @@ e1000_phy_get_info(struct e1000_hw *hw,
         return -E1000_ERR_CONFIG;
     }
 
-    if(hw->phy_type == e1000_phy_igp ||
+    if (hw->phy_type == e1000_phy_igp ||
+        hw->phy_type == e1000_phy_igp_3 ||
         hw->phy_type == e1000_phy_igp_2)
         return e1000_phy_igp_get_info(hw, phy_info);
+    else if (hw->phy_type == e1000_phy_ife)
+        return e1000_phy_ife_get_info(hw, phy_info);
     else
         return e1000_phy_m88_get_info(hw, phy_info);
 }
@@ -4049,6 +4396,35 @@ e1000_init_eeprom_params(struct e1000_hw *hw)
         eeprom->use_eerd = TRUE;
         eeprom->use_eewr = FALSE;
         break;
+    case e1000_ich8lan:
+    {
+        int32_t  i = 0;
+        uint32_t flash_size = E1000_READ_ICH8_REG(hw, ICH8_FLASH_GFPREG);
+
+        eeprom->type = e1000_eeprom_ich8;
+        eeprom->use_eerd = FALSE;
+        eeprom->use_eewr = FALSE;
+        eeprom->word_size = E1000_SHADOW_RAM_WORDS;
+
+        /* Zero the shadow RAM structure. But don't load it from NVM
+         * so as to save time for driver init */
+        if (hw->eeprom_shadow_ram != NULL) {
+            for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
+                hw->eeprom_shadow_ram[i].modified = FALSE;
+                hw->eeprom_shadow_ram[i].eeprom_word = 0xFFFF;
+            }
+        }
+
+        hw->flash_base_addr = (flash_size & ICH8_GFPREG_BASE_MASK) *
+                              ICH8_FLASH_SECTOR_SIZE;
+
+        hw->flash_bank_size = ((flash_size >> 16) & ICH8_GFPREG_BASE_MASK) + 1;
+        hw->flash_bank_size -= (flash_size & ICH8_GFPREG_BASE_MASK);
+        hw->flash_bank_size *= ICH8_FLASH_SECTOR_SIZE;
+        hw->flash_bank_size /= 2 * sizeof(uint16_t);
+
+        break;
+    }
     default:
         break;
     }
@@ -4469,7 +4845,10 @@ e1000_read_eeprom(struct e1000_hw *hw,
         return ret_val;
     }
 
-    if(eeprom->type == e1000_eeprom_spi) {
+    if (eeprom->type == e1000_eeprom_ich8)
+        return e1000_read_eeprom_ich8(hw, offset, words, data);
+
+    if (eeprom->type == e1000_eeprom_spi) {
         uint16_t word_in;
         uint8_t read_opcode = EEPROM_READ_OPCODE_SPI;
 
@@ -4636,7 +5015,10 @@ e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw)
 
     DEBUGFUNC("e1000_is_onboard_nvm_eeprom");
 
-    if(hw->mac_type == e1000_82573) {
+    if (hw->mac_type == e1000_ich8lan)
+        return FALSE;
+
+    if (hw->mac_type == e1000_82573) {
         eecd = E1000_READ_REG(hw, EECD);
 
         /* Isolate bits 15 & 16 */
@@ -4686,8 +5068,22 @@ e1000_validate_eeprom_checksum(struct e1000_hw *hw)
         }
     }
 
-    for(i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
-        if(e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
+    if (hw->mac_type == e1000_ich8lan) {
+        /* Drivers must allocate the shadow ram structure for the
+         * EEPROM checksum to be updated.  Otherwise, this bit as well
+         * as the checksum must both be set correctly for this
+         * validation to pass.
+         */
+        e1000_read_eeprom(hw, 0x19, 1, &eeprom_data);
+        if ((eeprom_data & 0x40) == 0) {
+            eeprom_data |= 0x40;
+            e1000_write_eeprom(hw, 0x19, 1, &eeprom_data);
+            e1000_update_eeprom_checksum(hw);
+        }
+    }
+
+    for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
+        if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
             DEBUGOUT("EEPROM Read Error\n");
             return -E1000_ERR_EEPROM;
         }
@@ -4713,6 +5109,7 @@ e1000_validate_eeprom_checksum(struct e1000_hw *hw)
 int32_t
 e1000_update_eeprom_checksum(struct e1000_hw *hw)
 {
+    uint32_t ctrl_ext;
     uint16_t checksum = 0;
     uint16_t i, eeprom_data;
 
@@ -4731,6 +5128,14 @@ e1000_update_eeprom_checksum(struct e1000_hw *hw)
         return -E1000_ERR_EEPROM;
     } else if (hw->eeprom.type == e1000_eeprom_flash) {
         e1000_commit_shadow_ram(hw);
+    } else if (hw->eeprom.type == e1000_eeprom_ich8) {
+        e1000_commit_shadow_ram(hw);
+        /* Reload the EEPROM, or else modifications will not appear
+         * until after next adapter reset. */
+        ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
+        ctrl_ext |= E1000_CTRL_EXT_EE_RST;
+        E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
+        msec_delay(10);
     }
     return E1000_SUCCESS;
 }
@@ -4770,6 +5175,9 @@ e1000_write_eeprom(struct e1000_hw *hw,
     if(eeprom->use_eewr == TRUE)
         return e1000_write_eeprom_eewr(hw, offset, words, data);
 
+    if (eeprom->type == e1000_eeprom_ich8)
+        return e1000_write_eeprom_ich8(hw, offset, words, data);
+
     /* Prepare the EEPROM for writing  */
     if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
         return -E1000_ERR_EEPROM;
@@ -4957,11 +5365,17 @@ e1000_commit_shadow_ram(struct e1000_hw *hw)
     uint32_t flop = 0;
     uint32_t i = 0;
     int32_t error = E1000_SUCCESS;
-
-    /* The flop register will be used to determine if flash type is STM */
-    flop = E1000_READ_REG(hw, FLOP);
+    uint32_t old_bank_offset = 0;
+    uint32_t new_bank_offset = 0;
+    uint32_t sector_retries = 0;
+    uint8_t low_byte = 0;
+    uint8_t high_byte = 0;
+    uint8_t temp_byte = 0;
+    boolean_t sector_write_failed = FALSE;
 
     if (hw->mac_type == e1000_82573) {
+        /* The flop register will be used to determine if flash type is STM */
+        flop = E1000_READ_REG(hw, FLOP);
         for (i=0; i < attempts; i++) {
             eecd = E1000_READ_REG(hw, EECD);
             if ((eecd & E1000_EECD_FLUPD) == 0) {
@@ -4995,6 +5409,106 @@ e1000_commit_shadow_ram(struct e1000_hw *hw)
         }
     }
 
+    if (hw->mac_type == e1000_ich8lan && hw->eeprom_shadow_ram != NULL) {
+        /* We're writing to the opposite bank so if we're on bank 1,
+         * write to bank 0 etc.  We also need to erase the segment that
+         * is going to be written */
+        if (!(E1000_READ_REG(hw, EECD) & E1000_EECD_SEC1VAL)) {
+            new_bank_offset = hw->flash_bank_size * 2;
+            old_bank_offset = 0;
+            e1000_erase_ich8_4k_segment(hw, 1);
+        } else {
+            old_bank_offset = hw->flash_bank_size * 2;
+            new_bank_offset = 0;
+            e1000_erase_ich8_4k_segment(hw, 0);
+        }
+
+        do {
+            sector_write_failed = FALSE;
+            /* Loop for every byte in the shadow RAM,
+             * which is in units of words. */
+            for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
+                /* Determine whether to write the value stored
+                 * in the other NVM bank or a modified value stored
+                 * in the shadow RAM */
+                if (hw->eeprom_shadow_ram[i].modified == TRUE) {
+                    low_byte = (uint8_t)hw->eeprom_shadow_ram[i].eeprom_word;
+                    e1000_read_ich8_byte(hw, (i << 1) + old_bank_offset,
+                                         &temp_byte);
+                    udelay(100);
+                    error = e1000_verify_write_ich8_byte(hw,
+                                                 (i << 1) + new_bank_offset,
+                                                 low_byte);
+                    if (error != E1000_SUCCESS)
+                        sector_write_failed = TRUE;
+                    high_byte =
+                        (uint8_t)(hw->eeprom_shadow_ram[i].eeprom_word >> 8);
+                    e1000_read_ich8_byte(hw, (i << 1) + old_bank_offset + 1,
+                                         &temp_byte);
+                    udelay(100);
+                } else {
+                    e1000_read_ich8_byte(hw, (i << 1) + old_bank_offset,
+                                         &low_byte);
+                    udelay(100);
+                    error = e1000_verify_write_ich8_byte(hw,
+                                 (i << 1) + new_bank_offset, low_byte);
+                    if (error != E1000_SUCCESS)
+                        sector_write_failed = TRUE;
+                    e1000_read_ich8_byte(hw, (i << 1) + old_bank_offset + 1,
+                                         &high_byte);
+                }
+
+                /* If the word is 0x13, then make sure the signature bits
+                 * (15:14) are 11b until the commit has completed.
+                 * This will allow us to write 10b which indicates the
+                 * signature is valid.  We want to do this after the write
+                 * has completed so that we don't mark the segment valid
+                 * while the write is still in progress */
+                if (i == E1000_ICH8_NVM_SIG_WORD)
+                    high_byte = E1000_ICH8_NVM_SIG_MASK | high_byte;
+
+                error = e1000_verify_write_ich8_byte(hw,
+                             (i << 1) + new_bank_offset + 1, high_byte);
+                if (error != E1000_SUCCESS)
+                    sector_write_failed = TRUE;
+
+                if (sector_write_failed == FALSE) {
+                    /* Clear the now not used entry in the cache */
+                    hw->eeprom_shadow_ram[i].modified = FALSE;
+                    hw->eeprom_shadow_ram[i].eeprom_word = 0xFFFF;
+                }
+            }
+
+            /* Don't bother writing the segment valid bits if sector
+             * programming failed. */
+            if (sector_write_failed == FALSE) {
+                /* Finally validate the new segment by setting bit 15:14
+                 * to 10b in word 0x13 , this can be done without an
+                 * erase as well since these bits are 11 to start with
+                 * and we need to change bit 14 to 0b */
+                e1000_read_ich8_byte(hw,
+                    E1000_ICH8_NVM_SIG_WORD * 2 + 1 + new_bank_offset,
+                    &high_byte);
+                high_byte &= 0xBF;
+                error = e1000_verify_write_ich8_byte(hw,
+                            E1000_ICH8_NVM_SIG_WORD * 2 + 1 + new_bank_offset,
+                            high_byte);
+                if (error != E1000_SUCCESS)
+                    sector_write_failed = TRUE;
+
+                /* And invalidate the previously valid segment by setting
+                 * its signature word (0x13) high_byte to 0b. This can be
+                 * done without an erase because flash erase sets all bits
+                 * to 1's. We can write 1's to 0's without an erase */
+                error = e1000_verify_write_ich8_byte(hw,
+                            E1000_ICH8_NVM_SIG_WORD * 2 + 1 + old_bank_offset,
+                            0);
+                if (error != E1000_SUCCESS)
+                    sector_write_failed = TRUE;
+            }
+        } while (++sector_retries < 10 && sector_write_failed == TRUE);
+    }
+
     return error;
 }
 
@@ -5102,15 +5616,19 @@ e1000_init_rx_addrs(struct e1000_hw *hw)
      * the other port. */
     if ((hw->mac_type == e1000_82571) && (hw->laa_is_present == TRUE))
         rar_num -= 1;
+    if (hw->mac_type == e1000_ich8lan)
+        rar_num = E1000_RAR_ENTRIES_ICH8LAN;
+
     /* Zero out the other 15 receive addresses. */
     DEBUGOUT("Clearing RAR[1-15]\n");
     for(i = 1; i < rar_num; i++) {
         E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
+        E1000_WRITE_FLUSH(hw);
         E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
+        E1000_WRITE_FLUSH(hw);
     }
 }
 
-#if 0
 /******************************************************************************
  * Updates the MAC's list of multicast addresses.
  *
@@ -5145,6 +5663,8 @@ e1000_mc_addr_list_update(struct e1000_hw *hw,
     /* Clear RAR[1-15] */
     DEBUGOUT(" Clearing RAR[1-15]\n");
     num_rar_entry = E1000_RAR_ENTRIES;
+    if (hw->mac_type == e1000_ich8lan)
+        num_rar_entry = E1000_RAR_ENTRIES_ICH8LAN;
     /* Reserve a spot for the Locally Administered Address to work around
      * an 82571 issue in which a reset on one port will reload the MAC on
      * the other port. */
@@ -5153,14 +5673,19 @@ e1000_mc_addr_list_update(struct e1000_hw *hw,
 
     for(i = rar_used_count; i < num_rar_entry; i++) {
         E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
+        E1000_WRITE_FLUSH(hw);
         E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
+        E1000_WRITE_FLUSH(hw);
     }
 
     /* Clear the MTA */
     DEBUGOUT(" Clearing MTA\n");
     num_mta_entry = E1000_NUM_MTA_REGISTERS;
+    if (hw->mac_type == e1000_ich8lan)
+        num_mta_entry = E1000_NUM_MTA_REGISTERS_ICH8LAN;
     for(i = 0; i < num_mta_entry; i++) {
         E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
+        E1000_WRITE_FLUSH(hw);
     }
 
     /* Add the new addresses */
@@ -5194,7 +5719,6 @@ e1000_mc_addr_list_update(struct e1000_hw *hw,
     }
     DEBUGOUT("MC Update Complete\n");
 }
-#endif  /*  0  */
 
 /******************************************************************************
  * Hashes an address to determine its location in the multicast table
@@ -5217,24 +5741,46 @@ e1000_hash_mc_addr(struct e1000_hw *hw,
      * LSB                 MSB
      */
     case 0:
-        /* [47:36] i.e. 0x563 for above example address */
-        hash_value = ((mc_addr[4] >> 4) | (((uint16_t) mc_addr[5]) << 4));
+        if (hw->mac_type == e1000_ich8lan) {
+            /* [47:38] i.e. 0x158 for above example address */
+            hash_value = ((mc_addr[4] >> 6) | (((uint16_t) mc_addr[5]) << 2));
+        } else {
+            /* [47:36] i.e. 0x563 for above example address */
+            hash_value = ((mc_addr[4] >> 4) | (((uint16_t) mc_addr[5]) << 4));
+        }
         break;
     case 1:
-        /* [46:35] i.e. 0xAC6 for above example address */
-        hash_value = ((mc_addr[4] >> 3) | (((uint16_t) mc_addr[5]) << 5));
+        if (hw->mac_type == e1000_ich8lan) {
+            /* [46:37] i.e. 0x2B1 for above example address */
+            hash_value = ((mc_addr[4] >> 5) | (((uint16_t) mc_addr[5]) << 3));
+        } else {
+            /* [46:35] i.e. 0xAC6 for above example address */
+            hash_value = ((mc_addr[4] >> 3) | (((uint16_t) mc_addr[5]) << 5));
+        }
         break;
     case 2:
-        /* [45:34] i.e. 0x5D8 for above example address */
-        hash_value = ((mc_addr[4] >> 2) | (((uint16_t) mc_addr[5]) << 6));
+        if (hw->mac_type == e1000_ich8lan) {
+            /*[45:36] i.e. 0x163 for above example address */
+            hash_value = ((mc_addr[4] >> 4) | (((uint16_t) mc_addr[5]) << 4));
+        } else {
+            /* [45:34] i.e. 0x5D8 for above example address */
+            hash_value = ((mc_addr[4] >> 2) | (((uint16_t) mc_addr[5]) << 6));
+        }
         break;
     case 3:
-        /* [43:32] i.e. 0x634 for above example address */
-        hash_value = ((mc_addr[4]) | (((uint16_t) mc_addr[5]) << 8));
+        if (hw->mac_type == e1000_ich8lan) {
+            /* [43:34] i.e. 0x18D for above example address */
+            hash_value = ((mc_addr[4] >> 2) | (((uint16_t) mc_addr[5]) << 6));
+        } else {
+            /* [43:32] i.e. 0x634 for above example address */
+            hash_value = ((mc_addr[4]) | (((uint16_t) mc_addr[5]) << 8));
+        }
         break;
     }
 
     hash_value &= 0xFFF;
+    if (hw->mac_type == e1000_ich8lan)
+        hash_value &= 0x3FF;
 
     return hash_value;
 }
@@ -5262,6 +5808,8 @@ e1000_mta_set(struct e1000_hw *hw,
      * register are determined by the lower 5 bits of the value.
      */
     hash_reg = (hash_value >> 5) & 0x7F;
+    if (hw->mac_type == e1000_ich8lan)
+        hash_reg &= 0x1F;
     hash_bit = hash_value & 0x1F;
 
     mta = E1000_READ_REG_ARRAY(hw, MTA, hash_reg);
@@ -5275,9 +5823,12 @@ e1000_mta_set(struct e1000_hw *hw,
     if((hw->mac_type == e1000_82544) && ((hash_reg & 0x1) == 1)) {
         temp = E1000_READ_REG_ARRAY(hw, MTA, (hash_reg - 1));
         E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta);
+        E1000_WRITE_FLUSH(hw);
         E1000_WRITE_REG_ARRAY(hw, MTA, (hash_reg - 1), temp);
+        E1000_WRITE_FLUSH(hw);
     } else {
         E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta);
+        E1000_WRITE_FLUSH(hw);
     }
 }
 
@@ -5334,7 +5885,9 @@ e1000_rar_set(struct e1000_hw *hw,
     }
 
     E1000_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low);
+    E1000_WRITE_FLUSH(hw);
     E1000_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high);
+    E1000_WRITE_FLUSH(hw);
 }
 
 /******************************************************************************
@@ -5351,12 +5904,18 @@ e1000_write_vfta(struct e1000_hw *hw,
 {
     uint32_t temp;
 
-    if((hw->mac_type == e1000_82544) && ((offset & 0x1) == 1)) {
+    if (hw->mac_type == e1000_ich8lan)
+        return;
+
+    if ((hw->mac_type == e1000_82544) && ((offset & 0x1) == 1)) {
         temp = E1000_READ_REG_ARRAY(hw, VFTA, (offset - 1));
         E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
+        E1000_WRITE_FLUSH(hw);
         E1000_WRITE_REG_ARRAY(hw, VFTA, (offset - 1), temp);
+        E1000_WRITE_FLUSH(hw);
     } else {
         E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
+        E1000_WRITE_FLUSH(hw);
     }
 }
 
@@ -5373,6 +5932,9 @@ e1000_clear_vfta(struct e1000_hw *hw)
     uint32_t vfta_offset = 0;
     uint32_t vfta_bit_in_reg = 0;
 
+    if (hw->mac_type == e1000_ich8lan)
+        return;
+
     if (hw->mac_type == e1000_82573) {
         if (hw->mng_cookie.vlan_id != 0) {
             /* The VFTA is a 4096b bit-field, each identifying a single VLAN
@@ -5392,6 +5954,7 @@ e1000_clear_vfta(struct e1000_hw *hw)
          * manageability unit */
         vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
         E1000_WRITE_REG_ARRAY(hw, VFTA, offset, vfta_value);
+        E1000_WRITE_FLUSH(hw);
     }
 }
 
@@ -5421,9 +5984,18 @@ e1000_id_led_init(struct e1000_hw * hw)
         DEBUGOUT("EEPROM Read Error\n");
         return -E1000_ERR_EEPROM;
     }
-    if((eeprom_data== ID_LED_RESERVED_0000) ||
-       (eeprom_data == ID_LED_RESERVED_FFFF)) eeprom_data = ID_LED_DEFAULT;
-    for(i = 0; i < 4; i++) {
+
+    if ((hw->mac_type == e1000_82573) &&
+        (eeprom_data == ID_LED_RESERVED_82573))
+        eeprom_data = ID_LED_DEFAULT_82573;
+    else if ((eeprom_data == ID_LED_RESERVED_0000) ||
+            (eeprom_data == ID_LED_RESERVED_FFFF)) {
+        if (hw->mac_type == e1000_ich8lan)
+            eeprom_data = ID_LED_DEFAULT_ICH8LAN;
+        else
+            eeprom_data = ID_LED_DEFAULT;
+    }
+    for (i = 0; i < 4; i++) {
         temp = (eeprom_data >> (i << 2)) & led_mask;
         switch(temp) {
         case ID_LED_ON1_DEF2:
@@ -5518,6 +6090,44 @@ e1000_setup_led(struct e1000_hw *hw)
     return E1000_SUCCESS;
 }
 
+/******************************************************************************
+ * Used on 82571 and later Si that has LED blink bits.
+ * Callers must use their own timer and should have already called
+ * e1000_id_led_init()
+ * Call e1000_cleanup led() to stop blinking
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
+int32_t
+e1000_blink_led_start(struct e1000_hw *hw)
+{
+    int16_t  i;
+    uint32_t ledctl_blink = 0;
+
+    DEBUGFUNC("e1000_id_led_blink_on");
+
+    if (hw->mac_type < e1000_82571) {
+        /* Nothing to do */
+        return E1000_SUCCESS;
+    }
+    if (hw->media_type == e1000_media_type_fiber) {
+        /* always blink LED0 for PCI-E fiber */
+        ledctl_blink = E1000_LEDCTL_LED0_BLINK |
+                     (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
+    } else {
+        /* set the blink bit for each LED that's "on" (0x0E) in ledctl_mode2 */
+        ledctl_blink = hw->ledctl_mode2;
+        for (i=0; i < 4; i++)
+            if (((hw->ledctl_mode2 >> (i * 8)) & 0xFF) ==
+                E1000_LEDCTL_MODE_LED_ON)
+                ledctl_blink |= (E1000_LEDCTL_LED0_BLINK << (i * 8));
+    }
+
+    E1000_WRITE_REG(hw, LEDCTL, ledctl_blink);
+
+    return E1000_SUCCESS;
+}
+
 /******************************************************************************
  * Restores the saved state of the SW controlable LED.
  *
@@ -5548,6 +6158,10 @@ e1000_cleanup_led(struct e1000_hw *hw)
             return ret_val;
         /* Fall Through */
     default:
+        if (hw->phy_type == e1000_phy_ife) {
+            e1000_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
+            break;
+        }
         /* Restore LEDCTL settings */
         E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_default);
         break;
@@ -5592,7 +6206,10 @@ e1000_led_on(struct e1000_hw *hw)
             /* Clear SW Defineable Pin 0 to turn on the LED */
             ctrl &= ~E1000_CTRL_SWDPIN0;
             ctrl |= E1000_CTRL_SWDPIO0;
-        } else if(hw->media_type == e1000_media_type_copper) {
+        } else if (hw->phy_type == e1000_phy_ife) {
+            e1000_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
+                 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
+        } else if (hw->media_type == e1000_media_type_copper) {
             E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode2);
             return E1000_SUCCESS;
         }
@@ -5640,7 +6257,10 @@ e1000_led_off(struct e1000_hw *hw)
             /* Set SW Defineable Pin 0 to turn off the LED */
             ctrl |= E1000_CTRL_SWDPIN0;
             ctrl |= E1000_CTRL_SWDPIO0;
-        } else if(hw->media_type == e1000_media_type_copper) {
+        } else if (hw->phy_type == e1000_phy_ife) {
+            e1000_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
+                 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF));
+        } else if (hw->media_type == e1000_media_type_copper) {
             E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode1);
             return E1000_SUCCESS;
         }
@@ -5678,12 +6298,16 @@ e1000_clear_hw_cntrs(struct e1000_hw *hw)
     temp = E1000_READ_REG(hw, XOFFRXC);
     temp = E1000_READ_REG(hw, XOFFTXC);
     temp = E1000_READ_REG(hw, FCRUC);
+
+    if (hw->mac_type != e1000_ich8lan) {
     temp = E1000_READ_REG(hw, PRC64);
     temp = E1000_READ_REG(hw, PRC127);
     temp = E1000_READ_REG(hw, PRC255);
     temp = E1000_READ_REG(hw, PRC511);
     temp = E1000_READ_REG(hw, PRC1023);
     temp = E1000_READ_REG(hw, PRC1522);
+    }
+
     temp = E1000_READ_REG(hw, GPRC);
     temp = E1000_READ_REG(hw, BPRC);
     temp = E1000_READ_REG(hw, MPRC);
@@ -5703,12 +6327,16 @@ e1000_clear_hw_cntrs(struct e1000_hw *hw)
     temp = E1000_READ_REG(hw, TOTH);
     temp = E1000_READ_REG(hw, TPR);
     temp = E1000_READ_REG(hw, TPT);
+
+    if (hw->mac_type != e1000_ich8lan) {
     temp = E1000_READ_REG(hw, PTC64);
     temp = E1000_READ_REG(hw, PTC127);
     temp = E1000_READ_REG(hw, PTC255);
     temp = E1000_READ_REG(hw, PTC511);
     temp = E1000_READ_REG(hw, PTC1023);
     temp = E1000_READ_REG(hw, PTC1522);
+    }
+
     temp = E1000_READ_REG(hw, MPTC);
     temp = E1000_READ_REG(hw, BPTC);
 
@@ -5731,6 +6359,9 @@ e1000_clear_hw_cntrs(struct e1000_hw *hw)
 
     temp = E1000_READ_REG(hw, IAC);
     temp = E1000_READ_REG(hw, ICRXOC);
+
+    if (hw->mac_type == e1000_ich8lan) return;
+
     temp = E1000_READ_REG(hw, ICRXPTC);
     temp = E1000_READ_REG(hw, ICRXATC);
     temp = E1000_READ_REG(hw, ICTXPTC);
@@ -5911,6 +6542,7 @@ e1000_get_bus_info(struct e1000_hw *hw)
         hw->bus_width = e1000_bus_width_pciex_1;
         break;
     case e1000_82571:
+    case e1000_ich8lan:
     case e1000_80003es2lan:
         hw->bus_type = e1000_bus_type_pci_express;
         hw->bus_speed = e1000_bus_speed_2500;
@@ -5948,8 +6580,6 @@ e1000_get_bus_info(struct e1000_hw *hw)
         break;
     }
 }
-
-#if 0
 /******************************************************************************
  * Reads a value from one of the devices registers using port I/O (as opposed
  * memory mapped I/O). Only 82544 and newer devices support port I/O.
@@ -5967,7 +6597,6 @@ e1000_read_reg_io(struct e1000_hw *hw,
     e1000_io_write(hw, io_addr, offset);
     return e1000_io_read(hw, io_data);
 }
-#endif  /*  0  */
 
 /******************************************************************************
  * Writes a value to one of the devices registers using port I/O (as opposed to
@@ -6012,8 +6641,6 @@ e1000_get_cable_length(struct e1000_hw *hw,
 {
     int32_t ret_val;
     uint16_t agc_value = 0;
-    uint16_t cur_agc, min_agc = IGP01E1000_AGC_LENGTH_TABLE_SIZE;
-    uint16_t max_agc = 0;
     uint16_t i, phy_data;
     uint16_t cable_length;
 
@@ -6086,6 +6713,8 @@ e1000_get_cable_length(struct e1000_hw *hw,
             break;
         }
     } else if(hw->phy_type == e1000_phy_igp) { /* For IGP PHY */
+        uint16_t cur_agc_value;
+        uint16_t min_agc_value = IGP01E1000_AGC_LENGTH_TABLE_SIZE;
         uint16_t agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM] =
                                                          {IGP01E1000_PHY_AGC_A,
                                                           IGP01E1000_PHY_AGC_B,
@@ -6098,23 +6727,23 @@ e1000_get_cable_length(struct e1000_hw *hw,
             if(ret_val)
                 return ret_val;
 
-            cur_agc = phy_data >> IGP01E1000_AGC_LENGTH_SHIFT;
+            cur_agc_value = phy_data >> IGP01E1000_AGC_LENGTH_SHIFT;
 
-            /* Array bound check. */
-            if((cur_agc >= IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1) ||
-               (cur_agc == 0))
+            /* Value bound check. */
+            if ((cur_agc_value >= IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1) ||
+                (cur_agc_value == 0))
                 return -E1000_ERR_PHY;
 
-            agc_value += cur_agc;
+            agc_value += cur_agc_value;
 
             /* Update minimal AGC value. */
-            if(min_agc > cur_agc)
-                min_agc = cur_agc;
+            if (min_agc_value > cur_agc_value)
+                min_agc_value = cur_agc_value;
         }
 
         /* Remove the minimal AGC result for length < 50m */
-        if(agc_value < IGP01E1000_PHY_CHANNEL_NUM * e1000_igp_cable_length_50) {
-            agc_value -= min_agc;
+        if (agc_value < IGP01E1000_PHY_CHANNEL_NUM * e1000_igp_cable_length_50) {
+            agc_value -= min_agc_value;
 
             /* Get the average length of the remaining 3 channels */
             agc_value /= (IGP01E1000_PHY_CHANNEL_NUM - 1);
@@ -6130,7 +6759,10 @@ e1000_get_cable_length(struct e1000_hw *hw,
                        IGP01E1000_AGC_RANGE) : 0;
         *max_length = e1000_igp_cable_length_table[agc_value] +
                       IGP01E1000_AGC_RANGE;
-    } else if (hw->phy_type == e1000_phy_igp_2) {
+    } else if (hw->phy_type == e1000_phy_igp_2 ||
+               hw->phy_type == e1000_phy_igp_3) {
+        uint16_t cur_agc_index, max_agc_index = 0;
+        uint16_t min_agc_index = IGP02E1000_AGC_LENGTH_TABLE_SIZE - 1;
         uint16_t agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] =
                                                          {IGP02E1000_PHY_AGC_A,
                                                           IGP02E1000_PHY_AGC_B,
@@ -6145,19 +6777,27 @@ e1000_get_cable_length(struct e1000_hw *hw,
            /* Getting bits 15:9, which represent the combination of course and
              * fine gain values.  The result is a number that can be put into
              * the lookup table to obtain the approximate cable length. */
-            cur_agc = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
-                      IGP02E1000_AGC_LENGTH_MASK;
+            cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
+                            IGP02E1000_AGC_LENGTH_MASK;
 
-            /* Remove min & max AGC values from calculation. */
-            if (e1000_igp_2_cable_length_table[min_agc] > e1000_igp_2_cable_length_table[cur_agc])
-                min_agc = cur_agc;
-           if (e1000_igp_2_cable_length_table[max_agc] < e1000_igp_2_cable_length_table[cur_agc])
-                max_agc = cur_agc;
+            /* Array index bound check. */
+            if ((cur_agc_index >= IGP02E1000_AGC_LENGTH_TABLE_SIZE) ||
+                (cur_agc_index == 0))
+                return -E1000_ERR_PHY;
 
-            agc_value += e1000_igp_2_cable_length_table[cur_agc];
+            /* Remove min & max AGC values from calculation. */
+            if (e1000_igp_2_cable_length_table[min_agc_index] >
+                e1000_igp_2_cable_length_table[cur_agc_index])
+                min_agc_index = cur_agc_index;
+            if (e1000_igp_2_cable_length_table[max_agc_index] <
+                e1000_igp_2_cable_length_table[cur_agc_index])
+                max_agc_index = cur_agc_index;
+
+            agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
         }
 
-        agc_value -= (e1000_igp_2_cable_length_table[min_agc] + e1000_igp_2_cable_length_table[max_agc]);
+        agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
+                      e1000_igp_2_cable_length_table[max_agc_index]);
         agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
 
         /* Calculate cable length with the error range of +/- 10 meters. */
@@ -6203,7 +6843,8 @@ e1000_check_polarity(struct e1000_hw *hw,
             return ret_val;
         *polarity = (phy_data & M88E1000_PSSR_REV_POLARITY) >>
                     M88E1000_PSSR_REV_POLARITY_SHIFT;
-    } else if(hw->phy_type == e1000_phy_igp ||
+    } else if (hw->phy_type == e1000_phy_igp ||
+              hw->phy_type == e1000_phy_igp_3 ||
               hw->phy_type == e1000_phy_igp_2) {
         /* Read the Status register to check the speed */
         ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS,
@@ -6229,6 +6870,13 @@ e1000_check_polarity(struct e1000_hw *hw,
              * 100 Mbps this bit is always 0) */
             *polarity = phy_data & IGP01E1000_PSSR_POLARITY_REVERSED;
         }
+    } else if (hw->phy_type == e1000_phy_ife) {
+        ret_val = e1000_read_phy_reg(hw, IFE_PHY_EXTENDED_STATUS_CONTROL,
+                                     &phy_data);
+        if (ret_val)
+            return ret_val;
+        *polarity = (phy_data & IFE_PESC_POLARITY_REVERSED) >>
+                           IFE_PESC_POLARITY_REVERSED_SHIFT;
     }
     return E1000_SUCCESS;
 }
@@ -6256,7 +6904,8 @@ e1000_check_downshift(struct e1000_hw *hw)
 
     DEBUGFUNC("e1000_check_downshift");
 
-    if(hw->phy_type == e1000_phy_igp ||
+    if (hw->phy_type == e1000_phy_igp ||
+        hw->phy_type == e1000_phy_igp_3 ||
         hw->phy_type == e1000_phy_igp_2) {
         ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_LINK_HEALTH,
                                      &phy_data);
@@ -6273,6 +6922,9 @@ e1000_check_downshift(struct e1000_hw *hw)
 
         hw->speed_downgraded = (phy_data & M88E1000_PSSR_DOWNSHIFT) >>
                                M88E1000_PSSR_DOWNSHIFT_SHIFT;
+    } else if (hw->phy_type == e1000_phy_ife) {
+        /* e1000_phy_ife supports 10/100 speed only */
+        hw->speed_downgraded = FALSE;
     }
 
     return E1000_SUCCESS;
@@ -6317,7 +6969,9 @@ e1000_config_dsp_after_link_change(struct e1000_hw *hw,
 
         if(speed == SPEED_1000) {
 
-            e1000_get_cable_length(hw, &min_length, &max_length);
+            ret_val = e1000_get_cable_length(hw, &min_length, &max_length);
+            if (ret_val)
+                return ret_val;
 
             if((hw->dsp_config_state == e1000_dsp_config_enabled) &&
                 min_length >= e1000_igp_cable_length_50) {
@@ -6525,20 +7179,27 @@ static int32_t
 e1000_set_d3_lplu_state(struct e1000_hw *hw,
                         boolean_t active)
 {
+    uint32_t phy_ctrl = 0;
     int32_t ret_val;
     uint16_t phy_data;
     DEBUGFUNC("e1000_set_d3_lplu_state");
 
-    if(hw->phy_type != e1000_phy_igp && hw->phy_type != e1000_phy_igp_2)
+    if (hw->phy_type != e1000_phy_igp && hw->phy_type != e1000_phy_igp_2
+        && hw->phy_type != e1000_phy_igp_3)
         return E1000_SUCCESS;
 
     /* During driver activity LPLU should not be used or it will attain link
      * from the lowest speeds starting from 10Mbps. The capability is used for
      * Dx transitions and states */
-    if(hw->mac_type == e1000_82541_rev_2 || hw->mac_type == e1000_82547_rev_2) {
+    if (hw->mac_type == e1000_82541_rev_2 || hw->mac_type == e1000_82547_rev_2) {
         ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, &phy_data);
-        if(ret_val)
+        if (ret_val)
             return ret_val;
+    } else if (hw->mac_type == e1000_ich8lan) {
+        /* MAC writes into PHY register based on the state transition
+         * and start auto-negotiation. SW driver can overwrite the settings
+         * in CSR PHY power control E1000_PHY_CTRL register. */
+        phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
     } else {
         ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
         if(ret_val)
@@ -6553,11 +7214,16 @@ e1000_set_d3_lplu_state(struct e1000_hw *hw,
             if(ret_val)
                 return ret_val;
         } else {
+            if (hw->mac_type == e1000_ich8lan) {
+                phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
+                E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
+            } else {
                 phy_data &= ~IGP02E1000_PM_D3_LPLU;
                 ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
                                               phy_data);
                 if (ret_val)
                     return ret_val;
+            }
         }
 
         /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used during
@@ -6593,17 +7259,22 @@ e1000_set_d3_lplu_state(struct e1000_hw *hw,
               (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) {
 
         if(hw->mac_type == e1000_82541_rev_2 ||
-           hw->mac_type == e1000_82547_rev_2) {
+            hw->mac_type == e1000_82547_rev_2) {
             phy_data |= IGP01E1000_GMII_FLEX_SPD;
             ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data);
             if(ret_val)
                 return ret_val;
         } else {
+            if (hw->mac_type == e1000_ich8lan) {
+                phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
+                E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
+            } else {
                 phy_data |= IGP02E1000_PM_D3_LPLU;
                 ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
                                               phy_data);
                 if (ret_val)
                     return ret_val;
+            }
         }
 
         /* When LPLU is enabled we should disable SmartSpeed */
@@ -6638,6 +7309,7 @@ static int32_t
 e1000_set_d0_lplu_state(struct e1000_hw *hw,
                         boolean_t active)
 {
+    uint32_t phy_ctrl = 0;
     int32_t ret_val;
     uint16_t phy_data;
     DEBUGFUNC("e1000_set_d0_lplu_state");
@@ -6645,15 +7317,24 @@ e1000_set_d0_lplu_state(struct e1000_hw *hw,
     if(hw->mac_type <= e1000_82547_rev_2)
         return E1000_SUCCESS;
 
+    if (hw->mac_type == e1000_ich8lan) {
+        phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
+    } else {
         ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
         if(ret_val)
             return ret_val;
+    }
 
     if (!active) {
+        if (hw->mac_type == e1000_ich8lan) {
+            phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
+            E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
+        } else {
             phy_data &= ~IGP02E1000_PM_D0_LPLU;
             ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
             if (ret_val)
                 return ret_val;
+        }
 
         /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used during
          * Dx states where the power conservation is most important.  During
@@ -6686,10 +7367,15 @@ e1000_set_d0_lplu_state(struct e1000_hw *hw,
 
     } else {
 
+        if (hw->mac_type == e1000_ich8lan) {
+            phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
+            E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
+        } else {
             phy_data |= IGP02E1000_PM_D0_LPLU;
             ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
             if (ret_val)
                 return ret_val;
+        }
 
         /* When LPLU is enabled we should disable SmartSpeed */
         ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data);
@@ -6928,8 +7614,10 @@ e1000_mng_write_cmd_header(struct e1000_hw * hw,
 
     length >>= 2;
     /* The device driver writes the relevant command block into the ram area. */
-    for (i = 0; i < length; i++)
+    for (i = 0; i < length; i++) {
         E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, i, *((uint32_t *) hdr + i));
+        E1000_WRITE_FLUSH(hw);
+    }
 
     return E1000_SUCCESS;
 }
@@ -6961,15 +7649,18 @@ e1000_mng_write_commit(
  * returns  - TRUE when the mode is IAMT or FALSE.
  ****************************************************************************/
 boolean_t
-e1000_check_mng_mode(
-    struct e1000_hw *hw)
+e1000_check_mng_mode(struct e1000_hw *hw)
 {
     uint32_t fwsm;
 
     fwsm = E1000_READ_REG(hw, FWSM);
 
-    if((fwsm & E1000_FWSM_MODE_MASK) ==
-        (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
+    if (hw->mac_type == e1000_ich8lan) {
+        if ((fwsm & E1000_FWSM_MODE_MASK) ==
+            (E1000_MNG_ICH_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
+            return TRUE;
+    } else if ((fwsm & E1000_FWSM_MODE_MASK) ==
+               (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
         return TRUE;
 
     return FALSE;
@@ -7209,7 +7900,6 @@ e1000_set_pci_express_master_disable(struct e1000_hw *hw)
     E1000_WRITE_REG(hw, CTRL, ctrl);
 }
 
-#if 0
 /***************************************************************************
  *
  * Enables PCI-Express master access.
@@ -7233,7 +7923,6 @@ e1000_enable_pciex_master(struct e1000_hw *hw)
     ctrl &= ~E1000_CTRL_GIO_MASTER_DISABLE;
     E1000_WRITE_REG(hw, CTRL, ctrl);
 }
-#endif  /*  0  */
 
 /*******************************************************************************
  *
@@ -7299,8 +7988,10 @@ e1000_get_auto_rd_done(struct e1000_hw *hw)
     case e1000_82572:
     case e1000_82573:
     case e1000_80003es2lan:
-        while(timeout) {
-            if (E1000_READ_REG(hw, EECD) & E1000_EECD_AUTO_RD) break;
+    case e1000_ich8lan:
+        while (timeout) {
+            if (E1000_READ_REG(hw, EECD) & E1000_EECD_AUTO_RD)
+                break;
             else msec_delay(1);
             timeout--;
         }
@@ -7340,7 +8031,7 @@ e1000_get_phy_cfg_done(struct e1000_hw *hw)
 
     switch (hw->mac_type) {
     default:
-        msec_delay(10);
+        msec_delay_irq(10);
         break;
     case e1000_80003es2lan:
         /* Separate *_CFG_DONE_* bit for each port */
@@ -7523,6 +8214,13 @@ int32_t
 e1000_check_phy_reset_block(struct e1000_hw *hw)
 {
     uint32_t manc = 0;
+    uint32_t fwsm = 0;
+
+    if (hw->mac_type == e1000_ich8lan) {
+        fwsm = E1000_READ_REG(hw, FWSM);
+        return (fwsm & E1000_FWSM_RSPCIPHY) ? E1000_SUCCESS
+                                            : E1000_BLK_PHY_RESET;
+    }
 
     if (hw->mac_type > e1000_82547_rev_2)
         manc = E1000_READ_REG(hw, MANC);
@@ -7549,6 +8247,8 @@ e1000_arc_subsystem_valid(struct e1000_hw *hw)
         if((fwsm & E1000_FWSM_MODE_MASK) != 0)
             return TRUE;
         break;
+    case e1000_ich8lan:
+        return TRUE;
     default:
         break;
     }
@@ -7556,4 +8256,846 @@ e1000_arc_subsystem_valid(struct e1000_hw *hw)
 }
 
 
+/******************************************************************************
+ * Configure PCI-Ex no-snoop
+ *
+ * hw - Struct containing variables accessed by shared code.
+ * no_snoop - Bitmap of no-snoop events.
+ *
+ * returns: E1000_SUCCESS
+ *
+ *****************************************************************************/
+int32_t
+e1000_set_pci_ex_no_snoop(struct e1000_hw *hw, uint32_t no_snoop)
+{
+    uint32_t gcr_reg = 0;
+
+    DEBUGFUNC("e1000_set_pci_ex_no_snoop");
+
+    if (hw->bus_type == e1000_bus_type_unknown)
+        e1000_get_bus_info(hw);
+
+    if (hw->bus_type != e1000_bus_type_pci_express)
+        return E1000_SUCCESS;
+
+    if (no_snoop) {
+        gcr_reg = E1000_READ_REG(hw, GCR);
+        gcr_reg &= ~(PCI_EX_NO_SNOOP_ALL);
+        gcr_reg |= no_snoop;
+        E1000_WRITE_REG(hw, GCR, gcr_reg);
+    }
+    if (hw->mac_type == e1000_ich8lan) {
+        uint32_t ctrl_ext;
+
+        E1000_WRITE_REG(hw, GCR, PCI_EX_82566_SNOOP_ALL);
+
+        ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
+        ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
+        E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
+    }
+
+    return E1000_SUCCESS;
+}
+
+/***************************************************************************
+ *
+ * Get software semaphore FLAG bit (SWFLAG).
+ * SWFLAG is used to synchronize the access to all shared resource between
+ * SW, FW and HW.
+ *
+ * hw: Struct containing variables accessed by shared code
+ *
+ ***************************************************************************/
+int32_t
+e1000_get_software_flag(struct e1000_hw *hw)
+{
+    int32_t timeout = PHY_CFG_TIMEOUT;
+    uint32_t extcnf_ctrl;
+
+    DEBUGFUNC("e1000_get_software_flag");
+
+    if (hw->mac_type == e1000_ich8lan) {
+        while (timeout) {
+            extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL);
+            extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
+            E1000_WRITE_REG(hw, EXTCNF_CTRL, extcnf_ctrl);
+
+            extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL);
+            if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
+                break;
+            msec_delay_irq(1);
+            timeout--;
+        }
+
+        if (!timeout) {
+            DEBUGOUT("FW or HW locks the resource too long.\n");
+            return -E1000_ERR_CONFIG;
+        }
+    }
+
+    return E1000_SUCCESS;
+}
+
+/***************************************************************************
+ *
+ * Release software semaphore FLAG bit (SWFLAG).
+ * SWFLAG is used to synchronize the access to all shared resource between
+ * SW, FW and HW.
+ *
+ * hw: Struct containing variables accessed by shared code
+ *
+ ***************************************************************************/
+void
+e1000_release_software_flag(struct e1000_hw *hw)
+{
+    uint32_t extcnf_ctrl;
+
+    DEBUGFUNC("e1000_release_software_flag");
+
+    if (hw->mac_type == e1000_ich8lan) {
+        extcnf_ctrl= E1000_READ_REG(hw, EXTCNF_CTRL);
+        extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
+        E1000_WRITE_REG(hw, EXTCNF_CTRL, extcnf_ctrl);
+    }
+
+    return;
+}
+
+/***************************************************************************
+ *
+ * Disable dynamic power down mode in ife PHY.
+ * It can be used to workaround band-gap problem.
+ *
+ * hw: Struct containing variables accessed by shared code
+ *
+ ***************************************************************************/
+int32_t
+e1000_ife_disable_dynamic_power_down(struct e1000_hw *hw)
+{
+    uint16_t phy_data;
+    int32_t ret_val = E1000_SUCCESS;
+
+    DEBUGFUNC("e1000_ife_disable_dynamic_power_down");
+
+    if (hw->phy_type == e1000_phy_ife) {
+        ret_val = e1000_read_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL, &phy_data);
+        if (ret_val)
+            return ret_val;
+
+        phy_data |=  IFE_PSC_DISABLE_DYNAMIC_POWER_DOWN;
+        ret_val = e1000_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL, phy_data);
+    }
+
+    return ret_val;
+}
+
+/***************************************************************************
+ *
+ * Enable dynamic power down mode in ife PHY.
+ * It can be used to workaround band-gap problem.
+ *
+ * hw: Struct containing variables accessed by shared code
+ *
+ ***************************************************************************/
+int32_t
+e1000_ife_enable_dynamic_power_down(struct e1000_hw *hw)
+{
+    uint16_t phy_data;
+    int32_t ret_val = E1000_SUCCESS;
+
+    DEBUGFUNC("e1000_ife_enable_dynamic_power_down");
+
+    if (hw->phy_type == e1000_phy_ife) {
+        ret_val = e1000_read_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL, &phy_data);
+        if (ret_val)
+            return ret_val;
+
+        phy_data &=  ~IFE_PSC_DISABLE_DYNAMIC_POWER_DOWN;
+        ret_val = e1000_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL, phy_data);
+    }
+
+    return ret_val;
+}
+
+/******************************************************************************
+ * Reads a 16 bit word or words from the EEPROM using the ICH8's flash access
+ * register.
+ *
+ * hw - Struct containing variables accessed by shared code
+ * offset - offset of word in the EEPROM to read
+ * data - word read from the EEPROM
+ * words - number of words to read
+ *****************************************************************************/
+int32_t
+e1000_read_eeprom_ich8(struct e1000_hw *hw, uint16_t offset, uint16_t words,
+                       uint16_t *data)
+{
+    int32_t  error = E1000_SUCCESS;
+    uint32_t flash_bank = 0;
+    uint32_t act_offset = 0;
+    uint32_t bank_offset = 0;
+    uint16_t word = 0;
+    uint16_t i = 0;
+
+    /* We need to know which is the valid flash bank.  In the event
+     * that we didn't allocate eeprom_shadow_ram, we may not be
+     * managing flash_bank.  So it cannot be trusted and needs
+     * to be updated with each read.
+     */
+    /* Value of bit 22 corresponds to the flash bank we're on. */
+    flash_bank = (E1000_READ_REG(hw, EECD) & E1000_EECD_SEC1VAL) ? 1 : 0;
+
+    /* Adjust offset appropriately if we're on bank 1 - adjust for word size */
+    bank_offset = flash_bank * (hw->flash_bank_size * 2);
+
+    error = e1000_get_software_flag(hw);
+    if (error != E1000_SUCCESS)
+        return error;
+
+    for (i = 0; i < words; i++) {
+        if (hw->eeprom_shadow_ram != NULL &&
+            hw->eeprom_shadow_ram[offset+i].modified == TRUE) {
+            data[i] = hw->eeprom_shadow_ram[offset+i].eeprom_word;
+        } else {
+            /* The NVM part needs a byte offset, hence * 2 */
+            act_offset = bank_offset + ((offset + i) * 2);
+            error = e1000_read_ich8_word(hw, act_offset, &word);
+            if (error != E1000_SUCCESS)
+                break;
+            data[i] = word;
+        }
+    }
+
+    e1000_release_software_flag(hw);
+
+    return error;
+}
+
+/******************************************************************************
+ * Writes a 16 bit word or words to the EEPROM using the ICH8's flash access
+ * register.  Actually, writes are written to the shadow ram cache in the hw
+ * structure hw->e1000_shadow_ram.  e1000_commit_shadow_ram flushes this to
+ * the NVM, which occurs when the NVM checksum is updated.
+ *
+ * hw - Struct containing variables accessed by shared code
+ * offset - offset of word in the EEPROM to write
+ * words - number of words to write
+ * data - words to write to the EEPROM
+ *****************************************************************************/
+int32_t
+e1000_write_eeprom_ich8(struct e1000_hw *hw, uint16_t offset, uint16_t words,
+                        uint16_t *data)
+{
+    uint32_t i = 0;
+    int32_t error = E1000_SUCCESS;
+
+    error = e1000_get_software_flag(hw);
+    if (error != E1000_SUCCESS)
+        return error;
+
+    /* A driver can write to the NVM only if it has eeprom_shadow_ram
+     * allocated.  Subsequent reads to the modified words are read from
+     * this cached structure as well.  Writes will only go into this
+     * cached structure unless it's followed by a call to
+     * e1000_update_eeprom_checksum() where it will commit the changes
+     * and clear the "modified" field.
+     */
+    if (hw->eeprom_shadow_ram != NULL) {
+        for (i = 0; i < words; i++) {
+            if ((offset + i) < E1000_SHADOW_RAM_WORDS) {
+                hw->eeprom_shadow_ram[offset+i].modified = TRUE;
+                hw->eeprom_shadow_ram[offset+i].eeprom_word = data[i];
+            } else {
+                error = -E1000_ERR_EEPROM;
+                break;
+            }
+        }
+    } else {
+        /* Drivers have the option to not allocate eeprom_shadow_ram as long
+         * as they don't perform any NVM writes.  An attempt in doing so
+         * will result in this error.
+         */
+        error = -E1000_ERR_EEPROM;
+    }
+
+    e1000_release_software_flag(hw);
+
+    return error;
+}
+
+/******************************************************************************
+ * This function does initial flash setup so that a new read/write/erase cycle
+ * can be started.
+ *
+ * hw - The pointer to the hw structure
+ ****************************************************************************/
+int32_t
+e1000_ich8_cycle_init(struct e1000_hw *hw)
+{
+    union ich8_hws_flash_status hsfsts;
+    int32_t error = E1000_ERR_EEPROM;
+    int32_t i     = 0;
+
+    DEBUGFUNC("e1000_ich8_cycle_init");
+
+    hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS);
+
+    /* May be check the Flash Des Valid bit in Hw status */
+    if (hsfsts.hsf_status.fldesvalid == 0) {
+        DEBUGOUT("Flash descriptor invalid.  SW Sequencing must be used.");
+        return error;
+    }
+
+    /* Clear FCERR in Hw status by writing 1 */
+    /* Clear DAEL in Hw status by writing a 1 */
+    hsfsts.hsf_status.flcerr = 1;
+    hsfsts.hsf_status.dael = 1;
+
+    E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFSTS, hsfsts.regval);
+
+    /* Either we should have a hardware SPI cycle in progress bit to check
+     * against, in order to start a new cycle or FDONE bit should be changed
+     * in the hardware so that it is 1 after harware reset, which can then be
+     * used as an indication whether a cycle is in progress or has been
+     * completed .. we should also have some software semaphore mechanism to
+     * guard FDONE or the cycle in progress bit so that two threads access to
+     * those bits can be sequentiallized or a way so that 2 threads dont
+     * start the cycle at the same time */
+
+    if (hsfsts.hsf_status.flcinprog == 0) {
+        /* There is no cycle running at present, so we can start a cycle */
+        /* Begin by setting Flash Cycle Done. */
+        hsfsts.hsf_status.flcdone = 1;
+        E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFSTS, hsfsts.regval);
+        error = E1000_SUCCESS;
+    } else {
+        /* otherwise poll for sometime so the current cycle has a chance
+         * to end before giving up. */
+        for (i = 0; i < ICH8_FLASH_COMMAND_TIMEOUT; i++) {
+            hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS);
+            if (hsfsts.hsf_status.flcinprog == 0) {
+                error = E1000_SUCCESS;
+                break;
+            }
+            udelay(1);
+        }
+        if (error == E1000_SUCCESS) {
+            /* Successful in waiting for previous cycle to timeout,
+             * now set the Flash Cycle Done. */
+            hsfsts.hsf_status.flcdone = 1;
+            E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFSTS, hsfsts.regval);
+        } else {
+            DEBUGOUT("Flash controller busy, cannot get access");
+        }
+    }
+    return error;
+}
+
+/******************************************************************************
+ * This function starts a flash cycle and waits for its completion
+ *
+ * hw - The pointer to the hw structure
+ ****************************************************************************/
+int32_t
+e1000_ich8_flash_cycle(struct e1000_hw *hw, uint32_t timeout)
+{
+    union ich8_hws_flash_ctrl hsflctl;
+    union ich8_hws_flash_status hsfsts;
+    int32_t error = E1000_ERR_EEPROM;
+    uint32_t i = 0;
+
+    /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
+    hsflctl.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFCTL);
+    hsflctl.hsf_ctrl.flcgo = 1;
+    E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFCTL, hsflctl.regval);
+
+    /* wait till FDONE bit is set to 1 */
+    do {
+        hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS);
+        if (hsfsts.hsf_status.flcdone == 1)
+            break;
+        udelay(1);
+        i++;
+    } while (i < timeout);
+    if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0) {
+        error = E1000_SUCCESS;
+    }
+    return error;
+}
+
+/******************************************************************************
+ * Reads a byte or word from the NVM using the ICH8 flash access registers.
+ *
+ * hw - The pointer to the hw structure
+ * index - The index of the byte or word to read.
+ * size - Size of data to read, 1=byte 2=word
+ * data - Pointer to the word to store the value read.
+ *****************************************************************************/
+int32_t
+e1000_read_ich8_data(struct e1000_hw *hw, uint32_t index,
+                     uint32_t size, uint16_t* data)
+{
+    union ich8_hws_flash_status hsfsts;
+    union ich8_hws_flash_ctrl hsflctl;
+    uint32_t flash_linear_address;
+    uint32_t flash_data = 0;
+    int32_t error = -E1000_ERR_EEPROM;
+    int32_t count = 0;
+
+    DEBUGFUNC("e1000_read_ich8_data");
+
+    if (size < 1  || size > 2 || data == 0x0 ||
+        index > ICH8_FLASH_LINEAR_ADDR_MASK)
+        return error;
+
+    flash_linear_address = (ICH8_FLASH_LINEAR_ADDR_MASK & index) +
+                           hw->flash_base_addr;
+
+    do {
+        udelay(1);
+        /* Steps */
+        error = e1000_ich8_cycle_init(hw);
+        if (error != E1000_SUCCESS)
+            break;
+
+        hsflctl.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFCTL);
+        /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
+        hsflctl.hsf_ctrl.fldbcount = size - 1;
+        hsflctl.hsf_ctrl.flcycle = ICH8_CYCLE_READ;
+        E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFCTL, hsflctl.regval);
+
+        /* Write the last 24 bits of index into Flash Linear address field in
+         * Flash Address */
+        /* TODO: TBD maybe check the index against the size of flash */
+
+        E1000_WRITE_ICH8_REG(hw, ICH8_FLASH_FADDR, flash_linear_address);
+
+        error = e1000_ich8_flash_cycle(hw, ICH8_FLASH_COMMAND_TIMEOUT);
+
+        /* Check if FCERR is set to 1, if set to 1, clear it and try the whole
+         * sequence a few more times, else read in (shift in) the Flash Data0,
+         * the order is least significant byte first msb to lsb */
+        if (error == E1000_SUCCESS) {
+            flash_data = E1000_READ_ICH8_REG(hw, ICH8_FLASH_FDATA0);
+            if (size == 1) {
+                *data = (uint8_t)(flash_data & 0x000000FF);
+            } else if (size == 2) {
+                *data = (uint16_t)(flash_data & 0x0000FFFF);
+            }
+            break;
+        } else {
+            /* If we've gotten here, then things are probably completely hosed,
+             * but if the error condition is detected, it won't hurt to give
+             * it another try...ICH8_FLASH_CYCLE_REPEAT_COUNT times.
+             */
+            hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS);
+            if (hsfsts.hsf_status.flcerr == 1) {
+                /* Repeat for some time before giving up. */
+                continue;
+            } else if (hsfsts.hsf_status.flcdone == 0) {
+                DEBUGOUT("Timeout error - flash cycle did not complete.");
+                break;
+            }
+        }
+    } while (count++ < ICH8_FLASH_CYCLE_REPEAT_COUNT);
+
+    return error;
+}
+
+/******************************************************************************
+ * Writes One /two bytes to the NVM using the ICH8 flash access registers.
+ *
+ * hw - The pointer to the hw structure
+ * index - The index of the byte/word to read.
+ * size - Size of data to read, 1=byte 2=word
+ * data - The byte(s) to write to the NVM.
+ *****************************************************************************/
+int32_t
+e1000_write_ich8_data(struct e1000_hw *hw, uint32_t index, uint32_t size,
+                      uint16_t data)
+{
+    union ich8_hws_flash_status hsfsts;
+    union ich8_hws_flash_ctrl hsflctl;
+    uint32_t flash_linear_address;
+    uint32_t flash_data = 0;
+    int32_t error = -E1000_ERR_EEPROM;
+    int32_t count = 0;
+
+    DEBUGFUNC("e1000_write_ich8_data");
+
+    if (size < 1  || size > 2 || data > size * 0xff ||
+        index > ICH8_FLASH_LINEAR_ADDR_MASK)
+        return error;
+
+    flash_linear_address = (ICH8_FLASH_LINEAR_ADDR_MASK & index) +
+                           hw->flash_base_addr;
+
+    do {
+        udelay(1);
+        /* Steps */
+        error = e1000_ich8_cycle_init(hw);
+        if (error != E1000_SUCCESS)
+            break;
+
+        hsflctl.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFCTL);
+        /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
+        hsflctl.hsf_ctrl.fldbcount = size -1;
+        hsflctl.hsf_ctrl.flcycle = ICH8_CYCLE_WRITE;
+        E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFCTL, hsflctl.regval);
+
+        /* Write the last 24 bits of index into Flash Linear address field in
+         * Flash Address */
+        E1000_WRITE_ICH8_REG(hw, ICH8_FLASH_FADDR, flash_linear_address);
+
+        if (size == 1)
+            flash_data = (uint32_t)data & 0x00FF;
+        else
+            flash_data = (uint32_t)data;
+
+        E1000_WRITE_ICH8_REG(hw, ICH8_FLASH_FDATA0, flash_data);
+
+        /* check if FCERR is set to 1 , if set to 1, clear it and try the whole
+         * sequence a few more times else done */
+        error = e1000_ich8_flash_cycle(hw, ICH8_FLASH_COMMAND_TIMEOUT);
+        if (error == E1000_SUCCESS) {
+            break;
+        } else {
+            /* If we're here, then things are most likely completely hosed,
+             * but if the error condition is detected, it won't hurt to give
+             * it another try...ICH8_FLASH_CYCLE_REPEAT_COUNT times.
+             */
+            hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS);
+            if (hsfsts.hsf_status.flcerr == 1) {
+                /* Repeat for some time before giving up. */
+                continue;
+            } else if (hsfsts.hsf_status.flcdone == 0) {
+                DEBUGOUT("Timeout error - flash cycle did not complete.");
+                break;
+            }
+        }
+    } while (count++ < ICH8_FLASH_CYCLE_REPEAT_COUNT);
+
+    return error;
+}
+
+/******************************************************************************
+ * Reads a single byte from the NVM using the ICH8 flash access registers.
+ *
+ * hw - pointer to e1000_hw structure
+ * index - The index of the byte to read.
+ * data - Pointer to a byte to store the value read.
+ *****************************************************************************/
+int32_t
+e1000_read_ich8_byte(struct e1000_hw *hw, uint32_t index, uint8_t* data)
+{
+    int32_t status = E1000_SUCCESS;
+    uint16_t word = 0;
+
+    status = e1000_read_ich8_data(hw, index, 1, &word);
+    if (status == E1000_SUCCESS) {
+        *data = (uint8_t)word;
+    }
+
+    return status;
+}
+
+/******************************************************************************
+ * Writes a single byte to the NVM using the ICH8 flash access registers.
+ * Performs verification by reading back the value and then going through
+ * a retry algorithm before giving up.
+ *
+ * hw - pointer to e1000_hw structure
+ * index - The index of the byte to write.
+ * byte - The byte to write to the NVM.
+ *****************************************************************************/
+int32_t
+e1000_verify_write_ich8_byte(struct e1000_hw *hw, uint32_t index, uint8_t byte)
+{
+    int32_t error = E1000_SUCCESS;
+    int32_t program_retries;
+    uint8_t temp_byte;
+
+    e1000_write_ich8_byte(hw, index, byte);
+    udelay(100);
+
+    for (program_retries = 0; program_retries < 100; program_retries++) {
+        e1000_read_ich8_byte(hw, index, &temp_byte);
+        if (temp_byte == byte)
+            break;
+        udelay(10);
+        e1000_write_ich8_byte(hw, index, byte);
+        udelay(100);
+    }
+    if (program_retries == 100)
+        error = E1000_ERR_EEPROM;
+
+    return error;
+}
+
+/******************************************************************************
+ * Writes a single byte to the NVM using the ICH8 flash access registers.
+ *
+ * hw - pointer to e1000_hw structure
+ * index - The index of the byte to read.
+ * data - The byte to write to the NVM.
+ *****************************************************************************/
+int32_t
+e1000_write_ich8_byte(struct e1000_hw *hw, uint32_t index, uint8_t data)
+{
+    int32_t status = E1000_SUCCESS;
+    uint16_t word = (uint16_t)data;
+
+    status = e1000_write_ich8_data(hw, index, 1, word);
+
+    return status;
+}
+
+/******************************************************************************
+ * Reads a word from the NVM using the ICH8 flash access registers.
+ *
+ * hw - pointer to e1000_hw structure
+ * index - The starting byte index of the word to read.
+ * data - Pointer to a word to store the value read.
+ *****************************************************************************/
+int32_t
+e1000_read_ich8_word(struct e1000_hw *hw, uint32_t index, uint16_t *data)
+{
+    int32_t status = E1000_SUCCESS;
+    status = e1000_read_ich8_data(hw, index, 2, data);
+    return status;
+}
+
+/******************************************************************************
+ * Writes a word to the NVM using the ICH8 flash access registers.
+ *
+ * hw - pointer to e1000_hw structure
+ * index - The starting byte index of the word to read.
+ * data - The word to write to the NVM.
+ *****************************************************************************/
+int32_t
+e1000_write_ich8_word(struct e1000_hw *hw, uint32_t index, uint16_t data)
+{
+    int32_t status = E1000_SUCCESS;
+    status = e1000_write_ich8_data(hw, index, 2, data);
+    return status;
+}
+
+/******************************************************************************
+ * Erases the bank specified. Each bank is a 4k block. Segments are 0 based.
+ * segment N is 4096 * N + flash_reg_addr.
+ *
+ * hw - pointer to e1000_hw structure
+ * segment - 0 for first segment, 1 for second segment, etc.
+ *****************************************************************************/
+int32_t
+e1000_erase_ich8_4k_segment(struct e1000_hw *hw, uint32_t segment)
+{
+    union ich8_hws_flash_status hsfsts;
+    union ich8_hws_flash_ctrl hsflctl;
+    uint32_t flash_linear_address;
+    int32_t  count = 0;
+    int32_t  error = E1000_ERR_EEPROM;
+    int32_t  iteration, seg_size;
+    int32_t  sector_size;
+    int32_t  j = 0;
+    int32_t  error_flag = 0;
+
+    hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS);
+
+    /* Determine HW Sector size: Read BERASE bits of Hw flash Status register */
+    /* 00: The Hw sector is 256 bytes, hence we need to erase 16
+     *     consecutive sectors.  The start index for the nth Hw sector can be
+     *     calculated as = segment * 4096 + n * 256
+     * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
+     *     The start index for the nth Hw sector can be calculated
+     *     as = segment * 4096
+     * 10: Error condition
+     * 11: The Hw sector size is much bigger than the size asked to
+     *     erase...error condition */
+    if (hsfsts.hsf_status.berasesz == 0x0) {
+        /* Hw sector size 256 */
+        sector_size = seg_size = ICH8_FLASH_SEG_SIZE_256;
+        iteration = ICH8_FLASH_SECTOR_SIZE / ICH8_FLASH_SEG_SIZE_256;
+    } else if (hsfsts.hsf_status.berasesz == 0x1) {
+        sector_size = seg_size = ICH8_FLASH_SEG_SIZE_4K;
+        iteration = 1;
+    } else if (hsfsts.hsf_status.berasesz == 0x3) {
+        sector_size = seg_size = ICH8_FLASH_SEG_SIZE_64K;
+        iteration = 1;
+    } else {
+        return error;
+    }
+
+    for (j = 0; j < iteration ; j++) {
+        do {
+            count++;
+            /* Steps */
+            error = e1000_ich8_cycle_init(hw);
+            if (error != E1000_SUCCESS) {
+                error_flag = 1;
+                break;
+            }
+
+            /* Write a value 11 (block Erase) in Flash Cycle field in Hw flash
+             * Control */
+            hsflctl.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFCTL);
+            hsflctl.hsf_ctrl.flcycle = ICH8_CYCLE_ERASE;
+            E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFCTL, hsflctl.regval);
+
+            /* Write the last 24 bits of an index within the block into Flash
+             * Linear address field in Flash Address.  This probably needs to
+             * be calculated here based off the on-chip segment size and the
+             * software segment size assumed (4K) */
+            /* TBD */
+            flash_linear_address = segment * sector_size + j * seg_size;
+            flash_linear_address &= ICH8_FLASH_LINEAR_ADDR_MASK;
+            flash_linear_address += hw->flash_base_addr;
+
+            E1000_WRITE_ICH8_REG(hw, ICH8_FLASH_FADDR, flash_linear_address);
+
+            error = e1000_ich8_flash_cycle(hw, 1000000);
+            /* Check if FCERR is set to 1.  If 1, clear it and try the whole
+             * sequence a few more times else Done */
+            if (error == E1000_SUCCESS) {
+                break;
+            } else {
+                hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS);
+                if (hsfsts.hsf_status.flcerr == 1) {
+                    /* repeat for some time before giving up */
+                    continue;
+                } else if (hsfsts.hsf_status.flcdone == 0) {
+                    error_flag = 1;
+                    break;
+                }
+            }
+        } while ((count < ICH8_FLASH_CYCLE_REPEAT_COUNT) && !error_flag);
+        if (error_flag == 1)
+            break;
+    }
+    if (error_flag != 1)
+        error = E1000_SUCCESS;
+    return error;
+}
+
+/******************************************************************************
+ *
+ * Reverse duplex setting without breaking the link.
+ *
+ * hw: Struct containing variables accessed by shared code
+ *
+ *****************************************************************************/
+int32_t
+e1000_duplex_reversal(struct e1000_hw *hw)
+{
+    int32_t ret_val;
+    uint16_t phy_data;
+
+    if (hw->phy_type != e1000_phy_igp_3)
+        return E1000_SUCCESS;
+
+    ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
+    if (ret_val)
+        return ret_val;
+
+    phy_data ^= MII_CR_FULL_DUPLEX;
+
+    ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
+    if (ret_val)
+        return ret_val;
+
+    ret_val = e1000_read_phy_reg(hw, IGP3E1000_PHY_MISC_CTRL, &phy_data);
+    if (ret_val)
+        return ret_val;
+
+    phy_data |= IGP3_PHY_MISC_DUPLEX_MANUAL_SET;
+    ret_val = e1000_write_phy_reg(hw, IGP3E1000_PHY_MISC_CTRL, phy_data);
+
+    return ret_val;
+}
+
+int32_t
+e1000_init_lcd_from_nvm_config_region(struct e1000_hw *hw,
+                                      uint32_t cnf_base_addr, uint32_t cnf_size)
+{
+    uint32_t ret_val = E1000_SUCCESS;
+    uint16_t word_addr, reg_data, reg_addr;
+    uint16_t i;
+
+    /* cnf_base_addr is in DWORD */
+    word_addr = (uint16_t)(cnf_base_addr << 1);
+
+    /* cnf_size is returned in size of dwords */
+    for (i = 0; i < cnf_size; i++) {
+        ret_val = e1000_read_eeprom(hw, (word_addr + i*2), 1, &reg_data);
+        if (ret_val)
+            return ret_val;
+
+        ret_val = e1000_read_eeprom(hw, (word_addr + i*2 + 1), 1, &reg_addr);
+        if (ret_val)
+            return ret_val;
+
+        ret_val = e1000_get_software_flag(hw);
+        if (ret_val != E1000_SUCCESS)
+            return ret_val;
+
+        ret_val = e1000_write_phy_reg_ex(hw, (uint32_t)reg_addr, reg_data);
+
+        e1000_release_software_flag(hw);
+    }
+
+    return ret_val;
+}
+
+
+int32_t
+e1000_init_lcd_from_nvm(struct e1000_hw *hw)
+{
+    uint32_t reg_data, cnf_base_addr, cnf_size, ret_val, loop;
+
+    if (hw->phy_type != e1000_phy_igp_3)
+          return E1000_SUCCESS;
+
+    /* Check if SW needs configure the PHY */
+    reg_data = E1000_READ_REG(hw, FEXTNVM);
+    if (!(reg_data & FEXTNVM_SW_CONFIG))
+        return E1000_SUCCESS;
+
+    /* Wait for basic configuration completes before proceeding*/
+    loop = 0;
+    do {
+        reg_data = E1000_READ_REG(hw, STATUS) & E1000_STATUS_LAN_INIT_DONE;
+        udelay(100);
+        loop++;
+    } while ((!reg_data) && (loop < 50));
+
+    /* Clear the Init Done bit for the next init event */
+    reg_data = E1000_READ_REG(hw, STATUS);
+    reg_data &= ~E1000_STATUS_LAN_INIT_DONE;
+    E1000_WRITE_REG(hw, STATUS, reg_data);
+
+    /* Make sure HW does not configure LCD from PHY extended configuration
+       before SW configuration */
+    reg_data = E1000_READ_REG(hw, EXTCNF_CTRL);
+    if ((reg_data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE) == 0x0000) {
+        reg_data = E1000_READ_REG(hw, EXTCNF_SIZE);
+        cnf_size = reg_data & E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH;
+        cnf_size >>= 16;
+        if (cnf_size) {
+            reg_data = E1000_READ_REG(hw, EXTCNF_CTRL);
+            cnf_base_addr = reg_data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER;
+            /* cnf_base_addr is in DWORD */
+            cnf_base_addr >>= 16;
+
+            /* Configure LCD from extended configuration region. */
+            ret_val = e1000_init_lcd_from_nvm_config_region(hw, cnf_base_addr,
+                                                            cnf_size);
+            if (ret_val)
+                return ret_val;
+        }
+    }
+
+    return E1000_SUCCESS;
+}
+
+
 
index 467c9ed944f84a935aeeec20ebe8d52ec1222326..f9341e3276b314e324be6720c359f98dd6590d8c 100644 (file)
@@ -62,6 +62,7 @@ typedef enum {
     e1000_82572,
     e1000_82573,
     e1000_80003es2lan,
+    e1000_ich8lan,
     e1000_num_macs
 } e1000_mac_type;
 
@@ -70,6 +71,7 @@ typedef enum {
     e1000_eeprom_spi,
     e1000_eeprom_microwire,
     e1000_eeprom_flash,
+    e1000_eeprom_ich8,
     e1000_eeprom_none, /* No NVM support */
     e1000_num_eeprom_types
 } e1000_eeprom_type;
@@ -98,6 +100,11 @@ typedef enum {
     e1000_fc_default = 0xFF
 } e1000_fc_type;
 
+struct e1000_shadow_ram {
+    uint16_t    eeprom_word;
+    boolean_t   modified;
+};
+
 /* PCI bus types */
 typedef enum {
     e1000_bus_type_unknown = 0,
@@ -218,6 +225,8 @@ typedef enum {
     e1000_phy_igp,
     e1000_phy_igp_2,
     e1000_phy_gg82563,
+    e1000_phy_igp_3,
+    e1000_phy_ife,
     e1000_phy_undefined = 0xFF
 } e1000_phy_type;
 
@@ -313,6 +322,10 @@ int32_t e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t *phy
 int32_t e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t data);
 int32_t e1000_phy_hw_reset(struct e1000_hw *hw);
 int32_t e1000_phy_reset(struct e1000_hw *hw);
+void e1000_phy_powerdown_workaround(struct e1000_hw *hw);
+int32_t e1000_kumeran_lock_loss_workaround(struct e1000_hw *hw);
+int32_t e1000_init_lcd_from_nvm_config_region(struct e1000_hw *hw, uint32_t cnf_base_addr, uint32_t cnf_size);
+int32_t e1000_init_lcd_from_nvm(struct e1000_hw *hw);
 int32_t e1000_phy_get_info(struct e1000_hw *hw, struct e1000_phy_info *phy_info);
 int32_t e1000_validate_mdi_setting(struct e1000_hw *hw);
 int32_t e1000_read_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t *data);
@@ -331,6 +344,7 @@ uint32_t e1000_enable_mng_pass_thru(struct e1000_hw *hw);
 #define E1000_MNG_DHCP_COOKIE_OFFSET   0x6F0   /* Cookie offset */
 #define E1000_MNG_DHCP_COOKIE_LENGTH   0x10    /* Cookie length */
 #define E1000_MNG_IAMT_MODE            0x3
+#define E1000_MNG_ICH_IAMT_MODE         0x2
 #define E1000_IAMT_SIGNATURE            0x544D4149 /* Intel(R) Active Management Technology signature */
 
 #define E1000_MNG_DHCP_COOKIE_STATUS_PARSING_SUPPORT 0x1 /* DHCP parsing enabled */
@@ -388,6 +402,8 @@ int32_t e1000_read_part_num(struct e1000_hw *hw, uint32_t * part_num);
 int32_t e1000_read_mac_addr(struct e1000_hw * hw);
 int32_t e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask);
 void e1000_swfw_sync_release(struct e1000_hw *hw, uint16_t mask);
+void e1000_release_software_flag(struct e1000_hw *hw);
+int32_t e1000_get_software_flag(struct e1000_hw *hw);
 
 /* Filters (multicast, vlan, receive) */
 void e1000_mc_addr_list_update(struct e1000_hw *hw, uint8_t * mc_addr_list, uint32_t mc_addr_count, uint32_t pad, uint32_t rar_used_count);
@@ -401,6 +417,7 @@ int32_t e1000_setup_led(struct e1000_hw *hw);
 int32_t e1000_cleanup_led(struct e1000_hw *hw);
 int32_t e1000_led_on(struct e1000_hw *hw);
 int32_t e1000_led_off(struct e1000_hw *hw);
+int32_t e1000_blink_led_start(struct e1000_hw *hw);
 
 /* Adaptive IFS Functions */
 
@@ -422,6 +439,29 @@ int32_t e1000_disable_pciex_master(struct e1000_hw *hw);
 int32_t e1000_get_software_semaphore(struct e1000_hw *hw);
 void e1000_release_software_semaphore(struct e1000_hw *hw);
 int32_t e1000_check_phy_reset_block(struct e1000_hw *hw);
+int32_t e1000_set_pci_ex_no_snoop(struct e1000_hw *hw, uint32_t no_snoop);
+
+int32_t e1000_read_ich8_byte(struct e1000_hw *hw, uint32_t index,
+                             uint8_t *data);
+int32_t e1000_verify_write_ich8_byte(struct e1000_hw *hw, uint32_t index,
+                                     uint8_t byte);
+int32_t e1000_write_ich8_byte(struct e1000_hw *hw, uint32_t index,
+                              uint8_t byte);
+int32_t e1000_read_ich8_word(struct e1000_hw *hw, uint32_t index,
+                             uint16_t *data);
+int32_t e1000_read_ich8_data(struct e1000_hw *hw, uint32_t index,
+                             uint32_t size, uint16_t *data);
+int32_t e1000_read_eeprom_ich8(struct e1000_hw *hw, uint16_t offset,
+                               uint16_t words, uint16_t *data);
+int32_t e1000_write_eeprom_ich8(struct e1000_hw *hw, uint16_t offset,
+                                uint16_t words, uint16_t *data);
+int32_t e1000_erase_ich8_4k_segment(struct e1000_hw *hw, uint32_t segment);
+
+
+#define E1000_READ_REG_IO(a, reg) \
+    e1000_read_reg_io((a), E1000_##reg)
+#define E1000_WRITE_REG_IO(a, reg, val) \
+    e1000_write_reg_io((a), E1000_##reg, val)
 
 /* PCI Device IDs */
 #define E1000_DEV_ID_82542               0x1000
@@ -446,6 +486,7 @@ int32_t e1000_check_phy_reset_block(struct e1000_hw *hw);
 #define E1000_DEV_ID_82546EB_QUAD_COPPER 0x101D
 #define E1000_DEV_ID_82541EI             0x1013
 #define E1000_DEV_ID_82541EI_MOBILE      0x1018
+#define E1000_DEV_ID_82541ER_LOM         0x1014
 #define E1000_DEV_ID_82541ER             0x1078
 #define E1000_DEV_ID_82547GI             0x1075
 #define E1000_DEV_ID_82541GI             0x1076
@@ -457,18 +498,28 @@ int32_t e1000_check_phy_reset_block(struct e1000_hw *hw);
 #define E1000_DEV_ID_82546GB_PCIE        0x108A
 #define E1000_DEV_ID_82546GB_QUAD_COPPER 0x1099
 #define E1000_DEV_ID_82547EI             0x1019
+#define E1000_DEV_ID_82547EI_MOBILE      0x101A
 #define E1000_DEV_ID_82571EB_COPPER      0x105E
 #define E1000_DEV_ID_82571EB_FIBER       0x105F
 #define E1000_DEV_ID_82571EB_SERDES      0x1060
 #define E1000_DEV_ID_82572EI_COPPER      0x107D
 #define E1000_DEV_ID_82572EI_FIBER       0x107E
 #define E1000_DEV_ID_82572EI_SERDES      0x107F
+#define E1000_DEV_ID_82572EI             0x10B9
 #define E1000_DEV_ID_82573E              0x108B
 #define E1000_DEV_ID_82573E_IAMT         0x108C
 #define E1000_DEV_ID_82573L              0x109A
 #define E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3 0x10B5
 #define E1000_DEV_ID_80003ES2LAN_COPPER_DPT     0x1096
 #define E1000_DEV_ID_80003ES2LAN_SERDES_DPT     0x1098
+#define E1000_DEV_ID_80003ES2LAN_COPPER_SPT     0x10BA
+#define E1000_DEV_ID_80003ES2LAN_SERDES_SPT     0x10BB
+
+#define E1000_DEV_ID_ICH8_IGP_M_AMT      0x1049
+#define E1000_DEV_ID_ICH8_IGP_AMT        0x104A
+#define E1000_DEV_ID_ICH8_IGP_C          0x104B
+#define E1000_DEV_ID_ICH8_IFE            0x104C
+#define E1000_DEV_ID_ICH8_IGP_M          0x104D
 
 
 #define NODE_ADDRESS_SIZE 6
@@ -539,6 +590,14 @@ int32_t e1000_check_phy_reset_block(struct e1000_hw *hw);
     E1000_IMS_RXSEQ  |    \
     E1000_IMS_LSC)
 
+/* Additional interrupts need to be handled for e1000_ich8lan:
+    DSW = The FW changed the status of the DISSW bit in FWSM
+    PHYINT = The LAN connected device generates an interrupt
+    EPRST = Manageability reset event */
+#define IMS_ICH8LAN_ENABLE_MASK (\
+    E1000_IMS_DSW   | \
+    E1000_IMS_PHYINT | \
+    E1000_IMS_EPRST)
 
 /* Number of high/low register pairs in the RAR. The RAR (Receive Address
  * Registers) holds the directed and multicast addresses that we monitor. We
@@ -546,6 +605,7 @@ int32_t e1000_check_phy_reset_block(struct e1000_hw *hw);
  * E1000_RAR_ENTRIES - 1 multicast addresses.
  */
 #define E1000_RAR_ENTRIES 15
+#define E1000_RAR_ENTRIES_ICH8LAN  7
 
 #define MIN_NUMBER_OF_DESCRIPTORS 8
 #define MAX_NUMBER_OF_DESCRIPTORS 0xFFF8
@@ -767,6 +827,9 @@ struct e1000_data_desc {
 #define E1000_MC_TBL_SIZE          128  /* Multicast Filter Table (4096 bits) */
 #define E1000_VLAN_FILTER_TBL_SIZE 128  /* VLAN Filter Table (4096 bits) */
 
+#define E1000_NUM_UNICAST_ICH8LAN  7
+#define E1000_MC_TBL_SIZE_ICH8LAN  32
+
 
 /* Receive Address Register */
 struct e1000_rar {
@@ -776,6 +839,7 @@ struct e1000_rar {
 
 /* Number of entries in the Multicast Table Array (MTA). */
 #define E1000_NUM_MTA_REGISTERS 128
+#define E1000_NUM_MTA_REGISTERS_ICH8LAN 32
 
 /* IPv4 Address Table Entry */
 struct e1000_ipv4_at_entry {
@@ -786,6 +850,7 @@ struct e1000_ipv4_at_entry {
 /* Four wakeup IP addresses are supported */
 #define E1000_WAKEUP_IP_ADDRESS_COUNT_MAX 4
 #define E1000_IP4AT_SIZE                  E1000_WAKEUP_IP_ADDRESS_COUNT_MAX
+#define E1000_IP4AT_SIZE_ICH8LAN          3
 #define E1000_IP6AT_SIZE                  1
 
 /* IPv6 Address Table Entry */
@@ -844,6 +909,7 @@ struct e1000_ffvt_entry {
 #define E1000_FLA      0x0001C  /* Flash Access - RW */
 #define E1000_MDIC     0x00020  /* MDI Control - RW */
 #define E1000_SCTL     0x00024  /* SerDes Control - RW */
+#define E1000_FEXTNVM  0x00028  /* Future Extended NVM register */
 #define E1000_FCAL     0x00028  /* Flow Control Address Low - RW */
 #define E1000_FCAH     0x0002C  /* Flow Control Address High -RW */
 #define E1000_FCT      0x00030  /* Flow Control Type - RW */
@@ -872,6 +938,8 @@ struct e1000_ffvt_entry {
 #define E1000_LEDCTL   0x00E00  /* LED Control - RW */
 #define E1000_EXTCNF_CTRL  0x00F00  /* Extended Configuration Control */
 #define E1000_EXTCNF_SIZE  0x00F08  /* Extended Configuration Size */
+#define E1000_PHY_CTRL     0x00F10  /* PHY Control Register in CSR */
+#define FEXTNVM_SW_CONFIG  0x0001
 #define E1000_PBA      0x01000  /* Packet Buffer Allocation - RW */
 #define E1000_PBS      0x01008  /* Packet Buffer Size */
 #define E1000_EEMNGCTL 0x01010  /* MNG EEprom Control */
@@ -899,11 +967,13 @@ struct e1000_ffvt_entry {
 #define E1000_RDH0     E1000_RDH   /* RX Desc Head (0) - RW */
 #define E1000_RDT0     E1000_RDT   /* RX Desc Tail (0) - RW */
 #define E1000_RDTR0    E1000_RDTR  /* RX Delay Timer (0) - RW */
-#define E1000_RXDCTL   0x02828  /* RX Descriptor Control - RW */
+#define E1000_RXDCTL   0x02828  /* RX Descriptor Control queue 0 - RW */
+#define E1000_RXDCTL1  0x02928  /* RX Descriptor Control queue 1 - RW */
 #define E1000_RADV     0x0282C  /* RX Interrupt Absolute Delay Timer - RW */
 #define E1000_RSRPD    0x02C00  /* RX Small Packet Detect - RW */
 #define E1000_RAID     0x02C08  /* Receive Ack Interrupt Delay - RW */
 #define E1000_TXDMAC   0x03000  /* TX DMA Control - RW */
+#define E1000_KABGTXD  0x03004  /* AFE Band Gap Transmit Ref Data */
 #define E1000_TDFH     0x03410  /* TX Data FIFO Head - RW */
 #define E1000_TDFT     0x03418  /* TX Data FIFO Tail - RW */
 #define E1000_TDFHS    0x03420  /* TX Data FIFO Head Saved - RW */
@@ -1050,6 +1120,7 @@ struct e1000_ffvt_entry {
 #define E1000_82542_FLA      E1000_FLA
 #define E1000_82542_MDIC     E1000_MDIC
 #define E1000_82542_SCTL     E1000_SCTL
+#define E1000_82542_FEXTNVM  E1000_FEXTNVM
 #define E1000_82542_FCAL     E1000_FCAL
 #define E1000_82542_FCAH     E1000_FCAH
 #define E1000_82542_FCT      E1000_FCT
@@ -1073,6 +1144,19 @@ struct e1000_ffvt_entry {
 #define E1000_82542_RDLEN0   E1000_82542_RDLEN
 #define E1000_82542_RDH0     E1000_82542_RDH
 #define E1000_82542_RDT0     E1000_82542_RDT
+#define E1000_82542_SRRCTL(_n) (0x280C + ((_n) << 8)) /* Split and Replication
+                                                       * RX Control - RW */
+#define E1000_82542_DCA_RXCTRL(_n) (0x02814 + ((_n) << 8))
+#define E1000_82542_RDBAH3   0x02B04 /* RX Desc Base High Queue 3 - RW */
+#define E1000_82542_RDBAL3   0x02B00 /* RX Desc Low Queue 3 - RW */
+#define E1000_82542_RDLEN3   0x02B08 /* RX Desc Length Queue 3 - RW */
+#define E1000_82542_RDH3     0x02B10 /* RX Desc Head Queue 3 - RW */
+#define E1000_82542_RDT3     0x02B18 /* RX Desc Tail Queue 3 - RW */
+#define E1000_82542_RDBAL2   0x02A00 /* RX Desc Base Low Queue 2 - RW */
+#define E1000_82542_RDBAH2   0x02A04 /* RX Desc Base High Queue 2 - RW */
+#define E1000_82542_RDLEN2   0x02A08 /* RX Desc Length Queue 2 - RW */
+#define E1000_82542_RDH2     0x02A10 /* RX Desc Head Queue 2 - RW */
+#define E1000_82542_RDT2     0x02A18 /* RX Desc Tail Queue 2 - RW */
 #define E1000_82542_RDTR1    0x00130
 #define E1000_82542_RDBAL1   0x00138
 #define E1000_82542_RDBAH1   0x0013C
@@ -1110,11 +1194,14 @@ struct e1000_ffvt_entry {
 #define E1000_82542_FLOP     E1000_FLOP
 #define E1000_82542_EXTCNF_CTRL  E1000_EXTCNF_CTRL
 #define E1000_82542_EXTCNF_SIZE  E1000_EXTCNF_SIZE
+#define E1000_82542_PHY_CTRL E1000_PHY_CTRL
 #define E1000_82542_ERT      E1000_ERT
 #define E1000_82542_RXDCTL   E1000_RXDCTL
+#define E1000_82542_RXDCTL1  E1000_RXDCTL1
 #define E1000_82542_RADV     E1000_RADV
 #define E1000_82542_RSRPD    E1000_RSRPD
 #define E1000_82542_TXDMAC   E1000_TXDMAC
+#define E1000_82542_KABGTXD  E1000_KABGTXD
 #define E1000_82542_TDFHS    E1000_TDFHS
 #define E1000_82542_TDFTS    E1000_TDFTS
 #define E1000_82542_TDFPC    E1000_TDFPC
@@ -1310,13 +1397,16 @@ struct e1000_hw_stats {
 
 /* Structure containing variables used by the shared code (e1000_hw.c) */
 struct e1000_hw {
-    uint8_t __iomem *hw_addr;
+    uint8_t *hw_addr;
     uint8_t *flash_address;
     e1000_mac_type mac_type;
     e1000_phy_type phy_type;
     uint32_t phy_init_script;
     e1000_media_type media_type;
     void *back;
+    struct e1000_shadow_ram *eeprom_shadow_ram;
+    uint32_t flash_bank_size;
+    uint32_t flash_base_addr;
     e1000_fc_type fc;
     e1000_bus_speed bus_speed;
     e1000_bus_width bus_width;
@@ -1328,6 +1418,7 @@ struct e1000_hw {
     uint32_t asf_firmware_present;
     uint32_t eeprom_semaphore_present;
     uint32_t swfw_sync_present;
+    uint32_t swfwhw_semaphore_present;
     unsigned long io_base;
     uint32_t phy_id;
     uint32_t phy_revision;
@@ -1387,6 +1478,7 @@ struct e1000_hw {
     boolean_t in_ifs_mode;
     boolean_t mng_reg_access_disabled;
     boolean_t leave_av_bit_off;
+    boolean_t kmrn_lock_loss_workaround_disabled;
 };
 
 
@@ -1435,6 +1527,7 @@ struct e1000_hw {
 #define E1000_CTRL_RTE      0x20000000  /* Routing tag enable */
 #define E1000_CTRL_VME      0x40000000  /* IEEE VLAN mode enable */
 #define E1000_CTRL_PHY_RST  0x80000000  /* PHY Reset */
+#define E1000_CTRL_SW2FW_INT 0x02000000  /* Initiate an interrupt to manageability engine */
 
 /* Device Status */
 #define E1000_STATUS_FD         0x00000001      /* Full duplex.0=half,1=full */
@@ -1449,6 +1542,8 @@ struct e1000_hw {
 #define E1000_STATUS_SPEED_10   0x00000000      /* Speed 10Mb/s */
 #define E1000_STATUS_SPEED_100  0x00000040      /* Speed 100Mb/s */
 #define E1000_STATUS_SPEED_1000 0x00000080      /* Speed 1000Mb/s */
+#define E1000_STATUS_LAN_INIT_DONE 0x00000200   /* Lan Init Completion
+                                                   by EEPROM/Flash */
 #define E1000_STATUS_ASDV       0x00000300      /* Auto speed detect value */
 #define E1000_STATUS_DOCK_CI    0x00000800      /* Change in Dock/Undock state. Clear on write '0'. */
 #define E1000_STATUS_GIO_MASTER_ENABLE 0x00080000 /* Status of Master requests. */
@@ -1506,6 +1601,10 @@ struct e1000_hw {
 #define E1000_STM_OPCODE     0xDB00
 #define E1000_HICR_FW_RESET  0xC0
 
+#define E1000_SHADOW_RAM_WORDS     2048
+#define E1000_ICH8_NVM_SIG_WORD    0x13
+#define E1000_ICH8_NVM_SIG_MASK    0xC0
+
 /* EEPROM Read */
 #define E1000_EERD_START      0x00000001 /* Start Read */
 #define E1000_EERD_DONE       0x00000010 /* Read Done */
@@ -1551,7 +1650,6 @@ struct e1000_hw {
 #define E1000_CTRL_EXT_WR_WMARK_320   0x01000000
 #define E1000_CTRL_EXT_WR_WMARK_384   0x02000000
 #define E1000_CTRL_EXT_WR_WMARK_448   0x03000000
-#define E1000_CTRL_EXT_CANC           0x04000000  /* Interrupt delay cancellation */
 #define E1000_CTRL_EXT_DRV_LOAD       0x10000000  /* Driver loaded bit for FW */
 #define E1000_CTRL_EXT_IAME           0x08000000  /* Interrupt acknowledge Auto-mask */
 #define E1000_CTRL_EXT_INT_TIMER_CLR  0x20000000  /* Clear Interrupt timers after IMS clear */
@@ -1591,12 +1689,31 @@ struct e1000_hw {
 #define E1000_KUMCTRLSTA_FIFO_CTRL_TX_BYPASS   0x00000800
 
 /* In-Band Control */
+#define E1000_KUMCTRLSTA_INB_CTRL_LINK_STATUS_TX_TIMEOUT_DEFAULT    0x00000500
 #define E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING  0x00000010
 
 /* Half-Duplex Control */
 #define E1000_KUMCTRLSTA_HD_CTRL_10_100_DEFAULT 0x00000004
 #define E1000_KUMCTRLSTA_HD_CTRL_1000_DEFAULT  0x00000000
 
+#define E1000_KUMCTRLSTA_OFFSET_K0S_CTRL       0x0000001E
+
+#define E1000_KUMCTRLSTA_DIAG_FELPBK           0x2000
+#define E1000_KUMCTRLSTA_DIAG_NELPBK           0x1000
+
+#define E1000_KUMCTRLSTA_K0S_100_EN            0x2000
+#define E1000_KUMCTRLSTA_K0S_GBE_EN            0x1000
+#define E1000_KUMCTRLSTA_K0S_ENTRY_LATENCY_MASK   0x0003
+
+#define E1000_KABGTXD_BGSQLBIAS                0x00050000
+
+#define E1000_PHY_CTRL_SPD_EN                  0x00000001
+#define E1000_PHY_CTRL_D0A_LPLU                0x00000002
+#define E1000_PHY_CTRL_NOND0A_LPLU             0x00000004
+#define E1000_PHY_CTRL_NOND0A_GBE_DISABLE      0x00000008
+#define E1000_PHY_CTRL_GBE_DISABLE             0x00000040
+#define E1000_PHY_CTRL_B2B_EN                  0x00000080
+
 /* LED Control */
 #define E1000_LEDCTL_LED0_MODE_MASK       0x0000000F
 #define E1000_LEDCTL_LED0_MODE_SHIFT      0
@@ -1666,6 +1783,9 @@ struct e1000_hw {
 #define E1000_ICR_RXD_FIFO_PAR1 0x01000000 /* queue 1 Rx descriptor FIFO parity error */
 #define E1000_ICR_TXD_FIFO_PAR1 0x02000000 /* queue 1 Tx descriptor FIFO parity error */
 #define E1000_ICR_ALL_PARITY    0x03F00000 /* all parity error bits */
+#define E1000_ICR_DSW           0x00000020 /* FW changed the status of DISSW bit in the FWSM */
+#define E1000_ICR_PHYINT        0x00001000 /* LAN connected device generates an interrupt */
+#define E1000_ICR_EPRST         0x00100000 /* ME handware reset occurs */
 
 /* Interrupt Cause Set */
 #define E1000_ICS_TXDW      E1000_ICR_TXDW      /* Transmit desc written back */
@@ -1692,6 +1812,9 @@ struct e1000_hw {
 #define E1000_ICS_PB_PAR        E1000_ICR_PB_PAR        /* packet buffer parity error */
 #define E1000_ICS_RXD_FIFO_PAR1 E1000_ICR_RXD_FIFO_PAR1 /* queue 1 Rx descriptor FIFO parity error */
 #define E1000_ICS_TXD_FIFO_PAR1 E1000_ICR_TXD_FIFO_PAR1 /* queue 1 Tx descriptor FIFO parity error */
+#define E1000_ICS_DSW       E1000_ICR_DSW
+#define E1000_ICS_PHYINT    E1000_ICR_PHYINT
+#define E1000_ICS_EPRST     E1000_ICR_EPRST
 
 /* Interrupt Mask Set */
 #define E1000_IMS_TXDW      E1000_ICR_TXDW      /* Transmit desc written back */
@@ -1718,6 +1841,9 @@ struct e1000_hw {
 #define E1000_IMS_PB_PAR        E1000_ICR_PB_PAR        /* packet buffer parity error */
 #define E1000_IMS_RXD_FIFO_PAR1 E1000_ICR_RXD_FIFO_PAR1 /* queue 1 Rx descriptor FIFO parity error */
 #define E1000_IMS_TXD_FIFO_PAR1 E1000_ICR_TXD_FIFO_PAR1 /* queue 1 Tx descriptor FIFO parity error */
+#define E1000_IMS_DSW       E1000_ICR_DSW
+#define E1000_IMS_PHYINT    E1000_ICR_PHYINT
+#define E1000_IMS_EPRST     E1000_ICR_EPRST
 
 /* Interrupt Mask Clear */
 #define E1000_IMC_TXDW      E1000_ICR_TXDW      /* Transmit desc written back */
@@ -1744,6 +1870,9 @@ struct e1000_hw {
 #define E1000_IMC_PB_PAR        E1000_ICR_PB_PAR        /* packet buffer parity error */
 #define E1000_IMC_RXD_FIFO_PAR1 E1000_ICR_RXD_FIFO_PAR1 /* queue 1 Rx descriptor FIFO parity error */
 #define E1000_IMC_TXD_FIFO_PAR1 E1000_ICR_TXD_FIFO_PAR1 /* queue 1 Tx descriptor FIFO parity error */
+#define E1000_IMC_DSW       E1000_ICR_DSW
+#define E1000_IMC_PHYINT    E1000_ICR_PHYINT
+#define E1000_IMC_EPRST     E1000_ICR_EPRST
 
 /* Receive Control */
 #define E1000_RCTL_RST            0x00000001    /* Software reset */
@@ -1918,9 +2047,10 @@ struct e1000_hw {
 #define E1000_MRQC_RSS_FIELD_MASK           0xFFFF0000
 #define E1000_MRQC_RSS_FIELD_IPV4_TCP       0x00010000
 #define E1000_MRQC_RSS_FIELD_IPV4           0x00020000
-#define E1000_MRQC_RSS_FIELD_IPV6_TCP       0x00040000
+#define E1000_MRQC_RSS_FIELD_IPV6_TCP_EX    0x00040000
 #define E1000_MRQC_RSS_FIELD_IPV6_EX        0x00080000
 #define E1000_MRQC_RSS_FIELD_IPV6           0x00100000
+#define E1000_MRQC_RSS_FIELD_IPV6_TCP       0x00200000
 
 /* Definitions for power management and wakeup registers */
 /* Wake Up Control */
@@ -2010,6 +2140,15 @@ struct e1000_hw {
 #define E1000_FWSM_MODE_SHIFT            1
 #define E1000_FWSM_FW_VALID     0x00008000 /* FW established a valid mode */
 
+#define E1000_FWSM_RSPCIPHY        0x00000040 /* Reset PHY on PCI reset */
+#define E1000_FWSM_DISSW           0x10000000 /* FW disable SW Write Access */
+#define E1000_FWSM_SKUSEL_MASK     0x60000000 /* LAN SKU select */
+#define E1000_FWSM_SKUEL_SHIFT     29
+#define E1000_FWSM_SKUSEL_EMB      0x0 /* Embedded SKU */
+#define E1000_FWSM_SKUSEL_CONS     0x1 /* Consumer SKU */
+#define E1000_FWSM_SKUSEL_PERF_100 0x2 /* Perf & Corp 10/100 SKU */
+#define E1000_FWSM_SKUSEL_PERF_GBE 0x3 /* Perf & Copr GbE SKU */
+
 /* FFLT Debug Register */
 #define E1000_FFLT_DBG_INVC     0x00100000 /* Invalid /C/ code handling */
 
@@ -2082,6 +2221,8 @@ struct e1000_host_command_info {
                              E1000_GCR_TXDSCW_NO_SNOOP      | \
                              E1000_GCR_TXDSCR_NO_SNOOP)
 
+#define PCI_EX_82566_SNOOP_ALL PCI_EX_NO_SNOOP_ALL
+
 #define E1000_GCR_L1_ACT_WITHOUT_L0S_RX 0x08000000
 /* Function Active and Power State to MNG */
 #define E1000_FACTPS_FUNC0_POWER_STATE_MASK         0x00000003
@@ -2140,8 +2281,10 @@ struct e1000_host_command_info {
 #define EEPROM_PHY_CLASS_WORD         0x0007
 #define EEPROM_INIT_CONTROL1_REG      0x000A
 #define EEPROM_INIT_CONTROL2_REG      0x000F
+#define EEPROM_SWDEF_PINS_CTRL_PORT_1 0x0010
 #define EEPROM_INIT_CONTROL3_PORT_B   0x0014
 #define EEPROM_INIT_3GIO_3            0x001A
+#define EEPROM_SWDEF_PINS_CTRL_PORT_0 0x0020
 #define EEPROM_INIT_CONTROL3_PORT_A   0x0024
 #define EEPROM_CFG                    0x0012
 #define EEPROM_FLASH_VERSION          0x0032
@@ -2153,10 +2296,16 @@ struct e1000_host_command_info {
 /* Word definitions for ID LED Settings */
 #define ID_LED_RESERVED_0000 0x0000
 #define ID_LED_RESERVED_FFFF 0xFFFF
+#define ID_LED_RESERVED_82573  0xF746
+#define ID_LED_DEFAULT_82573   0x1811
 #define ID_LED_DEFAULT       ((ID_LED_OFF1_ON2 << 12) | \
                               (ID_LED_OFF1_OFF2 << 8) | \
                               (ID_LED_DEF1_DEF2 << 4) | \
                               (ID_LED_DEF1_DEF2))
+#define ID_LED_DEFAULT_ICH8LAN  ((ID_LED_DEF1_DEF2 << 12) | \
+                                 (ID_LED_DEF1_OFF2 <<  8) | \
+                                 (ID_LED_DEF1_ON2  <<  4) | \
+                                 (ID_LED_DEF1_DEF2))
 #define ID_LED_DEF1_DEF2     0x1
 #define ID_LED_DEF1_ON2      0x2
 #define ID_LED_DEF1_OFF2     0x3
@@ -2191,6 +2340,11 @@ struct e1000_host_command_info {
 #define EEPROM_WORD0F_ASM_DIR    0x2000
 #define EEPROM_WORD0F_ANE        0x0800
 #define EEPROM_WORD0F_SWPDIO_EXT 0x00F0
+#define EEPROM_WORD0F_LPLU       0x0001
+
+/* Mask bits for fields in Word 0x10/0x20 of the EEPROM */
+#define EEPROM_WORD1020_GIGA_DISABLE         0x0010
+#define EEPROM_WORD1020_GIGA_DISABLE_NON_D0A 0x0008
 
 /* Mask bits for fields in Word 0x1a of the EEPROM */
 #define EEPROM_WORD1A_ASPM_MASK  0x000C
@@ -2265,23 +2419,29 @@ struct e1000_host_command_info {
 #define E1000_EXTCNF_CTRL_D_UD_OWNER        0x00000010
 #define E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP 0x00000020
 #define E1000_EXTCNF_CTRL_MDIO_HW_OWNERSHIP 0x00000040
-#define E1000_EXTCNF_CTRL_EXT_CNF_POINTER   0x1FFF0000
+#define E1000_EXTCNF_CTRL_EXT_CNF_POINTER   0x0FFF0000
 
 #define E1000_EXTCNF_SIZE_EXT_PHY_LENGTH    0x000000FF
 #define E1000_EXTCNF_SIZE_EXT_DOCK_LENGTH   0x0000FF00
 #define E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH   0x00FF0000
+#define E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE  0x00000001
+#define E1000_EXTCNF_CTRL_SWFLAG            0x00000020
 
 /* PBA constants */
+#define E1000_PBA_8K 0x0008    /* 8KB, default Rx allocation */
 #define E1000_PBA_12K 0x000C    /* 12KB, default Rx allocation */
 #define E1000_PBA_16K 0x0010    /* 16KB, default TX allocation */
 #define E1000_PBA_22K 0x0016
 #define E1000_PBA_24K 0x0018
 #define E1000_PBA_30K 0x001E
 #define E1000_PBA_32K 0x0020
+#define E1000_PBA_34K 0x0022
 #define E1000_PBA_38K 0x0026
 #define E1000_PBA_40K 0x0028
 #define E1000_PBA_48K 0x0030    /* 48KB, default RX allocation */
 
+#define E1000_PBS_16K E1000_PBA_16K
+
 /* Flow Control Constants */
 #define FLOW_CONTROL_ADDRESS_LOW  0x00C28001
 #define FLOW_CONTROL_ADDRESS_HIGH 0x00000100
@@ -2336,7 +2496,7 @@ struct e1000_host_command_info {
 /* Number of milliseconds we wait for Eeprom auto read bit done after MAC reset */
 #define AUTO_READ_DONE_TIMEOUT      10
 /* Number of milliseconds we wait for PHY configuration done after MAC reset */
-#define PHY_CFG_TIMEOUT             40
+#define PHY_CFG_TIMEOUT             100
 
 #define E1000_TX_BUFFER_SIZE ((uint32_t)1514)
 
@@ -2764,6 +2924,17 @@ struct e1000_host_command_info {
 #define M88E1000_EPSCR_TX_CLK_25      0x0070 /* 25  MHz TX_CLK */
 #define M88E1000_EPSCR_TX_CLK_0       0x0000 /* NO  TX_CLK */
 
+/* M88EC018 Rev 2 specific DownShift settings */
+#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK  0x0E00
+#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_1X    0x0000
+#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_2X    0x0200
+#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_3X    0x0400
+#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_4X    0x0600
+#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X    0x0800
+#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_6X    0x0A00
+#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_7X    0x0C00
+#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_8X    0x0E00
+
 /* IGP01E1000 Specific Port Config Register - R/W */
 #define IGP01E1000_PSCFR_AUTO_MDIX_PAR_DETECT  0x0010
 #define IGP01E1000_PSCFR_PRE_EN                0x0020
@@ -2990,6 +3161,221 @@ struct e1000_host_command_info {
 #define L1LXT971A_PHY_ID   0x001378E0
 #define GG82563_E_PHY_ID   0x01410CA0
 
+
+/* Bits...
+ * 15-5: page
+ * 4-0: register offset
+ */
+#define PHY_PAGE_SHIFT        5
+#define PHY_REG(page, reg)    \
+        (((page) << PHY_PAGE_SHIFT) | ((reg) & MAX_PHY_REG_ADDRESS))
+
+#define IGP3_PHY_PORT_CTRL           \
+        PHY_REG(769, 17) /* Port General Configuration */
+#define IGP3_PHY_RATE_ADAPT_CTRL \
+        PHY_REG(769, 25) /* Rate Adapter Control Register */
+
+#define IGP3_KMRN_FIFO_CTRL_STATS \
+        PHY_REG(770, 16) /* KMRN FIFO's control/status register */
+#define IGP3_KMRN_POWER_MNG_CTRL \
+        PHY_REG(770, 17) /* KMRN Power Management Control Register */
+#define IGP3_KMRN_INBAND_CTRL \
+        PHY_REG(770, 18) /* KMRN Inband Control Register */
+#define IGP3_KMRN_DIAG \
+        PHY_REG(770, 19) /* KMRN Diagnostic register */
+#define IGP3_KMRN_DIAG_PCS_LOCK_LOSS 0x0002 /* RX PCS is not synced */
+#define IGP3_KMRN_ACK_TIMEOUT \
+        PHY_REG(770, 20) /* KMRN Acknowledge Timeouts register */
+
+#define IGP3_VR_CTRL \
+        PHY_REG(776, 18) /* Voltage regulator control register */
+#define IGP3_VR_CTRL_MODE_SHUT       0x0200 /* Enter powerdown, shutdown VRs */
+
+#define IGP3_CAPABILITY \
+        PHY_REG(776, 19) /* IGP3 Capability Register */
+
+/* Capabilities for SKU Control  */
+#define IGP3_CAP_INITIATE_TEAM       0x0001 /* Able to initiate a team */
+#define IGP3_CAP_WFM                 0x0002 /* Support WoL and PXE */
+#define IGP3_CAP_ASF                 0x0004 /* Support ASF */
+#define IGP3_CAP_LPLU                0x0008 /* Support Low Power Link Up */
+#define IGP3_CAP_DC_AUTO_SPEED       0x0010 /* Support AC/DC Auto Link Speed */
+#define IGP3_CAP_SPD                 0x0020 /* Support Smart Power Down */
+#define IGP3_CAP_MULT_QUEUE          0x0040 /* Support 2 tx & 2 rx queues */
+#define IGP3_CAP_RSS                 0x0080 /* Support RSS */
+#define IGP3_CAP_8021PQ              0x0100 /* Support 802.1Q & 802.1p */
+#define IGP3_CAP_AMT_CB              0x0200 /* Support active manageability and circuit breaker */
+
+#define IGP3_PPC_JORDAN_EN           0x0001
+#define IGP3_PPC_JORDAN_GIGA_SPEED   0x0002
+
+#define IGP3_KMRN_PMC_EE_IDLE_LINK_DIS         0x0001
+#define IGP3_KMRN_PMC_K0S_ENTRY_LATENCY_MASK   0x001E
+#define IGP3_KMRN_PMC_K0S_MODE1_EN_GIGA        0x0020
+#define IGP3_KMRN_PMC_K0S_MODE1_EN_100         0x0040
+
+#define IGP3E1000_PHY_MISC_CTRL                0x1B   /* Misc. Ctrl register */
+#define IGP3_PHY_MISC_DUPLEX_MANUAL_SET        0x1000 /* Duplex Manual Set */
+
+#define IGP3_KMRN_EXT_CTRL  PHY_REG(770, 18)
+#define IGP3_KMRN_EC_DIS_INBAND    0x0080
+
+#define IGP03E1000_E_PHY_ID  0x02A80390
+#define IFE_E_PHY_ID         0x02A80330 /* 10/100 PHY */
+#define IFE_PLUS_E_PHY_ID    0x02A80320
+#define IFE_C_E_PHY_ID       0x02A80310
+
+#define IFE_PHY_EXTENDED_STATUS_CONTROL   0x10  /* 100BaseTx Extended Status, Control and Address */
+#define IFE_PHY_SPECIAL_CONTROL           0x11  /* 100BaseTx PHY special control register */
+#define IFE_PHY_RCV_FALSE_CARRIER         0x13  /* 100BaseTx Receive False Carrier Counter */
+#define IFE_PHY_RCV_DISCONNECT            0x14  /* 100BaseTx Receive Disconnet Counter */
+#define IFE_PHY_RCV_ERROT_FRAME           0x15  /* 100BaseTx Receive Error Frame Counter */
+#define IFE_PHY_RCV_SYMBOL_ERR            0x16  /* Receive Symbol Error Counter */
+#define IFE_PHY_PREM_EOF_ERR              0x17  /* 100BaseTx Receive Premature End Of Frame Error Counter */
+#define IFE_PHY_RCV_EOF_ERR               0x18  /* 10BaseT Receive End Of Frame Error Counter */
+#define IFE_PHY_TX_JABBER_DETECT          0x19  /* 10BaseT Transmit Jabber Detect Counter */
+#define IFE_PHY_EQUALIZER                 0x1A  /* PHY Equalizer Control and Status */
+#define IFE_PHY_SPECIAL_CONTROL_LED       0x1B  /* PHY special control and LED configuration */
+#define IFE_PHY_MDIX_CONTROL              0x1C  /* MDI/MDI-X Control register */
+#define IFE_PHY_HWI_CONTROL               0x1D  /* Hardware Integrity Control (HWI) */
+
+#define IFE_PESC_REDUCED_POWER_DOWN_DISABLE  0x2000  /* Defaut 1 = Disable auto reduced power down */
+#define IFE_PESC_100BTX_POWER_DOWN           0x0400  /* Indicates the power state of 100BASE-TX */
+#define IFE_PESC_10BTX_POWER_DOWN            0x0200  /* Indicates the power state of 10BASE-T */
+#define IFE_PESC_POLARITY_REVERSED           0x0100  /* Indicates 10BASE-T polarity */
+#define IFE_PESC_PHY_ADDR_MASK               0x007C  /* Bit 6:2 for sampled PHY address */
+#define IFE_PESC_SPEED                       0x0002  /* Auto-negotiation speed result 1=100Mbs, 0=10Mbs */
+#define IFE_PESC_DUPLEX                      0x0001  /* Auto-negotiation duplex result 1=Full, 0=Half */
+#define IFE_PESC_POLARITY_REVERSED_SHIFT     8
+
+#define IFE_PSC_DISABLE_DYNAMIC_POWER_DOWN   0x0100  /* 1 = Dyanmic Power Down disabled */
+#define IFE_PSC_FORCE_POLARITY               0x0020  /* 1=Reversed Polarity, 0=Normal */
+#define IFE_PSC_AUTO_POLARITY_DISABLE        0x0010  /* 1=Auto Polarity Disabled, 0=Enabled */
+#define IFE_PSC_JABBER_FUNC_DISABLE          0x0001  /* 1=Jabber Disabled, 0=Normal Jabber Operation */
+#define IFE_PSC_FORCE_POLARITY_SHIFT         5
+#define IFE_PSC_AUTO_POLARITY_DISABLE_SHIFT  4
+
+#define IFE_PMC_AUTO_MDIX                    0x0080  /* 1=enable MDI/MDI-X feature, default 0=disabled */
+#define IFE_PMC_FORCE_MDIX                   0x0040  /* 1=force MDIX-X, 0=force MDI */
+#define IFE_PMC_MDIX_STATUS                  0x0020  /* 1=MDI-X, 0=MDI */
+#define IFE_PMC_AUTO_MDIX_COMPLETE           0x0010  /* Resolution algorthm is completed */
+#define IFE_PMC_MDIX_MODE_SHIFT              6
+#define IFE_PHC_MDIX_RESET_ALL_MASK          0x0000  /* Disable auto MDI-X */
+
+#define IFE_PHC_HWI_ENABLE                   0x8000  /* Enable the HWI feature */
+#define IFE_PHC_ABILITY_CHECK                0x4000  /* 1= Test Passed, 0=failed */
+#define IFE_PHC_TEST_EXEC                    0x2000  /* PHY launch test pulses on the wire */
+#define IFE_PHC_HIGHZ                        0x0200  /* 1 = Open Circuit */
+#define IFE_PHC_LOWZ                         0x0400  /* 1 = Short Circuit */
+#define IFE_PHC_LOW_HIGH_Z_MASK              0x0600  /* Mask for indication type of problem on the line */
+#define IFE_PHC_DISTANCE_MASK                0x01FF  /* Mask for distance to the cable problem, in 80cm granularity */
+#define IFE_PHC_RESET_ALL_MASK               0x0000  /* Disable HWI */
+#define IFE_PSCL_PROBE_MODE                  0x0020  /* LED Probe mode */
+#define IFE_PSCL_PROBE_LEDS_OFF              0x0006  /* Force LEDs 0 and 2 off */
+#define IFE_PSCL_PROBE_LEDS_ON               0x0007  /* Force LEDs 0 and 2 on */
+
+#define ICH8_FLASH_COMMAND_TIMEOUT           500   /* 500 ms , should be adjusted */
+#define ICH8_FLASH_CYCLE_REPEAT_COUNT        10    /* 10 cycles , should be adjusted */
+#define ICH8_FLASH_SEG_SIZE_256              256
+#define ICH8_FLASH_SEG_SIZE_4K               4096
+#define ICH8_FLASH_SEG_SIZE_64K              65536
+
+#define ICH8_CYCLE_READ                      0x0
+#define ICH8_CYCLE_RESERVED                  0x1
+#define ICH8_CYCLE_WRITE                     0x2
+#define ICH8_CYCLE_ERASE                     0x3
+
+#define ICH8_FLASH_GFPREG   0x0000
+#define ICH8_FLASH_HSFSTS   0x0004
+#define ICH8_FLASH_HSFCTL   0x0006
+#define ICH8_FLASH_FADDR    0x0008
+#define ICH8_FLASH_FDATA0   0x0010
+#define ICH8_FLASH_FRACC    0x0050
+#define ICH8_FLASH_FREG0    0x0054
+#define ICH8_FLASH_FREG1    0x0058
+#define ICH8_FLASH_FREG2    0x005C
+#define ICH8_FLASH_FREG3    0x0060
+#define ICH8_FLASH_FPR0     0x0074
+#define ICH8_FLASH_FPR1     0x0078
+#define ICH8_FLASH_SSFSTS   0x0090
+#define ICH8_FLASH_SSFCTL   0x0092
+#define ICH8_FLASH_PREOP    0x0094
+#define ICH8_FLASH_OPTYPE   0x0096
+#define ICH8_FLASH_OPMENU   0x0098
+
+#define ICH8_FLASH_REG_MAPSIZE      0x00A0
+#define ICH8_FLASH_SECTOR_SIZE      4096
+#define ICH8_GFPREG_BASE_MASK       0x1FFF
+#define ICH8_FLASH_LINEAR_ADDR_MASK 0x00FFFFFF
+
+/* ICH8 GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
+/* Offset 04h HSFSTS */
+union ich8_hws_flash_status {
+    struct ich8_hsfsts {
+#ifdef E1000_BIG_ENDIAN
+        uint16_t reserved2      :6;
+        uint16_t fldesvalid     :1;
+        uint16_t flockdn        :1;
+        uint16_t flcdone        :1;
+        uint16_t flcerr         :1;
+        uint16_t dael           :1;
+        uint16_t berasesz       :2;
+        uint16_t flcinprog      :1;
+        uint16_t reserved1      :2;
+#else
+        uint16_t flcdone        :1;   /* bit 0 Flash Cycle Done */
+        uint16_t flcerr         :1;   /* bit 1 Flash Cycle Error */
+        uint16_t dael           :1;   /* bit 2 Direct Access error Log */
+        uint16_t berasesz       :2;   /* bit 4:3 Block/Sector Erase Size */
+        uint16_t flcinprog      :1;   /* bit 5 flash SPI cycle in Progress */
+        uint16_t reserved1      :2;   /* bit 13:6 Reserved */
+        uint16_t reserved2      :6;   /* bit 13:6 Reserved */
+        uint16_t fldesvalid     :1;   /* bit 14 Flash Descriptor Valid */
+        uint16_t flockdn        :1;   /* bit 15 Flash Configuration Lock-Down */
+#endif
+    } hsf_status;
+    uint16_t regval;
+};
+
+/* ICH8 GbE Flash Hardware Sequencing Flash control Register bit breakdown */
+/* Offset 06h FLCTL */
+union ich8_hws_flash_ctrl {
+    struct ich8_hsflctl {
+#ifdef E1000_BIG_ENDIAN
+        uint16_t fldbcount      :2;
+        uint16_t flockdn        :6;
+        uint16_t flcgo          :1;
+        uint16_t flcycle        :2;
+        uint16_t reserved       :5;
+#else
+        uint16_t flcgo          :1;   /* 0 Flash Cycle Go */
+        uint16_t flcycle        :2;   /* 2:1 Flash Cycle */
+        uint16_t reserved       :5;   /* 7:3 Reserved  */
+        uint16_t fldbcount      :2;   /* 9:8 Flash Data Byte Count */
+        uint16_t flockdn        :6;   /* 15:10 Reserved */
+#endif
+    } hsf_ctrl;
+    uint16_t regval;
+};
+
+/* ICH8 Flash Region Access Permissions */
+union ich8_hws_flash_regacc {
+    struct ich8_flracc {
+#ifdef E1000_BIG_ENDIAN
+        uint32_t gmwag          :8;
+        uint32_t gmrag          :8;
+        uint32_t grwa           :8;
+        uint32_t grra           :8;
+#else
+        uint32_t grra           :8;   /* 0:7 GbE region Read Access */
+        uint32_t grwa           :8;   /* 8:15 GbE region Write Access */
+        uint32_t gmrag          :8;   /* 23:16 GbE Master Read Access Grant  */
+        uint32_t gmwag          :8;   /* 31:24 GbE Master Write Access Grant */
+#endif
+    } hsf_flregacc;
+    uint16_t regval;
+};
+
 /* Miscellaneous PHY bit definitions. */
 #define PHY_PREAMBLE        0xFFFFFFFF
 #define PHY_SOF             0x01
index f77624f5f17bf33b0b23c3e2b6d31a25c795f0b2..f06b281c8f6ebc4ea8521d7b6f413b78b05417d0 100644 (file)
@@ -36,7 +36,7 @@ static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
 #else
 #define DRIVERNAPI "-NAPI"
 #endif
-#define DRV_VERSION "7.0.38-k4"DRIVERNAPI
+#define DRV_VERSION "7.1.9-k2"DRIVERNAPI
 char e1000_driver_version[] = DRV_VERSION;
 static char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
 
@@ -73,6 +73,11 @@ static struct pci_device_id e1000_pci_tbl[] = {
        INTEL_E1000_ETHERNET_DEVICE(0x1026),
        INTEL_E1000_ETHERNET_DEVICE(0x1027),
        INTEL_E1000_ETHERNET_DEVICE(0x1028),
+       INTEL_E1000_ETHERNET_DEVICE(0x1049),
+       INTEL_E1000_ETHERNET_DEVICE(0x104A),
+       INTEL_E1000_ETHERNET_DEVICE(0x104B),
+       INTEL_E1000_ETHERNET_DEVICE(0x104C),
+       INTEL_E1000_ETHERNET_DEVICE(0x104D),
        INTEL_E1000_ETHERNET_DEVICE(0x105E),
        INTEL_E1000_ETHERNET_DEVICE(0x105F),
        INTEL_E1000_ETHERNET_DEVICE(0x1060),
@@ -96,6 +101,8 @@ static struct pci_device_id e1000_pci_tbl[] = {
        INTEL_E1000_ETHERNET_DEVICE(0x109A),
        INTEL_E1000_ETHERNET_DEVICE(0x10B5),
        INTEL_E1000_ETHERNET_DEVICE(0x10B9),
+       INTEL_E1000_ETHERNET_DEVICE(0x10BA),
+       INTEL_E1000_ETHERNET_DEVICE(0x10BB),
        /* required last entry */
        {0,}
 };
@@ -133,7 +140,6 @@ static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
 static void e1000_set_multi(struct net_device *netdev);
 static void e1000_update_phy_info(unsigned long data);
 static void e1000_watchdog(unsigned long data);
-static void e1000_watchdog_task(struct e1000_adapter *adapter);
 static void e1000_82547_tx_fifo_stall(unsigned long data);
 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
@@ -178,8 +184,8 @@ static void e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid);
 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid);
 static void e1000_restore_vlan(struct e1000_adapter *adapter);
 
-#ifdef CONFIG_PM
 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
+#ifdef CONFIG_PM
 static int e1000_resume(struct pci_dev *pdev);
 #endif
 static void e1000_shutdown(struct pci_dev *pdev);
@@ -206,8 +212,8 @@ static struct pci_driver e1000_driver = {
        .probe    = e1000_probe,
        .remove   = __devexit_p(e1000_remove),
        /* Power Managment Hooks */
-#ifdef CONFIG_PM
        .suspend  = e1000_suspend,
+#ifdef CONFIG_PM
        .resume   = e1000_resume,
 #endif
        .shutdown = e1000_shutdown,
@@ -261,6 +267,44 @@ e1000_exit_module(void)
 
 module_exit(e1000_exit_module);
 
+static int e1000_request_irq(struct e1000_adapter *adapter)
+{
+       struct net_device *netdev = adapter->netdev;
+       int flags, err = 0;
+
+       flags = IRQF_SHARED;
+#ifdef CONFIG_PCI_MSI
+       if (adapter->hw.mac_type > e1000_82547_rev_2) {
+               adapter->have_msi = TRUE;
+               if ((err = pci_enable_msi(adapter->pdev))) {
+                       DPRINTK(PROBE, ERR,
+                        "Unable to allocate MSI interrupt Error: %d\n", err);
+                       adapter->have_msi = FALSE;
+               }
+       }
+       if (adapter->have_msi)
+               flags &= ~SA_SHIRQ;
+#endif
+       if ((err = request_irq(adapter->pdev->irq, &e1000_intr, flags,
+                              netdev->name, netdev)))
+               DPRINTK(PROBE, ERR,
+                       "Unable to allocate interrupt Error: %d\n", err);
+
+       return err;
+}
+
+static void e1000_free_irq(struct e1000_adapter *adapter)
+{
+       struct net_device *netdev = adapter->netdev;
+
+       free_irq(adapter->pdev->irq, netdev);
+
+#ifdef CONFIG_PCI_MSI
+       if (adapter->have_msi)
+               pci_disable_msi(adapter->pdev);
+#endif
+}
+
 /**
  * e1000_irq_disable - Mask off interrupt generation on the NIC
  * @adapter: board private structure
@@ -329,6 +373,7 @@ e1000_release_hw_control(struct e1000_adapter *adapter)
 {
        uint32_t ctrl_ext;
        uint32_t swsm;
+       uint32_t extcnf;
 
        /* Let firmware taken over control of h/w */
        switch (adapter->hw.mac_type) {
@@ -343,6 +388,11 @@ e1000_release_hw_control(struct e1000_adapter *adapter)
                swsm = E1000_READ_REG(&adapter->hw, SWSM);
                E1000_WRITE_REG(&adapter->hw, SWSM,
                                swsm & ~E1000_SWSM_DRV_LOAD);
+       case e1000_ich8lan:
+               extcnf = E1000_READ_REG(&adapter->hw, CTRL_EXT);
+               E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
+                               extcnf & ~E1000_CTRL_EXT_DRV_LOAD);
+               break;
        default:
                break;
        }
@@ -364,6 +414,7 @@ e1000_get_hw_control(struct e1000_adapter *adapter)
 {
        uint32_t ctrl_ext;
        uint32_t swsm;
+       uint32_t extcnf;
        /* Let firmware know the driver has taken over */
        switch (adapter->hw.mac_type) {
        case e1000_82571:
@@ -378,6 +429,11 @@ e1000_get_hw_control(struct e1000_adapter *adapter)
                E1000_WRITE_REG(&adapter->hw, SWSM,
                                swsm | E1000_SWSM_DRV_LOAD);
                break;
+       case e1000_ich8lan:
+               extcnf = E1000_READ_REG(&adapter->hw, EXTCNF_CTRL);
+               E1000_WRITE_REG(&adapter->hw, EXTCNF_CTRL,
+                               extcnf | E1000_EXTCNF_CTRL_SWFLAG);
+               break;
        default:
                break;
        }
@@ -387,18 +443,10 @@ int
 e1000_up(struct e1000_adapter *adapter)
 {
        struct net_device *netdev = adapter->netdev;
-       int i, err;
+       int i;
 
        /* hardware has been reset, we need to reload some things */
 
-       /* Reset the PHY if it was previously powered down */
-       if (adapter->hw.media_type == e1000_media_type_copper) {
-               uint16_t mii_reg;
-               e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
-               if (mii_reg & MII_CR_POWER_DOWN)
-                       e1000_phy_hw_reset(&adapter->hw);
-       }
-
        e1000_set_multi(netdev);
 
        e1000_restore_vlan(adapter);
@@ -415,24 +463,6 @@ e1000_up(struct e1000_adapter *adapter)
                                      E1000_DESC_UNUSED(ring));
        }
 
-#ifdef CONFIG_PCI_MSI
-       if (adapter->hw.mac_type > e1000_82547_rev_2) {
-               adapter->have_msi = TRUE;
-               if ((err = pci_enable_msi(adapter->pdev))) {
-                       DPRINTK(PROBE, ERR,
-                        "Unable to allocate MSI interrupt Error: %d\n", err);
-                       adapter->have_msi = FALSE;
-               }
-       }
-#endif
-       if ((err = request_irq(adapter->pdev->irq, &e1000_intr,
-                             IRQF_SHARED | IRQF_SAMPLE_RANDOM,
-                             netdev->name, netdev))) {
-               DPRINTK(PROBE, ERR,
-                   "Unable to allocate interrupt Error: %d\n", err);
-               return err;
-       }
-
        adapter->tx_queue_len = netdev->tx_queue_len;
 
        mod_timer(&adapter->watchdog_timer, jiffies);
@@ -445,21 +475,60 @@ e1000_up(struct e1000_adapter *adapter)
        return 0;
 }
 
+/**
+ * e1000_power_up_phy - restore link in case the phy was powered down
+ * @adapter: address of board private structure
+ *
+ * The phy may be powered down to save power and turn off link when the
+ * driver is unloaded and wake on lan is not enabled (among others)
+ * *** this routine MUST be followed by a call to e1000_reset ***
+ *
+ **/
+
+static void e1000_power_up_phy(struct e1000_adapter *adapter)
+{
+       uint16_t mii_reg = 0;
+
+       /* Just clear the power down bit to wake the phy back up */
+       if (adapter->hw.media_type == e1000_media_type_copper) {
+               /* according to the manual, the phy will retain its
+                * settings across a power-down/up cycle */
+               e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
+               mii_reg &= ~MII_CR_POWER_DOWN;
+               e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
+       }
+}
+
+static void e1000_power_down_phy(struct e1000_adapter *adapter)
+{
+       boolean_t mng_mode_enabled = (adapter->hw.mac_type >= e1000_82571) &&
+                                     e1000_check_mng_mode(&adapter->hw);
+       /* Power down the PHY so no link is implied when interface is down
+        * The PHY cannot be powered down if any of the following is TRUE
+        * (a) WoL is enabled
+        * (b) AMT is active
+        * (c) SoL/IDER session is active */
+       if (!adapter->wol && adapter->hw.mac_type >= e1000_82540 &&
+           adapter->hw.mac_type != e1000_ich8lan &&
+           adapter->hw.media_type == e1000_media_type_copper &&
+           !(E1000_READ_REG(&adapter->hw, MANC) & E1000_MANC_SMBUS_EN) &&
+           !mng_mode_enabled &&
+           !e1000_check_phy_reset_block(&adapter->hw)) {
+               uint16_t mii_reg = 0;
+               e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
+               mii_reg |= MII_CR_POWER_DOWN;
+               e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
+               mdelay(1);
+       }
+}
+
 void
 e1000_down(struct e1000_adapter *adapter)
 {
        struct net_device *netdev = adapter->netdev;
-       boolean_t mng_mode_enabled = (adapter->hw.mac_type >= e1000_82571) &&
-                                    e1000_check_mng_mode(&adapter->hw);
 
        e1000_irq_disable(adapter);
 
-       free_irq(adapter->pdev->irq, netdev);
-#ifdef CONFIG_PCI_MSI
-       if (adapter->hw.mac_type > e1000_82547_rev_2 &&
-          adapter->have_msi == TRUE)
-               pci_disable_msi(adapter->pdev);
-#endif
        del_timer_sync(&adapter->tx_fifo_stall_timer);
        del_timer_sync(&adapter->watchdog_timer);
        del_timer_sync(&adapter->phy_info_timer);
@@ -476,23 +545,17 @@ e1000_down(struct e1000_adapter *adapter)
        e1000_reset(adapter);
        e1000_clean_all_tx_rings(adapter);
        e1000_clean_all_rx_rings(adapter);
+}
 
-       /* Power down the PHY so no link is implied when interface is down *
-        * The PHY cannot be powered down if any of the following is TRUE *
-        * (a) WoL is enabled
-        * (b) AMT is active
-        * (c) SoL/IDER session is active */
-       if (!adapter->wol && adapter->hw.mac_type >= e1000_82540 &&
-          adapter->hw.media_type == e1000_media_type_copper &&
-          !(E1000_READ_REG(&adapter->hw, MANC) & E1000_MANC_SMBUS_EN) &&
-          !mng_mode_enabled &&
-          !e1000_check_phy_reset_block(&adapter->hw)) {
-               uint16_t mii_reg;
-               e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
-               mii_reg |= MII_CR_POWER_DOWN;
-               e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
-               mdelay(1);
-       }
+void
+e1000_reinit_locked(struct e1000_adapter *adapter)
+{
+       WARN_ON(in_interrupt());
+       while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
+               msleep(1);
+       e1000_down(adapter);
+       e1000_up(adapter);
+       clear_bit(__E1000_RESETTING, &adapter->flags);
 }
 
 void
@@ -518,6 +581,9 @@ e1000_reset(struct e1000_adapter *adapter)
        case e1000_82573:
                pba = E1000_PBA_12K;
                break;
+       case e1000_ich8lan:
+               pba = E1000_PBA_8K;
+               break;
        default:
                pba = E1000_PBA_48K;
                break;
@@ -542,6 +608,12 @@ e1000_reset(struct e1000_adapter *adapter)
        /* Set the FC high water mark to 90% of the FIFO size.
         * Required to clear last 3 LSB */
        fc_high_water_mark = ((pba * 9216)/10) & 0xFFF8;
+       /* We can't use 90% on small FIFOs because the remainder
+        * would be less than 1 full frame.  In this case, we size
+        * it to allow at least a full frame above the high water
+        *  mark. */
+       if (pba < E1000_PBA_16K)
+               fc_high_water_mark = (pba * 1024) - 1600;
 
        adapter->hw.fc_high_water = fc_high_water_mark;
        adapter->hw.fc_low_water = fc_high_water_mark - 8;
@@ -564,6 +636,23 @@ e1000_reset(struct e1000_adapter *adapter)
 
        e1000_reset_adaptive(&adapter->hw);
        e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
+
+       if (!adapter->smart_power_down &&
+           (adapter->hw.mac_type == e1000_82571 ||
+            adapter->hw.mac_type == e1000_82572)) {
+               uint16_t phy_data = 0;
+               /* speed up time to link by disabling smart power down, ignore
+                * the return value of this function because there is nothing
+                * different we would do if it failed */
+               e1000_read_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
+                                  &phy_data);
+               phy_data &= ~IGP02E1000_PM_SPD;
+               e1000_write_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
+                                   phy_data);
+       }
+
+       if (adapter->hw.mac_type < e1000_ich8lan)
+       /* FIXME: this code is duplicate and wrong for PCI Express */
        if (adapter->en_mng_pt) {
                manc = E1000_READ_REG(&adapter->hw, MANC);
                manc |= (E1000_MANC_ARP_EN | E1000_MANC_EN_MNG2HOST);
@@ -590,6 +679,7 @@ e1000_probe(struct pci_dev *pdev,
        struct net_device *netdev;
        struct e1000_adapter *adapter;
        unsigned long mmio_start, mmio_len;
+       unsigned long flash_start, flash_len;
 
        static int cards_found = 0;
        static int e1000_ksp3_port_a = 0; /* global ksp3 port a indication */
@@ -599,10 +689,12 @@ e1000_probe(struct pci_dev *pdev,
        if ((err = pci_enable_device(pdev)))
                return err;
 
-       if (!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK))) {
+       if (!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK)) &&
+           !(err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK))) {
                pci_using_dac = 1;
        } else {
-               if ((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
+               if ((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK)) &&
+                   (err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK))) {
                        E1000_ERR("No usable DMA configuration, aborting\n");
                        return err;
                }
@@ -682,6 +774,19 @@ e1000_probe(struct pci_dev *pdev,
        if ((err = e1000_sw_init(adapter)))
                goto err_sw_init;
 
+       /* Flash BAR mapping must happen after e1000_sw_init
+        * because it depends on mac_type */
+       if ((adapter->hw.mac_type == e1000_ich8lan) &&
+          (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
+               flash_start = pci_resource_start(pdev, 1);
+               flash_len = pci_resource_len(pdev, 1);
+               adapter->hw.flash_address = ioremap(flash_start, flash_len);
+               if (!adapter->hw.flash_address) {
+                       err = -EIO;
+                       goto err_flashmap;
+               }
+       }
+
        if ((err = e1000_check_phy_reset_block(&adapter->hw)))
                DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n");
 
@@ -700,6 +805,8 @@ e1000_probe(struct pci_dev *pdev,
                                   NETIF_F_HW_VLAN_TX |
                                   NETIF_F_HW_VLAN_RX |
                                   NETIF_F_HW_VLAN_FILTER;
+               if (adapter->hw.mac_type == e1000_ich8lan)
+                       netdev->features &= ~NETIF_F_HW_VLAN_FILTER;
        }
 
 #ifdef NETIF_F_TSO
@@ -715,11 +822,17 @@ e1000_probe(struct pci_dev *pdev,
        if (pci_using_dac)
                netdev->features |= NETIF_F_HIGHDMA;
 
-       /* hard_start_xmit is safe against parallel locking */
        netdev->features |= NETIF_F_LLTX;
 
        adapter->en_mng_pt = e1000_enable_mng_pass_thru(&adapter->hw);
 
+       /* initialize eeprom parameters */
+
+       if (e1000_init_eeprom_params(&adapter->hw)) {
+               E1000_ERR("EEPROM initialization failed\n");
+               return -EIO;
+       }
+
        /* before reading the EEPROM, reset the controller to
         * put the device in a known good starting state */
 
@@ -758,9 +871,6 @@ e1000_probe(struct pci_dev *pdev,
        adapter->watchdog_timer.function = &e1000_watchdog;
        adapter->watchdog_timer.data = (unsigned long) adapter;
 
-       INIT_WORK(&adapter->watchdog_task,
-               (void (*)(void *))e1000_watchdog_task, adapter);
-
        init_timer(&adapter->phy_info_timer);
        adapter->phy_info_timer.function = &e1000_update_phy_info;
        adapter->phy_info_timer.data = (unsigned long) adapter;
@@ -790,6 +900,11 @@ e1000_probe(struct pci_dev *pdev,
                        EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
                eeprom_apme_mask = E1000_EEPROM_82544_APM;
                break;
+       case e1000_ich8lan:
+               e1000_read_eeprom(&adapter->hw,
+                       EEPROM_INIT_CONTROL1_REG, 1, &eeprom_data);
+               eeprom_apme_mask = E1000_EEPROM_ICH8_APME;
+               break;
        case e1000_82546:
        case e1000_82546_rev_3:
        case e1000_82571:
@@ -849,6 +964,9 @@ e1000_probe(struct pci_dev *pdev,
        return 0;
 
 err_register:
+       if (adapter->hw.flash_address)
+               iounmap(adapter->hw.flash_address);
+err_flashmap:
 err_sw_init:
 err_eeprom:
        iounmap(adapter->hw.hw_addr);
@@ -882,6 +1000,7 @@ e1000_remove(struct pci_dev *pdev)
        flush_scheduled_work();
 
        if (adapter->hw.mac_type >= e1000_82540 &&
+          adapter->hw.mac_type != e1000_ich8lan &&
           adapter->hw.media_type == e1000_media_type_copper) {
                manc = E1000_READ_REG(&adapter->hw, MANC);
                if (manc & E1000_MANC_SMBUS_EN) {
@@ -910,6 +1029,8 @@ e1000_remove(struct pci_dev *pdev)
 #endif
 
        iounmap(adapter->hw.hw_addr);
+       if (adapter->hw.flash_address)
+               iounmap(adapter->hw.flash_address);
        pci_release_regions(pdev);
 
        free_netdev(netdev);
@@ -960,13 +1081,6 @@ e1000_sw_init(struct e1000_adapter *adapter)
                return -EIO;
        }
 
-       /* initialize eeprom parameters */
-
-       if (e1000_init_eeprom_params(hw)) {
-               E1000_ERR("EEPROM initialization failed\n");
-               return -EIO;
-       }
-
        switch (hw->mac_type) {
        default:
                break;
@@ -1078,6 +1192,10 @@ e1000_open(struct net_device *netdev)
        struct e1000_adapter *adapter = netdev_priv(netdev);
        int err;
 
+       /* disallow open during test */
+       if (test_bit(__E1000_DRIVER_TESTING, &adapter->flags))
+               return -EBUSY;
+
        /* allocate transmit descriptors */
 
        if ((err = e1000_setup_all_tx_resources(adapter)))
@@ -1088,6 +1206,12 @@ e1000_open(struct net_device *netdev)
        if ((err = e1000_setup_all_rx_resources(adapter)))
                goto err_setup_rx;
 
+       err = e1000_request_irq(adapter);
+       if (err)
+               goto err_up;
+
+       e1000_power_up_phy(adapter);
+
        if ((err = e1000_up(adapter)))
                goto err_up;
        adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
@@ -1131,7 +1255,10 @@ e1000_close(struct net_device *netdev)
 {
        struct e1000_adapter *adapter = netdev_priv(netdev);
 
+       WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
        e1000_down(adapter);
+       e1000_power_down_phy(adapter);
+       e1000_free_irq(adapter);
 
        e1000_free_all_tx_resources(adapter);
        e1000_free_all_rx_resources(adapter);
@@ -1189,8 +1316,7 @@ e1000_setup_tx_resources(struct e1000_adapter *adapter,
        int size;
 
        size = sizeof(struct e1000_buffer) * txdr->count;
-
-       txdr->buffer_info = vmalloc_node(size, pcibus_to_node(pdev->bus));
+       txdr->buffer_info = vmalloc(size);
        if (!txdr->buffer_info) {
                DPRINTK(PROBE, ERR,
                "Unable to allocate memory for the transmit descriptor ring\n");
@@ -1302,11 +1428,11 @@ e1000_configure_tx(struct e1000_adapter *adapter)
                tdba = adapter->tx_ring[0].dma;
                tdlen = adapter->tx_ring[0].count *
                        sizeof(struct e1000_tx_desc);
-               E1000_WRITE_REG(hw, TDBAL, (tdba & 0x00000000ffffffffULL));
-               E1000_WRITE_REG(hw, TDBAH, (tdba >> 32));
                E1000_WRITE_REG(hw, TDLEN, tdlen);
-               E1000_WRITE_REG(hw, TDH, 0);
+               E1000_WRITE_REG(hw, TDBAH, (tdba >> 32));
+               E1000_WRITE_REG(hw, TDBAL, (tdba & 0x00000000ffffffffULL));
                E1000_WRITE_REG(hw, TDT, 0);
+               E1000_WRITE_REG(hw, TDH, 0);
                adapter->tx_ring[0].tdh = E1000_TDH;
                adapter->tx_ring[0].tdt = E1000_TDT;
                break;
@@ -1418,7 +1544,7 @@ e1000_setup_rx_resources(struct e1000_adapter *adapter,
        int size, desc_len;
 
        size = sizeof(struct e1000_buffer) * rxdr->count;
-       rxdr->buffer_info = vmalloc_node(size, pcibus_to_node(pdev->bus));
+       rxdr->buffer_info = vmalloc(size);
        if (!rxdr->buffer_info) {
                DPRINTK(PROBE, ERR,
                "Unable to allocate memory for the receive descriptor ring\n");
@@ -1560,9 +1686,6 @@ e1000_setup_rctl(struct e1000_adapter *adapter)
                E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
                (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
 
-       if (adapter->hw.mac_type > e1000_82543)
-               rctl |= E1000_RCTL_SECRC;
-
        if (adapter->hw.tbi_compatibility_on == 1)
                rctl |= E1000_RCTL_SBP;
        else
@@ -1628,7 +1751,7 @@ e1000_setup_rctl(struct e1000_adapter *adapter)
                rfctl |= E1000_RFCTL_IPV6_DIS;
                E1000_WRITE_REG(&adapter->hw, RFCTL, rfctl);
 
-               rctl |= E1000_RCTL_DTYP_PS | E1000_RCTL_SECRC;
+               rctl |= E1000_RCTL_DTYP_PS;
 
                psrctl |= adapter->rx_ps_bsize0 >>
                        E1000_PSRCTL_BSIZE0_SHIFT;
@@ -1712,11 +1835,11 @@ e1000_configure_rx(struct e1000_adapter *adapter)
        case 1:
        default:
                rdba = adapter->rx_ring[0].dma;
-               E1000_WRITE_REG(hw, RDBAL, (rdba & 0x00000000ffffffffULL));
-               E1000_WRITE_REG(hw, RDBAH, (rdba >> 32));
                E1000_WRITE_REG(hw, RDLEN, rdlen);
-               E1000_WRITE_REG(hw, RDH, 0);
+               E1000_WRITE_REG(hw, RDBAH, (rdba >> 32));
+               E1000_WRITE_REG(hw, RDBAL, (rdba & 0x00000000ffffffffULL));
                E1000_WRITE_REG(hw, RDT, 0);
+               E1000_WRITE_REG(hw, RDH, 0);
                adapter->rx_ring[0].rdh = E1000_RDH;
                adapter->rx_ring[0].rdt = E1000_RDT;
                break;
@@ -1741,9 +1864,6 @@ e1000_configure_rx(struct e1000_adapter *adapter)
                E1000_WRITE_REG(hw, RXCSUM, rxcsum);
        }
 
-       if (hw->mac_type == e1000_82573)
-               E1000_WRITE_REG(hw, ERT, 0x0100);
-
        /* Enable Receives */
        E1000_WRITE_REG(hw, RCTL, rctl);
 }
@@ -2083,6 +2203,12 @@ e1000_set_multi(struct net_device *netdev)
        uint32_t rctl;
        uint32_t hash_value;
        int i, rar_entries = E1000_RAR_ENTRIES;
+       int mta_reg_count = (hw->mac_type == e1000_ich8lan) ?
+                               E1000_NUM_MTA_REGISTERS_ICH8LAN :
+                               E1000_NUM_MTA_REGISTERS;
+
+       if (adapter->hw.mac_type == e1000_ich8lan)
+               rar_entries = E1000_RAR_ENTRIES_ICH8LAN;
 
        /* reserve RAR[14] for LAA over-write work-around */
        if (adapter->hw.mac_type == e1000_82571)
@@ -2121,14 +2247,18 @@ e1000_set_multi(struct net_device *netdev)
                        mc_ptr = mc_ptr->next;
                } else {
                        E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
+                       E1000_WRITE_FLUSH(hw);
                        E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
+                       E1000_WRITE_FLUSH(hw);
                }
        }
 
        /* clear the old settings from the multicast hash table */
 
-       for (i = 0; i < E1000_NUM_MTA_REGISTERS; i++)
+       for (i = 0; i < mta_reg_count; i++) {
                E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
+               E1000_WRITE_FLUSH(hw);
+       }
 
        /* load any remaining addresses into the hash table */
 
@@ -2201,19 +2331,19 @@ static void
 e1000_watchdog(unsigned long data)
 {
        struct e1000_adapter *adapter = (struct e1000_adapter *) data;
-
-       /* Do the rest outside of interrupt context */
-       schedule_work(&adapter->watchdog_task);
-}
-
-static void
-e1000_watchdog_task(struct e1000_adapter *adapter)
-{
        struct net_device *netdev = adapter->netdev;
        struct e1000_tx_ring *txdr = adapter->tx_ring;
        uint32_t link, tctl;
-
-       e1000_check_for_link(&adapter->hw);
+       int32_t ret_val;
+
+       ret_val = e1000_check_for_link(&adapter->hw);
+       if ((ret_val == E1000_ERR_PHY) &&
+           (adapter->hw.phy_type == e1000_phy_igp_3) &&
+           (E1000_READ_REG(&adapter->hw, CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
+               /* See e1000_kumeran_lock_loss_workaround() */
+               DPRINTK(LINK, INFO,
+                       "Gigabit has been disabled, downgrading speed\n");
+       }
        if (adapter->hw.mac_type == e1000_82573) {
                e1000_enable_tx_pkt_filtering(&adapter->hw);
                if (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id)
@@ -2779,9 +2909,10 @@ e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
                        case e1000_82571:
                        case e1000_82572:
                        case e1000_82573:
+                       case e1000_ich8lan:
                                pull_size = min((unsigned int)4, skb->data_len);
                                if (!__pskb_pull_tail(skb, pull_size)) {
-                                       printk(KERN_ERR
+                                       DPRINTK(DRV, ERR,
                                                "__pskb_pull_tail failed.\n");
                                        dev_kfree_skb_any(skb);
                                        return NETDEV_TX_OK;
@@ -2919,8 +3050,7 @@ e1000_reset_task(struct net_device *netdev)
 {
        struct e1000_adapter *adapter = netdev_priv(netdev);
 
-       e1000_down(adapter);
-       e1000_up(adapter);
+       e1000_reinit_locked(adapter);
 }
 
 /**
@@ -2964,6 +3094,7 @@ e1000_change_mtu(struct net_device *netdev, int new_mtu)
        /* Adapter-specific max frame size limits. */
        switch (adapter->hw.mac_type) {
        case e1000_undefined ... e1000_82542_rev2_1:
+       case e1000_ich8lan:
                if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
                        DPRINTK(PROBE, ERR, "Jumbo Frames not supported.\n");
                        return -EINVAL;
@@ -3026,10 +3157,8 @@ e1000_change_mtu(struct net_device *netdev, int new_mtu)
 
        netdev->mtu = new_mtu;
 
-       if (netif_running(netdev)) {
-               e1000_down(adapter);
-               e1000_up(adapter);
-       }
+       if (netif_running(netdev))
+               e1000_reinit_locked(adapter);
 
        adapter->hw.max_frame_size = max_frame;
 
@@ -3074,12 +3203,15 @@ e1000_update_stats(struct e1000_adapter *adapter)
        adapter->stats.bprc += E1000_READ_REG(hw, BPRC);
        adapter->stats.mprc += E1000_READ_REG(hw, MPRC);
        adapter->stats.roc += E1000_READ_REG(hw, ROC);
+
+       if (adapter->hw.mac_type != e1000_ich8lan) {
        adapter->stats.prc64 += E1000_READ_REG(hw, PRC64);
        adapter->stats.prc127 += E1000_READ_REG(hw, PRC127);
        adapter->stats.prc255 += E1000_READ_REG(hw, PRC255);
        adapter->stats.prc511 += E1000_READ_REG(hw, PRC511);
        adapter->stats.prc1023 += E1000_READ_REG(hw, PRC1023);
        adapter->stats.prc1522 += E1000_READ_REG(hw, PRC1522);
+       }
 
        adapter->stats.symerrs += E1000_READ_REG(hw, SYMERRS);
        adapter->stats.mpc += E1000_READ_REG(hw, MPC);
@@ -3107,12 +3239,16 @@ e1000_update_stats(struct e1000_adapter *adapter)
        adapter->stats.totl += E1000_READ_REG(hw, TOTL);
        adapter->stats.toth += E1000_READ_REG(hw, TOTH);
        adapter->stats.tpr += E1000_READ_REG(hw, TPR);
+
+       if (adapter->hw.mac_type != e1000_ich8lan) {
        adapter->stats.ptc64 += E1000_READ_REG(hw, PTC64);
        adapter->stats.ptc127 += E1000_READ_REG(hw, PTC127);
        adapter->stats.ptc255 += E1000_READ_REG(hw, PTC255);
        adapter->stats.ptc511 += E1000_READ_REG(hw, PTC511);
        adapter->stats.ptc1023 += E1000_READ_REG(hw, PTC1023);
        adapter->stats.ptc1522 += E1000_READ_REG(hw, PTC1522);
+       }
+
        adapter->stats.mptc += E1000_READ_REG(hw, MPTC);
        adapter->stats.bptc += E1000_READ_REG(hw, BPTC);
 
@@ -3134,6 +3270,8 @@ e1000_update_stats(struct e1000_adapter *adapter)
        if (hw->mac_type > e1000_82547_rev_2) {
                adapter->stats.iac += E1000_READ_REG(hw, IAC);
                adapter->stats.icrxoc += E1000_READ_REG(hw, ICRXOC);
+
+               if (adapter->hw.mac_type != e1000_ich8lan) {
                adapter->stats.icrxptc += E1000_READ_REG(hw, ICRXPTC);
                adapter->stats.icrxatc += E1000_READ_REG(hw, ICRXATC);
                adapter->stats.ictxptc += E1000_READ_REG(hw, ICTXPTC);
@@ -3141,6 +3279,7 @@ e1000_update_stats(struct e1000_adapter *adapter)
                adapter->stats.ictxqec += E1000_READ_REG(hw, ICTXQEC);
                adapter->stats.ictxqmtc += E1000_READ_REG(hw, ICTXQMTC);
                adapter->stats.icrxdmtc += E1000_READ_REG(hw, ICRXDMTC);
+               }
        }
 
        /* Fill out the OS statistics structure */
@@ -3547,7 +3686,8 @@ e1000_clean_rx_irq(struct e1000_adapter *adapter,
                        /* All receives must fit into a single buffer */
                        E1000_DBG("%s: Receive packet consumed multiple"
                                  " buffers\n", netdev->name);
-                       dev_kfree_skb_irq(skb);
+                       /* recycle */
+                       buffer_info-> skb = skb;
                        goto next_desc;
                }
 
@@ -3675,7 +3815,6 @@ e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
        buffer_info = &rx_ring->buffer_info[i];
 
        while (staterr & E1000_RXD_STAT_DD) {
-               buffer_info = &rx_ring->buffer_info[i];
                ps_page = &rx_ring->ps_page[i];
                ps_page_dma = &rx_ring->ps_page_dma[i];
 #ifdef CONFIG_E1000_NAPI
@@ -4180,10 +4319,9 @@ e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
                                                return retval;
                                        }
                                }
-                               if (netif_running(adapter->netdev)) {
-                                       e1000_down(adapter);
-                                       e1000_up(adapter);
-                               } else
+                               if (netif_running(adapter->netdev))
+                                       e1000_reinit_locked(adapter);
+                               else
                                        e1000_reset(adapter);
                                break;
                        case M88E1000_PHY_SPEC_CTRL:
@@ -4200,10 +4338,9 @@ e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
                        case PHY_CTRL:
                                if (mii_reg & MII_CR_POWER_DOWN)
                                        break;
-                               if (netif_running(adapter->netdev)) {
-                                       e1000_down(adapter);
-                                       e1000_up(adapter);
-                               } else
+                               if (netif_running(adapter->netdev))
+                                       e1000_reinit_locked(adapter);
+                               else
                                        e1000_reset(adapter);
                                break;
                        }
@@ -4277,18 +4414,21 @@ e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp)
                ctrl |= E1000_CTRL_VME;
                E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
 
+               if (adapter->hw.mac_type != e1000_ich8lan) {
                /* enable VLAN receive filtering */
                rctl = E1000_READ_REG(&adapter->hw, RCTL);
                rctl |= E1000_RCTL_VFE;
                rctl &= ~E1000_RCTL_CFIEN;
                E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
                e1000_update_mng_vlan(adapter);
+               }
        } else {
                /* disable VLAN tag insert/strip */
                ctrl = E1000_READ_REG(&adapter->hw, CTRL);
                ctrl &= ~E1000_CTRL_VME;
                E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
 
+               if (adapter->hw.mac_type != e1000_ich8lan) {
                /* disable VLAN filtering */
                rctl = E1000_READ_REG(&adapter->hw, RCTL);
                rctl &= ~E1000_RCTL_VFE;
@@ -4297,6 +4437,7 @@ e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp)
                        e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
                        adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
                }
+               }
        }
 
        e1000_irq_enable(adapter);
@@ -4458,12 +4599,16 @@ e1000_suspend(struct pci_dev *pdev, pm_message_t state)
        struct e1000_adapter *adapter = netdev_priv(netdev);
        uint32_t ctrl, ctrl_ext, rctl, manc, status;
        uint32_t wufc = adapter->wol;
+#ifdef CONFIG_PM
        int retval = 0;
+#endif
 
        netif_device_detach(netdev);
 
-       if (netif_running(netdev))
+       if (netif_running(netdev)) {
+               WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
                e1000_down(adapter);
+       }
 
 #ifdef CONFIG_PM
        /* Implement our own version of pci_save_state(pdev) because pci-
@@ -4521,7 +4666,9 @@ e1000_suspend(struct pci_dev *pdev, pm_message_t state)
                pci_enable_wake(pdev, PCI_D3cold, 0);
        }
 
+       /* FIXME: this code is incorrect for PCI Express */
        if (adapter->hw.mac_type >= e1000_82540 &&
+          adapter->hw.mac_type != e1000_ich8lan &&
           adapter->hw.media_type == e1000_media_type_copper) {
                manc = E1000_READ_REG(&adapter->hw, MANC);
                if (manc & E1000_MANC_SMBUS_EN) {
@@ -4532,6 +4679,9 @@ e1000_suspend(struct pci_dev *pdev, pm_message_t state)
                }
        }
 
+       if (adapter->hw.phy_type == e1000_phy_igp_3)
+               e1000_phy_powerdown_workaround(&adapter->hw);
+
        /* Release control of h/w to f/w.  If f/w is AMT enabled, this
         * would have already happened in close and is redundant. */
        e1000_release_hw_control(adapter);
@@ -4567,7 +4717,9 @@ e1000_resume(struct pci_dev *pdev)
 
        netif_device_attach(netdev);
 
+       /* FIXME: this code is incorrect for PCI Express */
        if (adapter->hw.mac_type >= e1000_82540 &&
+          adapter->hw.mac_type != e1000_ich8lan &&
           adapter->hw.media_type == e1000_media_type_copper) {
                manc = E1000_READ_REG(&adapter->hw, MANC);
                manc &= ~(E1000_MANC_ARP_EN);
index 048d052be29d6a6d9a27856e2e3b7af3c142c95a..2d3e8b06cab03f7d2478c6a001a4eb0a85838f3e 100644 (file)
@@ -127,4 +127,17 @@ typedef enum {
 
 #define E1000_WRITE_FLUSH(a) E1000_READ_REG(a, STATUS)
 
+#define E1000_WRITE_ICH8_REG(a, reg, value) ( \
+    writel((value), ((a)->flash_address + reg)))
+
+#define E1000_READ_ICH8_REG(a, reg) ( \
+    readl((a)->flash_address + reg))
+
+#define E1000_WRITE_ICH8_REG16(a, reg, value) ( \
+    writew((value), ((a)->flash_address + reg)))
+
+#define E1000_READ_ICH8_REG16(a, reg) ( \
+    readw((a)->flash_address + reg))
+
+
 #endif /* _E1000_OSDEP_H_ */
index e55f8969a0fb0ca85f46f43ad2f9708e5bf55622..0ef413172c68798562bd467c12e577e3479139c6 100644 (file)
  */
 
 #define E1000_PARAM_INIT { [0 ... E1000_MAX_NIC] = OPTION_UNSET }
+/* Module Parameters are always initialized to -1, so that the driver
+ * can tell the difference between no user specified value or the
+ * user asking for the default value.
+ * The true default values are loaded in when e1000_check_options is called.
+ *
+ * This is a GCC extension to ANSI C.
+ * See the item "Labeled Elements in Initializers" in the section
+ * "Extensions to the C Language Family" of the GCC documentation.
+ */
+
 #define E1000_PARAM(X, desc) \
        static int __devinitdata X[E1000_MAX_NIC+1] = E1000_PARAM_INIT; \
        static int num_##X = 0; \
@@ -183,6 +193,24 @@ E1000_PARAM(RxAbsIntDelay, "Receive Absolute Interrupt Delay");
 
 E1000_PARAM(InterruptThrottleRate, "Interrupt Throttling Rate");
 
+/* Enable Smart Power Down of the PHY
+ *
+ * Valid Range: 0, 1
+ *
+ * Default Value: 0 (disabled)
+ */
+
+E1000_PARAM(SmartPowerDownEnable, "Enable PHY smart power down");
+
+/* Enable Kumeran Lock Loss workaround
+ *
+ * Valid Range: 0, 1
+ *
+ * Default Value: 1 (enabled)
+ */
+
+E1000_PARAM(KumeranLockLoss, "Enable Kumeran lock loss workaround");
+
 #define AUTONEG_ADV_DEFAULT  0x2F
 #define AUTONEG_ADV_MASK     0x2F
 #define FLOW_CONTROL_DEFAULT FLOW_CONTROL_FULL
@@ -296,6 +324,7 @@ e1000_check_options(struct e1000_adapter *adapter)
                DPRINTK(PROBE, NOTICE,
                       "Warning: no configuration for board #%i\n", bd);
                DPRINTK(PROBE, NOTICE, "Using defaults for all values\n");
+               bd = E1000_MAX_NIC;
        }
 
        { /* Transmit Descriptor Count */
@@ -313,14 +342,9 @@ e1000_check_options(struct e1000_adapter *adapter)
                opt.arg.r.max = mac_type < e1000_82544 ?
                        E1000_MAX_TXD : E1000_MAX_82544_TXD;
 
-               if (num_TxDescriptors > bd) {
-                       tx_ring->count = TxDescriptors[bd];
-                       e1000_validate_option(&tx_ring->count, &opt, adapter);
-                       E1000_ROUNDUP(tx_ring->count,
-                                               REQ_TX_DESCRIPTOR_MULTIPLE);
-               } else {
-                       tx_ring->count = opt.def;
-               }
+               tx_ring->count = TxDescriptors[bd];
+               e1000_validate_option(&tx_ring->count, &opt, adapter);
+               E1000_ROUNDUP(tx_ring->count, REQ_TX_DESCRIPTOR_MULTIPLE);
                for (i = 0; i < adapter->num_tx_queues; i++)
                        tx_ring[i].count = tx_ring->count;
        }
@@ -339,14 +363,9 @@ e1000_check_options(struct e1000_adapter *adapter)
                opt.arg.r.max = mac_type < e1000_82544 ? E1000_MAX_RXD :
                        E1000_MAX_82544_RXD;
 
-               if (num_RxDescriptors > bd) {
-                       rx_ring->count = RxDescriptors[bd];
-                       e1000_validate_option(&rx_ring->count, &opt, adapter);
-                       E1000_ROUNDUP(rx_ring->count,
-                                               REQ_RX_DESCRIPTOR_MULTIPLE);
-               } else {
-                       rx_ring->count = opt.def;
-               }
+               rx_ring->count = RxDescriptors[bd];
+               e1000_validate_option(&rx_ring->count, &opt, adapter);
+               E1000_ROUNDUP(rx_ring->count, REQ_RX_DESCRIPTOR_MULTIPLE);
                for (i = 0; i < adapter->num_rx_queues; i++)
                        rx_ring[i].count = rx_ring->count;
        }
@@ -358,13 +377,9 @@ e1000_check_options(struct e1000_adapter *adapter)
                        .def  = OPTION_ENABLED
                };
 
-               if (num_XsumRX > bd) {
-                       int rx_csum = XsumRX[bd];
-                       e1000_validate_option(&rx_csum, &opt, adapter);
-                       adapter->rx_csum = rx_csum;
-               } else {
-                       adapter->rx_csum = opt.def;
-               }
+               int rx_csum = XsumRX[bd];
+               e1000_validate_option(&rx_csum, &opt, adapter);
+               adapter->rx_csum = rx_csum;
        }
        { /* Flow Control */
 
@@ -384,13 +399,9 @@ e1000_check_options(struct e1000_adapter *adapter)
                                         .p = fc_list }}
                };
 
-               if (num_FlowControl > bd) {
-                       int fc = FlowControl[bd];
-                       e1000_validate_option(&fc, &opt, adapter);
-                       adapter->hw.fc = adapter->hw.original_fc = fc;
-               } else {
-                       adapter->hw.fc = adapter->hw.original_fc = opt.def;
-               }
+               int fc = FlowControl[bd];
+               e1000_validate_option(&fc, &opt, adapter);
+               adapter->hw.fc = adapter->hw.original_fc = fc;
        }
        { /* Transmit Interrupt Delay */
                struct e1000_option opt = {
@@ -402,13 +413,8 @@ e1000_check_options(struct e1000_adapter *adapter)
                                         .max = MAX_TXDELAY }}
                };
 
-               if (num_TxIntDelay > bd) {
-                       adapter->tx_int_delay = TxIntDelay[bd];
-                       e1000_validate_option(&adapter->tx_int_delay, &opt,
-                                                               adapter);
-               } else {
-                       adapter->tx_int_delay = opt.def;
-               }
+               adapter->tx_int_delay = TxIntDelay[bd];
+               e1000_validate_option(&adapter->tx_int_delay, &opt, adapter);
        }
        { /* Transmit Absolute Interrupt Delay */
                struct e1000_option opt = {
@@ -420,13 +426,9 @@ e1000_check_options(struct e1000_adapter *adapter)
                                         .max = MAX_TXABSDELAY }}
                };
 
-               if (num_TxAbsIntDelay > bd) {
-                       adapter->tx_abs_int_delay = TxAbsIntDelay[bd];
-                       e1000_validate_option(&adapter->tx_abs_int_delay, &opt,
-                                                               adapter);
-               } else {
-                       adapter->tx_abs_int_delay = opt.def;
-               }
+               adapter->tx_abs_int_delay = TxAbsIntDelay[bd];
+               e1000_validate_option(&adapter->tx_abs_int_delay, &opt,
+                                     adapter);
        }
        { /* Receive Interrupt Delay */
                struct e1000_option opt = {
@@ -438,13 +440,8 @@ e1000_check_options(struct e1000_adapter *adapter)
                                         .max = MAX_RXDELAY }}
                };
 
-               if (num_RxIntDelay > bd) {
-                       adapter->rx_int_delay = RxIntDelay[bd];
-                       e1000_validate_option(&adapter->rx_int_delay, &opt,
-                                                               adapter);
-               } else {
-                       adapter->rx_int_delay = opt.def;
-               }
+               adapter->rx_int_delay = RxIntDelay[bd];
+               e1000_validate_option(&adapter->rx_int_delay, &opt, adapter);
        }
        { /* Receive Absolute Interrupt Delay */
                struct e1000_option opt = {
@@ -456,13 +453,9 @@ e1000_check_options(struct e1000_adapter *adapter)
                                         .max = MAX_RXABSDELAY }}
                };
 
-               if (num_RxAbsIntDelay > bd) {
-                       adapter->rx_abs_int_delay = RxAbsIntDelay[bd];
-                       e1000_validate_option(&adapter->rx_abs_int_delay, &opt,
-                                                               adapter);
-               } else {
-                       adapter->rx_abs_int_delay = opt.def;
-               }
+               adapter->rx_abs_int_delay = RxAbsIntDelay[bd];
+               e1000_validate_option(&adapter->rx_abs_int_delay, &opt,
+                                     adapter);
        }
        { /* Interrupt Throttling Rate */
                struct e1000_option opt = {
@@ -474,26 +467,44 @@ e1000_check_options(struct e1000_adapter *adapter)
                                         .max = MAX_ITR }}
                };
 
-               if (num_InterruptThrottleRate > bd) {
-                       adapter->itr = InterruptThrottleRate[bd];
-                       switch (adapter->itr) {
-                       case 0:
-                               DPRINTK(PROBE, INFO, "%s turned off\n",
-                                       opt.name);
-                               break;
-                       case 1:
-                               DPRINTK(PROBE, INFO, "%s set to dynamic mode\n",
-                                       opt.name);
-                               break;
-                       default:
-                               e1000_validate_option(&adapter->itr, &opt,
-                                       adapter);
-                               break;
-                       }
-               } else {
-                       adapter->itr = opt.def;
+               adapter->itr = InterruptThrottleRate[bd];
+               switch (adapter->itr) {
+               case 0:
+                       DPRINTK(PROBE, INFO, "%s turned off\n", opt.name);
+                       break;
+               case 1:
+                       DPRINTK(PROBE, INFO, "%s set to dynamic mode\n",
+                               opt.name);
+                       break;
+               default:
+                       e1000_validate_option(&adapter->itr, &opt, adapter);
+                       break;
                }
        }
+       { /* Smart Power Down */
+               struct e1000_option opt = {
+                       .type = enable_option,
+                       .name = "PHY Smart Power Down",
+                       .err  = "defaulting to Disabled",
+                       .def  = OPTION_DISABLED
+               };
+
+               int spd = SmartPowerDownEnable[bd];
+               e1000_validate_option(&spd, &opt, adapter);
+               adapter->smart_power_down = spd;
+       }
+       { /* Kumeran Lock Loss Workaround */
+               struct e1000_option opt = {
+                       .type = enable_option,
+                       .name = "Kumeran Lock Loss Workaround",
+                       .err  = "defaulting to Enabled",
+                       .def  = OPTION_ENABLED
+               };
+
+                       int kmrn_lock_loss = KumeranLockLoss[bd];
+                       e1000_validate_option(&kmrn_lock_loss, &opt, adapter);
+                       adapter->hw.kmrn_lock_loss_workaround_disabled = !kmrn_lock_loss;
+       }
 
        switch (adapter->hw.media_type) {
        case e1000_media_type_fiber:
@@ -519,17 +530,18 @@ static void __devinit
 e1000_check_fiber_options(struct e1000_adapter *adapter)
 {
        int bd = adapter->bd_number;
-       if (num_Speed > bd) {
+       bd = bd > E1000_MAX_NIC ? E1000_MAX_NIC : bd;
+       if ((Speed[bd] != OPTION_UNSET)) {
                DPRINTK(PROBE, INFO, "Speed not valid for fiber adapters, "
                       "parameter ignored\n");
        }
 
-       if (num_Duplex > bd) {
+       if ((Duplex[bd] != OPTION_UNSET)) {
                DPRINTK(PROBE, INFO, "Duplex not valid for fiber adapters, "
                       "parameter ignored\n");
        }
 
-       if ((num_AutoNeg > bd) && (AutoNeg[bd] != 0x20)) {
+       if ((AutoNeg[bd] != OPTION_UNSET) && (AutoNeg[bd] != 0x20)) {
                DPRINTK(PROBE, INFO, "AutoNeg other than 1000/Full is "
                                 "not valid for fiber adapters, "
                                 "parameter ignored\n");
@@ -548,6 +560,7 @@ e1000_check_copper_options(struct e1000_adapter *adapter)
 {
        int speed, dplx, an;
        int bd = adapter->bd_number;
+       bd = bd > E1000_MAX_NIC ? E1000_MAX_NIC : bd;
 
        { /* Speed */
                struct e1000_opt_list speed_list[] = {{          0, "" },
@@ -564,12 +577,8 @@ e1000_check_copper_options(struct e1000_adapter *adapter)
                                         .p = speed_list }}
                };
 
-               if (num_Speed > bd) {
-                       speed = Speed[bd];
-                       e1000_validate_option(&speed, &opt, adapter);
-               } else {
-                       speed = opt.def;
-               }
+               speed = Speed[bd];
+               e1000_validate_option(&speed, &opt, adapter);
        }
        { /* Duplex */
                struct e1000_opt_list dplx_list[] = {{           0, "" },
@@ -591,15 +600,11 @@ e1000_check_copper_options(struct e1000_adapter *adapter)
                                "Speed/Duplex/AutoNeg parameter ignored.\n");
                        return;
                }
-               if (num_Duplex > bd) {
-                       dplx = Duplex[bd];
-                       e1000_validate_option(&dplx, &opt, adapter);
-               } else {
-                       dplx = opt.def;
-               }
+               dplx = Duplex[bd];
+               e1000_validate_option(&dplx, &opt, adapter);
        }
 
-       if ((num_AutoNeg > bd) && (speed != 0 || dplx != 0)) {
+       if (AutoNeg[bd] != OPTION_UNSET && (speed != 0 || dplx != 0)) {
                DPRINTK(PROBE, INFO,
                       "AutoNeg specified along with Speed or Duplex, "
                       "parameter ignored\n");
@@ -648,19 +653,15 @@ e1000_check_copper_options(struct e1000_adapter *adapter)
                                         .p = an_list }}
                };
 
-               if (num_AutoNeg > bd) {
-                       an = AutoNeg[bd];
-                       e1000_validate_option(&an, &opt, adapter);
-               } else {
-                       an = opt.def;
-               }
+               an = AutoNeg[bd];
+               e1000_validate_option(&an, &opt, adapter);
                adapter->hw.autoneg_advertised = an;
        }
 
        switch (speed + dplx) {
        case 0:
                adapter->hw.autoneg = adapter->fc_autoneg = 1;
-               if ((num_Speed > bd) && (speed != 0 || dplx != 0))
+               if (Speed[bd] != OPTION_UNSET || Duplex[bd] != OPTION_UNSET)
                        DPRINTK(PROBE, INFO,
                               "Speed and duplex autonegotiation enabled\n");
                break;