2 * EDMA3 support for DaVinci
4 * Copyright (C) 2006-2009 Texas Instruments.
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20 #include <linux/err.h>
21 #include <linux/kernel.h>
22 #include <linux/init.h>
23 #include <linux/module.h>
24 #include <linux/interrupt.h>
25 #include <linux/platform_device.h>
27 #include <linux/slab.h>
28 #include <linux/edma.h>
29 #include <linux/of_address.h>
30 #include <linux/of_device.h>
31 #include <linux/of_dma.h>
32 #include <linux/of_irq.h>
33 #include <linux/pm_runtime.h>
35 #include <linux/platform_data/edma.h>
37 /* Offsets matching "struct edmacc_param" */
40 #define PARM_A_B_CNT 0x08
42 #define PARM_SRC_DST_BIDX 0x10
43 #define PARM_LINK_BCNTRLD 0x14
44 #define PARM_SRC_DST_CIDX 0x18
45 #define PARM_CCNT 0x1c
47 #define PARM_SIZE 0x20
49 /* Offsets for EDMA CC global channel registers and their shadows */
50 #define SH_ER 0x00 /* 64 bits */
51 #define SH_ECR 0x08 /* 64 bits */
52 #define SH_ESR 0x10 /* 64 bits */
53 #define SH_CER 0x18 /* 64 bits */
54 #define SH_EER 0x20 /* 64 bits */
55 #define SH_EECR 0x28 /* 64 bits */
56 #define SH_EESR 0x30 /* 64 bits */
57 #define SH_SER 0x38 /* 64 bits */
58 #define SH_SECR 0x40 /* 64 bits */
59 #define SH_IER 0x50 /* 64 bits */
60 #define SH_IECR 0x58 /* 64 bits */
61 #define SH_IESR 0x60 /* 64 bits */
62 #define SH_IPR 0x68 /* 64 bits */
63 #define SH_ICR 0x70 /* 64 bits */
73 /* Offsets for EDMA CC global registers */
74 #define EDMA_REV 0x0000
75 #define EDMA_CCCFG 0x0004
76 #define EDMA_QCHMAP 0x0200 /* 8 registers */
77 #define EDMA_DMAQNUM 0x0240 /* 8 registers (4 on OMAP-L1xx) */
78 #define EDMA_QDMAQNUM 0x0260
79 #define EDMA_QUETCMAP 0x0280
80 #define EDMA_QUEPRI 0x0284
81 #define EDMA_EMR 0x0300 /* 64 bits */
82 #define EDMA_EMCR 0x0308 /* 64 bits */
83 #define EDMA_QEMR 0x0310
84 #define EDMA_QEMCR 0x0314
85 #define EDMA_CCERR 0x0318
86 #define EDMA_CCERRCLR 0x031c
87 #define EDMA_EEVAL 0x0320
88 #define EDMA_DRAE 0x0340 /* 4 x 64 bits*/
89 #define EDMA_QRAE 0x0380 /* 4 registers */
90 #define EDMA_QUEEVTENTRY 0x0400 /* 2 x 16 registers */
91 #define EDMA_QSTAT 0x0600 /* 2 registers */
92 #define EDMA_QWMTHRA 0x0620
93 #define EDMA_QWMTHRB 0x0624
94 #define EDMA_CCSTAT 0x0640
96 #define EDMA_M 0x1000 /* global channel registers */
97 #define EDMA_ECR 0x1008
98 #define EDMA_ECRH 0x100C
99 #define EDMA_SHADOW0 0x2000 /* 4 regions shadowing global channels */
100 #define EDMA_PARM 0x4000 /* 128 param entries */
102 #define PARM_OFFSET(param_no) (EDMA_PARM + ((param_no) << 5))
104 #define EDMA_DCHMAP 0x0100 /* 64 registers */
105 #define CHMAP_EXIST BIT(24)
107 #define EDMA_MAX_DMACH 64
108 #define EDMA_MAX_PARAMENTRY 512
110 /*****************************************************************************/
112 static void __iomem *edmacc_regs_base[EDMA_MAX_CC];
114 static inline unsigned int edma_read(unsigned ctlr, int offset)
116 return (unsigned int)__raw_readl(edmacc_regs_base[ctlr] + offset);
119 static inline void edma_write(unsigned ctlr, int offset, int val)
121 __raw_writel(val, edmacc_regs_base[ctlr] + offset);
123 static inline void edma_modify(unsigned ctlr, int offset, unsigned and,
126 unsigned val = edma_read(ctlr, offset);
129 edma_write(ctlr, offset, val);
131 static inline void edma_and(unsigned ctlr, int offset, unsigned and)
133 unsigned val = edma_read(ctlr, offset);
135 edma_write(ctlr, offset, val);
137 static inline void edma_or(unsigned ctlr, int offset, unsigned or)
139 unsigned val = edma_read(ctlr, offset);
141 edma_write(ctlr, offset, val);
143 static inline unsigned int edma_read_array(unsigned ctlr, int offset, int i)
145 return edma_read(ctlr, offset + (i << 2));
147 static inline void edma_write_array(unsigned ctlr, int offset, int i,
150 edma_write(ctlr, offset + (i << 2), val);
152 static inline void edma_modify_array(unsigned ctlr, int offset, int i,
153 unsigned and, unsigned or)
155 edma_modify(ctlr, offset + (i << 2), and, or);
157 static inline void edma_or_array(unsigned ctlr, int offset, int i, unsigned or)
159 edma_or(ctlr, offset + (i << 2), or);
161 static inline void edma_or_array2(unsigned ctlr, int offset, int i, int j,
164 edma_or(ctlr, offset + ((i*2 + j) << 2), or);
166 static inline void edma_write_array2(unsigned ctlr, int offset, int i, int j,
169 edma_write(ctlr, offset + ((i*2 + j) << 2), val);
171 static inline unsigned int edma_shadow0_read(unsigned ctlr, int offset)
173 return edma_read(ctlr, EDMA_SHADOW0 + offset);
175 static inline unsigned int edma_shadow0_read_array(unsigned ctlr, int offset,
178 return edma_read(ctlr, EDMA_SHADOW0 + offset + (i << 2));
180 static inline void edma_shadow0_write(unsigned ctlr, int offset, unsigned val)
182 edma_write(ctlr, EDMA_SHADOW0 + offset, val);
184 static inline void edma_shadow0_write_array(unsigned ctlr, int offset, int i,
187 edma_write(ctlr, EDMA_SHADOW0 + offset + (i << 2), val);
189 static inline unsigned int edma_parm_read(unsigned ctlr, int offset,
192 return edma_read(ctlr, EDMA_PARM + offset + (param_no << 5));
194 static inline void edma_parm_write(unsigned ctlr, int offset, int param_no,
197 edma_write(ctlr, EDMA_PARM + offset + (param_no << 5), val);
199 static inline void edma_parm_modify(unsigned ctlr, int offset, int param_no,
200 unsigned and, unsigned or)
202 edma_modify(ctlr, EDMA_PARM + offset + (param_no << 5), and, or);
204 static inline void edma_parm_and(unsigned ctlr, int offset, int param_no,
207 edma_and(ctlr, EDMA_PARM + offset + (param_no << 5), and);
209 static inline void edma_parm_or(unsigned ctlr, int offset, int param_no,
212 edma_or(ctlr, EDMA_PARM + offset + (param_no << 5), or);
215 static inline void set_bits(int offset, int len, unsigned long *p)
217 for (; len > 0; len--)
218 set_bit(offset + (len - 1), p);
221 static inline void clear_bits(int offset, int len, unsigned long *p)
223 for (; len > 0; len--)
224 clear_bit(offset + (len - 1), p);
227 /*****************************************************************************/
229 /* actual number of DMA channels and slots on this silicon */
231 /* how many dma resources of each type */
232 unsigned num_channels;
237 enum dma_event_q default_queue;
239 /* list of channels with no even trigger; terminated by "-1" */
242 /* The edma_inuse bit for each PaRAM slot is clear unless the
243 * channel is in use ... by ARM or DSP, for QDMA, or whatever.
245 DECLARE_BITMAP(edma_inuse, EDMA_MAX_PARAMENTRY);
247 /* The edma_unused bit for each channel is clear unless
248 * it is not being used on this platform. It uses a bit
249 * of SOC-specific initialization code.
251 DECLARE_BITMAP(edma_unused, EDMA_MAX_DMACH);
253 unsigned irq_res_start;
254 unsigned irq_res_end;
256 struct dma_interrupt_data {
257 void (*callback)(unsigned channel, unsigned short ch_status,
260 } intr_data[EDMA_MAX_DMACH];
263 static struct edma *edma_cc[EDMA_MAX_CC];
264 static int arch_num_cc;
266 /* dummy param set used to (re)initialize parameter RAM slots */
267 static const struct edmacc_param dummy_paramset = {
268 .link_bcntrld = 0xffff,
272 static const struct of_device_id edma_of_ids[] = {
273 { .compatible = "ti,edma3", },
277 /*****************************************************************************/
279 static void map_dmach_queue(unsigned ctlr, unsigned ch_no,
280 enum dma_event_q queue_no)
282 int bit = (ch_no & 0x7) * 4;
284 /* default to low priority queue */
285 if (queue_no == EVENTQ_DEFAULT)
286 queue_no = edma_cc[ctlr]->default_queue;
289 edma_modify_array(ctlr, EDMA_DMAQNUM, (ch_no >> 3),
290 ~(0x7 << bit), queue_no << bit);
293 static void __init map_queue_tc(unsigned ctlr, int queue_no, int tc_no)
295 int bit = queue_no * 4;
296 edma_modify(ctlr, EDMA_QUETCMAP, ~(0x7 << bit), ((tc_no & 0x7) << bit));
299 static void __init assign_priority_to_queue(unsigned ctlr, int queue_no,
302 int bit = queue_no * 4;
303 edma_modify(ctlr, EDMA_QUEPRI, ~(0x7 << bit),
304 ((priority & 0x7) << bit));
308 * map_dmach_param - Maps channel number to param entry number
310 * This maps the dma channel number to param entry numberter. In
311 * other words using the DMA channel mapping registers a param entry
312 * can be mapped to any channel
314 * Callers are responsible for ensuring the channel mapping logic is
315 * included in that particular EDMA variant (Eg : dm646x)
318 static void __init map_dmach_param(unsigned ctlr)
321 for (i = 0; i < EDMA_MAX_DMACH; i++)
322 edma_write_array(ctlr, EDMA_DCHMAP , i , (i << 5));
326 setup_dma_interrupt(unsigned lch,
327 void (*callback)(unsigned channel, u16 ch_status, void *data),
332 ctlr = EDMA_CTLR(lch);
333 lch = EDMA_CHAN_SLOT(lch);
336 edma_shadow0_write_array(ctlr, SH_IECR, lch >> 5,
339 edma_cc[ctlr]->intr_data[lch].callback = callback;
340 edma_cc[ctlr]->intr_data[lch].data = data;
343 edma_shadow0_write_array(ctlr, SH_ICR, lch >> 5,
345 edma_shadow0_write_array(ctlr, SH_IESR, lch >> 5,
350 static int irq2ctlr(int irq)
352 if (irq >= edma_cc[0]->irq_res_start && irq <= edma_cc[0]->irq_res_end)
354 else if (irq >= edma_cc[1]->irq_res_start &&
355 irq <= edma_cc[1]->irq_res_end)
361 /******************************************************************************
363 * DMA interrupt handler
365 *****************************************************************************/
366 static irqreturn_t dma_irq_handler(int irq, void *data)
373 ctlr = irq2ctlr(irq);
377 dev_dbg(data, "dma_irq_handler\n");
379 sh_ipr = edma_shadow0_read_array(ctlr, SH_IPR, 0);
381 sh_ipr = edma_shadow0_read_array(ctlr, SH_IPR, 1);
384 sh_ier = edma_shadow0_read_array(ctlr, SH_IER, 1);
387 sh_ier = edma_shadow0_read_array(ctlr, SH_IER, 0);
395 dev_dbg(data, "IPR%d %08x\n", bank, sh_ipr);
397 slot = __ffs(sh_ipr);
398 sh_ipr &= ~(BIT(slot));
400 if (sh_ier & BIT(slot)) {
401 channel = (bank << 5) | slot;
402 /* Clear the corresponding IPR bits */
403 edma_shadow0_write_array(ctlr, SH_ICR, bank,
405 if (edma_cc[ctlr]->intr_data[channel].callback)
406 edma_cc[ctlr]->intr_data[channel].callback(
407 channel, EDMA_DMA_COMPLETE,
408 edma_cc[ctlr]->intr_data[channel].data);
412 edma_shadow0_write(ctlr, SH_IEVAL, 1);
416 /******************************************************************************
418 * DMA error interrupt handler
420 *****************************************************************************/
421 static irqreturn_t dma_ccerr_handler(int irq, void *data)
425 unsigned int cnt = 0;
427 ctlr = irq2ctlr(irq);
431 dev_dbg(data, "dma_ccerr_handler\n");
433 if ((edma_read_array(ctlr, EDMA_EMR, 0) == 0) &&
434 (edma_read_array(ctlr, EDMA_EMR, 1) == 0) &&
435 (edma_read(ctlr, EDMA_QEMR) == 0) &&
436 (edma_read(ctlr, EDMA_CCERR) == 0))
441 if (edma_read_array(ctlr, EDMA_EMR, 0))
443 else if (edma_read_array(ctlr, EDMA_EMR, 1))
446 dev_dbg(data, "EMR%d %08x\n", j,
447 edma_read_array(ctlr, EDMA_EMR, j));
448 for (i = 0; i < 32; i++) {
449 int k = (j << 5) + i;
450 if (edma_read_array(ctlr, EDMA_EMR, j) &
452 /* Clear the corresponding EMR bits */
453 edma_write_array(ctlr, EDMA_EMCR, j,
456 edma_shadow0_write_array(ctlr, SH_SECR,
458 if (edma_cc[ctlr]->intr_data[k].
460 edma_cc[ctlr]->intr_data[k].
463 edma_cc[ctlr]->intr_data
468 } else if (edma_read(ctlr, EDMA_QEMR)) {
469 dev_dbg(data, "QEMR %02x\n",
470 edma_read(ctlr, EDMA_QEMR));
471 for (i = 0; i < 8; i++) {
472 if (edma_read(ctlr, EDMA_QEMR) & BIT(i)) {
473 /* Clear the corresponding IPR bits */
474 edma_write(ctlr, EDMA_QEMCR, BIT(i));
475 edma_shadow0_write(ctlr, SH_QSECR,
478 /* NOTE: not reported!! */
481 } else if (edma_read(ctlr, EDMA_CCERR)) {
482 dev_dbg(data, "CCERR %08x\n",
483 edma_read(ctlr, EDMA_CCERR));
484 /* FIXME: CCERR.BIT(16) ignored! much better
485 * to just write CCERRCLR with CCERR value...
487 for (i = 0; i < 8; i++) {
488 if (edma_read(ctlr, EDMA_CCERR) & BIT(i)) {
489 /* Clear the corresponding IPR bits */
490 edma_write(ctlr, EDMA_CCERRCLR, BIT(i));
492 /* NOTE: not reported!! */
496 if ((edma_read_array(ctlr, EDMA_EMR, 0) == 0) &&
497 (edma_read_array(ctlr, EDMA_EMR, 1) == 0) &&
498 (edma_read(ctlr, EDMA_QEMR) == 0) &&
499 (edma_read(ctlr, EDMA_CCERR) == 0))
505 edma_write(ctlr, EDMA_EEVAL, 1);
509 static int reserve_contiguous_slots(int ctlr, unsigned int id,
510 unsigned int num_slots,
511 unsigned int start_slot)
514 unsigned int count = num_slots;
515 int stop_slot = start_slot;
516 DECLARE_BITMAP(tmp_inuse, EDMA_MAX_PARAMENTRY);
518 for (i = start_slot; i < edma_cc[ctlr]->num_slots; ++i) {
519 j = EDMA_CHAN_SLOT(i);
520 if (!test_and_set_bit(j, edma_cc[ctlr]->edma_inuse)) {
521 /* Record our current beginning slot */
522 if (count == num_slots)
526 set_bit(j, tmp_inuse);
531 clear_bit(j, tmp_inuse);
533 if (id == EDMA_CONT_PARAMS_FIXED_EXACT) {
543 * We have to clear any bits that we set
544 * if we run out parameter RAM slots, i.e we do find a set
545 * of contiguous parameter RAM slots but do not find the exact number
546 * requested as we may reach the total number of parameter RAM slots
548 if (i == edma_cc[ctlr]->num_slots)
552 for_each_set_bit_from(j, tmp_inuse, stop_slot)
553 clear_bit(j, edma_cc[ctlr]->edma_inuse);
558 for (j = i - num_slots + 1; j <= i; ++j)
559 memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(j),
560 &dummy_paramset, PARM_SIZE);
562 return EDMA_CTLR_CHAN(ctlr, i - num_slots + 1);
565 static int prepare_unused_channel_list(struct device *dev, void *data)
567 struct platform_device *pdev = to_platform_device(dev);
569 struct of_phandle_args dma_spec;
572 count = of_property_count_strings(dev->of_node, "dma-names");
575 for (i = 0; i < count; i++) {
576 if (of_parse_phandle_with_args(dev->of_node, "dmas",
581 if (!of_match_node(edma_of_ids, dma_spec.np)) {
582 of_node_put(dma_spec.np);
586 clear_bit(EDMA_CHAN_SLOT(dma_spec.args[0]),
587 edma_cc[0]->edma_unused);
588 of_node_put(dma_spec.np);
593 /* For non-OF case */
594 for (i = 0; i < pdev->num_resources; i++) {
595 if ((pdev->resource[i].flags & IORESOURCE_DMA) &&
596 (int)pdev->resource[i].start >= 0) {
597 ctlr = EDMA_CTLR(pdev->resource[i].start);
598 clear_bit(EDMA_CHAN_SLOT(pdev->resource[i].start),
599 edma_cc[ctlr]->edma_unused);
606 /*-----------------------------------------------------------------------*/
608 static bool unused_chan_list_done;
610 /* Resource alloc/free: dma channels, parameter RAM slots */
613 * edma_alloc_channel - allocate DMA channel and paired parameter RAM
614 * @channel: specific channel to allocate; negative for "any unmapped channel"
615 * @callback: optional; to be issued on DMA completion or errors
616 * @data: passed to callback
617 * @eventq_no: an EVENTQ_* constant, used to choose which Transfer
618 * Controller (TC) executes requests using this channel. Use
619 * EVENTQ_DEFAULT unless you really need a high priority queue.
621 * This allocates a DMA channel and its associated parameter RAM slot.
622 * The parameter RAM is initialized to hold a dummy transfer.
624 * Normal use is to pass a specific channel number as @channel, to make
625 * use of hardware events mapped to that channel. When the channel will
626 * be used only for software triggering or event chaining, channels not
627 * mapped to hardware events (or mapped to unused events) are preferable.
629 * DMA transfers start from a channel using edma_start(), or by
630 * chaining. When the transfer described in that channel's parameter RAM
631 * slot completes, that slot's data may be reloaded through a link.
633 * DMA errors are only reported to the @callback associated with the
634 * channel driving that transfer, but transfer completion callbacks can
635 * be sent to another channel under control of the TCC field in
636 * the option word of the transfer's parameter RAM set. Drivers must not
637 * use DMA transfer completion callbacks for channels they did not allocate.
638 * (The same applies to TCC codes used in transfer chaining.)
640 * Returns the number of the channel, else negative errno.
642 int edma_alloc_channel(int channel,
643 void (*callback)(unsigned channel, u16 ch_status, void *data),
645 enum dma_event_q eventq_no)
647 unsigned i, done = 0, ctlr = 0;
650 if (!unused_chan_list_done) {
652 * Scan all the platform devices to find out the EDMA channels
653 * used and clear them in the unused list, making the rest
654 * available for ARM usage.
656 ret = bus_for_each_dev(&platform_bus_type, NULL, NULL,
657 prepare_unused_channel_list);
661 unused_chan_list_done = true;
665 ctlr = EDMA_CTLR(channel);
666 channel = EDMA_CHAN_SLOT(channel);
670 for (i = 0; i < arch_num_cc; i++) {
673 channel = find_next_bit(edma_cc[i]->edma_unused,
674 edma_cc[i]->num_channels,
676 if (channel == edma_cc[i]->num_channels)
678 if (!test_and_set_bit(channel,
679 edma_cc[i]->edma_inuse)) {
691 } else if (channel >= edma_cc[ctlr]->num_channels) {
693 } else if (test_and_set_bit(channel, edma_cc[ctlr]->edma_inuse)) {
697 /* ensure access through shadow region 0 */
698 edma_or_array2(ctlr, EDMA_DRAE, 0, channel >> 5, BIT(channel & 0x1f));
700 /* ensure no events are pending */
701 edma_stop(EDMA_CTLR_CHAN(ctlr, channel));
702 memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(channel),
703 &dummy_paramset, PARM_SIZE);
706 setup_dma_interrupt(EDMA_CTLR_CHAN(ctlr, channel),
709 map_dmach_queue(ctlr, channel, eventq_no);
711 return EDMA_CTLR_CHAN(ctlr, channel);
713 EXPORT_SYMBOL(edma_alloc_channel);
717 * edma_free_channel - deallocate DMA channel
718 * @channel: dma channel returned from edma_alloc_channel()
720 * This deallocates the DMA channel and associated parameter RAM slot
721 * allocated by edma_alloc_channel().
723 * Callers are responsible for ensuring the channel is inactive, and
724 * will not be reactivated by linking, chaining, or software calls to
727 void edma_free_channel(unsigned channel)
731 ctlr = EDMA_CTLR(channel);
732 channel = EDMA_CHAN_SLOT(channel);
734 if (channel >= edma_cc[ctlr]->num_channels)
737 setup_dma_interrupt(channel, NULL, NULL);
738 /* REVISIT should probably take out of shadow region 0 */
740 memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(channel),
741 &dummy_paramset, PARM_SIZE);
742 clear_bit(channel, edma_cc[ctlr]->edma_inuse);
744 EXPORT_SYMBOL(edma_free_channel);
747 * edma_alloc_slot - allocate DMA parameter RAM
748 * @slot: specific slot to allocate; negative for "any unused slot"
750 * This allocates a parameter RAM slot, initializing it to hold a
751 * dummy transfer. Slots allocated using this routine have not been
752 * mapped to a hardware DMA channel, and will normally be used by
753 * linking to them from a slot associated with a DMA channel.
755 * Normal use is to pass EDMA_SLOT_ANY as the @slot, but specific
756 * slots may be allocated on behalf of DSP firmware.
758 * Returns the number of the slot, else negative errno.
760 int edma_alloc_slot(unsigned ctlr, int slot)
766 slot = EDMA_CHAN_SLOT(slot);
769 slot = edma_cc[ctlr]->num_channels;
771 slot = find_next_zero_bit(edma_cc[ctlr]->edma_inuse,
772 edma_cc[ctlr]->num_slots, slot);
773 if (slot == edma_cc[ctlr]->num_slots)
775 if (!test_and_set_bit(slot, edma_cc[ctlr]->edma_inuse))
778 } else if (slot < edma_cc[ctlr]->num_channels ||
779 slot >= edma_cc[ctlr]->num_slots) {
781 } else if (test_and_set_bit(slot, edma_cc[ctlr]->edma_inuse)) {
785 memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot),
786 &dummy_paramset, PARM_SIZE);
788 return EDMA_CTLR_CHAN(ctlr, slot);
790 EXPORT_SYMBOL(edma_alloc_slot);
793 * edma_free_slot - deallocate DMA parameter RAM
794 * @slot: parameter RAM slot returned from edma_alloc_slot()
796 * This deallocates the parameter RAM slot allocated by edma_alloc_slot().
797 * Callers are responsible for ensuring the slot is inactive, and will
800 void edma_free_slot(unsigned slot)
804 ctlr = EDMA_CTLR(slot);
805 slot = EDMA_CHAN_SLOT(slot);
807 if (slot < edma_cc[ctlr]->num_channels ||
808 slot >= edma_cc[ctlr]->num_slots)
811 memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot),
812 &dummy_paramset, PARM_SIZE);
813 clear_bit(slot, edma_cc[ctlr]->edma_inuse);
815 EXPORT_SYMBOL(edma_free_slot);
819 * edma_alloc_cont_slots- alloc contiguous parameter RAM slots
820 * The API will return the starting point of a set of
821 * contiguous parameter RAM slots that have been requested
823 * @id: can only be EDMA_CONT_PARAMS_ANY or EDMA_CONT_PARAMS_FIXED_EXACT
824 * or EDMA_CONT_PARAMS_FIXED_NOT_EXACT
825 * @count: number of contiguous Paramter RAM slots
826 * @slot - the start value of Parameter RAM slot that should be passed if id
827 * is EDMA_CONT_PARAMS_FIXED_EXACT or EDMA_CONT_PARAMS_FIXED_NOT_EXACT
829 * If id is EDMA_CONT_PARAMS_ANY then the API starts looking for a set of
830 * contiguous Parameter RAM slots from parameter RAM 64 in the case of
831 * DaVinci SOCs and 32 in the case of DA8xx SOCs.
833 * If id is EDMA_CONT_PARAMS_FIXED_EXACT then the API starts looking for a
834 * set of contiguous parameter RAM slots from the "slot" that is passed as an
835 * argument to the API.
837 * If id is EDMA_CONT_PARAMS_FIXED_NOT_EXACT then the API initially tries
838 * starts looking for a set of contiguous parameter RAMs from the "slot"
839 * that is passed as an argument to the API. On failure the API will try to
840 * find a set of contiguous Parameter RAM slots from the remaining Parameter
843 int edma_alloc_cont_slots(unsigned ctlr, unsigned int id, int slot, int count)
846 * The start slot requested should be greater than
847 * the number of channels and lesser than the total number
850 if ((id != EDMA_CONT_PARAMS_ANY) &&
851 (slot < edma_cc[ctlr]->num_channels ||
852 slot >= edma_cc[ctlr]->num_slots))
856 * The number of parameter RAM slots requested cannot be less than 1
857 * and cannot be more than the number of slots minus the number of
860 if (count < 1 || count >
861 (edma_cc[ctlr]->num_slots - edma_cc[ctlr]->num_channels))
865 case EDMA_CONT_PARAMS_ANY:
866 return reserve_contiguous_slots(ctlr, id, count,
867 edma_cc[ctlr]->num_channels);
868 case EDMA_CONT_PARAMS_FIXED_EXACT:
869 case EDMA_CONT_PARAMS_FIXED_NOT_EXACT:
870 return reserve_contiguous_slots(ctlr, id, count, slot);
876 EXPORT_SYMBOL(edma_alloc_cont_slots);
879 * edma_free_cont_slots - deallocate DMA parameter RAM slots
880 * @slot: first parameter RAM of a set of parameter RAM slots to be freed
881 * @count: the number of contiguous parameter RAM slots to be freed
883 * This deallocates the parameter RAM slots allocated by
884 * edma_alloc_cont_slots.
885 * Callers/applications need to keep track of sets of contiguous
886 * parameter RAM slots that have been allocated using the edma_alloc_cont_slots
888 * Callers are responsible for ensuring the slots are inactive, and will
891 int edma_free_cont_slots(unsigned slot, int count)
893 unsigned ctlr, slot_to_free;
896 ctlr = EDMA_CTLR(slot);
897 slot = EDMA_CHAN_SLOT(slot);
899 if (slot < edma_cc[ctlr]->num_channels ||
900 slot >= edma_cc[ctlr]->num_slots ||
904 for (i = slot; i < slot + count; ++i) {
906 slot_to_free = EDMA_CHAN_SLOT(i);
908 memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot_to_free),
909 &dummy_paramset, PARM_SIZE);
910 clear_bit(slot_to_free, edma_cc[ctlr]->edma_inuse);
915 EXPORT_SYMBOL(edma_free_cont_slots);
917 /*-----------------------------------------------------------------------*/
919 /* Parameter RAM operations (i) -- read/write partial slots */
922 * edma_set_src - set initial DMA source address in parameter RAM slot
923 * @slot: parameter RAM slot being configured
924 * @src_port: physical address of source (memory, controller FIFO, etc)
925 * @addressMode: INCR, except in very rare cases
926 * @fifoWidth: ignored unless @addressMode is FIFO, else specifies the
927 * width to use when addressing the fifo (e.g. W8BIT, W32BIT)
929 * Note that the source address is modified during the DMA transfer
930 * according to edma_set_src_index().
932 void edma_set_src(unsigned slot, dma_addr_t src_port,
933 enum address_mode mode, enum fifo_width width)
937 ctlr = EDMA_CTLR(slot);
938 slot = EDMA_CHAN_SLOT(slot);
940 if (slot < edma_cc[ctlr]->num_slots) {
941 unsigned int i = edma_parm_read(ctlr, PARM_OPT, slot);
944 /* set SAM and program FWID */
945 i = (i & ~(EDMA_FWID)) | (SAM | ((width & 0x7) << 8));
950 edma_parm_write(ctlr, PARM_OPT, slot, i);
952 /* set the source port address
953 in source register of param structure */
954 edma_parm_write(ctlr, PARM_SRC, slot, src_port);
957 EXPORT_SYMBOL(edma_set_src);
960 * edma_set_dest - set initial DMA destination address in parameter RAM slot
961 * @slot: parameter RAM slot being configured
962 * @dest_port: physical address of destination (memory, controller FIFO, etc)
963 * @addressMode: INCR, except in very rare cases
964 * @fifoWidth: ignored unless @addressMode is FIFO, else specifies the
965 * width to use when addressing the fifo (e.g. W8BIT, W32BIT)
967 * Note that the destination address is modified during the DMA transfer
968 * according to edma_set_dest_index().
970 void edma_set_dest(unsigned slot, dma_addr_t dest_port,
971 enum address_mode mode, enum fifo_width width)
975 ctlr = EDMA_CTLR(slot);
976 slot = EDMA_CHAN_SLOT(slot);
978 if (slot < edma_cc[ctlr]->num_slots) {
979 unsigned int i = edma_parm_read(ctlr, PARM_OPT, slot);
982 /* set DAM and program FWID */
983 i = (i & ~(EDMA_FWID)) | (DAM | ((width & 0x7) << 8));
988 edma_parm_write(ctlr, PARM_OPT, slot, i);
989 /* set the destination port address
990 in dest register of param structure */
991 edma_parm_write(ctlr, PARM_DST, slot, dest_port);
994 EXPORT_SYMBOL(edma_set_dest);
997 * edma_get_position - returns the current transfer points
998 * @slot: parameter RAM slot being examined
999 * @src: pointer to source port position
1000 * @dst: pointer to destination port position
1002 * Returns current source and destination addresses for a particular
1003 * parameter RAM slot. Its channel should not be active when this is called.
1005 void edma_get_position(unsigned slot, dma_addr_t *src, dma_addr_t *dst)
1007 struct edmacc_param temp;
1010 ctlr = EDMA_CTLR(slot);
1011 slot = EDMA_CHAN_SLOT(slot);
1013 edma_read_slot(EDMA_CTLR_CHAN(ctlr, slot), &temp);
1019 EXPORT_SYMBOL(edma_get_position);
1022 * edma_set_src_index - configure DMA source address indexing
1023 * @slot: parameter RAM slot being configured
1024 * @src_bidx: byte offset between source arrays in a frame
1025 * @src_cidx: byte offset between source frames in a block
1027 * Offsets are specified to support either contiguous or discontiguous
1028 * memory transfers, or repeated access to a hardware register, as needed.
1029 * When accessing hardware registers, both offsets are normally zero.
1031 void edma_set_src_index(unsigned slot, s16 src_bidx, s16 src_cidx)
1035 ctlr = EDMA_CTLR(slot);
1036 slot = EDMA_CHAN_SLOT(slot);
1038 if (slot < edma_cc[ctlr]->num_slots) {
1039 edma_parm_modify(ctlr, PARM_SRC_DST_BIDX, slot,
1040 0xffff0000, src_bidx);
1041 edma_parm_modify(ctlr, PARM_SRC_DST_CIDX, slot,
1042 0xffff0000, src_cidx);
1045 EXPORT_SYMBOL(edma_set_src_index);
1048 * edma_set_dest_index - configure DMA destination address indexing
1049 * @slot: parameter RAM slot being configured
1050 * @dest_bidx: byte offset between destination arrays in a frame
1051 * @dest_cidx: byte offset between destination frames in a block
1053 * Offsets are specified to support either contiguous or discontiguous
1054 * memory transfers, or repeated access to a hardware register, as needed.
1055 * When accessing hardware registers, both offsets are normally zero.
1057 void edma_set_dest_index(unsigned slot, s16 dest_bidx, s16 dest_cidx)
1061 ctlr = EDMA_CTLR(slot);
1062 slot = EDMA_CHAN_SLOT(slot);
1064 if (slot < edma_cc[ctlr]->num_slots) {
1065 edma_parm_modify(ctlr, PARM_SRC_DST_BIDX, slot,
1066 0x0000ffff, dest_bidx << 16);
1067 edma_parm_modify(ctlr, PARM_SRC_DST_CIDX, slot,
1068 0x0000ffff, dest_cidx << 16);
1071 EXPORT_SYMBOL(edma_set_dest_index);
1074 * edma_set_transfer_params - configure DMA transfer parameters
1075 * @slot: parameter RAM slot being configured
1076 * @acnt: how many bytes per array (at least one)
1077 * @bcnt: how many arrays per frame (at least one)
1078 * @ccnt: how many frames per block (at least one)
1079 * @bcnt_rld: used only for A-Synchronized transfers; this specifies
1080 * the value to reload into bcnt when it decrements to zero
1081 * @sync_mode: ASYNC or ABSYNC
1083 * See the EDMA3 documentation to understand how to configure and link
1084 * transfers using the fields in PaRAM slots. If you are not doing it
1085 * all at once with edma_write_slot(), you will use this routine
1086 * plus two calls each for source and destination, setting the initial
1087 * address and saying how to index that address.
1089 * An example of an A-Synchronized transfer is a serial link using a
1090 * single word shift register. In that case, @acnt would be equal to
1091 * that word size; the serial controller issues a DMA synchronization
1092 * event to transfer each word, and memory access by the DMA transfer
1093 * controller will be word-at-a-time.
1095 * An example of an AB-Synchronized transfer is a device using a FIFO.
1096 * In that case, @acnt equals the FIFO width and @bcnt equals its depth.
1097 * The controller with the FIFO issues DMA synchronization events when
1098 * the FIFO threshold is reached, and the DMA transfer controller will
1099 * transfer one frame to (or from) the FIFO. It will probably use
1100 * efficient burst modes to access memory.
1102 void edma_set_transfer_params(unsigned slot,
1103 u16 acnt, u16 bcnt, u16 ccnt,
1104 u16 bcnt_rld, enum sync_dimension sync_mode)
1108 ctlr = EDMA_CTLR(slot);
1109 slot = EDMA_CHAN_SLOT(slot);
1111 if (slot < edma_cc[ctlr]->num_slots) {
1112 edma_parm_modify(ctlr, PARM_LINK_BCNTRLD, slot,
1113 0x0000ffff, bcnt_rld << 16);
1114 if (sync_mode == ASYNC)
1115 edma_parm_and(ctlr, PARM_OPT, slot, ~SYNCDIM);
1117 edma_parm_or(ctlr, PARM_OPT, slot, SYNCDIM);
1118 /* Set the acount, bcount, ccount registers */
1119 edma_parm_write(ctlr, PARM_A_B_CNT, slot, (bcnt << 16) | acnt);
1120 edma_parm_write(ctlr, PARM_CCNT, slot, ccnt);
1123 EXPORT_SYMBOL(edma_set_transfer_params);
1126 * edma_link - link one parameter RAM slot to another
1127 * @from: parameter RAM slot originating the link
1128 * @to: parameter RAM slot which is the link target
1130 * The originating slot should not be part of any active DMA transfer.
1132 void edma_link(unsigned from, unsigned to)
1134 unsigned ctlr_from, ctlr_to;
1136 ctlr_from = EDMA_CTLR(from);
1137 from = EDMA_CHAN_SLOT(from);
1138 ctlr_to = EDMA_CTLR(to);
1139 to = EDMA_CHAN_SLOT(to);
1141 if (from >= edma_cc[ctlr_from]->num_slots)
1143 if (to >= edma_cc[ctlr_to]->num_slots)
1145 edma_parm_modify(ctlr_from, PARM_LINK_BCNTRLD, from, 0xffff0000,
1148 EXPORT_SYMBOL(edma_link);
1151 * edma_unlink - cut link from one parameter RAM slot
1152 * @from: parameter RAM slot originating the link
1154 * The originating slot should not be part of any active DMA transfer.
1155 * Its link is set to 0xffff.
1157 void edma_unlink(unsigned from)
1161 ctlr = EDMA_CTLR(from);
1162 from = EDMA_CHAN_SLOT(from);
1164 if (from >= edma_cc[ctlr]->num_slots)
1166 edma_parm_or(ctlr, PARM_LINK_BCNTRLD, from, 0xffff);
1168 EXPORT_SYMBOL(edma_unlink);
1170 /*-----------------------------------------------------------------------*/
1172 /* Parameter RAM operations (ii) -- read/write whole parameter sets */
1175 * edma_write_slot - write parameter RAM data for slot
1176 * @slot: number of parameter RAM slot being modified
1177 * @param: data to be written into parameter RAM slot
1179 * Use this to assign all parameters of a transfer at once. This
1180 * allows more efficient setup of transfers than issuing multiple
1181 * calls to set up those parameters in small pieces, and provides
1182 * complete control over all transfer options.
1184 void edma_write_slot(unsigned slot, const struct edmacc_param *param)
1188 ctlr = EDMA_CTLR(slot);
1189 slot = EDMA_CHAN_SLOT(slot);
1191 if (slot >= edma_cc[ctlr]->num_slots)
1193 memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot), param,
1196 EXPORT_SYMBOL(edma_write_slot);
1199 * edma_read_slot - read parameter RAM data from slot
1200 * @slot: number of parameter RAM slot being copied
1201 * @param: where to store copy of parameter RAM data
1203 * Use this to read data from a parameter RAM slot, perhaps to
1204 * save them as a template for later reuse.
1206 void edma_read_slot(unsigned slot, struct edmacc_param *param)
1210 ctlr = EDMA_CTLR(slot);
1211 slot = EDMA_CHAN_SLOT(slot);
1213 if (slot >= edma_cc[ctlr]->num_slots)
1215 memcpy_fromio(param, edmacc_regs_base[ctlr] + PARM_OFFSET(slot),
1218 EXPORT_SYMBOL(edma_read_slot);
1220 /*-----------------------------------------------------------------------*/
1222 /* Various EDMA channel control operations */
1225 * edma_pause - pause dma on a channel
1226 * @channel: on which edma_start() has been called
1228 * This temporarily disables EDMA hardware events on the specified channel,
1229 * preventing them from triggering new transfers on its behalf
1231 void edma_pause(unsigned channel)
1235 ctlr = EDMA_CTLR(channel);
1236 channel = EDMA_CHAN_SLOT(channel);
1238 if (channel < edma_cc[ctlr]->num_channels) {
1239 unsigned int mask = BIT(channel & 0x1f);
1241 edma_shadow0_write_array(ctlr, SH_EECR, channel >> 5, mask);
1244 EXPORT_SYMBOL(edma_pause);
1247 * edma_resume - resumes dma on a paused channel
1248 * @channel: on which edma_pause() has been called
1250 * This re-enables EDMA hardware events on the specified channel.
1252 void edma_resume(unsigned channel)
1256 ctlr = EDMA_CTLR(channel);
1257 channel = EDMA_CHAN_SLOT(channel);
1259 if (channel < edma_cc[ctlr]->num_channels) {
1260 unsigned int mask = BIT(channel & 0x1f);
1262 edma_shadow0_write_array(ctlr, SH_EESR, channel >> 5, mask);
1265 EXPORT_SYMBOL(edma_resume);
1267 int edma_trigger_channel(unsigned channel)
1272 ctlr = EDMA_CTLR(channel);
1273 channel = EDMA_CHAN_SLOT(channel);
1274 mask = BIT(channel & 0x1f);
1276 edma_shadow0_write_array(ctlr, SH_ESR, (channel >> 5), mask);
1278 pr_debug("EDMA: ESR%d %08x\n", (channel >> 5),
1279 edma_shadow0_read_array(ctlr, SH_ESR, (channel >> 5)));
1282 EXPORT_SYMBOL(edma_trigger_channel);
1285 * edma_start - start dma on a channel
1286 * @channel: channel being activated
1288 * Channels with event associations will be triggered by their hardware
1289 * events, and channels without such associations will be triggered by
1290 * software. (At this writing there is no interface for using software
1291 * triggers except with channels that don't support hardware triggers.)
1293 * Returns zero on success, else negative errno.
1295 int edma_start(unsigned channel)
1299 ctlr = EDMA_CTLR(channel);
1300 channel = EDMA_CHAN_SLOT(channel);
1302 if (channel < edma_cc[ctlr]->num_channels) {
1303 int j = channel >> 5;
1304 unsigned int mask = BIT(channel & 0x1f);
1306 /* EDMA channels without event association */
1307 if (test_bit(channel, edma_cc[ctlr]->edma_unused)) {
1308 pr_debug("EDMA: ESR%d %08x\n", j,
1309 edma_shadow0_read_array(ctlr, SH_ESR, j));
1310 edma_shadow0_write_array(ctlr, SH_ESR, j, mask);
1314 /* EDMA channel with event association */
1315 pr_debug("EDMA: ER%d %08x\n", j,
1316 edma_shadow0_read_array(ctlr, SH_ER, j));
1317 /* Clear any pending event or error */
1318 edma_write_array(ctlr, EDMA_ECR, j, mask);
1319 edma_write_array(ctlr, EDMA_EMCR, j, mask);
1321 edma_shadow0_write_array(ctlr, SH_SECR, j, mask);
1322 edma_shadow0_write_array(ctlr, SH_EESR, j, mask);
1323 pr_debug("EDMA: EER%d %08x\n", j,
1324 edma_shadow0_read_array(ctlr, SH_EER, j));
1330 EXPORT_SYMBOL(edma_start);
1333 * edma_stop - stops dma on the channel passed
1334 * @channel: channel being deactivated
1336 * When @lch is a channel, any active transfer is paused and
1337 * all pending hardware events are cleared. The current transfer
1338 * may not be resumed, and the channel's Parameter RAM should be
1339 * reinitialized before being reused.
1341 void edma_stop(unsigned channel)
1345 ctlr = EDMA_CTLR(channel);
1346 channel = EDMA_CHAN_SLOT(channel);
1348 if (channel < edma_cc[ctlr]->num_channels) {
1349 int j = channel >> 5;
1350 unsigned int mask = BIT(channel & 0x1f);
1352 edma_shadow0_write_array(ctlr, SH_EECR, j, mask);
1353 edma_shadow0_write_array(ctlr, SH_ECR, j, mask);
1354 edma_shadow0_write_array(ctlr, SH_SECR, j, mask);
1355 edma_write_array(ctlr, EDMA_EMCR, j, mask);
1357 pr_debug("EDMA: EER%d %08x\n", j,
1358 edma_shadow0_read_array(ctlr, SH_EER, j));
1360 /* REVISIT: consider guarding against inappropriate event
1361 * chaining by overwriting with dummy_paramset.
1365 EXPORT_SYMBOL(edma_stop);
1367 /******************************************************************************
1369 * It cleans ParamEntry qand bring back EDMA to initial state if media has
1370 * been removed before EDMA has finished.It is usedful for removable media.
1372 * ch_no - channel no
1374 * Return: zero on success, or corresponding error no on failure
1376 * FIXME this should not be needed ... edma_stop() should suffice.
1378 *****************************************************************************/
1380 void edma_clean_channel(unsigned channel)
1384 ctlr = EDMA_CTLR(channel);
1385 channel = EDMA_CHAN_SLOT(channel);
1387 if (channel < edma_cc[ctlr]->num_channels) {
1388 int j = (channel >> 5);
1389 unsigned int mask = BIT(channel & 0x1f);
1391 pr_debug("EDMA: EMR%d %08x\n", j,
1392 edma_read_array(ctlr, EDMA_EMR, j));
1393 edma_shadow0_write_array(ctlr, SH_ECR, j, mask);
1394 /* Clear the corresponding EMR bits */
1395 edma_write_array(ctlr, EDMA_EMCR, j, mask);
1397 edma_shadow0_write_array(ctlr, SH_SECR, j, mask);
1398 edma_write(ctlr, EDMA_CCERRCLR, BIT(16) | BIT(1) | BIT(0));
1401 EXPORT_SYMBOL(edma_clean_channel);
1404 * edma_clear_event - clear an outstanding event on the DMA channel
1406 * channel - channel number
1408 void edma_clear_event(unsigned channel)
1412 ctlr = EDMA_CTLR(channel);
1413 channel = EDMA_CHAN_SLOT(channel);
1415 if (channel >= edma_cc[ctlr]->num_channels)
1418 edma_write(ctlr, EDMA_ECR, BIT(channel));
1420 edma_write(ctlr, EDMA_ECRH, BIT(channel - 32));
1422 EXPORT_SYMBOL(edma_clear_event);
1424 #if IS_ENABLED(CONFIG_OF) && IS_ENABLED(CONFIG_DMADEVICES)
1426 static int edma_xbar_event_map(struct device *dev, struct device_node *node,
1427 struct edma_soc_info *pdata, size_t sz)
1429 const char pname[] = "ti,edma-xbar-event-map";
1430 struct resource res;
1432 s16 (*xbar_chans)[2];
1433 size_t nelm = sz / sizeof(s16);
1434 u32 shift, offset, mux;
1437 xbar_chans = devm_kzalloc(dev, (nelm + 2) * sizeof(s16), GFP_KERNEL);
1441 ret = of_address_to_resource(node, 1, &res);
1445 xbar = devm_ioremap(dev, res.start, resource_size(&res));
1449 ret = of_property_read_u16_array(node, pname, (u16 *)xbar_chans, nelm);
1453 /* Invalidate last entry for the other user of this mess */
1455 xbar_chans[nelm][0] = xbar_chans[nelm][1] = -1;
1457 for (i = 0; i < nelm; i++) {
1458 shift = (xbar_chans[i][1] & 0x03) << 3;
1459 offset = xbar_chans[i][1] & 0xfffffffc;
1460 mux = readl(xbar + offset);
1461 mux &= ~(0xff << shift);
1462 mux |= xbar_chans[i][0] << shift;
1463 writel(mux, (xbar + offset));
1466 pdata->xbar_chans = (const s16 (*)[2]) xbar_chans;
1470 static int edma_of_parse_dt(struct device *dev,
1471 struct device_node *node,
1472 struct edma_soc_info *pdata)
1476 struct property *prop;
1478 struct edma_rsv_info *rsv_info;
1479 s8 (*queue_tc_map)[2], (*queue_priority_map)[2];
1481 memset(pdata, 0, sizeof(struct edma_soc_info));
1483 ret = of_property_read_u32(node, "dma-channels", &value);
1486 pdata->n_channel = value;
1488 ret = of_property_read_u32(node, "ti,edma-regions", &value);
1491 pdata->n_region = value;
1493 ret = of_property_read_u32(node, "ti,edma-slots", &value);
1496 pdata->n_slot = value;
1500 rsv_info = devm_kzalloc(dev, sizeof(struct edma_rsv_info), GFP_KERNEL);
1503 pdata->rsv = rsv_info;
1505 queue_tc_map = devm_kzalloc(dev, 8*sizeof(s8), GFP_KERNEL);
1509 for (i = 0; i < 3; i++) {
1510 queue_tc_map[i][0] = i;
1511 queue_tc_map[i][1] = i;
1513 queue_tc_map[i][0] = -1;
1514 queue_tc_map[i][1] = -1;
1516 pdata->queue_tc_mapping = queue_tc_map;
1518 queue_priority_map = devm_kzalloc(dev, 8*sizeof(s8), GFP_KERNEL);
1519 if (!queue_priority_map)
1522 for (i = 0; i < 3; i++) {
1523 queue_priority_map[i][0] = i;
1524 queue_priority_map[i][1] = i;
1526 queue_priority_map[i][0] = -1;
1527 queue_priority_map[i][1] = -1;
1529 pdata->queue_priority_mapping = queue_priority_map;
1531 pdata->default_queue = 0;
1533 prop = of_find_property(node, "ti,edma-xbar-event-map", &sz);
1535 ret = edma_xbar_event_map(dev, node, pdata, sz);
1540 static struct of_dma_filter_info edma_filter_info = {
1541 .filter_fn = edma_filter_fn,
1544 static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev,
1545 struct device_node *node)
1547 struct edma_soc_info *info;
1550 info = devm_kzalloc(dev, sizeof(struct edma_soc_info), GFP_KERNEL);
1552 return ERR_PTR(-ENOMEM);
1554 ret = edma_of_parse_dt(dev, node, info);
1556 return ERR_PTR(ret);
1558 dma_cap_set(DMA_SLAVE, edma_filter_info.dma_cap);
1559 of_dma_controller_register(dev->of_node, of_dma_simple_xlate,
1565 static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev,
1566 struct device_node *node)
1568 return ERR_PTR(-ENOSYS);
1572 static int edma_probe(struct platform_device *pdev)
1574 struct edma_soc_info **info = pdev->dev.platform_data;
1575 struct edma_soc_info *ninfo[EDMA_MAX_CC] = {NULL};
1576 s8 (*queue_priority_mapping)[2];
1577 s8 (*queue_tc_mapping)[2];
1578 int i, j, off, ln, found = 0;
1580 const s16 (*rsv_chans)[2];
1581 const s16 (*rsv_slots)[2];
1582 const s16 (*xbar_chans)[2];
1583 int irq[EDMA_MAX_CC] = {0, 0};
1584 int err_irq[EDMA_MAX_CC] = {0, 0};
1585 struct resource *r[EDMA_MAX_CC] = {NULL};
1586 struct resource res[EDMA_MAX_CC];
1589 struct device_node *node = pdev->dev.of_node;
1590 struct device *dev = &pdev->dev;
1594 /* Check if this is a second instance registered */
1596 dev_err(dev, "only one EDMA instance is supported via DT\n");
1600 ninfo[0] = edma_setup_info_from_dt(dev, node);
1601 if (IS_ERR(ninfo[0])) {
1602 dev_err(dev, "failed to get DT data\n");
1603 return PTR_ERR(ninfo[0]);
1612 pm_runtime_enable(dev);
1613 ret = pm_runtime_get_sync(dev);
1615 dev_err(dev, "pm_runtime_get_sync() failed\n");
1619 for (j = 0; j < EDMA_MAX_CC; j++) {
1626 ret = of_address_to_resource(node, j, &res[j]);
1630 sprintf(res_name, "edma_cc%d", j);
1631 r[j] = platform_get_resource_byname(pdev,
1644 edmacc_regs_base[j] = devm_ioremap_resource(&pdev->dev, r[j]);
1645 if (IS_ERR(edmacc_regs_base[j]))
1646 return PTR_ERR(edmacc_regs_base[j]);
1648 edma_cc[j] = devm_kzalloc(&pdev->dev, sizeof(struct edma),
1653 edma_cc[j]->num_channels = min_t(unsigned, info[j]->n_channel,
1655 edma_cc[j]->num_slots = min_t(unsigned, info[j]->n_slot,
1656 EDMA_MAX_PARAMENTRY);
1657 edma_cc[j]->num_cc = min_t(unsigned, info[j]->n_cc,
1660 edma_cc[j]->default_queue = info[j]->default_queue;
1662 dev_dbg(&pdev->dev, "DMA REG BASE ADDR=%p\n",
1663 edmacc_regs_base[j]);
1665 for (i = 0; i < edma_cc[j]->num_slots; i++)
1666 memcpy_toio(edmacc_regs_base[j] + PARM_OFFSET(i),
1667 &dummy_paramset, PARM_SIZE);
1669 /* Mark all channels as unused */
1670 memset(edma_cc[j]->edma_unused, 0xff,
1671 sizeof(edma_cc[j]->edma_unused));
1675 /* Clear the reserved channels in unused list */
1676 rsv_chans = info[j]->rsv->rsv_chans;
1678 for (i = 0; rsv_chans[i][0] != -1; i++) {
1679 off = rsv_chans[i][0];
1680 ln = rsv_chans[i][1];
1682 edma_cc[j]->edma_unused);
1686 /* Set the reserved slots in inuse list */
1687 rsv_slots = info[j]->rsv->rsv_slots;
1689 for (i = 0; rsv_slots[i][0] != -1; i++) {
1690 off = rsv_slots[i][0];
1691 ln = rsv_slots[i][1];
1693 edma_cc[j]->edma_inuse);
1698 /* Clear the xbar mapped channels in unused list */
1699 xbar_chans = info[j]->xbar_chans;
1701 for (i = 0; xbar_chans[i][1] != -1; i++) {
1702 off = xbar_chans[i][1];
1704 edma_cc[j]->edma_unused);
1709 irq[j] = irq_of_parse_and_map(node, 0);
1711 sprintf(irq_name, "edma%d", j);
1712 irq[j] = platform_get_irq_byname(pdev, irq_name);
1714 edma_cc[j]->irq_res_start = irq[j];
1715 status = devm_request_irq(&pdev->dev, irq[j],
1716 dma_irq_handler, 0, "edma",
1720 "devm_request_irq %d failed --> %d\n",
1726 err_irq[j] = irq_of_parse_and_map(node, 2);
1728 sprintf(irq_name, "edma%d_err", j);
1729 err_irq[j] = platform_get_irq_byname(pdev, irq_name);
1731 edma_cc[j]->irq_res_end = err_irq[j];
1732 status = devm_request_irq(&pdev->dev, err_irq[j],
1733 dma_ccerr_handler, 0,
1734 "edma_error", &pdev->dev);
1737 "devm_request_irq %d failed --> %d\n",
1738 err_irq[j], status);
1742 for (i = 0; i < edma_cc[j]->num_channels; i++)
1743 map_dmach_queue(j, i, info[j]->default_queue);
1745 queue_tc_mapping = info[j]->queue_tc_mapping;
1746 queue_priority_mapping = info[j]->queue_priority_mapping;
1748 /* Event queue to TC mapping */
1749 for (i = 0; queue_tc_mapping[i][0] != -1; i++)
1750 map_queue_tc(j, queue_tc_mapping[i][0],
1751 queue_tc_mapping[i][1]);
1753 /* Event queue priority mapping */
1754 for (i = 0; queue_priority_mapping[i][0] != -1; i++)
1755 assign_priority_to_queue(j,
1756 queue_priority_mapping[i][0],
1757 queue_priority_mapping[i][1]);
1759 /* Map the channel to param entry if channel mapping logic
1762 if (edma_read(j, EDMA_CCCFG) & CHMAP_EXIST)
1765 for (i = 0; i < info[j]->n_region; i++) {
1766 edma_write_array2(j, EDMA_DRAE, i, 0, 0x0);
1767 edma_write_array2(j, EDMA_DRAE, i, 1, 0x0);
1768 edma_write_array(j, EDMA_QRAE, i, 0x0);
1776 static struct platform_driver edma_driver = {
1779 .of_match_table = edma_of_ids,
1781 .probe = edma_probe,
1784 static int __init edma_init(void)
1786 return platform_driver_probe(&edma_driver, edma_probe);
1788 arch_initcall(edma_init);