]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - arch/arm/kernel/setup.c
Merge branches 'fixes', 'mcpm', 'misc' and 'mmci' into for-next
[karo-tx-linux.git] / arch / arm / kernel / setup.c
1 /*
2  *  linux/arch/arm/kernel/setup.c
3  *
4  *  Copyright (C) 1995-2001 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/export.h>
11 #include <linux/kernel.h>
12 #include <linux/stddef.h>
13 #include <linux/ioport.h>
14 #include <linux/delay.h>
15 #include <linux/utsname.h>
16 #include <linux/initrd.h>
17 #include <linux/console.h>
18 #include <linux/bootmem.h>
19 #include <linux/seq_file.h>
20 #include <linux/screen_info.h>
21 #include <linux/of_platform.h>
22 #include <linux/init.h>
23 #include <linux/kexec.h>
24 #include <linux/of_fdt.h>
25 #include <linux/cpu.h>
26 #include <linux/interrupt.h>
27 #include <linux/smp.h>
28 #include <linux/proc_fs.h>
29 #include <linux/memblock.h>
30 #include <linux/bug.h>
31 #include <linux/compiler.h>
32 #include <linux/sort.h>
33
34 #include <asm/unified.h>
35 #include <asm/cp15.h>
36 #include <asm/cpu.h>
37 #include <asm/cputype.h>
38 #include <asm/elf.h>
39 #include <asm/procinfo.h>
40 #include <asm/sections.h>
41 #include <asm/setup.h>
42 #include <asm/smp_plat.h>
43 #include <asm/mach-types.h>
44 #include <asm/cacheflush.h>
45 #include <asm/cachetype.h>
46 #include <asm/tlbflush.h>
47
48 #include <asm/prom.h>
49 #include <asm/mach/arch.h>
50 #include <asm/mach/irq.h>
51 #include <asm/mach/time.h>
52 #include <asm/system_info.h>
53 #include <asm/system_misc.h>
54 #include <asm/traps.h>
55 #include <asm/unwind.h>
56 #include <asm/memblock.h>
57 #include <asm/virt.h>
58
59 #include "atags.h"
60
61
62 #if defined(CONFIG_FPE_NWFPE) || defined(CONFIG_FPE_FASTFPE)
63 char fpe_type[8];
64
65 static int __init fpe_setup(char *line)
66 {
67         memcpy(fpe_type, line, 8);
68         return 1;
69 }
70
71 __setup("fpe=", fpe_setup);
72 #endif
73
74 extern void paging_init(struct machine_desc *desc);
75 extern void sanity_check_meminfo(void);
76 extern void reboot_setup(char *str);
77 extern void setup_dma_zone(struct machine_desc *desc);
78
79 unsigned int processor_id;
80 EXPORT_SYMBOL(processor_id);
81 unsigned int __machine_arch_type __read_mostly;
82 EXPORT_SYMBOL(__machine_arch_type);
83 unsigned int cacheid __read_mostly;
84 EXPORT_SYMBOL(cacheid);
85
86 unsigned int __atags_pointer __initdata;
87
88 unsigned int system_rev;
89 EXPORT_SYMBOL(system_rev);
90
91 unsigned int system_serial_low;
92 EXPORT_SYMBOL(system_serial_low);
93
94 unsigned int system_serial_high;
95 EXPORT_SYMBOL(system_serial_high);
96
97 unsigned int elf_hwcap __read_mostly;
98 EXPORT_SYMBOL(elf_hwcap);
99
100
101 #ifdef MULTI_CPU
102 struct processor processor __read_mostly;
103 #endif
104 #ifdef MULTI_TLB
105 struct cpu_tlb_fns cpu_tlb __read_mostly;
106 #endif
107 #ifdef MULTI_USER
108 struct cpu_user_fns cpu_user __read_mostly;
109 #endif
110 #ifdef MULTI_CACHE
111 struct cpu_cache_fns cpu_cache __read_mostly;
112 #endif
113 #ifdef CONFIG_OUTER_CACHE
114 struct outer_cache_fns outer_cache __read_mostly;
115 EXPORT_SYMBOL(outer_cache);
116 #endif
117
118 /*
119  * Cached cpu_architecture() result for use by assembler code.
120  * C code should use the cpu_architecture() function instead of accessing this
121  * variable directly.
122  */
123 int __cpu_architecture __read_mostly = CPU_ARCH_UNKNOWN;
124
125 struct stack {
126         u32 irq[3];
127         u32 abt[3];
128         u32 und[3];
129 } ____cacheline_aligned;
130
131 static struct stack stacks[NR_CPUS];
132
133 char elf_platform[ELF_PLATFORM_SIZE];
134 EXPORT_SYMBOL(elf_platform);
135
136 static const char *cpu_name;
137 static const char *machine_name;
138 static char __initdata cmd_line[COMMAND_LINE_SIZE];
139 struct machine_desc *machine_desc __initdata;
140
141 static union { char c[4]; unsigned long l; } endian_test __initdata = { { 'l', '?', '?', 'b' } };
142 #define ENDIANNESS ((char)endian_test.l)
143
144 DEFINE_PER_CPU(struct cpuinfo_arm, cpu_data);
145
146 /*
147  * Standard memory resources
148  */
149 static struct resource mem_res[] = {
150         {
151                 .name = "Video RAM",
152                 .start = 0,
153                 .end = 0,
154                 .flags = IORESOURCE_MEM
155         },
156         {
157                 .name = "Kernel code",
158                 .start = 0,
159                 .end = 0,
160                 .flags = IORESOURCE_MEM
161         },
162         {
163                 .name = "Kernel data",
164                 .start = 0,
165                 .end = 0,
166                 .flags = IORESOURCE_MEM
167         }
168 };
169
170 #define video_ram   mem_res[0]
171 #define kernel_code mem_res[1]
172 #define kernel_data mem_res[2]
173
174 static struct resource io_res[] = {
175         {
176                 .name = "reserved",
177                 .start = 0x3bc,
178                 .end = 0x3be,
179                 .flags = IORESOURCE_IO | IORESOURCE_BUSY
180         },
181         {
182                 .name = "reserved",
183                 .start = 0x378,
184                 .end = 0x37f,
185                 .flags = IORESOURCE_IO | IORESOURCE_BUSY
186         },
187         {
188                 .name = "reserved",
189                 .start = 0x278,
190                 .end = 0x27f,
191                 .flags = IORESOURCE_IO | IORESOURCE_BUSY
192         }
193 };
194
195 #define lp0 io_res[0]
196 #define lp1 io_res[1]
197 #define lp2 io_res[2]
198
199 static const char *proc_arch[] = {
200         "undefined/unknown",
201         "3",
202         "4",
203         "4T",
204         "5",
205         "5T",
206         "5TE",
207         "5TEJ",
208         "6TEJ",
209         "7",
210         "?(11)",
211         "?(12)",
212         "?(13)",
213         "?(14)",
214         "?(15)",
215         "?(16)",
216         "?(17)",
217 };
218
219 static int __get_cpu_architecture(void)
220 {
221         int cpu_arch;
222
223         if ((read_cpuid_id() & 0x0008f000) == 0) {
224                 cpu_arch = CPU_ARCH_UNKNOWN;
225         } else if ((read_cpuid_id() & 0x0008f000) == 0x00007000) {
226                 cpu_arch = (read_cpuid_id() & (1 << 23)) ? CPU_ARCH_ARMv4T : CPU_ARCH_ARMv3;
227         } else if ((read_cpuid_id() & 0x00080000) == 0x00000000) {
228                 cpu_arch = (read_cpuid_id() >> 16) & 7;
229                 if (cpu_arch)
230                         cpu_arch += CPU_ARCH_ARMv3;
231         } else if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) {
232                 unsigned int mmfr0;
233
234                 /* Revised CPUID format. Read the Memory Model Feature
235                  * Register 0 and check for VMSAv7 or PMSAv7 */
236                 asm("mrc        p15, 0, %0, c0, c1, 4"
237                     : "=r" (mmfr0));
238                 if ((mmfr0 & 0x0000000f) >= 0x00000003 ||
239                     (mmfr0 & 0x000000f0) >= 0x00000030)
240                         cpu_arch = CPU_ARCH_ARMv7;
241                 else if ((mmfr0 & 0x0000000f) == 0x00000002 ||
242                          (mmfr0 & 0x000000f0) == 0x00000020)
243                         cpu_arch = CPU_ARCH_ARMv6;
244                 else
245                         cpu_arch = CPU_ARCH_UNKNOWN;
246         } else
247                 cpu_arch = CPU_ARCH_UNKNOWN;
248
249         return cpu_arch;
250 }
251
252 int __pure cpu_architecture(void)
253 {
254         BUG_ON(__cpu_architecture == CPU_ARCH_UNKNOWN);
255
256         return __cpu_architecture;
257 }
258
259 static int cpu_has_aliasing_icache(unsigned int arch)
260 {
261         int aliasing_icache;
262         unsigned int id_reg, num_sets, line_size;
263
264         /* PIPT caches never alias. */
265         if (icache_is_pipt())
266                 return 0;
267
268         /* arch specifies the register format */
269         switch (arch) {
270         case CPU_ARCH_ARMv7:
271                 asm("mcr        p15, 2, %0, c0, c0, 0 @ set CSSELR"
272                     : /* No output operands */
273                     : "r" (1));
274                 isb();
275                 asm("mrc        p15, 1, %0, c0, c0, 0 @ read CCSIDR"
276                     : "=r" (id_reg));
277                 line_size = 4 << ((id_reg & 0x7) + 2);
278                 num_sets = ((id_reg >> 13) & 0x7fff) + 1;
279                 aliasing_icache = (line_size * num_sets) > PAGE_SIZE;
280                 break;
281         case CPU_ARCH_ARMv6:
282                 aliasing_icache = read_cpuid_cachetype() & (1 << 11);
283                 break;
284         default:
285                 /* I-cache aliases will be handled by D-cache aliasing code */
286                 aliasing_icache = 0;
287         }
288
289         return aliasing_icache;
290 }
291
292 static void __init cacheid_init(void)
293 {
294         unsigned int arch = cpu_architecture();
295
296         if (arch >= CPU_ARCH_ARMv6) {
297                 unsigned int cachetype = read_cpuid_cachetype();
298                 if ((cachetype & (7 << 29)) == 4 << 29) {
299                         /* ARMv7 register format */
300                         arch = CPU_ARCH_ARMv7;
301                         cacheid = CACHEID_VIPT_NONALIASING;
302                         switch (cachetype & (3 << 14)) {
303                         case (1 << 14):
304                                 cacheid |= CACHEID_ASID_TAGGED;
305                                 break;
306                         case (3 << 14):
307                                 cacheid |= CACHEID_PIPT;
308                                 break;
309                         }
310                 } else {
311                         arch = CPU_ARCH_ARMv6;
312                         if (cachetype & (1 << 23))
313                                 cacheid = CACHEID_VIPT_ALIASING;
314                         else
315                                 cacheid = CACHEID_VIPT_NONALIASING;
316                 }
317                 if (cpu_has_aliasing_icache(arch))
318                         cacheid |= CACHEID_VIPT_I_ALIASING;
319         } else {
320                 cacheid = CACHEID_VIVT;
321         }
322
323         printk("CPU: %s data cache, %s instruction cache\n",
324                 cache_is_vivt() ? "VIVT" :
325                 cache_is_vipt_aliasing() ? "VIPT aliasing" :
326                 cache_is_vipt_nonaliasing() ? "PIPT / VIPT nonaliasing" : "unknown",
327                 cache_is_vivt() ? "VIVT" :
328                 icache_is_vivt_asid_tagged() ? "VIVT ASID tagged" :
329                 icache_is_vipt_aliasing() ? "VIPT aliasing" :
330                 icache_is_pipt() ? "PIPT" :
331                 cache_is_vipt_nonaliasing() ? "VIPT nonaliasing" : "unknown");
332 }
333
334 /*
335  * These functions re-use the assembly code in head.S, which
336  * already provide the required functionality.
337  */
338 extern struct proc_info_list *lookup_processor_type(unsigned int);
339
340 void __init early_print(const char *str, ...)
341 {
342         extern void printascii(const char *);
343         char buf[256];
344         va_list ap;
345
346         va_start(ap, str);
347         vsnprintf(buf, sizeof(buf), str, ap);
348         va_end(ap);
349
350 #ifdef CONFIG_DEBUG_LL
351         printascii(buf);
352 #endif
353         printk("%s", buf);
354 }
355
356 static void __init cpuid_init_hwcaps(void)
357 {
358         unsigned int divide_instrs;
359
360         if (cpu_architecture() < CPU_ARCH_ARMv7)
361                 return;
362
363         divide_instrs = (read_cpuid_ext(CPUID_EXT_ISAR0) & 0x0f000000) >> 24;
364
365         switch (divide_instrs) {
366         case 2:
367                 elf_hwcap |= HWCAP_IDIVA;
368         case 1:
369                 elf_hwcap |= HWCAP_IDIVT;
370         }
371 }
372
373 static void __init feat_v6_fixup(void)
374 {
375         int id = read_cpuid_id();
376
377         if ((id & 0xff0f0000) != 0x41070000)
378                 return;
379
380         /*
381          * HWCAP_TLS is available only on 1136 r1p0 and later,
382          * see also kuser_get_tls_init.
383          */
384         if ((((id >> 4) & 0xfff) == 0xb36) && (((id >> 20) & 3) == 0))
385                 elf_hwcap &= ~HWCAP_TLS;
386 }
387
388 /*
389  * cpu_init - initialise one CPU.
390  *
391  * cpu_init sets up the per-CPU stacks.
392  */
393 void notrace cpu_init(void)
394 {
395         unsigned int cpu = smp_processor_id();
396         struct stack *stk = &stacks[cpu];
397
398         if (cpu >= NR_CPUS) {
399                 printk(KERN_CRIT "CPU%u: bad primary CPU number\n", cpu);
400                 BUG();
401         }
402
403         /*
404          * This only works on resume and secondary cores. For booting on the
405          * boot cpu, smp_prepare_boot_cpu is called after percpu area setup.
406          */
407         set_my_cpu_offset(per_cpu_offset(cpu));
408
409         cpu_proc_init();
410
411         /*
412          * Define the placement constraint for the inline asm directive below.
413          * In Thumb-2, msr with an immediate value is not allowed.
414          */
415 #ifdef CONFIG_THUMB2_KERNEL
416 #define PLC     "r"
417 #else
418 #define PLC     "I"
419 #endif
420
421         /*
422          * setup stacks for re-entrant exception handlers
423          */
424         __asm__ (
425         "msr    cpsr_c, %1\n\t"
426         "add    r14, %0, %2\n\t"
427         "mov    sp, r14\n\t"
428         "msr    cpsr_c, %3\n\t"
429         "add    r14, %0, %4\n\t"
430         "mov    sp, r14\n\t"
431         "msr    cpsr_c, %5\n\t"
432         "add    r14, %0, %6\n\t"
433         "mov    sp, r14\n\t"
434         "msr    cpsr_c, %7"
435             :
436             : "r" (stk),
437               PLC (PSR_F_BIT | PSR_I_BIT | IRQ_MODE),
438               "I" (offsetof(struct stack, irq[0])),
439               PLC (PSR_F_BIT | PSR_I_BIT | ABT_MODE),
440               "I" (offsetof(struct stack, abt[0])),
441               PLC (PSR_F_BIT | PSR_I_BIT | UND_MODE),
442               "I" (offsetof(struct stack, und[0])),
443               PLC (PSR_F_BIT | PSR_I_BIT | SVC_MODE)
444             : "r14");
445 }
446
447 u32 __cpu_logical_map[NR_CPUS] = { [0 ... NR_CPUS-1] = MPIDR_INVALID };
448
449 void __init smp_setup_processor_id(void)
450 {
451         int i;
452         u32 mpidr = is_smp() ? read_cpuid_mpidr() & MPIDR_HWID_BITMASK : 0;
453         u32 cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
454
455         cpu_logical_map(0) = cpu;
456         for (i = 1; i < nr_cpu_ids; ++i)
457                 cpu_logical_map(i) = i == cpu ? 0 : i;
458
459         /*
460          * clear __my_cpu_offset on boot CPU to avoid hang caused by
461          * using percpu variable early, for example, lockdep will
462          * access percpu variable inside lock_release
463          */
464         set_my_cpu_offset(0);
465
466         printk(KERN_INFO "Booting Linux on physical CPU 0x%x\n", mpidr);
467 }
468
469 static void __init setup_processor(void)
470 {
471         struct proc_info_list *list;
472
473         /*
474          * locate processor in the list of supported processor
475          * types.  The linker builds this table for us from the
476          * entries in arch/arm/mm/proc-*.S
477          */
478         list = lookup_processor_type(read_cpuid_id());
479         if (!list) {
480                 printk("CPU configuration botched (ID %08x), unable "
481                        "to continue.\n", read_cpuid_id());
482                 while (1);
483         }
484
485         cpu_name = list->cpu_name;
486         __cpu_architecture = __get_cpu_architecture();
487
488 #ifdef MULTI_CPU
489         processor = *list->proc;
490 #endif
491 #ifdef MULTI_TLB
492         cpu_tlb = *list->tlb;
493 #endif
494 #ifdef MULTI_USER
495         cpu_user = *list->user;
496 #endif
497 #ifdef MULTI_CACHE
498         cpu_cache = *list->cache;
499 #endif
500
501         printk("CPU: %s [%08x] revision %d (ARMv%s), cr=%08lx\n",
502                cpu_name, read_cpuid_id(), read_cpuid_id() & 15,
503                proc_arch[cpu_architecture()], cr_alignment);
504
505         snprintf(init_utsname()->machine, __NEW_UTS_LEN + 1, "%s%c",
506                  list->arch_name, ENDIANNESS);
507         snprintf(elf_platform, ELF_PLATFORM_SIZE, "%s%c",
508                  list->elf_name, ENDIANNESS);
509         elf_hwcap = list->elf_hwcap;
510
511         cpuid_init_hwcaps();
512
513 #ifndef CONFIG_ARM_THUMB
514         elf_hwcap &= ~(HWCAP_THUMB | HWCAP_IDIVT);
515 #endif
516
517         feat_v6_fixup();
518
519         cacheid_init();
520         cpu_init();
521 }
522
523 void __init dump_machine_table(void)
524 {
525         struct machine_desc *p;
526
527         early_print("Available machine support:\n\nID (hex)\tNAME\n");
528         for_each_machine_desc(p)
529                 early_print("%08x\t%s\n", p->nr, p->name);
530
531         early_print("\nPlease check your kernel config and/or bootloader.\n");
532
533         while (true)
534                 /* can't use cpu_relax() here as it may require MMU setup */;
535 }
536
537 int __init arm_add_memory(phys_addr_t start, phys_addr_t size)
538 {
539         struct membank *bank = &meminfo.bank[meminfo.nr_banks];
540
541         if (meminfo.nr_banks >= NR_BANKS) {
542                 printk(KERN_CRIT "NR_BANKS too low, "
543                         "ignoring memory at 0x%08llx\n", (long long)start);
544                 return -EINVAL;
545         }
546
547         /*
548          * Ensure that start/size are aligned to a page boundary.
549          * Size is appropriately rounded down, start is rounded up.
550          */
551         size -= start & ~PAGE_MASK;
552         bank->start = PAGE_ALIGN(start);
553
554 #ifndef CONFIG_ARM_LPAE
555         if (bank->start + size < bank->start) {
556                 printk(KERN_CRIT "Truncating memory at 0x%08llx to fit in "
557                         "32-bit physical address space\n", (long long)start);
558                 /*
559                  * To ensure bank->start + bank->size is representable in
560                  * 32 bits, we use ULONG_MAX as the upper limit rather than 4GB.
561                  * This means we lose a page after masking.
562                  */
563                 size = ULONG_MAX - bank->start;
564         }
565 #endif
566
567         bank->size = size & ~(phys_addr_t)(PAGE_SIZE - 1);
568
569         /*
570          * Check whether this memory region has non-zero size or
571          * invalid node number.
572          */
573         if (bank->size == 0)
574                 return -EINVAL;
575
576         meminfo.nr_banks++;
577         return 0;
578 }
579
580 /*
581  * Pick out the memory size.  We look for mem=size@start,
582  * where start and size are "size[KkMm]"
583  */
584 static int __init early_mem(char *p)
585 {
586         static int usermem __initdata = 0;
587         phys_addr_t size;
588         phys_addr_t start;
589         char *endp;
590
591         /*
592          * If the user specifies memory size, we
593          * blow away any automatically generated
594          * size.
595          */
596         if (usermem == 0) {
597                 usermem = 1;
598                 meminfo.nr_banks = 0;
599         }
600
601         start = PHYS_OFFSET;
602         size  = memparse(p, &endp);
603         if (*endp == '@')
604                 start = memparse(endp + 1, NULL);
605
606         arm_add_memory(start, size);
607
608         return 0;
609 }
610 early_param("mem", early_mem);
611
612 static void __init request_standard_resources(struct machine_desc *mdesc)
613 {
614         struct memblock_region *region;
615         struct resource *res;
616
617         kernel_code.start   = virt_to_phys(_text);
618         kernel_code.end     = virt_to_phys(_etext - 1);
619         kernel_data.start   = virt_to_phys(_sdata);
620         kernel_data.end     = virt_to_phys(_end - 1);
621
622         for_each_memblock(memory, region) {
623                 res = alloc_bootmem_low(sizeof(*res));
624                 res->name  = "System RAM";
625                 res->start = __pfn_to_phys(memblock_region_memory_base_pfn(region));
626                 res->end = __pfn_to_phys(memblock_region_memory_end_pfn(region)) - 1;
627                 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
628
629                 request_resource(&iomem_resource, res);
630
631                 if (kernel_code.start >= res->start &&
632                     kernel_code.end <= res->end)
633                         request_resource(res, &kernel_code);
634                 if (kernel_data.start >= res->start &&
635                     kernel_data.end <= res->end)
636                         request_resource(res, &kernel_data);
637         }
638
639         if (mdesc->video_start) {
640                 video_ram.start = mdesc->video_start;
641                 video_ram.end   = mdesc->video_end;
642                 request_resource(&iomem_resource, &video_ram);
643         }
644
645         /*
646          * Some machines don't have the possibility of ever
647          * possessing lp0, lp1 or lp2
648          */
649         if (mdesc->reserve_lp0)
650                 request_resource(&ioport_resource, &lp0);
651         if (mdesc->reserve_lp1)
652                 request_resource(&ioport_resource, &lp1);
653         if (mdesc->reserve_lp2)
654                 request_resource(&ioport_resource, &lp2);
655 }
656
657 #if defined(CONFIG_VGA_CONSOLE) || defined(CONFIG_DUMMY_CONSOLE)
658 struct screen_info screen_info = {
659  .orig_video_lines      = 30,
660  .orig_video_cols       = 80,
661  .orig_video_mode       = 0,
662  .orig_video_ega_bx     = 0,
663  .orig_video_isVGA      = 1,
664  .orig_video_points     = 8
665 };
666 #endif
667
668 static int __init customize_machine(void)
669 {
670         /*
671          * customizes platform devices, or adds new ones
672          * On DT based machines, we fall back to populating the
673          * machine from the device tree, if no callback is provided,
674          * otherwise we would always need an init_machine callback.
675          */
676         if (machine_desc->init_machine)
677                 machine_desc->init_machine();
678 #ifdef CONFIG_OF
679         else
680                 of_platform_populate(NULL, of_default_bus_match_table,
681                                         NULL, NULL);
682 #endif
683         return 0;
684 }
685 arch_initcall(customize_machine);
686
687 static int __init init_machine_late(void)
688 {
689         if (machine_desc->init_late)
690                 machine_desc->init_late();
691         return 0;
692 }
693 late_initcall(init_machine_late);
694
695 #ifdef CONFIG_KEXEC
696 static inline unsigned long long get_total_mem(void)
697 {
698         unsigned long total;
699
700         total = max_low_pfn - min_low_pfn;
701         return total << PAGE_SHIFT;
702 }
703
704 /**
705  * reserve_crashkernel() - reserves memory are for crash kernel
706  *
707  * This function reserves memory area given in "crashkernel=" kernel command
708  * line parameter. The memory reserved is used by a dump capture kernel when
709  * primary kernel is crashing.
710  */
711 static void __init reserve_crashkernel(void)
712 {
713         unsigned long long crash_size, crash_base;
714         unsigned long long total_mem;
715         int ret;
716
717         total_mem = get_total_mem();
718         ret = parse_crashkernel(boot_command_line, total_mem,
719                                 &crash_size, &crash_base);
720         if (ret)
721                 return;
722
723         ret = reserve_bootmem(crash_base, crash_size, BOOTMEM_EXCLUSIVE);
724         if (ret < 0) {
725                 printk(KERN_WARNING "crashkernel reservation failed - "
726                        "memory is in use (0x%lx)\n", (unsigned long)crash_base);
727                 return;
728         }
729
730         printk(KERN_INFO "Reserving %ldMB of memory at %ldMB "
731                "for crashkernel (System RAM: %ldMB)\n",
732                (unsigned long)(crash_size >> 20),
733                (unsigned long)(crash_base >> 20),
734                (unsigned long)(total_mem >> 20));
735
736         crashk_res.start = crash_base;
737         crashk_res.end = crash_base + crash_size - 1;
738         insert_resource(&iomem_resource, &crashk_res);
739 }
740 #else
741 static inline void reserve_crashkernel(void) {}
742 #endif /* CONFIG_KEXEC */
743
744 static int __init meminfo_cmp(const void *_a, const void *_b)
745 {
746         const struct membank *a = _a, *b = _b;
747         long cmp = bank_pfn_start(a) - bank_pfn_start(b);
748         return cmp < 0 ? -1 : cmp > 0 ? 1 : 0;
749 }
750
751 void __init hyp_mode_check(void)
752 {
753 #ifdef CONFIG_ARM_VIRT_EXT
754         if (is_hyp_mode_available()) {
755                 pr_info("CPU: All CPU(s) started in HYP mode.\n");
756                 pr_info("CPU: Virtualization extensions available.\n");
757         } else if (is_hyp_mode_mismatched()) {
758                 pr_warn("CPU: WARNING: CPU(s) started in wrong/inconsistent modes (primary CPU mode 0x%x)\n",
759                         __boot_cpu_mode & MODE_MASK);
760                 pr_warn("CPU: This may indicate a broken bootloader or firmware.\n");
761         } else
762                 pr_info("CPU: All CPU(s) started in SVC mode.\n");
763 #endif
764 }
765
766 void __init setup_arch(char **cmdline_p)
767 {
768         struct machine_desc *mdesc;
769
770         setup_processor();
771         mdesc = setup_machine_fdt(__atags_pointer);
772         if (!mdesc)
773                 mdesc = setup_machine_tags(__atags_pointer, __machine_arch_type);
774         machine_desc = mdesc;
775         machine_name = mdesc->name;
776
777         setup_dma_zone(mdesc);
778
779         if (mdesc->restart_mode)
780                 reboot_setup(&mdesc->restart_mode);
781
782         init_mm.start_code = (unsigned long) _text;
783         init_mm.end_code   = (unsigned long) _etext;
784         init_mm.end_data   = (unsigned long) _edata;
785         init_mm.brk        = (unsigned long) _end;
786
787         /* populate cmd_line too for later use, preserving boot_command_line */
788         strlcpy(cmd_line, boot_command_line, COMMAND_LINE_SIZE);
789         *cmdline_p = cmd_line;
790
791         parse_early_param();
792
793         sort(&meminfo.bank, meminfo.nr_banks, sizeof(meminfo.bank[0]), meminfo_cmp, NULL);
794         sanity_check_meminfo();
795         arm_memblock_init(&meminfo, mdesc);
796
797         paging_init(mdesc);
798         request_standard_resources(mdesc);
799
800         if (mdesc->restart)
801                 arm_pm_restart = mdesc->restart;
802
803         unflatten_device_tree();
804
805         arm_dt_init_cpu_maps();
806 #ifdef CONFIG_SMP
807         if (is_smp()) {
808                 smp_set_ops(mdesc->smp);
809                 smp_init_cpus();
810         }
811 #endif
812
813         if (!is_smp())
814                 hyp_mode_check();
815
816         reserve_crashkernel();
817
818 #ifdef CONFIG_MULTI_IRQ_HANDLER
819         handle_arch_irq = mdesc->handle_irq;
820 #endif
821
822 #ifdef CONFIG_VT
823 #if defined(CONFIG_VGA_CONSOLE)
824         conswitchp = &vga_con;
825 #elif defined(CONFIG_DUMMY_CONSOLE)
826         conswitchp = &dummy_con;
827 #endif
828 #endif
829
830         if (mdesc->init_early)
831                 mdesc->init_early();
832 }
833
834
835 static int __init topology_init(void)
836 {
837         int cpu;
838
839         for_each_possible_cpu(cpu) {
840                 struct cpuinfo_arm *cpuinfo = &per_cpu(cpu_data, cpu);
841                 cpuinfo->cpu.hotpluggable = 1;
842                 register_cpu(&cpuinfo->cpu, cpu);
843         }
844
845         return 0;
846 }
847 subsys_initcall(topology_init);
848
849 #ifdef CONFIG_HAVE_PROC_CPU
850 static int __init proc_cpu_init(void)
851 {
852         struct proc_dir_entry *res;
853
854         res = proc_mkdir("cpu", NULL);
855         if (!res)
856                 return -ENOMEM;
857         return 0;
858 }
859 fs_initcall(proc_cpu_init);
860 #endif
861
862 static const char *hwcap_str[] = {
863         "swp",
864         "half",
865         "thumb",
866         "26bit",
867         "fastmult",
868         "fpa",
869         "vfp",
870         "edsp",
871         "java",
872         "iwmmxt",
873         "crunch",
874         "thumbee",
875         "neon",
876         "vfpv3",
877         "vfpv3d16",
878         "tls",
879         "vfpv4",
880         "idiva",
881         "idivt",
882         NULL
883 };
884
885 static int c_show(struct seq_file *m, void *v)
886 {
887         int i, j;
888         u32 cpuid;
889
890         for_each_online_cpu(i) {
891                 /*
892                  * glibc reads /proc/cpuinfo to determine the number of
893                  * online processors, looking for lines beginning with
894                  * "processor".  Give glibc what it expects.
895                  */
896                 seq_printf(m, "processor\t: %d\n", i);
897                 cpuid = is_smp() ? per_cpu(cpu_data, i).cpuid : read_cpuid_id();
898                 seq_printf(m, "model name\t: %s rev %d (%s)\n",
899                            cpu_name, cpuid & 15, elf_platform);
900
901 #if defined(CONFIG_SMP)
902                 seq_printf(m, "BogoMIPS\t: %lu.%02lu\n",
903                            per_cpu(cpu_data, i).loops_per_jiffy / (500000UL/HZ),
904                            (per_cpu(cpu_data, i).loops_per_jiffy / (5000UL/HZ)) % 100);
905 #else
906                 seq_printf(m, "BogoMIPS\t: %lu.%02lu\n",
907                            loops_per_jiffy / (500000/HZ),
908                            (loops_per_jiffy / (5000/HZ)) % 100);
909 #endif
910                 /* dump out the processor features */
911                 seq_puts(m, "Features\t: ");
912
913                 for (j = 0; hwcap_str[j]; j++)
914                         if (elf_hwcap & (1 << j))
915                                 seq_printf(m, "%s ", hwcap_str[j]);
916
917                 seq_printf(m, "\nCPU implementer\t: 0x%02x\n", cpuid >> 24);
918                 seq_printf(m, "CPU architecture: %s\n",
919                            proc_arch[cpu_architecture()]);
920
921                 if ((cpuid & 0x0008f000) == 0x00000000) {
922                         /* pre-ARM7 */
923                         seq_printf(m, "CPU part\t: %07x\n", cpuid >> 4);
924                 } else {
925                         if ((cpuid & 0x0008f000) == 0x00007000) {
926                                 /* ARM7 */
927                                 seq_printf(m, "CPU variant\t: 0x%02x\n",
928                                            (cpuid >> 16) & 127);
929                         } else {
930                                 /* post-ARM7 */
931                                 seq_printf(m, "CPU variant\t: 0x%x\n",
932                                            (cpuid >> 20) & 15);
933                         }
934                         seq_printf(m, "CPU part\t: 0x%03x\n",
935                                    (cpuid >> 4) & 0xfff);
936                 }
937                 seq_printf(m, "CPU revision\t: %d\n\n", cpuid & 15);
938         }
939
940         seq_printf(m, "Hardware\t: %s\n", machine_name);
941         seq_printf(m, "Revision\t: %04x\n", system_rev);
942         seq_printf(m, "Serial\t\t: %08x%08x\n",
943                    system_serial_high, system_serial_low);
944
945         return 0;
946 }
947
948 static void *c_start(struct seq_file *m, loff_t *pos)
949 {
950         return *pos < 1 ? (void *)1 : NULL;
951 }
952
953 static void *c_next(struct seq_file *m, void *v, loff_t *pos)
954 {
955         ++*pos;
956         return NULL;
957 }
958
959 static void c_stop(struct seq_file *m, void *v)
960 {
961 }
962
963 const struct seq_operations cpuinfo_op = {
964         .start  = c_start,
965         .next   = c_next,
966         .stop   = c_stop,
967         .show   = c_show
968 };