]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - arch/arm/kvm/arm.c
b32dc446e8024f1a4e5a17bec2205975d8a89bd2
[karo-tx-linux.git] / arch / arm / kvm / arm.c
1 /*
2  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License, version 2, as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
17  */
18
19 #include <linux/errno.h>
20 #include <linux/err.h>
21 #include <linux/kvm_host.h>
22 #include <linux/module.h>
23 #include <linux/vmalloc.h>
24 #include <linux/fs.h>
25 #include <linux/mman.h>
26 #include <linux/sched.h>
27 #include <linux/kvm.h>
28 #include <trace/events/kvm.h>
29
30 #define CREATE_TRACE_POINTS
31 #include "trace.h"
32
33 #include <asm/unified.h>
34 #include <asm/uaccess.h>
35 #include <asm/ptrace.h>
36 #include <asm/mman.h>
37 #include <asm/cputype.h>
38 #include <asm/tlbflush.h>
39 #include <asm/cacheflush.h>
40 #include <asm/virt.h>
41 #include <asm/kvm_arm.h>
42 #include <asm/kvm_asm.h>
43 #include <asm/kvm_mmu.h>
44 #include <asm/kvm_emulate.h>
45 #include <asm/kvm_coproc.h>
46 #include <asm/kvm_psci.h>
47 #include <asm/opcodes.h>
48
49 #ifdef REQUIRES_VIRT
50 __asm__(".arch_extension        virt");
51 #endif
52
53 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
54 static struct vfp_hard_struct __percpu *kvm_host_vfp_state;
55 static unsigned long hyp_default_vectors;
56
57 /* Per-CPU variable containing the currently running vcpu. */
58 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
59
60 /* The VMID used in the VTTBR */
61 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
62 static u8 kvm_next_vmid;
63 static DEFINE_SPINLOCK(kvm_vmid_lock);
64
65 static bool vgic_present;
66
67 static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
68 {
69         BUG_ON(preemptible());
70         __get_cpu_var(kvm_arm_running_vcpu) = vcpu;
71 }
72
73 /**
74  * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
75  * Must be called from non-preemptible context
76  */
77 struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
78 {
79         BUG_ON(preemptible());
80         return __get_cpu_var(kvm_arm_running_vcpu);
81 }
82
83 /**
84  * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
85  */
86 struct kvm_vcpu __percpu **kvm_get_running_vcpus(void)
87 {
88         return &kvm_arm_running_vcpu;
89 }
90
91 int kvm_arch_hardware_enable(void *garbage)
92 {
93         return 0;
94 }
95
96 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
97 {
98         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
99 }
100
101 void kvm_arch_hardware_disable(void *garbage)
102 {
103 }
104
105 int kvm_arch_hardware_setup(void)
106 {
107         return 0;
108 }
109
110 void kvm_arch_hardware_unsetup(void)
111 {
112 }
113
114 void kvm_arch_check_processor_compat(void *rtn)
115 {
116         *(int *)rtn = 0;
117 }
118
119 void kvm_arch_sync_events(struct kvm *kvm)
120 {
121 }
122
123 /**
124  * kvm_arch_init_vm - initializes a VM data structure
125  * @kvm:        pointer to the KVM struct
126  */
127 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
128 {
129         int ret = 0;
130
131         if (type)
132                 return -EINVAL;
133
134         ret = kvm_alloc_stage2_pgd(kvm);
135         if (ret)
136                 goto out_fail_alloc;
137
138         ret = create_hyp_mappings(kvm, kvm + 1);
139         if (ret)
140                 goto out_free_stage2_pgd;
141
142         /* Mark the initial VMID generation invalid */
143         kvm->arch.vmid_gen = 0;
144
145         return ret;
146 out_free_stage2_pgd:
147         kvm_free_stage2_pgd(kvm);
148 out_fail_alloc:
149         return ret;
150 }
151
152 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
153 {
154         return VM_FAULT_SIGBUS;
155 }
156
157 void kvm_arch_free_memslot(struct kvm_memory_slot *free,
158                            struct kvm_memory_slot *dont)
159 {
160 }
161
162 int kvm_arch_create_memslot(struct kvm_memory_slot *slot, unsigned long npages)
163 {
164         return 0;
165 }
166
167 /**
168  * kvm_arch_destroy_vm - destroy the VM data structure
169  * @kvm:        pointer to the KVM struct
170  */
171 void kvm_arch_destroy_vm(struct kvm *kvm)
172 {
173         int i;
174
175         kvm_free_stage2_pgd(kvm);
176
177         for (i = 0; i < KVM_MAX_VCPUS; ++i) {
178                 if (kvm->vcpus[i]) {
179                         kvm_arch_vcpu_free(kvm->vcpus[i]);
180                         kvm->vcpus[i] = NULL;
181                 }
182         }
183 }
184
185 int kvm_dev_ioctl_check_extension(long ext)
186 {
187         int r;
188         switch (ext) {
189         case KVM_CAP_IRQCHIP:
190                 r = vgic_present;
191                 break;
192         case KVM_CAP_USER_MEMORY:
193         case KVM_CAP_SYNC_MMU:
194         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
195         case KVM_CAP_ONE_REG:
196         case KVM_CAP_ARM_PSCI:
197                 r = 1;
198                 break;
199         case KVM_CAP_COALESCED_MMIO:
200                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
201                 break;
202         case KVM_CAP_ARM_SET_DEVICE_ADDR:
203                 r = 1;
204         case KVM_CAP_NR_VCPUS:
205                 r = num_online_cpus();
206                 break;
207         case KVM_CAP_MAX_VCPUS:
208                 r = KVM_MAX_VCPUS;
209                 break;
210         default:
211                 r = 0;
212                 break;
213         }
214         return r;
215 }
216
217 long kvm_arch_dev_ioctl(struct file *filp,
218                         unsigned int ioctl, unsigned long arg)
219 {
220         return -EINVAL;
221 }
222
223 int kvm_arch_set_memory_region(struct kvm *kvm,
224                                struct kvm_userspace_memory_region *mem,
225                                struct kvm_memory_slot old,
226                                int user_alloc)
227 {
228         return 0;
229 }
230
231 int kvm_arch_prepare_memory_region(struct kvm *kvm,
232                                    struct kvm_memory_slot *memslot,
233                                    struct kvm_userspace_memory_region *mem,
234                                    enum kvm_mr_change change)
235 {
236         return 0;
237 }
238
239 void kvm_arch_commit_memory_region(struct kvm *kvm,
240                                    struct kvm_userspace_memory_region *mem,
241                                    const struct kvm_memory_slot *old,
242                                    enum kvm_mr_change change)
243 {
244 }
245
246 void kvm_arch_flush_shadow_all(struct kvm *kvm)
247 {
248 }
249
250 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
251                                    struct kvm_memory_slot *slot)
252 {
253 }
254
255 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
256 {
257         int err;
258         struct kvm_vcpu *vcpu;
259
260         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
261         if (!vcpu) {
262                 err = -ENOMEM;
263                 goto out;
264         }
265
266         err = kvm_vcpu_init(vcpu, kvm, id);
267         if (err)
268                 goto free_vcpu;
269
270         err = create_hyp_mappings(vcpu, vcpu + 1);
271         if (err)
272                 goto vcpu_uninit;
273
274         return vcpu;
275 vcpu_uninit:
276         kvm_vcpu_uninit(vcpu);
277 free_vcpu:
278         kmem_cache_free(kvm_vcpu_cache, vcpu);
279 out:
280         return ERR_PTR(err);
281 }
282
283 int kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
284 {
285         return 0;
286 }
287
288 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
289 {
290         kvm_mmu_free_memory_caches(vcpu);
291         kvm_timer_vcpu_terminate(vcpu);
292         kmem_cache_free(kvm_vcpu_cache, vcpu);
293 }
294
295 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
296 {
297         kvm_arch_vcpu_free(vcpu);
298 }
299
300 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
301 {
302         return 0;
303 }
304
305 int __attribute_const__ kvm_target_cpu(void)
306 {
307         unsigned long implementor = read_cpuid_implementor();
308         unsigned long part_number = read_cpuid_part_number();
309
310         if (implementor != ARM_CPU_IMP_ARM)
311                 return -EINVAL;
312
313         switch (part_number) {
314         case ARM_CPU_PART_CORTEX_A15:
315                 return KVM_ARM_TARGET_CORTEX_A15;
316         default:
317                 return -EINVAL;
318         }
319 }
320
321 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
322 {
323         int ret;
324
325         /* Force users to call KVM_ARM_VCPU_INIT */
326         vcpu->arch.target = -1;
327
328         /* Set up VGIC */
329         ret = kvm_vgic_vcpu_init(vcpu);
330         if (ret)
331                 return ret;
332
333         /* Set up the timer */
334         kvm_timer_vcpu_init(vcpu);
335
336         return 0;
337 }
338
339 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
340 {
341 }
342
343 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
344 {
345         vcpu->cpu = cpu;
346         vcpu->arch.vfp_host = this_cpu_ptr(kvm_host_vfp_state);
347
348         /*
349          * Check whether this vcpu requires the cache to be flushed on
350          * this physical CPU. This is a consequence of doing dcache
351          * operations by set/way on this vcpu. We do it here to be in
352          * a non-preemptible section.
353          */
354         if (cpumask_test_and_clear_cpu(cpu, &vcpu->arch.require_dcache_flush))
355                 flush_cache_all(); /* We'd really want v7_flush_dcache_all() */
356
357         kvm_arm_set_running_vcpu(vcpu);
358 }
359
360 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
361 {
362         kvm_arm_set_running_vcpu(NULL);
363 }
364
365 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
366                                         struct kvm_guest_debug *dbg)
367 {
368         return -EINVAL;
369 }
370
371
372 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
373                                     struct kvm_mp_state *mp_state)
374 {
375         return -EINVAL;
376 }
377
378 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
379                                     struct kvm_mp_state *mp_state)
380 {
381         return -EINVAL;
382 }
383
384 /**
385  * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
386  * @v:          The VCPU pointer
387  *
388  * If the guest CPU is not waiting for interrupts or an interrupt line is
389  * asserted, the CPU is by definition runnable.
390  */
391 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
392 {
393         return !!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v);
394 }
395
396 /* Just ensure a guest exit from a particular CPU */
397 static void exit_vm_noop(void *info)
398 {
399 }
400
401 void force_vm_exit(const cpumask_t *mask)
402 {
403         smp_call_function_many(mask, exit_vm_noop, NULL, true);
404 }
405
406 /**
407  * need_new_vmid_gen - check that the VMID is still valid
408  * @kvm: The VM's VMID to checkt
409  *
410  * return true if there is a new generation of VMIDs being used
411  *
412  * The hardware supports only 256 values with the value zero reserved for the
413  * host, so we check if an assigned value belongs to a previous generation,
414  * which which requires us to assign a new value. If we're the first to use a
415  * VMID for the new generation, we must flush necessary caches and TLBs on all
416  * CPUs.
417  */
418 static bool need_new_vmid_gen(struct kvm *kvm)
419 {
420         return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
421 }
422
423 /**
424  * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
425  * @kvm The guest that we are about to run
426  *
427  * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
428  * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
429  * caches and TLBs.
430  */
431 static void update_vttbr(struct kvm *kvm)
432 {
433         phys_addr_t pgd_phys;
434         u64 vmid;
435
436         if (!need_new_vmid_gen(kvm))
437                 return;
438
439         spin_lock(&kvm_vmid_lock);
440
441         /*
442          * We need to re-check the vmid_gen here to ensure that if another vcpu
443          * already allocated a valid vmid for this vm, then this vcpu should
444          * use the same vmid.
445          */
446         if (!need_new_vmid_gen(kvm)) {
447                 spin_unlock(&kvm_vmid_lock);
448                 return;
449         }
450
451         /* First user of a new VMID generation? */
452         if (unlikely(kvm_next_vmid == 0)) {
453                 atomic64_inc(&kvm_vmid_gen);
454                 kvm_next_vmid = 1;
455
456                 /*
457                  * On SMP we know no other CPUs can use this CPU's or each
458                  * other's VMID after force_vm_exit returns since the
459                  * kvm_vmid_lock blocks them from reentry to the guest.
460                  */
461                 force_vm_exit(cpu_all_mask);
462                 /*
463                  * Now broadcast TLB + ICACHE invalidation over the inner
464                  * shareable domain to make sure all data structures are
465                  * clean.
466                  */
467                 kvm_call_hyp(__kvm_flush_vm_context);
468         }
469
470         kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
471         kvm->arch.vmid = kvm_next_vmid;
472         kvm_next_vmid++;
473
474         /* update vttbr to be used with the new vmid */
475         pgd_phys = virt_to_phys(kvm->arch.pgd);
476         vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK;
477         kvm->arch.vttbr = pgd_phys & VTTBR_BADDR_MASK;
478         kvm->arch.vttbr |= vmid;
479
480         spin_unlock(&kvm_vmid_lock);
481 }
482
483 static int handle_svc_hyp(struct kvm_vcpu *vcpu, struct kvm_run *run)
484 {
485         /* SVC called from Hyp mode should never get here */
486         kvm_debug("SVC called from Hyp mode shouldn't go here\n");
487         BUG();
488         return -EINVAL; /* Squash warning */
489 }
490
491 static int handle_hvc(struct kvm_vcpu *vcpu, struct kvm_run *run)
492 {
493         trace_kvm_hvc(*vcpu_pc(vcpu), *vcpu_reg(vcpu, 0),
494                       vcpu->arch.hsr & HSR_HVC_IMM_MASK);
495
496         if (kvm_psci_call(vcpu))
497                 return 1;
498
499         kvm_inject_undefined(vcpu);
500         return 1;
501 }
502
503 static int handle_smc(struct kvm_vcpu *vcpu, struct kvm_run *run)
504 {
505         if (kvm_psci_call(vcpu))
506                 return 1;
507
508         kvm_inject_undefined(vcpu);
509         return 1;
510 }
511
512 static int handle_pabt_hyp(struct kvm_vcpu *vcpu, struct kvm_run *run)
513 {
514         /* The hypervisor should never cause aborts */
515         kvm_err("Prefetch Abort taken from Hyp mode at %#08x (HSR: %#08x)\n",
516                 vcpu->arch.hxfar, vcpu->arch.hsr);
517         return -EFAULT;
518 }
519
520 static int handle_dabt_hyp(struct kvm_vcpu *vcpu, struct kvm_run *run)
521 {
522         /* This is either an error in the ws. code or an external abort */
523         kvm_err("Data Abort taken from Hyp mode at %#08x (HSR: %#08x)\n",
524                 vcpu->arch.hxfar, vcpu->arch.hsr);
525         return -EFAULT;
526 }
527
528 typedef int (*exit_handle_fn)(struct kvm_vcpu *, struct kvm_run *);
529 static exit_handle_fn arm_exit_handlers[] = {
530         [HSR_EC_WFI]            = kvm_handle_wfi,
531         [HSR_EC_CP15_32]        = kvm_handle_cp15_32,
532         [HSR_EC_CP15_64]        = kvm_handle_cp15_64,
533         [HSR_EC_CP14_MR]        = kvm_handle_cp14_access,
534         [HSR_EC_CP14_LS]        = kvm_handle_cp14_load_store,
535         [HSR_EC_CP14_64]        = kvm_handle_cp14_access,
536         [HSR_EC_CP_0_13]        = kvm_handle_cp_0_13_access,
537         [HSR_EC_CP10_ID]        = kvm_handle_cp10_id,
538         [HSR_EC_SVC_HYP]        = handle_svc_hyp,
539         [HSR_EC_HVC]            = handle_hvc,
540         [HSR_EC_SMC]            = handle_smc,
541         [HSR_EC_IABT]           = kvm_handle_guest_abort,
542         [HSR_EC_IABT_HYP]       = handle_pabt_hyp,
543         [HSR_EC_DABT]           = kvm_handle_guest_abort,
544         [HSR_EC_DABT_HYP]       = handle_dabt_hyp,
545 };
546
547 /*
548  * A conditional instruction is allowed to trap, even though it
549  * wouldn't be executed.  So let's re-implement the hardware, in
550  * software!
551  */
552 static bool kvm_condition_valid(struct kvm_vcpu *vcpu)
553 {
554         unsigned long cpsr, cond, insn;
555
556         /*
557          * Exception Code 0 can only happen if we set HCR.TGE to 1, to
558          * catch undefined instructions, and then we won't get past
559          * the arm_exit_handlers test anyway.
560          */
561         BUG_ON(((vcpu->arch.hsr & HSR_EC) >> HSR_EC_SHIFT) == 0);
562
563         /* Top two bits non-zero?  Unconditional. */
564         if (vcpu->arch.hsr >> 30)
565                 return true;
566
567         cpsr = *vcpu_cpsr(vcpu);
568
569         /* Is condition field valid? */
570         if ((vcpu->arch.hsr & HSR_CV) >> HSR_CV_SHIFT)
571                 cond = (vcpu->arch.hsr & HSR_COND) >> HSR_COND_SHIFT;
572         else {
573                 /* This can happen in Thumb mode: examine IT state. */
574                 unsigned long it;
575
576                 it = ((cpsr >> 8) & 0xFC) | ((cpsr >> 25) & 0x3);
577
578                 /* it == 0 => unconditional. */
579                 if (it == 0)
580                         return true;
581
582                 /* The cond for this insn works out as the top 4 bits. */
583                 cond = (it >> 4);
584         }
585
586         /* Shift makes it look like an ARM-mode instruction */
587         insn = cond << 28;
588         return arm_check_condition(insn, cpsr) != ARM_OPCODE_CONDTEST_FAIL;
589 }
590
591 /*
592  * Return > 0 to return to guest, < 0 on error, 0 (and set exit_reason) on
593  * proper exit to QEMU.
594  */
595 static int handle_exit(struct kvm_vcpu *vcpu, struct kvm_run *run,
596                        int exception_index)
597 {
598         unsigned long hsr_ec;
599
600         switch (exception_index) {
601         case ARM_EXCEPTION_IRQ:
602                 return 1;
603         case ARM_EXCEPTION_UNDEFINED:
604                 kvm_err("Undefined exception in Hyp mode at: %#08x\n",
605                         vcpu->arch.hyp_pc);
606                 BUG();
607                 panic("KVM: Hypervisor undefined exception!\n");
608         case ARM_EXCEPTION_DATA_ABORT:
609         case ARM_EXCEPTION_PREF_ABORT:
610         case ARM_EXCEPTION_HVC:
611                 hsr_ec = (vcpu->arch.hsr & HSR_EC) >> HSR_EC_SHIFT;
612
613                 if (hsr_ec >= ARRAY_SIZE(arm_exit_handlers)
614                     || !arm_exit_handlers[hsr_ec]) {
615                         kvm_err("Unkown exception class: %#08lx, "
616                                 "hsr: %#08x\n", hsr_ec,
617                                 (unsigned int)vcpu->arch.hsr);
618                         BUG();
619                 }
620
621                 /*
622                  * See ARM ARM B1.14.1: "Hyp traps on instructions
623                  * that fail their condition code check"
624                  */
625                 if (!kvm_condition_valid(vcpu)) {
626                         bool is_wide = vcpu->arch.hsr & HSR_IL;
627                         kvm_skip_instr(vcpu, is_wide);
628                         return 1;
629                 }
630
631                 return arm_exit_handlers[hsr_ec](vcpu, run);
632         default:
633                 kvm_pr_unimpl("Unsupported exception type: %d",
634                               exception_index);
635                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
636                 return 0;
637         }
638 }
639
640 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
641 {
642         if (likely(vcpu->arch.has_run_once))
643                 return 0;
644
645         vcpu->arch.has_run_once = true;
646
647         /*
648          * Initialize the VGIC before running a vcpu the first time on
649          * this VM.
650          */
651         if (irqchip_in_kernel(vcpu->kvm) &&
652             unlikely(!vgic_initialized(vcpu->kvm))) {
653                 int ret = kvm_vgic_init(vcpu->kvm);
654                 if (ret)
655                         return ret;
656         }
657
658         /*
659          * Handle the "start in power-off" case by calling into the
660          * PSCI code.
661          */
662         if (test_and_clear_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features)) {
663                 *vcpu_reg(vcpu, 0) = KVM_PSCI_FN_CPU_OFF;
664                 kvm_psci_call(vcpu);
665         }
666
667         return 0;
668 }
669
670 static void vcpu_pause(struct kvm_vcpu *vcpu)
671 {
672         wait_queue_head_t *wq = kvm_arch_vcpu_wq(vcpu);
673
674         wait_event_interruptible(*wq, !vcpu->arch.pause);
675 }
676
677 /**
678  * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
679  * @vcpu:       The VCPU pointer
680  * @run:        The kvm_run structure pointer used for userspace state exchange
681  *
682  * This function is called through the VCPU_RUN ioctl called from user space. It
683  * will execute VM code in a loop until the time slice for the process is used
684  * or some emulation is needed from user space in which case the function will
685  * return with return value 0 and with the kvm_run structure filled in with the
686  * required data for the requested emulation.
687  */
688 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
689 {
690         int ret;
691         sigset_t sigsaved;
692
693         /* Make sure they initialize the vcpu with KVM_ARM_VCPU_INIT */
694         if (unlikely(vcpu->arch.target < 0))
695                 return -ENOEXEC;
696
697         ret = kvm_vcpu_first_run_init(vcpu);
698         if (ret)
699                 return ret;
700
701         if (run->exit_reason == KVM_EXIT_MMIO) {
702                 ret = kvm_handle_mmio_return(vcpu, vcpu->run);
703                 if (ret)
704                         return ret;
705         }
706
707         if (vcpu->sigset_active)
708                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
709
710         ret = 1;
711         run->exit_reason = KVM_EXIT_UNKNOWN;
712         while (ret > 0) {
713                 /*
714                  * Check conditions before entering the guest
715                  */
716                 cond_resched();
717
718                 update_vttbr(vcpu->kvm);
719
720                 if (vcpu->arch.pause)
721                         vcpu_pause(vcpu);
722
723                 kvm_vgic_flush_hwstate(vcpu);
724                 kvm_timer_flush_hwstate(vcpu);
725
726                 local_irq_disable();
727
728                 /*
729                  * Re-check atomic conditions
730                  */
731                 if (signal_pending(current)) {
732                         ret = -EINTR;
733                         run->exit_reason = KVM_EXIT_INTR;
734                 }
735
736                 if (ret <= 0 || need_new_vmid_gen(vcpu->kvm)) {
737                         local_irq_enable();
738                         kvm_timer_sync_hwstate(vcpu);
739                         kvm_vgic_sync_hwstate(vcpu);
740                         continue;
741                 }
742
743                 /**************************************************************
744                  * Enter the guest
745                  */
746                 trace_kvm_entry(*vcpu_pc(vcpu));
747                 kvm_guest_enter();
748                 vcpu->mode = IN_GUEST_MODE;
749
750                 ret = kvm_call_hyp(__kvm_vcpu_run, vcpu);
751
752                 vcpu->mode = OUTSIDE_GUEST_MODE;
753                 vcpu->arch.last_pcpu = smp_processor_id();
754                 kvm_guest_exit();
755                 trace_kvm_exit(*vcpu_pc(vcpu));
756                 /*
757                  * We may have taken a host interrupt in HYP mode (ie
758                  * while executing the guest). This interrupt is still
759                  * pending, as we haven't serviced it yet!
760                  *
761                  * We're now back in SVC mode, with interrupts
762                  * disabled.  Enabling the interrupts now will have
763                  * the effect of taking the interrupt again, in SVC
764                  * mode this time.
765                  */
766                 local_irq_enable();
767
768                 /*
769                  * Back from guest
770                  *************************************************************/
771
772                 kvm_timer_sync_hwstate(vcpu);
773                 kvm_vgic_sync_hwstate(vcpu);
774
775                 ret = handle_exit(vcpu, run, ret);
776         }
777
778         if (vcpu->sigset_active)
779                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
780         return ret;
781 }
782
783 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
784 {
785         int bit_index;
786         bool set;
787         unsigned long *ptr;
788
789         if (number == KVM_ARM_IRQ_CPU_IRQ)
790                 bit_index = __ffs(HCR_VI);
791         else /* KVM_ARM_IRQ_CPU_FIQ */
792                 bit_index = __ffs(HCR_VF);
793
794         ptr = (unsigned long *)&vcpu->arch.irq_lines;
795         if (level)
796                 set = test_and_set_bit(bit_index, ptr);
797         else
798                 set = test_and_clear_bit(bit_index, ptr);
799
800         /*
801          * If we didn't change anything, no need to wake up or kick other CPUs
802          */
803         if (set == level)
804                 return 0;
805
806         /*
807          * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
808          * trigger a world-switch round on the running physical CPU to set the
809          * virtual IRQ/FIQ fields in the HCR appropriately.
810          */
811         kvm_vcpu_kick(vcpu);
812
813         return 0;
814 }
815
816 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level)
817 {
818         u32 irq = irq_level->irq;
819         unsigned int irq_type, vcpu_idx, irq_num;
820         int nrcpus = atomic_read(&kvm->online_vcpus);
821         struct kvm_vcpu *vcpu = NULL;
822         bool level = irq_level->level;
823
824         irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
825         vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
826         irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
827
828         trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
829
830         switch (irq_type) {
831         case KVM_ARM_IRQ_TYPE_CPU:
832                 if (irqchip_in_kernel(kvm))
833                         return -ENXIO;
834
835                 if (vcpu_idx >= nrcpus)
836                         return -EINVAL;
837
838                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
839                 if (!vcpu)
840                         return -EINVAL;
841
842                 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
843                         return -EINVAL;
844
845                 return vcpu_interrupt_line(vcpu, irq_num, level);
846         case KVM_ARM_IRQ_TYPE_PPI:
847                 if (!irqchip_in_kernel(kvm))
848                         return -ENXIO;
849
850                 if (vcpu_idx >= nrcpus)
851                         return -EINVAL;
852
853                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
854                 if (!vcpu)
855                         return -EINVAL;
856
857                 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
858                         return -EINVAL;
859
860                 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level);
861         case KVM_ARM_IRQ_TYPE_SPI:
862                 if (!irqchip_in_kernel(kvm))
863                         return -ENXIO;
864
865                 if (irq_num < VGIC_NR_PRIVATE_IRQS ||
866                     irq_num > KVM_ARM_IRQ_GIC_MAX)
867                         return -EINVAL;
868
869                 return kvm_vgic_inject_irq(kvm, 0, irq_num, level);
870         }
871
872         return -EINVAL;
873 }
874
875 long kvm_arch_vcpu_ioctl(struct file *filp,
876                          unsigned int ioctl, unsigned long arg)
877 {
878         struct kvm_vcpu *vcpu = filp->private_data;
879         void __user *argp = (void __user *)arg;
880
881         switch (ioctl) {
882         case KVM_ARM_VCPU_INIT: {
883                 struct kvm_vcpu_init init;
884
885                 if (copy_from_user(&init, argp, sizeof(init)))
886                         return -EFAULT;
887
888                 return kvm_vcpu_set_target(vcpu, &init);
889
890         }
891         case KVM_SET_ONE_REG:
892         case KVM_GET_ONE_REG: {
893                 struct kvm_one_reg reg;
894                 if (copy_from_user(&reg, argp, sizeof(reg)))
895                         return -EFAULT;
896                 if (ioctl == KVM_SET_ONE_REG)
897                         return kvm_arm_set_reg(vcpu, &reg);
898                 else
899                         return kvm_arm_get_reg(vcpu, &reg);
900         }
901         case KVM_GET_REG_LIST: {
902                 struct kvm_reg_list __user *user_list = argp;
903                 struct kvm_reg_list reg_list;
904                 unsigned n;
905
906                 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
907                         return -EFAULT;
908                 n = reg_list.n;
909                 reg_list.n = kvm_arm_num_regs(vcpu);
910                 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
911                         return -EFAULT;
912                 if (n < reg_list.n)
913                         return -E2BIG;
914                 return kvm_arm_copy_reg_indices(vcpu, user_list->reg);
915         }
916         default:
917                 return -EINVAL;
918         }
919 }
920
921 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
922 {
923         return -EINVAL;
924 }
925
926 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
927                                         struct kvm_arm_device_addr *dev_addr)
928 {
929         unsigned long dev_id, type;
930
931         dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
932                 KVM_ARM_DEVICE_ID_SHIFT;
933         type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
934                 KVM_ARM_DEVICE_TYPE_SHIFT;
935
936         switch (dev_id) {
937         case KVM_ARM_DEVICE_VGIC_V2:
938                 if (!vgic_present)
939                         return -ENXIO;
940                 return kvm_vgic_set_addr(kvm, type, dev_addr->addr);
941         default:
942                 return -ENODEV;
943         }
944 }
945
946 long kvm_arch_vm_ioctl(struct file *filp,
947                        unsigned int ioctl, unsigned long arg)
948 {
949         struct kvm *kvm = filp->private_data;
950         void __user *argp = (void __user *)arg;
951
952         switch (ioctl) {
953         case KVM_CREATE_IRQCHIP: {
954                 if (vgic_present)
955                         return kvm_vgic_create(kvm);
956                 else
957                         return -ENXIO;
958         }
959         case KVM_ARM_SET_DEVICE_ADDR: {
960                 struct kvm_arm_device_addr dev_addr;
961
962                 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
963                         return -EFAULT;
964                 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
965         }
966         default:
967                 return -EINVAL;
968         }
969 }
970
971 static void cpu_init_hyp_mode(void *vector)
972 {
973         unsigned long long pgd_ptr;
974         unsigned long pgd_low, pgd_high;
975         unsigned long hyp_stack_ptr;
976         unsigned long stack_page;
977         unsigned long vector_ptr;
978
979         /* Switch from the HYP stub to our own HYP init vector */
980         __hyp_set_vectors((unsigned long)vector);
981
982         pgd_ptr = (unsigned long long)kvm_mmu_get_httbr();
983         pgd_low = (pgd_ptr & ((1ULL << 32) - 1));
984         pgd_high = (pgd_ptr >> 32ULL);
985         stack_page = __get_cpu_var(kvm_arm_hyp_stack_page);
986         hyp_stack_ptr = stack_page + PAGE_SIZE;
987         vector_ptr = (unsigned long)__kvm_hyp_vector;
988
989         /*
990          * Call initialization code, and switch to the full blown
991          * HYP code. The init code doesn't need to preserve these registers as
992          * r1-r3 and r12 are already callee save according to the AAPCS.
993          * Note that we slightly misuse the prototype by casing the pgd_low to
994          * a void *.
995          */
996         kvm_call_hyp((void *)pgd_low, pgd_high, hyp_stack_ptr, vector_ptr);
997 }
998
999 /**
1000  * Inits Hyp-mode on all online CPUs
1001  */
1002 static int init_hyp_mode(void)
1003 {
1004         phys_addr_t init_phys_addr;
1005         int cpu;
1006         int err = 0;
1007
1008         /*
1009          * Allocate Hyp PGD and setup Hyp identity mapping
1010          */
1011         err = kvm_mmu_init();
1012         if (err)
1013                 goto out_err;
1014
1015         /*
1016          * It is probably enough to obtain the default on one
1017          * CPU. It's unlikely to be different on the others.
1018          */
1019         hyp_default_vectors = __hyp_get_vectors();
1020
1021         /*
1022          * Allocate stack pages for Hypervisor-mode
1023          */
1024         for_each_possible_cpu(cpu) {
1025                 unsigned long stack_page;
1026
1027                 stack_page = __get_free_page(GFP_KERNEL);
1028                 if (!stack_page) {
1029                         err = -ENOMEM;
1030                         goto out_free_stack_pages;
1031                 }
1032
1033                 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
1034         }
1035
1036         /*
1037          * Execute the init code on each CPU.
1038          *
1039          * Note: The stack is not mapped yet, so don't do anything else than
1040          * initializing the hypervisor mode on each CPU using a local stack
1041          * space for temporary storage.
1042          */
1043         init_phys_addr = virt_to_phys(__kvm_hyp_init);
1044         for_each_online_cpu(cpu) {
1045                 smp_call_function_single(cpu, cpu_init_hyp_mode,
1046                                          (void *)(long)init_phys_addr, 1);
1047         }
1048
1049         /*
1050          * Unmap the identity mapping
1051          */
1052         kvm_clear_hyp_idmap();
1053
1054         /*
1055          * Map the Hyp-code called directly from the host
1056          */
1057         err = create_hyp_mappings(__kvm_hyp_code_start, __kvm_hyp_code_end);
1058         if (err) {
1059                 kvm_err("Cannot map world-switch code\n");
1060                 goto out_free_mappings;
1061         }
1062
1063         /*
1064          * Map the Hyp stack pages
1065          */
1066         for_each_possible_cpu(cpu) {
1067                 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1068                 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE);
1069
1070                 if (err) {
1071                         kvm_err("Cannot map hyp stack\n");
1072                         goto out_free_mappings;
1073                 }
1074         }
1075
1076         /*
1077          * Map the host VFP structures
1078          */
1079         kvm_host_vfp_state = alloc_percpu(struct vfp_hard_struct);
1080         if (!kvm_host_vfp_state) {
1081                 err = -ENOMEM;
1082                 kvm_err("Cannot allocate host VFP state\n");
1083                 goto out_free_mappings;
1084         }
1085
1086         for_each_possible_cpu(cpu) {
1087                 struct vfp_hard_struct *vfp;
1088
1089                 vfp = per_cpu_ptr(kvm_host_vfp_state, cpu);
1090                 err = create_hyp_mappings(vfp, vfp + 1);
1091
1092                 if (err) {
1093                         kvm_err("Cannot map host VFP state: %d\n", err);
1094                         goto out_free_vfp;
1095                 }
1096         }
1097
1098         /*
1099          * Init HYP view of VGIC
1100          */
1101         err = kvm_vgic_hyp_init();
1102         if (err)
1103                 goto out_free_vfp;
1104
1105 #ifdef CONFIG_KVM_ARM_VGIC
1106                 vgic_present = true;
1107 #endif
1108
1109         /*
1110          * Init HYP architected timer support
1111          */
1112         err = kvm_timer_hyp_init();
1113         if (err)
1114                 goto out_free_mappings;
1115
1116         kvm_info("Hyp mode initialized successfully\n");
1117         return 0;
1118 out_free_vfp:
1119         free_percpu(kvm_host_vfp_state);
1120 out_free_mappings:
1121         free_hyp_pmds();
1122 out_free_stack_pages:
1123         for_each_possible_cpu(cpu)
1124                 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1125 out_err:
1126         kvm_err("error initializing Hyp mode: %d\n", err);
1127         return err;
1128 }
1129
1130 /**
1131  * Initialize Hyp-mode and memory mappings on all CPUs.
1132  */
1133 int kvm_arch_init(void *opaque)
1134 {
1135         int err;
1136
1137         if (!is_hyp_mode_available()) {
1138                 kvm_err("HYP mode not available\n");
1139                 return -ENODEV;
1140         }
1141
1142         if (kvm_target_cpu() < 0) {
1143                 kvm_err("Target CPU not supported!\n");
1144                 return -ENODEV;
1145         }
1146
1147         err = init_hyp_mode();
1148         if (err)
1149                 goto out_err;
1150
1151         kvm_coproc_table_init();
1152         return 0;
1153 out_err:
1154         return err;
1155 }
1156
1157 /* NOP: Compiling as a module not supported */
1158 void kvm_arch_exit(void)
1159 {
1160 }
1161
1162 static int arm_init(void)
1163 {
1164         int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1165         return rc;
1166 }
1167
1168 module_init(arm_init);