]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - arch/arm64/kvm/hyp/switch.c
arm64: Support systems without FP/ASIMD
[karo-tx-linux.git] / arch / arm64 / kvm / hyp / switch.c
1 /*
2  * Copyright (C) 2015 - ARM Ltd
3  * Author: Marc Zyngier <marc.zyngier@arm.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
16  */
17
18 #include <linux/types.h>
19 #include <linux/jump_label.h>
20
21 #include <asm/kvm_asm.h>
22 #include <asm/kvm_emulate.h>
23 #include <asm/kvm_hyp.h>
24 #include <asm/fpsimd.h>
25
26 static bool __hyp_text __fpsimd_enabled_nvhe(void)
27 {
28         return !(read_sysreg(cptr_el2) & CPTR_EL2_TFP);
29 }
30
31 static bool __hyp_text __fpsimd_enabled_vhe(void)
32 {
33         return !!(read_sysreg(cpacr_el1) & CPACR_EL1_FPEN);
34 }
35
36 static hyp_alternate_select(__fpsimd_is_enabled,
37                             __fpsimd_enabled_nvhe, __fpsimd_enabled_vhe,
38                             ARM64_HAS_VIRT_HOST_EXTN);
39
40 bool __hyp_text __fpsimd_enabled(void)
41 {
42         return __fpsimd_is_enabled()();
43 }
44
45 static void __hyp_text __activate_traps_vhe(void)
46 {
47         u64 val;
48
49         val = read_sysreg(cpacr_el1);
50         val |= CPACR_EL1_TTA;
51         val &= ~CPACR_EL1_FPEN;
52         write_sysreg(val, cpacr_el1);
53
54         write_sysreg(__kvm_hyp_vector, vbar_el1);
55 }
56
57 static void __hyp_text __activate_traps_nvhe(void)
58 {
59         u64 val;
60
61         val = CPTR_EL2_DEFAULT;
62         val |= CPTR_EL2_TTA | CPTR_EL2_TFP;
63         write_sysreg(val, cptr_el2);
64 }
65
66 static hyp_alternate_select(__activate_traps_arch,
67                             __activate_traps_nvhe, __activate_traps_vhe,
68                             ARM64_HAS_VIRT_HOST_EXTN);
69
70 static void __hyp_text __activate_traps(struct kvm_vcpu *vcpu)
71 {
72         u64 val;
73
74         /*
75          * We are about to set CPTR_EL2.TFP to trap all floating point
76          * register accesses to EL2, however, the ARM ARM clearly states that
77          * traps are only taken to EL2 if the operation would not otherwise
78          * trap to EL1.  Therefore, always make sure that for 32-bit guests,
79          * we set FPEXC.EN to prevent traps to EL1, when setting the TFP bit.
80          * If FP/ASIMD is not implemented, FPEXC is UNDEFINED and any access to
81          * it will cause an exception.
82          */
83         val = vcpu->arch.hcr_el2;
84         if (!(val & HCR_RW) && system_supports_fpsimd()) {
85                 write_sysreg(1 << 30, fpexc32_el2);
86                 isb();
87         }
88         write_sysreg(val, hcr_el2);
89         /* Trap on AArch32 cp15 c15 accesses (EL1 or EL0) */
90         write_sysreg(1 << 15, hstr_el2);
91         /* Make sure we trap PMU access from EL0 to EL2 */
92         write_sysreg(ARMV8_PMU_USERENR_MASK, pmuserenr_el0);
93         write_sysreg(vcpu->arch.mdcr_el2, mdcr_el2);
94         __activate_traps_arch()();
95 }
96
97 static void __hyp_text __deactivate_traps_vhe(void)
98 {
99         extern char vectors[];  /* kernel exception vectors */
100
101         write_sysreg(HCR_HOST_VHE_FLAGS, hcr_el2);
102         write_sysreg(CPACR_EL1_FPEN, cpacr_el1);
103         write_sysreg(vectors, vbar_el1);
104 }
105
106 static void __hyp_text __deactivate_traps_nvhe(void)
107 {
108         write_sysreg(HCR_RW, hcr_el2);
109         write_sysreg(CPTR_EL2_DEFAULT, cptr_el2);
110 }
111
112 static hyp_alternate_select(__deactivate_traps_arch,
113                             __deactivate_traps_nvhe, __deactivate_traps_vhe,
114                             ARM64_HAS_VIRT_HOST_EXTN);
115
116 static void __hyp_text __deactivate_traps(struct kvm_vcpu *vcpu)
117 {
118         /*
119          * If we pended a virtual abort, preserve it until it gets
120          * cleared. See D1.14.3 (Virtual Interrupts) for details, but
121          * the crucial bit is "On taking a vSError interrupt,
122          * HCR_EL2.VSE is cleared to 0."
123          */
124         if (vcpu->arch.hcr_el2 & HCR_VSE)
125                 vcpu->arch.hcr_el2 = read_sysreg(hcr_el2);
126
127         __deactivate_traps_arch()();
128         write_sysreg(0, hstr_el2);
129         write_sysreg(read_sysreg(mdcr_el2) & MDCR_EL2_HPMN_MASK, mdcr_el2);
130         write_sysreg(0, pmuserenr_el0);
131 }
132
133 static void __hyp_text __activate_vm(struct kvm_vcpu *vcpu)
134 {
135         struct kvm *kvm = kern_hyp_va(vcpu->kvm);
136         write_sysreg(kvm->arch.vttbr, vttbr_el2);
137 }
138
139 static void __hyp_text __deactivate_vm(struct kvm_vcpu *vcpu)
140 {
141         write_sysreg(0, vttbr_el2);
142 }
143
144 static void __hyp_text __vgic_save_state(struct kvm_vcpu *vcpu)
145 {
146         if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
147                 __vgic_v3_save_state(vcpu);
148         else
149                 __vgic_v2_save_state(vcpu);
150
151         write_sysreg(read_sysreg(hcr_el2) & ~HCR_INT_OVERRIDE, hcr_el2);
152 }
153
154 static void __hyp_text __vgic_restore_state(struct kvm_vcpu *vcpu)
155 {
156         u64 val;
157
158         val = read_sysreg(hcr_el2);
159         val |=  HCR_INT_OVERRIDE;
160         val |= vcpu->arch.irq_lines;
161         write_sysreg(val, hcr_el2);
162
163         if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
164                 __vgic_v3_restore_state(vcpu);
165         else
166                 __vgic_v2_restore_state(vcpu);
167 }
168
169 static bool __hyp_text __true_value(void)
170 {
171         return true;
172 }
173
174 static bool __hyp_text __false_value(void)
175 {
176         return false;
177 }
178
179 static hyp_alternate_select(__check_arm_834220,
180                             __false_value, __true_value,
181                             ARM64_WORKAROUND_834220);
182
183 static bool __hyp_text __translate_far_to_hpfar(u64 far, u64 *hpfar)
184 {
185         u64 par, tmp;
186
187         /*
188          * Resolve the IPA the hard way using the guest VA.
189          *
190          * Stage-1 translation already validated the memory access
191          * rights. As such, we can use the EL1 translation regime, and
192          * don't have to distinguish between EL0 and EL1 access.
193          *
194          * We do need to save/restore PAR_EL1 though, as we haven't
195          * saved the guest context yet, and we may return early...
196          */
197         par = read_sysreg(par_el1);
198         asm volatile("at s1e1r, %0" : : "r" (far));
199         isb();
200
201         tmp = read_sysreg(par_el1);
202         write_sysreg(par, par_el1);
203
204         if (unlikely(tmp & 1))
205                 return false; /* Translation failed, back to guest */
206
207         /* Convert PAR to HPFAR format */
208         *hpfar = ((tmp >> 12) & ((1UL << 36) - 1)) << 4;
209         return true;
210 }
211
212 static bool __hyp_text __populate_fault_info(struct kvm_vcpu *vcpu)
213 {
214         u64 esr = read_sysreg_el2(esr);
215         u8 ec = ESR_ELx_EC(esr);
216         u64 hpfar, far;
217
218         vcpu->arch.fault.esr_el2 = esr;
219
220         if (ec != ESR_ELx_EC_DABT_LOW && ec != ESR_ELx_EC_IABT_LOW)
221                 return true;
222
223         far = read_sysreg_el2(far);
224
225         /*
226          * The HPFAR can be invalid if the stage 2 fault did not
227          * happen during a stage 1 page table walk (the ESR_EL2.S1PTW
228          * bit is clear) and one of the two following cases are true:
229          *   1. The fault was due to a permission fault
230          *   2. The processor carries errata 834220
231          *
232          * Therefore, for all non S1PTW faults where we either have a
233          * permission fault or the errata workaround is enabled, we
234          * resolve the IPA using the AT instruction.
235          */
236         if (!(esr & ESR_ELx_S1PTW) &&
237             (__check_arm_834220()() || (esr & ESR_ELx_FSC_TYPE) == FSC_PERM)) {
238                 if (!__translate_far_to_hpfar(far, &hpfar))
239                         return false;
240         } else {
241                 hpfar = read_sysreg(hpfar_el2);
242         }
243
244         vcpu->arch.fault.far_el2 = far;
245         vcpu->arch.fault.hpfar_el2 = hpfar;
246         return true;
247 }
248
249 static void __hyp_text __skip_instr(struct kvm_vcpu *vcpu)
250 {
251         *vcpu_pc(vcpu) = read_sysreg_el2(elr);
252
253         if (vcpu_mode_is_32bit(vcpu)) {
254                 vcpu->arch.ctxt.gp_regs.regs.pstate = read_sysreg_el2(spsr);
255                 kvm_skip_instr32(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
256                 write_sysreg_el2(vcpu->arch.ctxt.gp_regs.regs.pstate, spsr);
257         } else {
258                 *vcpu_pc(vcpu) += 4;
259         }
260
261         write_sysreg_el2(*vcpu_pc(vcpu), elr);
262 }
263
264 int __hyp_text __kvm_vcpu_run(struct kvm_vcpu *vcpu)
265 {
266         struct kvm_cpu_context *host_ctxt;
267         struct kvm_cpu_context *guest_ctxt;
268         bool fp_enabled;
269         u64 exit_code;
270
271         vcpu = kern_hyp_va(vcpu);
272         write_sysreg(vcpu, tpidr_el2);
273
274         host_ctxt = kern_hyp_va(vcpu->arch.host_cpu_context);
275         guest_ctxt = &vcpu->arch.ctxt;
276
277         __sysreg_save_host_state(host_ctxt);
278         __debug_cond_save_host_state(vcpu);
279
280         __activate_traps(vcpu);
281         __activate_vm(vcpu);
282
283         __vgic_restore_state(vcpu);
284         __timer_restore_state(vcpu);
285
286         /*
287          * We must restore the 32-bit state before the sysregs, thanks
288          * to erratum #852523 (Cortex-A57) or #853709 (Cortex-A72).
289          */
290         __sysreg32_restore_state(vcpu);
291         __sysreg_restore_guest_state(guest_ctxt);
292         __debug_restore_state(vcpu, kern_hyp_va(vcpu->arch.debug_ptr), guest_ctxt);
293
294         /* Jump in the fire! */
295 again:
296         exit_code = __guest_enter(vcpu, host_ctxt);
297         /* And we're baaack! */
298
299         /*
300          * We're using the raw exception code in order to only process
301          * the trap if no SError is pending. We will come back to the
302          * same PC once the SError has been injected, and replay the
303          * trapping instruction.
304          */
305         if (exit_code == ARM_EXCEPTION_TRAP && !__populate_fault_info(vcpu))
306                 goto again;
307
308         if (static_branch_unlikely(&vgic_v2_cpuif_trap) &&
309             exit_code == ARM_EXCEPTION_TRAP) {
310                 bool valid;
311
312                 valid = kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_DABT_LOW &&
313                         kvm_vcpu_trap_get_fault_type(vcpu) == FSC_FAULT &&
314                         kvm_vcpu_dabt_isvalid(vcpu) &&
315                         !kvm_vcpu_dabt_isextabt(vcpu) &&
316                         !kvm_vcpu_dabt_iss1tw(vcpu);
317
318                 if (valid) {
319                         int ret = __vgic_v2_perform_cpuif_access(vcpu);
320
321                         if (ret == 1) {
322                                 __skip_instr(vcpu);
323                                 goto again;
324                         }
325
326                         if (ret == -1) {
327                                 /* Promote an illegal access to an SError */
328                                 __skip_instr(vcpu);
329                                 exit_code = ARM_EXCEPTION_EL1_SERROR;
330                         }
331
332                         /* 0 falls through to be handler out of EL2 */
333                 }
334         }
335
336         fp_enabled = __fpsimd_enabled();
337
338         __sysreg_save_guest_state(guest_ctxt);
339         __sysreg32_save_state(vcpu);
340         __timer_save_state(vcpu);
341         __vgic_save_state(vcpu);
342
343         __deactivate_traps(vcpu);
344         __deactivate_vm(vcpu);
345
346         __sysreg_restore_host_state(host_ctxt);
347
348         if (fp_enabled) {
349                 __fpsimd_save_state(&guest_ctxt->gp_regs.fp_regs);
350                 __fpsimd_restore_state(&host_ctxt->gp_regs.fp_regs);
351         }
352
353         __debug_save_state(vcpu, kern_hyp_va(vcpu->arch.debug_ptr), guest_ctxt);
354         __debug_cond_restore_host_state(vcpu);
355
356         return exit_code;
357 }
358
359 static const char __hyp_panic_string[] = "HYP panic:\nPS:%08llx PC:%016llx ESR:%08llx\nFAR:%016llx HPFAR:%016llx PAR:%016llx\nVCPU:%p\n";
360
361 static void __hyp_text __hyp_call_panic_nvhe(u64 spsr, u64 elr, u64 par)
362 {
363         unsigned long str_va;
364
365         /*
366          * Force the panic string to be loaded from the literal pool,
367          * making sure it is a kernel address and not a PC-relative
368          * reference.
369          */
370         asm volatile("ldr %0, =__hyp_panic_string" : "=r" (str_va));
371
372         __hyp_do_panic(str_va,
373                        spsr,  elr,
374                        read_sysreg(esr_el2),   read_sysreg_el2(far),
375                        read_sysreg(hpfar_el2), par,
376                        (void *)read_sysreg(tpidr_el2));
377 }
378
379 static void __hyp_text __hyp_call_panic_vhe(u64 spsr, u64 elr, u64 par)
380 {
381         panic(__hyp_panic_string,
382               spsr,  elr,
383               read_sysreg_el2(esr),   read_sysreg_el2(far),
384               read_sysreg(hpfar_el2), par,
385               (void *)read_sysreg(tpidr_el2));
386 }
387
388 static hyp_alternate_select(__hyp_call_panic,
389                             __hyp_call_panic_nvhe, __hyp_call_panic_vhe,
390                             ARM64_HAS_VIRT_HOST_EXTN);
391
392 void __hyp_text __noreturn __hyp_panic(void)
393 {
394         u64 spsr = read_sysreg_el2(spsr);
395         u64 elr = read_sysreg_el2(elr);
396         u64 par = read_sysreg(par_el1);
397
398         if (read_sysreg(vttbr_el2)) {
399                 struct kvm_vcpu *vcpu;
400                 struct kvm_cpu_context *host_ctxt;
401
402                 vcpu = (struct kvm_vcpu *)read_sysreg(tpidr_el2);
403                 host_ctxt = kern_hyp_va(vcpu->arch.host_cpu_context);
404                 __deactivate_traps(vcpu);
405                 __deactivate_vm(vcpu);
406                 __sysreg_restore_host_state(host_ctxt);
407         }
408
409         /* Call panic for real */
410         __hyp_call_panic()(spsr, elr, par);
411
412         unreachable();
413 }