]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - arch/arm64/kvm/sys_regs.c
arm: imx6: defconfig: update tx6 defconfigs
[karo-tx-linux.git] / arch / arm64 / kvm / sys_regs.c
1 /*
2  * Copyright (C) 2012,2013 - ARM Ltd
3  * Author: Marc Zyngier <marc.zyngier@arm.com>
4  *
5  * Derived from arch/arm/kvm/coproc.c:
6  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
7  * Authors: Rusty Russell <rusty@rustcorp.com.au>
8  *          Christoffer Dall <c.dall@virtualopensystems.com>
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License, version 2, as
12  * published by the Free Software Foundation.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
21  */
22
23 #include <linux/mm.h>
24 #include <linux/kvm_host.h>
25 #include <linux/uaccess.h>
26 #include <asm/kvm_arm.h>
27 #include <asm/kvm_host.h>
28 #include <asm/kvm_emulate.h>
29 #include <asm/kvm_coproc.h>
30 #include <asm/cacheflush.h>
31 #include <asm/cputype.h>
32 #include <trace/events/kvm.h>
33
34 #include "sys_regs.h"
35
36 /*
37  * All of this file is extremly similar to the ARM coproc.c, but the
38  * types are different. My gut feeling is that it should be pretty
39  * easy to merge, but that would be an ABI breakage -- again. VFP
40  * would also need to be abstracted.
41  *
42  * For AArch32, we only take care of what is being trapped. Anything
43  * that has to do with init and userspace access has to go via the
44  * 64bit interface.
45  */
46
47 /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
48 static u32 cache_levels;
49
50 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
51 #define CSSELR_MAX 12
52
53 /* Which cache CCSIDR represents depends on CSSELR value. */
54 static u32 get_ccsidr(u32 csselr)
55 {
56         u32 ccsidr;
57
58         /* Make sure noone else changes CSSELR during this! */
59         local_irq_disable();
60         /* Put value into CSSELR */
61         asm volatile("msr csselr_el1, %x0" : : "r" (csselr));
62         isb();
63         /* Read result out of CCSIDR */
64         asm volatile("mrs %0, ccsidr_el1" : "=r" (ccsidr));
65         local_irq_enable();
66
67         return ccsidr;
68 }
69
70 static void do_dc_cisw(u32 val)
71 {
72         asm volatile("dc cisw, %x0" : : "r" (val));
73         dsb();
74 }
75
76 static void do_dc_csw(u32 val)
77 {
78         asm volatile("dc csw, %x0" : : "r" (val));
79         dsb();
80 }
81
82 /* See note at ARM ARM B1.14.4 */
83 static bool access_dcsw(struct kvm_vcpu *vcpu,
84                         const struct sys_reg_params *p,
85                         const struct sys_reg_desc *r)
86 {
87         unsigned long val;
88         int cpu;
89
90         if (!p->is_write)
91                 return read_from_write_only(vcpu, p);
92
93         cpu = get_cpu();
94
95         cpumask_setall(&vcpu->arch.require_dcache_flush);
96         cpumask_clear_cpu(cpu, &vcpu->arch.require_dcache_flush);
97
98         /* If we were already preempted, take the long way around */
99         if (cpu != vcpu->arch.last_pcpu) {
100                 flush_cache_all();
101                 goto done;
102         }
103
104         val = *vcpu_reg(vcpu, p->Rt);
105
106         switch (p->CRm) {
107         case 6:                 /* Upgrade DCISW to DCCISW, as per HCR.SWIO */
108         case 14:                /* DCCISW */
109                 do_dc_cisw(val);
110                 break;
111
112         case 10:                /* DCCSW */
113                 do_dc_csw(val);
114                 break;
115         }
116
117 done:
118         put_cpu();
119
120         return true;
121 }
122
123 /*
124  * We could trap ID_DFR0 and tell the guest we don't support performance
125  * monitoring.  Unfortunately the patch to make the kernel check ID_DFR0 was
126  * NAKed, so it will read the PMCR anyway.
127  *
128  * Therefore we tell the guest we have 0 counters.  Unfortunately, we
129  * must always support PMCCNTR (the cycle counter): we just RAZ/WI for
130  * all PM registers, which doesn't crash the guest kernel at least.
131  */
132 static bool pm_fake(struct kvm_vcpu *vcpu,
133                     const struct sys_reg_params *p,
134                     const struct sys_reg_desc *r)
135 {
136         if (p->is_write)
137                 return ignore_write(vcpu, p);
138         else
139                 return read_zero(vcpu, p);
140 }
141
142 static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
143 {
144         u64 amair;
145
146         asm volatile("mrs %0, amair_el1\n" : "=r" (amair));
147         vcpu_sys_reg(vcpu, AMAIR_EL1) = amair;
148 }
149
150 static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
151 {
152         /*
153          * Simply map the vcpu_id into the Aff0 field of the MPIDR.
154          */
155         vcpu_sys_reg(vcpu, MPIDR_EL1) = (1UL << 31) | (vcpu->vcpu_id & 0xff);
156 }
157
158 /*
159  * Architected system registers.
160  * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
161  */
162 static const struct sys_reg_desc sys_reg_descs[] = {
163         /* DC ISW */
164         { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b0110), Op2(0b010),
165           access_dcsw },
166         /* DC CSW */
167         { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b1010), Op2(0b010),
168           access_dcsw },
169         /* DC CISW */
170         { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b1110), Op2(0b010),
171           access_dcsw },
172
173         /* TEECR32_EL1 */
174         { Op0(0b10), Op1(0b010), CRn(0b0000), CRm(0b0000), Op2(0b000),
175           NULL, reset_val, TEECR32_EL1, 0 },
176         /* TEEHBR32_EL1 */
177         { Op0(0b10), Op1(0b010), CRn(0b0001), CRm(0b0000), Op2(0b000),
178           NULL, reset_val, TEEHBR32_EL1, 0 },
179         /* DBGVCR32_EL2 */
180         { Op0(0b10), Op1(0b100), CRn(0b0000), CRm(0b0111), Op2(0b000),
181           NULL, reset_val, DBGVCR32_EL2, 0 },
182
183         /* MPIDR_EL1 */
184         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b101),
185           NULL, reset_mpidr, MPIDR_EL1 },
186         /* SCTLR_EL1 */
187         { Op0(0b11), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b000),
188           NULL, reset_val, SCTLR_EL1, 0x00C50078 },
189         /* CPACR_EL1 */
190         { Op0(0b11), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b010),
191           NULL, reset_val, CPACR_EL1, 0 },
192         /* TTBR0_EL1 */
193         { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b000),
194           NULL, reset_unknown, TTBR0_EL1 },
195         /* TTBR1_EL1 */
196         { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b001),
197           NULL, reset_unknown, TTBR1_EL1 },
198         /* TCR_EL1 */
199         { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b010),
200           NULL, reset_val, TCR_EL1, 0 },
201
202         /* AFSR0_EL1 */
203         { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0001), Op2(0b000),
204           NULL, reset_unknown, AFSR0_EL1 },
205         /* AFSR1_EL1 */
206         { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0001), Op2(0b001),
207           NULL, reset_unknown, AFSR1_EL1 },
208         /* ESR_EL1 */
209         { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0010), Op2(0b000),
210           NULL, reset_unknown, ESR_EL1 },
211         /* FAR_EL1 */
212         { Op0(0b11), Op1(0b000), CRn(0b0110), CRm(0b0000), Op2(0b000),
213           NULL, reset_unknown, FAR_EL1 },
214         /* PAR_EL1 */
215         { Op0(0b11), Op1(0b000), CRn(0b0111), CRm(0b0100), Op2(0b000),
216           NULL, reset_unknown, PAR_EL1 },
217
218         /* PMINTENSET_EL1 */
219         { Op0(0b11), Op1(0b000), CRn(0b1001), CRm(0b1110), Op2(0b001),
220           pm_fake },
221         /* PMINTENCLR_EL1 */
222         { Op0(0b11), Op1(0b000), CRn(0b1001), CRm(0b1110), Op2(0b010),
223           pm_fake },
224
225         /* MAIR_EL1 */
226         { Op0(0b11), Op1(0b000), CRn(0b1010), CRm(0b0010), Op2(0b000),
227           NULL, reset_unknown, MAIR_EL1 },
228         /* AMAIR_EL1 */
229         { Op0(0b11), Op1(0b000), CRn(0b1010), CRm(0b0011), Op2(0b000),
230           NULL, reset_amair_el1, AMAIR_EL1 },
231
232         /* VBAR_EL1 */
233         { Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b0000), Op2(0b000),
234           NULL, reset_val, VBAR_EL1, 0 },
235         /* CONTEXTIDR_EL1 */
236         { Op0(0b11), Op1(0b000), CRn(0b1101), CRm(0b0000), Op2(0b001),
237           NULL, reset_val, CONTEXTIDR_EL1, 0 },
238         /* TPIDR_EL1 */
239         { Op0(0b11), Op1(0b000), CRn(0b1101), CRm(0b0000), Op2(0b100),
240           NULL, reset_unknown, TPIDR_EL1 },
241
242         /* CNTKCTL_EL1 */
243         { Op0(0b11), Op1(0b000), CRn(0b1110), CRm(0b0001), Op2(0b000),
244           NULL, reset_val, CNTKCTL_EL1, 0},
245
246         /* CSSELR_EL1 */
247         { Op0(0b11), Op1(0b010), CRn(0b0000), CRm(0b0000), Op2(0b000),
248           NULL, reset_unknown, CSSELR_EL1 },
249
250         /* PMCR_EL0 */
251         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b000),
252           pm_fake },
253         /* PMCNTENSET_EL0 */
254         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b001),
255           pm_fake },
256         /* PMCNTENCLR_EL0 */
257         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b010),
258           pm_fake },
259         /* PMOVSCLR_EL0 */
260         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b011),
261           pm_fake },
262         /* PMSWINC_EL0 */
263         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b100),
264           pm_fake },
265         /* PMSELR_EL0 */
266         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b101),
267           pm_fake },
268         /* PMCEID0_EL0 */
269         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b110),
270           pm_fake },
271         /* PMCEID1_EL0 */
272         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b111),
273           pm_fake },
274         /* PMCCNTR_EL0 */
275         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b000),
276           pm_fake },
277         /* PMXEVTYPER_EL0 */
278         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b001),
279           pm_fake },
280         /* PMXEVCNTR_EL0 */
281         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b010),
282           pm_fake },
283         /* PMUSERENR_EL0 */
284         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1110), Op2(0b000),
285           pm_fake },
286         /* PMOVSSET_EL0 */
287         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1110), Op2(0b011),
288           pm_fake },
289
290         /* TPIDR_EL0 */
291         { Op0(0b11), Op1(0b011), CRn(0b1101), CRm(0b0000), Op2(0b010),
292           NULL, reset_unknown, TPIDR_EL0 },
293         /* TPIDRRO_EL0 */
294         { Op0(0b11), Op1(0b011), CRn(0b1101), CRm(0b0000), Op2(0b011),
295           NULL, reset_unknown, TPIDRRO_EL0 },
296
297         /* DACR32_EL2 */
298         { Op0(0b11), Op1(0b100), CRn(0b0011), CRm(0b0000), Op2(0b000),
299           NULL, reset_unknown, DACR32_EL2 },
300         /* IFSR32_EL2 */
301         { Op0(0b11), Op1(0b100), CRn(0b0101), CRm(0b0000), Op2(0b001),
302           NULL, reset_unknown, IFSR32_EL2 },
303         /* FPEXC32_EL2 */
304         { Op0(0b11), Op1(0b100), CRn(0b0101), CRm(0b0011), Op2(0b000),
305           NULL, reset_val, FPEXC32_EL2, 0x70 },
306 };
307
308 /* Trapped cp15 registers */
309 static const struct sys_reg_desc cp15_regs[] = {
310         /*
311          * DC{C,I,CI}SW operations:
312          */
313         { Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
314         { Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
315         { Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
316         { Op1( 0), CRn( 9), CRm(12), Op2( 0), pm_fake },
317         { Op1( 0), CRn( 9), CRm(12), Op2( 1), pm_fake },
318         { Op1( 0), CRn( 9), CRm(12), Op2( 2), pm_fake },
319         { Op1( 0), CRn( 9), CRm(12), Op2( 3), pm_fake },
320         { Op1( 0), CRn( 9), CRm(12), Op2( 5), pm_fake },
321         { Op1( 0), CRn( 9), CRm(12), Op2( 6), pm_fake },
322         { Op1( 0), CRn( 9), CRm(12), Op2( 7), pm_fake },
323         { Op1( 0), CRn( 9), CRm(13), Op2( 0), pm_fake },
324         { Op1( 0), CRn( 9), CRm(13), Op2( 1), pm_fake },
325         { Op1( 0), CRn( 9), CRm(13), Op2( 2), pm_fake },
326         { Op1( 0), CRn( 9), CRm(14), Op2( 0), pm_fake },
327         { Op1( 0), CRn( 9), CRm(14), Op2( 1), pm_fake },
328         { Op1( 0), CRn( 9), CRm(14), Op2( 2), pm_fake },
329 };
330
331 /* Target specific emulation tables */
332 static struct kvm_sys_reg_target_table *target_tables[KVM_ARM_NUM_TARGETS];
333
334 void kvm_register_target_sys_reg_table(unsigned int target,
335                                        struct kvm_sys_reg_target_table *table)
336 {
337         target_tables[target] = table;
338 }
339
340 /* Get specific register table for this target. */
341 static const struct sys_reg_desc *get_target_table(unsigned target,
342                                                    bool mode_is_64,
343                                                    size_t *num)
344 {
345         struct kvm_sys_reg_target_table *table;
346
347         table = target_tables[target];
348         if (mode_is_64) {
349                 *num = table->table64.num;
350                 return table->table64.table;
351         } else {
352                 *num = table->table32.num;
353                 return table->table32.table;
354         }
355 }
356
357 static const struct sys_reg_desc *find_reg(const struct sys_reg_params *params,
358                                          const struct sys_reg_desc table[],
359                                          unsigned int num)
360 {
361         unsigned int i;
362
363         for (i = 0; i < num; i++) {
364                 const struct sys_reg_desc *r = &table[i];
365
366                 if (params->Op0 != r->Op0)
367                         continue;
368                 if (params->Op1 != r->Op1)
369                         continue;
370                 if (params->CRn != r->CRn)
371                         continue;
372                 if (params->CRm != r->CRm)
373                         continue;
374                 if (params->Op2 != r->Op2)
375                         continue;
376
377                 return r;
378         }
379         return NULL;
380 }
381
382 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
383 {
384         kvm_inject_undefined(vcpu);
385         return 1;
386 }
387
388 int kvm_handle_cp14_access(struct kvm_vcpu *vcpu, struct kvm_run *run)
389 {
390         kvm_inject_undefined(vcpu);
391         return 1;
392 }
393
394 static void emulate_cp15(struct kvm_vcpu *vcpu,
395                          const struct sys_reg_params *params)
396 {
397         size_t num;
398         const struct sys_reg_desc *table, *r;
399
400         table = get_target_table(vcpu->arch.target, false, &num);
401
402         /* Search target-specific then generic table. */
403         r = find_reg(params, table, num);
404         if (!r)
405                 r = find_reg(params, cp15_regs, ARRAY_SIZE(cp15_regs));
406
407         if (likely(r)) {
408                 /*
409                  * Not having an accessor means that we have
410                  * configured a trap that we don't know how to
411                  * handle. This certainly qualifies as a gross bug
412                  * that should be fixed right away.
413                  */
414                 BUG_ON(!r->access);
415
416                 if (likely(r->access(vcpu, params, r))) {
417                         /* Skip instruction, since it was emulated */
418                         kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
419                         return;
420                 }
421                 /* If access function fails, it should complain. */
422         }
423
424         kvm_err("Unsupported guest CP15 access at: %08lx\n", *vcpu_pc(vcpu));
425         print_sys_reg_instr(params);
426         kvm_inject_undefined(vcpu);
427 }
428
429 /**
430  * kvm_handle_cp15_64 -- handles a mrrc/mcrr trap on a guest CP15 access
431  * @vcpu: The VCPU pointer
432  * @run:  The kvm_run struct
433  */
434 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
435 {
436         struct sys_reg_params params;
437         u32 hsr = kvm_vcpu_get_hsr(vcpu);
438         int Rt2 = (hsr >> 10) & 0xf;
439
440         params.CRm = (hsr >> 1) & 0xf;
441         params.Rt = (hsr >> 5) & 0xf;
442         params.is_write = ((hsr & 1) == 0);
443
444         params.Op0 = 0;
445         params.Op1 = (hsr >> 16) & 0xf;
446         params.Op2 = 0;
447         params.CRn = 0;
448
449         /*
450          * Massive hack here. Store Rt2 in the top 32bits so we only
451          * have one register to deal with. As we use the same trap
452          * backends between AArch32 and AArch64, we get away with it.
453          */
454         if (params.is_write) {
455                 u64 val = *vcpu_reg(vcpu, params.Rt);
456                 val &= 0xffffffff;
457                 val |= *vcpu_reg(vcpu, Rt2) << 32;
458                 *vcpu_reg(vcpu, params.Rt) = val;
459         }
460
461         emulate_cp15(vcpu, &params);
462
463         /* Do the opposite hack for the read side */
464         if (!params.is_write) {
465                 u64 val = *vcpu_reg(vcpu, params.Rt);
466                 val >>= 32;
467                 *vcpu_reg(vcpu, Rt2) = val;
468         }
469
470         return 1;
471 }
472
473 /**
474  * kvm_handle_cp15_32 -- handles a mrc/mcr trap on a guest CP15 access
475  * @vcpu: The VCPU pointer
476  * @run:  The kvm_run struct
477  */
478 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
479 {
480         struct sys_reg_params params;
481         u32 hsr = kvm_vcpu_get_hsr(vcpu);
482
483         params.CRm = (hsr >> 1) & 0xf;
484         params.Rt  = (hsr >> 5) & 0xf;
485         params.is_write = ((hsr & 1) == 0);
486         params.CRn = (hsr >> 10) & 0xf;
487         params.Op0 = 0;
488         params.Op1 = (hsr >> 14) & 0x7;
489         params.Op2 = (hsr >> 17) & 0x7;
490
491         emulate_cp15(vcpu, &params);
492         return 1;
493 }
494
495 static int emulate_sys_reg(struct kvm_vcpu *vcpu,
496                            const struct sys_reg_params *params)
497 {
498         size_t num;
499         const struct sys_reg_desc *table, *r;
500
501         table = get_target_table(vcpu->arch.target, true, &num);
502
503         /* Search target-specific then generic table. */
504         r = find_reg(params, table, num);
505         if (!r)
506                 r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
507
508         if (likely(r)) {
509                 /*
510                  * Not having an accessor means that we have
511                  * configured a trap that we don't know how to
512                  * handle. This certainly qualifies as a gross bug
513                  * that should be fixed right away.
514                  */
515                 BUG_ON(!r->access);
516
517                 if (likely(r->access(vcpu, params, r))) {
518                         /* Skip instruction, since it was emulated */
519                         kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
520                         return 1;
521                 }
522                 /* If access function fails, it should complain. */
523         } else {
524                 kvm_err("Unsupported guest sys_reg access at: %lx\n",
525                         *vcpu_pc(vcpu));
526                 print_sys_reg_instr(params);
527         }
528         kvm_inject_undefined(vcpu);
529         return 1;
530 }
531
532 static void reset_sys_reg_descs(struct kvm_vcpu *vcpu,
533                               const struct sys_reg_desc *table, size_t num)
534 {
535         unsigned long i;
536
537         for (i = 0; i < num; i++)
538                 if (table[i].reset)
539                         table[i].reset(vcpu, &table[i]);
540 }
541
542 /**
543  * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
544  * @vcpu: The VCPU pointer
545  * @run:  The kvm_run struct
546  */
547 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu, struct kvm_run *run)
548 {
549         struct sys_reg_params params;
550         unsigned long esr = kvm_vcpu_get_hsr(vcpu);
551
552         params.Op0 = (esr >> 20) & 3;
553         params.Op1 = (esr >> 14) & 0x7;
554         params.CRn = (esr >> 10) & 0xf;
555         params.CRm = (esr >> 1) & 0xf;
556         params.Op2 = (esr >> 17) & 0x7;
557         params.Rt = (esr >> 5) & 0x1f;
558         params.is_write = !(esr & 1);
559
560         return emulate_sys_reg(vcpu, &params);
561 }
562
563 /******************************************************************************
564  * Userspace API
565  *****************************************************************************/
566
567 static bool index_to_params(u64 id, struct sys_reg_params *params)
568 {
569         switch (id & KVM_REG_SIZE_MASK) {
570         case KVM_REG_SIZE_U64:
571                 /* Any unused index bits means it's not valid. */
572                 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
573                               | KVM_REG_ARM_COPROC_MASK
574                               | KVM_REG_ARM64_SYSREG_OP0_MASK
575                               | KVM_REG_ARM64_SYSREG_OP1_MASK
576                               | KVM_REG_ARM64_SYSREG_CRN_MASK
577                               | KVM_REG_ARM64_SYSREG_CRM_MASK
578                               | KVM_REG_ARM64_SYSREG_OP2_MASK))
579                         return false;
580                 params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
581                                >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
582                 params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
583                                >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
584                 params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
585                                >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
586                 params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
587                                >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
588                 params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
589                                >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
590                 return true;
591         default:
592                 return false;
593         }
594 }
595
596 /* Decode an index value, and find the sys_reg_desc entry. */
597 static const struct sys_reg_desc *index_to_sys_reg_desc(struct kvm_vcpu *vcpu,
598                                                     u64 id)
599 {
600         size_t num;
601         const struct sys_reg_desc *table, *r;
602         struct sys_reg_params params;
603
604         /* We only do sys_reg for now. */
605         if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
606                 return NULL;
607
608         if (!index_to_params(id, &params))
609                 return NULL;
610
611         table = get_target_table(vcpu->arch.target, true, &num);
612         r = find_reg(&params, table, num);
613         if (!r)
614                 r = find_reg(&params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
615
616         /* Not saved in the sys_reg array? */
617         if (r && !r->reg)
618                 r = NULL;
619
620         return r;
621 }
622
623 /*
624  * These are the invariant sys_reg registers: we let the guest see the
625  * host versions of these, so they're part of the guest state.
626  *
627  * A future CPU may provide a mechanism to present different values to
628  * the guest, or a future kvm may trap them.
629  */
630
631 #define FUNCTION_INVARIANT(reg)                                         \
632         static void get_##reg(struct kvm_vcpu *v,                       \
633                               const struct sys_reg_desc *r)             \
634         {                                                               \
635                 u64 val;                                                \
636                                                                         \
637                 asm volatile("mrs %0, " __stringify(reg) "\n"           \
638                              : "=r" (val));                             \
639                 ((struct sys_reg_desc *)r)->val = val;                  \
640         }
641
642 FUNCTION_INVARIANT(midr_el1)
643 FUNCTION_INVARIANT(ctr_el0)
644 FUNCTION_INVARIANT(revidr_el1)
645 FUNCTION_INVARIANT(id_pfr0_el1)
646 FUNCTION_INVARIANT(id_pfr1_el1)
647 FUNCTION_INVARIANT(id_dfr0_el1)
648 FUNCTION_INVARIANT(id_afr0_el1)
649 FUNCTION_INVARIANT(id_mmfr0_el1)
650 FUNCTION_INVARIANT(id_mmfr1_el1)
651 FUNCTION_INVARIANT(id_mmfr2_el1)
652 FUNCTION_INVARIANT(id_mmfr3_el1)
653 FUNCTION_INVARIANT(id_isar0_el1)
654 FUNCTION_INVARIANT(id_isar1_el1)
655 FUNCTION_INVARIANT(id_isar2_el1)
656 FUNCTION_INVARIANT(id_isar3_el1)
657 FUNCTION_INVARIANT(id_isar4_el1)
658 FUNCTION_INVARIANT(id_isar5_el1)
659 FUNCTION_INVARIANT(clidr_el1)
660 FUNCTION_INVARIANT(aidr_el1)
661
662 /* ->val is filled in by kvm_sys_reg_table_init() */
663 static struct sys_reg_desc invariant_sys_regs[] = {
664         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b000),
665           NULL, get_midr_el1 },
666         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b110),
667           NULL, get_revidr_el1 },
668         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b000),
669           NULL, get_id_pfr0_el1 },
670         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b001),
671           NULL, get_id_pfr1_el1 },
672         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b010),
673           NULL, get_id_dfr0_el1 },
674         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b011),
675           NULL, get_id_afr0_el1 },
676         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b100),
677           NULL, get_id_mmfr0_el1 },
678         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b101),
679           NULL, get_id_mmfr1_el1 },
680         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b110),
681           NULL, get_id_mmfr2_el1 },
682         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b111),
683           NULL, get_id_mmfr3_el1 },
684         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b000),
685           NULL, get_id_isar0_el1 },
686         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b001),
687           NULL, get_id_isar1_el1 },
688         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b010),
689           NULL, get_id_isar2_el1 },
690         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b011),
691           NULL, get_id_isar3_el1 },
692         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b100),
693           NULL, get_id_isar4_el1 },
694         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b101),
695           NULL, get_id_isar5_el1 },
696         { Op0(0b11), Op1(0b001), CRn(0b0000), CRm(0b0000), Op2(0b001),
697           NULL, get_clidr_el1 },
698         { Op0(0b11), Op1(0b001), CRn(0b0000), CRm(0b0000), Op2(0b111),
699           NULL, get_aidr_el1 },
700         { Op0(0b11), Op1(0b011), CRn(0b0000), CRm(0b0000), Op2(0b001),
701           NULL, get_ctr_el0 },
702 };
703
704 static int reg_from_user(void *val, const void __user *uaddr, u64 id)
705 {
706         /* This Just Works because we are little endian. */
707         if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
708                 return -EFAULT;
709         return 0;
710 }
711
712 static int reg_to_user(void __user *uaddr, const void *val, u64 id)
713 {
714         /* This Just Works because we are little endian. */
715         if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
716                 return -EFAULT;
717         return 0;
718 }
719
720 static int get_invariant_sys_reg(u64 id, void __user *uaddr)
721 {
722         struct sys_reg_params params;
723         const struct sys_reg_desc *r;
724
725         if (!index_to_params(id, &params))
726                 return -ENOENT;
727
728         r = find_reg(&params, invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs));
729         if (!r)
730                 return -ENOENT;
731
732         return reg_to_user(uaddr, &r->val, id);
733 }
734
735 static int set_invariant_sys_reg(u64 id, void __user *uaddr)
736 {
737         struct sys_reg_params params;
738         const struct sys_reg_desc *r;
739         int err;
740         u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */
741
742         if (!index_to_params(id, &params))
743                 return -ENOENT;
744         r = find_reg(&params, invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs));
745         if (!r)
746                 return -ENOENT;
747
748         err = reg_from_user(&val, uaddr, id);
749         if (err)
750                 return err;
751
752         /* This is what we mean by invariant: you can't change it. */
753         if (r->val != val)
754                 return -EINVAL;
755
756         return 0;
757 }
758
759 static bool is_valid_cache(u32 val)
760 {
761         u32 level, ctype;
762
763         if (val >= CSSELR_MAX)
764                 return -ENOENT;
765
766         /* Bottom bit is Instruction or Data bit.  Next 3 bits are level. */
767         level = (val >> 1);
768         ctype = (cache_levels >> (level * 3)) & 7;
769
770         switch (ctype) {
771         case 0: /* No cache */
772                 return false;
773         case 1: /* Instruction cache only */
774                 return (val & 1);
775         case 2: /* Data cache only */
776         case 4: /* Unified cache */
777                 return !(val & 1);
778         case 3: /* Separate instruction and data caches */
779                 return true;
780         default: /* Reserved: we can't know instruction or data. */
781                 return false;
782         }
783 }
784
785 static int demux_c15_get(u64 id, void __user *uaddr)
786 {
787         u32 val;
788         u32 __user *uval = uaddr;
789
790         /* Fail if we have unknown bits set. */
791         if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
792                    | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
793                 return -ENOENT;
794
795         switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
796         case KVM_REG_ARM_DEMUX_ID_CCSIDR:
797                 if (KVM_REG_SIZE(id) != 4)
798                         return -ENOENT;
799                 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
800                         >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
801                 if (!is_valid_cache(val))
802                         return -ENOENT;
803
804                 return put_user(get_ccsidr(val), uval);
805         default:
806                 return -ENOENT;
807         }
808 }
809
810 static int demux_c15_set(u64 id, void __user *uaddr)
811 {
812         u32 val, newval;
813         u32 __user *uval = uaddr;
814
815         /* Fail if we have unknown bits set. */
816         if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
817                    | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
818                 return -ENOENT;
819
820         switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
821         case KVM_REG_ARM_DEMUX_ID_CCSIDR:
822                 if (KVM_REG_SIZE(id) != 4)
823                         return -ENOENT;
824                 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
825                         >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
826                 if (!is_valid_cache(val))
827                         return -ENOENT;
828
829                 if (get_user(newval, uval))
830                         return -EFAULT;
831
832                 /* This is also invariant: you can't change it. */
833                 if (newval != get_ccsidr(val))
834                         return -EINVAL;
835                 return 0;
836         default:
837                 return -ENOENT;
838         }
839 }
840
841 int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
842 {
843         const struct sys_reg_desc *r;
844         void __user *uaddr = (void __user *)(unsigned long)reg->addr;
845
846         if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
847                 return demux_c15_get(reg->id, uaddr);
848
849         if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
850                 return -ENOENT;
851
852         r = index_to_sys_reg_desc(vcpu, reg->id);
853         if (!r)
854                 return get_invariant_sys_reg(reg->id, uaddr);
855
856         return reg_to_user(uaddr, &vcpu_sys_reg(vcpu, r->reg), reg->id);
857 }
858
859 int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
860 {
861         const struct sys_reg_desc *r;
862         void __user *uaddr = (void __user *)(unsigned long)reg->addr;
863
864         if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
865                 return demux_c15_set(reg->id, uaddr);
866
867         if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
868                 return -ENOENT;
869
870         r = index_to_sys_reg_desc(vcpu, reg->id);
871         if (!r)
872                 return set_invariant_sys_reg(reg->id, uaddr);
873
874         return reg_from_user(&vcpu_sys_reg(vcpu, r->reg), uaddr, reg->id);
875 }
876
877 static unsigned int num_demux_regs(void)
878 {
879         unsigned int i, count = 0;
880
881         for (i = 0; i < CSSELR_MAX; i++)
882                 if (is_valid_cache(i))
883                         count++;
884
885         return count;
886 }
887
888 static int write_demux_regids(u64 __user *uindices)
889 {
890         u64 val = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
891         unsigned int i;
892
893         val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
894         for (i = 0; i < CSSELR_MAX; i++) {
895                 if (!is_valid_cache(i))
896                         continue;
897                 if (put_user(val | i, uindices))
898                         return -EFAULT;
899                 uindices++;
900         }
901         return 0;
902 }
903
904 static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
905 {
906         return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
907                 KVM_REG_ARM64_SYSREG |
908                 (reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
909                 (reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
910                 (reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
911                 (reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
912                 (reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
913 }
914
915 static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
916 {
917         if (!*uind)
918                 return true;
919
920         if (put_user(sys_reg_to_index(reg), *uind))
921                 return false;
922
923         (*uind)++;
924         return true;
925 }
926
927 /* Assumed ordered tables, see kvm_sys_reg_table_init. */
928 static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
929 {
930         const struct sys_reg_desc *i1, *i2, *end1, *end2;
931         unsigned int total = 0;
932         size_t num;
933
934         /* We check for duplicates here, to allow arch-specific overrides. */
935         i1 = get_target_table(vcpu->arch.target, true, &num);
936         end1 = i1 + num;
937         i2 = sys_reg_descs;
938         end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
939
940         BUG_ON(i1 == end1 || i2 == end2);
941
942         /* Walk carefully, as both tables may refer to the same register. */
943         while (i1 || i2) {
944                 int cmp = cmp_sys_reg(i1, i2);
945                 /* target-specific overrides generic entry. */
946                 if (cmp <= 0) {
947                         /* Ignore registers we trap but don't save. */
948                         if (i1->reg) {
949                                 if (!copy_reg_to_user(i1, &uind))
950                                         return -EFAULT;
951                                 total++;
952                         }
953                 } else {
954                         /* Ignore registers we trap but don't save. */
955                         if (i2->reg) {
956                                 if (!copy_reg_to_user(i2, &uind))
957                                         return -EFAULT;
958                                 total++;
959                         }
960                 }
961
962                 if (cmp <= 0 && ++i1 == end1)
963                         i1 = NULL;
964                 if (cmp >= 0 && ++i2 == end2)
965                         i2 = NULL;
966         }
967         return total;
968 }
969
970 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
971 {
972         return ARRAY_SIZE(invariant_sys_regs)
973                 + num_demux_regs()
974                 + walk_sys_regs(vcpu, (u64 __user *)NULL);
975 }
976
977 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
978 {
979         unsigned int i;
980         int err;
981
982         /* Then give them all the invariant registers' indices. */
983         for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
984                 if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
985                         return -EFAULT;
986                 uindices++;
987         }
988
989         err = walk_sys_regs(vcpu, uindices);
990         if (err < 0)
991                 return err;
992         uindices += err;
993
994         return write_demux_regids(uindices);
995 }
996
997 void kvm_sys_reg_table_init(void)
998 {
999         unsigned int i;
1000         struct sys_reg_desc clidr;
1001
1002         /* Make sure tables are unique and in order. */
1003         for (i = 1; i < ARRAY_SIZE(sys_reg_descs); i++)
1004                 BUG_ON(cmp_sys_reg(&sys_reg_descs[i-1], &sys_reg_descs[i]) >= 0);
1005
1006         /* We abuse the reset function to overwrite the table itself. */
1007         for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
1008                 invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
1009
1010         /*
1011          * CLIDR format is awkward, so clean it up.  See ARM B4.1.20:
1012          *
1013          *   If software reads the Cache Type fields from Ctype1
1014          *   upwards, once it has seen a value of 0b000, no caches
1015          *   exist at further-out levels of the hierarchy. So, for
1016          *   example, if Ctype3 is the first Cache Type field with a
1017          *   value of 0b000, the values of Ctype4 to Ctype7 must be
1018          *   ignored.
1019          */
1020         get_clidr_el1(NULL, &clidr); /* Ugly... */
1021         cache_levels = clidr.val;
1022         for (i = 0; i < 7; i++)
1023                 if (((cache_levels >> (i*3)) & 7) == 0)
1024                         break;
1025         /* Clear all higher bits. */
1026         cache_levels &= (1 << (i*3))-1;
1027 }
1028
1029 /**
1030  * kvm_reset_sys_regs - sets system registers to reset value
1031  * @vcpu: The VCPU pointer
1032  *
1033  * This function finds the right table above and sets the registers on the
1034  * virtual CPU struct to their architecturally defined reset values.
1035  */
1036 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
1037 {
1038         size_t num;
1039         const struct sys_reg_desc *table;
1040
1041         /* Catch someone adding a register without putting in reset entry. */
1042         memset(&vcpu->arch.ctxt.sys_regs, 0x42, sizeof(vcpu->arch.ctxt.sys_regs));
1043
1044         /* Generic chip reset first (so target could override). */
1045         reset_sys_reg_descs(vcpu, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
1046
1047         table = get_target_table(vcpu->arch.target, true, &num);
1048         reset_sys_reg_descs(vcpu, table, num);
1049
1050         for (num = 1; num < NR_SYS_REGS; num++)
1051                 if (vcpu_sys_reg(vcpu, num) == 0x4242424242424242)
1052                         panic("Didn't reset vcpu_sys_reg(%zi)", num);
1053 }