]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - arch/c6x/kernel/setup.c
seccomp: use a static inline for a function stub
[karo-tx-linux.git] / arch / c6x / kernel / setup.c
1 /*
2  *  Port on Texas Instruments TMS320C6x architecture
3  *
4  *  Copyright (C) 2004, 2006, 2009, 2010, 2011 Texas Instruments Incorporated
5  *  Author: Aurelien Jacquiot (aurelien.jacquiot@jaluna.com)
6  *
7  *  This program is free software; you can redistribute it and/or modify
8  *  it under the terms of the GNU General Public License version 2 as
9  *  published by the Free Software Foundation.
10  */
11 #include <linux/dma-mapping.h>
12 #include <linux/memblock.h>
13 #include <linux/seq_file.h>
14 #include <linux/bootmem.h>
15 #include <linux/clkdev.h>
16 #include <linux/initrd.h>
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/of_fdt.h>
20 #include <linux/string.h>
21 #include <linux/errno.h>
22 #include <linux/cache.h>
23 #include <linux/delay.h>
24 #include <linux/sched.h>
25 #include <linux/clk.h>
26 #include <linux/cpu.h>
27 #include <linux/fs.h>
28 #include <linux/of.h>
29
30
31 #include <asm/sections.h>
32 #include <asm/div64.h>
33 #include <asm/setup.h>
34 #include <asm/dscr.h>
35 #include <asm/clock.h>
36 #include <asm/soc.h>
37 #include <asm/special_insns.h>
38
39 static const char *c6x_soc_name;
40
41 int c6x_num_cores;
42 EXPORT_SYMBOL_GPL(c6x_num_cores);
43
44 unsigned int c6x_silicon_rev;
45 EXPORT_SYMBOL_GPL(c6x_silicon_rev);
46
47 /*
48  * Device status register. This holds information
49  * about device configuration needed by some drivers.
50  */
51 unsigned int c6x_devstat;
52 EXPORT_SYMBOL_GPL(c6x_devstat);
53
54 /*
55  * Some SoCs have fuse registers holding a unique MAC
56  * address. This is parsed out of the device tree with
57  * the resulting MAC being held here.
58  */
59 unsigned char c6x_fuse_mac[6];
60
61 unsigned long memory_start;
62 unsigned long memory_end;
63
64 unsigned long ram_start;
65 unsigned long ram_end;
66
67 /* Uncached memory for DMA consistent use (memdma=) */
68 static unsigned long dma_start __initdata;
69 static unsigned long dma_size __initdata;
70
71 char c6x_command_line[COMMAND_LINE_SIZE];
72
73 #if defined(CONFIG_CMDLINE_BOOL)
74 static const char default_command_line[COMMAND_LINE_SIZE] __section(.cmdline) =
75         CONFIG_CMDLINE;
76 #endif
77
78 struct cpuinfo_c6x {
79         const char *cpu_name;
80         const char *cpu_voltage;
81         const char *mmu;
82         const char *fpu;
83         char *cpu_rev;
84         unsigned int core_id;
85         char __cpu_rev[5];
86 };
87
88 static DEFINE_PER_CPU(struct cpuinfo_c6x, cpu_data);
89
90 unsigned int ticks_per_ns_scaled;
91 EXPORT_SYMBOL(ticks_per_ns_scaled);
92
93 unsigned int c6x_core_freq;
94
95 static void __init get_cpuinfo(void)
96 {
97         unsigned cpu_id, rev_id, csr;
98         struct clk *coreclk = clk_get_sys(NULL, "core");
99         unsigned long core_khz;
100         u64 tmp;
101         struct cpuinfo_c6x *p;
102         struct device_node *node, *np;
103
104         p = &per_cpu(cpu_data, smp_processor_id());
105
106         if (!IS_ERR(coreclk))
107                 c6x_core_freq = clk_get_rate(coreclk);
108         else {
109                 printk(KERN_WARNING
110                        "Cannot find core clock frequency. Using 700MHz\n");
111                 c6x_core_freq = 700000000;
112         }
113
114         core_khz = c6x_core_freq / 1000;
115
116         tmp = (uint64_t)core_khz << C6X_NDELAY_SCALE;
117         do_div(tmp, 1000000);
118         ticks_per_ns_scaled = tmp;
119
120         csr = get_creg(CSR);
121         cpu_id = csr >> 24;
122         rev_id = (csr >> 16) & 0xff;
123
124         p->mmu = "none";
125         p->fpu = "none";
126         p->cpu_voltage = "unknown";
127
128         switch (cpu_id) {
129         case 0:
130                 p->cpu_name = "C67x";
131                 p->fpu = "yes";
132                 break;
133         case 2:
134                 p->cpu_name = "C62x";
135                 break;
136         case 8:
137                 p->cpu_name = "C64x";
138                 break;
139         case 12:
140                 p->cpu_name = "C64x";
141                 break;
142         case 16:
143                 p->cpu_name = "C64x+";
144                 p->cpu_voltage = "1.2";
145                 break;
146         default:
147                 p->cpu_name = "unknown";
148                 break;
149         }
150
151         if (cpu_id < 16) {
152                 switch (rev_id) {
153                 case 0x1:
154                         if (cpu_id > 8) {
155                                 p->cpu_rev = "DM640/DM641/DM642/DM643";
156                                 p->cpu_voltage = "1.2 - 1.4";
157                         } else {
158                                 p->cpu_rev = "C6201";
159                                 p->cpu_voltage = "2.5";
160                         }
161                         break;
162                 case 0x2:
163                         p->cpu_rev = "C6201B/C6202/C6211";
164                         p->cpu_voltage = "1.8";
165                         break;
166                 case 0x3:
167                         p->cpu_rev = "C6202B/C6203/C6204/C6205";
168                         p->cpu_voltage = "1.5";
169                         break;
170                 case 0x201:
171                         p->cpu_rev = "C6701 revision 0 (early CPU)";
172                         p->cpu_voltage = "1.8";
173                         break;
174                 case 0x202:
175                         p->cpu_rev = "C6701/C6711/C6712";
176                         p->cpu_voltage = "1.8";
177                         break;
178                 case 0x801:
179                         p->cpu_rev = "C64x";
180                         p->cpu_voltage = "1.5";
181                         break;
182                 default:
183                         p->cpu_rev = "unknown";
184                 }
185         } else {
186                 p->cpu_rev = p->__cpu_rev;
187                 snprintf(p->__cpu_rev, sizeof(p->__cpu_rev), "0x%x", cpu_id);
188         }
189
190         p->core_id = get_coreid();
191
192         node = of_find_node_by_name(NULL, "cpus");
193         if (node) {
194                 for_each_child_of_node(node, np)
195                         if (!strcmp("cpu", np->name))
196                                 ++c6x_num_cores;
197                 of_node_put(node);
198         }
199
200         node = of_find_node_by_name(NULL, "soc");
201         if (node) {
202                 if (of_property_read_string(node, "model", &c6x_soc_name))
203                         c6x_soc_name = "unknown";
204                 of_node_put(node);
205         } else
206                 c6x_soc_name = "unknown";
207
208         printk(KERN_INFO "CPU%d: %s rev %s, %s volts, %uMHz\n",
209                p->core_id, p->cpu_name, p->cpu_rev,
210                p->cpu_voltage, c6x_core_freq / 1000000);
211 }
212
213 /*
214  * Early parsing of the command line
215  */
216 static u32 mem_size __initdata;
217
218 /* "mem=" parsing. */
219 static int __init early_mem(char *p)
220 {
221         if (!p)
222                 return -EINVAL;
223
224         mem_size = memparse(p, &p);
225         /* don't remove all of memory when handling "mem={invalid}" */
226         if (mem_size == 0)
227                 return -EINVAL;
228
229         return 0;
230 }
231 early_param("mem", early_mem);
232
233 /* "memdma=<size>[@<address>]" parsing. */
234 static int __init early_memdma(char *p)
235 {
236         if (!p)
237                 return -EINVAL;
238
239         dma_size = memparse(p, &p);
240         if (*p == '@')
241                 dma_start = memparse(p, &p);
242
243         return 0;
244 }
245 early_param("memdma", early_memdma);
246
247 int __init c6x_add_memory(phys_addr_t start, unsigned long size)
248 {
249         static int ram_found __initdata;
250
251         /* We only handle one bank (the one with PAGE_OFFSET) for now */
252         if (ram_found)
253                 return -EINVAL;
254
255         if (start > PAGE_OFFSET || PAGE_OFFSET >= (start + size))
256                 return 0;
257
258         ram_start = start;
259         ram_end = start + size;
260
261         ram_found = 1;
262         return 0;
263 }
264
265 /*
266  * Do early machine setup and device tree parsing. This is called very
267  * early on the boot process.
268  */
269 notrace void __init machine_init(unsigned long dt_ptr)
270 {
271         struct boot_param_header *dtb = __va(dt_ptr);
272         struct boot_param_header *fdt = (struct boot_param_header *)_fdt_start;
273
274         /* interrupts must be masked */
275         set_creg(IER, 2);
276
277         /*
278          * Set the Interrupt Service Table (IST) to the beginning of the
279          * vector table.
280          */
281         set_ist(_vectors_start);
282
283         lockdep_init();
284
285         /*
286          * dtb is passed in from bootloader.
287          * fdt is linked in blob.
288          */
289         if (dtb && dtb != fdt)
290                 fdt = dtb;
291
292         /* Do some early initialization based on the flat device tree */
293         early_init_devtree(fdt);
294
295         /* parse_early_param needs a boot_command_line */
296         strlcpy(boot_command_line, c6x_command_line, COMMAND_LINE_SIZE);
297         parse_early_param();
298 }
299
300 void __init setup_arch(char **cmdline_p)
301 {
302         int bootmap_size;
303         struct memblock_region *reg;
304
305         printk(KERN_INFO "Initializing kernel\n");
306
307         /* Initialize command line */
308         *cmdline_p = c6x_command_line;
309
310         memory_end = ram_end;
311         memory_end &= ~(PAGE_SIZE - 1);
312
313         if (mem_size && (PAGE_OFFSET + PAGE_ALIGN(mem_size)) < memory_end)
314                 memory_end = PAGE_OFFSET + PAGE_ALIGN(mem_size);
315
316         /* add block that this kernel can use */
317         memblock_add(PAGE_OFFSET, memory_end - PAGE_OFFSET);
318
319         /* reserve kernel text/data/bss */
320         memblock_reserve(PAGE_OFFSET,
321                          PAGE_ALIGN((unsigned long)&_end - PAGE_OFFSET));
322
323         if (dma_size) {
324                 /* align to cacheability granularity */
325                 dma_size = CACHE_REGION_END(dma_size);
326
327                 if (!dma_start)
328                         dma_start = memory_end - dma_size;
329
330                 /* align to cacheability granularity */
331                 dma_start = CACHE_REGION_START(dma_start);
332
333                 /* reserve DMA memory taken from kernel memory */
334                 if (memblock_is_region_memory(dma_start, dma_size))
335                         memblock_reserve(dma_start, dma_size);
336         }
337
338         memory_start = PAGE_ALIGN((unsigned int) &_end);
339
340         printk(KERN_INFO "Memory Start=%08lx, Memory End=%08lx\n",
341                memory_start, memory_end);
342
343 #ifdef CONFIG_BLK_DEV_INITRD
344         /*
345          * Reserve initrd memory if in kernel memory.
346          */
347         if (initrd_start < initrd_end)
348                 if (memblock_is_region_memory(initrd_start,
349                                               initrd_end - initrd_start))
350                         memblock_reserve(initrd_start,
351                                          initrd_end - initrd_start);
352 #endif
353
354         init_mm.start_code = (unsigned long) &_stext;
355         init_mm.end_code   = (unsigned long) &_etext;
356         init_mm.end_data   = memory_start;
357         init_mm.brk        = memory_start;
358
359         /*
360          * Give all the memory to the bootmap allocator,  tell it to put the
361          * boot mem_map at the start of memory
362          */
363         bootmap_size = init_bootmem_node(NODE_DATA(0),
364                                          memory_start >> PAGE_SHIFT,
365                                          PAGE_OFFSET >> PAGE_SHIFT,
366                                          memory_end >> PAGE_SHIFT);
367         memblock_reserve(memory_start, bootmap_size);
368
369         unflatten_device_tree();
370
371         c6x_cache_init();
372
373         /* Set the whole external memory as non-cacheable */
374         disable_caching(ram_start, ram_end - 1);
375
376         /* Set caching of external RAM used by Linux */
377         for_each_memblock(memory, reg)
378                 enable_caching(CACHE_REGION_START(reg->base),
379                                CACHE_REGION_START(reg->base + reg->size - 1));
380
381 #ifdef CONFIG_BLK_DEV_INITRD
382         /*
383          * Enable caching for initrd which falls outside kernel memory.
384          */
385         if (initrd_start < initrd_end) {
386                 if (!memblock_is_region_memory(initrd_start,
387                                                initrd_end - initrd_start))
388                         enable_caching(CACHE_REGION_START(initrd_start),
389                                        CACHE_REGION_START(initrd_end - 1));
390         }
391 #endif
392
393         /*
394          * Disable caching for dma coherent memory taken from kernel memory.
395          */
396         if (dma_size && memblock_is_region_memory(dma_start, dma_size))
397                 disable_caching(dma_start,
398                                 CACHE_REGION_START(dma_start + dma_size - 1));
399
400         /* Initialize the coherent memory allocator */
401         coherent_mem_init(dma_start, dma_size);
402
403         /*
404          * Free all memory as a starting point.
405          */
406         free_bootmem(PAGE_OFFSET, memory_end - PAGE_OFFSET);
407
408         /*
409          * Then reserve memory which is already being used.
410          */
411         for_each_memblock(reserved, reg) {
412                 pr_debug("reserved - 0x%08x-0x%08x\n",
413                          (u32) reg->base, (u32) reg->size);
414                 reserve_bootmem(reg->base, reg->size, BOOTMEM_DEFAULT);
415         }
416
417         max_low_pfn = PFN_DOWN(memory_end);
418         min_low_pfn = PFN_UP(memory_start);
419         max_mapnr = max_low_pfn - min_low_pfn;
420
421         /* Get kmalloc into gear */
422         paging_init();
423
424         /*
425          * Probe for Device State Configuration Registers.
426          * We have to do this early in case timer needs to be enabled
427          * through DSCR.
428          */
429         dscr_probe();
430
431         /* We do this early for timer and core clock frequency */
432         c64x_setup_clocks();
433
434         /* Get CPU info */
435         get_cpuinfo();
436
437 #if defined(CONFIG_VT) && defined(CONFIG_DUMMY_CONSOLE)
438         conswitchp = &dummy_con;
439 #endif
440 }
441
442 #define cpu_to_ptr(n) ((void *)((long)(n)+1))
443 #define ptr_to_cpu(p) ((long)(p) - 1)
444
445 static int show_cpuinfo(struct seq_file *m, void *v)
446 {
447         int n = ptr_to_cpu(v);
448         struct cpuinfo_c6x *p = &per_cpu(cpu_data, n);
449
450         if (n == 0) {
451                 seq_printf(m,
452                            "soc\t\t: %s\n"
453                            "soc revision\t: 0x%x\n"
454                            "soc cores\t: %d\n",
455                            c6x_soc_name, c6x_silicon_rev, c6x_num_cores);
456         }
457
458         seq_printf(m,
459                    "\n"
460                    "processor\t: %d\n"
461                    "cpu\t\t: %s\n"
462                    "core revision\t: %s\n"
463                    "core voltage\t: %s\n"
464                    "core id\t\t: %d\n"
465                    "mmu\t\t: %s\n"
466                    "fpu\t\t: %s\n"
467                    "cpu MHz\t\t: %u\n"
468                    "bogomips\t: %lu.%02lu\n\n",
469                    n,
470                    p->cpu_name, p->cpu_rev, p->cpu_voltage,
471                    p->core_id, p->mmu, p->fpu,
472                    (c6x_core_freq + 500000) / 1000000,
473                    (loops_per_jiffy/(500000/HZ)),
474                    (loops_per_jiffy/(5000/HZ))%100);
475
476         return 0;
477 }
478
479 static void *c_start(struct seq_file *m, loff_t *pos)
480 {
481         return *pos < nr_cpu_ids ? cpu_to_ptr(*pos) : NULL;
482 }
483 static void *c_next(struct seq_file *m, void *v, loff_t *pos)
484 {
485         ++*pos;
486         return NULL;
487 }
488 static void c_stop(struct seq_file *m, void *v)
489 {
490 }
491
492 const struct seq_operations cpuinfo_op = {
493         c_start,
494         c_stop,
495         c_next,
496         show_cpuinfo
497 };
498
499 static struct cpu cpu_devices[NR_CPUS];
500
501 static int __init topology_init(void)
502 {
503         int i;
504
505         for_each_present_cpu(i)
506                 register_cpu(&cpu_devices[i], i);
507
508         return 0;
509 }
510
511 subsys_initcall(topology_init);