]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - arch/mips/cavium-octeon/setup.c
MIPS: OCTEON: Core-15169 Workaround and general CVMSEG cleanup.
[karo-tx-linux.git] / arch / mips / cavium-octeon / setup.c
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 2004-2007 Cavium Networks
7  * Copyright (C) 2008, 2009 Wind River Systems
8  *   written by Ralf Baechle <ralf@linux-mips.org>
9  */
10 #include <linux/compiler.h>
11 #include <linux/vmalloc.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/console.h>
15 #include <linux/delay.h>
16 #include <linux/export.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/serial.h>
20 #include <linux/smp.h>
21 #include <linux/types.h>
22 #include <linux/string.h>       /* for memset */
23 #include <linux/tty.h>
24 #include <linux/time.h>
25 #include <linux/platform_device.h>
26 #include <linux/serial_core.h>
27 #include <linux/serial_8250.h>
28 #include <linux/of_fdt.h>
29 #include <linux/libfdt.h>
30 #include <linux/kexec.h>
31
32 #include <asm/processor.h>
33 #include <asm/reboot.h>
34 #include <asm/smp-ops.h>
35 #include <asm/irq_cpu.h>
36 #include <asm/mipsregs.h>
37 #include <asm/bootinfo.h>
38 #include <asm/sections.h>
39 #include <asm/time.h>
40
41 #include <asm/octeon/octeon.h>
42 #include <asm/octeon/pci-octeon.h>
43 #include <asm/octeon/cvmx-mio-defs.h>
44
45 extern struct plat_smp_ops octeon_smp_ops;
46
47 #ifdef CONFIG_PCI
48 extern void pci_console_init(const char *arg);
49 #endif
50
51 static unsigned long long MAX_MEMORY = 512ull << 20;
52
53 struct octeon_boot_descriptor *octeon_boot_desc_ptr;
54
55 struct cvmx_bootinfo *octeon_bootinfo;
56 EXPORT_SYMBOL(octeon_bootinfo);
57
58 static unsigned long long RESERVE_LOW_MEM = 0ull;
59 #ifdef CONFIG_KEXEC
60 #ifdef CONFIG_SMP
61 /*
62  * Wait for relocation code is prepared and send
63  * secondary CPUs to spin until kernel is relocated.
64  */
65 static void octeon_kexec_smp_down(void *ignored)
66 {
67         int cpu = smp_processor_id();
68
69         local_irq_disable();
70         set_cpu_online(cpu, false);
71         while (!atomic_read(&kexec_ready_to_reboot))
72                 cpu_relax();
73
74         asm volatile (
75         "       sync                                            \n"
76         "       synci   ($0)                                    \n");
77
78         relocated_kexec_smp_wait(NULL);
79 }
80 #endif
81
82 #define OCTEON_DDR0_BASE    (0x0ULL)
83 #define OCTEON_DDR0_SIZE    (0x010000000ULL)
84 #define OCTEON_DDR1_BASE    (0x410000000ULL)
85 #define OCTEON_DDR1_SIZE    (0x010000000ULL)
86 #define OCTEON_DDR2_BASE    (0x020000000ULL)
87 #define OCTEON_DDR2_SIZE    (0x3e0000000ULL)
88 #define OCTEON_MAX_PHY_MEM_SIZE (16*1024*1024*1024ULL)
89
90 static struct kimage *kimage_ptr;
91
92 static void kexec_bootmem_init(uint64_t mem_size, uint32_t low_reserved_bytes)
93 {
94         int64_t addr;
95         struct cvmx_bootmem_desc *bootmem_desc;
96
97         bootmem_desc = cvmx_bootmem_get_desc();
98
99         if (mem_size > OCTEON_MAX_PHY_MEM_SIZE) {
100                 mem_size = OCTEON_MAX_PHY_MEM_SIZE;
101                 pr_err("Error: requested memory too large,"
102                        "truncating to maximum size\n");
103         }
104
105         bootmem_desc->major_version = CVMX_BOOTMEM_DESC_MAJ_VER;
106         bootmem_desc->minor_version = CVMX_BOOTMEM_DESC_MIN_VER;
107
108         addr = (OCTEON_DDR0_BASE + RESERVE_LOW_MEM + low_reserved_bytes);
109         bootmem_desc->head_addr = 0;
110
111         if (mem_size <= OCTEON_DDR0_SIZE) {
112                 __cvmx_bootmem_phy_free(addr,
113                                 mem_size - RESERVE_LOW_MEM -
114                                 low_reserved_bytes, 0);
115                 return;
116         }
117
118         __cvmx_bootmem_phy_free(addr,
119                         OCTEON_DDR0_SIZE - RESERVE_LOW_MEM -
120                         low_reserved_bytes, 0);
121
122         mem_size -= OCTEON_DDR0_SIZE;
123
124         if (mem_size > OCTEON_DDR1_SIZE) {
125                 __cvmx_bootmem_phy_free(OCTEON_DDR1_BASE, OCTEON_DDR1_SIZE, 0);
126                 __cvmx_bootmem_phy_free(OCTEON_DDR2_BASE,
127                                 mem_size - OCTEON_DDR1_SIZE, 0);
128         } else
129                 __cvmx_bootmem_phy_free(OCTEON_DDR1_BASE, mem_size, 0);
130 }
131
132 static int octeon_kexec_prepare(struct kimage *image)
133 {
134         int i;
135         char *bootloader = "kexec";
136
137         octeon_boot_desc_ptr->argc = 0;
138         for (i = 0; i < image->nr_segments; i++) {
139                 if (!strncmp(bootloader, (char *)image->segment[i].buf,
140                                 strlen(bootloader))) {
141                         /*
142                          * convert command line string to array
143                          * of parameters (as bootloader does).
144                          */
145                         int argc = 0, offt;
146                         char *str = (char *)image->segment[i].buf;
147                         char *ptr = strchr(str, ' ');
148                         while (ptr && (OCTEON_ARGV_MAX_ARGS > argc)) {
149                                 *ptr = '\0';
150                                 if (ptr[1] != ' ') {
151                                         offt = (int)(ptr - str + 1);
152                                         octeon_boot_desc_ptr->argv[argc] =
153                                                 image->segment[i].mem + offt;
154                                         argc++;
155                                 }
156                                 ptr = strchr(ptr + 1, ' ');
157                         }
158                         octeon_boot_desc_ptr->argc = argc;
159                         break;
160                 }
161         }
162
163         /*
164          * Information about segments will be needed during pre-boot memory
165          * initialization.
166          */
167         kimage_ptr = image;
168         return 0;
169 }
170
171 static void octeon_generic_shutdown(void)
172 {
173         int i;
174 #ifdef CONFIG_SMP
175         int cpu;
176 #endif
177         struct cvmx_bootmem_desc *bootmem_desc;
178         void *named_block_array_ptr;
179
180         bootmem_desc = cvmx_bootmem_get_desc();
181         named_block_array_ptr =
182                 cvmx_phys_to_ptr(bootmem_desc->named_block_array_addr);
183
184 #ifdef CONFIG_SMP
185         /* disable watchdogs */
186         for_each_online_cpu(cpu)
187                 cvmx_write_csr(CVMX_CIU_WDOGX(cpu_logical_map(cpu)), 0);
188 #else
189         cvmx_write_csr(CVMX_CIU_WDOGX(cvmx_get_core_num()), 0);
190 #endif
191         if (kimage_ptr != kexec_crash_image) {
192                 memset(named_block_array_ptr,
193                         0x0,
194                         CVMX_BOOTMEM_NUM_NAMED_BLOCKS *
195                         sizeof(struct cvmx_bootmem_named_block_desc));
196                 /*
197                  * Mark all memory (except low 0x100000 bytes) as free.
198                  * It is the same thing that bootloader does.
199                  */
200                 kexec_bootmem_init(octeon_bootinfo->dram_size*1024ULL*1024ULL,
201                                 0x100000);
202                 /*
203                  * Allocate all segments to avoid their corruption during boot.
204                  */
205                 for (i = 0; i < kimage_ptr->nr_segments; i++)
206                         cvmx_bootmem_alloc_address(
207                                 kimage_ptr->segment[i].memsz + 2*PAGE_SIZE,
208                                 kimage_ptr->segment[i].mem - PAGE_SIZE,
209                                 PAGE_SIZE);
210         } else {
211                 /*
212                  * Do not mark all memory as free. Free only named sections
213                  * leaving the rest of memory unchanged.
214                  */
215                 struct cvmx_bootmem_named_block_desc *ptr =
216                         (struct cvmx_bootmem_named_block_desc *)
217                         named_block_array_ptr;
218
219                 for (i = 0; i < bootmem_desc->named_block_num_blocks; i++)
220                         if (ptr[i].size)
221                                 cvmx_bootmem_free_named(ptr[i].name);
222         }
223         kexec_args[2] = 1UL; /* running on octeon_main_processor */
224         kexec_args[3] = (unsigned long)octeon_boot_desc_ptr;
225 #ifdef CONFIG_SMP
226         secondary_kexec_args[2] = 0UL; /* running on secondary cpu */
227         secondary_kexec_args[3] = (unsigned long)octeon_boot_desc_ptr;
228 #endif
229 }
230
231 static void octeon_shutdown(void)
232 {
233         octeon_generic_shutdown();
234 #ifdef CONFIG_SMP
235         smp_call_function(octeon_kexec_smp_down, NULL, 0);
236         smp_wmb();
237         while (num_online_cpus() > 1) {
238                 cpu_relax();
239                 mdelay(1);
240         }
241 #endif
242 }
243
244 static void octeon_crash_shutdown(struct pt_regs *regs)
245 {
246         octeon_generic_shutdown();
247         default_machine_crash_shutdown(regs);
248 }
249
250 #endif /* CONFIG_KEXEC */
251
252 #ifdef CONFIG_CAVIUM_RESERVE32
253 uint64_t octeon_reserve32_memory;
254 EXPORT_SYMBOL(octeon_reserve32_memory);
255 #endif
256
257 #ifdef CONFIG_KEXEC
258 /* crashkernel cmdline parameter is parsed _after_ memory setup
259  * we also parse it here (workaround for EHB5200) */
260 static uint64_t crashk_size, crashk_base;
261 #endif
262
263 static int octeon_uart;
264
265 extern asmlinkage void handle_int(void);
266
267 /**
268  * Return non zero if we are currently running in the Octeon simulator
269  *
270  * Returns
271  */
272 int octeon_is_simulation(void)
273 {
274         return octeon_bootinfo->board_type == CVMX_BOARD_TYPE_SIM;
275 }
276 EXPORT_SYMBOL(octeon_is_simulation);
277
278 /**
279  * Return true if Octeon is in PCI Host mode. This means
280  * Linux can control the PCI bus.
281  *
282  * Returns Non zero if Octeon in host mode.
283  */
284 int octeon_is_pci_host(void)
285 {
286 #ifdef CONFIG_PCI
287         return octeon_bootinfo->config_flags & CVMX_BOOTINFO_CFG_FLAG_PCI_HOST;
288 #else
289         return 0;
290 #endif
291 }
292
293 /**
294  * Get the clock rate of Octeon
295  *
296  * Returns Clock rate in HZ
297  */
298 uint64_t octeon_get_clock_rate(void)
299 {
300         struct cvmx_sysinfo *sysinfo = cvmx_sysinfo_get();
301
302         return sysinfo->cpu_clock_hz;
303 }
304 EXPORT_SYMBOL(octeon_get_clock_rate);
305
306 static u64 octeon_io_clock_rate;
307
308 u64 octeon_get_io_clock_rate(void)
309 {
310         return octeon_io_clock_rate;
311 }
312 EXPORT_SYMBOL(octeon_get_io_clock_rate);
313
314
315 /**
316  * Write to the LCD display connected to the bootbus. This display
317  * exists on most Cavium evaluation boards. If it doesn't exist, then
318  * this function doesn't do anything.
319  *
320  * @s:      String to write
321  */
322 void octeon_write_lcd(const char *s)
323 {
324         if (octeon_bootinfo->led_display_base_addr) {
325                 void __iomem *lcd_address =
326                         ioremap_nocache(octeon_bootinfo->led_display_base_addr,
327                                         8);
328                 int i;
329                 for (i = 0; i < 8; i++, s++) {
330                         if (*s)
331                                 iowrite8(*s, lcd_address + i);
332                         else
333                                 iowrite8(' ', lcd_address + i);
334                 }
335                 iounmap(lcd_address);
336         }
337 }
338
339 /**
340  * Return the console uart passed by the bootloader
341  *
342  * Returns uart   (0 or 1)
343  */
344 int octeon_get_boot_uart(void)
345 {
346         int uart;
347 #ifdef CONFIG_CAVIUM_OCTEON_2ND_KERNEL
348         uart = 1;
349 #else
350         uart = (octeon_boot_desc_ptr->flags & OCTEON_BL_FLAG_CONSOLE_UART1) ?
351                 1 : 0;
352 #endif
353         return uart;
354 }
355
356 /**
357  * Get the coremask Linux was booted on.
358  *
359  * Returns Core mask
360  */
361 int octeon_get_boot_coremask(void)
362 {
363         return octeon_boot_desc_ptr->core_mask;
364 }
365
366 /**
367  * Check the hardware BIST results for a CPU
368  */
369 void octeon_check_cpu_bist(void)
370 {
371         const int coreid = cvmx_get_core_num();
372         unsigned long long mask;
373         unsigned long long bist_val;
374
375         /* Check BIST results for COP0 registers */
376         mask = 0x1f00000000ull;
377         bist_val = read_octeon_c0_icacheerr();
378         if (bist_val & mask)
379                 pr_err("Core%d BIST Failure: CacheErr(icache) = 0x%llx\n",
380                        coreid, bist_val);
381
382         bist_val = read_octeon_c0_dcacheerr();
383         if (bist_val & 1)
384                 pr_err("Core%d L1 Dcache parity error: "
385                        "CacheErr(dcache) = 0x%llx\n",
386                        coreid, bist_val);
387
388         mask = 0xfc00000000000000ull;
389         bist_val = read_c0_cvmmemctl();
390         if (bist_val & mask)
391                 pr_err("Core%d BIST Failure: COP0_CVM_MEM_CTL = 0x%llx\n",
392                        coreid, bist_val);
393
394         write_octeon_c0_dcacheerr(0);
395 }
396
397 /**
398  * Reboot Octeon
399  *
400  * @command: Command to pass to the bootloader. Currently ignored.
401  */
402 static void octeon_restart(char *command)
403 {
404         /* Disable all watchdogs before soft reset. They don't get cleared */
405 #ifdef CONFIG_SMP
406         int cpu;
407         for_each_online_cpu(cpu)
408                 cvmx_write_csr(CVMX_CIU_WDOGX(cpu_logical_map(cpu)), 0);
409 #else
410         cvmx_write_csr(CVMX_CIU_WDOGX(cvmx_get_core_num()), 0);
411 #endif
412
413         mb();
414         while (1)
415                 cvmx_write_csr(CVMX_CIU_SOFT_RST, 1);
416 }
417
418
419 /**
420  * Permanently stop a core.
421  *
422  * @arg: Ignored.
423  */
424 static void octeon_kill_core(void *arg)
425 {
426         if (octeon_is_simulation())
427                 /* A break instruction causes the simulator stop a core */
428                 asm volatile ("break" ::: "memory");
429
430         local_irq_disable();
431         /* Disable watchdog on this core. */
432         cvmx_write_csr(CVMX_CIU_WDOGX(cvmx_get_core_num()), 0);
433         /* Spin in a low power mode. */
434         while (true)
435                 asm volatile ("wait" ::: "memory");
436 }
437
438
439 /**
440  * Halt the system
441  */
442 static void octeon_halt(void)
443 {
444         smp_call_function(octeon_kill_core, NULL, 0);
445
446         switch (octeon_bootinfo->board_type) {
447         case CVMX_BOARD_TYPE_NAO38:
448                 /* Driving a 1 to GPIO 12 shuts off this board */
449                 cvmx_write_csr(CVMX_GPIO_BIT_CFGX(12), 1);
450                 cvmx_write_csr(CVMX_GPIO_TX_SET, 0x1000);
451                 break;
452         default:
453                 octeon_write_lcd("PowerOff");
454                 break;
455         }
456
457         octeon_kill_core(NULL);
458 }
459
460 static char __read_mostly octeon_system_type[80];
461
462 static int __init init_octeon_system_type(void)
463 {
464         snprintf(octeon_system_type, sizeof(octeon_system_type), "%s (%s)",
465                 cvmx_board_type_to_string(octeon_bootinfo->board_type),
466                 octeon_model_get_string(read_c0_prid()));
467
468         return 0;
469 }
470 early_initcall(init_octeon_system_type);
471
472 /**
473  * Return a string representing the system type
474  *
475  * Returns
476  */
477 const char *octeon_board_type_string(void)
478 {
479         return octeon_system_type;
480 }
481
482 const char *get_system_type(void)
483         __attribute__ ((alias("octeon_board_type_string")));
484
485 void octeon_user_io_init(void)
486 {
487         union octeon_cvmemctl cvmmemctl;
488         union cvmx_iob_fau_timeout fau_timeout;
489         union cvmx_pow_nw_tim nm_tim;
490
491         /* Get the current settings for CP0_CVMMEMCTL_REG */
492         cvmmemctl.u64 = read_c0_cvmmemctl();
493         /* R/W If set, marked write-buffer entries time out the same
494          * as as other entries; if clear, marked write-buffer entries
495          * use the maximum timeout. */
496         cvmmemctl.s.dismarkwblongto = 1;
497         /* R/W If set, a merged store does not clear the write-buffer
498          * entry timeout state. */
499         cvmmemctl.s.dismrgclrwbto = 0;
500         /* R/W Two bits that are the MSBs of the resultant CVMSEG LM
501          * word location for an IOBDMA. The other 8 bits come from the
502          * SCRADDR field of the IOBDMA. */
503         cvmmemctl.s.iobdmascrmsb = 0;
504         /* R/W If set, SYNCWS and SYNCS only order marked stores; if
505          * clear, SYNCWS and SYNCS only order unmarked
506          * stores. SYNCWSMARKED has no effect when DISSYNCWS is
507          * set. */
508         cvmmemctl.s.syncwsmarked = 0;
509         /* R/W If set, SYNCWS acts as SYNCW and SYNCS acts as SYNC. */
510         cvmmemctl.s.dissyncws = 0;
511         /* R/W If set, no stall happens on write buffer full. */
512         if (OCTEON_IS_MODEL(OCTEON_CN38XX_PASS2))
513                 cvmmemctl.s.diswbfst = 1;
514         else
515                 cvmmemctl.s.diswbfst = 0;
516         /* R/W If set (and SX set), supervisor-level loads/stores can
517          * use XKPHYS addresses with <48>==0 */
518         cvmmemctl.s.xkmemenas = 0;
519
520         /* R/W If set (and UX set), user-level loads/stores can use
521          * XKPHYS addresses with VA<48>==0 */
522         cvmmemctl.s.xkmemenau = 0;
523
524         /* R/W If set (and SX set), supervisor-level loads/stores can
525          * use XKPHYS addresses with VA<48>==1 */
526         cvmmemctl.s.xkioenas = 0;
527
528         /* R/W If set (and UX set), user-level loads/stores can use
529          * XKPHYS addresses with VA<48>==1 */
530         cvmmemctl.s.xkioenau = 0;
531
532         /* R/W If set, all stores act as SYNCW (NOMERGE must be set
533          * when this is set) RW, reset to 0. */
534         cvmmemctl.s.allsyncw = 0;
535
536         /* R/W If set, no stores merge, and all stores reach the
537          * coherent bus in order. */
538         cvmmemctl.s.nomerge = 0;
539         /* R/W Selects the bit in the counter used for DID time-outs 0
540          * = 231, 1 = 230, 2 = 229, 3 = 214. Actual time-out is
541          * between 1x and 2x this interval. For example, with
542          * DIDTTO=3, expiration interval is between 16K and 32K. */
543         cvmmemctl.s.didtto = 0;
544         /* R/W If set, the (mem) CSR clock never turns off. */
545         cvmmemctl.s.csrckalwys = 0;
546         /* R/W If set, mclk never turns off. */
547         cvmmemctl.s.mclkalwys = 0;
548         /* R/W Selects the bit in the counter used for write buffer
549          * flush time-outs (WBFLT+11) is the bit position in an
550          * internal counter used to determine expiration. The write
551          * buffer expires between 1x and 2x this interval. For
552          * example, with WBFLT = 0, a write buffer expires between 2K
553          * and 4K cycles after the write buffer entry is allocated. */
554         cvmmemctl.s.wbfltime = 0;
555         /* R/W If set, do not put Istream in the L2 cache. */
556         cvmmemctl.s.istrnol2 = 0;
557
558         /*
559          * R/W The write buffer threshold. As per erratum Core-14752
560          * for CN63XX, a sc/scd might fail if the write buffer is
561          * full.  Lowering WBTHRESH greatly lowers the chances of the
562          * write buffer ever being full and triggering the erratum.
563          */
564         if (OCTEON_IS_MODEL(OCTEON_CN63XX_PASS1_X))
565                 cvmmemctl.s.wbthresh = 4;
566         else
567                 cvmmemctl.s.wbthresh = 10;
568
569         /* R/W If set, CVMSEG is available for loads/stores in
570          * kernel/debug mode. */
571 #if CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE > 0
572         cvmmemctl.s.cvmsegenak = 1;
573 #else
574         cvmmemctl.s.cvmsegenak = 0;
575 #endif
576         /* R/W If set, CVMSEG is available for loads/stores in
577          * supervisor mode. */
578         cvmmemctl.s.cvmsegenas = 0;
579         /* R/W If set, CVMSEG is available for loads/stores in user
580          * mode. */
581         cvmmemctl.s.cvmsegenau = 0;
582
583         write_c0_cvmmemctl(cvmmemctl.u64);
584
585         /* Setup of CVMSEG is done in kernel-entry-init.h */
586         if (smp_processor_id() == 0)
587                 pr_notice("CVMSEG size: %d cache lines (%d bytes)\n",
588                           CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE,
589                           CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE * 128);
590
591         /* Set a default for the hardware timeouts */
592         fau_timeout.u64 = 0;
593         fau_timeout.s.tout_val = 0xfff;
594         /* Disable tagwait FAU timeout */
595         fau_timeout.s.tout_enb = 0;
596         cvmx_write_csr(CVMX_IOB_FAU_TIMEOUT, fau_timeout.u64);
597
598         nm_tim.u64 = 0;
599         /* 4096 cycles */
600         nm_tim.s.nw_tim = 3;
601         cvmx_write_csr(CVMX_POW_NW_TIM, nm_tim.u64);
602
603         write_octeon_c0_icacheerr(0);
604         write_c0_derraddr1(0);
605 }
606
607 /**
608  * Early entry point for arch setup
609  */
610 void __init prom_init(void)
611 {
612         struct cvmx_sysinfo *sysinfo;
613         const char *arg;
614         char *p;
615         int i;
616         u64 t;
617         int argc;
618 #ifdef CONFIG_CAVIUM_RESERVE32
619         int64_t addr = -1;
620 #endif
621         /*
622          * The bootloader passes a pointer to the boot descriptor in
623          * $a3, this is available as fw_arg3.
624          */
625         octeon_boot_desc_ptr = (struct octeon_boot_descriptor *)fw_arg3;
626         octeon_bootinfo =
627                 cvmx_phys_to_ptr(octeon_boot_desc_ptr->cvmx_desc_vaddr);
628         cvmx_bootmem_init(cvmx_phys_to_ptr(octeon_bootinfo->phy_mem_desc_addr));
629
630         sysinfo = cvmx_sysinfo_get();
631         memset(sysinfo, 0, sizeof(*sysinfo));
632         sysinfo->system_dram_size = octeon_bootinfo->dram_size << 20;
633         sysinfo->phy_mem_desc_ptr =
634                 cvmx_phys_to_ptr(octeon_bootinfo->phy_mem_desc_addr);
635         sysinfo->core_mask = octeon_bootinfo->core_mask;
636         sysinfo->exception_base_addr = octeon_bootinfo->exception_base_addr;
637         sysinfo->cpu_clock_hz = octeon_bootinfo->eclock_hz;
638         sysinfo->dram_data_rate_hz = octeon_bootinfo->dclock_hz * 2;
639         sysinfo->board_type = octeon_bootinfo->board_type;
640         sysinfo->board_rev_major = octeon_bootinfo->board_rev_major;
641         sysinfo->board_rev_minor = octeon_bootinfo->board_rev_minor;
642         memcpy(sysinfo->mac_addr_base, octeon_bootinfo->mac_addr_base,
643                sizeof(sysinfo->mac_addr_base));
644         sysinfo->mac_addr_count = octeon_bootinfo->mac_addr_count;
645         memcpy(sysinfo->board_serial_number,
646                octeon_bootinfo->board_serial_number,
647                sizeof(sysinfo->board_serial_number));
648         sysinfo->compact_flash_common_base_addr =
649                 octeon_bootinfo->compact_flash_common_base_addr;
650         sysinfo->compact_flash_attribute_base_addr =
651                 octeon_bootinfo->compact_flash_attribute_base_addr;
652         sysinfo->led_display_base_addr = octeon_bootinfo->led_display_base_addr;
653         sysinfo->dfa_ref_clock_hz = octeon_bootinfo->dfa_ref_clock_hz;
654         sysinfo->bootloader_config_flags = octeon_bootinfo->config_flags;
655
656         if (OCTEON_IS_OCTEON2() || OCTEON_IS_OCTEON3()) {
657                 /* I/O clock runs at a different rate than the CPU. */
658                 union cvmx_mio_rst_boot rst_boot;
659                 rst_boot.u64 = cvmx_read_csr(CVMX_MIO_RST_BOOT);
660                 octeon_io_clock_rate = 50000000 * rst_boot.s.pnr_mul;
661         } else {
662                 octeon_io_clock_rate = sysinfo->cpu_clock_hz;
663         }
664
665         t = read_c0_cvmctl();
666         if ((t & (1ull << 27)) == 0) {
667                 /*
668                  * Setup the multiplier save/restore code if
669                  * CvmCtl[NOMUL] clear.
670                  */
671                 void *save;
672                 void *save_end;
673                 void *restore;
674                 void *restore_end;
675                 int save_len;
676                 int restore_len;
677                 int save_max = (char *)octeon_mult_save_end -
678                         (char *)octeon_mult_save;
679                 int restore_max = (char *)octeon_mult_restore_end -
680                         (char *)octeon_mult_restore;
681                 if (current_cpu_data.cputype == CPU_CAVIUM_OCTEON3) {
682                         save = octeon_mult_save3;
683                         save_end = octeon_mult_save3_end;
684                         restore = octeon_mult_restore3;
685                         restore_end = octeon_mult_restore3_end;
686                 } else {
687                         save = octeon_mult_save2;
688                         save_end = octeon_mult_save2_end;
689                         restore = octeon_mult_restore2;
690                         restore_end = octeon_mult_restore2_end;
691                 }
692                 save_len = (char *)save_end - (char *)save;
693                 restore_len = (char *)restore_end - (char *)restore;
694                 if (!WARN_ON(save_len > save_max ||
695                                 restore_len > restore_max)) {
696                         memcpy(octeon_mult_save, save, save_len);
697                         memcpy(octeon_mult_restore, restore, restore_len);
698                 }
699         }
700
701         /*
702          * Only enable the LED controller if we're running on a CN38XX, CN58XX,
703          * or CN56XX. The CN30XX and CN31XX don't have an LED controller.
704          */
705         if (!octeon_is_simulation() &&
706             octeon_has_feature(OCTEON_FEATURE_LED_CONTROLLER)) {
707                 cvmx_write_csr(CVMX_LED_EN, 0);
708                 cvmx_write_csr(CVMX_LED_PRT, 0);
709                 cvmx_write_csr(CVMX_LED_DBG, 0);
710                 cvmx_write_csr(CVMX_LED_PRT_FMT, 0);
711                 cvmx_write_csr(CVMX_LED_UDD_CNTX(0), 32);
712                 cvmx_write_csr(CVMX_LED_UDD_CNTX(1), 32);
713                 cvmx_write_csr(CVMX_LED_UDD_DATX(0), 0);
714                 cvmx_write_csr(CVMX_LED_UDD_DATX(1), 0);
715                 cvmx_write_csr(CVMX_LED_EN, 1);
716         }
717 #ifdef CONFIG_CAVIUM_RESERVE32
718         /*
719          * We need to temporarily allocate all memory in the reserve32
720          * region. This makes sure the kernel doesn't allocate this
721          * memory when it is getting memory from the
722          * bootloader. Later, after the memory allocations are
723          * complete, the reserve32 will be freed.
724          *
725          * Allocate memory for RESERVED32 aligned on 2MB boundary. This
726          * is in case we later use hugetlb entries with it.
727          */
728         addr = cvmx_bootmem_phy_named_block_alloc(CONFIG_CAVIUM_RESERVE32 << 20,
729                                                 0, 0, 2 << 20,
730                                                 "CAVIUM_RESERVE32", 0);
731         if (addr < 0)
732                 pr_err("Failed to allocate CAVIUM_RESERVE32 memory area\n");
733         else
734                 octeon_reserve32_memory = addr;
735 #endif
736
737 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2
738         if (cvmx_read_csr(CVMX_L2D_FUS3) & (3ull << 34)) {
739                 pr_info("Skipping L2 locking due to reduced L2 cache size\n");
740         } else {
741                 uint32_t __maybe_unused ebase = read_c0_ebase() & 0x3ffff000;
742 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_TLB
743                 /* TLB refill */
744                 cvmx_l2c_lock_mem_region(ebase, 0x100);
745 #endif
746 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_EXCEPTION
747                 /* General exception */
748                 cvmx_l2c_lock_mem_region(ebase + 0x180, 0x80);
749 #endif
750 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_LOW_LEVEL_INTERRUPT
751                 /* Interrupt handler */
752                 cvmx_l2c_lock_mem_region(ebase + 0x200, 0x80);
753 #endif
754 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_INTERRUPT
755                 cvmx_l2c_lock_mem_region(__pa_symbol(handle_int), 0x100);
756                 cvmx_l2c_lock_mem_region(__pa_symbol(plat_irq_dispatch), 0x80);
757 #endif
758 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_MEMCPY
759                 cvmx_l2c_lock_mem_region(__pa_symbol(memcpy), 0x480);
760 #endif
761         }
762 #endif
763
764         octeon_check_cpu_bist();
765
766         octeon_uart = octeon_get_boot_uart();
767
768 #ifdef CONFIG_SMP
769         octeon_write_lcd("LinuxSMP");
770 #else
771         octeon_write_lcd("Linux");
772 #endif
773
774         octeon_setup_delays();
775
776         /*
777          * BIST should always be enabled when doing a soft reset. L2
778          * Cache locking for instance is not cleared unless BIST is
779          * enabled.  Unfortunately due to a chip errata G-200 for
780          * Cn38XX and CN31XX, BIST msut be disabled on these parts.
781          */
782         if (OCTEON_IS_MODEL(OCTEON_CN38XX_PASS2) ||
783             OCTEON_IS_MODEL(OCTEON_CN31XX))
784                 cvmx_write_csr(CVMX_CIU_SOFT_BIST, 0);
785         else
786                 cvmx_write_csr(CVMX_CIU_SOFT_BIST, 1);
787
788         /* Default to 64MB in the simulator to speed things up */
789         if (octeon_is_simulation())
790                 MAX_MEMORY = 64ull << 20;
791
792         arg = strstr(arcs_cmdline, "mem=");
793         if (arg) {
794                 MAX_MEMORY = memparse(arg + 4, &p);
795                 if (MAX_MEMORY == 0)
796                         MAX_MEMORY = 32ull << 30;
797                 if (*p == '@')
798                         RESERVE_LOW_MEM = memparse(p + 1, &p);
799         }
800
801         arcs_cmdline[0] = 0;
802         argc = octeon_boot_desc_ptr->argc;
803         for (i = 0; i < argc; i++) {
804                 const char *arg =
805                         cvmx_phys_to_ptr(octeon_boot_desc_ptr->argv[i]);
806                 if ((strncmp(arg, "MEM=", 4) == 0) ||
807                     (strncmp(arg, "mem=", 4) == 0)) {
808                         MAX_MEMORY = memparse(arg + 4, &p);
809                         if (MAX_MEMORY == 0)
810                                 MAX_MEMORY = 32ull << 30;
811                         if (*p == '@')
812                                 RESERVE_LOW_MEM = memparse(p + 1, &p);
813 #ifdef CONFIG_KEXEC
814                 } else if (strncmp(arg, "crashkernel=", 12) == 0) {
815                         crashk_size = memparse(arg+12, &p);
816                         if (*p == '@')
817                                 crashk_base = memparse(p+1, &p);
818                         strcat(arcs_cmdline, " ");
819                         strcat(arcs_cmdline, arg);
820                         /*
821                          * To do: switch parsing to new style, something like:
822                          * parse_crashkernel(arg, sysinfo->system_dram_size,
823                          *                &crashk_size, &crashk_base);
824                          */
825 #endif
826                 } else if (strlen(arcs_cmdline) + strlen(arg) + 1 <
827                            sizeof(arcs_cmdline) - 1) {
828                         strcat(arcs_cmdline, " ");
829                         strcat(arcs_cmdline, arg);
830                 }
831         }
832
833         if (strstr(arcs_cmdline, "console=") == NULL) {
834 #ifdef CONFIG_CAVIUM_OCTEON_2ND_KERNEL
835                 strcat(arcs_cmdline, " console=ttyS0,115200");
836 #else
837                 if (octeon_uart == 1)
838                         strcat(arcs_cmdline, " console=ttyS1,115200");
839                 else
840                         strcat(arcs_cmdline, " console=ttyS0,115200");
841 #endif
842         }
843
844         mips_hpt_frequency = octeon_get_clock_rate();
845
846         octeon_init_cvmcount();
847
848         _machine_restart = octeon_restart;
849         _machine_halt = octeon_halt;
850
851 #ifdef CONFIG_KEXEC
852         _machine_kexec_shutdown = octeon_shutdown;
853         _machine_crash_shutdown = octeon_crash_shutdown;
854         _machine_kexec_prepare = octeon_kexec_prepare;
855 #endif
856
857         octeon_user_io_init();
858         register_smp_ops(&octeon_smp_ops);
859 }
860
861 /* Exclude a single page from the regions obtained in plat_mem_setup. */
862 #ifndef CONFIG_CRASH_DUMP
863 static __init void memory_exclude_page(u64 addr, u64 *mem, u64 *size)
864 {
865         if (addr > *mem && addr < *mem + *size) {
866                 u64 inc = addr - *mem;
867                 add_memory_region(*mem, inc, BOOT_MEM_RAM);
868                 *mem += inc;
869                 *size -= inc;
870         }
871
872         if (addr == *mem && *size > PAGE_SIZE) {
873                 *mem += PAGE_SIZE;
874                 *size -= PAGE_SIZE;
875         }
876 }
877 #endif /* CONFIG_CRASH_DUMP */
878
879 void __init plat_mem_setup(void)
880 {
881         uint64_t mem_alloc_size;
882         uint64_t total;
883         uint64_t crashk_end;
884 #ifndef CONFIG_CRASH_DUMP
885         int64_t memory;
886         uint64_t kernel_start;
887         uint64_t kernel_size;
888 #endif
889
890         total = 0;
891         crashk_end = 0;
892
893         /*
894          * The Mips memory init uses the first memory location for
895          * some memory vectors. When SPARSEMEM is in use, it doesn't
896          * verify that the size is big enough for the final
897          * vectors. Making the smallest chuck 4MB seems to be enough
898          * to consistently work.
899          */
900         mem_alloc_size = 4 << 20;
901         if (mem_alloc_size > MAX_MEMORY)
902                 mem_alloc_size = MAX_MEMORY;
903
904 /* Crashkernel ignores bootmem list. It relies on mem=X@Y option */
905 #ifdef CONFIG_CRASH_DUMP
906         add_memory_region(RESERVE_LOW_MEM, MAX_MEMORY, BOOT_MEM_RAM);
907         total += MAX_MEMORY;
908 #else
909 #ifdef CONFIG_KEXEC
910         if (crashk_size > 0) {
911                 add_memory_region(crashk_base, crashk_size, BOOT_MEM_RAM);
912                 crashk_end = crashk_base + crashk_size;
913         }
914 #endif
915         /*
916          * When allocating memory, we want incrementing addresses from
917          * bootmem_alloc so the code in add_memory_region can merge
918          * regions next to each other.
919          */
920         cvmx_bootmem_lock();
921         while ((boot_mem_map.nr_map < BOOT_MEM_MAP_MAX)
922                 && (total < MAX_MEMORY)) {
923                 memory = cvmx_bootmem_phy_alloc(mem_alloc_size,
924                                                 __pa_symbol(&__init_end), -1,
925                                                 0x100000,
926                                                 CVMX_BOOTMEM_FLAG_NO_LOCKING);
927                 if (memory >= 0) {
928                         u64 size = mem_alloc_size;
929 #ifdef CONFIG_KEXEC
930                         uint64_t end;
931 #endif
932
933                         /*
934                          * exclude a page at the beginning and end of
935                          * the 256MB PCIe 'hole' so the kernel will not
936                          * try to allocate multi-page buffers that
937                          * span the discontinuity.
938                          */
939                         memory_exclude_page(CVMX_PCIE_BAR1_PHYS_BASE,
940                                             &memory, &size);
941                         memory_exclude_page(CVMX_PCIE_BAR1_PHYS_BASE +
942                                             CVMX_PCIE_BAR1_PHYS_SIZE,
943                                             &memory, &size);
944 #ifdef CONFIG_KEXEC
945                         end = memory + mem_alloc_size;
946
947                         /*
948                          * This function automatically merges address regions
949                          * next to each other if they are received in
950                          * incrementing order
951                          */
952                         if (memory < crashk_base && end >  crashk_end) {
953                                 /* region is fully in */
954                                 add_memory_region(memory,
955                                                   crashk_base - memory,
956                                                   BOOT_MEM_RAM);
957                                 total += crashk_base - memory;
958                                 add_memory_region(crashk_end,
959                                                   end - crashk_end,
960                                                   BOOT_MEM_RAM);
961                                 total += end - crashk_end;
962                                 continue;
963                         }
964
965                         if (memory >= crashk_base && end <= crashk_end)
966                                 /*
967                                  * Entire memory region is within the new
968                                  *  kernel's memory, ignore it.
969                                  */
970                                 continue;
971
972                         if (memory > crashk_base && memory < crashk_end &&
973                             end > crashk_end) {
974                                 /*
975                                  * Overlap with the beginning of the region,
976                                  * reserve the beginning.
977                                   */
978                                 mem_alloc_size -= crashk_end - memory;
979                                 memory = crashk_end;
980                         } else if (memory < crashk_base && end > crashk_base &&
981                                    end < crashk_end)
982                                 /*
983                                  * Overlap with the beginning of the region,
984                                  * chop of end.
985                                  */
986                                 mem_alloc_size -= end - crashk_base;
987 #endif
988                         add_memory_region(memory, mem_alloc_size, BOOT_MEM_RAM);
989                         total += mem_alloc_size;
990                         /* Recovering mem_alloc_size */
991                         mem_alloc_size = 4 << 20;
992                 } else {
993                         break;
994                 }
995         }
996         cvmx_bootmem_unlock();
997         /* Add the memory region for the kernel. */
998         kernel_start = (unsigned long) _text;
999         kernel_size = _end - _text;
1000
1001         /* Adjust for physical offset. */
1002         kernel_start &= ~0xffffffff80000000ULL;
1003         add_memory_region(kernel_start, kernel_size, BOOT_MEM_RAM);
1004 #endif /* CONFIG_CRASH_DUMP */
1005
1006 #ifdef CONFIG_CAVIUM_RESERVE32
1007         /*
1008          * Now that we've allocated the kernel memory it is safe to
1009          * free the reserved region. We free it here so that builtin
1010          * drivers can use the memory.
1011          */
1012         if (octeon_reserve32_memory)
1013                 cvmx_bootmem_free_named("CAVIUM_RESERVE32");
1014 #endif /* CONFIG_CAVIUM_RESERVE32 */
1015
1016         if (total == 0)
1017                 panic("Unable to allocate memory from "
1018                       "cvmx_bootmem_phy_alloc");
1019 }
1020
1021 /*
1022  * Emit one character to the boot UART.  Exported for use by the
1023  * watchdog timer.
1024  */
1025 int prom_putchar(char c)
1026 {
1027         uint64_t lsrval;
1028
1029         /* Spin until there is room */
1030         do {
1031                 lsrval = cvmx_read_csr(CVMX_MIO_UARTX_LSR(octeon_uart));
1032         } while ((lsrval & 0x20) == 0);
1033
1034         /* Write the byte */
1035         cvmx_write_csr(CVMX_MIO_UARTX_THR(octeon_uart), c & 0xffull);
1036         return 1;
1037 }
1038 EXPORT_SYMBOL(prom_putchar);
1039
1040 void prom_free_prom_memory(void)
1041 {
1042         if (CAVIUM_OCTEON_DCACHE_PREFETCH_WAR) {
1043                 /* Check for presence of Core-14449 fix.  */
1044                 u32 insn;
1045                 u32 *foo;
1046
1047                 foo = &insn;
1048
1049                 asm volatile("# before" : : : "memory");
1050                 prefetch(foo);
1051                 asm volatile(
1052                         ".set push\n\t"
1053                         ".set noreorder\n\t"
1054                         "bal 1f\n\t"
1055                         "nop\n"
1056                         "1:\tlw %0,-12($31)\n\t"
1057                         ".set pop\n\t"
1058                         : "=r" (insn) : : "$31", "memory");
1059
1060                 if ((insn >> 26) != 0x33)
1061                         panic("No PREF instruction at Core-14449 probe point.");
1062
1063                 if (((insn >> 16) & 0x1f) != 28)
1064                         panic("OCTEON II DCache prefetch workaround not in place (%04x).\n"
1065                               "Please build kernel with proper options (CONFIG_CAVIUM_CN63XXP1).",
1066                               insn);
1067         }
1068 }
1069
1070 int octeon_prune_device_tree(void);
1071
1072 extern const char __dtb_octeon_3xxx_begin;
1073 extern const char __dtb_octeon_68xx_begin;
1074 void __init device_tree_init(void)
1075 {
1076         const void *fdt;
1077         bool do_prune;
1078
1079         if (octeon_bootinfo->minor_version >= 3 && octeon_bootinfo->fdt_addr) {
1080                 fdt = phys_to_virt(octeon_bootinfo->fdt_addr);
1081                 if (fdt_check_header(fdt))
1082                         panic("Corrupt Device Tree passed to kernel.");
1083                 do_prune = false;
1084         } else if (OCTEON_IS_MODEL(OCTEON_CN68XX)) {
1085                 fdt = &__dtb_octeon_68xx_begin;
1086                 do_prune = true;
1087         } else {
1088                 fdt = &__dtb_octeon_3xxx_begin;
1089                 do_prune = true;
1090         }
1091
1092         initial_boot_params = (void *)fdt;
1093
1094         if (do_prune) {
1095                 octeon_prune_device_tree();
1096                 pr_info("Using internal Device Tree.\n");
1097         } else {
1098                 pr_info("Using passed Device Tree.\n");
1099         }
1100         unflatten_and_copy_device_tree();
1101 }
1102
1103 static int __initdata disable_octeon_edac_p;
1104
1105 static int __init disable_octeon_edac(char *str)
1106 {
1107         disable_octeon_edac_p = 1;
1108         return 0;
1109 }
1110 early_param("disable_octeon_edac", disable_octeon_edac);
1111
1112 static char *edac_device_names[] = {
1113         "octeon_l2c_edac",
1114         "octeon_pc_edac",
1115 };
1116
1117 static int __init edac_devinit(void)
1118 {
1119         struct platform_device *dev;
1120         int i, err = 0;
1121         int num_lmc;
1122         char *name;
1123
1124         if (disable_octeon_edac_p)
1125                 return 0;
1126
1127         for (i = 0; i < ARRAY_SIZE(edac_device_names); i++) {
1128                 name = edac_device_names[i];
1129                 dev = platform_device_register_simple(name, -1, NULL, 0);
1130                 if (IS_ERR(dev)) {
1131                         pr_err("Registration of %s failed!\n", name);
1132                         err = PTR_ERR(dev);
1133                 }
1134         }
1135
1136         num_lmc = OCTEON_IS_MODEL(OCTEON_CN68XX) ? 4 :
1137                 (OCTEON_IS_MODEL(OCTEON_CN56XX) ? 2 : 1);
1138         for (i = 0; i < num_lmc; i++) {
1139                 dev = platform_device_register_simple("octeon_lmc_edac",
1140                                                       i, NULL, 0);
1141                 if (IS_ERR(dev)) {
1142                         pr_err("Registration of octeon_lmc_edac %d failed!\n", i);
1143                         err = PTR_ERR(dev);
1144                 }
1145         }
1146
1147         return err;
1148 }
1149 device_initcall(edac_devinit);
1150
1151 static void __initdata *octeon_dummy_iospace;
1152
1153 static int __init octeon_no_pci_init(void)
1154 {
1155         /*
1156          * Initially assume there is no PCI. The PCI/PCIe platform code will
1157          * later re-initialize these to correct values if they are present.
1158          */
1159         octeon_dummy_iospace = vzalloc(IO_SPACE_LIMIT);
1160         set_io_port_base((unsigned long)octeon_dummy_iospace);
1161         ioport_resource.start = MAX_RESOURCE;
1162         ioport_resource.end = 0;
1163         return 0;
1164 }
1165 core_initcall(octeon_no_pci_init);
1166
1167 static int __init octeon_no_pci_release(void)
1168 {
1169         /*
1170          * Release the allocated memory if a real IO space is there.
1171          */
1172         if ((unsigned long)octeon_dummy_iospace != mips_io_port_base)
1173                 vfree(octeon_dummy_iospace);
1174         return 0;
1175 }
1176 late_initcall(octeon_no_pci_release);