2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
6 * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
7 * Copyright (C) 1995, 1996 Paul M. Antoine
8 * Copyright (C) 1998 Ulf Carlsson
9 * Copyright (C) 1999 Silicon Graphics, Inc.
10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11 * Copyright (C) 2002, 2003, 2004, 2005, 2007 Maciej W. Rozycki
12 * Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc. All rights reserved.
13 * Copyright (C) 2014, Imagination Technologies Ltd.
15 #include <linux/bitops.h>
16 #include <linux/bug.h>
17 #include <linux/compiler.h>
18 #include <linux/context_tracking.h>
19 #include <linux/cpu_pm.h>
20 #include <linux/kexec.h>
21 #include <linux/init.h>
22 #include <linux/kernel.h>
23 #include <linux/module.h>
25 #include <linux/sched.h>
26 #include <linux/smp.h>
27 #include <linux/spinlock.h>
28 #include <linux/kallsyms.h>
29 #include <linux/bootmem.h>
30 #include <linux/interrupt.h>
31 #include <linux/ptrace.h>
32 #include <linux/kgdb.h>
33 #include <linux/kdebug.h>
34 #include <linux/kprobes.h>
35 #include <linux/notifier.h>
36 #include <linux/kdb.h>
37 #include <linux/irq.h>
38 #include <linux/perf_event.h>
40 #include <asm/bootinfo.h>
41 #include <asm/branch.h>
42 #include <asm/break.h>
45 #include <asm/cpu-type.h>
48 #include <asm/fpu_emulator.h>
50 #include <asm/mips-r2-to-r6-emul.h>
51 #include <asm/mipsregs.h>
52 #include <asm/mipsmtregs.h>
53 #include <asm/module.h>
55 #include <asm/pgtable.h>
56 #include <asm/ptrace.h>
57 #include <asm/sections.h>
58 #include <asm/tlbdebug.h>
59 #include <asm/traps.h>
60 #include <asm/uaccess.h>
61 #include <asm/watch.h>
62 #include <asm/mmu_context.h>
63 #include <asm/types.h>
64 #include <asm/stacktrace.h>
67 extern void check_wait(void);
68 extern asmlinkage void rollback_handle_int(void);
69 extern asmlinkage void handle_int(void);
70 extern u32 handle_tlbl[];
71 extern u32 handle_tlbs[];
72 extern u32 handle_tlbm[];
73 extern asmlinkage void handle_adel(void);
74 extern asmlinkage void handle_ades(void);
75 extern asmlinkage void handle_ibe(void);
76 extern asmlinkage void handle_dbe(void);
77 extern asmlinkage void handle_sys(void);
78 extern asmlinkage void handle_bp(void);
79 extern asmlinkage void handle_ri(void);
80 extern asmlinkage void handle_ri_rdhwr_vivt(void);
81 extern asmlinkage void handle_ri_rdhwr(void);
82 extern asmlinkage void handle_cpu(void);
83 extern asmlinkage void handle_ov(void);
84 extern asmlinkage void handle_tr(void);
85 extern asmlinkage void handle_msa_fpe(void);
86 extern asmlinkage void handle_fpe(void);
87 extern asmlinkage void handle_ftlb(void);
88 extern asmlinkage void handle_msa(void);
89 extern asmlinkage void handle_mdmx(void);
90 extern asmlinkage void handle_watch(void);
91 extern asmlinkage void handle_mt(void);
92 extern asmlinkage void handle_dsp(void);
93 extern asmlinkage void handle_mcheck(void);
94 extern asmlinkage void handle_reserved(void);
95 extern void tlb_do_page_fault_0(void);
97 void (*board_be_init)(void);
98 int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
99 void (*board_nmi_handler_setup)(void);
100 void (*board_ejtag_handler_setup)(void);
101 void (*board_bind_eic_interrupt)(int irq, int regset);
102 void (*board_ebase_setup)(void);
103 void(*board_cache_error_setup)(void);
105 static void show_raw_backtrace(unsigned long reg29)
107 unsigned long *sp = (unsigned long *)(reg29 & ~3);
110 printk("Call Trace:");
111 #ifdef CONFIG_KALLSYMS
114 while (!kstack_end(sp)) {
115 unsigned long __user *p =
116 (unsigned long __user *)(unsigned long)sp++;
117 if (__get_user(addr, p)) {
118 printk(" (Bad stack address)");
121 if (__kernel_text_address(addr))
127 #ifdef CONFIG_KALLSYMS
129 static int __init set_raw_show_trace(char *str)
134 __setup("raw_show_trace", set_raw_show_trace);
137 static void show_backtrace(struct task_struct *task, const struct pt_regs *regs)
139 unsigned long sp = regs->regs[29];
140 unsigned long ra = regs->regs[31];
141 unsigned long pc = regs->cp0_epc;
146 if (raw_show_trace || !__kernel_text_address(pc)) {
147 show_raw_backtrace(sp);
150 printk("Call Trace:\n");
153 pc = unwind_stack(task, &sp, pc, &ra);
159 * This routine abuses get_user()/put_user() to reference pointers
160 * with at least a bit of error checking ...
162 static void show_stacktrace(struct task_struct *task,
163 const struct pt_regs *regs)
165 const int field = 2 * sizeof(unsigned long);
168 unsigned long __user *sp = (unsigned long __user *)regs->regs[29];
172 while ((unsigned long) sp & (PAGE_SIZE - 1)) {
173 if (i && ((i % (64 / field)) == 0))
180 if (__get_user(stackdata, sp++)) {
181 printk(" (Bad stack address)");
185 printk(" %0*lx", field, stackdata);
189 show_backtrace(task, regs);
192 void show_stack(struct task_struct *task, unsigned long *sp)
195 mm_segment_t old_fs = get_fs();
197 regs.regs[29] = (unsigned long)sp;
201 if (task && task != current) {
202 regs.regs[29] = task->thread.reg29;
204 regs.cp0_epc = task->thread.reg31;
205 #ifdef CONFIG_KGDB_KDB
206 } else if (atomic_read(&kgdb_active) != -1 &&
208 memcpy(®s, kdb_current_regs, sizeof(regs));
209 #endif /* CONFIG_KGDB_KDB */
211 prepare_frametrace(®s);
215 * show_stack() deals exclusively with kernel mode, so be sure to access
216 * the stack in the kernel (not user) address space.
219 show_stacktrace(task, ®s);
223 static void show_code(unsigned int __user *pc)
226 unsigned short __user *pc16 = NULL;
230 if ((unsigned long)pc & 1)
231 pc16 = (unsigned short __user *)((unsigned long)pc & ~1);
232 for(i = -3 ; i < 6 ; i++) {
234 if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) {
235 printk(" (Bad address in epc)\n");
238 printk("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>'));
242 static void __show_regs(const struct pt_regs *regs)
244 const int field = 2 * sizeof(unsigned long);
245 unsigned int cause = regs->cp0_cause;
246 unsigned int exccode;
249 show_regs_print_info(KERN_DEFAULT);
252 * Saved main processor registers
254 for (i = 0; i < 32; ) {
258 printk(" %0*lx", field, 0UL);
259 else if (i == 26 || i == 27)
260 printk(" %*s", field, "");
262 printk(" %0*lx", field, regs->regs[i]);
269 #ifdef CONFIG_CPU_HAS_SMARTMIPS
270 printk("Acx : %0*lx\n", field, regs->acx);
272 printk("Hi : %0*lx\n", field, regs->hi);
273 printk("Lo : %0*lx\n", field, regs->lo);
276 * Saved cp0 registers
278 printk("epc : %0*lx %pS\n", field, regs->cp0_epc,
279 (void *) regs->cp0_epc);
280 printk("ra : %0*lx %pS\n", field, regs->regs[31],
281 (void *) regs->regs[31]);
283 printk("Status: %08x ", (uint32_t) regs->cp0_status);
286 if (regs->cp0_status & ST0_KUO)
288 if (regs->cp0_status & ST0_IEO)
290 if (regs->cp0_status & ST0_KUP)
292 if (regs->cp0_status & ST0_IEP)
294 if (regs->cp0_status & ST0_KUC)
296 if (regs->cp0_status & ST0_IEC)
298 } else if (cpu_has_4kex) {
299 if (regs->cp0_status & ST0_KX)
301 if (regs->cp0_status & ST0_SX)
303 if (regs->cp0_status & ST0_UX)
305 switch (regs->cp0_status & ST0_KSU) {
310 printk("SUPERVISOR ");
319 if (regs->cp0_status & ST0_ERL)
321 if (regs->cp0_status & ST0_EXL)
323 if (regs->cp0_status & ST0_IE)
328 exccode = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
329 printk("Cause : %08x (ExcCode %02x)\n", cause, exccode);
331 if (1 <= exccode && exccode <= 5)
332 printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
334 printk("PrId : %08x (%s)\n", read_c0_prid(),
339 * FIXME: really the generic show_regs should take a const pointer argument.
341 void show_regs(struct pt_regs *regs)
343 __show_regs((struct pt_regs *)regs);
346 void show_registers(struct pt_regs *regs)
348 const int field = 2 * sizeof(unsigned long);
349 mm_segment_t old_fs = get_fs();
353 printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
354 current->comm, current->pid, current_thread_info(), current,
355 field, current_thread_info()->tp_value);
356 if (cpu_has_userlocal) {
359 tls = read_c0_userlocal();
360 if (tls != current_thread_info()->tp_value)
361 printk("*HwTLS: %0*lx\n", field, tls);
364 if (!user_mode(regs))
365 /* Necessary for getting the correct stack content */
367 show_stacktrace(current, regs);
368 show_code((unsigned int __user *) regs->cp0_epc);
373 static DEFINE_RAW_SPINLOCK(die_lock);
375 void __noreturn die(const char *str, struct pt_regs *regs)
377 static int die_counter;
382 if (notify_die(DIE_OOPS, str, regs, 0, current->thread.trap_nr,
383 SIGSEGV) == NOTIFY_STOP)
387 raw_spin_lock_irq(&die_lock);
390 printk("%s[#%d]:\n", str, ++die_counter);
391 show_registers(regs);
392 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
393 raw_spin_unlock_irq(&die_lock);
398 panic("Fatal exception in interrupt");
401 printk(KERN_EMERG "Fatal exception: panic in 5 seconds");
403 panic("Fatal exception");
406 if (regs && kexec_should_crash(current))
412 extern struct exception_table_entry __start___dbe_table[];
413 extern struct exception_table_entry __stop___dbe_table[];
416 " .section __dbe_table, \"a\"\n"
419 /* Given an address, look for it in the exception tables. */
420 static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
422 const struct exception_table_entry *e;
424 e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr);
426 e = search_module_dbetables(addr);
430 asmlinkage void do_be(struct pt_regs *regs)
432 const int field = 2 * sizeof(unsigned long);
433 const struct exception_table_entry *fixup = NULL;
434 int data = regs->cp0_cause & 4;
435 int action = MIPS_BE_FATAL;
436 enum ctx_state prev_state;
438 prev_state = exception_enter();
439 /* XXX For now. Fixme, this searches the wrong table ... */
440 if (data && !user_mode(regs))
441 fixup = search_dbe_tables(exception_epc(regs));
444 action = MIPS_BE_FIXUP;
446 if (board_be_handler)
447 action = board_be_handler(regs, fixup != NULL);
450 case MIPS_BE_DISCARD:
454 regs->cp0_epc = fixup->nextinsn;
463 * Assume it would be too dangerous to continue ...
465 printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
466 data ? "Data" : "Instruction",
467 field, regs->cp0_epc, field, regs->regs[31]);
468 if (notify_die(DIE_OOPS, "bus error", regs, 0, current->thread.trap_nr,
469 SIGBUS) == NOTIFY_STOP)
472 die_if_kernel("Oops", regs);
473 force_sig(SIGBUS, current);
476 exception_exit(prev_state);
480 * ll/sc, rdhwr, sync emulation
483 #define OPCODE 0xfc000000
484 #define BASE 0x03e00000
485 #define RT 0x001f0000
486 #define OFFSET 0x0000ffff
487 #define LL 0xc0000000
488 #define SC 0xe0000000
489 #define SPEC0 0x00000000
490 #define SPEC3 0x7c000000
491 #define RD 0x0000f800
492 #define FUNC 0x0000003f
493 #define SYNC 0x0000000f
494 #define RDHWR 0x0000003b
496 /* microMIPS definitions */
497 #define MM_POOL32A_FUNC 0xfc00ffff
498 #define MM_RDHWR 0x00006b3c
499 #define MM_RS 0x001f0000
500 #define MM_RT 0x03e00000
503 * The ll_bit is cleared by r*_switch.S
507 struct task_struct *ll_task;
509 static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode)
511 unsigned long value, __user *vaddr;
515 * analyse the ll instruction that just caused a ri exception
516 * and put the referenced address to addr.
519 /* sign extend offset */
520 offset = opcode & OFFSET;
524 vaddr = (unsigned long __user *)
525 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
527 if ((unsigned long)vaddr & 3)
529 if (get_user(value, vaddr))
534 if (ll_task == NULL || ll_task == current) {
543 regs->regs[(opcode & RT) >> 16] = value;
548 static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode)
550 unsigned long __user *vaddr;
555 * analyse the sc instruction that just caused a ri exception
556 * and put the referenced address to addr.
559 /* sign extend offset */
560 offset = opcode & OFFSET;
564 vaddr = (unsigned long __user *)
565 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
566 reg = (opcode & RT) >> 16;
568 if ((unsigned long)vaddr & 3)
573 if (ll_bit == 0 || ll_task != current) {
581 if (put_user(regs->regs[reg], vaddr))
590 * ll uses the opcode of lwc0 and sc uses the opcode of swc0. That is both
591 * opcodes are supposed to result in coprocessor unusable exceptions if
592 * executed on ll/sc-less processors. That's the theory. In practice a
593 * few processors such as NEC's VR4100 throw reserved instruction exceptions
594 * instead, so we're doing the emulation thing in both exception handlers.
596 static int simulate_llsc(struct pt_regs *regs, unsigned int opcode)
598 if ((opcode & OPCODE) == LL) {
599 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
601 return simulate_ll(regs, opcode);
603 if ((opcode & OPCODE) == SC) {
604 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
606 return simulate_sc(regs, opcode);
609 return -1; /* Must be something else ... */
613 * Simulate trapping 'rdhwr' instructions to provide user accessible
614 * registers not implemented in hardware.
616 static int simulate_rdhwr(struct pt_regs *regs, int rd, int rt)
618 struct thread_info *ti = task_thread_info(current);
620 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
623 case 0: /* CPU number */
624 regs->regs[rt] = smp_processor_id();
626 case 1: /* SYNCI length */
627 regs->regs[rt] = min(current_cpu_data.dcache.linesz,
628 current_cpu_data.icache.linesz);
630 case 2: /* Read count register */
631 regs->regs[rt] = read_c0_count();
633 case 3: /* Count register resolution */
634 switch (current_cpu_type()) {
644 regs->regs[rt] = ti->tp_value;
651 static int simulate_rdhwr_normal(struct pt_regs *regs, unsigned int opcode)
653 if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
654 int rd = (opcode & RD) >> 11;
655 int rt = (opcode & RT) >> 16;
657 simulate_rdhwr(regs, rd, rt);
665 static int simulate_rdhwr_mm(struct pt_regs *regs, unsigned short opcode)
667 if ((opcode & MM_POOL32A_FUNC) == MM_RDHWR) {
668 int rd = (opcode & MM_RS) >> 16;
669 int rt = (opcode & MM_RT) >> 21;
670 simulate_rdhwr(regs, rd, rt);
678 static int simulate_sync(struct pt_regs *regs, unsigned int opcode)
680 if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) {
681 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
686 return -1; /* Must be something else ... */
689 asmlinkage void do_ov(struct pt_regs *regs)
691 enum ctx_state prev_state;
694 prev_state = exception_enter();
695 die_if_kernel("Integer overflow", regs);
697 info.si_code = FPE_INTOVF;
698 info.si_signo = SIGFPE;
700 info.si_addr = (void __user *) regs->cp0_epc;
701 force_sig_info(SIGFPE, &info, current);
702 exception_exit(prev_state);
705 int process_fpemu_return(int sig, void __user *fault_addr, unsigned long fcr31)
707 struct siginfo si = { 0 };
714 si.si_addr = fault_addr;
717 * Inexact can happen together with Overflow or Underflow.
718 * Respect the mask to deliver the correct exception.
720 fcr31 &= (fcr31 & FPU_CSR_ALL_E) <<
721 (ffs(FPU_CSR_ALL_X) - ffs(FPU_CSR_ALL_E));
722 if (fcr31 & FPU_CSR_INV_X)
723 si.si_code = FPE_FLTINV;
724 else if (fcr31 & FPU_CSR_DIV_X)
725 si.si_code = FPE_FLTDIV;
726 else if (fcr31 & FPU_CSR_OVF_X)
727 si.si_code = FPE_FLTOVF;
728 else if (fcr31 & FPU_CSR_UDF_X)
729 si.si_code = FPE_FLTUND;
730 else if (fcr31 & FPU_CSR_INE_X)
731 si.si_code = FPE_FLTRES;
733 si.si_code = __SI_FAULT;
734 force_sig_info(sig, &si, current);
738 si.si_addr = fault_addr;
740 si.si_code = BUS_ADRERR;
741 force_sig_info(sig, &si, current);
745 si.si_addr = fault_addr;
747 down_read(¤t->mm->mmap_sem);
748 if (find_vma(current->mm, (unsigned long)fault_addr))
749 si.si_code = SEGV_ACCERR;
751 si.si_code = SEGV_MAPERR;
752 up_read(¤t->mm->mmap_sem);
753 force_sig_info(sig, &si, current);
757 force_sig(sig, current);
762 static int simulate_fp(struct pt_regs *regs, unsigned int opcode,
763 unsigned long old_epc, unsigned long old_ra)
765 union mips_instruction inst = { .word = opcode };
766 void __user *fault_addr;
770 /* If it's obviously not an FP instruction, skip it */
771 switch (inst.i_format.opcode) {
785 * do_ri skipped over the instruction via compute_return_epc, undo
786 * that for the FPU emulator.
788 regs->cp0_epc = old_epc;
789 regs->regs[31] = old_ra;
791 /* Save the FP context to struct thread_struct */
794 /* Run the emulator */
795 sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 1,
797 fcr31 = current->thread.fpu.fcr31;
800 * We can't allow the emulated instruction to leave any of
801 * the cause bits set in $fcr31.
803 current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
805 /* Restore the hardware register state */
808 /* Send a signal if required. */
809 process_fpemu_return(sig, fault_addr, fcr31);
815 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
817 asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
819 enum ctx_state prev_state;
820 void __user *fault_addr;
823 prev_state = exception_enter();
824 if (notify_die(DIE_FP, "FP exception", regs, 0, current->thread.trap_nr,
825 SIGFPE) == NOTIFY_STOP)
828 /* Clear FCSR.Cause before enabling interrupts */
829 write_32bit_cp1_register(CP1_STATUS, fcr31 & ~FPU_CSR_ALL_X);
832 die_if_kernel("FP exception in kernel code", regs);
834 if (fcr31 & FPU_CSR_UNI_X) {
836 * Unimplemented operation exception. If we've got the full
837 * software emulator on-board, let's use it...
839 * Force FPU to dump state into task/thread context. We're
840 * moving a lot of data here for what is probably a single
841 * instruction, but the alternative is to pre-decode the FP
842 * register operands before invoking the emulator, which seems
843 * a bit extreme for what should be an infrequent event.
845 /* Ensure 'resume' not overwrite saved fp context again. */
848 /* Run the emulator */
849 sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 1,
851 fcr31 = current->thread.fpu.fcr31;
854 * We can't allow the emulated instruction to leave any of
855 * the cause bits set in $fcr31.
857 current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
859 /* Restore the hardware register state */
860 own_fpu(1); /* Using the FPU again. */
863 fault_addr = (void __user *) regs->cp0_epc;
866 /* Send a signal if required. */
867 process_fpemu_return(sig, fault_addr, fcr31);
870 exception_exit(prev_state);
873 void do_trap_or_bp(struct pt_regs *regs, unsigned int code,
879 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
880 if (kgdb_ll_trap(DIE_TRAP, str, regs, code, current->thread.trap_nr,
881 SIGTRAP) == NOTIFY_STOP)
883 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
885 if (notify_die(DIE_TRAP, str, regs, code, current->thread.trap_nr,
886 SIGTRAP) == NOTIFY_STOP)
890 * A short test says that IRIX 5.3 sends SIGTRAP for all trap
891 * insns, even for trap and break codes that indicate arithmetic
892 * failures. Weird ...
893 * But should we continue the brokenness??? --macro
898 scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
899 die_if_kernel(b, regs);
900 if (code == BRK_DIVZERO)
901 info.si_code = FPE_INTDIV;
903 info.si_code = FPE_INTOVF;
904 info.si_signo = SIGFPE;
906 info.si_addr = (void __user *) regs->cp0_epc;
907 force_sig_info(SIGFPE, &info, current);
910 die_if_kernel("Kernel bug detected", regs);
911 force_sig(SIGTRAP, current);
915 * This breakpoint code is used by the FPU emulator to retake
916 * control of the CPU after executing the instruction from the
917 * delay slot of an emulated branch.
919 * Terminate if exception was recognized as a delay slot return
920 * otherwise handle as normal.
922 if (do_dsemulret(regs))
925 die_if_kernel("Math emu break/trap", regs);
926 force_sig(SIGTRAP, current);
929 scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
930 die_if_kernel(b, regs);
931 force_sig(SIGTRAP, current);
935 asmlinkage void do_bp(struct pt_regs *regs)
937 unsigned long epc = msk_isa16_mode(exception_epc(regs));
938 unsigned int opcode, bcode;
939 enum ctx_state prev_state;
943 if (!user_mode(regs))
946 prev_state = exception_enter();
947 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
948 if (get_isa16_mode(regs->cp0_epc)) {
951 if (__get_user(instr[0], (u16 __user *)epc))
954 if (!cpu_has_mmips) {
956 bcode = (instr[0] >> 5) & 0x3f;
957 } else if (mm_insn_16bit(instr[0])) {
958 /* 16-bit microMIPS BREAK */
959 bcode = instr[0] & 0xf;
961 /* 32-bit microMIPS BREAK */
962 if (__get_user(instr[1], (u16 __user *)(epc + 2)))
964 opcode = (instr[0] << 16) | instr[1];
965 bcode = (opcode >> 6) & ((1 << 20) - 1);
968 if (__get_user(opcode, (unsigned int __user *)epc))
970 bcode = (opcode >> 6) & ((1 << 20) - 1);
974 * There is the ancient bug in the MIPS assemblers that the break
975 * code starts left to bit 16 instead to bit 6 in the opcode.
976 * Gas is bug-compatible, but not always, grrr...
977 * We handle both cases with a simple heuristics. --macro
979 if (bcode >= (1 << 10))
980 bcode = ((bcode & ((1 << 10) - 1)) << 10) | (bcode >> 10);
983 * notify the kprobe handlers, if instruction is likely to
988 if (notify_die(DIE_UPROBE, "uprobe", regs, bcode,
989 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
994 if (notify_die(DIE_UPROBE_XOL, "uprobe_xol", regs, bcode,
995 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1000 if (notify_die(DIE_BREAK, "debug", regs, bcode,
1001 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1005 case BRK_KPROBE_SSTEPBP:
1006 if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode,
1007 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1015 do_trap_or_bp(regs, bcode, "Break");
1019 exception_exit(prev_state);
1023 force_sig(SIGSEGV, current);
1027 asmlinkage void do_tr(struct pt_regs *regs)
1029 u32 opcode, tcode = 0;
1030 enum ctx_state prev_state;
1033 unsigned long epc = msk_isa16_mode(exception_epc(regs));
1036 if (!user_mode(regs))
1039 prev_state = exception_enter();
1040 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1041 if (get_isa16_mode(regs->cp0_epc)) {
1042 if (__get_user(instr[0], (u16 __user *)(epc + 0)) ||
1043 __get_user(instr[1], (u16 __user *)(epc + 2)))
1045 opcode = (instr[0] << 16) | instr[1];
1046 /* Immediate versions don't provide a code. */
1047 if (!(opcode & OPCODE))
1048 tcode = (opcode >> 12) & ((1 << 4) - 1);
1050 if (__get_user(opcode, (u32 __user *)epc))
1052 /* Immediate versions don't provide a code. */
1053 if (!(opcode & OPCODE))
1054 tcode = (opcode >> 6) & ((1 << 10) - 1);
1057 do_trap_or_bp(regs, tcode, "Trap");
1061 exception_exit(prev_state);
1065 force_sig(SIGSEGV, current);
1069 asmlinkage void do_ri(struct pt_regs *regs)
1071 unsigned int __user *epc = (unsigned int __user *)exception_epc(regs);
1072 unsigned long old_epc = regs->cp0_epc;
1073 unsigned long old31 = regs->regs[31];
1074 enum ctx_state prev_state;
1075 unsigned int opcode = 0;
1079 * Avoid any kernel code. Just emulate the R2 instruction
1080 * as quickly as possible.
1082 if (mipsr2_emulation && cpu_has_mips_r6 &&
1083 likely(user_mode(regs)) &&
1084 likely(get_user(opcode, epc) >= 0)) {
1085 unsigned long fcr31 = 0;
1087 status = mipsr2_decoder(regs, opcode, &fcr31);
1091 task_thread_info(current)->r2_emul_return = 1;
1096 process_fpemu_return(status,
1097 ¤t->thread.cp0_baduaddr,
1099 task_thread_info(current)->r2_emul_return = 1;
1106 prev_state = exception_enter();
1107 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1109 if (notify_die(DIE_RI, "RI Fault", regs, 0, current->thread.trap_nr,
1110 SIGILL) == NOTIFY_STOP)
1113 die_if_kernel("Reserved instruction in kernel code", regs);
1115 if (unlikely(compute_return_epc(regs) < 0))
1118 if (get_isa16_mode(regs->cp0_epc)) {
1119 unsigned short mmop[2] = { 0 };
1121 if (unlikely(get_user(mmop[0], epc) < 0))
1123 if (unlikely(get_user(mmop[1], epc) < 0))
1125 opcode = (mmop[0] << 16) | mmop[1];
1128 status = simulate_rdhwr_mm(regs, opcode);
1130 if (unlikely(get_user(opcode, epc) < 0))
1133 if (!cpu_has_llsc && status < 0)
1134 status = simulate_llsc(regs, opcode);
1137 status = simulate_rdhwr_normal(regs, opcode);
1140 status = simulate_sync(regs, opcode);
1143 status = simulate_fp(regs, opcode, old_epc, old31);
1149 if (unlikely(status > 0)) {
1150 regs->cp0_epc = old_epc; /* Undo skip-over. */
1151 regs->regs[31] = old31;
1152 force_sig(status, current);
1156 exception_exit(prev_state);
1160 * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
1161 * emulated more than some threshold number of instructions, force migration to
1162 * a "CPU" that has FP support.
1164 static void mt_ase_fp_affinity(void)
1166 #ifdef CONFIG_MIPS_MT_FPAFF
1167 if (mt_fpemul_threshold > 0 &&
1168 ((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
1170 * If there's no FPU present, or if the application has already
1171 * restricted the allowed set to exclude any CPUs with FPUs,
1172 * we'll skip the procedure.
1174 if (cpumask_intersects(¤t->cpus_allowed, &mt_fpu_cpumask)) {
1177 current->thread.user_cpus_allowed
1178 = current->cpus_allowed;
1179 cpumask_and(&tmask, ¤t->cpus_allowed,
1181 set_cpus_allowed_ptr(current, &tmask);
1182 set_thread_flag(TIF_FPUBOUND);
1185 #endif /* CONFIG_MIPS_MT_FPAFF */
1189 * No lock; only written during early bootup by CPU 0.
1191 static RAW_NOTIFIER_HEAD(cu2_chain);
1193 int __ref register_cu2_notifier(struct notifier_block *nb)
1195 return raw_notifier_chain_register(&cu2_chain, nb);
1198 int cu2_notifier_call_chain(unsigned long val, void *v)
1200 return raw_notifier_call_chain(&cu2_chain, val, v);
1203 static int default_cu2_call(struct notifier_block *nfb, unsigned long action,
1206 struct pt_regs *regs = data;
1208 die_if_kernel("COP2: Unhandled kernel unaligned access or invalid "
1209 "instruction", regs);
1210 force_sig(SIGILL, current);
1215 static int wait_on_fp_mode_switch(atomic_t *p)
1218 * The FP mode for this task is currently being switched. That may
1219 * involve modifications to the format of this tasks FP context which
1220 * make it unsafe to proceed with execution for the moment. Instead,
1221 * schedule some other task.
1227 static int enable_restore_fp_context(int msa)
1229 int err, was_fpu_owner, prior_msa;
1232 * If an FP mode switch is currently underway, wait for it to
1233 * complete before proceeding.
1235 wait_on_atomic_t(¤t->mm->context.fp_mode_switching,
1236 wait_on_fp_mode_switch, TASK_KILLABLE);
1239 /* First time FP context user. */
1245 set_thread_flag(TIF_USEDMSA);
1246 set_thread_flag(TIF_MSA_CTX_LIVE);
1255 * This task has formerly used the FP context.
1257 * If this thread has no live MSA vector context then we can simply
1258 * restore the scalar FP context. If it has live MSA vector context
1259 * (that is, it has or may have used MSA since last performing a
1260 * function call) then we'll need to restore the vector context. This
1261 * applies even if we're currently only executing a scalar FP
1262 * instruction. This is because if we were to later execute an MSA
1263 * instruction then we'd either have to:
1265 * - Restore the vector context & clobber any registers modified by
1266 * scalar FP instructions between now & then.
1270 * - Not restore the vector context & lose the most significant bits
1271 * of all vector registers.
1273 * Neither of those options is acceptable. We cannot restore the least
1274 * significant bits of the registers now & only restore the most
1275 * significant bits later because the most significant bits of any
1276 * vector registers whose aliased FP register is modified now will have
1277 * been zeroed. We'd have no way to know that when restoring the vector
1278 * context & thus may load an outdated value for the most significant
1279 * bits of a vector register.
1281 if (!msa && !thread_msa_context_live())
1285 * This task is using or has previously used MSA. Thus we require
1286 * that Status.FR == 1.
1289 was_fpu_owner = is_fpu_owner();
1290 err = own_fpu_inatomic(0);
1295 write_msa_csr(current->thread.fpu.msacsr);
1296 set_thread_flag(TIF_USEDMSA);
1299 * If this is the first time that the task is using MSA and it has
1300 * previously used scalar FP in this time slice then we already nave
1301 * FP context which we shouldn't clobber. We do however need to clear
1302 * the upper 64b of each vector register so that this task has no
1303 * opportunity to see data left behind by another.
1305 prior_msa = test_and_set_thread_flag(TIF_MSA_CTX_LIVE);
1306 if (!prior_msa && was_fpu_owner) {
1314 * Restore the least significant 64b of each vector register
1315 * from the existing scalar FP context.
1317 _restore_fp(current);
1320 * The task has not formerly used MSA, so clear the upper 64b
1321 * of each vector register such that it cannot see data left
1322 * behind by another task.
1326 /* We need to restore the vector context. */
1327 restore_msa(current);
1329 /* Restore the scalar FP control & status register */
1331 write_32bit_cp1_register(CP1_STATUS,
1332 current->thread.fpu.fcr31);
1341 asmlinkage void do_cpu(struct pt_regs *regs)
1343 enum ctx_state prev_state;
1344 unsigned int __user *epc;
1345 unsigned long old_epc, old31;
1346 void __user *fault_addr;
1347 unsigned int opcode;
1348 unsigned long fcr31;
1351 unsigned long __maybe_unused flags;
1354 prev_state = exception_enter();
1355 cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
1358 die_if_kernel("do_cpu invoked from kernel context!", regs);
1362 epc = (unsigned int __user *)exception_epc(regs);
1363 old_epc = regs->cp0_epc;
1364 old31 = regs->regs[31];
1368 if (unlikely(compute_return_epc(regs) < 0))
1371 if (get_isa16_mode(regs->cp0_epc)) {
1372 unsigned short mmop[2] = { 0 };
1374 if (unlikely(get_user(mmop[0], epc) < 0))
1376 if (unlikely(get_user(mmop[1], epc) < 0))
1378 opcode = (mmop[0] << 16) | mmop[1];
1381 status = simulate_rdhwr_mm(regs, opcode);
1383 if (unlikely(get_user(opcode, epc) < 0))
1386 if (!cpu_has_llsc && status < 0)
1387 status = simulate_llsc(regs, opcode);
1390 status = simulate_rdhwr_normal(regs, opcode);
1396 if (unlikely(status > 0)) {
1397 regs->cp0_epc = old_epc; /* Undo skip-over. */
1398 regs->regs[31] = old31;
1399 force_sig(status, current);
1406 * The COP3 opcode space and consequently the CP0.Status.CU3
1407 * bit and the CP0.Cause.CE=3 encoding have been removed as
1408 * of the MIPS III ISA. From the MIPS IV and MIPS32r2 ISAs
1409 * up the space has been reused for COP1X instructions, that
1410 * are enabled by the CP0.Status.CU1 bit and consequently
1411 * use the CP0.Cause.CE=1 encoding for Coprocessor Unusable
1412 * exceptions. Some FPU-less processors that implement one
1413 * of these ISAs however use this code erroneously for COP1X
1414 * instructions. Therefore we redirect this trap to the FP
1417 if (raw_cpu_has_fpu || !cpu_has_mips_4_5_64_r2_r6) {
1418 force_sig(SIGILL, current);
1424 err = enable_restore_fp_context(0);
1426 if (raw_cpu_has_fpu && !err)
1429 sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 0,
1431 fcr31 = current->thread.fpu.fcr31;
1434 * We can't allow the emulated instruction to leave
1435 * any of the cause bits set in $fcr31.
1437 current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
1439 /* Send a signal if required. */
1440 if (!process_fpemu_return(sig, fault_addr, fcr31) && !err)
1441 mt_ase_fp_affinity();
1446 raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs);
1450 exception_exit(prev_state);
1453 asmlinkage void do_msa_fpe(struct pt_regs *regs, unsigned int msacsr)
1455 enum ctx_state prev_state;
1457 prev_state = exception_enter();
1458 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1459 if (notify_die(DIE_MSAFP, "MSA FP exception", regs, 0,
1460 current->thread.trap_nr, SIGFPE) == NOTIFY_STOP)
1463 /* Clear MSACSR.Cause before enabling interrupts */
1464 write_msa_csr(msacsr & ~MSA_CSR_CAUSEF);
1467 die_if_kernel("do_msa_fpe invoked from kernel context!", regs);
1468 force_sig(SIGFPE, current);
1470 exception_exit(prev_state);
1473 asmlinkage void do_msa(struct pt_regs *regs)
1475 enum ctx_state prev_state;
1478 prev_state = exception_enter();
1480 if (!cpu_has_msa || test_thread_flag(TIF_32BIT_FPREGS)) {
1481 force_sig(SIGILL, current);
1485 die_if_kernel("do_msa invoked from kernel context!", regs);
1487 err = enable_restore_fp_context(1);
1489 force_sig(SIGILL, current);
1491 exception_exit(prev_state);
1494 asmlinkage void do_mdmx(struct pt_regs *regs)
1496 enum ctx_state prev_state;
1498 prev_state = exception_enter();
1499 force_sig(SIGILL, current);
1500 exception_exit(prev_state);
1504 * Called with interrupts disabled.
1506 asmlinkage void do_watch(struct pt_regs *regs)
1508 enum ctx_state prev_state;
1511 prev_state = exception_enter();
1513 * Clear WP (bit 22) bit of cause register so we don't loop
1516 cause = read_c0_cause();
1517 cause &= ~(1 << 22);
1518 write_c0_cause(cause);
1521 * If the current thread has the watch registers loaded, save
1522 * their values and send SIGTRAP. Otherwise another thread
1523 * left the registers set, clear them and continue.
1525 if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) {
1526 mips_read_watch_registers();
1528 force_sig(SIGTRAP, current);
1530 mips_clear_watch_registers();
1533 exception_exit(prev_state);
1536 asmlinkage void do_mcheck(struct pt_regs *regs)
1538 int multi_match = regs->cp0_status & ST0_TS;
1539 enum ctx_state prev_state;
1540 mm_segment_t old_fs = get_fs();
1542 prev_state = exception_enter();
1551 if (!user_mode(regs))
1554 show_code((unsigned int __user *) regs->cp0_epc);
1559 * Some chips may have other causes of machine check (e.g. SB1
1562 panic("Caught Machine Check exception - %scaused by multiple "
1563 "matching entries in the TLB.",
1564 (multi_match) ? "" : "not ");
1567 asmlinkage void do_mt(struct pt_regs *regs)
1571 subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
1572 >> VPECONTROL_EXCPT_SHIFT;
1575 printk(KERN_DEBUG "Thread Underflow\n");
1578 printk(KERN_DEBUG "Thread Overflow\n");
1581 printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
1584 printk(KERN_DEBUG "Gating Storage Exception\n");
1587 printk(KERN_DEBUG "YIELD Scheduler Exception\n");
1590 printk(KERN_DEBUG "Gating Storage Scheduler Exception\n");
1593 printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
1597 die_if_kernel("MIPS MT Thread exception in kernel", regs);
1599 force_sig(SIGILL, current);
1603 asmlinkage void do_dsp(struct pt_regs *regs)
1606 panic("Unexpected DSP exception");
1608 force_sig(SIGILL, current);
1611 asmlinkage void do_reserved(struct pt_regs *regs)
1614 * Game over - no way to handle this if it ever occurs. Most probably
1615 * caused by a new unknown cpu type or after another deadly
1616 * hard/software error.
1619 panic("Caught reserved exception %ld - should not happen.",
1620 (regs->cp0_cause & 0x7f) >> 2);
1623 static int __initdata l1parity = 1;
1624 static int __init nol1parity(char *s)
1629 __setup("nol1par", nol1parity);
1630 static int __initdata l2parity = 1;
1631 static int __init nol2parity(char *s)
1636 __setup("nol2par", nol2parity);
1639 * Some MIPS CPUs can enable/disable for cache parity detection, but do
1640 * it different ways.
1642 static inline void parity_protection_init(void)
1644 switch (current_cpu_type()) {
1650 case CPU_INTERAPTIV:
1653 case CPU_QEMU_GENERIC:
1656 #define ERRCTL_PE 0x80000000
1657 #define ERRCTL_L2P 0x00800000
1658 unsigned long errctl;
1659 unsigned int l1parity_present, l2parity_present;
1661 errctl = read_c0_ecc();
1662 errctl &= ~(ERRCTL_PE|ERRCTL_L2P);
1664 /* probe L1 parity support */
1665 write_c0_ecc(errctl | ERRCTL_PE);
1666 back_to_back_c0_hazard();
1667 l1parity_present = (read_c0_ecc() & ERRCTL_PE);
1669 /* probe L2 parity support */
1670 write_c0_ecc(errctl|ERRCTL_L2P);
1671 back_to_back_c0_hazard();
1672 l2parity_present = (read_c0_ecc() & ERRCTL_L2P);
1674 if (l1parity_present && l2parity_present) {
1676 errctl |= ERRCTL_PE;
1677 if (l1parity ^ l2parity)
1678 errctl |= ERRCTL_L2P;
1679 } else if (l1parity_present) {
1681 errctl |= ERRCTL_PE;
1682 } else if (l2parity_present) {
1684 errctl |= ERRCTL_L2P;
1686 /* No parity available */
1689 printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl);
1691 write_c0_ecc(errctl);
1692 back_to_back_c0_hazard();
1693 errctl = read_c0_ecc();
1694 printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl);
1696 if (l1parity_present)
1697 printk(KERN_INFO "Cache parity protection %sabled\n",
1698 (errctl & ERRCTL_PE) ? "en" : "dis");
1700 if (l2parity_present) {
1701 if (l1parity_present && l1parity)
1702 errctl ^= ERRCTL_L2P;
1703 printk(KERN_INFO "L2 cache parity protection %sabled\n",
1704 (errctl & ERRCTL_L2P) ? "en" : "dis");
1712 write_c0_ecc(0x80000000);
1713 back_to_back_c0_hazard();
1714 /* Set the PE bit (bit 31) in the c0_errctl register. */
1715 printk(KERN_INFO "Cache parity protection %sabled\n",
1716 (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1720 /* Clear the DE bit (bit 16) in the c0_status register. */
1721 printk(KERN_INFO "Enable cache parity protection for "
1722 "MIPS 20KC/25KF CPUs.\n");
1723 clear_c0_status(ST0_DE);
1730 asmlinkage void cache_parity_error(void)
1732 const int field = 2 * sizeof(unsigned long);
1733 unsigned int reg_val;
1735 /* For the moment, report the problem and hang. */
1736 printk("Cache error exception:\n");
1737 printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1738 reg_val = read_c0_cacheerr();
1739 printk("c0_cacheerr == %08x\n", reg_val);
1741 printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1742 reg_val & (1<<30) ? "secondary" : "primary",
1743 reg_val & (1<<31) ? "data" : "insn");
1744 if ((cpu_has_mips_r2_r6) &&
1745 ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) {
1746 pr_err("Error bits: %s%s%s%s%s%s%s%s\n",
1747 reg_val & (1<<29) ? "ED " : "",
1748 reg_val & (1<<28) ? "ET " : "",
1749 reg_val & (1<<27) ? "ES " : "",
1750 reg_val & (1<<26) ? "EE " : "",
1751 reg_val & (1<<25) ? "EB " : "",
1752 reg_val & (1<<24) ? "EI " : "",
1753 reg_val & (1<<23) ? "E1 " : "",
1754 reg_val & (1<<22) ? "E0 " : "");
1756 pr_err("Error bits: %s%s%s%s%s%s%s\n",
1757 reg_val & (1<<29) ? "ED " : "",
1758 reg_val & (1<<28) ? "ET " : "",
1759 reg_val & (1<<26) ? "EE " : "",
1760 reg_val & (1<<25) ? "EB " : "",
1761 reg_val & (1<<24) ? "EI " : "",
1762 reg_val & (1<<23) ? "E1 " : "",
1763 reg_val & (1<<22) ? "E0 " : "");
1765 printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
1767 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1768 if (reg_val & (1<<22))
1769 printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
1771 if (reg_val & (1<<23))
1772 printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
1775 panic("Can't handle the cache error!");
1778 asmlinkage void do_ftlb(void)
1780 const int field = 2 * sizeof(unsigned long);
1781 unsigned int reg_val;
1783 /* For the moment, report the problem and hang. */
1784 if ((cpu_has_mips_r2_r6) &&
1785 ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) {
1786 pr_err("FTLB error exception, cp0_ecc=0x%08x:\n",
1788 pr_err("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1789 reg_val = read_c0_cacheerr();
1790 pr_err("c0_cacheerr == %08x\n", reg_val);
1792 if ((reg_val & 0xc0000000) == 0xc0000000) {
1793 pr_err("Decoded c0_cacheerr: FTLB parity error\n");
1795 pr_err("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1796 reg_val & (1<<30) ? "secondary" : "primary",
1797 reg_val & (1<<31) ? "data" : "insn");
1800 pr_err("FTLB error exception\n");
1802 /* Just print the cacheerr bits for now */
1803 cache_parity_error();
1807 * SDBBP EJTAG debug exception handler.
1808 * We skip the instruction and return to the next instruction.
1810 void ejtag_exception_handler(struct pt_regs *regs)
1812 const int field = 2 * sizeof(unsigned long);
1813 unsigned long depc, old_epc, old_ra;
1816 printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1817 depc = read_c0_depc();
1818 debug = read_c0_debug();
1819 printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
1820 if (debug & 0x80000000) {
1822 * In branch delay slot.
1823 * We cheat a little bit here and use EPC to calculate the
1824 * debug return address (DEPC). EPC is restored after the
1827 old_epc = regs->cp0_epc;
1828 old_ra = regs->regs[31];
1829 regs->cp0_epc = depc;
1830 compute_return_epc(regs);
1831 depc = regs->cp0_epc;
1832 regs->cp0_epc = old_epc;
1833 regs->regs[31] = old_ra;
1836 write_c0_depc(depc);
1839 printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
1840 write_c0_debug(debug | 0x100);
1845 * NMI exception handler.
1846 * No lock; only written during early bootup by CPU 0.
1848 static RAW_NOTIFIER_HEAD(nmi_chain);
1850 int register_nmi_notifier(struct notifier_block *nb)
1852 return raw_notifier_chain_register(&nmi_chain, nb);
1855 void __noreturn nmi_exception_handler(struct pt_regs *regs)
1859 raw_notifier_call_chain(&nmi_chain, 0, regs);
1861 snprintf(str, 100, "CPU%d NMI taken, CP0_EPC=%lx\n",
1862 smp_processor_id(), regs->cp0_epc);
1863 regs->cp0_epc = read_c0_errorepc();
1867 #define VECTORSPACING 0x100 /* for EI/VI mode */
1869 unsigned long ebase;
1870 unsigned long exception_handlers[32];
1871 unsigned long vi_handlers[64];
1873 void __init *set_except_vector(int n, void *addr)
1875 unsigned long handler = (unsigned long) addr;
1876 unsigned long old_handler;
1878 #ifdef CONFIG_CPU_MICROMIPS
1880 * Only the TLB handlers are cache aligned with an even
1881 * address. All other handlers are on an odd address and
1882 * require no modification. Otherwise, MIPS32 mode will
1883 * be entered when handling any TLB exceptions. That
1884 * would be bad...since we must stay in microMIPS mode.
1886 if (!(handler & 0x1))
1889 old_handler = xchg(&exception_handlers[n], handler);
1891 if (n == 0 && cpu_has_divec) {
1892 #ifdef CONFIG_CPU_MICROMIPS
1893 unsigned long jump_mask = ~((1 << 27) - 1);
1895 unsigned long jump_mask = ~((1 << 28) - 1);
1897 u32 *buf = (u32 *)(ebase + 0x200);
1898 unsigned int k0 = 26;
1899 if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) {
1900 uasm_i_j(&buf, handler & ~jump_mask);
1903 UASM_i_LA(&buf, k0, handler);
1904 uasm_i_jr(&buf, k0);
1907 local_flush_icache_range(ebase + 0x200, (unsigned long)buf);
1909 return (void *)old_handler;
1912 static void do_default_vi(void)
1914 show_regs(get_irq_regs());
1915 panic("Caught unexpected vectored interrupt.");
1918 static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs)
1920 unsigned long handler;
1921 unsigned long old_handler = vi_handlers[n];
1922 int srssets = current_cpu_data.srsets;
1926 BUG_ON(!cpu_has_veic && !cpu_has_vint);
1929 handler = (unsigned long) do_default_vi;
1932 handler = (unsigned long) addr;
1933 vi_handlers[n] = handler;
1935 b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
1938 panic("Shadow register set %d not supported", srs);
1941 if (board_bind_eic_interrupt)
1942 board_bind_eic_interrupt(n, srs);
1943 } else if (cpu_has_vint) {
1944 /* SRSMap is only defined if shadow sets are implemented */
1946 change_c0_srsmap(0xf << n*4, srs << n*4);
1951 * If no shadow set is selected then use the default handler
1952 * that does normal register saving and standard interrupt exit
1954 extern char except_vec_vi, except_vec_vi_lui;
1955 extern char except_vec_vi_ori, except_vec_vi_end;
1956 extern char rollback_except_vec_vi;
1957 char *vec_start = using_rollback_handler() ?
1958 &rollback_except_vec_vi : &except_vec_vi;
1959 #if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN)
1960 const int lui_offset = &except_vec_vi_lui - vec_start + 2;
1961 const int ori_offset = &except_vec_vi_ori - vec_start + 2;
1963 const int lui_offset = &except_vec_vi_lui - vec_start;
1964 const int ori_offset = &except_vec_vi_ori - vec_start;
1966 const int handler_len = &except_vec_vi_end - vec_start;
1968 if (handler_len > VECTORSPACING) {
1970 * Sigh... panicing won't help as the console
1971 * is probably not configured :(
1973 panic("VECTORSPACING too small");
1976 set_handler(((unsigned long)b - ebase), vec_start,
1977 #ifdef CONFIG_CPU_MICROMIPS
1982 h = (u16 *)(b + lui_offset);
1983 *h = (handler >> 16) & 0xffff;
1984 h = (u16 *)(b + ori_offset);
1985 *h = (handler & 0xffff);
1986 local_flush_icache_range((unsigned long)b,
1987 (unsigned long)(b+handler_len));
1991 * In other cases jump directly to the interrupt handler. It
1992 * is the handler's responsibility to save registers if required
1993 * (eg hi/lo) and return from the exception using "eret".
1999 #ifdef CONFIG_CPU_MICROMIPS
2000 insn = 0xd4000000 | (((u32)handler & 0x07ffffff) >> 1);
2002 insn = 0x08000000 | (((u32)handler & 0x0fffffff) >> 2);
2004 h[0] = (insn >> 16) & 0xffff;
2005 h[1] = insn & 0xffff;
2008 local_flush_icache_range((unsigned long)b,
2009 (unsigned long)(b+8));
2012 return (void *)old_handler;
2015 void *set_vi_handler(int n, vi_handler_t addr)
2017 return set_vi_srs_handler(n, addr, 0);
2020 extern void tlb_init(void);
2025 int cp0_compare_irq;
2026 EXPORT_SYMBOL_GPL(cp0_compare_irq);
2027 int cp0_compare_irq_shift;
2030 * Performance counter IRQ or -1 if shared with timer
2032 int cp0_perfcount_irq;
2033 EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
2036 * Fast debug channel IRQ or -1 if not present
2039 EXPORT_SYMBOL_GPL(cp0_fdc_irq);
2043 static int __init ulri_disable(char *s)
2045 pr_info("Disabling ulri\n");
2050 __setup("noulri", ulri_disable);
2052 /* configure STATUS register */
2053 static void configure_status(void)
2056 * Disable coprocessors and select 32-bit or 64-bit addressing
2057 * and the 16/32 or 32/32 FPR register model. Reset the BEV
2058 * flag that some firmware may have left set and the TS bit (for
2059 * IP27). Set XX for ISA IV code to work.
2061 unsigned int status_set = ST0_CU0;
2063 status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
2065 if (current_cpu_data.isa_level & MIPS_CPU_ISA_IV)
2066 status_set |= ST0_XX;
2068 status_set |= ST0_MX;
2070 change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
2074 /* configure HWRENA register */
2075 static void configure_hwrena(void)
2077 unsigned int hwrena = cpu_hwrena_impl_bits;
2079 if (cpu_has_mips_r2_r6)
2080 hwrena |= 0x0000000f;
2082 if (!noulri && cpu_has_userlocal)
2083 hwrena |= (1 << 29);
2086 write_c0_hwrena(hwrena);
2089 static void configure_exception_vector(void)
2091 if (cpu_has_veic || cpu_has_vint) {
2092 unsigned long sr = set_c0_status(ST0_BEV);
2093 write_c0_ebase(ebase);
2094 write_c0_status(sr);
2095 /* Setting vector spacing enables EI/VI mode */
2096 change_c0_intctl(0x3e0, VECTORSPACING);
2098 if (cpu_has_divec) {
2099 if (cpu_has_mipsmt) {
2100 unsigned int vpflags = dvpe();
2101 set_c0_cause(CAUSEF_IV);
2104 set_c0_cause(CAUSEF_IV);
2108 void per_cpu_trap_init(bool is_boot_cpu)
2110 unsigned int cpu = smp_processor_id();
2115 configure_exception_vector();
2118 * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
2120 * o read IntCtl.IPTI to determine the timer interrupt
2121 * o read IntCtl.IPPCI to determine the performance counter interrupt
2122 * o read IntCtl.IPFDC to determine the fast debug channel interrupt
2124 if (cpu_has_mips_r2_r6) {
2125 cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP;
2126 cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7;
2127 cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7;
2128 cp0_fdc_irq = (read_c0_intctl() >> INTCTLB_IPFDC) & 7;
2133 cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
2134 cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ;
2135 cp0_perfcount_irq = -1;
2139 if (!cpu_data[cpu].asid_cache)
2140 cpu_data[cpu].asid_cache = ASID_FIRST_VERSION;
2142 atomic_inc(&init_mm.mm_count);
2143 current->active_mm = &init_mm;
2144 BUG_ON(current->mm);
2145 enter_lazy_tlb(&init_mm, current);
2147 /* Boot CPU's cache setup in setup_arch(). */
2151 TLBMISS_HANDLER_SETUP();
2154 /* Install CPU exception handler */
2155 void set_handler(unsigned long offset, void *addr, unsigned long size)
2157 #ifdef CONFIG_CPU_MICROMIPS
2158 memcpy((void *)(ebase + offset), ((unsigned char *)addr - 1), size);
2160 memcpy((void *)(ebase + offset), addr, size);
2162 local_flush_icache_range(ebase + offset, ebase + offset + size);
2165 static char panic_null_cerr[] =
2166 "Trying to set NULL cache error exception handler";
2169 * Install uncached CPU exception handler.
2170 * This is suitable only for the cache error exception which is the only
2171 * exception handler that is being run uncached.
2173 void set_uncached_handler(unsigned long offset, void *addr,
2176 unsigned long uncached_ebase = CKSEG1ADDR(ebase);
2179 panic(panic_null_cerr);
2181 memcpy((void *)(uncached_ebase + offset), addr, size);
2184 static int __initdata rdhwr_noopt;
2185 static int __init set_rdhwr_noopt(char *str)
2191 __setup("rdhwr_noopt", set_rdhwr_noopt);
2193 void __init trap_init(void)
2195 extern char except_vec3_generic;
2196 extern char except_vec4;
2197 extern char except_vec3_r4000;
2202 if (cpu_has_veic || cpu_has_vint) {
2203 unsigned long size = 0x200 + VECTORSPACING*64;
2204 ebase = (unsigned long)
2205 __alloc_bootmem(size, 1 << fls(size), 0);
2207 #ifdef CONFIG_KVM_GUEST
2208 #define KVM_GUEST_KSEG0 0x40000000
2209 ebase = KVM_GUEST_KSEG0;
2213 if (cpu_has_mips_r2_r6)
2214 ebase += (read_c0_ebase() & 0x3ffff000);
2217 if (cpu_has_mmips) {
2218 unsigned int config3 = read_c0_config3();
2220 if (IS_ENABLED(CONFIG_CPU_MICROMIPS))
2221 write_c0_config3(config3 | MIPS_CONF3_ISA_OE);
2223 write_c0_config3(config3 & ~MIPS_CONF3_ISA_OE);
2226 if (board_ebase_setup)
2227 board_ebase_setup();
2228 per_cpu_trap_init(true);
2231 * Copy the generic exception handlers to their final destination.
2232 * This will be overriden later as suitable for a particular
2235 set_handler(0x180, &except_vec3_generic, 0x80);
2238 * Setup default vectors
2240 for (i = 0; i <= 31; i++)
2241 set_except_vector(i, handle_reserved);
2244 * Copy the EJTAG debug exception vector handler code to it's final
2247 if (cpu_has_ejtag && board_ejtag_handler_setup)
2248 board_ejtag_handler_setup();
2251 * Only some CPUs have the watch exceptions.
2254 set_except_vector(23, handle_watch);
2257 * Initialise interrupt handlers
2259 if (cpu_has_veic || cpu_has_vint) {
2260 int nvec = cpu_has_veic ? 64 : 8;
2261 for (i = 0; i < nvec; i++)
2262 set_vi_handler(i, NULL);
2264 else if (cpu_has_divec)
2265 set_handler(0x200, &except_vec4, 0x8);
2268 * Some CPUs can enable/disable for cache parity detection, but does
2269 * it different ways.
2271 parity_protection_init();
2274 * The Data Bus Errors / Instruction Bus Errors are signaled
2275 * by external hardware. Therefore these two exceptions
2276 * may have board specific handlers.
2281 set_except_vector(0, using_rollback_handler() ? rollback_handle_int
2283 set_except_vector(1, handle_tlbm);
2284 set_except_vector(2, handle_tlbl);
2285 set_except_vector(3, handle_tlbs);
2287 set_except_vector(4, handle_adel);
2288 set_except_vector(5, handle_ades);
2290 set_except_vector(6, handle_ibe);
2291 set_except_vector(7, handle_dbe);
2293 set_except_vector(8, handle_sys);
2294 set_except_vector(9, handle_bp);
2295 set_except_vector(10, rdhwr_noopt ? handle_ri :
2296 (cpu_has_vtag_icache ?
2297 handle_ri_rdhwr_vivt : handle_ri_rdhwr));
2298 set_except_vector(11, handle_cpu);
2299 set_except_vector(12, handle_ov);
2300 set_except_vector(13, handle_tr);
2301 set_except_vector(14, handle_msa_fpe);
2303 if (current_cpu_type() == CPU_R6000 ||
2304 current_cpu_type() == CPU_R6000A) {
2306 * The R6000 is the only R-series CPU that features a machine
2307 * check exception (similar to the R4000 cache error) and
2308 * unaligned ldc1/sdc1 exception. The handlers have not been
2309 * written yet. Well, anyway there is no R6000 machine on the
2310 * current list of targets for Linux/MIPS.
2311 * (Duh, crap, there is someone with a triple R6k machine)
2313 //set_except_vector(14, handle_mc);
2314 //set_except_vector(15, handle_ndc);
2318 if (board_nmi_handler_setup)
2319 board_nmi_handler_setup();
2321 if (cpu_has_fpu && !cpu_has_nofpuex)
2322 set_except_vector(15, handle_fpe);
2324 set_except_vector(16, handle_ftlb);
2326 if (cpu_has_rixiex) {
2327 set_except_vector(19, tlb_do_page_fault_0);
2328 set_except_vector(20, tlb_do_page_fault_0);
2331 set_except_vector(21, handle_msa);
2332 set_except_vector(22, handle_mdmx);
2335 set_except_vector(24, handle_mcheck);
2338 set_except_vector(25, handle_mt);
2340 set_except_vector(26, handle_dsp);
2342 if (board_cache_error_setup)
2343 board_cache_error_setup();
2346 /* Special exception: R4[04]00 uses also the divec space. */
2347 set_handler(0x180, &except_vec3_r4000, 0x100);
2348 else if (cpu_has_4kex)
2349 set_handler(0x180, &except_vec3_generic, 0x80);
2351 set_handler(0x080, &except_vec3_generic, 0x80);
2353 local_flush_icache_range(ebase, ebase + 0x400);
2355 sort_extable(__start___dbe_table, __stop___dbe_table);
2357 cu2_notifier(default_cu2_call, 0x80000000); /* Run last */
2360 static int trap_pm_notifier(struct notifier_block *self, unsigned long cmd,
2364 case CPU_PM_ENTER_FAILED:
2368 configure_exception_vector();
2370 /* Restore register with CPU number for TLB handlers */
2371 TLBMISS_HANDLER_RESTORE();
2379 static struct notifier_block trap_pm_notifier_block = {
2380 .notifier_call = trap_pm_notifier,
2383 static int __init trap_pm_init(void)
2385 return cpu_pm_register_notifier(&trap_pm_notifier_block);
2387 arch_initcall(trap_pm_init);