2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
6 * Synthesize TLB refill handlers at runtime.
8 * Copyright (C) 2004, 2005, 2006, 2008 Thiemo Seufer
9 * Copyright (C) 2005, 2007, 2008, 2009 Maciej W. Rozycki
10 * Copyright (C) 2006 Ralf Baechle (ralf@linux-mips.org)
11 * Copyright (C) 2008, 2009 Cavium Networks, Inc.
12 * Copyright (C) 2011 MIPS Technologies, Inc.
14 * ... and the days got worse and worse and now you see
15 * I've gone completly out of my mind.
17 * They're coming to take me a away haha
18 * they're coming to take me a away hoho hihi haha
19 * to the funny farm where code is beautiful all the time ...
21 * (Condolences to Napoleon XIV)
24 #include <linux/bug.h>
25 #include <linux/kernel.h>
26 #include <linux/types.h>
27 #include <linux/smp.h>
28 #include <linux/string.h>
29 #include <linux/cache.h>
31 #include <asm/cacheflush.h>
32 #include <asm/cpu-type.h>
33 #include <asm/pgtable.h>
36 #include <asm/setup.h>
39 * TLB load/store/modify handlers.
41 * Only the fastpath gets synthesized at runtime, the slowpath for
42 * do_page_fault remains normal asm.
44 extern void tlb_do_page_fault_0(void);
45 extern void tlb_do_page_fault_1(void);
47 struct work_registers {
56 } ____cacheline_aligned_in_smp;
58 static struct tlb_reg_save handler_reg_save[NR_CPUS];
60 static inline int r45k_bvahwbug(void)
62 /* XXX: We should probe for the presence of this bug, but we don't. */
66 static inline int r4k_250MHZhwbug(void)
68 /* XXX: We should probe for the presence of this bug, but we don't. */
72 static inline int __maybe_unused bcm1250_m3_war(void)
74 return BCM1250_M3_WAR;
77 static inline int __maybe_unused r10000_llsc_war(void)
79 return R10000_LLSC_WAR;
82 static int use_bbit_insns(void)
84 switch (current_cpu_type()) {
85 case CPU_CAVIUM_OCTEON:
86 case CPU_CAVIUM_OCTEON_PLUS:
87 case CPU_CAVIUM_OCTEON2:
88 case CPU_CAVIUM_OCTEON3:
95 static int use_lwx_insns(void)
97 switch (current_cpu_type()) {
98 case CPU_CAVIUM_OCTEON2:
99 case CPU_CAVIUM_OCTEON3:
105 #if defined(CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE) && \
106 CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE > 0
107 static bool scratchpad_available(void)
111 static int scratchpad_offset(int i)
114 * CVMSEG starts at address -32768 and extends for
115 * CAVIUM_OCTEON_CVMSEG_SIZE 128 byte cache lines.
117 i += 1; /* Kernel use starts at the top and works down. */
118 return CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE * 128 - (8 * i) - 32768;
121 static bool scratchpad_available(void)
125 static int scratchpad_offset(int i)
128 /* Really unreachable, but evidently some GCC want this. */
133 * Found by experiment: At least some revisions of the 4kc throw under
134 * some circumstances a machine check exception, triggered by invalid
135 * values in the index register. Delaying the tlbp instruction until
136 * after the next branch, plus adding an additional nop in front of
137 * tlbwi/tlbwr avoids the invalid index register values. Nobody knows
138 * why; it's not an issue caused by the core RTL.
141 static int m4kc_tlbp_war(void)
143 return (current_cpu_data.processor_id & 0xffff00) ==
144 (PRID_COMP_MIPS | PRID_IMP_4KC);
147 /* Handle labels (which must be positive integers). */
149 label_second_part = 1,
154 label_split = label_tlbw_hazard_0 + 8,
155 label_tlbl_goaround1,
156 label_tlbl_goaround2,
160 label_smp_pgtable_change,
161 label_r3000_write_probe_fail,
162 label_large_segbits_fault,
163 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
164 label_tlb_huge_update,
168 UASM_L_LA(_second_part)
171 UASM_L_LA(_vmalloc_done)
172 /* _tlbw_hazard_x is handled differently. */
174 UASM_L_LA(_tlbl_goaround1)
175 UASM_L_LA(_tlbl_goaround2)
176 UASM_L_LA(_nopage_tlbl)
177 UASM_L_LA(_nopage_tlbs)
178 UASM_L_LA(_nopage_tlbm)
179 UASM_L_LA(_smp_pgtable_change)
180 UASM_L_LA(_r3000_write_probe_fail)
181 UASM_L_LA(_large_segbits_fault)
182 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
183 UASM_L_LA(_tlb_huge_update)
186 static int hazard_instance;
188 static void uasm_bgezl_hazard(u32 **p, struct uasm_reloc **r, int instance)
192 uasm_il_bgezl(p, r, 0, label_tlbw_hazard_0 + instance);
199 static void uasm_bgezl_label(struct uasm_label **l, u32 **p, int instance)
203 uasm_build_label(l, *p, label_tlbw_hazard_0 + instance);
211 * pgtable bits are assigned dynamically depending on processor feature
212 * and statically based on kernel configuration. This spits out the actual
213 * values the kernel is using. Required to make sense from disassembled
214 * TLB exception handlers.
216 static void output_pgtable_bits_defines(void)
218 #define pr_define(fmt, ...) \
219 pr_debug("#define " fmt, ##__VA_ARGS__)
221 pr_debug("#include <asm/asm.h>\n");
222 pr_debug("#include <asm/regdef.h>\n");
225 pr_define("_PAGE_PRESENT_SHIFT %d\n", _PAGE_PRESENT_SHIFT);
226 pr_define("_PAGE_READ_SHIFT %d\n", _PAGE_READ_SHIFT);
227 pr_define("_PAGE_WRITE_SHIFT %d\n", _PAGE_WRITE_SHIFT);
228 pr_define("_PAGE_ACCESSED_SHIFT %d\n", _PAGE_ACCESSED_SHIFT);
229 pr_define("_PAGE_MODIFIED_SHIFT %d\n", _PAGE_MODIFIED_SHIFT);
230 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
231 pr_define("_PAGE_HUGE_SHIFT %d\n", _PAGE_HUGE_SHIFT);
232 pr_define("_PAGE_SPLITTING_SHIFT %d\n", _PAGE_SPLITTING_SHIFT);
235 #ifdef _PAGE_NO_EXEC_SHIFT
236 pr_define("_PAGE_NO_EXEC_SHIFT %d\n", _PAGE_NO_EXEC_SHIFT);
238 #ifdef _PAGE_NO_READ_SHIFT
239 pr_define("_PAGE_NO_READ_SHIFT %d\n", _PAGE_NO_READ_SHIFT);
242 pr_define("_PAGE_GLOBAL_SHIFT %d\n", _PAGE_GLOBAL_SHIFT);
243 pr_define("_PAGE_VALID_SHIFT %d\n", _PAGE_VALID_SHIFT);
244 pr_define("_PAGE_DIRTY_SHIFT %d\n", _PAGE_DIRTY_SHIFT);
245 pr_define("_PFN_SHIFT %d\n", _PFN_SHIFT);
249 static inline void dump_handler(const char *symbol, const u32 *handler, int count)
253 pr_debug("LEAF(%s)\n", symbol);
255 pr_debug("\t.set push\n");
256 pr_debug("\t.set noreorder\n");
258 for (i = 0; i < count; i++)
259 pr_debug("\t.word\t0x%08x\t\t# %p\n", handler[i], &handler[i]);
261 pr_debug("\t.set\tpop\n");
263 pr_debug("\tEND(%s)\n", symbol);
266 /* The only general purpose registers allowed in TLB handlers. */
270 /* Some CP0 registers */
271 #define C0_INDEX 0, 0
272 #define C0_ENTRYLO0 2, 0
273 #define C0_TCBIND 2, 2
274 #define C0_ENTRYLO1 3, 0
275 #define C0_CONTEXT 4, 0
276 #define C0_PAGEMASK 5, 0
277 #define C0_BADVADDR 8, 0
278 #define C0_ENTRYHI 10, 0
280 #define C0_XCONTEXT 20, 0
283 # define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_XCONTEXT)
285 # define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_CONTEXT)
288 /* The worst case length of the handler is around 18 instructions for
289 * R3000-style TLBs and up to 63 instructions for R4000-style TLBs.
290 * Maximum space available is 32 instructions for R3000 and 64
291 * instructions for R4000.
293 * We deliberately chose a buffer size of 128, so we won't scribble
294 * over anything important on overflow before we panic.
296 static u32 tlb_handler[128];
298 /* simply assume worst case size for labels and relocs */
299 static struct uasm_label labels[128];
300 static struct uasm_reloc relocs[128];
302 static int check_for_high_segbits;
304 static unsigned int kscratch_used_mask;
306 static inline int __maybe_unused c0_kscratch(void)
308 switch (current_cpu_type()) {
317 static int allocate_kscratch(void)
320 unsigned int a = cpu_data[0].kscratch_mask & ~kscratch_used_mask;
327 r--; /* make it zero based */
329 kscratch_used_mask |= (1 << r);
334 static int scratch_reg;
336 enum vmalloc64_mode {not_refill, refill_scratch, refill_noscratch};
338 static struct work_registers build_get_work_registers(u32 **p)
340 struct work_registers r;
342 if (scratch_reg >= 0) {
343 /* Save in CPU local C0_KScratch? */
344 UASM_i_MTC0(p, 1, c0_kscratch(), scratch_reg);
351 if (num_possible_cpus() > 1) {
352 /* Get smp_processor_id */
353 UASM_i_CPUID_MFC0(p, K0, SMP_CPUID_REG);
354 UASM_i_SRL_SAFE(p, K0, K0, SMP_CPUID_REGSHIFT);
356 /* handler_reg_save index in K0 */
357 UASM_i_SLL(p, K0, K0, ilog2(sizeof(struct tlb_reg_save)));
359 UASM_i_LA(p, K1, (long)&handler_reg_save);
360 UASM_i_ADDU(p, K0, K0, K1);
362 UASM_i_LA(p, K0, (long)&handler_reg_save);
364 /* K0 now points to save area, save $1 and $2 */
365 UASM_i_SW(p, 1, offsetof(struct tlb_reg_save, a), K0);
366 UASM_i_SW(p, 2, offsetof(struct tlb_reg_save, b), K0);
374 static void build_restore_work_registers(u32 **p)
376 if (scratch_reg >= 0) {
377 UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
380 /* K0 already points to save area, restore $1 and $2 */
381 UASM_i_LW(p, 1, offsetof(struct tlb_reg_save, a), K0);
382 UASM_i_LW(p, 2, offsetof(struct tlb_reg_save, b), K0);
385 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
388 * CONFIG_MIPS_PGD_C0_CONTEXT implies 64 bit and lack of pgd_current,
389 * we cannot do r3000 under these circumstances.
391 * Declare pgd_current here instead of including mmu_context.h to avoid type
392 * conflicts for tlbmiss_handler_setup_pgd
394 extern unsigned long pgd_current[];
397 * The R3000 TLB handler is simple.
399 static void build_r3000_tlb_refill_handler(void)
401 long pgdc = (long)pgd_current;
404 memset(tlb_handler, 0, sizeof(tlb_handler));
407 uasm_i_mfc0(&p, K0, C0_BADVADDR);
408 uasm_i_lui(&p, K1, uasm_rel_hi(pgdc)); /* cp0 delay */
409 uasm_i_lw(&p, K1, uasm_rel_lo(pgdc), K1);
410 uasm_i_srl(&p, K0, K0, 22); /* load delay */
411 uasm_i_sll(&p, K0, K0, 2);
412 uasm_i_addu(&p, K1, K1, K0);
413 uasm_i_mfc0(&p, K0, C0_CONTEXT);
414 uasm_i_lw(&p, K1, 0, K1); /* cp0 delay */
415 uasm_i_andi(&p, K0, K0, 0xffc); /* load delay */
416 uasm_i_addu(&p, K1, K1, K0);
417 uasm_i_lw(&p, K0, 0, K1);
418 uasm_i_nop(&p); /* load delay */
419 uasm_i_mtc0(&p, K0, C0_ENTRYLO0);
420 uasm_i_mfc0(&p, K1, C0_EPC); /* cp0 delay */
421 uasm_i_tlbwr(&p); /* cp0 delay */
423 uasm_i_rfe(&p); /* branch delay */
425 if (p > tlb_handler + 32)
426 panic("TLB refill handler space exceeded");
428 pr_debug("Wrote TLB refill handler (%u instructions).\n",
429 (unsigned int)(p - tlb_handler));
431 memcpy((void *)ebase, tlb_handler, 0x80);
433 dump_handler("r3000_tlb_refill", (u32 *)ebase, 32);
435 #endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
438 * The R4000 TLB handler is much more complicated. We have two
439 * consecutive handler areas with 32 instructions space each.
440 * Since they aren't used at the same time, we can overflow in the
441 * other one.To keep things simple, we first assume linear space,
442 * then we relocate it to the final handler layout as needed.
444 static u32 final_handler[64];
449 * From the IDT errata for the QED RM5230 (Nevada), processor revision 1.0:
450 * 2. A timing hazard exists for the TLBP instruction.
452 * stalling_instruction
455 * The JTLB is being read for the TLBP throughout the stall generated by the
456 * previous instruction. This is not really correct as the stalling instruction
457 * can modify the address used to access the JTLB. The failure symptom is that
458 * the TLBP instruction will use an address created for the stalling instruction
459 * and not the address held in C0_ENHI and thus report the wrong results.
461 * The software work-around is to not allow the instruction preceding the TLBP
462 * to stall - make it an NOP or some other instruction guaranteed not to stall.
464 * Errata 2 will not be fixed. This errata is also on the R5000.
466 * As if we MIPS hackers wouldn't know how to nop pipelines happy ...
468 static void __maybe_unused build_tlb_probe_entry(u32 **p)
470 switch (current_cpu_type()) {
471 /* Found by experiment: R4600 v2.0/R4700 needs this, too. */
487 * Write random or indexed TLB entry, and care about the hazards from
488 * the preceding mtc0 and for the following eret.
490 enum tlb_write_entry { tlb_random, tlb_indexed };
492 static void build_tlb_write_entry(u32 **p, struct uasm_label **l,
493 struct uasm_reloc **r,
494 enum tlb_write_entry wmode)
496 void(*tlbw)(u32 **) = NULL;
499 case tlb_random: tlbw = uasm_i_tlbwr; break;
500 case tlb_indexed: tlbw = uasm_i_tlbwi; break;
503 if (cpu_has_mips_r2) {
505 * The architecture spec says an ehb is required here,
506 * but a number of cores do not have the hazard and
507 * using an ehb causes an expensive pipeline stall.
509 switch (current_cpu_type()) {
526 switch (current_cpu_type()) {
534 * This branch uses up a mtc0 hazard nop slot and saves
535 * two nops after the tlbw instruction.
537 uasm_bgezl_hazard(p, r, hazard_instance);
539 uasm_bgezl_label(l, p, hazard_instance);
553 uasm_i_nop(p); /* QED specifies 2 nops hazard */
554 uasm_i_nop(p); /* QED specifies 2 nops hazard */
627 panic("No TLB refill handler yet (CPU type: %d)",
633 static __maybe_unused void build_convert_pte_to_entrylo(u32 **p,
637 UASM_i_ROTR(p, reg, reg, ilog2(_PAGE_GLOBAL));
639 #ifdef CONFIG_64BIT_PHYS_ADDR
640 uasm_i_dsrl_safe(p, reg, reg, ilog2(_PAGE_GLOBAL));
642 UASM_i_SRL(p, reg, reg, ilog2(_PAGE_GLOBAL));
647 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
649 static void build_restore_pagemask(u32 **p, struct uasm_reloc **r,
650 unsigned int tmp, enum label_id lid,
653 if (restore_scratch) {
654 /* Reset default page size */
655 if (PM_DEFAULT_MASK >> 16) {
656 uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16);
657 uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff);
658 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
659 uasm_il_b(p, r, lid);
660 } else if (PM_DEFAULT_MASK) {
661 uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK);
662 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
663 uasm_il_b(p, r, lid);
665 uasm_i_mtc0(p, 0, C0_PAGEMASK);
666 uasm_il_b(p, r, lid);
668 if (scratch_reg >= 0)
669 UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
671 UASM_i_LW(p, 1, scratchpad_offset(0), 0);
673 /* Reset default page size */
674 if (PM_DEFAULT_MASK >> 16) {
675 uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16);
676 uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff);
677 uasm_il_b(p, r, lid);
678 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
679 } else if (PM_DEFAULT_MASK) {
680 uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK);
681 uasm_il_b(p, r, lid);
682 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
684 uasm_il_b(p, r, lid);
685 uasm_i_mtc0(p, 0, C0_PAGEMASK);
690 static void build_huge_tlb_write_entry(u32 **p, struct uasm_label **l,
691 struct uasm_reloc **r,
693 enum tlb_write_entry wmode,
696 /* Set huge page tlb entry size */
697 uasm_i_lui(p, tmp, PM_HUGE_MASK >> 16);
698 uasm_i_ori(p, tmp, tmp, PM_HUGE_MASK & 0xffff);
699 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
701 build_tlb_write_entry(p, l, r, wmode);
703 build_restore_pagemask(p, r, tmp, label_leave, restore_scratch);
707 * Check if Huge PTE is present, if so then jump to LABEL.
710 build_is_huge_pte(u32 **p, struct uasm_reloc **r, unsigned int tmp,
711 unsigned int pmd, int lid)
713 UASM_i_LW(p, tmp, 0, pmd);
714 if (use_bbit_insns()) {
715 uasm_il_bbit1(p, r, tmp, ilog2(_PAGE_HUGE), lid);
717 uasm_i_andi(p, tmp, tmp, _PAGE_HUGE);
718 uasm_il_bnez(p, r, tmp, lid);
722 static void build_huge_update_entries(u32 **p, unsigned int pte,
728 * A huge PTE describes an area the size of the
729 * configured huge page size. This is twice the
730 * of the large TLB entry size we intend to use.
731 * A TLB entry half the size of the configured
732 * huge page size is configured into entrylo0
733 * and entrylo1 to cover the contiguous huge PTE
736 small_sequence = (HPAGE_SIZE >> 7) < 0x10000;
738 /* We can clobber tmp. It isn't used after this.*/
740 uasm_i_lui(p, tmp, HPAGE_SIZE >> (7 + 16));
742 build_convert_pte_to_entrylo(p, pte);
743 UASM_i_MTC0(p, pte, C0_ENTRYLO0); /* load it */
744 /* convert to entrylo1 */
746 UASM_i_ADDIU(p, pte, pte, HPAGE_SIZE >> 7);
748 UASM_i_ADDU(p, pte, pte, tmp);
750 UASM_i_MTC0(p, pte, C0_ENTRYLO1); /* load it */
753 static void build_huge_handler_tail(u32 **p, struct uasm_reloc **r,
754 struct uasm_label **l,
759 UASM_i_SC(p, pte, 0, ptr);
760 uasm_il_beqz(p, r, pte, label_tlb_huge_update);
761 UASM_i_LW(p, pte, 0, ptr); /* Needed because SC killed our PTE */
763 UASM_i_SW(p, pte, 0, ptr);
765 build_huge_update_entries(p, pte, ptr);
766 build_huge_tlb_write_entry(p, l, r, pte, tlb_indexed, 0);
768 #endif /* CONFIG_MIPS_HUGE_TLB_SUPPORT */
772 * TMP and PTR are scratch.
773 * TMP will be clobbered, PTR will hold the pmd entry.
776 build_get_pmde64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
777 unsigned int tmp, unsigned int ptr)
779 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
780 long pgdc = (long)pgd_current;
783 * The vmalloc handling is not in the hotpath.
785 uasm_i_dmfc0(p, tmp, C0_BADVADDR);
787 if (check_for_high_segbits) {
789 * The kernel currently implicitely assumes that the
790 * MIPS SEGBITS parameter for the processor is
791 * (PGDIR_SHIFT+PGDIR_BITS) or less, and will never
792 * allocate virtual addresses outside the maximum
793 * range for SEGBITS = (PGDIR_SHIFT+PGDIR_BITS). But
794 * that doesn't prevent user code from accessing the
795 * higher xuseg addresses. Here, we make sure that
796 * everything but the lower xuseg addresses goes down
797 * the module_alloc/vmalloc path.
799 uasm_i_dsrl_safe(p, ptr, tmp, PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
800 uasm_il_bnez(p, r, ptr, label_vmalloc);
802 uasm_il_bltz(p, r, tmp, label_vmalloc);
804 /* No uasm_i_nop needed here, since the next insn doesn't touch TMP. */
807 /* pgd is in pgd_reg */
808 UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
810 #if defined(CONFIG_MIPS_PGD_C0_CONTEXT)
812 * &pgd << 11 stored in CONTEXT [23..63].
814 UASM_i_MFC0(p, ptr, C0_CONTEXT);
816 /* Clear lower 23 bits of context. */
817 uasm_i_dins(p, ptr, 0, 0, 23);
819 /* 1 0 1 0 1 << 6 xkphys cached */
820 uasm_i_ori(p, ptr, ptr, 0x540);
821 uasm_i_drotr(p, ptr, ptr, 11);
822 #elif defined(CONFIG_SMP)
823 UASM_i_CPUID_MFC0(p, ptr, SMP_CPUID_REG);
824 uasm_i_dsrl_safe(p, ptr, ptr, SMP_CPUID_PTRSHIFT);
825 UASM_i_LA_mostly(p, tmp, pgdc);
826 uasm_i_daddu(p, ptr, ptr, tmp);
827 uasm_i_dmfc0(p, tmp, C0_BADVADDR);
828 uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
830 UASM_i_LA_mostly(p, ptr, pgdc);
831 uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
835 uasm_l_vmalloc_done(l, *p);
837 /* get pgd offset in bytes */
838 uasm_i_dsrl_safe(p, tmp, tmp, PGDIR_SHIFT - 3);
840 uasm_i_andi(p, tmp, tmp, (PTRS_PER_PGD - 1)<<3);
841 uasm_i_daddu(p, ptr, ptr, tmp); /* add in pgd offset */
842 #ifndef __PAGETABLE_PMD_FOLDED
843 uasm_i_dmfc0(p, tmp, C0_BADVADDR); /* get faulting address */
844 uasm_i_ld(p, ptr, 0, ptr); /* get pmd pointer */
845 uasm_i_dsrl_safe(p, tmp, tmp, PMD_SHIFT-3); /* get pmd offset in bytes */
846 uasm_i_andi(p, tmp, tmp, (PTRS_PER_PMD - 1)<<3);
847 uasm_i_daddu(p, ptr, ptr, tmp); /* add in pmd offset */
852 * BVADDR is the faulting address, PTR is scratch.
853 * PTR will hold the pgd for vmalloc.
856 build_get_pgd_vmalloc64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
857 unsigned int bvaddr, unsigned int ptr,
858 enum vmalloc64_mode mode)
860 long swpd = (long)swapper_pg_dir;
861 int single_insn_swpd;
862 int did_vmalloc_branch = 0;
864 single_insn_swpd = uasm_in_compat_space_p(swpd) && !uasm_rel_lo(swpd);
866 uasm_l_vmalloc(l, *p);
868 if (mode != not_refill && check_for_high_segbits) {
869 if (single_insn_swpd) {
870 uasm_il_bltz(p, r, bvaddr, label_vmalloc_done);
871 uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
872 did_vmalloc_branch = 1;
875 uasm_il_bgez(p, r, bvaddr, label_large_segbits_fault);
878 if (!did_vmalloc_branch) {
879 if (uasm_in_compat_space_p(swpd) && !uasm_rel_lo(swpd)) {
880 uasm_il_b(p, r, label_vmalloc_done);
881 uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
883 UASM_i_LA_mostly(p, ptr, swpd);
884 uasm_il_b(p, r, label_vmalloc_done);
885 if (uasm_in_compat_space_p(swpd))
886 uasm_i_addiu(p, ptr, ptr, uasm_rel_lo(swpd));
888 uasm_i_daddiu(p, ptr, ptr, uasm_rel_lo(swpd));
891 if (mode != not_refill && check_for_high_segbits) {
892 uasm_l_large_segbits_fault(l, *p);
894 * We get here if we are an xsseg address, or if we are
895 * an xuseg address above (PGDIR_SHIFT+PGDIR_BITS) boundary.
897 * Ignoring xsseg (assume disabled so would generate
898 * (address errors?), the only remaining possibility
899 * is the upper xuseg addresses. On processors with
900 * TLB_SEGBITS <= PGDIR_SHIFT+PGDIR_BITS, these
901 * addresses would have taken an address error. We try
902 * to mimic that here by taking a load/istream page
905 UASM_i_LA(p, ptr, (unsigned long)tlb_do_page_fault_0);
908 if (mode == refill_scratch) {
909 if (scratch_reg >= 0)
910 UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
912 UASM_i_LW(p, 1, scratchpad_offset(0), 0);
919 #else /* !CONFIG_64BIT */
922 * TMP and PTR are scratch.
923 * TMP will be clobbered, PTR will hold the pgd entry.
925 static void __maybe_unused
926 build_get_pgde32(u32 **p, unsigned int tmp, unsigned int ptr)
929 /* pgd is in pgd_reg */
930 uasm_i_mfc0(p, ptr, c0_kscratch(), pgd_reg);
931 uasm_i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */
933 long pgdc = (long)pgd_current;
935 /* 32 bit SMP has smp_processor_id() stored in CONTEXT. */
937 uasm_i_mfc0(p, ptr, SMP_CPUID_REG);
938 UASM_i_LA_mostly(p, tmp, pgdc);
939 uasm_i_srl(p, ptr, ptr, SMP_CPUID_PTRSHIFT);
940 uasm_i_addu(p, ptr, tmp, ptr);
942 UASM_i_LA_mostly(p, ptr, pgdc);
944 uasm_i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */
945 uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
947 uasm_i_srl(p, tmp, tmp, PGDIR_SHIFT); /* get pgd only bits */
948 uasm_i_sll(p, tmp, tmp, PGD_T_LOG2);
949 uasm_i_addu(p, ptr, ptr, tmp); /* add in pgd offset */
952 #endif /* !CONFIG_64BIT */
954 static void build_adjust_context(u32 **p, unsigned int ctx)
956 unsigned int shift = 4 - (PTE_T_LOG2 + 1) + PAGE_SHIFT - 12;
957 unsigned int mask = (PTRS_PER_PTE / 2 - 1) << (PTE_T_LOG2 + 1);
959 switch (current_cpu_type()) {
976 UASM_i_SRL(p, ctx, ctx, shift);
977 uasm_i_andi(p, ctx, ctx, mask);
980 static void build_get_ptep(u32 **p, unsigned int tmp, unsigned int ptr)
983 * Bug workaround for the Nevada. It seems as if under certain
984 * circumstances the move from cp0_context might produce a
985 * bogus result when the mfc0 instruction and its consumer are
986 * in a different cacheline or a load instruction, probably any
987 * memory reference, is between them.
989 switch (current_cpu_type()) {
991 UASM_i_LW(p, ptr, 0, ptr);
992 GET_CONTEXT(p, tmp); /* get context reg */
996 GET_CONTEXT(p, tmp); /* get context reg */
997 UASM_i_LW(p, ptr, 0, ptr);
1001 build_adjust_context(p, tmp);
1002 UASM_i_ADDU(p, ptr, ptr, tmp); /* add in offset */
1005 static void build_update_entries(u32 **p, unsigned int tmp, unsigned int ptep)
1008 * 64bit address support (36bit on a 32bit CPU) in a 32bit
1009 * Kernel is a special case. Only a few CPUs use it.
1011 #ifdef CONFIG_64BIT_PHYS_ADDR
1012 if (cpu_has_64bits) {
1013 uasm_i_ld(p, tmp, 0, ptep); /* get even pte */
1014 uasm_i_ld(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
1016 UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL));
1017 UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1018 UASM_i_ROTR(p, ptep, ptep, ilog2(_PAGE_GLOBAL));
1020 uasm_i_dsrl_safe(p, tmp, tmp, ilog2(_PAGE_GLOBAL)); /* convert to entrylo0 */
1021 UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1022 uasm_i_dsrl_safe(p, ptep, ptep, ilog2(_PAGE_GLOBAL)); /* convert to entrylo1 */
1024 UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
1026 int pte_off_even = sizeof(pte_t) / 2;
1027 int pte_off_odd = pte_off_even + sizeof(pte_t);
1029 /* The pte entries are pre-shifted */
1030 uasm_i_lw(p, tmp, pte_off_even, ptep); /* get even pte */
1031 UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1032 uasm_i_lw(p, ptep, pte_off_odd, ptep); /* get odd pte */
1033 UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
1036 UASM_i_LW(p, tmp, 0, ptep); /* get even pte */
1037 UASM_i_LW(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
1038 if (r45k_bvahwbug())
1039 build_tlb_probe_entry(p);
1041 UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL));
1042 if (r4k_250MHZhwbug())
1043 UASM_i_MTC0(p, 0, C0_ENTRYLO0);
1044 UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1045 UASM_i_ROTR(p, ptep, ptep, ilog2(_PAGE_GLOBAL));
1047 UASM_i_SRL(p, tmp, tmp, ilog2(_PAGE_GLOBAL)); /* convert to entrylo0 */
1048 if (r4k_250MHZhwbug())
1049 UASM_i_MTC0(p, 0, C0_ENTRYLO0);
1050 UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1051 UASM_i_SRL(p, ptep, ptep, ilog2(_PAGE_GLOBAL)); /* convert to entrylo1 */
1052 if (r45k_bvahwbug())
1053 uasm_i_mfc0(p, tmp, C0_INDEX);
1055 if (r4k_250MHZhwbug())
1056 UASM_i_MTC0(p, 0, C0_ENTRYLO1);
1057 UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
1061 struct mips_huge_tlb_info {
1063 int restore_scratch;
1066 static struct mips_huge_tlb_info
1067 build_fast_tlb_refill_handler (u32 **p, struct uasm_label **l,
1068 struct uasm_reloc **r, unsigned int tmp,
1069 unsigned int ptr, int c0_scratch_reg)
1071 struct mips_huge_tlb_info rv;
1072 unsigned int even, odd;
1073 int vmalloc_branch_delay_filled = 0;
1074 const int scratch = 1; /* Our extra working register */
1076 rv.huge_pte = scratch;
1077 rv.restore_scratch = 0;
1079 if (check_for_high_segbits) {
1080 UASM_i_MFC0(p, tmp, C0_BADVADDR);
1083 UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
1085 UASM_i_MFC0(p, ptr, C0_CONTEXT);
1087 if (c0_scratch_reg >= 0)
1088 UASM_i_MTC0(p, scratch, c0_kscratch(), c0_scratch_reg);
1090 UASM_i_SW(p, scratch, scratchpad_offset(0), 0);
1092 uasm_i_dsrl_safe(p, scratch, tmp,
1093 PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
1094 uasm_il_bnez(p, r, scratch, label_vmalloc);
1096 if (pgd_reg == -1) {
1097 vmalloc_branch_delay_filled = 1;
1098 /* Clear lower 23 bits of context. */
1099 uasm_i_dins(p, ptr, 0, 0, 23);
1103 UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
1105 UASM_i_MFC0(p, ptr, C0_CONTEXT);
1107 UASM_i_MFC0(p, tmp, C0_BADVADDR);
1109 if (c0_scratch_reg >= 0)
1110 UASM_i_MTC0(p, scratch, c0_kscratch(), c0_scratch_reg);
1112 UASM_i_SW(p, scratch, scratchpad_offset(0), 0);
1115 /* Clear lower 23 bits of context. */
1116 uasm_i_dins(p, ptr, 0, 0, 23);
1118 uasm_il_bltz(p, r, tmp, label_vmalloc);
1121 if (pgd_reg == -1) {
1122 vmalloc_branch_delay_filled = 1;
1123 /* 1 0 1 0 1 << 6 xkphys cached */
1124 uasm_i_ori(p, ptr, ptr, 0x540);
1125 uasm_i_drotr(p, ptr, ptr, 11);
1128 #ifdef __PAGETABLE_PMD_FOLDED
1129 #define LOC_PTEP scratch
1131 #define LOC_PTEP ptr
1134 if (!vmalloc_branch_delay_filled)
1135 /* get pgd offset in bytes */
1136 uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3);
1138 uasm_l_vmalloc_done(l, *p);
1142 * fall-through case = badvaddr *pgd_current
1143 * vmalloc case = badvaddr swapper_pg_dir
1146 if (vmalloc_branch_delay_filled)
1147 /* get pgd offset in bytes */
1148 uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3);
1150 #ifdef __PAGETABLE_PMD_FOLDED
1151 GET_CONTEXT(p, tmp); /* get context reg */
1153 uasm_i_andi(p, scratch, scratch, (PTRS_PER_PGD - 1) << 3);
1155 if (use_lwx_insns()) {
1156 UASM_i_LWX(p, LOC_PTEP, scratch, ptr);
1158 uasm_i_daddu(p, ptr, ptr, scratch); /* add in pgd offset */
1159 uasm_i_ld(p, LOC_PTEP, 0, ptr); /* get pmd pointer */
1162 #ifndef __PAGETABLE_PMD_FOLDED
1163 /* get pmd offset in bytes */
1164 uasm_i_dsrl_safe(p, scratch, tmp, PMD_SHIFT - 3);
1165 uasm_i_andi(p, scratch, scratch, (PTRS_PER_PMD - 1) << 3);
1166 GET_CONTEXT(p, tmp); /* get context reg */
1168 if (use_lwx_insns()) {
1169 UASM_i_LWX(p, scratch, scratch, ptr);
1171 uasm_i_daddu(p, ptr, ptr, scratch); /* add in pmd offset */
1172 UASM_i_LW(p, scratch, 0, ptr);
1175 /* Adjust the context during the load latency. */
1176 build_adjust_context(p, tmp);
1178 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1179 uasm_il_bbit1(p, r, scratch, ilog2(_PAGE_HUGE), label_tlb_huge_update);
1181 * The in the LWX case we don't want to do the load in the
1182 * delay slot. It cannot issue in the same cycle and may be
1183 * speculative and unneeded.
1185 if (use_lwx_insns())
1187 #endif /* CONFIG_MIPS_HUGE_TLB_SUPPORT */
1190 /* build_update_entries */
1191 if (use_lwx_insns()) {
1194 UASM_i_LWX(p, even, scratch, tmp);
1195 UASM_i_ADDIU(p, tmp, tmp, sizeof(pte_t));
1196 UASM_i_LWX(p, odd, scratch, tmp);
1198 UASM_i_ADDU(p, ptr, scratch, tmp); /* add in offset */
1201 UASM_i_LW(p, even, 0, ptr); /* get even pte */
1202 UASM_i_LW(p, odd, sizeof(pte_t), ptr); /* get odd pte */
1205 uasm_i_drotr(p, even, even, ilog2(_PAGE_GLOBAL));
1206 UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */
1207 uasm_i_drotr(p, odd, odd, ilog2(_PAGE_GLOBAL));
1209 uasm_i_dsrl_safe(p, even, even, ilog2(_PAGE_GLOBAL));
1210 UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */
1211 uasm_i_dsrl_safe(p, odd, odd, ilog2(_PAGE_GLOBAL));
1213 UASM_i_MTC0(p, odd, C0_ENTRYLO1); /* load it */
1215 if (c0_scratch_reg >= 0) {
1216 UASM_i_MFC0(p, scratch, c0_kscratch(), c0_scratch_reg);
1217 build_tlb_write_entry(p, l, r, tlb_random);
1218 uasm_l_leave(l, *p);
1219 rv.restore_scratch = 1;
1220 } else if (PAGE_SHIFT == 14 || PAGE_SHIFT == 13) {
1221 build_tlb_write_entry(p, l, r, tlb_random);
1222 uasm_l_leave(l, *p);
1223 UASM_i_LW(p, scratch, scratchpad_offset(0), 0);
1225 UASM_i_LW(p, scratch, scratchpad_offset(0), 0);
1226 build_tlb_write_entry(p, l, r, tlb_random);
1227 uasm_l_leave(l, *p);
1228 rv.restore_scratch = 1;
1231 uasm_i_eret(p); /* return from trap */
1237 * For a 64-bit kernel, we are using the 64-bit XTLB refill exception
1238 * because EXL == 0. If we wrap, we can also use the 32 instruction
1239 * slots before the XTLB refill exception handler which belong to the
1240 * unused TLB refill exception.
1242 #define MIPS64_REFILL_INSNS 32
1244 static void build_r4000_tlb_refill_handler(void)
1246 u32 *p = tlb_handler;
1247 struct uasm_label *l = labels;
1248 struct uasm_reloc *r = relocs;
1250 unsigned int final_len;
1251 struct mips_huge_tlb_info htlb_info __maybe_unused;
1252 enum vmalloc64_mode vmalloc_mode __maybe_unused;
1254 memset(tlb_handler, 0, sizeof(tlb_handler));
1255 memset(labels, 0, sizeof(labels));
1256 memset(relocs, 0, sizeof(relocs));
1257 memset(final_handler, 0, sizeof(final_handler));
1259 if (IS_ENABLED(CONFIG_64BIT) && (scratch_reg >= 0 || scratchpad_available()) && use_bbit_insns()) {
1260 htlb_info = build_fast_tlb_refill_handler(&p, &l, &r, K0, K1,
1262 vmalloc_mode = refill_scratch;
1264 htlb_info.huge_pte = K0;
1265 htlb_info.restore_scratch = 0;
1266 vmalloc_mode = refill_noscratch;
1268 * create the plain linear handler
1270 if (bcm1250_m3_war()) {
1271 unsigned int segbits = 44;
1273 uasm_i_dmfc0(&p, K0, C0_BADVADDR);
1274 uasm_i_dmfc0(&p, K1, C0_ENTRYHI);
1275 uasm_i_xor(&p, K0, K0, K1);
1276 uasm_i_dsrl_safe(&p, K1, K0, 62);
1277 uasm_i_dsrl_safe(&p, K0, K0, 12 + 1);
1278 uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits);
1279 uasm_i_or(&p, K0, K0, K1);
1280 uasm_il_bnez(&p, &r, K0, label_leave);
1281 /* No need for uasm_i_nop */
1285 build_get_pmde64(&p, &l, &r, K0, K1); /* get pmd in K1 */
1287 build_get_pgde32(&p, K0, K1); /* get pgd in K1 */
1290 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1291 build_is_huge_pte(&p, &r, K0, K1, label_tlb_huge_update);
1294 build_get_ptep(&p, K0, K1);
1295 build_update_entries(&p, K0, K1);
1296 build_tlb_write_entry(&p, &l, &r, tlb_random);
1297 uasm_l_leave(&l, p);
1298 uasm_i_eret(&p); /* return from trap */
1300 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1301 uasm_l_tlb_huge_update(&l, p);
1302 build_huge_update_entries(&p, htlb_info.huge_pte, K1);
1303 build_huge_tlb_write_entry(&p, &l, &r, K0, tlb_random,
1304 htlb_info.restore_scratch);
1308 build_get_pgd_vmalloc64(&p, &l, &r, K0, K1, vmalloc_mode);
1312 * Overflow check: For the 64bit handler, we need at least one
1313 * free instruction slot for the wrap-around branch. In worst
1314 * case, if the intended insertion point is a delay slot, we
1315 * need three, with the second nop'ed and the third being
1318 switch (boot_cpu_type()) {
1320 if (sizeof(long) == 4) {
1322 /* Loongson2 ebase is different than r4k, we have more space */
1323 if ((p - tlb_handler) > 64)
1324 panic("TLB refill handler space exceeded");
1326 * Now fold the handler in the TLB refill handler space.
1329 /* Simplest case, just copy the handler. */
1330 uasm_copy_handler(relocs, labels, tlb_handler, p, f);
1331 final_len = p - tlb_handler;
1334 if (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 1)
1335 || (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 3)
1336 && uasm_insn_has_bdelay(relocs,
1337 tlb_handler + MIPS64_REFILL_INSNS - 3)))
1338 panic("TLB refill handler space exceeded");
1340 * Now fold the handler in the TLB refill handler space.
1342 f = final_handler + MIPS64_REFILL_INSNS;
1343 if ((p - tlb_handler) <= MIPS64_REFILL_INSNS) {
1344 /* Just copy the handler. */
1345 uasm_copy_handler(relocs, labels, tlb_handler, p, f);
1346 final_len = p - tlb_handler;
1348 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1349 const enum label_id ls = label_tlb_huge_update;
1351 const enum label_id ls = label_vmalloc;
1357 for (i = 0; i < ARRAY_SIZE(labels) && labels[i].lab != ls; i++)
1359 BUG_ON(i == ARRAY_SIZE(labels));
1360 split = labels[i].addr;
1363 * See if we have overflown one way or the other.
1365 if (split > tlb_handler + MIPS64_REFILL_INSNS ||
1366 split < p - MIPS64_REFILL_INSNS)
1371 * Split two instructions before the end. One
1372 * for the branch and one for the instruction
1373 * in the delay slot.
1375 split = tlb_handler + MIPS64_REFILL_INSNS - 2;
1378 * If the branch would fall in a delay slot,
1379 * we must back up an additional instruction
1380 * so that it is no longer in a delay slot.
1382 if (uasm_insn_has_bdelay(relocs, split - 1))
1385 /* Copy first part of the handler. */
1386 uasm_copy_handler(relocs, labels, tlb_handler, split, f);
1387 f += split - tlb_handler;
1390 /* Insert branch. */
1391 uasm_l_split(&l, final_handler);
1392 uasm_il_b(&f, &r, label_split);
1393 if (uasm_insn_has_bdelay(relocs, split))
1396 uasm_copy_handler(relocs, labels,
1397 split, split + 1, f);
1398 uasm_move_labels(labels, f, f + 1, -1);
1404 /* Copy the rest of the handler. */
1405 uasm_copy_handler(relocs, labels, split, p, final_handler);
1406 final_len = (f - (final_handler + MIPS64_REFILL_INSNS)) +
1413 uasm_resolve_relocs(relocs, labels);
1414 pr_debug("Wrote TLB refill handler (%u instructions).\n",
1417 memcpy((void *)ebase, final_handler, 0x100);
1419 dump_handler("r4000_tlb_refill", (u32 *)ebase, 64);
1422 extern u32 handle_tlbl[], handle_tlbl_end[];
1423 extern u32 handle_tlbs[], handle_tlbs_end[];
1424 extern u32 handle_tlbm[], handle_tlbm_end[];
1425 extern u32 tlbmiss_handler_setup_pgd_start[], tlbmiss_handler_setup_pgd[];
1426 extern u32 tlbmiss_handler_setup_pgd_end[];
1428 static void build_setup_pgd(void)
1431 const int __maybe_unused a1 = 5;
1432 const int __maybe_unused a2 = 6;
1433 u32 *p = tlbmiss_handler_setup_pgd_start;
1434 const int tlbmiss_handler_setup_pgd_size =
1435 tlbmiss_handler_setup_pgd_end - tlbmiss_handler_setup_pgd_start;
1436 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
1437 long pgdc = (long)pgd_current;
1440 memset(tlbmiss_handler_setup_pgd, 0, tlbmiss_handler_setup_pgd_size *
1441 sizeof(tlbmiss_handler_setup_pgd[0]));
1442 memset(labels, 0, sizeof(labels));
1443 memset(relocs, 0, sizeof(relocs));
1444 pgd_reg = allocate_kscratch();
1445 #ifdef CONFIG_MIPS_PGD_C0_CONTEXT
1446 if (pgd_reg == -1) {
1447 struct uasm_label *l = labels;
1448 struct uasm_reloc *r = relocs;
1450 /* PGD << 11 in c0_Context */
1452 * If it is a ckseg0 address, convert to a physical
1453 * address. Shifting right by 29 and adding 4 will
1454 * result in zero for these addresses.
1457 UASM_i_SRA(&p, a1, a0, 29);
1458 UASM_i_ADDIU(&p, a1, a1, 4);
1459 uasm_il_bnez(&p, &r, a1, label_tlbl_goaround1);
1461 uasm_i_dinsm(&p, a0, 0, 29, 64 - 29);
1462 uasm_l_tlbl_goaround1(&l, p);
1463 UASM_i_SLL(&p, a0, a0, 11);
1465 UASM_i_MTC0(&p, a0, C0_CONTEXT);
1467 /* PGD in c0_KScratch */
1469 UASM_i_MTC0(&p, a0, c0_kscratch(), pgd_reg);
1473 /* Save PGD to pgd_current[smp_processor_id()] */
1474 UASM_i_CPUID_MFC0(&p, a1, SMP_CPUID_REG);
1475 UASM_i_SRL_SAFE(&p, a1, a1, SMP_CPUID_PTRSHIFT);
1476 UASM_i_LA_mostly(&p, a2, pgdc);
1477 UASM_i_ADDU(&p, a2, a2, a1);
1478 UASM_i_SW(&p, a0, uasm_rel_lo(pgdc), a2);
1480 UASM_i_LA_mostly(&p, a2, pgdc);
1481 UASM_i_SW(&p, a0, uasm_rel_lo(pgdc), a2);
1485 /* if pgd_reg is allocated, save PGD also to scratch register */
1487 UASM_i_MTC0(&p, a0, c0_kscratch(), pgd_reg);
1491 if (p >= tlbmiss_handler_setup_pgd_end)
1492 panic("tlbmiss_handler_setup_pgd space exceeded");
1494 uasm_resolve_relocs(relocs, labels);
1495 pr_debug("Wrote tlbmiss_handler_setup_pgd (%u instructions).\n",
1496 (unsigned int)(p - tlbmiss_handler_setup_pgd));
1498 dump_handler("tlbmiss_handler", tlbmiss_handler_setup_pgd,
1499 tlbmiss_handler_setup_pgd_size);
1503 iPTE_LW(u32 **p, unsigned int pte, unsigned int ptr)
1506 # ifdef CONFIG_64BIT_PHYS_ADDR
1508 uasm_i_lld(p, pte, 0, ptr);
1511 UASM_i_LL(p, pte, 0, ptr);
1513 # ifdef CONFIG_64BIT_PHYS_ADDR
1515 uasm_i_ld(p, pte, 0, ptr);
1518 UASM_i_LW(p, pte, 0, ptr);
1523 iPTE_SW(u32 **p, struct uasm_reloc **r, unsigned int pte, unsigned int ptr,
1526 #ifdef CONFIG_64BIT_PHYS_ADDR
1527 unsigned int hwmode = mode & (_PAGE_VALID | _PAGE_DIRTY);
1530 uasm_i_ori(p, pte, pte, mode);
1532 # ifdef CONFIG_64BIT_PHYS_ADDR
1534 uasm_i_scd(p, pte, 0, ptr);
1537 UASM_i_SC(p, pte, 0, ptr);
1539 if (r10000_llsc_war())
1540 uasm_il_beqzl(p, r, pte, label_smp_pgtable_change);
1542 uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
1544 # ifdef CONFIG_64BIT_PHYS_ADDR
1545 if (!cpu_has_64bits) {
1546 /* no uasm_i_nop needed */
1547 uasm_i_ll(p, pte, sizeof(pte_t) / 2, ptr);
1548 uasm_i_ori(p, pte, pte, hwmode);
1549 uasm_i_sc(p, pte, sizeof(pte_t) / 2, ptr);
1550 uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
1551 /* no uasm_i_nop needed */
1552 uasm_i_lw(p, pte, 0, ptr);
1559 # ifdef CONFIG_64BIT_PHYS_ADDR
1561 uasm_i_sd(p, pte, 0, ptr);
1564 UASM_i_SW(p, pte, 0, ptr);
1566 # ifdef CONFIG_64BIT_PHYS_ADDR
1567 if (!cpu_has_64bits) {
1568 uasm_i_lw(p, pte, sizeof(pte_t) / 2, ptr);
1569 uasm_i_ori(p, pte, pte, hwmode);
1570 uasm_i_sw(p, pte, sizeof(pte_t) / 2, ptr);
1571 uasm_i_lw(p, pte, 0, ptr);
1578 * Check if PTE is present, if not then jump to LABEL. PTR points to
1579 * the page table where this PTE is located, PTE will be re-loaded
1580 * with it's original value.
1583 build_pte_present(u32 **p, struct uasm_reloc **r,
1584 int pte, int ptr, int scratch, enum label_id lid)
1586 int t = scratch >= 0 ? scratch : pte;
1589 if (use_bbit_insns()) {
1590 uasm_il_bbit0(p, r, pte, ilog2(_PAGE_PRESENT), lid);
1593 uasm_i_andi(p, t, pte, _PAGE_PRESENT);
1594 uasm_il_beqz(p, r, t, lid);
1596 /* You lose the SMP race :-(*/
1597 iPTE_LW(p, pte, ptr);
1600 uasm_i_andi(p, t, pte, _PAGE_PRESENT | _PAGE_READ);
1601 uasm_i_xori(p, t, t, _PAGE_PRESENT | _PAGE_READ);
1602 uasm_il_bnez(p, r, t, lid);
1604 /* You lose the SMP race :-(*/
1605 iPTE_LW(p, pte, ptr);
1609 /* Make PTE valid, store result in PTR. */
1611 build_make_valid(u32 **p, struct uasm_reloc **r, unsigned int pte,
1614 unsigned int mode = _PAGE_VALID | _PAGE_ACCESSED;
1616 iPTE_SW(p, r, pte, ptr, mode);
1620 * Check if PTE can be written to, if not branch to LABEL. Regardless
1621 * restore PTE with value from PTR when done.
1624 build_pte_writable(u32 **p, struct uasm_reloc **r,
1625 unsigned int pte, unsigned int ptr, int scratch,
1628 int t = scratch >= 0 ? scratch : pte;
1630 uasm_i_andi(p, t, pte, _PAGE_PRESENT | _PAGE_WRITE);
1631 uasm_i_xori(p, t, t, _PAGE_PRESENT | _PAGE_WRITE);
1632 uasm_il_bnez(p, r, t, lid);
1634 /* You lose the SMP race :-(*/
1635 iPTE_LW(p, pte, ptr);
1640 /* Make PTE writable, update software status bits as well, then store
1644 build_make_write(u32 **p, struct uasm_reloc **r, unsigned int pte,
1647 unsigned int mode = (_PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID
1650 iPTE_SW(p, r, pte, ptr, mode);
1654 * Check if PTE can be modified, if not branch to LABEL. Regardless
1655 * restore PTE with value from PTR when done.
1658 build_pte_modifiable(u32 **p, struct uasm_reloc **r,
1659 unsigned int pte, unsigned int ptr, int scratch,
1662 if (use_bbit_insns()) {
1663 uasm_il_bbit0(p, r, pte, ilog2(_PAGE_WRITE), lid);
1666 int t = scratch >= 0 ? scratch : pte;
1667 uasm_i_andi(p, t, pte, _PAGE_WRITE);
1668 uasm_il_beqz(p, r, t, lid);
1670 /* You lose the SMP race :-(*/
1671 iPTE_LW(p, pte, ptr);
1675 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
1679 * R3000 style TLB load/store/modify handlers.
1683 * This places the pte into ENTRYLO0 and writes it with tlbwi.
1687 build_r3000_pte_reload_tlbwi(u32 **p, unsigned int pte, unsigned int tmp)
1689 uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1690 uasm_i_mfc0(p, tmp, C0_EPC); /* cp0 delay */
1693 uasm_i_rfe(p); /* branch delay */
1697 * This places the pte into ENTRYLO0 and writes it with tlbwi
1698 * or tlbwr as appropriate. This is because the index register
1699 * may have the probe fail bit set as a result of a trap on a
1700 * kseg2 access, i.e. without refill. Then it returns.
1703 build_r3000_tlb_reload_write(u32 **p, struct uasm_label **l,
1704 struct uasm_reloc **r, unsigned int pte,
1707 uasm_i_mfc0(p, tmp, C0_INDEX);
1708 uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1709 uasm_il_bltz(p, r, tmp, label_r3000_write_probe_fail); /* cp0 delay */
1710 uasm_i_mfc0(p, tmp, C0_EPC); /* branch delay */
1711 uasm_i_tlbwi(p); /* cp0 delay */
1713 uasm_i_rfe(p); /* branch delay */
1714 uasm_l_r3000_write_probe_fail(l, *p);
1715 uasm_i_tlbwr(p); /* cp0 delay */
1717 uasm_i_rfe(p); /* branch delay */
1721 build_r3000_tlbchange_handler_head(u32 **p, unsigned int pte,
1724 long pgdc = (long)pgd_current;
1726 uasm_i_mfc0(p, pte, C0_BADVADDR);
1727 uasm_i_lui(p, ptr, uasm_rel_hi(pgdc)); /* cp0 delay */
1728 uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
1729 uasm_i_srl(p, pte, pte, 22); /* load delay */
1730 uasm_i_sll(p, pte, pte, 2);
1731 uasm_i_addu(p, ptr, ptr, pte);
1732 uasm_i_mfc0(p, pte, C0_CONTEXT);
1733 uasm_i_lw(p, ptr, 0, ptr); /* cp0 delay */
1734 uasm_i_andi(p, pte, pte, 0xffc); /* load delay */
1735 uasm_i_addu(p, ptr, ptr, pte);
1736 uasm_i_lw(p, pte, 0, ptr);
1737 uasm_i_tlbp(p); /* load delay */
1740 static void build_r3000_tlb_load_handler(void)
1742 u32 *p = handle_tlbl;
1743 const int handle_tlbl_size = handle_tlbl_end - handle_tlbl;
1744 struct uasm_label *l = labels;
1745 struct uasm_reloc *r = relocs;
1747 memset(handle_tlbl, 0, handle_tlbl_size * sizeof(handle_tlbl[0]));
1748 memset(labels, 0, sizeof(labels));
1749 memset(relocs, 0, sizeof(relocs));
1751 build_r3000_tlbchange_handler_head(&p, K0, K1);
1752 build_pte_present(&p, &r, K0, K1, -1, label_nopage_tlbl);
1753 uasm_i_nop(&p); /* load delay */
1754 build_make_valid(&p, &r, K0, K1);
1755 build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
1757 uasm_l_nopage_tlbl(&l, p);
1758 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
1761 if (p >= handle_tlbl_end)
1762 panic("TLB load handler fastpath space exceeded");
1764 uasm_resolve_relocs(relocs, labels);
1765 pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
1766 (unsigned int)(p - handle_tlbl));
1768 dump_handler("r3000_tlb_load", handle_tlbl, handle_tlbl_size);
1771 static void build_r3000_tlb_store_handler(void)
1773 u32 *p = handle_tlbs;
1774 const int handle_tlbs_size = handle_tlbs_end - handle_tlbs;
1775 struct uasm_label *l = labels;
1776 struct uasm_reloc *r = relocs;
1778 memset(handle_tlbs, 0, handle_tlbs_size * sizeof(handle_tlbs[0]));
1779 memset(labels, 0, sizeof(labels));
1780 memset(relocs, 0, sizeof(relocs));
1782 build_r3000_tlbchange_handler_head(&p, K0, K1);
1783 build_pte_writable(&p, &r, K0, K1, -1, label_nopage_tlbs);
1784 uasm_i_nop(&p); /* load delay */
1785 build_make_write(&p, &r, K0, K1);
1786 build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
1788 uasm_l_nopage_tlbs(&l, p);
1789 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1792 if (p >= handle_tlbs_end)
1793 panic("TLB store handler fastpath space exceeded");
1795 uasm_resolve_relocs(relocs, labels);
1796 pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
1797 (unsigned int)(p - handle_tlbs));
1799 dump_handler("r3000_tlb_store", handle_tlbs, handle_tlbs_size);
1802 static void build_r3000_tlb_modify_handler(void)
1804 u32 *p = handle_tlbm;
1805 const int handle_tlbm_size = handle_tlbm_end - handle_tlbm;
1806 struct uasm_label *l = labels;
1807 struct uasm_reloc *r = relocs;
1809 memset(handle_tlbm, 0, handle_tlbm_size * sizeof(handle_tlbm[0]));
1810 memset(labels, 0, sizeof(labels));
1811 memset(relocs, 0, sizeof(relocs));
1813 build_r3000_tlbchange_handler_head(&p, K0, K1);
1814 build_pte_modifiable(&p, &r, K0, K1, -1, label_nopage_tlbm);
1815 uasm_i_nop(&p); /* load delay */
1816 build_make_write(&p, &r, K0, K1);
1817 build_r3000_pte_reload_tlbwi(&p, K0, K1);
1819 uasm_l_nopage_tlbm(&l, p);
1820 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1823 if (p >= handle_tlbm_end)
1824 panic("TLB modify handler fastpath space exceeded");
1826 uasm_resolve_relocs(relocs, labels);
1827 pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
1828 (unsigned int)(p - handle_tlbm));
1830 dump_handler("r3000_tlb_modify", handle_tlbm, handle_tlbm_size);
1832 #endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
1835 * R4000 style TLB load/store/modify handlers.
1837 static struct work_registers
1838 build_r4000_tlbchange_handler_head(u32 **p, struct uasm_label **l,
1839 struct uasm_reloc **r)
1841 struct work_registers wr = build_get_work_registers(p);
1844 build_get_pmde64(p, l, r, wr.r1, wr.r2); /* get pmd in ptr */
1846 build_get_pgde32(p, wr.r1, wr.r2); /* get pgd in ptr */
1849 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1851 * For huge tlb entries, pmd doesn't contain an address but
1852 * instead contains the tlb pte. Check the PAGE_HUGE bit and
1853 * see if we need to jump to huge tlb processing.
1855 build_is_huge_pte(p, r, wr.r1, wr.r2, label_tlb_huge_update);
1858 UASM_i_MFC0(p, wr.r1, C0_BADVADDR);
1859 UASM_i_LW(p, wr.r2, 0, wr.r2);
1860 UASM_i_SRL(p, wr.r1, wr.r1, PAGE_SHIFT + PTE_ORDER - PTE_T_LOG2);
1861 uasm_i_andi(p, wr.r1, wr.r1, (PTRS_PER_PTE - 1) << PTE_T_LOG2);
1862 UASM_i_ADDU(p, wr.r2, wr.r2, wr.r1);
1865 uasm_l_smp_pgtable_change(l, *p);
1867 iPTE_LW(p, wr.r1, wr.r2); /* get even pte */
1868 if (!m4kc_tlbp_war())
1869 build_tlb_probe_entry(p);
1874 build_r4000_tlbchange_handler_tail(u32 **p, struct uasm_label **l,
1875 struct uasm_reloc **r, unsigned int tmp,
1878 uasm_i_ori(p, ptr, ptr, sizeof(pte_t));
1879 uasm_i_xori(p, ptr, ptr, sizeof(pte_t));
1880 build_update_entries(p, tmp, ptr);
1881 build_tlb_write_entry(p, l, r, tlb_indexed);
1882 uasm_l_leave(l, *p);
1883 build_restore_work_registers(p);
1884 uasm_i_eret(p); /* return from trap */
1887 build_get_pgd_vmalloc64(p, l, r, tmp, ptr, not_refill);
1891 static void build_r4000_tlb_load_handler(void)
1893 u32 *p = handle_tlbl;
1894 const int handle_tlbl_size = handle_tlbl_end - handle_tlbl;
1895 struct uasm_label *l = labels;
1896 struct uasm_reloc *r = relocs;
1897 struct work_registers wr;
1899 memset(handle_tlbl, 0, handle_tlbl_size * sizeof(handle_tlbl[0]));
1900 memset(labels, 0, sizeof(labels));
1901 memset(relocs, 0, sizeof(relocs));
1903 if (bcm1250_m3_war()) {
1904 unsigned int segbits = 44;
1906 uasm_i_dmfc0(&p, K0, C0_BADVADDR);
1907 uasm_i_dmfc0(&p, K1, C0_ENTRYHI);
1908 uasm_i_xor(&p, K0, K0, K1);
1909 uasm_i_dsrl_safe(&p, K1, K0, 62);
1910 uasm_i_dsrl_safe(&p, K0, K0, 12 + 1);
1911 uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits);
1912 uasm_i_or(&p, K0, K0, K1);
1913 uasm_il_bnez(&p, &r, K0, label_leave);
1914 /* No need for uasm_i_nop */
1917 wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
1918 build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl);
1919 if (m4kc_tlbp_war())
1920 build_tlb_probe_entry(&p);
1924 * If the page is not _PAGE_VALID, RI or XI could not
1925 * have triggered it. Skip the expensive test..
1927 if (use_bbit_insns()) {
1928 uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID),
1929 label_tlbl_goaround1);
1931 uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID);
1932 uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround1);
1938 switch (current_cpu_type()) {
1940 if (cpu_has_mips_r2) {
1943 case CPU_CAVIUM_OCTEON:
1944 case CPU_CAVIUM_OCTEON_PLUS:
1945 case CPU_CAVIUM_OCTEON2:
1950 /* Examine entrylo 0 or 1 based on ptr. */
1951 if (use_bbit_insns()) {
1952 uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8);
1954 uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t));
1955 uasm_i_beqz(&p, wr.r3, 8);
1957 /* load it in the delay slot*/
1958 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0);
1959 /* load it if ptr is odd */
1960 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1);
1962 * If the entryLo (now in wr.r3) is valid (bit 1), RI or
1963 * XI must have triggered it.
1965 if (use_bbit_insns()) {
1966 uasm_il_bbit1(&p, &r, wr.r3, 1, label_nopage_tlbl);
1968 uasm_l_tlbl_goaround1(&l, p);
1970 uasm_i_andi(&p, wr.r3, wr.r3, 2);
1971 uasm_il_bnez(&p, &r, wr.r3, label_nopage_tlbl);
1974 uasm_l_tlbl_goaround1(&l, p);
1976 build_make_valid(&p, &r, wr.r1, wr.r2);
1977 build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
1979 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1981 * This is the entry point when build_r4000_tlbchange_handler_head
1982 * spots a huge page.
1984 uasm_l_tlb_huge_update(&l, p);
1985 iPTE_LW(&p, wr.r1, wr.r2);
1986 build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl);
1987 build_tlb_probe_entry(&p);
1991 * If the page is not _PAGE_VALID, RI or XI could not
1992 * have triggered it. Skip the expensive test..
1994 if (use_bbit_insns()) {
1995 uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID),
1996 label_tlbl_goaround2);
1998 uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID);
1999 uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2);
2005 switch (current_cpu_type()) {
2007 if (cpu_has_mips_r2) {
2010 case CPU_CAVIUM_OCTEON:
2011 case CPU_CAVIUM_OCTEON_PLUS:
2012 case CPU_CAVIUM_OCTEON2:
2017 /* Examine entrylo 0 or 1 based on ptr. */
2018 if (use_bbit_insns()) {
2019 uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8);
2021 uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t));
2022 uasm_i_beqz(&p, wr.r3, 8);
2024 /* load it in the delay slot*/
2025 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0);
2026 /* load it if ptr is odd */
2027 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1);
2029 * If the entryLo (now in wr.r3) is valid (bit 1), RI or
2030 * XI must have triggered it.
2032 if (use_bbit_insns()) {
2033 uasm_il_bbit0(&p, &r, wr.r3, 1, label_tlbl_goaround2);
2035 uasm_i_andi(&p, wr.r3, wr.r3, 2);
2036 uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2);
2038 if (PM_DEFAULT_MASK == 0)
2041 * We clobbered C0_PAGEMASK, restore it. On the other branch
2042 * it is restored in build_huge_tlb_write_entry.
2044 build_restore_pagemask(&p, &r, wr.r3, label_nopage_tlbl, 0);
2046 uasm_l_tlbl_goaround2(&l, p);
2048 uasm_i_ori(&p, wr.r1, wr.r1, (_PAGE_ACCESSED | _PAGE_VALID));
2049 build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
2052 uasm_l_nopage_tlbl(&l, p);
2053 build_restore_work_registers(&p);
2054 #ifdef CONFIG_CPU_MICROMIPS
2055 if ((unsigned long)tlb_do_page_fault_0 & 1) {
2056 uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_0));
2057 uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_0));
2061 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
2064 if (p >= handle_tlbl_end)
2065 panic("TLB load handler fastpath space exceeded");
2067 uasm_resolve_relocs(relocs, labels);
2068 pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
2069 (unsigned int)(p - handle_tlbl));
2071 dump_handler("r4000_tlb_load", handle_tlbl, handle_tlbl_size);
2074 static void build_r4000_tlb_store_handler(void)
2076 u32 *p = handle_tlbs;
2077 const int handle_tlbs_size = handle_tlbs_end - handle_tlbs;
2078 struct uasm_label *l = labels;
2079 struct uasm_reloc *r = relocs;
2080 struct work_registers wr;
2082 memset(handle_tlbs, 0, handle_tlbs_size * sizeof(handle_tlbs[0]));
2083 memset(labels, 0, sizeof(labels));
2084 memset(relocs, 0, sizeof(relocs));
2086 wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
2087 build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs);
2088 if (m4kc_tlbp_war())
2089 build_tlb_probe_entry(&p);
2090 build_make_write(&p, &r, wr.r1, wr.r2);
2091 build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
2093 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2095 * This is the entry point when
2096 * build_r4000_tlbchange_handler_head spots a huge page.
2098 uasm_l_tlb_huge_update(&l, p);
2099 iPTE_LW(&p, wr.r1, wr.r2);
2100 build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs);
2101 build_tlb_probe_entry(&p);
2102 uasm_i_ori(&p, wr.r1, wr.r1,
2103 _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
2104 build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
2107 uasm_l_nopage_tlbs(&l, p);
2108 build_restore_work_registers(&p);
2109 #ifdef CONFIG_CPU_MICROMIPS
2110 if ((unsigned long)tlb_do_page_fault_1 & 1) {
2111 uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_1));
2112 uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_1));
2116 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
2119 if (p >= handle_tlbs_end)
2120 panic("TLB store handler fastpath space exceeded");
2122 uasm_resolve_relocs(relocs, labels);
2123 pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
2124 (unsigned int)(p - handle_tlbs));
2126 dump_handler("r4000_tlb_store", handle_tlbs, handle_tlbs_size);
2129 static void build_r4000_tlb_modify_handler(void)
2131 u32 *p = handle_tlbm;
2132 const int handle_tlbm_size = handle_tlbm_end - handle_tlbm;
2133 struct uasm_label *l = labels;
2134 struct uasm_reloc *r = relocs;
2135 struct work_registers wr;
2137 memset(handle_tlbm, 0, handle_tlbm_size * sizeof(handle_tlbm[0]));
2138 memset(labels, 0, sizeof(labels));
2139 memset(relocs, 0, sizeof(relocs));
2141 wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
2142 build_pte_modifiable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbm);
2143 if (m4kc_tlbp_war())
2144 build_tlb_probe_entry(&p);
2145 /* Present and writable bits set, set accessed and dirty bits. */
2146 build_make_write(&p, &r, wr.r1, wr.r2);
2147 build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
2149 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2151 * This is the entry point when
2152 * build_r4000_tlbchange_handler_head spots a huge page.
2154 uasm_l_tlb_huge_update(&l, p);
2155 iPTE_LW(&p, wr.r1, wr.r2);
2156 build_pte_modifiable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbm);
2157 build_tlb_probe_entry(&p);
2158 uasm_i_ori(&p, wr.r1, wr.r1,
2159 _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
2160 build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
2163 uasm_l_nopage_tlbm(&l, p);
2164 build_restore_work_registers(&p);
2165 #ifdef CONFIG_CPU_MICROMIPS
2166 if ((unsigned long)tlb_do_page_fault_1 & 1) {
2167 uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_1));
2168 uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_1));
2172 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
2175 if (p >= handle_tlbm_end)
2176 panic("TLB modify handler fastpath space exceeded");
2178 uasm_resolve_relocs(relocs, labels);
2179 pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
2180 (unsigned int)(p - handle_tlbm));
2182 dump_handler("r4000_tlb_modify", handle_tlbm, handle_tlbm_size);
2185 static void flush_tlb_handlers(void)
2187 local_flush_icache_range((unsigned long)handle_tlbl,
2188 (unsigned long)handle_tlbl_end);
2189 local_flush_icache_range((unsigned long)handle_tlbs,
2190 (unsigned long)handle_tlbs_end);
2191 local_flush_icache_range((unsigned long)handle_tlbm,
2192 (unsigned long)handle_tlbm_end);
2193 local_flush_icache_range((unsigned long)tlbmiss_handler_setup_pgd,
2194 (unsigned long)tlbmiss_handler_setup_pgd_end);
2197 void build_tlb_refill_handler(void)
2200 * The refill handler is generated per-CPU, multi-node systems
2201 * may have local storage for it. The other handlers are only
2204 static int run_once = 0;
2206 output_pgtable_bits_defines();
2209 check_for_high_segbits = current_cpu_data.vmbits > (PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
2212 switch (current_cpu_type()) {
2220 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
2221 if (cpu_has_local_ebase)
2222 build_r3000_tlb_refill_handler();
2224 if (!cpu_has_local_ebase)
2225 build_r3000_tlb_refill_handler();
2227 build_r3000_tlb_load_handler();
2228 build_r3000_tlb_store_handler();
2229 build_r3000_tlb_modify_handler();
2230 flush_tlb_handlers();
2234 panic("No R3000 TLB refill handler");
2240 panic("No R6000 TLB refill handler yet");
2244 panic("No R8000 TLB refill handler yet");
2249 scratch_reg = allocate_kscratch();
2251 build_r4000_tlb_load_handler();
2252 build_r4000_tlb_store_handler();
2253 build_r4000_tlb_modify_handler();
2254 if (!cpu_has_local_ebase)
2255 build_r4000_tlb_refill_handler();
2256 flush_tlb_handlers();
2259 if (cpu_has_local_ebase)
2260 build_r4000_tlb_refill_handler();