]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - arch/powerpc/kernel/process.c
powerpc: remove unnecessary line continuations
[karo-tx-linux.git] / arch / powerpc / kernel / process.c
1 /*
2  *  Derived from "arch/i386/kernel/process.c"
3  *    Copyright (C) 1995  Linus Torvalds
4  *
5  *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6  *  Paul Mackerras (paulus@cs.anu.edu.au)
7  *
8  *  PowerPC version
9  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10  *
11  *  This program is free software; you can redistribute it and/or
12  *  modify it under the terms of the GNU General Public License
13  *  as published by the Free Software Foundation; either version
14  *  2 of the License, or (at your option) any later version.
15  */
16
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/smp.h>
22 #include <linux/stddef.h>
23 #include <linux/unistd.h>
24 #include <linux/ptrace.h>
25 #include <linux/slab.h>
26 #include <linux/user.h>
27 #include <linux/elf.h>
28 #include <linux/init.h>
29 #include <linux/prctl.h>
30 #include <linux/init_task.h>
31 #include <linux/export.h>
32 #include <linux/kallsyms.h>
33 #include <linux/mqueue.h>
34 #include <linux/hardirq.h>
35 #include <linux/utsname.h>
36 #include <linux/ftrace.h>
37 #include <linux/kernel_stat.h>
38 #include <linux/personality.h>
39 #include <linux/random.h>
40 #include <linux/hw_breakpoint.h>
41
42 #include <asm/pgtable.h>
43 #include <asm/uaccess.h>
44 #include <asm/io.h>
45 #include <asm/processor.h>
46 #include <asm/mmu.h>
47 #include <asm/prom.h>
48 #include <asm/machdep.h>
49 #include <asm/time.h>
50 #include <asm/runlatch.h>
51 #include <asm/syscalls.h>
52 #include <asm/switch_to.h>
53 #include <asm/tm.h>
54 #include <asm/debug.h>
55 #ifdef CONFIG_PPC64
56 #include <asm/firmware.h>
57 #endif
58 #include <linux/kprobes.h>
59 #include <linux/kdebug.h>
60
61 /* Transactional Memory debug */
62 #ifdef TM_DEBUG_SW
63 #define TM_DEBUG(x...) printk(KERN_INFO x)
64 #else
65 #define TM_DEBUG(x...) do { } while(0)
66 #endif
67
68 extern unsigned long _get_SP(void);
69
70 #ifndef CONFIG_SMP
71 struct task_struct *last_task_used_math = NULL;
72 struct task_struct *last_task_used_altivec = NULL;
73 struct task_struct *last_task_used_vsx = NULL;
74 struct task_struct *last_task_used_spe = NULL;
75 #endif
76
77 #ifdef CONFIG_PPC_FPU
78 /*
79  * Make sure the floating-point register state in the
80  * the thread_struct is up to date for task tsk.
81  */
82 void flush_fp_to_thread(struct task_struct *tsk)
83 {
84         if (tsk->thread.regs) {
85                 /*
86                  * We need to disable preemption here because if we didn't,
87                  * another process could get scheduled after the regs->msr
88                  * test but before we have finished saving the FP registers
89                  * to the thread_struct.  That process could take over the
90                  * FPU, and then when we get scheduled again we would store
91                  * bogus values for the remaining FP registers.
92                  */
93                 preempt_disable();
94                 if (tsk->thread.regs->msr & MSR_FP) {
95 #ifdef CONFIG_SMP
96                         /*
97                          * This should only ever be called for current or
98                          * for a stopped child process.  Since we save away
99                          * the FP register state on context switch on SMP,
100                          * there is something wrong if a stopped child appears
101                          * to still have its FP state in the CPU registers.
102                          */
103                         BUG_ON(tsk != current);
104 #endif
105                         giveup_fpu(tsk);
106                 }
107                 preempt_enable();
108         }
109 }
110 EXPORT_SYMBOL_GPL(flush_fp_to_thread);
111 #endif
112
113 void enable_kernel_fp(void)
114 {
115         WARN_ON(preemptible());
116
117 #ifdef CONFIG_SMP
118         if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
119                 giveup_fpu(current);
120         else
121                 giveup_fpu(NULL);       /* just enables FP for kernel */
122 #else
123         giveup_fpu(last_task_used_math);
124 #endif /* CONFIG_SMP */
125 }
126 EXPORT_SYMBOL(enable_kernel_fp);
127
128 #ifdef CONFIG_ALTIVEC
129 void enable_kernel_altivec(void)
130 {
131         WARN_ON(preemptible());
132
133 #ifdef CONFIG_SMP
134         if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
135                 giveup_altivec(current);
136         else
137                 giveup_altivec_notask();
138 #else
139         giveup_altivec(last_task_used_altivec);
140 #endif /* CONFIG_SMP */
141 }
142 EXPORT_SYMBOL(enable_kernel_altivec);
143
144 /*
145  * Make sure the VMX/Altivec register state in the
146  * the thread_struct is up to date for task tsk.
147  */
148 void flush_altivec_to_thread(struct task_struct *tsk)
149 {
150         if (tsk->thread.regs) {
151                 preempt_disable();
152                 if (tsk->thread.regs->msr & MSR_VEC) {
153 #ifdef CONFIG_SMP
154                         BUG_ON(tsk != current);
155 #endif
156                         giveup_altivec(tsk);
157                 }
158                 preempt_enable();
159         }
160 }
161 EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
162 #endif /* CONFIG_ALTIVEC */
163
164 #ifdef CONFIG_VSX
165 #if 0
166 /* not currently used, but some crazy RAID module might want to later */
167 void enable_kernel_vsx(void)
168 {
169         WARN_ON(preemptible());
170
171 #ifdef CONFIG_SMP
172         if (current->thread.regs && (current->thread.regs->msr & MSR_VSX))
173                 giveup_vsx(current);
174         else
175                 giveup_vsx(NULL);       /* just enable vsx for kernel - force */
176 #else
177         giveup_vsx(last_task_used_vsx);
178 #endif /* CONFIG_SMP */
179 }
180 EXPORT_SYMBOL(enable_kernel_vsx);
181 #endif
182
183 void giveup_vsx(struct task_struct *tsk)
184 {
185         giveup_fpu(tsk);
186         giveup_altivec(tsk);
187         __giveup_vsx(tsk);
188 }
189
190 void flush_vsx_to_thread(struct task_struct *tsk)
191 {
192         if (tsk->thread.regs) {
193                 preempt_disable();
194                 if (tsk->thread.regs->msr & MSR_VSX) {
195 #ifdef CONFIG_SMP
196                         BUG_ON(tsk != current);
197 #endif
198                         giveup_vsx(tsk);
199                 }
200                 preempt_enable();
201         }
202 }
203 EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
204 #endif /* CONFIG_VSX */
205
206 #ifdef CONFIG_SPE
207
208 void enable_kernel_spe(void)
209 {
210         WARN_ON(preemptible());
211
212 #ifdef CONFIG_SMP
213         if (current->thread.regs && (current->thread.regs->msr & MSR_SPE))
214                 giveup_spe(current);
215         else
216                 giveup_spe(NULL);       /* just enable SPE for kernel - force */
217 #else
218         giveup_spe(last_task_used_spe);
219 #endif /* __SMP __ */
220 }
221 EXPORT_SYMBOL(enable_kernel_spe);
222
223 void flush_spe_to_thread(struct task_struct *tsk)
224 {
225         if (tsk->thread.regs) {
226                 preempt_disable();
227                 if (tsk->thread.regs->msr & MSR_SPE) {
228 #ifdef CONFIG_SMP
229                         BUG_ON(tsk != current);
230 #endif
231                         tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
232                         giveup_spe(tsk);
233                 }
234                 preempt_enable();
235         }
236 }
237 #endif /* CONFIG_SPE */
238
239 #ifndef CONFIG_SMP
240 /*
241  * If we are doing lazy switching of CPU state (FP, altivec or SPE),
242  * and the current task has some state, discard it.
243  */
244 void discard_lazy_cpu_state(void)
245 {
246         preempt_disable();
247         if (last_task_used_math == current)
248                 last_task_used_math = NULL;
249 #ifdef CONFIG_ALTIVEC
250         if (last_task_used_altivec == current)
251                 last_task_used_altivec = NULL;
252 #endif /* CONFIG_ALTIVEC */
253 #ifdef CONFIG_VSX
254         if (last_task_used_vsx == current)
255                 last_task_used_vsx = NULL;
256 #endif /* CONFIG_VSX */
257 #ifdef CONFIG_SPE
258         if (last_task_used_spe == current)
259                 last_task_used_spe = NULL;
260 #endif
261         preempt_enable();
262 }
263 #endif /* CONFIG_SMP */
264
265 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
266 void do_send_trap(struct pt_regs *regs, unsigned long address,
267                   unsigned long error_code, int signal_code, int breakpt)
268 {
269         siginfo_t info;
270
271         current->thread.trap_nr = signal_code;
272         if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
273                         11, SIGSEGV) == NOTIFY_STOP)
274                 return;
275
276         /* Deliver the signal to userspace */
277         info.si_signo = SIGTRAP;
278         info.si_errno = breakpt;        /* breakpoint or watchpoint id */
279         info.si_code = signal_code;
280         info.si_addr = (void __user *)address;
281         force_sig_info(SIGTRAP, &info, current);
282 }
283 #else   /* !CONFIG_PPC_ADV_DEBUG_REGS */
284 void do_break (struct pt_regs *regs, unsigned long address,
285                     unsigned long error_code)
286 {
287         siginfo_t info;
288
289         current->thread.trap_nr = TRAP_HWBKPT;
290         if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
291                         11, SIGSEGV) == NOTIFY_STOP)
292                 return;
293
294         if (debugger_break_match(regs))
295                 return;
296
297         /* Clear the breakpoint */
298         hw_breakpoint_disable();
299
300         /* Deliver the signal to userspace */
301         info.si_signo = SIGTRAP;
302         info.si_errno = 0;
303         info.si_code = TRAP_HWBKPT;
304         info.si_addr = (void __user *)address;
305         force_sig_info(SIGTRAP, &info, current);
306 }
307 #endif  /* CONFIG_PPC_ADV_DEBUG_REGS */
308
309 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
310
311 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
312 /*
313  * Set the debug registers back to their default "safe" values.
314  */
315 static void set_debug_reg_defaults(struct thread_struct *thread)
316 {
317         thread->iac1 = thread->iac2 = 0;
318 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
319         thread->iac3 = thread->iac4 = 0;
320 #endif
321         thread->dac1 = thread->dac2 = 0;
322 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
323         thread->dvc1 = thread->dvc2 = 0;
324 #endif
325         thread->dbcr0 = 0;
326 #ifdef CONFIG_BOOKE
327         /*
328          * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
329          */
330         thread->dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
331                         DBCR1_IAC3US | DBCR1_IAC4US;
332         /*
333          * Force Data Address Compare User/Supervisor bits to be User-only
334          * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
335          */
336         thread->dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
337 #else
338         thread->dbcr1 = 0;
339 #endif
340 }
341
342 static void prime_debug_regs(struct thread_struct *thread)
343 {
344         /*
345          * We could have inherited MSR_DE from userspace, since
346          * it doesn't get cleared on exception entry.  Make sure
347          * MSR_DE is clear before we enable any debug events.
348          */
349         mtmsr(mfmsr() & ~MSR_DE);
350
351         mtspr(SPRN_IAC1, thread->iac1);
352         mtspr(SPRN_IAC2, thread->iac2);
353 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
354         mtspr(SPRN_IAC3, thread->iac3);
355         mtspr(SPRN_IAC4, thread->iac4);
356 #endif
357         mtspr(SPRN_DAC1, thread->dac1);
358         mtspr(SPRN_DAC2, thread->dac2);
359 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
360         mtspr(SPRN_DVC1, thread->dvc1);
361         mtspr(SPRN_DVC2, thread->dvc2);
362 #endif
363         mtspr(SPRN_DBCR0, thread->dbcr0);
364         mtspr(SPRN_DBCR1, thread->dbcr1);
365 #ifdef CONFIG_BOOKE
366         mtspr(SPRN_DBCR2, thread->dbcr2);
367 #endif
368 }
369 /*
370  * Unless neither the old or new thread are making use of the
371  * debug registers, set the debug registers from the values
372  * stored in the new thread.
373  */
374 static void switch_booke_debug_regs(struct thread_struct *new_thread)
375 {
376         if ((current->thread.dbcr0 & DBCR0_IDM)
377                 || (new_thread->dbcr0 & DBCR0_IDM))
378                         prime_debug_regs(new_thread);
379 }
380 #else   /* !CONFIG_PPC_ADV_DEBUG_REGS */
381 #ifndef CONFIG_HAVE_HW_BREAKPOINT
382 static void set_debug_reg_defaults(struct thread_struct *thread)
383 {
384         thread->hw_brk.address = 0;
385         thread->hw_brk.type = 0;
386         set_breakpoint(&thread->hw_brk);
387 }
388 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */
389 #endif  /* CONFIG_PPC_ADV_DEBUG_REGS */
390
391 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
392 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
393 {
394         mtspr(SPRN_DAC1, dabr);
395 #ifdef CONFIG_PPC_47x
396         isync();
397 #endif
398         return 0;
399 }
400 #elif defined(CONFIG_PPC_BOOK3S)
401 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
402 {
403         mtspr(SPRN_DABR, dabr);
404         if (cpu_has_feature(CPU_FTR_DABRX))
405                 mtspr(SPRN_DABRX, dabrx);
406         return 0;
407 }
408 #else
409 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
410 {
411         return -EINVAL;
412 }
413 #endif
414
415 static inline int set_dabr(struct arch_hw_breakpoint *brk)
416 {
417         unsigned long dabr, dabrx;
418
419         dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
420         dabrx = ((brk->type >> 3) & 0x7);
421
422         if (ppc_md.set_dabr)
423                 return ppc_md.set_dabr(dabr, dabrx);
424
425         return __set_dabr(dabr, dabrx);
426 }
427
428 static inline int set_dawr(struct arch_hw_breakpoint *brk)
429 {
430         unsigned long dawr, dawrx, mrd;
431
432         dawr = brk->address;
433
434         dawrx  = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
435                                    << (63 - 58); //* read/write bits */
436         dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
437                                    << (63 - 59); //* translate */
438         dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
439                                    >> 3; //* PRIM bits */
440         /* dawr length is stored in field MDR bits 48:53.  Matches range in
441            doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
442            0b111111=64DW.
443            brk->len is in bytes.
444            This aligns up to double word size, shifts and does the bias.
445         */
446         mrd = ((brk->len + 7) >> 3) - 1;
447         dawrx |= (mrd & 0x3f) << (63 - 53);
448
449         if (ppc_md.set_dawr)
450                 return ppc_md.set_dawr(dawr, dawrx);
451         mtspr(SPRN_DAWR, dawr);
452         mtspr(SPRN_DAWRX, dawrx);
453         return 0;
454 }
455
456 int set_breakpoint(struct arch_hw_breakpoint *brk)
457 {
458         __get_cpu_var(current_brk) = *brk;
459
460         if (cpu_has_feature(CPU_FTR_DAWR))
461                 return set_dawr(brk);
462
463         return set_dabr(brk);
464 }
465
466 #ifdef CONFIG_PPC64
467 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
468 #endif
469
470 static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
471                               struct arch_hw_breakpoint *b)
472 {
473         if (a->address != b->address)
474                 return false;
475         if (a->type != b->type)
476                 return false;
477         if (a->len != b->len)
478                 return false;
479         return true;
480 }
481 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
482 static inline void tm_reclaim_task(struct task_struct *tsk)
483 {
484         /* We have to work out if we're switching from/to a task that's in the
485          * middle of a transaction.
486          *
487          * In switching we need to maintain a 2nd register state as
488          * oldtask->thread.ckpt_regs.  We tm_reclaim(oldproc); this saves the
489          * checkpointed (tbegin) state in ckpt_regs and saves the transactional
490          * (current) FPRs into oldtask->thread.transact_fpr[].
491          *
492          * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
493          */
494         struct thread_struct *thr = &tsk->thread;
495
496         if (!thr->regs)
497                 return;
498
499         if (!MSR_TM_ACTIVE(thr->regs->msr))
500                 goto out_and_saveregs;
501
502         /* Stash the original thread MSR, as giveup_fpu et al will
503          * modify it.  We hold onto it to see whether the task used
504          * FP & vector regs.
505          */
506         thr->tm_orig_msr = thr->regs->msr;
507
508         TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
509                  "ccr=%lx, msr=%lx, trap=%lx)\n",
510                  tsk->pid, thr->regs->nip,
511                  thr->regs->ccr, thr->regs->msr,
512                  thr->regs->trap);
513
514         tm_reclaim(thr, thr->regs->msr, TM_CAUSE_RESCHED);
515
516         TM_DEBUG("--- tm_reclaim on pid %d complete\n",
517                  tsk->pid);
518
519 out_and_saveregs:
520         /* Always save the regs here, even if a transaction's not active.
521          * This context-switches a thread's TM info SPRs.  We do it here to
522          * be consistent with the restore path (in recheckpoint) which
523          * cannot happen later in _switch().
524          */
525         tm_save_sprs(thr);
526 }
527
528 static inline void tm_recheckpoint_new_task(struct task_struct *new)
529 {
530         unsigned long msr;
531
532         if (!cpu_has_feature(CPU_FTR_TM))
533                 return;
534
535         /* Recheckpoint the registers of the thread we're about to switch to.
536          *
537          * If the task was using FP, we non-lazily reload both the original and
538          * the speculative FP register states.  This is because the kernel
539          * doesn't see if/when a TM rollback occurs, so if we take an FP
540          * unavoidable later, we are unable to determine which set of FP regs
541          * need to be restored.
542          */
543         if (!new->thread.regs)
544                 return;
545
546         /* The TM SPRs are restored here, so that TEXASR.FS can be set
547          * before the trecheckpoint and no explosion occurs.
548          */
549         tm_restore_sprs(&new->thread);
550
551         if (!MSR_TM_ACTIVE(new->thread.regs->msr))
552                 return;
553         msr = new->thread.tm_orig_msr;
554         /* Recheckpoint to restore original checkpointed register state. */
555         TM_DEBUG("*** tm_recheckpoint of pid %d "
556                  "(new->msr 0x%lx, new->origmsr 0x%lx)\n",
557                  new->pid, new->thread.regs->msr, msr);
558
559         /* This loads the checkpointed FP/VEC state, if used */
560         tm_recheckpoint(&new->thread, msr);
561
562         /* This loads the speculative FP/VEC state, if used */
563         if (msr & MSR_FP) {
564                 do_load_up_transact_fpu(&new->thread);
565                 new->thread.regs->msr |=
566                         (MSR_FP | new->thread.fpexc_mode);
567         }
568 #ifdef CONFIG_ALTIVEC
569         if (msr & MSR_VEC) {
570                 do_load_up_transact_altivec(&new->thread);
571                 new->thread.regs->msr |= MSR_VEC;
572         }
573 #endif
574         /* We may as well turn on VSX too since all the state is restored now */
575         if (msr & MSR_VSX)
576                 new->thread.regs->msr |= MSR_VSX;
577
578         TM_DEBUG("*** tm_recheckpoint of pid %d complete "
579                  "(kernel msr 0x%lx)\n",
580                  new->pid, mfmsr());
581 }
582
583 static inline void __switch_to_tm(struct task_struct *prev)
584 {
585         if (cpu_has_feature(CPU_FTR_TM)) {
586                 tm_enable();
587                 tm_reclaim_task(prev);
588         }
589 }
590 #else
591 #define tm_recheckpoint_new_task(new)
592 #define __switch_to_tm(prev)
593 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
594
595 struct task_struct *__switch_to(struct task_struct *prev,
596         struct task_struct *new)
597 {
598         struct thread_struct *new_thread, *old_thread;
599         unsigned long flags;
600         struct task_struct *last;
601 #ifdef CONFIG_PPC_BOOK3S_64
602         struct ppc64_tlb_batch *batch;
603 #endif
604
605         /* Back up the TAR across context switches.
606          * Note that the TAR is not available for use in the kernel.  (To
607          * provide this, the TAR should be backed up/restored on exception
608          * entry/exit instead, and be in pt_regs.  FIXME, this should be in
609          * pt_regs anyway (for debug).)
610          * Save the TAR here before we do treclaim/trecheckpoint as these
611          * will change the TAR.
612          */
613         save_tar(&prev->thread);
614
615         __switch_to_tm(prev);
616
617 #ifdef CONFIG_SMP
618         /* avoid complexity of lazy save/restore of fpu
619          * by just saving it every time we switch out if
620          * this task used the fpu during the last quantum.
621          *
622          * If it tries to use the fpu again, it'll trap and
623          * reload its fp regs.  So we don't have to do a restore
624          * every switch, just a save.
625          *  -- Cort
626          */
627         if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
628                 giveup_fpu(prev);
629 #ifdef CONFIG_ALTIVEC
630         /*
631          * If the previous thread used altivec in the last quantum
632          * (thus changing altivec regs) then save them.
633          * We used to check the VRSAVE register but not all apps
634          * set it, so we don't rely on it now (and in fact we need
635          * to save & restore VSCR even if VRSAVE == 0).  -- paulus
636          *
637          * On SMP we always save/restore altivec regs just to avoid the
638          * complexity of changing processors.
639          *  -- Cort
640          */
641         if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))
642                 giveup_altivec(prev);
643 #endif /* CONFIG_ALTIVEC */
644 #ifdef CONFIG_VSX
645         if (prev->thread.regs && (prev->thread.regs->msr & MSR_VSX))
646                 /* VMX and FPU registers are already save here */
647                 __giveup_vsx(prev);
648 #endif /* CONFIG_VSX */
649 #ifdef CONFIG_SPE
650         /*
651          * If the previous thread used spe in the last quantum
652          * (thus changing spe regs) then save them.
653          *
654          * On SMP we always save/restore spe regs just to avoid the
655          * complexity of changing processors.
656          */
657         if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE)))
658                 giveup_spe(prev);
659 #endif /* CONFIG_SPE */
660
661 #else  /* CONFIG_SMP */
662 #ifdef CONFIG_ALTIVEC
663         /* Avoid the trap.  On smp this this never happens since
664          * we don't set last_task_used_altivec -- Cort
665          */
666         if (new->thread.regs && last_task_used_altivec == new)
667                 new->thread.regs->msr |= MSR_VEC;
668 #endif /* CONFIG_ALTIVEC */
669 #ifdef CONFIG_VSX
670         if (new->thread.regs && last_task_used_vsx == new)
671                 new->thread.regs->msr |= MSR_VSX;
672 #endif /* CONFIG_VSX */
673 #ifdef CONFIG_SPE
674         /* Avoid the trap.  On smp this this never happens since
675          * we don't set last_task_used_spe
676          */
677         if (new->thread.regs && last_task_used_spe == new)
678                 new->thread.regs->msr |= MSR_SPE;
679 #endif /* CONFIG_SPE */
680
681 #endif /* CONFIG_SMP */
682
683 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
684         switch_booke_debug_regs(&new->thread);
685 #else
686 /*
687  * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
688  * schedule DABR
689  */
690 #ifndef CONFIG_HAVE_HW_BREAKPOINT
691         if (unlikely(hw_brk_match(&__get_cpu_var(current_brk), &new->thread.hw_brk)))
692                 set_breakpoint(&new->thread.hw_brk);
693 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
694 #endif
695
696
697         new_thread = &new->thread;
698         old_thread = &current->thread;
699
700 #ifdef CONFIG_PPC64
701         /*
702          * Collect processor utilization data per process
703          */
704         if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
705                 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
706                 long unsigned start_tb, current_tb;
707                 start_tb = old_thread->start_tb;
708                 cu->current_tb = current_tb = mfspr(SPRN_PURR);
709                 old_thread->accum_tb += (current_tb - start_tb);
710                 new_thread->start_tb = current_tb;
711         }
712 #endif /* CONFIG_PPC64 */
713
714 #ifdef CONFIG_PPC_BOOK3S_64
715         batch = &__get_cpu_var(ppc64_tlb_batch);
716         if (batch->active) {
717                 current_thread_info()->local_flags |= _TLF_LAZY_MMU;
718                 if (batch->index)
719                         __flush_tlb_pending(batch);
720                 batch->active = 0;
721         }
722 #endif /* CONFIG_PPC_BOOK3S_64 */
723
724         local_irq_save(flags);
725
726         /*
727          * We can't take a PMU exception inside _switch() since there is a
728          * window where the kernel stack SLB and the kernel stack are out
729          * of sync. Hard disable here.
730          */
731         hard_irq_disable();
732
733         tm_recheckpoint_new_task(new);
734
735         last = _switch(old_thread, new_thread);
736
737 #ifdef CONFIG_PPC_BOOK3S_64
738         if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
739                 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
740                 batch = &__get_cpu_var(ppc64_tlb_batch);
741                 batch->active = 1;
742         }
743 #endif /* CONFIG_PPC_BOOK3S_64 */
744
745         local_irq_restore(flags);
746
747         return last;
748 }
749
750 static int instructions_to_print = 16;
751
752 static void show_instructions(struct pt_regs *regs)
753 {
754         int i;
755         unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
756                         sizeof(int));
757
758         printk("Instruction dump:");
759
760         for (i = 0; i < instructions_to_print; i++) {
761                 int instr;
762
763                 if (!(i % 8))
764                         printk("\n");
765
766 #if !defined(CONFIG_BOOKE)
767                 /* If executing with the IMMU off, adjust pc rather
768                  * than print XXXXXXXX.
769                  */
770                 if (!(regs->msr & MSR_IR))
771                         pc = (unsigned long)phys_to_virt(pc);
772 #endif
773
774                 /* We use __get_user here *only* to avoid an OOPS on a
775                  * bad address because the pc *should* only be a
776                  * kernel address.
777                  */
778                 if (!__kernel_text_address(pc) ||
779                      __get_user(instr, (unsigned int __user *)pc)) {
780                         printk(KERN_CONT "XXXXXXXX ");
781                 } else {
782                         if (regs->nip == pc)
783                                 printk(KERN_CONT "<%08x> ", instr);
784                         else
785                                 printk(KERN_CONT "%08x ", instr);
786                 }
787
788                 pc += sizeof(int);
789         }
790
791         printk("\n");
792 }
793
794 static struct regbit {
795         unsigned long bit;
796         const char *name;
797 } msr_bits[] = {
798 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
799         {MSR_SF,        "SF"},
800         {MSR_HV,        "HV"},
801 #endif
802         {MSR_VEC,       "VEC"},
803         {MSR_VSX,       "VSX"},
804 #ifdef CONFIG_BOOKE
805         {MSR_CE,        "CE"},
806 #endif
807         {MSR_EE,        "EE"},
808         {MSR_PR,        "PR"},
809         {MSR_FP,        "FP"},
810         {MSR_ME,        "ME"},
811 #ifdef CONFIG_BOOKE
812         {MSR_DE,        "DE"},
813 #else
814         {MSR_SE,        "SE"},
815         {MSR_BE,        "BE"},
816 #endif
817         {MSR_IR,        "IR"},
818         {MSR_DR,        "DR"},
819         {MSR_PMM,       "PMM"},
820 #ifndef CONFIG_BOOKE
821         {MSR_RI,        "RI"},
822         {MSR_LE,        "LE"},
823 #endif
824         {0,             NULL}
825 };
826
827 static void printbits(unsigned long val, struct regbit *bits)
828 {
829         const char *sep = "";
830
831         printk("<");
832         for (; bits->bit; ++bits)
833                 if (val & bits->bit) {
834                         printk("%s%s", sep, bits->name);
835                         sep = ",";
836                 }
837         printk(">");
838 }
839
840 #ifdef CONFIG_PPC64
841 #define REG             "%016lx"
842 #define REGS_PER_LINE   4
843 #define LAST_VOLATILE   13
844 #else
845 #define REG             "%08lx"
846 #define REGS_PER_LINE   8
847 #define LAST_VOLATILE   12
848 #endif
849
850 void show_regs(struct pt_regs * regs)
851 {
852         int i, trap;
853
854         show_regs_print_info(KERN_DEFAULT);
855
856         printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
857                regs->nip, regs->link, regs->ctr);
858         printk("REGS: %p TRAP: %04lx   %s  (%s)\n",
859                regs, regs->trap, print_tainted(), init_utsname()->release);
860         printk("MSR: "REG" ", regs->msr);
861         printbits(regs->msr, msr_bits);
862         printk("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
863 #ifdef CONFIG_PPC64
864         printk("SOFTE: %ld\n", regs->softe);
865 #endif
866         trap = TRAP(regs);
867         if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
868                 printk("CFAR: "REG"\n", regs->orig_gpr3);
869         if (trap == 0x300 || trap == 0x600)
870 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
871                 printk("DEAR: "REG", ESR: "REG"\n", regs->dar, regs->dsisr);
872 #else
873                 printk("DAR: "REG", DSISR: %08lx\n", regs->dar, regs->dsisr);
874 #endif
875
876         for (i = 0;  i < 32;  i++) {
877                 if ((i % REGS_PER_LINE) == 0)
878                         printk("\nGPR%02d: ", i);
879                 printk(REG " ", regs->gpr[i]);
880                 if (i == LAST_VOLATILE && !FULL_REGS(regs))
881                         break;
882         }
883         printk("\n");
884 #ifdef CONFIG_KALLSYMS
885         /*
886          * Lookup NIP late so we have the best change of getting the
887          * above info out without failing
888          */
889         printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
890         printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
891 #endif
892 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
893         printk("PACATMSCRATCH [%llx]\n", get_paca()->tm_scratch);
894 #endif
895         show_stack(current, (unsigned long *) regs->gpr[1]);
896         if (!user_mode(regs))
897                 show_instructions(regs);
898 }
899
900 void exit_thread(void)
901 {
902         discard_lazy_cpu_state();
903 }
904
905 void flush_thread(void)
906 {
907         discard_lazy_cpu_state();
908
909 #ifdef CONFIG_HAVE_HW_BREAKPOINT
910         flush_ptrace_hw_breakpoint(current);
911 #else /* CONFIG_HAVE_HW_BREAKPOINT */
912         set_debug_reg_defaults(&current->thread);
913 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
914 }
915
916 void
917 release_thread(struct task_struct *t)
918 {
919 }
920
921 /*
922  * this gets called so that we can store coprocessor state into memory and
923  * copy the current task into the new thread.
924  */
925 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
926 {
927         flush_fp_to_thread(src);
928         flush_altivec_to_thread(src);
929         flush_vsx_to_thread(src);
930         flush_spe_to_thread(src);
931
932         *dst = *src;
933
934         clear_task_ebb(dst);
935
936         return 0;
937 }
938
939 /*
940  * Copy a thread..
941  */
942 extern unsigned long dscr_default; /* defined in arch/powerpc/kernel/sysfs.c */
943
944 int copy_thread(unsigned long clone_flags, unsigned long usp,
945                 unsigned long arg, struct task_struct *p)
946 {
947         struct pt_regs *childregs, *kregs;
948         extern void ret_from_fork(void);
949         extern void ret_from_kernel_thread(void);
950         void (*f)(void);
951         unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
952
953         /* Copy registers */
954         sp -= sizeof(struct pt_regs);
955         childregs = (struct pt_regs *) sp;
956         if (unlikely(p->flags & PF_KTHREAD)) {
957                 struct thread_info *ti = (void *)task_stack_page(p);
958                 memset(childregs, 0, sizeof(struct pt_regs));
959                 childregs->gpr[1] = sp + sizeof(struct pt_regs);
960                 childregs->gpr[14] = usp;       /* function */
961 #ifdef CONFIG_PPC64
962                 clear_tsk_thread_flag(p, TIF_32BIT);
963                 childregs->softe = 1;
964 #endif
965                 childregs->gpr[15] = arg;
966                 p->thread.regs = NULL;  /* no user register state */
967                 ti->flags |= _TIF_RESTOREALL;
968                 f = ret_from_kernel_thread;
969         } else {
970                 struct pt_regs *regs = current_pt_regs();
971                 CHECK_FULL_REGS(regs);
972                 *childregs = *regs;
973                 if (usp)
974                         childregs->gpr[1] = usp;
975                 p->thread.regs = childregs;
976                 childregs->gpr[3] = 0;  /* Result from fork() */
977                 if (clone_flags & CLONE_SETTLS) {
978 #ifdef CONFIG_PPC64
979                         if (!is_32bit_task())
980                                 childregs->gpr[13] = childregs->gpr[6];
981                         else
982 #endif
983                                 childregs->gpr[2] = childregs->gpr[6];
984                 }
985
986                 f = ret_from_fork;
987         }
988         sp -= STACK_FRAME_OVERHEAD;
989
990         /*
991          * The way this works is that at some point in the future
992          * some task will call _switch to switch to the new task.
993          * That will pop off the stack frame created below and start
994          * the new task running at ret_from_fork.  The new task will
995          * do some house keeping and then return from the fork or clone
996          * system call, using the stack frame created above.
997          */
998         ((unsigned long *)sp)[0] = 0;
999         sp -= sizeof(struct pt_regs);
1000         kregs = (struct pt_regs *) sp;
1001         sp -= STACK_FRAME_OVERHEAD;
1002         p->thread.ksp = sp;
1003 #ifdef CONFIG_PPC32
1004         p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
1005                                 _ALIGN_UP(sizeof(struct thread_info), 16);
1006 #endif
1007 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1008         p->thread.ptrace_bps[0] = NULL;
1009 #endif
1010
1011         p->thread.fp_save_area = NULL;
1012 #ifdef CONFIG_ALTIVEC
1013         p->thread.vr_save_area = NULL;
1014 #endif
1015
1016 #ifdef CONFIG_PPC_STD_MMU_64
1017         if (mmu_has_feature(MMU_FTR_SLB)) {
1018                 unsigned long sp_vsid;
1019                 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1020
1021                 if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1022                         sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1023                                 << SLB_VSID_SHIFT_1T;
1024                 else
1025                         sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1026                                 << SLB_VSID_SHIFT;
1027                 sp_vsid |= SLB_VSID_KERNEL | llp;
1028                 p->thread.ksp_vsid = sp_vsid;
1029         }
1030 #endif /* CONFIG_PPC_STD_MMU_64 */
1031 #ifdef CONFIG_PPC64 
1032         if (cpu_has_feature(CPU_FTR_DSCR)) {
1033                 p->thread.dscr_inherit = current->thread.dscr_inherit;
1034                 p->thread.dscr = current->thread.dscr;
1035         }
1036         if (cpu_has_feature(CPU_FTR_HAS_PPR))
1037                 p->thread.ppr = INIT_PPR;
1038 #endif
1039         /*
1040          * The PPC64 ABI makes use of a TOC to contain function 
1041          * pointers.  The function (ret_from_except) is actually a pointer
1042          * to the TOC entry.  The first entry is a pointer to the actual
1043          * function.
1044          */
1045 #ifdef CONFIG_PPC64
1046         kregs->nip = *((unsigned long *)f);
1047 #else
1048         kregs->nip = (unsigned long)f;
1049 #endif
1050         return 0;
1051 }
1052
1053 /*
1054  * Set up a thread for executing a new program
1055  */
1056 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1057 {
1058 #ifdef CONFIG_PPC64
1059         unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
1060 #endif
1061
1062         /*
1063          * If we exec out of a kernel thread then thread.regs will not be
1064          * set.  Do it now.
1065          */
1066         if (!current->thread.regs) {
1067                 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1068                 current->thread.regs = regs - 1;
1069         }
1070
1071         memset(regs->gpr, 0, sizeof(regs->gpr));
1072         regs->ctr = 0;
1073         regs->link = 0;
1074         regs->xer = 0;
1075         regs->ccr = 0;
1076         regs->gpr[1] = sp;
1077
1078         /*
1079          * We have just cleared all the nonvolatile GPRs, so make
1080          * FULL_REGS(regs) return true.  This is necessary to allow
1081          * ptrace to examine the thread immediately after exec.
1082          */
1083         regs->trap &= ~1UL;
1084
1085 #ifdef CONFIG_PPC32
1086         regs->mq = 0;
1087         regs->nip = start;
1088         regs->msr = MSR_USER;
1089 #else
1090         if (!is_32bit_task()) {
1091                 unsigned long entry, toc;
1092
1093                 /* start is a relocated pointer to the function descriptor for
1094                  * the elf _start routine.  The first entry in the function
1095                  * descriptor is the entry address of _start and the second
1096                  * entry is the TOC value we need to use.
1097                  */
1098                 __get_user(entry, (unsigned long __user *)start);
1099                 __get_user(toc, (unsigned long __user *)start+1);
1100
1101                 /* Check whether the e_entry function descriptor entries
1102                  * need to be relocated before we can use them.
1103                  */
1104                 if (load_addr != 0) {
1105                         entry += load_addr;
1106                         toc   += load_addr;
1107                 }
1108                 regs->nip = entry;
1109                 regs->gpr[2] = toc;
1110                 regs->msr = MSR_USER64;
1111         } else {
1112                 regs->nip = start;
1113                 regs->gpr[2] = 0;
1114                 regs->msr = MSR_USER32;
1115         }
1116 #endif
1117         discard_lazy_cpu_state();
1118 #ifdef CONFIG_VSX
1119         current->thread.used_vsr = 0;
1120 #endif
1121         memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
1122         current->thread.fp_save_area = NULL;
1123 #ifdef CONFIG_ALTIVEC
1124         memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
1125         current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1126         current->thread.vr_save_area = NULL;
1127         current->thread.vrsave = 0;
1128         current->thread.used_vr = 0;
1129 #endif /* CONFIG_ALTIVEC */
1130 #ifdef CONFIG_SPE
1131         memset(current->thread.evr, 0, sizeof(current->thread.evr));
1132         current->thread.acc = 0;
1133         current->thread.spefscr = 0;
1134         current->thread.used_spe = 0;
1135 #endif /* CONFIG_SPE */
1136 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1137         if (cpu_has_feature(CPU_FTR_TM))
1138                 regs->msr |= MSR_TM;
1139         current->thread.tm_tfhar = 0;
1140         current->thread.tm_texasr = 0;
1141         current->thread.tm_tfiar = 0;
1142 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1143 }
1144
1145 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1146                 | PR_FP_EXC_RES | PR_FP_EXC_INV)
1147
1148 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1149 {
1150         struct pt_regs *regs = tsk->thread.regs;
1151
1152         /* This is a bit hairy.  If we are an SPE enabled  processor
1153          * (have embedded fp) we store the IEEE exception enable flags in
1154          * fpexc_mode.  fpexc_mode is also used for setting FP exception
1155          * mode (asyn, precise, disabled) for 'Classic' FP. */
1156         if (val & PR_FP_EXC_SW_ENABLE) {
1157 #ifdef CONFIG_SPE
1158                 if (cpu_has_feature(CPU_FTR_SPE)) {
1159                         tsk->thread.fpexc_mode = val &
1160                                 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1161                         return 0;
1162                 } else {
1163                         return -EINVAL;
1164                 }
1165 #else
1166                 return -EINVAL;
1167 #endif
1168         }
1169
1170         /* on a CONFIG_SPE this does not hurt us.  The bits that
1171          * __pack_fe01 use do not overlap with bits used for
1172          * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
1173          * on CONFIG_SPE implementations are reserved so writing to
1174          * them does not change anything */
1175         if (val > PR_FP_EXC_PRECISE)
1176                 return -EINVAL;
1177         tsk->thread.fpexc_mode = __pack_fe01(val);
1178         if (regs != NULL && (regs->msr & MSR_FP) != 0)
1179                 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1180                         | tsk->thread.fpexc_mode;
1181         return 0;
1182 }
1183
1184 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1185 {
1186         unsigned int val;
1187
1188         if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1189 #ifdef CONFIG_SPE
1190                 if (cpu_has_feature(CPU_FTR_SPE))
1191                         val = tsk->thread.fpexc_mode;
1192                 else
1193                         return -EINVAL;
1194 #else
1195                 return -EINVAL;
1196 #endif
1197         else
1198                 val = __unpack_fe01(tsk->thread.fpexc_mode);
1199         return put_user(val, (unsigned int __user *) adr);
1200 }
1201
1202 int set_endian(struct task_struct *tsk, unsigned int val)
1203 {
1204         struct pt_regs *regs = tsk->thread.regs;
1205
1206         if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1207             (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1208                 return -EINVAL;
1209
1210         if (regs == NULL)
1211                 return -EINVAL;
1212
1213         if (val == PR_ENDIAN_BIG)
1214                 regs->msr &= ~MSR_LE;
1215         else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1216                 regs->msr |= MSR_LE;
1217         else
1218                 return -EINVAL;
1219
1220         return 0;
1221 }
1222
1223 int get_endian(struct task_struct *tsk, unsigned long adr)
1224 {
1225         struct pt_regs *regs = tsk->thread.regs;
1226         unsigned int val;
1227
1228         if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1229             !cpu_has_feature(CPU_FTR_REAL_LE))
1230                 return -EINVAL;
1231
1232         if (regs == NULL)
1233                 return -EINVAL;
1234
1235         if (regs->msr & MSR_LE) {
1236                 if (cpu_has_feature(CPU_FTR_REAL_LE))
1237                         val = PR_ENDIAN_LITTLE;
1238                 else
1239                         val = PR_ENDIAN_PPC_LITTLE;
1240         } else
1241                 val = PR_ENDIAN_BIG;
1242
1243         return put_user(val, (unsigned int __user *)adr);
1244 }
1245
1246 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1247 {
1248         tsk->thread.align_ctl = val;
1249         return 0;
1250 }
1251
1252 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1253 {
1254         return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1255 }
1256
1257 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1258                                   unsigned long nbytes)
1259 {
1260         unsigned long stack_page;
1261         unsigned long cpu = task_cpu(p);
1262
1263         /*
1264          * Avoid crashing if the stack has overflowed and corrupted
1265          * task_cpu(p), which is in the thread_info struct.
1266          */
1267         if (cpu < NR_CPUS && cpu_possible(cpu)) {
1268                 stack_page = (unsigned long) hardirq_ctx[cpu];
1269                 if (sp >= stack_page + sizeof(struct thread_struct)
1270                     && sp <= stack_page + THREAD_SIZE - nbytes)
1271                         return 1;
1272
1273                 stack_page = (unsigned long) softirq_ctx[cpu];
1274                 if (sp >= stack_page + sizeof(struct thread_struct)
1275                     && sp <= stack_page + THREAD_SIZE - nbytes)
1276                         return 1;
1277         }
1278         return 0;
1279 }
1280
1281 int validate_sp(unsigned long sp, struct task_struct *p,
1282                        unsigned long nbytes)
1283 {
1284         unsigned long stack_page = (unsigned long)task_stack_page(p);
1285
1286         if (sp >= stack_page + sizeof(struct thread_struct)
1287             && sp <= stack_page + THREAD_SIZE - nbytes)
1288                 return 1;
1289
1290         return valid_irq_stack(sp, p, nbytes);
1291 }
1292
1293 EXPORT_SYMBOL(validate_sp);
1294
1295 unsigned long get_wchan(struct task_struct *p)
1296 {
1297         unsigned long ip, sp;
1298         int count = 0;
1299
1300         if (!p || p == current || p->state == TASK_RUNNING)
1301                 return 0;
1302
1303         sp = p->thread.ksp;
1304         if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1305                 return 0;
1306
1307         do {
1308                 sp = *(unsigned long *)sp;
1309                 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1310                         return 0;
1311                 if (count > 0) {
1312                         ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
1313                         if (!in_sched_functions(ip))
1314                                 return ip;
1315                 }
1316         } while (count++ < 16);
1317         return 0;
1318 }
1319
1320 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
1321
1322 void show_stack(struct task_struct *tsk, unsigned long *stack)
1323 {
1324         unsigned long sp, ip, lr, newsp;
1325         int count = 0;
1326         int firstframe = 1;
1327 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1328         int curr_frame = current->curr_ret_stack;
1329         extern void return_to_handler(void);
1330         unsigned long rth = (unsigned long)return_to_handler;
1331         unsigned long mrth = -1;
1332 #ifdef CONFIG_PPC64
1333         extern void mod_return_to_handler(void);
1334         rth = *(unsigned long *)rth;
1335         mrth = (unsigned long)mod_return_to_handler;
1336         mrth = *(unsigned long *)mrth;
1337 #endif
1338 #endif
1339
1340         sp = (unsigned long) stack;
1341         if (tsk == NULL)
1342                 tsk = current;
1343         if (sp == 0) {
1344                 if (tsk == current)
1345                         asm("mr %0,1" : "=r" (sp));
1346                 else
1347                         sp = tsk->thread.ksp;
1348         }
1349
1350         lr = 0;
1351         printk("Call Trace:\n");
1352         do {
1353                 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
1354                         return;
1355
1356                 stack = (unsigned long *) sp;
1357                 newsp = stack[0];
1358                 ip = stack[STACK_FRAME_LR_SAVE];
1359                 if (!firstframe || ip != lr) {
1360                         printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
1361 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1362                         if ((ip == rth || ip == mrth) && curr_frame >= 0) {
1363                                 printk(" (%pS)",
1364                                        (void *)current->ret_stack[curr_frame].ret);
1365                                 curr_frame--;
1366                         }
1367 #endif
1368                         if (firstframe)
1369                                 printk(" (unreliable)");
1370                         printk("\n");
1371                 }
1372                 firstframe = 0;
1373
1374                 /*
1375                  * See if this is an exception frame.
1376                  * We look for the "regshere" marker in the current frame.
1377                  */
1378                 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
1379                     && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
1380                         struct pt_regs *regs = (struct pt_regs *)
1381                                 (sp + STACK_FRAME_OVERHEAD);
1382                         lr = regs->link;
1383                         printk("--- Exception: %lx at %pS\n    LR = %pS\n",
1384                                regs->trap, (void *)regs->nip, (void *)lr);
1385                         firstframe = 1;
1386                 }
1387
1388                 sp = newsp;
1389         } while (count++ < kstack_depth_to_print);
1390 }
1391
1392 #ifdef CONFIG_PPC64
1393 /* Called with hard IRQs off */
1394 void notrace __ppc64_runlatch_on(void)
1395 {
1396         struct thread_info *ti = current_thread_info();
1397         unsigned long ctrl;
1398
1399         ctrl = mfspr(SPRN_CTRLF);
1400         ctrl |= CTRL_RUNLATCH;
1401         mtspr(SPRN_CTRLT, ctrl);
1402
1403         ti->local_flags |= _TLF_RUNLATCH;
1404 }
1405
1406 /* Called with hard IRQs off */
1407 void notrace __ppc64_runlatch_off(void)
1408 {
1409         struct thread_info *ti = current_thread_info();
1410         unsigned long ctrl;
1411
1412         ti->local_flags &= ~_TLF_RUNLATCH;
1413
1414         ctrl = mfspr(SPRN_CTRLF);
1415         ctrl &= ~CTRL_RUNLATCH;
1416         mtspr(SPRN_CTRLT, ctrl);
1417 }
1418 #endif /* CONFIG_PPC64 */
1419
1420 unsigned long arch_align_stack(unsigned long sp)
1421 {
1422         if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1423                 sp -= get_random_int() & ~PAGE_MASK;
1424         return sp & ~0xf;
1425 }
1426
1427 static inline unsigned long brk_rnd(void)
1428 {
1429         unsigned long rnd = 0;
1430
1431         /* 8MB for 32bit, 1GB for 64bit */
1432         if (is_32bit_task())
1433                 rnd = (long)(get_random_int() % (1<<(23-PAGE_SHIFT)));
1434         else
1435                 rnd = (long)(get_random_int() % (1<<(30-PAGE_SHIFT)));
1436
1437         return rnd << PAGE_SHIFT;
1438 }
1439
1440 unsigned long arch_randomize_brk(struct mm_struct *mm)
1441 {
1442         unsigned long base = mm->brk;
1443         unsigned long ret;
1444
1445 #ifdef CONFIG_PPC_STD_MMU_64
1446         /*
1447          * If we are using 1TB segments and we are allowed to randomise
1448          * the heap, we can put it above 1TB so it is backed by a 1TB
1449          * segment. Otherwise the heap will be in the bottom 1TB
1450          * which always uses 256MB segments and this may result in a
1451          * performance penalty.
1452          */
1453         if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
1454                 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
1455 #endif
1456
1457         ret = PAGE_ALIGN(base + brk_rnd());
1458
1459         if (ret < mm->brk)
1460                 return mm->brk;
1461
1462         return ret;
1463 }
1464
1465 unsigned long randomize_et_dyn(unsigned long base)
1466 {
1467         unsigned long ret = PAGE_ALIGN(base + brk_rnd());
1468
1469         if (ret < base)
1470                 return base;
1471
1472         return ret;
1473 }