]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - arch/powerpc/kvm/book3s_64_mmu_hv.c
KVM: PPC: Allow kvmppc_get_last_inst() to fail
[karo-tx-linux.git] / arch / powerpc / kvm / book3s_64_mmu_hv.c
1 /*
2  * This program is free software; you can redistribute it and/or modify
3  * it under the terms of the GNU General Public License, version 2, as
4  * published by the Free Software Foundation.
5  *
6  * This program is distributed in the hope that it will be useful,
7  * but WITHOUT ANY WARRANTY; without even the implied warranty of
8  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
9  * GNU General Public License for more details.
10  *
11  * You should have received a copy of the GNU General Public License
12  * along with this program; if not, write to the Free Software
13  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
14  *
15  * Copyright 2010 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
16  */
17
18 #include <linux/types.h>
19 #include <linux/string.h>
20 #include <linux/kvm.h>
21 #include <linux/kvm_host.h>
22 #include <linux/highmem.h>
23 #include <linux/gfp.h>
24 #include <linux/slab.h>
25 #include <linux/hugetlb.h>
26 #include <linux/vmalloc.h>
27 #include <linux/srcu.h>
28 #include <linux/anon_inodes.h>
29 #include <linux/file.h>
30
31 #include <asm/tlbflush.h>
32 #include <asm/kvm_ppc.h>
33 #include <asm/kvm_book3s.h>
34 #include <asm/mmu-hash64.h>
35 #include <asm/hvcall.h>
36 #include <asm/synch.h>
37 #include <asm/ppc-opcode.h>
38 #include <asm/cputable.h>
39
40 #include "book3s_hv_cma.h"
41
42 /* POWER7 has 10-bit LPIDs, PPC970 has 6-bit LPIDs */
43 #define MAX_LPID_970    63
44
45 /* Power architecture requires HPT is at least 256kB */
46 #define PPC_MIN_HPT_ORDER       18
47
48 static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
49                                 long pte_index, unsigned long pteh,
50                                 unsigned long ptel, unsigned long *pte_idx_ret);
51 static void kvmppc_rmap_reset(struct kvm *kvm);
52
53 long kvmppc_alloc_hpt(struct kvm *kvm, u32 *htab_orderp)
54 {
55         unsigned long hpt = 0;
56         struct revmap_entry *rev;
57         struct page *page = NULL;
58         long order = KVM_DEFAULT_HPT_ORDER;
59
60         if (htab_orderp) {
61                 order = *htab_orderp;
62                 if (order < PPC_MIN_HPT_ORDER)
63                         order = PPC_MIN_HPT_ORDER;
64         }
65
66         kvm->arch.hpt_cma_alloc = 0;
67         VM_BUG_ON(order < KVM_CMA_CHUNK_ORDER);
68         page = kvm_alloc_hpt(1 << (order - PAGE_SHIFT));
69         if (page) {
70                 hpt = (unsigned long)pfn_to_kaddr(page_to_pfn(page));
71                 kvm->arch.hpt_cma_alloc = 1;
72         }
73
74         /* Lastly try successively smaller sizes from the page allocator */
75         while (!hpt && order > PPC_MIN_HPT_ORDER) {
76                 hpt = __get_free_pages(GFP_KERNEL|__GFP_ZERO|__GFP_REPEAT|
77                                        __GFP_NOWARN, order - PAGE_SHIFT);
78                 if (!hpt)
79                         --order;
80         }
81
82         if (!hpt)
83                 return -ENOMEM;
84
85         kvm->arch.hpt_virt = hpt;
86         kvm->arch.hpt_order = order;
87         /* HPTEs are 2**4 bytes long */
88         kvm->arch.hpt_npte = 1ul << (order - 4);
89         /* 128 (2**7) bytes in each HPTEG */
90         kvm->arch.hpt_mask = (1ul << (order - 7)) - 1;
91
92         /* Allocate reverse map array */
93         rev = vmalloc(sizeof(struct revmap_entry) * kvm->arch.hpt_npte);
94         if (!rev) {
95                 pr_err("kvmppc_alloc_hpt: Couldn't alloc reverse map array\n");
96                 goto out_freehpt;
97         }
98         kvm->arch.revmap = rev;
99         kvm->arch.sdr1 = __pa(hpt) | (order - 18);
100
101         pr_info("KVM guest htab at %lx (order %ld), LPID %x\n",
102                 hpt, order, kvm->arch.lpid);
103
104         if (htab_orderp)
105                 *htab_orderp = order;
106         return 0;
107
108  out_freehpt:
109         if (kvm->arch.hpt_cma_alloc)
110                 kvm_release_hpt(page, 1 << (order - PAGE_SHIFT));
111         else
112                 free_pages(hpt, order - PAGE_SHIFT);
113         return -ENOMEM;
114 }
115
116 long kvmppc_alloc_reset_hpt(struct kvm *kvm, u32 *htab_orderp)
117 {
118         long err = -EBUSY;
119         long order;
120
121         mutex_lock(&kvm->lock);
122         if (kvm->arch.rma_setup_done) {
123                 kvm->arch.rma_setup_done = 0;
124                 /* order rma_setup_done vs. vcpus_running */
125                 smp_mb();
126                 if (atomic_read(&kvm->arch.vcpus_running)) {
127                         kvm->arch.rma_setup_done = 1;
128                         goto out;
129                 }
130         }
131         if (kvm->arch.hpt_virt) {
132                 order = kvm->arch.hpt_order;
133                 /* Set the entire HPT to 0, i.e. invalid HPTEs */
134                 memset((void *)kvm->arch.hpt_virt, 0, 1ul << order);
135                 /*
136                  * Reset all the reverse-mapping chains for all memslots
137                  */
138                 kvmppc_rmap_reset(kvm);
139                 /* Ensure that each vcpu will flush its TLB on next entry. */
140                 cpumask_setall(&kvm->arch.need_tlb_flush);
141                 *htab_orderp = order;
142                 err = 0;
143         } else {
144                 err = kvmppc_alloc_hpt(kvm, htab_orderp);
145                 order = *htab_orderp;
146         }
147  out:
148         mutex_unlock(&kvm->lock);
149         return err;
150 }
151
152 void kvmppc_free_hpt(struct kvm *kvm)
153 {
154         kvmppc_free_lpid(kvm->arch.lpid);
155         vfree(kvm->arch.revmap);
156         if (kvm->arch.hpt_cma_alloc)
157                 kvm_release_hpt(virt_to_page(kvm->arch.hpt_virt),
158                                 1 << (kvm->arch.hpt_order - PAGE_SHIFT));
159         else
160                 free_pages(kvm->arch.hpt_virt,
161                            kvm->arch.hpt_order - PAGE_SHIFT);
162 }
163
164 /* Bits in first HPTE dword for pagesize 4k, 64k or 16M */
165 static inline unsigned long hpte0_pgsize_encoding(unsigned long pgsize)
166 {
167         return (pgsize > 0x1000) ? HPTE_V_LARGE : 0;
168 }
169
170 /* Bits in second HPTE dword for pagesize 4k, 64k or 16M */
171 static inline unsigned long hpte1_pgsize_encoding(unsigned long pgsize)
172 {
173         return (pgsize == 0x10000) ? 0x1000 : 0;
174 }
175
176 void kvmppc_map_vrma(struct kvm_vcpu *vcpu, struct kvm_memory_slot *memslot,
177                      unsigned long porder)
178 {
179         unsigned long i;
180         unsigned long npages;
181         unsigned long hp_v, hp_r;
182         unsigned long addr, hash;
183         unsigned long psize;
184         unsigned long hp0, hp1;
185         unsigned long idx_ret;
186         long ret;
187         struct kvm *kvm = vcpu->kvm;
188
189         psize = 1ul << porder;
190         npages = memslot->npages >> (porder - PAGE_SHIFT);
191
192         /* VRMA can't be > 1TB */
193         if (npages > 1ul << (40 - porder))
194                 npages = 1ul << (40 - porder);
195         /* Can't use more than 1 HPTE per HPTEG */
196         if (npages > kvm->arch.hpt_mask + 1)
197                 npages = kvm->arch.hpt_mask + 1;
198
199         hp0 = HPTE_V_1TB_SEG | (VRMA_VSID << (40 - 16)) |
200                 HPTE_V_BOLTED | hpte0_pgsize_encoding(psize);
201         hp1 = hpte1_pgsize_encoding(psize) |
202                 HPTE_R_R | HPTE_R_C | HPTE_R_M | PP_RWXX;
203
204         for (i = 0; i < npages; ++i) {
205                 addr = i << porder;
206                 /* can't use hpt_hash since va > 64 bits */
207                 hash = (i ^ (VRMA_VSID ^ (VRMA_VSID << 25))) & kvm->arch.hpt_mask;
208                 /*
209                  * We assume that the hash table is empty and no
210                  * vcpus are using it at this stage.  Since we create
211                  * at most one HPTE per HPTEG, we just assume entry 7
212                  * is available and use it.
213                  */
214                 hash = (hash << 3) + 7;
215                 hp_v = hp0 | ((addr >> 16) & ~0x7fUL);
216                 hp_r = hp1 | addr;
217                 ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, hash, hp_v, hp_r,
218                                                  &idx_ret);
219                 if (ret != H_SUCCESS) {
220                         pr_err("KVM: map_vrma at %lx failed, ret=%ld\n",
221                                addr, ret);
222                         break;
223                 }
224         }
225 }
226
227 int kvmppc_mmu_hv_init(void)
228 {
229         unsigned long host_lpid, rsvd_lpid;
230
231         if (!cpu_has_feature(CPU_FTR_HVMODE))
232                 return -EINVAL;
233
234         /* POWER7 has 10-bit LPIDs, PPC970 and e500mc have 6-bit LPIDs */
235         if (cpu_has_feature(CPU_FTR_ARCH_206)) {
236                 host_lpid = mfspr(SPRN_LPID);   /* POWER7 */
237                 rsvd_lpid = LPID_RSVD;
238         } else {
239                 host_lpid = 0;                  /* PPC970 */
240                 rsvd_lpid = MAX_LPID_970;
241         }
242
243         kvmppc_init_lpid(rsvd_lpid + 1);
244
245         kvmppc_claim_lpid(host_lpid);
246         /* rsvd_lpid is reserved for use in partition switching */
247         kvmppc_claim_lpid(rsvd_lpid);
248
249         return 0;
250 }
251
252 static void kvmppc_mmu_book3s_64_hv_reset_msr(struct kvm_vcpu *vcpu)
253 {
254         unsigned long msr = vcpu->arch.intr_msr;
255
256         /* If transactional, change to suspend mode on IRQ delivery */
257         if (MSR_TM_TRANSACTIONAL(vcpu->arch.shregs.msr))
258                 msr |= MSR_TS_S;
259         else
260                 msr |= vcpu->arch.shregs.msr & MSR_TS_MASK;
261         kvmppc_set_msr(vcpu, msr);
262 }
263
264 /*
265  * This is called to get a reference to a guest page if there isn't
266  * one already in the memslot->arch.slot_phys[] array.
267  */
268 static long kvmppc_get_guest_page(struct kvm *kvm, unsigned long gfn,
269                                   struct kvm_memory_slot *memslot,
270                                   unsigned long psize)
271 {
272         unsigned long start;
273         long np, err;
274         struct page *page, *hpage, *pages[1];
275         unsigned long s, pgsize;
276         unsigned long *physp;
277         unsigned int is_io, got, pgorder;
278         struct vm_area_struct *vma;
279         unsigned long pfn, i, npages;
280
281         physp = memslot->arch.slot_phys;
282         if (!physp)
283                 return -EINVAL;
284         if (physp[gfn - memslot->base_gfn])
285                 return 0;
286
287         is_io = 0;
288         got = 0;
289         page = NULL;
290         pgsize = psize;
291         err = -EINVAL;
292         start = gfn_to_hva_memslot(memslot, gfn);
293
294         /* Instantiate and get the page we want access to */
295         np = get_user_pages_fast(start, 1, 1, pages);
296         if (np != 1) {
297                 /* Look up the vma for the page */
298                 down_read(&current->mm->mmap_sem);
299                 vma = find_vma(current->mm, start);
300                 if (!vma || vma->vm_start > start ||
301                     start + psize > vma->vm_end ||
302                     !(vma->vm_flags & VM_PFNMAP))
303                         goto up_err;
304                 is_io = hpte_cache_bits(pgprot_val(vma->vm_page_prot));
305                 pfn = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
306                 /* check alignment of pfn vs. requested page size */
307                 if (psize > PAGE_SIZE && (pfn & ((psize >> PAGE_SHIFT) - 1)))
308                         goto up_err;
309                 up_read(&current->mm->mmap_sem);
310
311         } else {
312                 page = pages[0];
313                 got = KVMPPC_GOT_PAGE;
314
315                 /* See if this is a large page */
316                 s = PAGE_SIZE;
317                 if (PageHuge(page)) {
318                         hpage = compound_head(page);
319                         s <<= compound_order(hpage);
320                         /* Get the whole large page if slot alignment is ok */
321                         if (s > psize && slot_is_aligned(memslot, s) &&
322                             !(memslot->userspace_addr & (s - 1))) {
323                                 start &= ~(s - 1);
324                                 pgsize = s;
325                                 get_page(hpage);
326                                 put_page(page);
327                                 page = hpage;
328                         }
329                 }
330                 if (s < psize)
331                         goto out;
332                 pfn = page_to_pfn(page);
333         }
334
335         npages = pgsize >> PAGE_SHIFT;
336         pgorder = __ilog2(npages);
337         physp += (gfn - memslot->base_gfn) & ~(npages - 1);
338         spin_lock(&kvm->arch.slot_phys_lock);
339         for (i = 0; i < npages; ++i) {
340                 if (!physp[i]) {
341                         physp[i] = ((pfn + i) << PAGE_SHIFT) +
342                                 got + is_io + pgorder;
343                         got = 0;
344                 }
345         }
346         spin_unlock(&kvm->arch.slot_phys_lock);
347         err = 0;
348
349  out:
350         if (got)
351                 put_page(page);
352         return err;
353
354  up_err:
355         up_read(&current->mm->mmap_sem);
356         return err;
357 }
358
359 long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
360                                 long pte_index, unsigned long pteh,
361                                 unsigned long ptel, unsigned long *pte_idx_ret)
362 {
363         unsigned long psize, gpa, gfn;
364         struct kvm_memory_slot *memslot;
365         long ret;
366
367         if (kvm->arch.using_mmu_notifiers)
368                 goto do_insert;
369
370         psize = hpte_page_size(pteh, ptel);
371         if (!psize)
372                 return H_PARAMETER;
373
374         pteh &= ~(HPTE_V_HVLOCK | HPTE_V_ABSENT | HPTE_V_VALID);
375
376         /* Find the memslot (if any) for this address */
377         gpa = (ptel & HPTE_R_RPN) & ~(psize - 1);
378         gfn = gpa >> PAGE_SHIFT;
379         memslot = gfn_to_memslot(kvm, gfn);
380         if (memslot && !(memslot->flags & KVM_MEMSLOT_INVALID)) {
381                 if (!slot_is_aligned(memslot, psize))
382                         return H_PARAMETER;
383                 if (kvmppc_get_guest_page(kvm, gfn, memslot, psize) < 0)
384                         return H_PARAMETER;
385         }
386
387  do_insert:
388         /* Protect linux PTE lookup from page table destruction */
389         rcu_read_lock_sched();  /* this disables preemption too */
390         ret = kvmppc_do_h_enter(kvm, flags, pte_index, pteh, ptel,
391                                 current->mm->pgd, false, pte_idx_ret);
392         rcu_read_unlock_sched();
393         if (ret == H_TOO_HARD) {
394                 /* this can't happen */
395                 pr_err("KVM: Oops, kvmppc_h_enter returned too hard!\n");
396                 ret = H_RESOURCE;       /* or something */
397         }
398         return ret;
399
400 }
401
402 /*
403  * We come here on a H_ENTER call from the guest when we are not
404  * using mmu notifiers and we don't have the requested page pinned
405  * already.
406  */
407 long kvmppc_virtmode_h_enter(struct kvm_vcpu *vcpu, unsigned long flags,
408                              long pte_index, unsigned long pteh,
409                              unsigned long ptel)
410 {
411         return kvmppc_virtmode_do_h_enter(vcpu->kvm, flags, pte_index,
412                                           pteh, ptel, &vcpu->arch.gpr[4]);
413 }
414
415 static struct kvmppc_slb *kvmppc_mmu_book3s_hv_find_slbe(struct kvm_vcpu *vcpu,
416                                                          gva_t eaddr)
417 {
418         u64 mask;
419         int i;
420
421         for (i = 0; i < vcpu->arch.slb_nr; i++) {
422                 if (!(vcpu->arch.slb[i].orige & SLB_ESID_V))
423                         continue;
424
425                 if (vcpu->arch.slb[i].origv & SLB_VSID_B_1T)
426                         mask = ESID_MASK_1T;
427                 else
428                         mask = ESID_MASK;
429
430                 if (((vcpu->arch.slb[i].orige ^ eaddr) & mask) == 0)
431                         return &vcpu->arch.slb[i];
432         }
433         return NULL;
434 }
435
436 static unsigned long kvmppc_mmu_get_real_addr(unsigned long v, unsigned long r,
437                         unsigned long ea)
438 {
439         unsigned long ra_mask;
440
441         ra_mask = hpte_page_size(v, r) - 1;
442         return (r & HPTE_R_RPN & ~ra_mask) | (ea & ra_mask);
443 }
444
445 static int kvmppc_mmu_book3s_64_hv_xlate(struct kvm_vcpu *vcpu, gva_t eaddr,
446                         struct kvmppc_pte *gpte, bool data, bool iswrite)
447 {
448         struct kvm *kvm = vcpu->kvm;
449         struct kvmppc_slb *slbe;
450         unsigned long slb_v;
451         unsigned long pp, key;
452         unsigned long v, gr;
453         __be64 *hptep;
454         int index;
455         int virtmode = vcpu->arch.shregs.msr & (data ? MSR_DR : MSR_IR);
456
457         /* Get SLB entry */
458         if (virtmode) {
459                 slbe = kvmppc_mmu_book3s_hv_find_slbe(vcpu, eaddr);
460                 if (!slbe)
461                         return -EINVAL;
462                 slb_v = slbe->origv;
463         } else {
464                 /* real mode access */
465                 slb_v = vcpu->kvm->arch.vrma_slb_v;
466         }
467
468         preempt_disable();
469         /* Find the HPTE in the hash table */
470         index = kvmppc_hv_find_lock_hpte(kvm, eaddr, slb_v,
471                                          HPTE_V_VALID | HPTE_V_ABSENT);
472         if (index < 0) {
473                 preempt_enable();
474                 return -ENOENT;
475         }
476         hptep = (__be64 *)(kvm->arch.hpt_virt + (index << 4));
477         v = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK;
478         gr = kvm->arch.revmap[index].guest_rpte;
479
480         /* Unlock the HPTE */
481         asm volatile("lwsync" : : : "memory");
482         hptep[0] = cpu_to_be64(v);
483         preempt_enable();
484
485         gpte->eaddr = eaddr;
486         gpte->vpage = ((v & HPTE_V_AVPN) << 4) | ((eaddr >> 12) & 0xfff);
487
488         /* Get PP bits and key for permission check */
489         pp = gr & (HPTE_R_PP0 | HPTE_R_PP);
490         key = (vcpu->arch.shregs.msr & MSR_PR) ? SLB_VSID_KP : SLB_VSID_KS;
491         key &= slb_v;
492
493         /* Calculate permissions */
494         gpte->may_read = hpte_read_permission(pp, key);
495         gpte->may_write = hpte_write_permission(pp, key);
496         gpte->may_execute = gpte->may_read && !(gr & (HPTE_R_N | HPTE_R_G));
497
498         /* Storage key permission check for POWER7 */
499         if (data && virtmode && cpu_has_feature(CPU_FTR_ARCH_206)) {
500                 int amrfield = hpte_get_skey_perm(gr, vcpu->arch.amr);
501                 if (amrfield & 1)
502                         gpte->may_read = 0;
503                 if (amrfield & 2)
504                         gpte->may_write = 0;
505         }
506
507         /* Get the guest physical address */
508         gpte->raddr = kvmppc_mmu_get_real_addr(v, gr, eaddr);
509         return 0;
510 }
511
512 /*
513  * Quick test for whether an instruction is a load or a store.
514  * If the instruction is a load or a store, then this will indicate
515  * which it is, at least on server processors.  (Embedded processors
516  * have some external PID instructions that don't follow the rule
517  * embodied here.)  If the instruction isn't a load or store, then
518  * this doesn't return anything useful.
519  */
520 static int instruction_is_store(unsigned int instr)
521 {
522         unsigned int mask;
523
524         mask = 0x10000000;
525         if ((instr & 0xfc000000) == 0x7c000000)
526                 mask = 0x100;           /* major opcode 31 */
527         return (instr & mask) != 0;
528 }
529
530 static int kvmppc_hv_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu,
531                                   unsigned long gpa, gva_t ea, int is_store)
532 {
533         u32 last_inst;
534
535         /*
536          * If we fail, we just return to the guest and try executing it again.
537          */
538         if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
539                 EMULATE_DONE)
540                 return RESUME_GUEST;
541
542         /*
543          * WARNING: We do not know for sure whether the instruction we just
544          * read from memory is the same that caused the fault in the first
545          * place.  If the instruction we read is neither an load or a store,
546          * then it can't access memory, so we don't need to worry about
547          * enforcing access permissions.  So, assuming it is a load or
548          * store, we just check that its direction (load or store) is
549          * consistent with the original fault, since that's what we
550          * checked the access permissions against.  If there is a mismatch
551          * we just return and retry the instruction.
552          */
553
554         if (instruction_is_store(last_inst) != !!is_store)
555                 return RESUME_GUEST;
556
557         /*
558          * Emulated accesses are emulated by looking at the hash for
559          * translation once, then performing the access later. The
560          * translation could be invalidated in the meantime in which
561          * point performing the subsequent memory access on the old
562          * physical address could possibly be a security hole for the
563          * guest (but not the host).
564          *
565          * This is less of an issue for MMIO stores since they aren't
566          * globally visible. It could be an issue for MMIO loads to
567          * a certain extent but we'll ignore it for now.
568          */
569
570         vcpu->arch.paddr_accessed = gpa;
571         vcpu->arch.vaddr_accessed = ea;
572         return kvmppc_emulate_mmio(run, vcpu);
573 }
574
575 int kvmppc_book3s_hv_page_fault(struct kvm_run *run, struct kvm_vcpu *vcpu,
576                                 unsigned long ea, unsigned long dsisr)
577 {
578         struct kvm *kvm = vcpu->kvm;
579         unsigned long hpte[3], r;
580         __be64 *hptep;
581         unsigned long mmu_seq, psize, pte_size;
582         unsigned long gpa_base, gfn_base;
583         unsigned long gpa, gfn, hva, pfn;
584         struct kvm_memory_slot *memslot;
585         unsigned long *rmap;
586         struct revmap_entry *rev;
587         struct page *page, *pages[1];
588         long index, ret, npages;
589         unsigned long is_io;
590         unsigned int writing, write_ok;
591         struct vm_area_struct *vma;
592         unsigned long rcbits;
593
594         /*
595          * Real-mode code has already searched the HPT and found the
596          * entry we're interested in.  Lock the entry and check that
597          * it hasn't changed.  If it has, just return and re-execute the
598          * instruction.
599          */
600         if (ea != vcpu->arch.pgfault_addr)
601                 return RESUME_GUEST;
602         index = vcpu->arch.pgfault_index;
603         hptep = (__be64 *)(kvm->arch.hpt_virt + (index << 4));
604         rev = &kvm->arch.revmap[index];
605         preempt_disable();
606         while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
607                 cpu_relax();
608         hpte[0] = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK;
609         hpte[1] = be64_to_cpu(hptep[1]);
610         hpte[2] = r = rev->guest_rpte;
611         asm volatile("lwsync" : : : "memory");
612         hptep[0] = cpu_to_be64(hpte[0]);
613         preempt_enable();
614
615         if (hpte[0] != vcpu->arch.pgfault_hpte[0] ||
616             hpte[1] != vcpu->arch.pgfault_hpte[1])
617                 return RESUME_GUEST;
618
619         /* Translate the logical address and get the page */
620         psize = hpte_page_size(hpte[0], r);
621         gpa_base = r & HPTE_R_RPN & ~(psize - 1);
622         gfn_base = gpa_base >> PAGE_SHIFT;
623         gpa = gpa_base | (ea & (psize - 1));
624         gfn = gpa >> PAGE_SHIFT;
625         memslot = gfn_to_memslot(kvm, gfn);
626
627         /* No memslot means it's an emulated MMIO region */
628         if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
629                 return kvmppc_hv_emulate_mmio(run, vcpu, gpa, ea,
630                                               dsisr & DSISR_ISSTORE);
631
632         if (!kvm->arch.using_mmu_notifiers)
633                 return -EFAULT;         /* should never get here */
634
635         /*
636          * This should never happen, because of the slot_is_aligned()
637          * check in kvmppc_do_h_enter().
638          */
639         if (gfn_base < memslot->base_gfn)
640                 return -EFAULT;
641
642         /* used to check for invalidations in progress */
643         mmu_seq = kvm->mmu_notifier_seq;
644         smp_rmb();
645
646         is_io = 0;
647         pfn = 0;
648         page = NULL;
649         pte_size = PAGE_SIZE;
650         writing = (dsisr & DSISR_ISSTORE) != 0;
651         /* If writing != 0, then the HPTE must allow writing, if we get here */
652         write_ok = writing;
653         hva = gfn_to_hva_memslot(memslot, gfn);
654         npages = get_user_pages_fast(hva, 1, writing, pages);
655         if (npages < 1) {
656                 /* Check if it's an I/O mapping */
657                 down_read(&current->mm->mmap_sem);
658                 vma = find_vma(current->mm, hva);
659                 if (vma && vma->vm_start <= hva && hva + psize <= vma->vm_end &&
660                     (vma->vm_flags & VM_PFNMAP)) {
661                         pfn = vma->vm_pgoff +
662                                 ((hva - vma->vm_start) >> PAGE_SHIFT);
663                         pte_size = psize;
664                         is_io = hpte_cache_bits(pgprot_val(vma->vm_page_prot));
665                         write_ok = vma->vm_flags & VM_WRITE;
666                 }
667                 up_read(&current->mm->mmap_sem);
668                 if (!pfn)
669                         return -EFAULT;
670         } else {
671                 page = pages[0];
672                 pfn = page_to_pfn(page);
673                 if (PageHuge(page)) {
674                         page = compound_head(page);
675                         pte_size <<= compound_order(page);
676                 }
677                 /* if the guest wants write access, see if that is OK */
678                 if (!writing && hpte_is_writable(r)) {
679                         unsigned int hugepage_shift;
680                         pte_t *ptep, pte;
681
682                         /*
683                          * We need to protect against page table destruction
684                          * while looking up and updating the pte.
685                          */
686                         rcu_read_lock_sched();
687                         ptep = find_linux_pte_or_hugepte(current->mm->pgd,
688                                                          hva, &hugepage_shift);
689                         if (ptep) {
690                                 pte = kvmppc_read_update_linux_pte(ptep, 1,
691                                                            hugepage_shift);
692                                 if (pte_write(pte))
693                                         write_ok = 1;
694                         }
695                         rcu_read_unlock_sched();
696                 }
697         }
698
699         ret = -EFAULT;
700         if (psize > pte_size)
701                 goto out_put;
702
703         /* Check WIMG vs. the actual page we're accessing */
704         if (!hpte_cache_flags_ok(r, is_io)) {
705                 if (is_io)
706                         return -EFAULT;
707                 /*
708                  * Allow guest to map emulated device memory as
709                  * uncacheable, but actually make it cacheable.
710                  */
711                 r = (r & ~(HPTE_R_W|HPTE_R_I|HPTE_R_G)) | HPTE_R_M;
712         }
713
714         /*
715          * Set the HPTE to point to pfn.
716          * Since the pfn is at PAGE_SIZE granularity, make sure we
717          * don't mask out lower-order bits if psize < PAGE_SIZE.
718          */
719         if (psize < PAGE_SIZE)
720                 psize = PAGE_SIZE;
721         r = (r & ~(HPTE_R_PP0 - psize)) | ((pfn << PAGE_SHIFT) & ~(psize - 1));
722         if (hpte_is_writable(r) && !write_ok)
723                 r = hpte_make_readonly(r);
724         ret = RESUME_GUEST;
725         preempt_disable();
726         while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
727                 cpu_relax();
728         if ((be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK) != hpte[0] ||
729                 be64_to_cpu(hptep[1]) != hpte[1] ||
730                 rev->guest_rpte != hpte[2])
731                 /* HPTE has been changed under us; let the guest retry */
732                 goto out_unlock;
733         hpte[0] = (hpte[0] & ~HPTE_V_ABSENT) | HPTE_V_VALID;
734
735         /* Always put the HPTE in the rmap chain for the page base address */
736         rmap = &memslot->arch.rmap[gfn_base - memslot->base_gfn];
737         lock_rmap(rmap);
738
739         /* Check if we might have been invalidated; let the guest retry if so */
740         ret = RESUME_GUEST;
741         if (mmu_notifier_retry(vcpu->kvm, mmu_seq)) {
742                 unlock_rmap(rmap);
743                 goto out_unlock;
744         }
745
746         /* Only set R/C in real HPTE if set in both *rmap and guest_rpte */
747         rcbits = *rmap >> KVMPPC_RMAP_RC_SHIFT;
748         r &= rcbits | ~(HPTE_R_R | HPTE_R_C);
749
750         if (be64_to_cpu(hptep[0]) & HPTE_V_VALID) {
751                 /* HPTE was previously valid, so we need to invalidate it */
752                 unlock_rmap(rmap);
753                 hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
754                 kvmppc_invalidate_hpte(kvm, hptep, index);
755                 /* don't lose previous R and C bits */
756                 r |= be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C);
757         } else {
758                 kvmppc_add_revmap_chain(kvm, rev, rmap, index, 0);
759         }
760
761         hptep[1] = cpu_to_be64(r);
762         eieio();
763         hptep[0] = cpu_to_be64(hpte[0]);
764         asm volatile("ptesync" : : : "memory");
765         preempt_enable();
766         if (page && hpte_is_writable(r))
767                 SetPageDirty(page);
768
769  out_put:
770         if (page) {
771                 /*
772                  * We drop pages[0] here, not page because page might
773                  * have been set to the head page of a compound, but
774                  * we have to drop the reference on the correct tail
775                  * page to match the get inside gup()
776                  */
777                 put_page(pages[0]);
778         }
779         return ret;
780
781  out_unlock:
782         hptep[0] &= ~cpu_to_be64(HPTE_V_HVLOCK);
783         preempt_enable();
784         goto out_put;
785 }
786
787 static void kvmppc_rmap_reset(struct kvm *kvm)
788 {
789         struct kvm_memslots *slots;
790         struct kvm_memory_slot *memslot;
791         int srcu_idx;
792
793         srcu_idx = srcu_read_lock(&kvm->srcu);
794         slots = kvm->memslots;
795         kvm_for_each_memslot(memslot, slots) {
796                 /*
797                  * This assumes it is acceptable to lose reference and
798                  * change bits across a reset.
799                  */
800                 memset(memslot->arch.rmap, 0,
801                        memslot->npages * sizeof(*memslot->arch.rmap));
802         }
803         srcu_read_unlock(&kvm->srcu, srcu_idx);
804 }
805
806 static int kvm_handle_hva_range(struct kvm *kvm,
807                                 unsigned long start,
808                                 unsigned long end,
809                                 int (*handler)(struct kvm *kvm,
810                                                unsigned long *rmapp,
811                                                unsigned long gfn))
812 {
813         int ret;
814         int retval = 0;
815         struct kvm_memslots *slots;
816         struct kvm_memory_slot *memslot;
817
818         slots = kvm_memslots(kvm);
819         kvm_for_each_memslot(memslot, slots) {
820                 unsigned long hva_start, hva_end;
821                 gfn_t gfn, gfn_end;
822
823                 hva_start = max(start, memslot->userspace_addr);
824                 hva_end = min(end, memslot->userspace_addr +
825                                         (memslot->npages << PAGE_SHIFT));
826                 if (hva_start >= hva_end)
827                         continue;
828                 /*
829                  * {gfn(page) | page intersects with [hva_start, hva_end)} =
830                  * {gfn, gfn+1, ..., gfn_end-1}.
831                  */
832                 gfn = hva_to_gfn_memslot(hva_start, memslot);
833                 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
834
835                 for (; gfn < gfn_end; ++gfn) {
836                         gfn_t gfn_offset = gfn - memslot->base_gfn;
837
838                         ret = handler(kvm, &memslot->arch.rmap[gfn_offset], gfn);
839                         retval |= ret;
840                 }
841         }
842
843         return retval;
844 }
845
846 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
847                           int (*handler)(struct kvm *kvm, unsigned long *rmapp,
848                                          unsigned long gfn))
849 {
850         return kvm_handle_hva_range(kvm, hva, hva + 1, handler);
851 }
852
853 static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
854                            unsigned long gfn)
855 {
856         struct revmap_entry *rev = kvm->arch.revmap;
857         unsigned long h, i, j;
858         __be64 *hptep;
859         unsigned long ptel, psize, rcbits;
860
861         for (;;) {
862                 lock_rmap(rmapp);
863                 if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
864                         unlock_rmap(rmapp);
865                         break;
866                 }
867
868                 /*
869                  * To avoid an ABBA deadlock with the HPTE lock bit,
870                  * we can't spin on the HPTE lock while holding the
871                  * rmap chain lock.
872                  */
873                 i = *rmapp & KVMPPC_RMAP_INDEX;
874                 hptep = (__be64 *) (kvm->arch.hpt_virt + (i << 4));
875                 if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
876                         /* unlock rmap before spinning on the HPTE lock */
877                         unlock_rmap(rmapp);
878                         while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK)
879                                 cpu_relax();
880                         continue;
881                 }
882                 j = rev[i].forw;
883                 if (j == i) {
884                         /* chain is now empty */
885                         *rmapp &= ~(KVMPPC_RMAP_PRESENT | KVMPPC_RMAP_INDEX);
886                 } else {
887                         /* remove i from chain */
888                         h = rev[i].back;
889                         rev[h].forw = j;
890                         rev[j].back = h;
891                         rev[i].forw = rev[i].back = i;
892                         *rmapp = (*rmapp & ~KVMPPC_RMAP_INDEX) | j;
893                 }
894
895                 /* Now check and modify the HPTE */
896                 ptel = rev[i].guest_rpte;
897                 psize = hpte_page_size(be64_to_cpu(hptep[0]), ptel);
898                 if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) &&
899                     hpte_rpn(ptel, psize) == gfn) {
900                         if (kvm->arch.using_mmu_notifiers)
901                                 hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
902                         kvmppc_invalidate_hpte(kvm, hptep, i);
903                         /* Harvest R and C */
904                         rcbits = be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C);
905                         *rmapp |= rcbits << KVMPPC_RMAP_RC_SHIFT;
906                         if (rcbits & ~rev[i].guest_rpte) {
907                                 rev[i].guest_rpte = ptel | rcbits;
908                                 note_hpte_modification(kvm, &rev[i]);
909                         }
910                 }
911                 unlock_rmap(rmapp);
912                 hptep[0] &= ~cpu_to_be64(HPTE_V_HVLOCK);
913         }
914         return 0;
915 }
916
917 int kvm_unmap_hva_hv(struct kvm *kvm, unsigned long hva)
918 {
919         if (kvm->arch.using_mmu_notifiers)
920                 kvm_handle_hva(kvm, hva, kvm_unmap_rmapp);
921         return 0;
922 }
923
924 int kvm_unmap_hva_range_hv(struct kvm *kvm, unsigned long start, unsigned long end)
925 {
926         if (kvm->arch.using_mmu_notifiers)
927                 kvm_handle_hva_range(kvm, start, end, kvm_unmap_rmapp);
928         return 0;
929 }
930
931 void kvmppc_core_flush_memslot_hv(struct kvm *kvm,
932                                   struct kvm_memory_slot *memslot)
933 {
934         unsigned long *rmapp;
935         unsigned long gfn;
936         unsigned long n;
937
938         rmapp = memslot->arch.rmap;
939         gfn = memslot->base_gfn;
940         for (n = memslot->npages; n; --n) {
941                 /*
942                  * Testing the present bit without locking is OK because
943                  * the memslot has been marked invalid already, and hence
944                  * no new HPTEs referencing this page can be created,
945                  * thus the present bit can't go from 0 to 1.
946                  */
947                 if (*rmapp & KVMPPC_RMAP_PRESENT)
948                         kvm_unmap_rmapp(kvm, rmapp, gfn);
949                 ++rmapp;
950                 ++gfn;
951         }
952 }
953
954 static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
955                          unsigned long gfn)
956 {
957         struct revmap_entry *rev = kvm->arch.revmap;
958         unsigned long head, i, j;
959         __be64 *hptep;
960         int ret = 0;
961
962  retry:
963         lock_rmap(rmapp);
964         if (*rmapp & KVMPPC_RMAP_REFERENCED) {
965                 *rmapp &= ~KVMPPC_RMAP_REFERENCED;
966                 ret = 1;
967         }
968         if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
969                 unlock_rmap(rmapp);
970                 return ret;
971         }
972
973         i = head = *rmapp & KVMPPC_RMAP_INDEX;
974         do {
975                 hptep = (__be64 *) (kvm->arch.hpt_virt + (i << 4));
976                 j = rev[i].forw;
977
978                 /* If this HPTE isn't referenced, ignore it */
979                 if (!(be64_to_cpu(hptep[1]) & HPTE_R_R))
980                         continue;
981
982                 if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
983                         /* unlock rmap before spinning on the HPTE lock */
984                         unlock_rmap(rmapp);
985                         while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK)
986                                 cpu_relax();
987                         goto retry;
988                 }
989
990                 /* Now check and modify the HPTE */
991                 if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) &&
992                     (be64_to_cpu(hptep[1]) & HPTE_R_R)) {
993                         kvmppc_clear_ref_hpte(kvm, hptep, i);
994                         if (!(rev[i].guest_rpte & HPTE_R_R)) {
995                                 rev[i].guest_rpte |= HPTE_R_R;
996                                 note_hpte_modification(kvm, &rev[i]);
997                         }
998                         ret = 1;
999                 }
1000                 hptep[0] &= ~cpu_to_be64(HPTE_V_HVLOCK);
1001         } while ((i = j) != head);
1002
1003         unlock_rmap(rmapp);
1004         return ret;
1005 }
1006
1007 int kvm_age_hva_hv(struct kvm *kvm, unsigned long hva)
1008 {
1009         if (!kvm->arch.using_mmu_notifiers)
1010                 return 0;
1011         return kvm_handle_hva(kvm, hva, kvm_age_rmapp);
1012 }
1013
1014 static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1015                               unsigned long gfn)
1016 {
1017         struct revmap_entry *rev = kvm->arch.revmap;
1018         unsigned long head, i, j;
1019         unsigned long *hp;
1020         int ret = 1;
1021
1022         if (*rmapp & KVMPPC_RMAP_REFERENCED)
1023                 return 1;
1024
1025         lock_rmap(rmapp);
1026         if (*rmapp & KVMPPC_RMAP_REFERENCED)
1027                 goto out;
1028
1029         if (*rmapp & KVMPPC_RMAP_PRESENT) {
1030                 i = head = *rmapp & KVMPPC_RMAP_INDEX;
1031                 do {
1032                         hp = (unsigned long *)(kvm->arch.hpt_virt + (i << 4));
1033                         j = rev[i].forw;
1034                         if (be64_to_cpu(hp[1]) & HPTE_R_R)
1035                                 goto out;
1036                 } while ((i = j) != head);
1037         }
1038         ret = 0;
1039
1040  out:
1041         unlock_rmap(rmapp);
1042         return ret;
1043 }
1044
1045 int kvm_test_age_hva_hv(struct kvm *kvm, unsigned long hva)
1046 {
1047         if (!kvm->arch.using_mmu_notifiers)
1048                 return 0;
1049         return kvm_handle_hva(kvm, hva, kvm_test_age_rmapp);
1050 }
1051
1052 void kvm_set_spte_hva_hv(struct kvm *kvm, unsigned long hva, pte_t pte)
1053 {
1054         if (!kvm->arch.using_mmu_notifiers)
1055                 return;
1056         kvm_handle_hva(kvm, hva, kvm_unmap_rmapp);
1057 }
1058
1059 static int vcpus_running(struct kvm *kvm)
1060 {
1061         return atomic_read(&kvm->arch.vcpus_running) != 0;
1062 }
1063
1064 /*
1065  * Returns the number of system pages that are dirty.
1066  * This can be more than 1 if we find a huge-page HPTE.
1067  */
1068 static int kvm_test_clear_dirty_npages(struct kvm *kvm, unsigned long *rmapp)
1069 {
1070         struct revmap_entry *rev = kvm->arch.revmap;
1071         unsigned long head, i, j;
1072         unsigned long n;
1073         unsigned long v, r;
1074         __be64 *hptep;
1075         int npages_dirty = 0;
1076
1077  retry:
1078         lock_rmap(rmapp);
1079         if (*rmapp & KVMPPC_RMAP_CHANGED) {
1080                 *rmapp &= ~KVMPPC_RMAP_CHANGED;
1081                 npages_dirty = 1;
1082         }
1083         if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
1084                 unlock_rmap(rmapp);
1085                 return npages_dirty;
1086         }
1087
1088         i = head = *rmapp & KVMPPC_RMAP_INDEX;
1089         do {
1090                 unsigned long hptep1;
1091                 hptep = (__be64 *) (kvm->arch.hpt_virt + (i << 4));
1092                 j = rev[i].forw;
1093
1094                 /*
1095                  * Checking the C (changed) bit here is racy since there
1096                  * is no guarantee about when the hardware writes it back.
1097                  * If the HPTE is not writable then it is stable since the
1098                  * page can't be written to, and we would have done a tlbie
1099                  * (which forces the hardware to complete any writeback)
1100                  * when making the HPTE read-only.
1101                  * If vcpus are running then this call is racy anyway
1102                  * since the page could get dirtied subsequently, so we
1103                  * expect there to be a further call which would pick up
1104                  * any delayed C bit writeback.
1105                  * Otherwise we need to do the tlbie even if C==0 in
1106                  * order to pick up any delayed writeback of C.
1107                  */
1108                 hptep1 = be64_to_cpu(hptep[1]);
1109                 if (!(hptep1 & HPTE_R_C) &&
1110                     (!hpte_is_writable(hptep1) || vcpus_running(kvm)))
1111                         continue;
1112
1113                 if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
1114                         /* unlock rmap before spinning on the HPTE lock */
1115                         unlock_rmap(rmapp);
1116                         while (hptep[0] & cpu_to_be64(HPTE_V_HVLOCK))
1117                                 cpu_relax();
1118                         goto retry;
1119                 }
1120
1121                 /* Now check and modify the HPTE */
1122                 if (!(hptep[0] & cpu_to_be64(HPTE_V_VALID)))
1123                         continue;
1124
1125                 /* need to make it temporarily absent so C is stable */
1126                 hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
1127                 kvmppc_invalidate_hpte(kvm, hptep, i);
1128                 v = be64_to_cpu(hptep[0]);
1129                 r = be64_to_cpu(hptep[1]);
1130                 if (r & HPTE_R_C) {
1131                         hptep[1] = cpu_to_be64(r & ~HPTE_R_C);
1132                         if (!(rev[i].guest_rpte & HPTE_R_C)) {
1133                                 rev[i].guest_rpte |= HPTE_R_C;
1134                                 note_hpte_modification(kvm, &rev[i]);
1135                         }
1136                         n = hpte_page_size(v, r);
1137                         n = (n + PAGE_SIZE - 1) >> PAGE_SHIFT;
1138                         if (n > npages_dirty)
1139                                 npages_dirty = n;
1140                         eieio();
1141                 }
1142                 v &= ~(HPTE_V_ABSENT | HPTE_V_HVLOCK);
1143                 v |= HPTE_V_VALID;
1144                 hptep[0] = cpu_to_be64(v);
1145         } while ((i = j) != head);
1146
1147         unlock_rmap(rmapp);
1148         return npages_dirty;
1149 }
1150
1151 static void harvest_vpa_dirty(struct kvmppc_vpa *vpa,
1152                               struct kvm_memory_slot *memslot,
1153                               unsigned long *map)
1154 {
1155         unsigned long gfn;
1156
1157         if (!vpa->dirty || !vpa->pinned_addr)
1158                 return;
1159         gfn = vpa->gpa >> PAGE_SHIFT;
1160         if (gfn < memslot->base_gfn ||
1161             gfn >= memslot->base_gfn + memslot->npages)
1162                 return;
1163
1164         vpa->dirty = false;
1165         if (map)
1166                 __set_bit_le(gfn - memslot->base_gfn, map);
1167 }
1168
1169 long kvmppc_hv_get_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot,
1170                              unsigned long *map)
1171 {
1172         unsigned long i, j;
1173         unsigned long *rmapp;
1174         struct kvm_vcpu *vcpu;
1175
1176         preempt_disable();
1177         rmapp = memslot->arch.rmap;
1178         for (i = 0; i < memslot->npages; ++i) {
1179                 int npages = kvm_test_clear_dirty_npages(kvm, rmapp);
1180                 /*
1181                  * Note that if npages > 0 then i must be a multiple of npages,
1182                  * since we always put huge-page HPTEs in the rmap chain
1183                  * corresponding to their page base address.
1184                  */
1185                 if (npages && map)
1186                         for (j = i; npages; ++j, --npages)
1187                                 __set_bit_le(j, map);
1188                 ++rmapp;
1189         }
1190
1191         /* Harvest dirty bits from VPA and DTL updates */
1192         /* Note: we never modify the SLB shadow buffer areas */
1193         kvm_for_each_vcpu(i, vcpu, kvm) {
1194                 spin_lock(&vcpu->arch.vpa_update_lock);
1195                 harvest_vpa_dirty(&vcpu->arch.vpa, memslot, map);
1196                 harvest_vpa_dirty(&vcpu->arch.dtl, memslot, map);
1197                 spin_unlock(&vcpu->arch.vpa_update_lock);
1198         }
1199         preempt_enable();
1200         return 0;
1201 }
1202
1203 void *kvmppc_pin_guest_page(struct kvm *kvm, unsigned long gpa,
1204                             unsigned long *nb_ret)
1205 {
1206         struct kvm_memory_slot *memslot;
1207         unsigned long gfn = gpa >> PAGE_SHIFT;
1208         struct page *page, *pages[1];
1209         int npages;
1210         unsigned long hva, offset;
1211         unsigned long pa;
1212         unsigned long *physp;
1213         int srcu_idx;
1214
1215         srcu_idx = srcu_read_lock(&kvm->srcu);
1216         memslot = gfn_to_memslot(kvm, gfn);
1217         if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
1218                 goto err;
1219         if (!kvm->arch.using_mmu_notifiers) {
1220                 physp = memslot->arch.slot_phys;
1221                 if (!physp)
1222                         goto err;
1223                 physp += gfn - memslot->base_gfn;
1224                 pa = *physp;
1225                 if (!pa) {
1226                         if (kvmppc_get_guest_page(kvm, gfn, memslot,
1227                                                   PAGE_SIZE) < 0)
1228                                 goto err;
1229                         pa = *physp;
1230                 }
1231                 page = pfn_to_page(pa >> PAGE_SHIFT);
1232                 get_page(page);
1233         } else {
1234                 hva = gfn_to_hva_memslot(memslot, gfn);
1235                 npages = get_user_pages_fast(hva, 1, 1, pages);
1236                 if (npages < 1)
1237                         goto err;
1238                 page = pages[0];
1239         }
1240         srcu_read_unlock(&kvm->srcu, srcu_idx);
1241
1242         offset = gpa & (PAGE_SIZE - 1);
1243         if (nb_ret)
1244                 *nb_ret = PAGE_SIZE - offset;
1245         return page_address(page) + offset;
1246
1247  err:
1248         srcu_read_unlock(&kvm->srcu, srcu_idx);
1249         return NULL;
1250 }
1251
1252 void kvmppc_unpin_guest_page(struct kvm *kvm, void *va, unsigned long gpa,
1253                              bool dirty)
1254 {
1255         struct page *page = virt_to_page(va);
1256         struct kvm_memory_slot *memslot;
1257         unsigned long gfn;
1258         unsigned long *rmap;
1259         int srcu_idx;
1260
1261         put_page(page);
1262
1263         if (!dirty || !kvm->arch.using_mmu_notifiers)
1264                 return;
1265
1266         /* We need to mark this page dirty in the rmap chain */
1267         gfn = gpa >> PAGE_SHIFT;
1268         srcu_idx = srcu_read_lock(&kvm->srcu);
1269         memslot = gfn_to_memslot(kvm, gfn);
1270         if (memslot) {
1271                 rmap = &memslot->arch.rmap[gfn - memslot->base_gfn];
1272                 lock_rmap(rmap);
1273                 *rmap |= KVMPPC_RMAP_CHANGED;
1274                 unlock_rmap(rmap);
1275         }
1276         srcu_read_unlock(&kvm->srcu, srcu_idx);
1277 }
1278
1279 /*
1280  * Functions for reading and writing the hash table via reads and
1281  * writes on a file descriptor.
1282  *
1283  * Reads return the guest view of the hash table, which has to be
1284  * pieced together from the real hash table and the guest_rpte
1285  * values in the revmap array.
1286  *
1287  * On writes, each HPTE written is considered in turn, and if it
1288  * is valid, it is written to the HPT as if an H_ENTER with the
1289  * exact flag set was done.  When the invalid count is non-zero
1290  * in the header written to the stream, the kernel will make
1291  * sure that that many HPTEs are invalid, and invalidate them
1292  * if not.
1293  */
1294
1295 struct kvm_htab_ctx {
1296         unsigned long   index;
1297         unsigned long   flags;
1298         struct kvm      *kvm;
1299         int             first_pass;
1300 };
1301
1302 #define HPTE_SIZE       (2 * sizeof(unsigned long))
1303
1304 /*
1305  * Returns 1 if this HPT entry has been modified or has pending
1306  * R/C bit changes.
1307  */
1308 static int hpte_dirty(struct revmap_entry *revp, __be64 *hptp)
1309 {
1310         unsigned long rcbits_unset;
1311
1312         if (revp->guest_rpte & HPTE_GR_MODIFIED)
1313                 return 1;
1314
1315         /* Also need to consider changes in reference and changed bits */
1316         rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C);
1317         if ((be64_to_cpu(hptp[0]) & HPTE_V_VALID) &&
1318             (be64_to_cpu(hptp[1]) & rcbits_unset))
1319                 return 1;
1320
1321         return 0;
1322 }
1323
1324 static long record_hpte(unsigned long flags, __be64 *hptp,
1325                         unsigned long *hpte, struct revmap_entry *revp,
1326                         int want_valid, int first_pass)
1327 {
1328         unsigned long v, r;
1329         unsigned long rcbits_unset;
1330         int ok = 1;
1331         int valid, dirty;
1332
1333         /* Unmodified entries are uninteresting except on the first pass */
1334         dirty = hpte_dirty(revp, hptp);
1335         if (!first_pass && !dirty)
1336                 return 0;
1337
1338         valid = 0;
1339         if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)) {
1340                 valid = 1;
1341                 if ((flags & KVM_GET_HTAB_BOLTED_ONLY) &&
1342                     !(be64_to_cpu(hptp[0]) & HPTE_V_BOLTED))
1343                         valid = 0;
1344         }
1345         if (valid != want_valid)
1346                 return 0;
1347
1348         v = r = 0;
1349         if (valid || dirty) {
1350                 /* lock the HPTE so it's stable and read it */
1351                 preempt_disable();
1352                 while (!try_lock_hpte(hptp, HPTE_V_HVLOCK))
1353                         cpu_relax();
1354                 v = be64_to_cpu(hptp[0]);
1355
1356                 /* re-evaluate valid and dirty from synchronized HPTE value */
1357                 valid = !!(v & HPTE_V_VALID);
1358                 dirty = !!(revp->guest_rpte & HPTE_GR_MODIFIED);
1359
1360                 /* Harvest R and C into guest view if necessary */
1361                 rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C);
1362                 if (valid && (rcbits_unset & be64_to_cpu(hptp[1]))) {
1363                         revp->guest_rpte |= (be64_to_cpu(hptp[1]) &
1364                                 (HPTE_R_R | HPTE_R_C)) | HPTE_GR_MODIFIED;
1365                         dirty = 1;
1366                 }
1367
1368                 if (v & HPTE_V_ABSENT) {
1369                         v &= ~HPTE_V_ABSENT;
1370                         v |= HPTE_V_VALID;
1371                         valid = 1;
1372                 }
1373                 if ((flags & KVM_GET_HTAB_BOLTED_ONLY) && !(v & HPTE_V_BOLTED))
1374                         valid = 0;
1375
1376                 r = revp->guest_rpte;
1377                 /* only clear modified if this is the right sort of entry */
1378                 if (valid == want_valid && dirty) {
1379                         r &= ~HPTE_GR_MODIFIED;
1380                         revp->guest_rpte = r;
1381                 }
1382                 asm volatile(PPC_RELEASE_BARRIER "" : : : "memory");
1383                 hptp[0] &= ~cpu_to_be64(HPTE_V_HVLOCK);
1384                 preempt_enable();
1385                 if (!(valid == want_valid && (first_pass || dirty)))
1386                         ok = 0;
1387         }
1388         hpte[0] = cpu_to_be64(v);
1389         hpte[1] = cpu_to_be64(r);
1390         return ok;
1391 }
1392
1393 static ssize_t kvm_htab_read(struct file *file, char __user *buf,
1394                              size_t count, loff_t *ppos)
1395 {
1396         struct kvm_htab_ctx *ctx = file->private_data;
1397         struct kvm *kvm = ctx->kvm;
1398         struct kvm_get_htab_header hdr;
1399         __be64 *hptp;
1400         struct revmap_entry *revp;
1401         unsigned long i, nb, nw;
1402         unsigned long __user *lbuf;
1403         struct kvm_get_htab_header __user *hptr;
1404         unsigned long flags;
1405         int first_pass;
1406         unsigned long hpte[2];
1407
1408         if (!access_ok(VERIFY_WRITE, buf, count))
1409                 return -EFAULT;
1410
1411         first_pass = ctx->first_pass;
1412         flags = ctx->flags;
1413
1414         i = ctx->index;
1415         hptp = (__be64 *)(kvm->arch.hpt_virt + (i * HPTE_SIZE));
1416         revp = kvm->arch.revmap + i;
1417         lbuf = (unsigned long __user *)buf;
1418
1419         nb = 0;
1420         while (nb + sizeof(hdr) + HPTE_SIZE < count) {
1421                 /* Initialize header */
1422                 hptr = (struct kvm_get_htab_header __user *)buf;
1423                 hdr.n_valid = 0;
1424                 hdr.n_invalid = 0;
1425                 nw = nb;
1426                 nb += sizeof(hdr);
1427                 lbuf = (unsigned long __user *)(buf + sizeof(hdr));
1428
1429                 /* Skip uninteresting entries, i.e. clean on not-first pass */
1430                 if (!first_pass) {
1431                         while (i < kvm->arch.hpt_npte &&
1432                                !hpte_dirty(revp, hptp)) {
1433                                 ++i;
1434                                 hptp += 2;
1435                                 ++revp;
1436                         }
1437                 }
1438                 hdr.index = i;
1439
1440                 /* Grab a series of valid entries */
1441                 while (i < kvm->arch.hpt_npte &&
1442                        hdr.n_valid < 0xffff &&
1443                        nb + HPTE_SIZE < count &&
1444                        record_hpte(flags, hptp, hpte, revp, 1, first_pass)) {
1445                         /* valid entry, write it out */
1446                         ++hdr.n_valid;
1447                         if (__put_user(hpte[0], lbuf) ||
1448                             __put_user(hpte[1], lbuf + 1))
1449                                 return -EFAULT;
1450                         nb += HPTE_SIZE;
1451                         lbuf += 2;
1452                         ++i;
1453                         hptp += 2;
1454                         ++revp;
1455                 }
1456                 /* Now skip invalid entries while we can */
1457                 while (i < kvm->arch.hpt_npte &&
1458                        hdr.n_invalid < 0xffff &&
1459                        record_hpte(flags, hptp, hpte, revp, 0, first_pass)) {
1460                         /* found an invalid entry */
1461                         ++hdr.n_invalid;
1462                         ++i;
1463                         hptp += 2;
1464                         ++revp;
1465                 }
1466
1467                 if (hdr.n_valid || hdr.n_invalid) {
1468                         /* write back the header */
1469                         if (__copy_to_user(hptr, &hdr, sizeof(hdr)))
1470                                 return -EFAULT;
1471                         nw = nb;
1472                         buf = (char __user *)lbuf;
1473                 } else {
1474                         nb = nw;
1475                 }
1476
1477                 /* Check if we've wrapped around the hash table */
1478                 if (i >= kvm->arch.hpt_npte) {
1479                         i = 0;
1480                         ctx->first_pass = 0;
1481                         break;
1482                 }
1483         }
1484
1485         ctx->index = i;
1486
1487         return nb;
1488 }
1489
1490 static ssize_t kvm_htab_write(struct file *file, const char __user *buf,
1491                               size_t count, loff_t *ppos)
1492 {
1493         struct kvm_htab_ctx *ctx = file->private_data;
1494         struct kvm *kvm = ctx->kvm;
1495         struct kvm_get_htab_header hdr;
1496         unsigned long i, j;
1497         unsigned long v, r;
1498         unsigned long __user *lbuf;
1499         __be64 *hptp;
1500         unsigned long tmp[2];
1501         ssize_t nb;
1502         long int err, ret;
1503         int rma_setup;
1504
1505         if (!access_ok(VERIFY_READ, buf, count))
1506                 return -EFAULT;
1507
1508         /* lock out vcpus from running while we're doing this */
1509         mutex_lock(&kvm->lock);
1510         rma_setup = kvm->arch.rma_setup_done;
1511         if (rma_setup) {
1512                 kvm->arch.rma_setup_done = 0;   /* temporarily */
1513                 /* order rma_setup_done vs. vcpus_running */
1514                 smp_mb();
1515                 if (atomic_read(&kvm->arch.vcpus_running)) {
1516                         kvm->arch.rma_setup_done = 1;
1517                         mutex_unlock(&kvm->lock);
1518                         return -EBUSY;
1519                 }
1520         }
1521
1522         err = 0;
1523         for (nb = 0; nb + sizeof(hdr) <= count; ) {
1524                 err = -EFAULT;
1525                 if (__copy_from_user(&hdr, buf, sizeof(hdr)))
1526                         break;
1527
1528                 err = 0;
1529                 if (nb + hdr.n_valid * HPTE_SIZE > count)
1530                         break;
1531
1532                 nb += sizeof(hdr);
1533                 buf += sizeof(hdr);
1534
1535                 err = -EINVAL;
1536                 i = hdr.index;
1537                 if (i >= kvm->arch.hpt_npte ||
1538                     i + hdr.n_valid + hdr.n_invalid > kvm->arch.hpt_npte)
1539                         break;
1540
1541                 hptp = (__be64 *)(kvm->arch.hpt_virt + (i * HPTE_SIZE));
1542                 lbuf = (unsigned long __user *)buf;
1543                 for (j = 0; j < hdr.n_valid; ++j) {
1544                         err = -EFAULT;
1545                         if (__get_user(v, lbuf) || __get_user(r, lbuf + 1))
1546                                 goto out;
1547                         err = -EINVAL;
1548                         if (!(v & HPTE_V_VALID))
1549                                 goto out;
1550                         lbuf += 2;
1551                         nb += HPTE_SIZE;
1552
1553                         if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT))
1554                                 kvmppc_do_h_remove(kvm, 0, i, 0, tmp);
1555                         err = -EIO;
1556                         ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, i, v, r,
1557                                                          tmp);
1558                         if (ret != H_SUCCESS) {
1559                                 pr_err("kvm_htab_write ret %ld i=%ld v=%lx "
1560                                        "r=%lx\n", ret, i, v, r);
1561                                 goto out;
1562                         }
1563                         if (!rma_setup && is_vrma_hpte(v)) {
1564                                 unsigned long psize = hpte_page_size(v, r);
1565                                 unsigned long senc = slb_pgsize_encoding(psize);
1566                                 unsigned long lpcr;
1567
1568                                 kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
1569                                         (VRMA_VSID << SLB_VSID_SHIFT_1T);
1570                                 lpcr = senc << (LPCR_VRMASD_SH - 4);
1571                                 kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
1572                                 rma_setup = 1;
1573                         }
1574                         ++i;
1575                         hptp += 2;
1576                 }
1577
1578                 for (j = 0; j < hdr.n_invalid; ++j) {
1579                         if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT))
1580                                 kvmppc_do_h_remove(kvm, 0, i, 0, tmp);
1581                         ++i;
1582                         hptp += 2;
1583                 }
1584                 err = 0;
1585         }
1586
1587  out:
1588         /* Order HPTE updates vs. rma_setup_done */
1589         smp_wmb();
1590         kvm->arch.rma_setup_done = rma_setup;
1591         mutex_unlock(&kvm->lock);
1592
1593         if (err)
1594                 return err;
1595         return nb;
1596 }
1597
1598 static int kvm_htab_release(struct inode *inode, struct file *filp)
1599 {
1600         struct kvm_htab_ctx *ctx = filp->private_data;
1601
1602         filp->private_data = NULL;
1603         if (!(ctx->flags & KVM_GET_HTAB_WRITE))
1604                 atomic_dec(&ctx->kvm->arch.hpte_mod_interest);
1605         kvm_put_kvm(ctx->kvm);
1606         kfree(ctx);
1607         return 0;
1608 }
1609
1610 static const struct file_operations kvm_htab_fops = {
1611         .read           = kvm_htab_read,
1612         .write          = kvm_htab_write,
1613         .llseek         = default_llseek,
1614         .release        = kvm_htab_release,
1615 };
1616
1617 int kvm_vm_ioctl_get_htab_fd(struct kvm *kvm, struct kvm_get_htab_fd *ghf)
1618 {
1619         int ret;
1620         struct kvm_htab_ctx *ctx;
1621         int rwflag;
1622
1623         /* reject flags we don't recognize */
1624         if (ghf->flags & ~(KVM_GET_HTAB_BOLTED_ONLY | KVM_GET_HTAB_WRITE))
1625                 return -EINVAL;
1626         ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1627         if (!ctx)
1628                 return -ENOMEM;
1629         kvm_get_kvm(kvm);
1630         ctx->kvm = kvm;
1631         ctx->index = ghf->start_index;
1632         ctx->flags = ghf->flags;
1633         ctx->first_pass = 1;
1634
1635         rwflag = (ghf->flags & KVM_GET_HTAB_WRITE) ? O_WRONLY : O_RDONLY;
1636         ret = anon_inode_getfd("kvm-htab", &kvm_htab_fops, ctx, rwflag | O_CLOEXEC);
1637         if (ret < 0) {
1638                 kvm_put_kvm(kvm);
1639                 return ret;
1640         }
1641
1642         if (rwflag == O_RDONLY) {
1643                 mutex_lock(&kvm->slots_lock);
1644                 atomic_inc(&kvm->arch.hpte_mod_interest);
1645                 /* make sure kvmppc_do_h_enter etc. see the increment */
1646                 synchronize_srcu_expedited(&kvm->srcu);
1647                 mutex_unlock(&kvm->slots_lock);
1648         }
1649
1650         return ret;
1651 }
1652
1653 void kvmppc_mmu_book3s_hv_init(struct kvm_vcpu *vcpu)
1654 {
1655         struct kvmppc_mmu *mmu = &vcpu->arch.mmu;
1656
1657         if (cpu_has_feature(CPU_FTR_ARCH_206))
1658                 vcpu->arch.slb_nr = 32;         /* POWER7 */
1659         else
1660                 vcpu->arch.slb_nr = 64;
1661
1662         mmu->xlate = kvmppc_mmu_book3s_64_hv_xlate;
1663         mmu->reset_msr = kvmppc_mmu_book3s_64_hv_reset_msr;
1664
1665         vcpu->arch.hflags |= BOOK3S_HFLAG_SLB;
1666 }