]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - arch/powerpc/kvm/book3s_hv.c
Replace <asm/uaccess.h> with <linux/uaccess.h> globally
[karo-tx-linux.git] / arch / powerpc / kvm / book3s_hv.c
1 /*
2  * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
3  * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
4  *
5  * Authors:
6  *    Paul Mackerras <paulus@au1.ibm.com>
7  *    Alexander Graf <agraf@suse.de>
8  *    Kevin Wolf <mail@kevin-wolf.de>
9  *
10  * Description: KVM functions specific to running on Book 3S
11  * processors in hypervisor mode (specifically POWER7 and later).
12  *
13  * This file is derived from arch/powerpc/kvm/book3s.c,
14  * by Alexander Graf <agraf@suse.de>.
15  *
16  * This program is free software; you can redistribute it and/or modify
17  * it under the terms of the GNU General Public License, version 2, as
18  * published by the Free Software Foundation.
19  */
20
21 #include <linux/kvm_host.h>
22 #include <linux/err.h>
23 #include <linux/slab.h>
24 #include <linux/preempt.h>
25 #include <linux/sched.h>
26 #include <linux/delay.h>
27 #include <linux/export.h>
28 #include <linux/fs.h>
29 #include <linux/anon_inodes.h>
30 #include <linux/cpu.h>
31 #include <linux/cpumask.h>
32 #include <linux/spinlock.h>
33 #include <linux/page-flags.h>
34 #include <linux/srcu.h>
35 #include <linux/miscdevice.h>
36 #include <linux/debugfs.h>
37
38 #include <asm/reg.h>
39 #include <asm/cputable.h>
40 #include <asm/cacheflush.h>
41 #include <asm/tlbflush.h>
42 #include <linux/uaccess.h>
43 #include <asm/io.h>
44 #include <asm/kvm_ppc.h>
45 #include <asm/kvm_book3s.h>
46 #include <asm/mmu_context.h>
47 #include <asm/lppaca.h>
48 #include <asm/processor.h>
49 #include <asm/cputhreads.h>
50 #include <asm/page.h>
51 #include <asm/hvcall.h>
52 #include <asm/switch_to.h>
53 #include <asm/smp.h>
54 #include <asm/dbell.h>
55 #include <asm/hmi.h>
56 #include <asm/pnv-pci.h>
57 #include <asm/mmu.h>
58 #include <asm/opal.h>
59 #include <asm/xics.h>
60 #include <linux/gfp.h>
61 #include <linux/vmalloc.h>
62 #include <linux/highmem.h>
63 #include <linux/hugetlb.h>
64 #include <linux/kvm_irqfd.h>
65 #include <linux/irqbypass.h>
66 #include <linux/module.h>
67 #include <linux/compiler.h>
68 #include <linux/of.h>
69
70 #include "book3s.h"
71
72 #define CREATE_TRACE_POINTS
73 #include "trace_hv.h"
74
75 /* #define EXIT_DEBUG */
76 /* #define EXIT_DEBUG_SIMPLE */
77 /* #define EXIT_DEBUG_INT */
78
79 /* Used to indicate that a guest page fault needs to be handled */
80 #define RESUME_PAGE_FAULT       (RESUME_GUEST | RESUME_FLAG_ARCH1)
81 /* Used to indicate that a guest passthrough interrupt needs to be handled */
82 #define RESUME_PASSTHROUGH      (RESUME_GUEST | RESUME_FLAG_ARCH2)
83
84 /* Used as a "null" value for timebase values */
85 #define TB_NIL  (~(u64)0)
86
87 static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);
88
89 static int dynamic_mt_modes = 6;
90 module_param(dynamic_mt_modes, int, S_IRUGO | S_IWUSR);
91 MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)");
92 static int target_smt_mode;
93 module_param(target_smt_mode, int, S_IRUGO | S_IWUSR);
94 MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)");
95
96 #ifdef CONFIG_KVM_XICS
97 static struct kernel_param_ops module_param_ops = {
98         .set = param_set_int,
99         .get = param_get_int,
100 };
101
102 module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass,
103                                                         S_IRUGO | S_IWUSR);
104 MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization");
105
106 module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect,
107                                                         S_IRUGO | S_IWUSR);
108 MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core");
109 #endif
110
111 static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
112 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
113
114 static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc,
115                 int *ip)
116 {
117         int i = *ip;
118         struct kvm_vcpu *vcpu;
119
120         while (++i < MAX_SMT_THREADS) {
121                 vcpu = READ_ONCE(vc->runnable_threads[i]);
122                 if (vcpu) {
123                         *ip = i;
124                         return vcpu;
125                 }
126         }
127         return NULL;
128 }
129
130 /* Used to traverse the list of runnable threads for a given vcore */
131 #define for_each_runnable_thread(i, vcpu, vc) \
132         for (i = -1; (vcpu = next_runnable_thread(vc, &i)); )
133
134 static bool kvmppc_ipi_thread(int cpu)
135 {
136         unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
137
138         /* On POWER9 we can use msgsnd to IPI any cpu */
139         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
140                 msg |= get_hard_smp_processor_id(cpu);
141                 smp_mb();
142                 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
143                 return true;
144         }
145
146         /* On POWER8 for IPIs to threads in the same core, use msgsnd */
147         if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
148                 preempt_disable();
149                 if (cpu_first_thread_sibling(cpu) ==
150                     cpu_first_thread_sibling(smp_processor_id())) {
151                         msg |= cpu_thread_in_core(cpu);
152                         smp_mb();
153                         __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
154                         preempt_enable();
155                         return true;
156                 }
157                 preempt_enable();
158         }
159
160 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
161         if (cpu >= 0 && cpu < nr_cpu_ids) {
162                 if (paca[cpu].kvm_hstate.xics_phys) {
163                         xics_wake_cpu(cpu);
164                         return true;
165                 }
166                 opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY);
167                 return true;
168         }
169 #endif
170
171         return false;
172 }
173
174 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
175 {
176         int cpu;
177         struct swait_queue_head *wqp;
178
179         wqp = kvm_arch_vcpu_wq(vcpu);
180         if (swait_active(wqp)) {
181                 swake_up(wqp);
182                 ++vcpu->stat.halt_wakeup;
183         }
184
185         if (kvmppc_ipi_thread(vcpu->arch.thread_cpu))
186                 return;
187
188         /* CPU points to the first thread of the core */
189         cpu = vcpu->cpu;
190         if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu))
191                 smp_send_reschedule(cpu);
192 }
193
194 /*
195  * We use the vcpu_load/put functions to measure stolen time.
196  * Stolen time is counted as time when either the vcpu is able to
197  * run as part of a virtual core, but the task running the vcore
198  * is preempted or sleeping, or when the vcpu needs something done
199  * in the kernel by the task running the vcpu, but that task is
200  * preempted or sleeping.  Those two things have to be counted
201  * separately, since one of the vcpu tasks will take on the job
202  * of running the core, and the other vcpu tasks in the vcore will
203  * sleep waiting for it to do that, but that sleep shouldn't count
204  * as stolen time.
205  *
206  * Hence we accumulate stolen time when the vcpu can run as part of
207  * a vcore using vc->stolen_tb, and the stolen time when the vcpu
208  * needs its task to do other things in the kernel (for example,
209  * service a page fault) in busy_stolen.  We don't accumulate
210  * stolen time for a vcore when it is inactive, or for a vcpu
211  * when it is in state RUNNING or NOTREADY.  NOTREADY is a bit of
212  * a misnomer; it means that the vcpu task is not executing in
213  * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
214  * the kernel.  We don't have any way of dividing up that time
215  * between time that the vcpu is genuinely stopped, time that
216  * the task is actively working on behalf of the vcpu, and time
217  * that the task is preempted, so we don't count any of it as
218  * stolen.
219  *
220  * Updates to busy_stolen are protected by arch.tbacct_lock;
221  * updates to vc->stolen_tb are protected by the vcore->stoltb_lock
222  * lock.  The stolen times are measured in units of timebase ticks.
223  * (Note that the != TB_NIL checks below are purely defensive;
224  * they should never fail.)
225  */
226
227 static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc)
228 {
229         unsigned long flags;
230
231         spin_lock_irqsave(&vc->stoltb_lock, flags);
232         vc->preempt_tb = mftb();
233         spin_unlock_irqrestore(&vc->stoltb_lock, flags);
234 }
235
236 static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc)
237 {
238         unsigned long flags;
239
240         spin_lock_irqsave(&vc->stoltb_lock, flags);
241         if (vc->preempt_tb != TB_NIL) {
242                 vc->stolen_tb += mftb() - vc->preempt_tb;
243                 vc->preempt_tb = TB_NIL;
244         }
245         spin_unlock_irqrestore(&vc->stoltb_lock, flags);
246 }
247
248 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
249 {
250         struct kvmppc_vcore *vc = vcpu->arch.vcore;
251         unsigned long flags;
252
253         /*
254          * We can test vc->runner without taking the vcore lock,
255          * because only this task ever sets vc->runner to this
256          * vcpu, and once it is set to this vcpu, only this task
257          * ever sets it to NULL.
258          */
259         if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
260                 kvmppc_core_end_stolen(vc);
261
262         spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
263         if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
264             vcpu->arch.busy_preempt != TB_NIL) {
265                 vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
266                 vcpu->arch.busy_preempt = TB_NIL;
267         }
268         spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
269 }
270
271 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
272 {
273         struct kvmppc_vcore *vc = vcpu->arch.vcore;
274         unsigned long flags;
275
276         if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
277                 kvmppc_core_start_stolen(vc);
278
279         spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
280         if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
281                 vcpu->arch.busy_preempt = mftb();
282         spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
283 }
284
285 static void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr)
286 {
287         /*
288          * Check for illegal transactional state bit combination
289          * and if we find it, force the TS field to a safe state.
290          */
291         if ((msr & MSR_TS_MASK) == MSR_TS_MASK)
292                 msr &= ~MSR_TS_MASK;
293         vcpu->arch.shregs.msr = msr;
294         kvmppc_end_cede(vcpu);
295 }
296
297 static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
298 {
299         vcpu->arch.pvr = pvr;
300 }
301
302 /* Dummy value used in computing PCR value below */
303 #define PCR_ARCH_300    (PCR_ARCH_207 << 1)
304
305 static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
306 {
307         unsigned long host_pcr_bit = 0, guest_pcr_bit = 0;
308         struct kvmppc_vcore *vc = vcpu->arch.vcore;
309
310         /* We can (emulate) our own architecture version and anything older */
311         if (cpu_has_feature(CPU_FTR_ARCH_300))
312                 host_pcr_bit = PCR_ARCH_300;
313         else if (cpu_has_feature(CPU_FTR_ARCH_207S))
314                 host_pcr_bit = PCR_ARCH_207;
315         else if (cpu_has_feature(CPU_FTR_ARCH_206))
316                 host_pcr_bit = PCR_ARCH_206;
317         else
318                 host_pcr_bit = PCR_ARCH_205;
319
320         /* Determine lowest PCR bit needed to run guest in given PVR level */
321         guest_pcr_bit = host_pcr_bit;
322         if (arch_compat) {
323                 switch (arch_compat) {
324                 case PVR_ARCH_205:
325                         guest_pcr_bit = PCR_ARCH_205;
326                         break;
327                 case PVR_ARCH_206:
328                 case PVR_ARCH_206p:
329                         guest_pcr_bit = PCR_ARCH_206;
330                         break;
331                 case PVR_ARCH_207:
332                         guest_pcr_bit = PCR_ARCH_207;
333                         break;
334                 case PVR_ARCH_300:
335                         guest_pcr_bit = PCR_ARCH_300;
336                         break;
337                 default:
338                         return -EINVAL;
339                 }
340         }
341
342         /* Check requested PCR bits don't exceed our capabilities */
343         if (guest_pcr_bit > host_pcr_bit)
344                 return -EINVAL;
345
346         spin_lock(&vc->lock);
347         vc->arch_compat = arch_compat;
348         /* Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit */
349         vc->pcr = host_pcr_bit - guest_pcr_bit;
350         spin_unlock(&vc->lock);
351
352         return 0;
353 }
354
355 static void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
356 {
357         int r;
358
359         pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
360         pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n",
361                vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap);
362         for (r = 0; r < 16; ++r)
363                 pr_err("r%2d = %.16lx  r%d = %.16lx\n",
364                        r, kvmppc_get_gpr(vcpu, r),
365                        r+16, kvmppc_get_gpr(vcpu, r+16));
366         pr_err("ctr = %.16lx  lr  = %.16lx\n",
367                vcpu->arch.ctr, vcpu->arch.lr);
368         pr_err("srr0 = %.16llx srr1 = %.16llx\n",
369                vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
370         pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
371                vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
372         pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
373                vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
374         pr_err("cr = %.8x  xer = %.16lx  dsisr = %.8x\n",
375                vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr);
376         pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
377         pr_err("fault dar = %.16lx dsisr = %.8x\n",
378                vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
379         pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
380         for (r = 0; r < vcpu->arch.slb_max; ++r)
381                 pr_err("  ESID = %.16llx VSID = %.16llx\n",
382                        vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
383         pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
384                vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
385                vcpu->arch.last_inst);
386 }
387
388 static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
389 {
390         struct kvm_vcpu *ret;
391
392         mutex_lock(&kvm->lock);
393         ret = kvm_get_vcpu_by_id(kvm, id);
394         mutex_unlock(&kvm->lock);
395         return ret;
396 }
397
398 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
399 {
400         vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
401         vpa->yield_count = cpu_to_be32(1);
402 }
403
404 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
405                    unsigned long addr, unsigned long len)
406 {
407         /* check address is cacheline aligned */
408         if (addr & (L1_CACHE_BYTES - 1))
409                 return -EINVAL;
410         spin_lock(&vcpu->arch.vpa_update_lock);
411         if (v->next_gpa != addr || v->len != len) {
412                 v->next_gpa = addr;
413                 v->len = addr ? len : 0;
414                 v->update_pending = 1;
415         }
416         spin_unlock(&vcpu->arch.vpa_update_lock);
417         return 0;
418 }
419
420 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */
421 struct reg_vpa {
422         u32 dummy;
423         union {
424                 __be16 hword;
425                 __be32 word;
426         } length;
427 };
428
429 static int vpa_is_registered(struct kvmppc_vpa *vpap)
430 {
431         if (vpap->update_pending)
432                 return vpap->next_gpa != 0;
433         return vpap->pinned_addr != NULL;
434 }
435
436 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
437                                        unsigned long flags,
438                                        unsigned long vcpuid, unsigned long vpa)
439 {
440         struct kvm *kvm = vcpu->kvm;
441         unsigned long len, nb;
442         void *va;
443         struct kvm_vcpu *tvcpu;
444         int err;
445         int subfunc;
446         struct kvmppc_vpa *vpap;
447
448         tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
449         if (!tvcpu)
450                 return H_PARAMETER;
451
452         subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
453         if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
454             subfunc == H_VPA_REG_SLB) {
455                 /* Registering new area - address must be cache-line aligned */
456                 if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
457                         return H_PARAMETER;
458
459                 /* convert logical addr to kernel addr and read length */
460                 va = kvmppc_pin_guest_page(kvm, vpa, &nb);
461                 if (va == NULL)
462                         return H_PARAMETER;
463                 if (subfunc == H_VPA_REG_VPA)
464                         len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
465                 else
466                         len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
467                 kvmppc_unpin_guest_page(kvm, va, vpa, false);
468
469                 /* Check length */
470                 if (len > nb || len < sizeof(struct reg_vpa))
471                         return H_PARAMETER;
472         } else {
473                 vpa = 0;
474                 len = 0;
475         }
476
477         err = H_PARAMETER;
478         vpap = NULL;
479         spin_lock(&tvcpu->arch.vpa_update_lock);
480
481         switch (subfunc) {
482         case H_VPA_REG_VPA:             /* register VPA */
483                 if (len < sizeof(struct lppaca))
484                         break;
485                 vpap = &tvcpu->arch.vpa;
486                 err = 0;
487                 break;
488
489         case H_VPA_REG_DTL:             /* register DTL */
490                 if (len < sizeof(struct dtl_entry))
491                         break;
492                 len -= len % sizeof(struct dtl_entry);
493
494                 /* Check that they have previously registered a VPA */
495                 err = H_RESOURCE;
496                 if (!vpa_is_registered(&tvcpu->arch.vpa))
497                         break;
498
499                 vpap = &tvcpu->arch.dtl;
500                 err = 0;
501                 break;
502
503         case H_VPA_REG_SLB:             /* register SLB shadow buffer */
504                 /* Check that they have previously registered a VPA */
505                 err = H_RESOURCE;
506                 if (!vpa_is_registered(&tvcpu->arch.vpa))
507                         break;
508
509                 vpap = &tvcpu->arch.slb_shadow;
510                 err = 0;
511                 break;
512
513         case H_VPA_DEREG_VPA:           /* deregister VPA */
514                 /* Check they don't still have a DTL or SLB buf registered */
515                 err = H_RESOURCE;
516                 if (vpa_is_registered(&tvcpu->arch.dtl) ||
517                     vpa_is_registered(&tvcpu->arch.slb_shadow))
518                         break;
519
520                 vpap = &tvcpu->arch.vpa;
521                 err = 0;
522                 break;
523
524         case H_VPA_DEREG_DTL:           /* deregister DTL */
525                 vpap = &tvcpu->arch.dtl;
526                 err = 0;
527                 break;
528
529         case H_VPA_DEREG_SLB:           /* deregister SLB shadow buffer */
530                 vpap = &tvcpu->arch.slb_shadow;
531                 err = 0;
532                 break;
533         }
534
535         if (vpap) {
536                 vpap->next_gpa = vpa;
537                 vpap->len = len;
538                 vpap->update_pending = 1;
539         }
540
541         spin_unlock(&tvcpu->arch.vpa_update_lock);
542
543         return err;
544 }
545
546 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
547 {
548         struct kvm *kvm = vcpu->kvm;
549         void *va;
550         unsigned long nb;
551         unsigned long gpa;
552
553         /*
554          * We need to pin the page pointed to by vpap->next_gpa,
555          * but we can't call kvmppc_pin_guest_page under the lock
556          * as it does get_user_pages() and down_read().  So we
557          * have to drop the lock, pin the page, then get the lock
558          * again and check that a new area didn't get registered
559          * in the meantime.
560          */
561         for (;;) {
562                 gpa = vpap->next_gpa;
563                 spin_unlock(&vcpu->arch.vpa_update_lock);
564                 va = NULL;
565                 nb = 0;
566                 if (gpa)
567                         va = kvmppc_pin_guest_page(kvm, gpa, &nb);
568                 spin_lock(&vcpu->arch.vpa_update_lock);
569                 if (gpa == vpap->next_gpa)
570                         break;
571                 /* sigh... unpin that one and try again */
572                 if (va)
573                         kvmppc_unpin_guest_page(kvm, va, gpa, false);
574         }
575
576         vpap->update_pending = 0;
577         if (va && nb < vpap->len) {
578                 /*
579                  * If it's now too short, it must be that userspace
580                  * has changed the mappings underlying guest memory,
581                  * so unregister the region.
582                  */
583                 kvmppc_unpin_guest_page(kvm, va, gpa, false);
584                 va = NULL;
585         }
586         if (vpap->pinned_addr)
587                 kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
588                                         vpap->dirty);
589         vpap->gpa = gpa;
590         vpap->pinned_addr = va;
591         vpap->dirty = false;
592         if (va)
593                 vpap->pinned_end = va + vpap->len;
594 }
595
596 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
597 {
598         if (!(vcpu->arch.vpa.update_pending ||
599               vcpu->arch.slb_shadow.update_pending ||
600               vcpu->arch.dtl.update_pending))
601                 return;
602
603         spin_lock(&vcpu->arch.vpa_update_lock);
604         if (vcpu->arch.vpa.update_pending) {
605                 kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
606                 if (vcpu->arch.vpa.pinned_addr)
607                         init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
608         }
609         if (vcpu->arch.dtl.update_pending) {
610                 kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
611                 vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
612                 vcpu->arch.dtl_index = 0;
613         }
614         if (vcpu->arch.slb_shadow.update_pending)
615                 kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
616         spin_unlock(&vcpu->arch.vpa_update_lock);
617 }
618
619 /*
620  * Return the accumulated stolen time for the vcore up until `now'.
621  * The caller should hold the vcore lock.
622  */
623 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
624 {
625         u64 p;
626         unsigned long flags;
627
628         spin_lock_irqsave(&vc->stoltb_lock, flags);
629         p = vc->stolen_tb;
630         if (vc->vcore_state != VCORE_INACTIVE &&
631             vc->preempt_tb != TB_NIL)
632                 p += now - vc->preempt_tb;
633         spin_unlock_irqrestore(&vc->stoltb_lock, flags);
634         return p;
635 }
636
637 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
638                                     struct kvmppc_vcore *vc)
639 {
640         struct dtl_entry *dt;
641         struct lppaca *vpa;
642         unsigned long stolen;
643         unsigned long core_stolen;
644         u64 now;
645
646         dt = vcpu->arch.dtl_ptr;
647         vpa = vcpu->arch.vpa.pinned_addr;
648         now = mftb();
649         core_stolen = vcore_stolen_time(vc, now);
650         stolen = core_stolen - vcpu->arch.stolen_logged;
651         vcpu->arch.stolen_logged = core_stolen;
652         spin_lock_irq(&vcpu->arch.tbacct_lock);
653         stolen += vcpu->arch.busy_stolen;
654         vcpu->arch.busy_stolen = 0;
655         spin_unlock_irq(&vcpu->arch.tbacct_lock);
656         if (!dt || !vpa)
657                 return;
658         memset(dt, 0, sizeof(struct dtl_entry));
659         dt->dispatch_reason = 7;
660         dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid);
661         dt->timebase = cpu_to_be64(now + vc->tb_offset);
662         dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
663         dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
664         dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
665         ++dt;
666         if (dt == vcpu->arch.dtl.pinned_end)
667                 dt = vcpu->arch.dtl.pinned_addr;
668         vcpu->arch.dtl_ptr = dt;
669         /* order writing *dt vs. writing vpa->dtl_idx */
670         smp_wmb();
671         vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
672         vcpu->arch.dtl.dirty = true;
673 }
674
675 static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
676 {
677         if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207)
678                 return true;
679         if ((!vcpu->arch.vcore->arch_compat) &&
680             cpu_has_feature(CPU_FTR_ARCH_207S))
681                 return true;
682         return false;
683 }
684
685 static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
686                              unsigned long resource, unsigned long value1,
687                              unsigned long value2)
688 {
689         switch (resource) {
690         case H_SET_MODE_RESOURCE_SET_CIABR:
691                 if (!kvmppc_power8_compatible(vcpu))
692                         return H_P2;
693                 if (value2)
694                         return H_P4;
695                 if (mflags)
696                         return H_UNSUPPORTED_FLAG_START;
697                 /* Guests can't breakpoint the hypervisor */
698                 if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
699                         return H_P3;
700                 vcpu->arch.ciabr  = value1;
701                 return H_SUCCESS;
702         case H_SET_MODE_RESOURCE_SET_DAWR:
703                 if (!kvmppc_power8_compatible(vcpu))
704                         return H_P2;
705                 if (mflags)
706                         return H_UNSUPPORTED_FLAG_START;
707                 if (value2 & DABRX_HYP)
708                         return H_P4;
709                 vcpu->arch.dawr  = value1;
710                 vcpu->arch.dawrx = value2;
711                 return H_SUCCESS;
712         default:
713                 return H_TOO_HARD;
714         }
715 }
716
717 static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target)
718 {
719         struct kvmppc_vcore *vcore = target->arch.vcore;
720
721         /*
722          * We expect to have been called by the real mode handler
723          * (kvmppc_rm_h_confer()) which would have directly returned
724          * H_SUCCESS if the source vcore wasn't idle (e.g. if it may
725          * have useful work to do and should not confer) so we don't
726          * recheck that here.
727          */
728
729         spin_lock(&vcore->lock);
730         if (target->arch.state == KVMPPC_VCPU_RUNNABLE &&
731             vcore->vcore_state != VCORE_INACTIVE &&
732             vcore->runner)
733                 target = vcore->runner;
734         spin_unlock(&vcore->lock);
735
736         return kvm_vcpu_yield_to(target);
737 }
738
739 static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu)
740 {
741         int yield_count = 0;
742         struct lppaca *lppaca;
743
744         spin_lock(&vcpu->arch.vpa_update_lock);
745         lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr;
746         if (lppaca)
747                 yield_count = be32_to_cpu(lppaca->yield_count);
748         spin_unlock(&vcpu->arch.vpa_update_lock);
749         return yield_count;
750 }
751
752 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
753 {
754         unsigned long req = kvmppc_get_gpr(vcpu, 3);
755         unsigned long target, ret = H_SUCCESS;
756         int yield_count;
757         struct kvm_vcpu *tvcpu;
758         int idx, rc;
759
760         if (req <= MAX_HCALL_OPCODE &&
761             !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
762                 return RESUME_HOST;
763
764         switch (req) {
765         case H_CEDE:
766                 break;
767         case H_PROD:
768                 target = kvmppc_get_gpr(vcpu, 4);
769                 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
770                 if (!tvcpu) {
771                         ret = H_PARAMETER;
772                         break;
773                 }
774                 tvcpu->arch.prodded = 1;
775                 smp_mb();
776                 if (vcpu->arch.ceded) {
777                         if (swait_active(&vcpu->wq)) {
778                                 swake_up(&vcpu->wq);
779                                 vcpu->stat.halt_wakeup++;
780                         }
781                 }
782                 break;
783         case H_CONFER:
784                 target = kvmppc_get_gpr(vcpu, 4);
785                 if (target == -1)
786                         break;
787                 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
788                 if (!tvcpu) {
789                         ret = H_PARAMETER;
790                         break;
791                 }
792                 yield_count = kvmppc_get_gpr(vcpu, 5);
793                 if (kvmppc_get_yield_count(tvcpu) != yield_count)
794                         break;
795                 kvm_arch_vcpu_yield_to(tvcpu);
796                 break;
797         case H_REGISTER_VPA:
798                 ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
799                                         kvmppc_get_gpr(vcpu, 5),
800                                         kvmppc_get_gpr(vcpu, 6));
801                 break;
802         case H_RTAS:
803                 if (list_empty(&vcpu->kvm->arch.rtas_tokens))
804                         return RESUME_HOST;
805
806                 idx = srcu_read_lock(&vcpu->kvm->srcu);
807                 rc = kvmppc_rtas_hcall(vcpu);
808                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
809
810                 if (rc == -ENOENT)
811                         return RESUME_HOST;
812                 else if (rc == 0)
813                         break;
814
815                 /* Send the error out to userspace via KVM_RUN */
816                 return rc;
817         case H_LOGICAL_CI_LOAD:
818                 ret = kvmppc_h_logical_ci_load(vcpu);
819                 if (ret == H_TOO_HARD)
820                         return RESUME_HOST;
821                 break;
822         case H_LOGICAL_CI_STORE:
823                 ret = kvmppc_h_logical_ci_store(vcpu);
824                 if (ret == H_TOO_HARD)
825                         return RESUME_HOST;
826                 break;
827         case H_SET_MODE:
828                 ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
829                                         kvmppc_get_gpr(vcpu, 5),
830                                         kvmppc_get_gpr(vcpu, 6),
831                                         kvmppc_get_gpr(vcpu, 7));
832                 if (ret == H_TOO_HARD)
833                         return RESUME_HOST;
834                 break;
835         case H_XIRR:
836         case H_CPPR:
837         case H_EOI:
838         case H_IPI:
839         case H_IPOLL:
840         case H_XIRR_X:
841                 if (kvmppc_xics_enabled(vcpu)) {
842                         ret = kvmppc_xics_hcall(vcpu, req);
843                         break;
844                 }
845                 return RESUME_HOST;
846         case H_PUT_TCE:
847                 ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
848                                                 kvmppc_get_gpr(vcpu, 5),
849                                                 kvmppc_get_gpr(vcpu, 6));
850                 if (ret == H_TOO_HARD)
851                         return RESUME_HOST;
852                 break;
853         case H_PUT_TCE_INDIRECT:
854                 ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4),
855                                                 kvmppc_get_gpr(vcpu, 5),
856                                                 kvmppc_get_gpr(vcpu, 6),
857                                                 kvmppc_get_gpr(vcpu, 7));
858                 if (ret == H_TOO_HARD)
859                         return RESUME_HOST;
860                 break;
861         case H_STUFF_TCE:
862                 ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
863                                                 kvmppc_get_gpr(vcpu, 5),
864                                                 kvmppc_get_gpr(vcpu, 6),
865                                                 kvmppc_get_gpr(vcpu, 7));
866                 if (ret == H_TOO_HARD)
867                         return RESUME_HOST;
868                 break;
869         default:
870                 return RESUME_HOST;
871         }
872         kvmppc_set_gpr(vcpu, 3, ret);
873         vcpu->arch.hcall_needed = 0;
874         return RESUME_GUEST;
875 }
876
877 static int kvmppc_hcall_impl_hv(unsigned long cmd)
878 {
879         switch (cmd) {
880         case H_CEDE:
881         case H_PROD:
882         case H_CONFER:
883         case H_REGISTER_VPA:
884         case H_SET_MODE:
885         case H_LOGICAL_CI_LOAD:
886         case H_LOGICAL_CI_STORE:
887 #ifdef CONFIG_KVM_XICS
888         case H_XIRR:
889         case H_CPPR:
890         case H_EOI:
891         case H_IPI:
892         case H_IPOLL:
893         case H_XIRR_X:
894 #endif
895                 return 1;
896         }
897
898         /* See if it's in the real-mode table */
899         return kvmppc_hcall_impl_hv_realmode(cmd);
900 }
901
902 static int kvmppc_emulate_debug_inst(struct kvm_run *run,
903                                         struct kvm_vcpu *vcpu)
904 {
905         u32 last_inst;
906
907         if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
908                                         EMULATE_DONE) {
909                 /*
910                  * Fetch failed, so return to guest and
911                  * try executing it again.
912                  */
913                 return RESUME_GUEST;
914         }
915
916         if (last_inst == KVMPPC_INST_SW_BREAKPOINT) {
917                 run->exit_reason = KVM_EXIT_DEBUG;
918                 run->debug.arch.address = kvmppc_get_pc(vcpu);
919                 return RESUME_HOST;
920         } else {
921                 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
922                 return RESUME_GUEST;
923         }
924 }
925
926 static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
927                                  struct task_struct *tsk)
928 {
929         int r = RESUME_HOST;
930
931         vcpu->stat.sum_exits++;
932
933         /*
934          * This can happen if an interrupt occurs in the last stages
935          * of guest entry or the first stages of guest exit (i.e. after
936          * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
937          * and before setting it to KVM_GUEST_MODE_HOST_HV).
938          * That can happen due to a bug, or due to a machine check
939          * occurring at just the wrong time.
940          */
941         if (vcpu->arch.shregs.msr & MSR_HV) {
942                 printk(KERN_EMERG "KVM trap in HV mode!\n");
943                 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
944                         vcpu->arch.trap, kvmppc_get_pc(vcpu),
945                         vcpu->arch.shregs.msr);
946                 kvmppc_dump_regs(vcpu);
947                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
948                 run->hw.hardware_exit_reason = vcpu->arch.trap;
949                 return RESUME_HOST;
950         }
951         run->exit_reason = KVM_EXIT_UNKNOWN;
952         run->ready_for_interrupt_injection = 1;
953         switch (vcpu->arch.trap) {
954         /* We're good on these - the host merely wanted to get our attention */
955         case BOOK3S_INTERRUPT_HV_DECREMENTER:
956                 vcpu->stat.dec_exits++;
957                 r = RESUME_GUEST;
958                 break;
959         case BOOK3S_INTERRUPT_EXTERNAL:
960         case BOOK3S_INTERRUPT_H_DOORBELL:
961         case BOOK3S_INTERRUPT_H_VIRT:
962                 vcpu->stat.ext_intr_exits++;
963                 r = RESUME_GUEST;
964                 break;
965         /* HMI is hypervisor interrupt and host has handled it. Resume guest.*/
966         case BOOK3S_INTERRUPT_HMI:
967         case BOOK3S_INTERRUPT_PERFMON:
968                 r = RESUME_GUEST;
969                 break;
970         case BOOK3S_INTERRUPT_MACHINE_CHECK:
971                 /*
972                  * Deliver a machine check interrupt to the guest.
973                  * We have to do this, even if the host has handled the
974                  * machine check, because machine checks use SRR0/1 and
975                  * the interrupt might have trashed guest state in them.
976                  */
977                 kvmppc_book3s_queue_irqprio(vcpu,
978                                             BOOK3S_INTERRUPT_MACHINE_CHECK);
979                 r = RESUME_GUEST;
980                 break;
981         case BOOK3S_INTERRUPT_PROGRAM:
982         {
983                 ulong flags;
984                 /*
985                  * Normally program interrupts are delivered directly
986                  * to the guest by the hardware, but we can get here
987                  * as a result of a hypervisor emulation interrupt
988                  * (e40) getting turned into a 700 by BML RTAS.
989                  */
990                 flags = vcpu->arch.shregs.msr & 0x1f0000ull;
991                 kvmppc_core_queue_program(vcpu, flags);
992                 r = RESUME_GUEST;
993                 break;
994         }
995         case BOOK3S_INTERRUPT_SYSCALL:
996         {
997                 /* hcall - punt to userspace */
998                 int i;
999
1000                 /* hypercall with MSR_PR has already been handled in rmode,
1001                  * and never reaches here.
1002                  */
1003
1004                 run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
1005                 for (i = 0; i < 9; ++i)
1006                         run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
1007                 run->exit_reason = KVM_EXIT_PAPR_HCALL;
1008                 vcpu->arch.hcall_needed = 1;
1009                 r = RESUME_HOST;
1010                 break;
1011         }
1012         /*
1013          * We get these next two if the guest accesses a page which it thinks
1014          * it has mapped but which is not actually present, either because
1015          * it is for an emulated I/O device or because the corresonding
1016          * host page has been paged out.  Any other HDSI/HISI interrupts
1017          * have been handled already.
1018          */
1019         case BOOK3S_INTERRUPT_H_DATA_STORAGE:
1020                 r = RESUME_PAGE_FAULT;
1021                 break;
1022         case BOOK3S_INTERRUPT_H_INST_STORAGE:
1023                 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1024                 vcpu->arch.fault_dsisr = 0;
1025                 r = RESUME_PAGE_FAULT;
1026                 break;
1027         /*
1028          * This occurs if the guest executes an illegal instruction.
1029          * If the guest debug is disabled, generate a program interrupt
1030          * to the guest. If guest debug is enabled, we need to check
1031          * whether the instruction is a software breakpoint instruction.
1032          * Accordingly return to Guest or Host.
1033          */
1034         case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
1035                 if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED)
1036                         vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ?
1037                                 swab32(vcpu->arch.emul_inst) :
1038                                 vcpu->arch.emul_inst;
1039                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
1040                         r = kvmppc_emulate_debug_inst(run, vcpu);
1041                 } else {
1042                         kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1043                         r = RESUME_GUEST;
1044                 }
1045                 break;
1046         /*
1047          * This occurs if the guest (kernel or userspace), does something that
1048          * is prohibited by HFSCR.  We just generate a program interrupt to
1049          * the guest.
1050          */
1051         case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
1052                 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1053                 r = RESUME_GUEST;
1054                 break;
1055         case BOOK3S_INTERRUPT_HV_RM_HARD:
1056                 r = RESUME_PASSTHROUGH;
1057                 break;
1058         default:
1059                 kvmppc_dump_regs(vcpu);
1060                 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1061                         vcpu->arch.trap, kvmppc_get_pc(vcpu),
1062                         vcpu->arch.shregs.msr);
1063                 run->hw.hardware_exit_reason = vcpu->arch.trap;
1064                 r = RESUME_HOST;
1065                 break;
1066         }
1067
1068         return r;
1069 }
1070
1071 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
1072                                             struct kvm_sregs *sregs)
1073 {
1074         int i;
1075
1076         memset(sregs, 0, sizeof(struct kvm_sregs));
1077         sregs->pvr = vcpu->arch.pvr;
1078         for (i = 0; i < vcpu->arch.slb_max; i++) {
1079                 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
1080                 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
1081         }
1082
1083         return 0;
1084 }
1085
1086 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
1087                                             struct kvm_sregs *sregs)
1088 {
1089         int i, j;
1090
1091         /* Only accept the same PVR as the host's, since we can't spoof it */
1092         if (sregs->pvr != vcpu->arch.pvr)
1093                 return -EINVAL;
1094
1095         j = 0;
1096         for (i = 0; i < vcpu->arch.slb_nr; i++) {
1097                 if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
1098                         vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
1099                         vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
1100                         ++j;
1101                 }
1102         }
1103         vcpu->arch.slb_max = j;
1104
1105         return 0;
1106 }
1107
1108 static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
1109                 bool preserve_top32)
1110 {
1111         struct kvm *kvm = vcpu->kvm;
1112         struct kvmppc_vcore *vc = vcpu->arch.vcore;
1113         u64 mask;
1114
1115         mutex_lock(&kvm->lock);
1116         spin_lock(&vc->lock);
1117         /*
1118          * If ILE (interrupt little-endian) has changed, update the
1119          * MSR_LE bit in the intr_msr for each vcpu in this vcore.
1120          */
1121         if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
1122                 struct kvm_vcpu *vcpu;
1123                 int i;
1124
1125                 kvm_for_each_vcpu(i, vcpu, kvm) {
1126                         if (vcpu->arch.vcore != vc)
1127                                 continue;
1128                         if (new_lpcr & LPCR_ILE)
1129                                 vcpu->arch.intr_msr |= MSR_LE;
1130                         else
1131                                 vcpu->arch.intr_msr &= ~MSR_LE;
1132                 }
1133         }
1134
1135         /*
1136          * Userspace can only modify DPFD (default prefetch depth),
1137          * ILE (interrupt little-endian) and TC (translation control).
1138          * On POWER8 userspace can also modify AIL (alt. interrupt loc.)
1139          */
1140         mask = LPCR_DPFD | LPCR_ILE | LPCR_TC;
1141         if (cpu_has_feature(CPU_FTR_ARCH_207S))
1142                 mask |= LPCR_AIL;
1143
1144         /* Broken 32-bit version of LPCR must not clear top bits */
1145         if (preserve_top32)
1146                 mask &= 0xFFFFFFFF;
1147         vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask);
1148         spin_unlock(&vc->lock);
1149         mutex_unlock(&kvm->lock);
1150 }
1151
1152 static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1153                                  union kvmppc_one_reg *val)
1154 {
1155         int r = 0;
1156         long int i;
1157
1158         switch (id) {
1159         case KVM_REG_PPC_DEBUG_INST:
1160                 *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
1161                 break;
1162         case KVM_REG_PPC_HIOR:
1163                 *val = get_reg_val(id, 0);
1164                 break;
1165         case KVM_REG_PPC_DABR:
1166                 *val = get_reg_val(id, vcpu->arch.dabr);
1167                 break;
1168         case KVM_REG_PPC_DABRX:
1169                 *val = get_reg_val(id, vcpu->arch.dabrx);
1170                 break;
1171         case KVM_REG_PPC_DSCR:
1172                 *val = get_reg_val(id, vcpu->arch.dscr);
1173                 break;
1174         case KVM_REG_PPC_PURR:
1175                 *val = get_reg_val(id, vcpu->arch.purr);
1176                 break;
1177         case KVM_REG_PPC_SPURR:
1178                 *val = get_reg_val(id, vcpu->arch.spurr);
1179                 break;
1180         case KVM_REG_PPC_AMR:
1181                 *val = get_reg_val(id, vcpu->arch.amr);
1182                 break;
1183         case KVM_REG_PPC_UAMOR:
1184                 *val = get_reg_val(id, vcpu->arch.uamor);
1185                 break;
1186         case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1187                 i = id - KVM_REG_PPC_MMCR0;
1188                 *val = get_reg_val(id, vcpu->arch.mmcr[i]);
1189                 break;
1190         case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1191                 i = id - KVM_REG_PPC_PMC1;
1192                 *val = get_reg_val(id, vcpu->arch.pmc[i]);
1193                 break;
1194         case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1195                 i = id - KVM_REG_PPC_SPMC1;
1196                 *val = get_reg_val(id, vcpu->arch.spmc[i]);
1197                 break;
1198         case KVM_REG_PPC_SIAR:
1199                 *val = get_reg_val(id, vcpu->arch.siar);
1200                 break;
1201         case KVM_REG_PPC_SDAR:
1202                 *val = get_reg_val(id, vcpu->arch.sdar);
1203                 break;
1204         case KVM_REG_PPC_SIER:
1205                 *val = get_reg_val(id, vcpu->arch.sier);
1206                 break;
1207         case KVM_REG_PPC_IAMR:
1208                 *val = get_reg_val(id, vcpu->arch.iamr);
1209                 break;
1210         case KVM_REG_PPC_PSPB:
1211                 *val = get_reg_val(id, vcpu->arch.pspb);
1212                 break;
1213         case KVM_REG_PPC_DPDES:
1214                 *val = get_reg_val(id, vcpu->arch.vcore->dpdes);
1215                 break;
1216         case KVM_REG_PPC_VTB:
1217                 *val = get_reg_val(id, vcpu->arch.vcore->vtb);
1218                 break;
1219         case KVM_REG_PPC_DAWR:
1220                 *val = get_reg_val(id, vcpu->arch.dawr);
1221                 break;
1222         case KVM_REG_PPC_DAWRX:
1223                 *val = get_reg_val(id, vcpu->arch.dawrx);
1224                 break;
1225         case KVM_REG_PPC_CIABR:
1226                 *val = get_reg_val(id, vcpu->arch.ciabr);
1227                 break;
1228         case KVM_REG_PPC_CSIGR:
1229                 *val = get_reg_val(id, vcpu->arch.csigr);
1230                 break;
1231         case KVM_REG_PPC_TACR:
1232                 *val = get_reg_val(id, vcpu->arch.tacr);
1233                 break;
1234         case KVM_REG_PPC_TCSCR:
1235                 *val = get_reg_val(id, vcpu->arch.tcscr);
1236                 break;
1237         case KVM_REG_PPC_PID:
1238                 *val = get_reg_val(id, vcpu->arch.pid);
1239                 break;
1240         case KVM_REG_PPC_ACOP:
1241                 *val = get_reg_val(id, vcpu->arch.acop);
1242                 break;
1243         case KVM_REG_PPC_WORT:
1244                 *val = get_reg_val(id, vcpu->arch.wort);
1245                 break;
1246         case KVM_REG_PPC_TIDR:
1247                 *val = get_reg_val(id, vcpu->arch.tid);
1248                 break;
1249         case KVM_REG_PPC_PSSCR:
1250                 *val = get_reg_val(id, vcpu->arch.psscr);
1251                 break;
1252         case KVM_REG_PPC_VPA_ADDR:
1253                 spin_lock(&vcpu->arch.vpa_update_lock);
1254                 *val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
1255                 spin_unlock(&vcpu->arch.vpa_update_lock);
1256                 break;
1257         case KVM_REG_PPC_VPA_SLB:
1258                 spin_lock(&vcpu->arch.vpa_update_lock);
1259                 val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
1260                 val->vpaval.length = vcpu->arch.slb_shadow.len;
1261                 spin_unlock(&vcpu->arch.vpa_update_lock);
1262                 break;
1263         case KVM_REG_PPC_VPA_DTL:
1264                 spin_lock(&vcpu->arch.vpa_update_lock);
1265                 val->vpaval.addr = vcpu->arch.dtl.next_gpa;
1266                 val->vpaval.length = vcpu->arch.dtl.len;
1267                 spin_unlock(&vcpu->arch.vpa_update_lock);
1268                 break;
1269         case KVM_REG_PPC_TB_OFFSET:
1270                 *val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
1271                 break;
1272         case KVM_REG_PPC_LPCR:
1273         case KVM_REG_PPC_LPCR_64:
1274                 *val = get_reg_val(id, vcpu->arch.vcore->lpcr);
1275                 break;
1276         case KVM_REG_PPC_PPR:
1277                 *val = get_reg_val(id, vcpu->arch.ppr);
1278                 break;
1279 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1280         case KVM_REG_PPC_TFHAR:
1281                 *val = get_reg_val(id, vcpu->arch.tfhar);
1282                 break;
1283         case KVM_REG_PPC_TFIAR:
1284                 *val = get_reg_val(id, vcpu->arch.tfiar);
1285                 break;
1286         case KVM_REG_PPC_TEXASR:
1287                 *val = get_reg_val(id, vcpu->arch.texasr);
1288                 break;
1289         case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1290                 i = id - KVM_REG_PPC_TM_GPR0;
1291                 *val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
1292                 break;
1293         case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1294         {
1295                 int j;
1296                 i = id - KVM_REG_PPC_TM_VSR0;
1297                 if (i < 32)
1298                         for (j = 0; j < TS_FPRWIDTH; j++)
1299                                 val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
1300                 else {
1301                         if (cpu_has_feature(CPU_FTR_ALTIVEC))
1302                                 val->vval = vcpu->arch.vr_tm.vr[i-32];
1303                         else
1304                                 r = -ENXIO;
1305                 }
1306                 break;
1307         }
1308         case KVM_REG_PPC_TM_CR:
1309                 *val = get_reg_val(id, vcpu->arch.cr_tm);
1310                 break;
1311         case KVM_REG_PPC_TM_XER:
1312                 *val = get_reg_val(id, vcpu->arch.xer_tm);
1313                 break;
1314         case KVM_REG_PPC_TM_LR:
1315                 *val = get_reg_val(id, vcpu->arch.lr_tm);
1316                 break;
1317         case KVM_REG_PPC_TM_CTR:
1318                 *val = get_reg_val(id, vcpu->arch.ctr_tm);
1319                 break;
1320         case KVM_REG_PPC_TM_FPSCR:
1321                 *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
1322                 break;
1323         case KVM_REG_PPC_TM_AMR:
1324                 *val = get_reg_val(id, vcpu->arch.amr_tm);
1325                 break;
1326         case KVM_REG_PPC_TM_PPR:
1327                 *val = get_reg_val(id, vcpu->arch.ppr_tm);
1328                 break;
1329         case KVM_REG_PPC_TM_VRSAVE:
1330                 *val = get_reg_val(id, vcpu->arch.vrsave_tm);
1331                 break;
1332         case KVM_REG_PPC_TM_VSCR:
1333                 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1334                         *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
1335                 else
1336                         r = -ENXIO;
1337                 break;
1338         case KVM_REG_PPC_TM_DSCR:
1339                 *val = get_reg_val(id, vcpu->arch.dscr_tm);
1340                 break;
1341         case KVM_REG_PPC_TM_TAR:
1342                 *val = get_reg_val(id, vcpu->arch.tar_tm);
1343                 break;
1344 #endif
1345         case KVM_REG_PPC_ARCH_COMPAT:
1346                 *val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
1347                 break;
1348         default:
1349                 r = -EINVAL;
1350                 break;
1351         }
1352
1353         return r;
1354 }
1355
1356 static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1357                                  union kvmppc_one_reg *val)
1358 {
1359         int r = 0;
1360         long int i;
1361         unsigned long addr, len;
1362
1363         switch (id) {
1364         case KVM_REG_PPC_HIOR:
1365                 /* Only allow this to be set to zero */
1366                 if (set_reg_val(id, *val))
1367                         r = -EINVAL;
1368                 break;
1369         case KVM_REG_PPC_DABR:
1370                 vcpu->arch.dabr = set_reg_val(id, *val);
1371                 break;
1372         case KVM_REG_PPC_DABRX:
1373                 vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
1374                 break;
1375         case KVM_REG_PPC_DSCR:
1376                 vcpu->arch.dscr = set_reg_val(id, *val);
1377                 break;
1378         case KVM_REG_PPC_PURR:
1379                 vcpu->arch.purr = set_reg_val(id, *val);
1380                 break;
1381         case KVM_REG_PPC_SPURR:
1382                 vcpu->arch.spurr = set_reg_val(id, *val);
1383                 break;
1384         case KVM_REG_PPC_AMR:
1385                 vcpu->arch.amr = set_reg_val(id, *val);
1386                 break;
1387         case KVM_REG_PPC_UAMOR:
1388                 vcpu->arch.uamor = set_reg_val(id, *val);
1389                 break;
1390         case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1391                 i = id - KVM_REG_PPC_MMCR0;
1392                 vcpu->arch.mmcr[i] = set_reg_val(id, *val);
1393                 break;
1394         case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1395                 i = id - KVM_REG_PPC_PMC1;
1396                 vcpu->arch.pmc[i] = set_reg_val(id, *val);
1397                 break;
1398         case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1399                 i = id - KVM_REG_PPC_SPMC1;
1400                 vcpu->arch.spmc[i] = set_reg_val(id, *val);
1401                 break;
1402         case KVM_REG_PPC_SIAR:
1403                 vcpu->arch.siar = set_reg_val(id, *val);
1404                 break;
1405         case KVM_REG_PPC_SDAR:
1406                 vcpu->arch.sdar = set_reg_val(id, *val);
1407                 break;
1408         case KVM_REG_PPC_SIER:
1409                 vcpu->arch.sier = set_reg_val(id, *val);
1410                 break;
1411         case KVM_REG_PPC_IAMR:
1412                 vcpu->arch.iamr = set_reg_val(id, *val);
1413                 break;
1414         case KVM_REG_PPC_PSPB:
1415                 vcpu->arch.pspb = set_reg_val(id, *val);
1416                 break;
1417         case KVM_REG_PPC_DPDES:
1418                 vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
1419                 break;
1420         case KVM_REG_PPC_VTB:
1421                 vcpu->arch.vcore->vtb = set_reg_val(id, *val);
1422                 break;
1423         case KVM_REG_PPC_DAWR:
1424                 vcpu->arch.dawr = set_reg_val(id, *val);
1425                 break;
1426         case KVM_REG_PPC_DAWRX:
1427                 vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP;
1428                 break;
1429         case KVM_REG_PPC_CIABR:
1430                 vcpu->arch.ciabr = set_reg_val(id, *val);
1431                 /* Don't allow setting breakpoints in hypervisor code */
1432                 if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
1433                         vcpu->arch.ciabr &= ~CIABR_PRIV;        /* disable */
1434                 break;
1435         case KVM_REG_PPC_CSIGR:
1436                 vcpu->arch.csigr = set_reg_val(id, *val);
1437                 break;
1438         case KVM_REG_PPC_TACR:
1439                 vcpu->arch.tacr = set_reg_val(id, *val);
1440                 break;
1441         case KVM_REG_PPC_TCSCR:
1442                 vcpu->arch.tcscr = set_reg_val(id, *val);
1443                 break;
1444         case KVM_REG_PPC_PID:
1445                 vcpu->arch.pid = set_reg_val(id, *val);
1446                 break;
1447         case KVM_REG_PPC_ACOP:
1448                 vcpu->arch.acop = set_reg_val(id, *val);
1449                 break;
1450         case KVM_REG_PPC_WORT:
1451                 vcpu->arch.wort = set_reg_val(id, *val);
1452                 break;
1453         case KVM_REG_PPC_TIDR:
1454                 vcpu->arch.tid = set_reg_val(id, *val);
1455                 break;
1456         case KVM_REG_PPC_PSSCR:
1457                 vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS;
1458                 break;
1459         case KVM_REG_PPC_VPA_ADDR:
1460                 addr = set_reg_val(id, *val);
1461                 r = -EINVAL;
1462                 if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
1463                               vcpu->arch.dtl.next_gpa))
1464                         break;
1465                 r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
1466                 break;
1467         case KVM_REG_PPC_VPA_SLB:
1468                 addr = val->vpaval.addr;
1469                 len = val->vpaval.length;
1470                 r = -EINVAL;
1471                 if (addr && !vcpu->arch.vpa.next_gpa)
1472                         break;
1473                 r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
1474                 break;
1475         case KVM_REG_PPC_VPA_DTL:
1476                 addr = val->vpaval.addr;
1477                 len = val->vpaval.length;
1478                 r = -EINVAL;
1479                 if (addr && (len < sizeof(struct dtl_entry) ||
1480                              !vcpu->arch.vpa.next_gpa))
1481                         break;
1482                 len -= len % sizeof(struct dtl_entry);
1483                 r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
1484                 break;
1485         case KVM_REG_PPC_TB_OFFSET:
1486                 /* round up to multiple of 2^24 */
1487                 vcpu->arch.vcore->tb_offset =
1488                         ALIGN(set_reg_val(id, *val), 1UL << 24);
1489                 break;
1490         case KVM_REG_PPC_LPCR:
1491                 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true);
1492                 break;
1493         case KVM_REG_PPC_LPCR_64:
1494                 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false);
1495                 break;
1496         case KVM_REG_PPC_PPR:
1497                 vcpu->arch.ppr = set_reg_val(id, *val);
1498                 break;
1499 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1500         case KVM_REG_PPC_TFHAR:
1501                 vcpu->arch.tfhar = set_reg_val(id, *val);
1502                 break;
1503         case KVM_REG_PPC_TFIAR:
1504                 vcpu->arch.tfiar = set_reg_val(id, *val);
1505                 break;
1506         case KVM_REG_PPC_TEXASR:
1507                 vcpu->arch.texasr = set_reg_val(id, *val);
1508                 break;
1509         case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1510                 i = id - KVM_REG_PPC_TM_GPR0;
1511                 vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
1512                 break;
1513         case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1514         {
1515                 int j;
1516                 i = id - KVM_REG_PPC_TM_VSR0;
1517                 if (i < 32)
1518                         for (j = 0; j < TS_FPRWIDTH; j++)
1519                                 vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
1520                 else
1521                         if (cpu_has_feature(CPU_FTR_ALTIVEC))
1522                                 vcpu->arch.vr_tm.vr[i-32] = val->vval;
1523                         else
1524                                 r = -ENXIO;
1525                 break;
1526         }
1527         case KVM_REG_PPC_TM_CR:
1528                 vcpu->arch.cr_tm = set_reg_val(id, *val);
1529                 break;
1530         case KVM_REG_PPC_TM_XER:
1531                 vcpu->arch.xer_tm = set_reg_val(id, *val);
1532                 break;
1533         case KVM_REG_PPC_TM_LR:
1534                 vcpu->arch.lr_tm = set_reg_val(id, *val);
1535                 break;
1536         case KVM_REG_PPC_TM_CTR:
1537                 vcpu->arch.ctr_tm = set_reg_val(id, *val);
1538                 break;
1539         case KVM_REG_PPC_TM_FPSCR:
1540                 vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
1541                 break;
1542         case KVM_REG_PPC_TM_AMR:
1543                 vcpu->arch.amr_tm = set_reg_val(id, *val);
1544                 break;
1545         case KVM_REG_PPC_TM_PPR:
1546                 vcpu->arch.ppr_tm = set_reg_val(id, *val);
1547                 break;
1548         case KVM_REG_PPC_TM_VRSAVE:
1549                 vcpu->arch.vrsave_tm = set_reg_val(id, *val);
1550                 break;
1551         case KVM_REG_PPC_TM_VSCR:
1552                 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1553                         vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
1554                 else
1555                         r = - ENXIO;
1556                 break;
1557         case KVM_REG_PPC_TM_DSCR:
1558                 vcpu->arch.dscr_tm = set_reg_val(id, *val);
1559                 break;
1560         case KVM_REG_PPC_TM_TAR:
1561                 vcpu->arch.tar_tm = set_reg_val(id, *val);
1562                 break;
1563 #endif
1564         case KVM_REG_PPC_ARCH_COMPAT:
1565                 r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
1566                 break;
1567         default:
1568                 r = -EINVAL;
1569                 break;
1570         }
1571
1572         return r;
1573 }
1574
1575 /*
1576  * On POWER9, threads are independent and can be in different partitions.
1577  * Therefore we consider each thread to be a subcore.
1578  * There is a restriction that all threads have to be in the same
1579  * MMU mode (radix or HPT), unfortunately, but since we only support
1580  * HPT guests on a HPT host so far, that isn't an impediment yet.
1581  */
1582 static int threads_per_vcore(void)
1583 {
1584         if (cpu_has_feature(CPU_FTR_ARCH_300))
1585                 return 1;
1586         return threads_per_subcore;
1587 }
1588
1589 static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int core)
1590 {
1591         struct kvmppc_vcore *vcore;
1592
1593         vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
1594
1595         if (vcore == NULL)
1596                 return NULL;
1597
1598         spin_lock_init(&vcore->lock);
1599         spin_lock_init(&vcore->stoltb_lock);
1600         init_swait_queue_head(&vcore->wq);
1601         vcore->preempt_tb = TB_NIL;
1602         vcore->lpcr = kvm->arch.lpcr;
1603         vcore->first_vcpuid = core * threads_per_vcore();
1604         vcore->kvm = kvm;
1605         INIT_LIST_HEAD(&vcore->preempt_list);
1606
1607         return vcore;
1608 }
1609
1610 #ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING
1611 static struct debugfs_timings_element {
1612         const char *name;
1613         size_t offset;
1614 } timings[] = {
1615         {"rm_entry",    offsetof(struct kvm_vcpu, arch.rm_entry)},
1616         {"rm_intr",     offsetof(struct kvm_vcpu, arch.rm_intr)},
1617         {"rm_exit",     offsetof(struct kvm_vcpu, arch.rm_exit)},
1618         {"guest",       offsetof(struct kvm_vcpu, arch.guest_time)},
1619         {"cede",        offsetof(struct kvm_vcpu, arch.cede_time)},
1620 };
1621
1622 #define N_TIMINGS       (sizeof(timings) / sizeof(timings[0]))
1623
1624 struct debugfs_timings_state {
1625         struct kvm_vcpu *vcpu;
1626         unsigned int    buflen;
1627         char            buf[N_TIMINGS * 100];
1628 };
1629
1630 static int debugfs_timings_open(struct inode *inode, struct file *file)
1631 {
1632         struct kvm_vcpu *vcpu = inode->i_private;
1633         struct debugfs_timings_state *p;
1634
1635         p = kzalloc(sizeof(*p), GFP_KERNEL);
1636         if (!p)
1637                 return -ENOMEM;
1638
1639         kvm_get_kvm(vcpu->kvm);
1640         p->vcpu = vcpu;
1641         file->private_data = p;
1642
1643         return nonseekable_open(inode, file);
1644 }
1645
1646 static int debugfs_timings_release(struct inode *inode, struct file *file)
1647 {
1648         struct debugfs_timings_state *p = file->private_data;
1649
1650         kvm_put_kvm(p->vcpu->kvm);
1651         kfree(p);
1652         return 0;
1653 }
1654
1655 static ssize_t debugfs_timings_read(struct file *file, char __user *buf,
1656                                     size_t len, loff_t *ppos)
1657 {
1658         struct debugfs_timings_state *p = file->private_data;
1659         struct kvm_vcpu *vcpu = p->vcpu;
1660         char *s, *buf_end;
1661         struct kvmhv_tb_accumulator tb;
1662         u64 count;
1663         loff_t pos;
1664         ssize_t n;
1665         int i, loops;
1666         bool ok;
1667
1668         if (!p->buflen) {
1669                 s = p->buf;
1670                 buf_end = s + sizeof(p->buf);
1671                 for (i = 0; i < N_TIMINGS; ++i) {
1672                         struct kvmhv_tb_accumulator *acc;
1673
1674                         acc = (struct kvmhv_tb_accumulator *)
1675                                 ((unsigned long)vcpu + timings[i].offset);
1676                         ok = false;
1677                         for (loops = 0; loops < 1000; ++loops) {
1678                                 count = acc->seqcount;
1679                                 if (!(count & 1)) {
1680                                         smp_rmb();
1681                                         tb = *acc;
1682                                         smp_rmb();
1683                                         if (count == acc->seqcount) {
1684                                                 ok = true;
1685                                                 break;
1686                                         }
1687                                 }
1688                                 udelay(1);
1689                         }
1690                         if (!ok)
1691                                 snprintf(s, buf_end - s, "%s: stuck\n",
1692                                         timings[i].name);
1693                         else
1694                                 snprintf(s, buf_end - s,
1695                                         "%s: %llu %llu %llu %llu\n",
1696                                         timings[i].name, count / 2,
1697                                         tb_to_ns(tb.tb_total),
1698                                         tb_to_ns(tb.tb_min),
1699                                         tb_to_ns(tb.tb_max));
1700                         s += strlen(s);
1701                 }
1702                 p->buflen = s - p->buf;
1703         }
1704
1705         pos = *ppos;
1706         if (pos >= p->buflen)
1707                 return 0;
1708         if (len > p->buflen - pos)
1709                 len = p->buflen - pos;
1710         n = copy_to_user(buf, p->buf + pos, len);
1711         if (n) {
1712                 if (n == len)
1713                         return -EFAULT;
1714                 len -= n;
1715         }
1716         *ppos = pos + len;
1717         return len;
1718 }
1719
1720 static ssize_t debugfs_timings_write(struct file *file, const char __user *buf,
1721                                      size_t len, loff_t *ppos)
1722 {
1723         return -EACCES;
1724 }
1725
1726 static const struct file_operations debugfs_timings_ops = {
1727         .owner   = THIS_MODULE,
1728         .open    = debugfs_timings_open,
1729         .release = debugfs_timings_release,
1730         .read    = debugfs_timings_read,
1731         .write   = debugfs_timings_write,
1732         .llseek  = generic_file_llseek,
1733 };
1734
1735 /* Create a debugfs directory for the vcpu */
1736 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
1737 {
1738         char buf[16];
1739         struct kvm *kvm = vcpu->kvm;
1740
1741         snprintf(buf, sizeof(buf), "vcpu%u", id);
1742         if (IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
1743                 return;
1744         vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir);
1745         if (IS_ERR_OR_NULL(vcpu->arch.debugfs_dir))
1746                 return;
1747         vcpu->arch.debugfs_timings =
1748                 debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir,
1749                                     vcpu, &debugfs_timings_ops);
1750 }
1751
1752 #else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
1753 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
1754 {
1755 }
1756 #endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
1757
1758 static struct kvm_vcpu *kvmppc_core_vcpu_create_hv(struct kvm *kvm,
1759                                                    unsigned int id)
1760 {
1761         struct kvm_vcpu *vcpu;
1762         int err = -EINVAL;
1763         int core;
1764         struct kvmppc_vcore *vcore;
1765
1766         core = id / threads_per_vcore();
1767         if (core >= KVM_MAX_VCORES)
1768                 goto out;
1769
1770         err = -ENOMEM;
1771         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1772         if (!vcpu)
1773                 goto out;
1774
1775         err = kvm_vcpu_init(vcpu, kvm, id);
1776         if (err)
1777                 goto free_vcpu;
1778
1779         vcpu->arch.shared = &vcpu->arch.shregs;
1780 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
1781         /*
1782          * The shared struct is never shared on HV,
1783          * so we can always use host endianness
1784          */
1785 #ifdef __BIG_ENDIAN__
1786         vcpu->arch.shared_big_endian = true;
1787 #else
1788         vcpu->arch.shared_big_endian = false;
1789 #endif
1790 #endif
1791         vcpu->arch.mmcr[0] = MMCR0_FC;
1792         vcpu->arch.ctrl = CTRL_RUNLATCH;
1793         /* default to host PVR, since we can't spoof it */
1794         kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
1795         spin_lock_init(&vcpu->arch.vpa_update_lock);
1796         spin_lock_init(&vcpu->arch.tbacct_lock);
1797         vcpu->arch.busy_preempt = TB_NIL;
1798         vcpu->arch.intr_msr = MSR_SF | MSR_ME;
1799
1800         kvmppc_mmu_book3s_hv_init(vcpu);
1801
1802         vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
1803
1804         init_waitqueue_head(&vcpu->arch.cpu_run);
1805
1806         mutex_lock(&kvm->lock);
1807         vcore = kvm->arch.vcores[core];
1808         if (!vcore) {
1809                 vcore = kvmppc_vcore_create(kvm, core);
1810                 kvm->arch.vcores[core] = vcore;
1811                 kvm->arch.online_vcores++;
1812         }
1813         mutex_unlock(&kvm->lock);
1814
1815         if (!vcore)
1816                 goto free_vcpu;
1817
1818         spin_lock(&vcore->lock);
1819         ++vcore->num_threads;
1820         spin_unlock(&vcore->lock);
1821         vcpu->arch.vcore = vcore;
1822         vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
1823         vcpu->arch.thread_cpu = -1;
1824
1825         vcpu->arch.cpu_type = KVM_CPU_3S_64;
1826         kvmppc_sanity_check(vcpu);
1827
1828         debugfs_vcpu_init(vcpu, id);
1829
1830         return vcpu;
1831
1832 free_vcpu:
1833         kmem_cache_free(kvm_vcpu_cache, vcpu);
1834 out:
1835         return ERR_PTR(err);
1836 }
1837
1838 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
1839 {
1840         if (vpa->pinned_addr)
1841                 kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
1842                                         vpa->dirty);
1843 }
1844
1845 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
1846 {
1847         spin_lock(&vcpu->arch.vpa_update_lock);
1848         unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
1849         unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
1850         unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
1851         spin_unlock(&vcpu->arch.vpa_update_lock);
1852         kvm_vcpu_uninit(vcpu);
1853         kmem_cache_free(kvm_vcpu_cache, vcpu);
1854 }
1855
1856 static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
1857 {
1858         /* Indicate we want to get back into the guest */
1859         return 1;
1860 }
1861
1862 static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
1863 {
1864         unsigned long dec_nsec, now;
1865
1866         now = get_tb();
1867         if (now > vcpu->arch.dec_expires) {
1868                 /* decrementer has already gone negative */
1869                 kvmppc_core_queue_dec(vcpu);
1870                 kvmppc_core_prepare_to_enter(vcpu);
1871                 return;
1872         }
1873         dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC
1874                    / tb_ticks_per_sec;
1875         hrtimer_start(&vcpu->arch.dec_timer, ktime_set(0, dec_nsec),
1876                       HRTIMER_MODE_REL);
1877         vcpu->arch.timer_running = 1;
1878 }
1879
1880 static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
1881 {
1882         vcpu->arch.ceded = 0;
1883         if (vcpu->arch.timer_running) {
1884                 hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
1885                 vcpu->arch.timer_running = 0;
1886         }
1887 }
1888
1889 extern void __kvmppc_vcore_entry(void);
1890
1891 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
1892                                    struct kvm_vcpu *vcpu)
1893 {
1894         u64 now;
1895
1896         if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
1897                 return;
1898         spin_lock_irq(&vcpu->arch.tbacct_lock);
1899         now = mftb();
1900         vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
1901                 vcpu->arch.stolen_logged;
1902         vcpu->arch.busy_preempt = now;
1903         vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
1904         spin_unlock_irq(&vcpu->arch.tbacct_lock);
1905         --vc->n_runnable;
1906         WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL);
1907 }
1908
1909 static int kvmppc_grab_hwthread(int cpu)
1910 {
1911         struct paca_struct *tpaca;
1912         long timeout = 10000;
1913
1914         tpaca = &paca[cpu];
1915
1916         /* Ensure the thread won't go into the kernel if it wakes */
1917         tpaca->kvm_hstate.kvm_vcpu = NULL;
1918         tpaca->kvm_hstate.kvm_vcore = NULL;
1919         tpaca->kvm_hstate.napping = 0;
1920         smp_wmb();
1921         tpaca->kvm_hstate.hwthread_req = 1;
1922
1923         /*
1924          * If the thread is already executing in the kernel (e.g. handling
1925          * a stray interrupt), wait for it to get back to nap mode.
1926          * The smp_mb() is to ensure that our setting of hwthread_req
1927          * is visible before we look at hwthread_state, so if this
1928          * races with the code at system_reset_pSeries and the thread
1929          * misses our setting of hwthread_req, we are sure to see its
1930          * setting of hwthread_state, and vice versa.
1931          */
1932         smp_mb();
1933         while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
1934                 if (--timeout <= 0) {
1935                         pr_err("KVM: couldn't grab cpu %d\n", cpu);
1936                         return -EBUSY;
1937                 }
1938                 udelay(1);
1939         }
1940         return 0;
1941 }
1942
1943 static void kvmppc_release_hwthread(int cpu)
1944 {
1945         struct paca_struct *tpaca;
1946
1947         tpaca = &paca[cpu];
1948         tpaca->kvm_hstate.hwthread_req = 0;
1949         tpaca->kvm_hstate.kvm_vcpu = NULL;
1950         tpaca->kvm_hstate.kvm_vcore = NULL;
1951         tpaca->kvm_hstate.kvm_split_mode = NULL;
1952 }
1953
1954 static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc)
1955 {
1956         int cpu;
1957         struct paca_struct *tpaca;
1958         struct kvmppc_vcore *mvc = vc->master_vcore;
1959
1960         cpu = vc->pcpu;
1961         if (vcpu) {
1962                 if (vcpu->arch.timer_running) {
1963                         hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
1964                         vcpu->arch.timer_running = 0;
1965                 }
1966                 cpu += vcpu->arch.ptid;
1967                 vcpu->cpu = mvc->pcpu;
1968                 vcpu->arch.thread_cpu = cpu;
1969         }
1970         tpaca = &paca[cpu];
1971         tpaca->kvm_hstate.kvm_vcpu = vcpu;
1972         tpaca->kvm_hstate.ptid = cpu - mvc->pcpu;
1973         /* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */
1974         smp_wmb();
1975         tpaca->kvm_hstate.kvm_vcore = mvc;
1976         if (cpu != smp_processor_id())
1977                 kvmppc_ipi_thread(cpu);
1978 }
1979
1980 static void kvmppc_wait_for_nap(void)
1981 {
1982         int cpu = smp_processor_id();
1983         int i, loops;
1984         int n_threads = threads_per_vcore();
1985
1986         if (n_threads <= 1)
1987                 return;
1988         for (loops = 0; loops < 1000000; ++loops) {
1989                 /*
1990                  * Check if all threads are finished.
1991                  * We set the vcore pointer when starting a thread
1992                  * and the thread clears it when finished, so we look
1993                  * for any threads that still have a non-NULL vcore ptr.
1994                  */
1995                 for (i = 1; i < n_threads; ++i)
1996                         if (paca[cpu + i].kvm_hstate.kvm_vcore)
1997                                 break;
1998                 if (i == n_threads) {
1999                         HMT_medium();
2000                         return;
2001                 }
2002                 HMT_low();
2003         }
2004         HMT_medium();
2005         for (i = 1; i < n_threads; ++i)
2006                 if (paca[cpu + i].kvm_hstate.kvm_vcore)
2007                         pr_err("KVM: CPU %d seems to be stuck\n", cpu + i);
2008 }
2009
2010 /*
2011  * Check that we are on thread 0 and that any other threads in
2012  * this core are off-line.  Then grab the threads so they can't
2013  * enter the kernel.
2014  */
2015 static int on_primary_thread(void)
2016 {
2017         int cpu = smp_processor_id();
2018         int thr;
2019
2020         /* Are we on a primary subcore? */
2021         if (cpu_thread_in_subcore(cpu))
2022                 return 0;
2023
2024         thr = 0;
2025         while (++thr < threads_per_subcore)
2026                 if (cpu_online(cpu + thr))
2027                         return 0;
2028
2029         /* Grab all hw threads so they can't go into the kernel */
2030         for (thr = 1; thr < threads_per_subcore; ++thr) {
2031                 if (kvmppc_grab_hwthread(cpu + thr)) {
2032                         /* Couldn't grab one; let the others go */
2033                         do {
2034                                 kvmppc_release_hwthread(cpu + thr);
2035                         } while (--thr > 0);
2036                         return 0;
2037                 }
2038         }
2039         return 1;
2040 }
2041
2042 /*
2043  * A list of virtual cores for each physical CPU.
2044  * These are vcores that could run but their runner VCPU tasks are
2045  * (or may be) preempted.
2046  */
2047 struct preempted_vcore_list {
2048         struct list_head        list;
2049         spinlock_t              lock;
2050 };
2051
2052 static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores);
2053
2054 static void init_vcore_lists(void)
2055 {
2056         int cpu;
2057
2058         for_each_possible_cpu(cpu) {
2059                 struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu);
2060                 spin_lock_init(&lp->lock);
2061                 INIT_LIST_HEAD(&lp->list);
2062         }
2063 }
2064
2065 static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc)
2066 {
2067         struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2068
2069         vc->vcore_state = VCORE_PREEMPT;
2070         vc->pcpu = smp_processor_id();
2071         if (vc->num_threads < threads_per_vcore()) {
2072                 spin_lock(&lp->lock);
2073                 list_add_tail(&vc->preempt_list, &lp->list);
2074                 spin_unlock(&lp->lock);
2075         }
2076
2077         /* Start accumulating stolen time */
2078         kvmppc_core_start_stolen(vc);
2079 }
2080
2081 static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc)
2082 {
2083         struct preempted_vcore_list *lp;
2084
2085         kvmppc_core_end_stolen(vc);
2086         if (!list_empty(&vc->preempt_list)) {
2087                 lp = &per_cpu(preempted_vcores, vc->pcpu);
2088                 spin_lock(&lp->lock);
2089                 list_del_init(&vc->preempt_list);
2090                 spin_unlock(&lp->lock);
2091         }
2092         vc->vcore_state = VCORE_INACTIVE;
2093 }
2094
2095 /*
2096  * This stores information about the virtual cores currently
2097  * assigned to a physical core.
2098  */
2099 struct core_info {
2100         int             n_subcores;
2101         int             max_subcore_threads;
2102         int             total_threads;
2103         int             subcore_threads[MAX_SUBCORES];
2104         struct kvm      *subcore_vm[MAX_SUBCORES];
2105         struct list_head vcs[MAX_SUBCORES];
2106 };
2107
2108 /*
2109  * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7
2110  * respectively in 2-way micro-threading (split-core) mode.
2111  */
2112 static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 };
2113
2114 static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc)
2115 {
2116         int sub;
2117
2118         memset(cip, 0, sizeof(*cip));
2119         cip->n_subcores = 1;
2120         cip->max_subcore_threads = vc->num_threads;
2121         cip->total_threads = vc->num_threads;
2122         cip->subcore_threads[0] = vc->num_threads;
2123         cip->subcore_vm[0] = vc->kvm;
2124         for (sub = 0; sub < MAX_SUBCORES; ++sub)
2125                 INIT_LIST_HEAD(&cip->vcs[sub]);
2126         list_add_tail(&vc->preempt_list, &cip->vcs[0]);
2127 }
2128
2129 static bool subcore_config_ok(int n_subcores, int n_threads)
2130 {
2131         /* Can only dynamically split if unsplit to begin with */
2132         if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS)
2133                 return false;
2134         if (n_subcores > MAX_SUBCORES)
2135                 return false;
2136         if (n_subcores > 1) {
2137                 if (!(dynamic_mt_modes & 2))
2138                         n_subcores = 4;
2139                 if (n_subcores > 2 && !(dynamic_mt_modes & 4))
2140                         return false;
2141         }
2142
2143         return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS;
2144 }
2145
2146 static void init_master_vcore(struct kvmppc_vcore *vc)
2147 {
2148         vc->master_vcore = vc;
2149         vc->entry_exit_map = 0;
2150         vc->in_guest = 0;
2151         vc->napping_threads = 0;
2152         vc->conferring_threads = 0;
2153 }
2154
2155 static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip)
2156 {
2157         int n_threads = vc->num_threads;
2158         int sub;
2159
2160         if (!cpu_has_feature(CPU_FTR_ARCH_207S))
2161                 return false;
2162
2163         if (n_threads < cip->max_subcore_threads)
2164                 n_threads = cip->max_subcore_threads;
2165         if (!subcore_config_ok(cip->n_subcores + 1, n_threads))
2166                 return false;
2167         cip->max_subcore_threads = n_threads;
2168
2169         sub = cip->n_subcores;
2170         ++cip->n_subcores;
2171         cip->total_threads += vc->num_threads;
2172         cip->subcore_threads[sub] = vc->num_threads;
2173         cip->subcore_vm[sub] = vc->kvm;
2174         init_master_vcore(vc);
2175         list_move_tail(&vc->preempt_list, &cip->vcs[sub]);
2176
2177         return true;
2178 }
2179
2180 /*
2181  * Work out whether it is possible to piggyback the execution of
2182  * vcore *pvc onto the execution of the other vcores described in *cip.
2183  */
2184 static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip,
2185                           int target_threads)
2186 {
2187         if (cip->total_threads + pvc->num_threads > target_threads)
2188                 return false;
2189
2190         return can_dynamic_split(pvc, cip);
2191 }
2192
2193 static void prepare_threads(struct kvmppc_vcore *vc)
2194 {
2195         int i;
2196         struct kvm_vcpu *vcpu;
2197
2198         for_each_runnable_thread(i, vcpu, vc) {
2199                 if (signal_pending(vcpu->arch.run_task))
2200                         vcpu->arch.ret = -EINTR;
2201                 else if (vcpu->arch.vpa.update_pending ||
2202                          vcpu->arch.slb_shadow.update_pending ||
2203                          vcpu->arch.dtl.update_pending)
2204                         vcpu->arch.ret = RESUME_GUEST;
2205                 else
2206                         continue;
2207                 kvmppc_remove_runnable(vc, vcpu);
2208                 wake_up(&vcpu->arch.cpu_run);
2209         }
2210 }
2211
2212 static void collect_piggybacks(struct core_info *cip, int target_threads)
2213 {
2214         struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2215         struct kvmppc_vcore *pvc, *vcnext;
2216
2217         spin_lock(&lp->lock);
2218         list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) {
2219                 if (!spin_trylock(&pvc->lock))
2220                         continue;
2221                 prepare_threads(pvc);
2222                 if (!pvc->n_runnable) {
2223                         list_del_init(&pvc->preempt_list);
2224                         if (pvc->runner == NULL) {
2225                                 pvc->vcore_state = VCORE_INACTIVE;
2226                                 kvmppc_core_end_stolen(pvc);
2227                         }
2228                         spin_unlock(&pvc->lock);
2229                         continue;
2230                 }
2231                 if (!can_piggyback(pvc, cip, target_threads)) {
2232                         spin_unlock(&pvc->lock);
2233                         continue;
2234                 }
2235                 kvmppc_core_end_stolen(pvc);
2236                 pvc->vcore_state = VCORE_PIGGYBACK;
2237                 if (cip->total_threads >= target_threads)
2238                         break;
2239         }
2240         spin_unlock(&lp->lock);
2241 }
2242
2243 static void post_guest_process(struct kvmppc_vcore *vc, bool is_master)
2244 {
2245         int still_running = 0, i;
2246         u64 now;
2247         long ret;
2248         struct kvm_vcpu *vcpu;
2249
2250         spin_lock(&vc->lock);
2251         now = get_tb();
2252         for_each_runnable_thread(i, vcpu, vc) {
2253                 /* cancel pending dec exception if dec is positive */
2254                 if (now < vcpu->arch.dec_expires &&
2255                     kvmppc_core_pending_dec(vcpu))
2256                         kvmppc_core_dequeue_dec(vcpu);
2257
2258                 trace_kvm_guest_exit(vcpu);
2259
2260                 ret = RESUME_GUEST;
2261                 if (vcpu->arch.trap)
2262                         ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu,
2263                                                     vcpu->arch.run_task);
2264
2265                 vcpu->arch.ret = ret;
2266                 vcpu->arch.trap = 0;
2267
2268                 if (is_kvmppc_resume_guest(vcpu->arch.ret)) {
2269                         if (vcpu->arch.pending_exceptions)
2270                                 kvmppc_core_prepare_to_enter(vcpu);
2271                         if (vcpu->arch.ceded)
2272                                 kvmppc_set_timer(vcpu);
2273                         else
2274                                 ++still_running;
2275                 } else {
2276                         kvmppc_remove_runnable(vc, vcpu);
2277                         wake_up(&vcpu->arch.cpu_run);
2278                 }
2279         }
2280         list_del_init(&vc->preempt_list);
2281         if (!is_master) {
2282                 if (still_running > 0) {
2283                         kvmppc_vcore_preempt(vc);
2284                 } else if (vc->runner) {
2285                         vc->vcore_state = VCORE_PREEMPT;
2286                         kvmppc_core_start_stolen(vc);
2287                 } else {
2288                         vc->vcore_state = VCORE_INACTIVE;
2289                 }
2290                 if (vc->n_runnable > 0 && vc->runner == NULL) {
2291                         /* make sure there's a candidate runner awake */
2292                         i = -1;
2293                         vcpu = next_runnable_thread(vc, &i);
2294                         wake_up(&vcpu->arch.cpu_run);
2295                 }
2296         }
2297         spin_unlock(&vc->lock);
2298 }
2299
2300 /*
2301  * Clear core from the list of active host cores as we are about to
2302  * enter the guest. Only do this if it is the primary thread of the
2303  * core (not if a subcore) that is entering the guest.
2304  */
2305 static inline int kvmppc_clear_host_core(unsigned int cpu)
2306 {
2307         int core;
2308
2309         if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
2310                 return 0;
2311         /*
2312          * Memory barrier can be omitted here as we will do a smp_wmb()
2313          * later in kvmppc_start_thread and we need ensure that state is
2314          * visible to other CPUs only after we enter guest.
2315          */
2316         core = cpu >> threads_shift;
2317         kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0;
2318         return 0;
2319 }
2320
2321 /*
2322  * Advertise this core as an active host core since we exited the guest
2323  * Only need to do this if it is the primary thread of the core that is
2324  * exiting.
2325  */
2326 static inline int kvmppc_set_host_core(unsigned int cpu)
2327 {
2328         int core;
2329
2330         if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
2331                 return 0;
2332
2333         /*
2334          * Memory barrier can be omitted here because we do a spin_unlock
2335          * immediately after this which provides the memory barrier.
2336          */
2337         core = cpu >> threads_shift;
2338         kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1;
2339         return 0;
2340 }
2341
2342 /*
2343  * Run a set of guest threads on a physical core.
2344  * Called with vc->lock held.
2345  */
2346 static noinline void kvmppc_run_core(struct kvmppc_vcore *vc)
2347 {
2348         struct kvm_vcpu *vcpu;
2349         int i;
2350         int srcu_idx;
2351         struct core_info core_info;
2352         struct kvmppc_vcore *pvc, *vcnext;
2353         struct kvm_split_mode split_info, *sip;
2354         int split, subcore_size, active;
2355         int sub;
2356         bool thr0_done;
2357         unsigned long cmd_bit, stat_bit;
2358         int pcpu, thr;
2359         int target_threads;
2360         int controlled_threads;
2361
2362         /*
2363          * Remove from the list any threads that have a signal pending
2364          * or need a VPA update done
2365          */
2366         prepare_threads(vc);
2367
2368         /* if the runner is no longer runnable, let the caller pick a new one */
2369         if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE)
2370                 return;
2371
2372         /*
2373          * Initialize *vc.
2374          */
2375         init_master_vcore(vc);
2376         vc->preempt_tb = TB_NIL;
2377
2378         /*
2379          * Number of threads that we will be controlling: the same as
2380          * the number of threads per subcore, except on POWER9,
2381          * where it's 1 because the threads are (mostly) independent.
2382          */
2383         controlled_threads = threads_per_vcore();
2384
2385         /*
2386          * Make sure we are running on primary threads, and that secondary
2387          * threads are offline.  Also check if the number of threads in this
2388          * guest are greater than the current system threads per guest.
2389          */
2390         if ((controlled_threads > 1) &&
2391             ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) {
2392                 for_each_runnable_thread(i, vcpu, vc) {
2393                         vcpu->arch.ret = -EBUSY;
2394                         kvmppc_remove_runnable(vc, vcpu);
2395                         wake_up(&vcpu->arch.cpu_run);
2396                 }
2397                 goto out;
2398         }
2399
2400         /*
2401          * See if we could run any other vcores on the physical core
2402          * along with this one.
2403          */
2404         init_core_info(&core_info, vc);
2405         pcpu = smp_processor_id();
2406         target_threads = controlled_threads;
2407         if (target_smt_mode && target_smt_mode < target_threads)
2408                 target_threads = target_smt_mode;
2409         if (vc->num_threads < target_threads)
2410                 collect_piggybacks(&core_info, target_threads);
2411
2412         /* Decide on micro-threading (split-core) mode */
2413         subcore_size = threads_per_subcore;
2414         cmd_bit = stat_bit = 0;
2415         split = core_info.n_subcores;
2416         sip = NULL;
2417         if (split > 1) {
2418                 /* threads_per_subcore must be MAX_SMT_THREADS (8) here */
2419                 if (split == 2 && (dynamic_mt_modes & 2)) {
2420                         cmd_bit = HID0_POWER8_1TO2LPAR;
2421                         stat_bit = HID0_POWER8_2LPARMODE;
2422                 } else {
2423                         split = 4;
2424                         cmd_bit = HID0_POWER8_1TO4LPAR;
2425                         stat_bit = HID0_POWER8_4LPARMODE;
2426                 }
2427                 subcore_size = MAX_SMT_THREADS / split;
2428                 sip = &split_info;
2429                 memset(&split_info, 0, sizeof(split_info));
2430                 split_info.rpr = mfspr(SPRN_RPR);
2431                 split_info.pmmar = mfspr(SPRN_PMMAR);
2432                 split_info.ldbar = mfspr(SPRN_LDBAR);
2433                 split_info.subcore_size = subcore_size;
2434                 for (sub = 0; sub < core_info.n_subcores; ++sub)
2435                         split_info.master_vcs[sub] =
2436                                 list_first_entry(&core_info.vcs[sub],
2437                                         struct kvmppc_vcore, preempt_list);
2438                 /* order writes to split_info before kvm_split_mode pointer */
2439                 smp_wmb();
2440         }
2441         pcpu = smp_processor_id();
2442         for (thr = 0; thr < controlled_threads; ++thr)
2443                 paca[pcpu + thr].kvm_hstate.kvm_split_mode = sip;
2444
2445         /* Initiate micro-threading (split-core) if required */
2446         if (cmd_bit) {
2447                 unsigned long hid0 = mfspr(SPRN_HID0);
2448
2449                 hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS;
2450                 mb();
2451                 mtspr(SPRN_HID0, hid0);
2452                 isync();
2453                 for (;;) {
2454                         hid0 = mfspr(SPRN_HID0);
2455                         if (hid0 & stat_bit)
2456                                 break;
2457                         cpu_relax();
2458                 }
2459         }
2460
2461         kvmppc_clear_host_core(pcpu);
2462
2463         /* Start all the threads */
2464         active = 0;
2465         for (sub = 0; sub < core_info.n_subcores; ++sub) {
2466                 thr = subcore_thread_map[sub];
2467                 thr0_done = false;
2468                 active |= 1 << thr;
2469                 list_for_each_entry(pvc, &core_info.vcs[sub], preempt_list) {
2470                         pvc->pcpu = pcpu + thr;
2471                         for_each_runnable_thread(i, vcpu, pvc) {
2472                                 kvmppc_start_thread(vcpu, pvc);
2473                                 kvmppc_create_dtl_entry(vcpu, pvc);
2474                                 trace_kvm_guest_enter(vcpu);
2475                                 if (!vcpu->arch.ptid)
2476                                         thr0_done = true;
2477                                 active |= 1 << (thr + vcpu->arch.ptid);
2478                         }
2479                         /*
2480                          * We need to start the first thread of each subcore
2481                          * even if it doesn't have a vcpu.
2482                          */
2483                         if (pvc->master_vcore == pvc && !thr0_done)
2484                                 kvmppc_start_thread(NULL, pvc);
2485                         thr += pvc->num_threads;
2486                 }
2487         }
2488
2489         /*
2490          * Ensure that split_info.do_nap is set after setting
2491          * the vcore pointer in the PACA of the secondaries.
2492          */
2493         smp_mb();
2494         if (cmd_bit)
2495                 split_info.do_nap = 1;  /* ask secondaries to nap when done */
2496
2497         /*
2498          * When doing micro-threading, poke the inactive threads as well.
2499          * This gets them to the nap instruction after kvm_do_nap,
2500          * which reduces the time taken to unsplit later.
2501          */
2502         if (split > 1)
2503                 for (thr = 1; thr < threads_per_subcore; ++thr)
2504                         if (!(active & (1 << thr)))
2505                                 kvmppc_ipi_thread(pcpu + thr);
2506
2507         vc->vcore_state = VCORE_RUNNING;
2508         preempt_disable();
2509
2510         trace_kvmppc_run_core(vc, 0);
2511
2512         for (sub = 0; sub < core_info.n_subcores; ++sub)
2513                 list_for_each_entry(pvc, &core_info.vcs[sub], preempt_list)
2514                         spin_unlock(&pvc->lock);
2515
2516         guest_enter();
2517
2518         srcu_idx = srcu_read_lock(&vc->kvm->srcu);
2519
2520         __kvmppc_vcore_entry();
2521
2522         srcu_read_unlock(&vc->kvm->srcu, srcu_idx);
2523
2524         spin_lock(&vc->lock);
2525         /* prevent other vcpu threads from doing kvmppc_start_thread() now */
2526         vc->vcore_state = VCORE_EXITING;
2527
2528         /* wait for secondary threads to finish writing their state to memory */
2529         kvmppc_wait_for_nap();
2530
2531         /* Return to whole-core mode if we split the core earlier */
2532         if (split > 1) {
2533                 unsigned long hid0 = mfspr(SPRN_HID0);
2534                 unsigned long loops = 0;
2535
2536                 hid0 &= ~HID0_POWER8_DYNLPARDIS;
2537                 stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
2538                 mb();
2539                 mtspr(SPRN_HID0, hid0);
2540                 isync();
2541                 for (;;) {
2542                         hid0 = mfspr(SPRN_HID0);
2543                         if (!(hid0 & stat_bit))
2544                                 break;
2545                         cpu_relax();
2546                         ++loops;
2547                 }
2548                 split_info.do_nap = 0;
2549         }
2550
2551         /* Let secondaries go back to the offline loop */
2552         for (i = 0; i < controlled_threads; ++i) {
2553                 kvmppc_release_hwthread(pcpu + i);
2554                 if (sip && sip->napped[i])
2555                         kvmppc_ipi_thread(pcpu + i);
2556         }
2557
2558         kvmppc_set_host_core(pcpu);
2559
2560         spin_unlock(&vc->lock);
2561
2562         /* make sure updates to secondary vcpu structs are visible now */
2563         smp_mb();
2564         guest_exit();
2565
2566         for (sub = 0; sub < core_info.n_subcores; ++sub)
2567                 list_for_each_entry_safe(pvc, vcnext, &core_info.vcs[sub],
2568                                          preempt_list)
2569                         post_guest_process(pvc, pvc == vc);
2570
2571         spin_lock(&vc->lock);
2572         preempt_enable();
2573
2574  out:
2575         vc->vcore_state = VCORE_INACTIVE;
2576         trace_kvmppc_run_core(vc, 1);
2577 }
2578
2579 /*
2580  * Wait for some other vcpu thread to execute us, and
2581  * wake us up when we need to handle something in the host.
2582  */
2583 static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc,
2584                                  struct kvm_vcpu *vcpu, int wait_state)
2585 {
2586         DEFINE_WAIT(wait);
2587
2588         prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
2589         if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
2590                 spin_unlock(&vc->lock);
2591                 schedule();
2592                 spin_lock(&vc->lock);
2593         }
2594         finish_wait(&vcpu->arch.cpu_run, &wait);
2595 }
2596
2597 static void grow_halt_poll_ns(struct kvmppc_vcore *vc)
2598 {
2599         /* 10us base */
2600         if (vc->halt_poll_ns == 0 && halt_poll_ns_grow)
2601                 vc->halt_poll_ns = 10000;
2602         else
2603                 vc->halt_poll_ns *= halt_poll_ns_grow;
2604 }
2605
2606 static void shrink_halt_poll_ns(struct kvmppc_vcore *vc)
2607 {
2608         if (halt_poll_ns_shrink == 0)
2609                 vc->halt_poll_ns = 0;
2610         else
2611                 vc->halt_poll_ns /= halt_poll_ns_shrink;
2612 }
2613
2614 /*
2615  * Check to see if any of the runnable vcpus on the vcore have pending
2616  * exceptions or are no longer ceded
2617  */
2618 static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc)
2619 {
2620         struct kvm_vcpu *vcpu;
2621         int i;
2622
2623         for_each_runnable_thread(i, vcpu, vc) {
2624                 if (vcpu->arch.pending_exceptions || !vcpu->arch.ceded)
2625                         return 1;
2626         }
2627
2628         return 0;
2629 }
2630
2631 /*
2632  * All the vcpus in this vcore are idle, so wait for a decrementer
2633  * or external interrupt to one of the vcpus.  vc->lock is held.
2634  */
2635 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
2636 {
2637         ktime_t cur, start_poll, start_wait;
2638         int do_sleep = 1;
2639         u64 block_ns;
2640         DECLARE_SWAITQUEUE(wait);
2641
2642         /* Poll for pending exceptions and ceded state */
2643         cur = start_poll = ktime_get();
2644         if (vc->halt_poll_ns) {
2645                 ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns);
2646                 ++vc->runner->stat.halt_attempted_poll;
2647
2648                 vc->vcore_state = VCORE_POLLING;
2649                 spin_unlock(&vc->lock);
2650
2651                 do {
2652                         if (kvmppc_vcore_check_block(vc)) {
2653                                 do_sleep = 0;
2654                                 break;
2655                         }
2656                         cur = ktime_get();
2657                 } while (single_task_running() && ktime_before(cur, stop));
2658
2659                 spin_lock(&vc->lock);
2660                 vc->vcore_state = VCORE_INACTIVE;
2661
2662                 if (!do_sleep) {
2663                         ++vc->runner->stat.halt_successful_poll;
2664                         goto out;
2665                 }
2666         }
2667
2668         prepare_to_swait(&vc->wq, &wait, TASK_INTERRUPTIBLE);
2669
2670         if (kvmppc_vcore_check_block(vc)) {
2671                 finish_swait(&vc->wq, &wait);
2672                 do_sleep = 0;
2673                 /* If we polled, count this as a successful poll */
2674                 if (vc->halt_poll_ns)
2675                         ++vc->runner->stat.halt_successful_poll;
2676                 goto out;
2677         }
2678
2679         start_wait = ktime_get();
2680
2681         vc->vcore_state = VCORE_SLEEPING;
2682         trace_kvmppc_vcore_blocked(vc, 0);
2683         spin_unlock(&vc->lock);
2684         schedule();
2685         finish_swait(&vc->wq, &wait);
2686         spin_lock(&vc->lock);
2687         vc->vcore_state = VCORE_INACTIVE;
2688         trace_kvmppc_vcore_blocked(vc, 1);
2689         ++vc->runner->stat.halt_successful_wait;
2690
2691         cur = ktime_get();
2692
2693 out:
2694         block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll);
2695
2696         /* Attribute wait time */
2697         if (do_sleep) {
2698                 vc->runner->stat.halt_wait_ns +=
2699                         ktime_to_ns(cur) - ktime_to_ns(start_wait);
2700                 /* Attribute failed poll time */
2701                 if (vc->halt_poll_ns)
2702                         vc->runner->stat.halt_poll_fail_ns +=
2703                                 ktime_to_ns(start_wait) -
2704                                 ktime_to_ns(start_poll);
2705         } else {
2706                 /* Attribute successful poll time */
2707                 if (vc->halt_poll_ns)
2708                         vc->runner->stat.halt_poll_success_ns +=
2709                                 ktime_to_ns(cur) -
2710                                 ktime_to_ns(start_poll);
2711         }
2712
2713         /* Adjust poll time */
2714         if (halt_poll_ns) {
2715                 if (block_ns <= vc->halt_poll_ns)
2716                         ;
2717                 /* We slept and blocked for longer than the max halt time */
2718                 else if (vc->halt_poll_ns && block_ns > halt_poll_ns)
2719                         shrink_halt_poll_ns(vc);
2720                 /* We slept and our poll time is too small */
2721                 else if (vc->halt_poll_ns < halt_poll_ns &&
2722                                 block_ns < halt_poll_ns)
2723                         grow_halt_poll_ns(vc);
2724                 if (vc->halt_poll_ns > halt_poll_ns)
2725                         vc->halt_poll_ns = halt_poll_ns;
2726         } else
2727                 vc->halt_poll_ns = 0;
2728
2729         trace_kvmppc_vcore_wakeup(do_sleep, block_ns);
2730 }
2731
2732 static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
2733 {
2734         int n_ceded, i;
2735         struct kvmppc_vcore *vc;
2736         struct kvm_vcpu *v;
2737
2738         trace_kvmppc_run_vcpu_enter(vcpu);
2739
2740         kvm_run->exit_reason = 0;
2741         vcpu->arch.ret = RESUME_GUEST;
2742         vcpu->arch.trap = 0;
2743         kvmppc_update_vpas(vcpu);
2744
2745         /*
2746          * Synchronize with other threads in this virtual core
2747          */
2748         vc = vcpu->arch.vcore;
2749         spin_lock(&vc->lock);
2750         vcpu->arch.ceded = 0;
2751         vcpu->arch.run_task = current;
2752         vcpu->arch.kvm_run = kvm_run;
2753         vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
2754         vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
2755         vcpu->arch.busy_preempt = TB_NIL;
2756         WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu);
2757         ++vc->n_runnable;
2758
2759         /*
2760          * This happens the first time this is called for a vcpu.
2761          * If the vcore is already running, we may be able to start
2762          * this thread straight away and have it join in.
2763          */
2764         if (!signal_pending(current)) {
2765                 if (vc->vcore_state == VCORE_PIGGYBACK) {
2766                         struct kvmppc_vcore *mvc = vc->master_vcore;
2767                         if (spin_trylock(&mvc->lock)) {
2768                                 if (mvc->vcore_state == VCORE_RUNNING &&
2769                                     !VCORE_IS_EXITING(mvc)) {
2770                                         kvmppc_create_dtl_entry(vcpu, vc);
2771                                         kvmppc_start_thread(vcpu, vc);
2772                                         trace_kvm_guest_enter(vcpu);
2773                                 }
2774                                 spin_unlock(&mvc->lock);
2775                         }
2776                 } else if (vc->vcore_state == VCORE_RUNNING &&
2777                            !VCORE_IS_EXITING(vc)) {
2778                         kvmppc_create_dtl_entry(vcpu, vc);
2779                         kvmppc_start_thread(vcpu, vc);
2780                         trace_kvm_guest_enter(vcpu);
2781                 } else if (vc->vcore_state == VCORE_SLEEPING) {
2782                         swake_up(&vc->wq);
2783                 }
2784
2785         }
2786
2787         while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
2788                !signal_pending(current)) {
2789                 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
2790                         kvmppc_vcore_end_preempt(vc);
2791
2792                 if (vc->vcore_state != VCORE_INACTIVE) {
2793                         kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE);
2794                         continue;
2795                 }
2796                 for_each_runnable_thread(i, v, vc) {
2797                         kvmppc_core_prepare_to_enter(v);
2798                         if (signal_pending(v->arch.run_task)) {
2799                                 kvmppc_remove_runnable(vc, v);
2800                                 v->stat.signal_exits++;
2801                                 v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
2802                                 v->arch.ret = -EINTR;
2803                                 wake_up(&v->arch.cpu_run);
2804                         }
2805                 }
2806                 if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
2807                         break;
2808                 n_ceded = 0;
2809                 for_each_runnable_thread(i, v, vc) {
2810                         if (!v->arch.pending_exceptions)
2811                                 n_ceded += v->arch.ceded;
2812                         else
2813                                 v->arch.ceded = 0;
2814                 }
2815                 vc->runner = vcpu;
2816                 if (n_ceded == vc->n_runnable) {
2817                         kvmppc_vcore_blocked(vc);
2818                 } else if (need_resched()) {
2819                         kvmppc_vcore_preempt(vc);
2820                         /* Let something else run */
2821                         cond_resched_lock(&vc->lock);
2822                         if (vc->vcore_state == VCORE_PREEMPT)
2823                                 kvmppc_vcore_end_preempt(vc);
2824                 } else {
2825                         kvmppc_run_core(vc);
2826                 }
2827                 vc->runner = NULL;
2828         }
2829
2830         while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
2831                (vc->vcore_state == VCORE_RUNNING ||
2832                 vc->vcore_state == VCORE_EXITING ||
2833                 vc->vcore_state == VCORE_PIGGYBACK))
2834                 kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE);
2835
2836         if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
2837                 kvmppc_vcore_end_preempt(vc);
2838
2839         if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
2840                 kvmppc_remove_runnable(vc, vcpu);
2841                 vcpu->stat.signal_exits++;
2842                 kvm_run->exit_reason = KVM_EXIT_INTR;
2843                 vcpu->arch.ret = -EINTR;
2844         }
2845
2846         if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
2847                 /* Wake up some vcpu to run the core */
2848                 i = -1;
2849                 v = next_runnable_thread(vc, &i);
2850                 wake_up(&v->arch.cpu_run);
2851         }
2852
2853         trace_kvmppc_run_vcpu_exit(vcpu, kvm_run);
2854         spin_unlock(&vc->lock);
2855         return vcpu->arch.ret;
2856 }
2857
2858 static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu)
2859 {
2860         int r;
2861         int srcu_idx;
2862
2863         if (!vcpu->arch.sane) {
2864                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
2865                 return -EINVAL;
2866         }
2867
2868         kvmppc_core_prepare_to_enter(vcpu);
2869
2870         /* No need to go into the guest when all we'll do is come back out */
2871         if (signal_pending(current)) {
2872                 run->exit_reason = KVM_EXIT_INTR;
2873                 return -EINTR;
2874         }
2875
2876         atomic_inc(&vcpu->kvm->arch.vcpus_running);
2877         /* Order vcpus_running vs. hpte_setup_done, see kvmppc_alloc_reset_hpt */
2878         smp_mb();
2879
2880         /* On the first time here, set up HTAB and VRMA */
2881         if (!vcpu->kvm->arch.hpte_setup_done) {
2882                 r = kvmppc_hv_setup_htab_rma(vcpu);
2883                 if (r)
2884                         goto out;
2885         }
2886
2887         flush_all_to_thread(current);
2888
2889         vcpu->arch.wqp = &vcpu->arch.vcore->wq;
2890         vcpu->arch.pgdir = current->mm->pgd;
2891         vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
2892
2893         do {
2894                 r = kvmppc_run_vcpu(run, vcpu);
2895
2896                 if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
2897                     !(vcpu->arch.shregs.msr & MSR_PR)) {
2898                         trace_kvm_hcall_enter(vcpu);
2899                         r = kvmppc_pseries_do_hcall(vcpu);
2900                         trace_kvm_hcall_exit(vcpu, r);
2901                         kvmppc_core_prepare_to_enter(vcpu);
2902                 } else if (r == RESUME_PAGE_FAULT) {
2903                         srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
2904                         r = kvmppc_book3s_hv_page_fault(run, vcpu,
2905                                 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
2906                         srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
2907                 } else if (r == RESUME_PASSTHROUGH)
2908                         r = kvmppc_xics_rm_complete(vcpu, 0);
2909         } while (is_kvmppc_resume_guest(r));
2910
2911  out:
2912         vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
2913         atomic_dec(&vcpu->kvm->arch.vcpus_running);
2914         return r;
2915 }
2916
2917 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
2918                                      int linux_psize)
2919 {
2920         struct mmu_psize_def *def = &mmu_psize_defs[linux_psize];
2921
2922         if (!def->shift)
2923                 return;
2924         (*sps)->page_shift = def->shift;
2925         (*sps)->slb_enc = def->sllp;
2926         (*sps)->enc[0].page_shift = def->shift;
2927         (*sps)->enc[0].pte_enc = def->penc[linux_psize];
2928         /*
2929          * Add 16MB MPSS support if host supports it
2930          */
2931         if (linux_psize != MMU_PAGE_16M && def->penc[MMU_PAGE_16M] != -1) {
2932                 (*sps)->enc[1].page_shift = 24;
2933                 (*sps)->enc[1].pte_enc = def->penc[MMU_PAGE_16M];
2934         }
2935         (*sps)++;
2936 }
2937
2938 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
2939                                          struct kvm_ppc_smmu_info *info)
2940 {
2941         struct kvm_ppc_one_seg_page_size *sps;
2942
2943         info->flags = KVM_PPC_PAGE_SIZES_REAL;
2944         if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
2945                 info->flags |= KVM_PPC_1T_SEGMENTS;
2946         info->slb_size = mmu_slb_size;
2947
2948         /* We only support these sizes for now, and no muti-size segments */
2949         sps = &info->sps[0];
2950         kvmppc_add_seg_page_size(&sps, MMU_PAGE_4K);
2951         kvmppc_add_seg_page_size(&sps, MMU_PAGE_64K);
2952         kvmppc_add_seg_page_size(&sps, MMU_PAGE_16M);
2953
2954         return 0;
2955 }
2956
2957 /*
2958  * Get (and clear) the dirty memory log for a memory slot.
2959  */
2960 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
2961                                          struct kvm_dirty_log *log)
2962 {
2963         struct kvm_memslots *slots;
2964         struct kvm_memory_slot *memslot;
2965         int r;
2966         unsigned long n;
2967
2968         mutex_lock(&kvm->slots_lock);
2969
2970         r = -EINVAL;
2971         if (log->slot >= KVM_USER_MEM_SLOTS)
2972                 goto out;
2973
2974         slots = kvm_memslots(kvm);
2975         memslot = id_to_memslot(slots, log->slot);
2976         r = -ENOENT;
2977         if (!memslot->dirty_bitmap)
2978                 goto out;
2979
2980         n = kvm_dirty_bitmap_bytes(memslot);
2981         memset(memslot->dirty_bitmap, 0, n);
2982
2983         r = kvmppc_hv_get_dirty_log(kvm, memslot, memslot->dirty_bitmap);
2984         if (r)
2985                 goto out;
2986
2987         r = -EFAULT;
2988         if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
2989                 goto out;
2990
2991         r = 0;
2992 out:
2993         mutex_unlock(&kvm->slots_lock);
2994         return r;
2995 }
2996
2997 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *free,
2998                                         struct kvm_memory_slot *dont)
2999 {
3000         if (!dont || free->arch.rmap != dont->arch.rmap) {
3001                 vfree(free->arch.rmap);
3002                 free->arch.rmap = NULL;
3003         }
3004 }
3005
3006 static int kvmppc_core_create_memslot_hv(struct kvm_memory_slot *slot,
3007                                          unsigned long npages)
3008 {
3009         slot->arch.rmap = vzalloc(npages * sizeof(*slot->arch.rmap));
3010         if (!slot->arch.rmap)
3011                 return -ENOMEM;
3012
3013         return 0;
3014 }
3015
3016 static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
3017                                         struct kvm_memory_slot *memslot,
3018                                         const struct kvm_userspace_memory_region *mem)
3019 {
3020         return 0;
3021 }
3022
3023 static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
3024                                 const struct kvm_userspace_memory_region *mem,
3025                                 const struct kvm_memory_slot *old,
3026                                 const struct kvm_memory_slot *new)
3027 {
3028         unsigned long npages = mem->memory_size >> PAGE_SHIFT;
3029         struct kvm_memslots *slots;
3030         struct kvm_memory_slot *memslot;
3031
3032         /*
3033          * If we are making a new memslot, it might make
3034          * some address that was previously cached as emulated
3035          * MMIO be no longer emulated MMIO, so invalidate
3036          * all the caches of emulated MMIO translations.
3037          */
3038         if (npages)
3039                 atomic64_inc(&kvm->arch.mmio_update);
3040
3041         if (npages && old->npages) {
3042                 /*
3043                  * If modifying a memslot, reset all the rmap dirty bits.
3044                  * If this is a new memslot, we don't need to do anything
3045                  * since the rmap array starts out as all zeroes,
3046                  * i.e. no pages are dirty.
3047                  */
3048                 slots = kvm_memslots(kvm);
3049                 memslot = id_to_memslot(slots, mem->slot);
3050                 kvmppc_hv_get_dirty_log(kvm, memslot, NULL);
3051         }
3052 }
3053
3054 /*
3055  * Update LPCR values in kvm->arch and in vcores.
3056  * Caller must hold kvm->lock.
3057  */
3058 void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
3059 {
3060         long int i;
3061         u32 cores_done = 0;
3062
3063         if ((kvm->arch.lpcr & mask) == lpcr)
3064                 return;
3065
3066         kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;
3067
3068         for (i = 0; i < KVM_MAX_VCORES; ++i) {
3069                 struct kvmppc_vcore *vc = kvm->arch.vcores[i];
3070                 if (!vc)
3071                         continue;
3072                 spin_lock(&vc->lock);
3073                 vc->lpcr = (vc->lpcr & ~mask) | lpcr;
3074                 spin_unlock(&vc->lock);
3075                 if (++cores_done >= kvm->arch.online_vcores)
3076                         break;
3077         }
3078 }
3079
3080 static void kvmppc_mmu_destroy_hv(struct kvm_vcpu *vcpu)
3081 {
3082         return;
3083 }
3084
3085 static void kvmppc_setup_partition_table(struct kvm *kvm)
3086 {
3087         unsigned long dw0, dw1;
3088
3089         /* PS field - page size for VRMA */
3090         dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) |
3091                 ((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1);
3092         /* HTABSIZE and HTABORG fields */
3093         dw0 |= kvm->arch.sdr1;
3094
3095         /* Second dword has GR=0; other fields are unused since UPRT=0 */
3096         dw1 = 0;
3097
3098         mmu_partition_table_set_entry(kvm->arch.lpid, dw0, dw1);
3099 }
3100
3101 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
3102 {
3103         int err = 0;
3104         struct kvm *kvm = vcpu->kvm;
3105         unsigned long hva;
3106         struct kvm_memory_slot *memslot;
3107         struct vm_area_struct *vma;
3108         unsigned long lpcr = 0, senc;
3109         unsigned long psize, porder;
3110         int srcu_idx;
3111
3112         mutex_lock(&kvm->lock);
3113         if (kvm->arch.hpte_setup_done)
3114                 goto out;       /* another vcpu beat us to it */
3115
3116         /* Allocate hashed page table (if not done already) and reset it */
3117         if (!kvm->arch.hpt_virt) {
3118                 err = kvmppc_alloc_hpt(kvm, NULL);
3119                 if (err) {
3120                         pr_err("KVM: Couldn't alloc HPT\n");
3121                         goto out;
3122                 }
3123         }
3124
3125         /* Look up the memslot for guest physical address 0 */
3126         srcu_idx = srcu_read_lock(&kvm->srcu);
3127         memslot = gfn_to_memslot(kvm, 0);
3128
3129         /* We must have some memory at 0 by now */
3130         err = -EINVAL;
3131         if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
3132                 goto out_srcu;
3133
3134         /* Look up the VMA for the start of this memory slot */
3135         hva = memslot->userspace_addr;
3136         down_read(&current->mm->mmap_sem);
3137         vma = find_vma(current->mm, hva);
3138         if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
3139                 goto up_out;
3140
3141         psize = vma_kernel_pagesize(vma);
3142         porder = __ilog2(psize);
3143
3144         up_read(&current->mm->mmap_sem);
3145
3146         /* We can handle 4k, 64k or 16M pages in the VRMA */
3147         err = -EINVAL;
3148         if (!(psize == 0x1000 || psize == 0x10000 ||
3149               psize == 0x1000000))
3150                 goto out_srcu;
3151
3152         senc = slb_pgsize_encoding(psize);
3153         kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
3154                 (VRMA_VSID << SLB_VSID_SHIFT_1T);
3155         /* Create HPTEs in the hash page table for the VRMA */
3156         kvmppc_map_vrma(vcpu, memslot, porder);
3157
3158         /* Update VRMASD field in the LPCR */
3159         if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
3160                 /* the -4 is to account for senc values starting at 0x10 */
3161                 lpcr = senc << (LPCR_VRMASD_SH - 4);
3162                 kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
3163         } else {
3164                 kvmppc_setup_partition_table(kvm);
3165         }
3166
3167         /* Order updates to kvm->arch.lpcr etc. vs. hpte_setup_done */
3168         smp_wmb();
3169         kvm->arch.hpte_setup_done = 1;
3170         err = 0;
3171  out_srcu:
3172         srcu_read_unlock(&kvm->srcu, srcu_idx);
3173  out:
3174         mutex_unlock(&kvm->lock);
3175         return err;
3176
3177  up_out:
3178         up_read(&current->mm->mmap_sem);
3179         goto out_srcu;
3180 }
3181
3182 #ifdef CONFIG_KVM_XICS
3183 /*
3184  * Allocate a per-core structure for managing state about which cores are
3185  * running in the host versus the guest and for exchanging data between
3186  * real mode KVM and CPU running in the host.
3187  * This is only done for the first VM.
3188  * The allocated structure stays even if all VMs have stopped.
3189  * It is only freed when the kvm-hv module is unloaded.
3190  * It's OK for this routine to fail, we just don't support host
3191  * core operations like redirecting H_IPI wakeups.
3192  */
3193 void kvmppc_alloc_host_rm_ops(void)
3194 {
3195         struct kvmppc_host_rm_ops *ops;
3196         unsigned long l_ops;
3197         int cpu, core;
3198         int size;
3199
3200         /* Not the first time here ? */
3201         if (kvmppc_host_rm_ops_hv != NULL)
3202                 return;
3203
3204         ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL);
3205         if (!ops)
3206                 return;
3207
3208         size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core);
3209         ops->rm_core = kzalloc(size, GFP_KERNEL);
3210
3211         if (!ops->rm_core) {
3212                 kfree(ops);
3213                 return;
3214         }
3215
3216         get_online_cpus();
3217
3218         for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) {
3219                 if (!cpu_online(cpu))
3220                         continue;
3221
3222                 core = cpu >> threads_shift;
3223                 ops->rm_core[core].rm_state.in_host = 1;
3224         }
3225
3226         ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv;
3227
3228         /*
3229          * Make the contents of the kvmppc_host_rm_ops structure visible
3230          * to other CPUs before we assign it to the global variable.
3231          * Do an atomic assignment (no locks used here), but if someone
3232          * beats us to it, just free our copy and return.
3233          */
3234         smp_wmb();
3235         l_ops = (unsigned long) ops;
3236
3237         if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) {
3238                 put_online_cpus();
3239                 kfree(ops->rm_core);
3240                 kfree(ops);
3241                 return;
3242         }
3243
3244         cpuhp_setup_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE,
3245                                   "ppc/kvm_book3s:prepare",
3246                                   kvmppc_set_host_core,
3247                                   kvmppc_clear_host_core);
3248         put_online_cpus();
3249 }
3250
3251 void kvmppc_free_host_rm_ops(void)
3252 {
3253         if (kvmppc_host_rm_ops_hv) {
3254                 cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE);
3255                 kfree(kvmppc_host_rm_ops_hv->rm_core);
3256                 kfree(kvmppc_host_rm_ops_hv);
3257                 kvmppc_host_rm_ops_hv = NULL;
3258         }
3259 }
3260 #endif
3261
3262 static int kvmppc_core_init_vm_hv(struct kvm *kvm)
3263 {
3264         unsigned long lpcr, lpid;
3265         char buf[32];
3266
3267         /* Allocate the guest's logical partition ID */
3268
3269         lpid = kvmppc_alloc_lpid();
3270         if ((long)lpid < 0)
3271                 return -ENOMEM;
3272         kvm->arch.lpid = lpid;
3273
3274         kvmppc_alloc_host_rm_ops();
3275
3276         /*
3277          * Since we don't flush the TLB when tearing down a VM,
3278          * and this lpid might have previously been used,
3279          * make sure we flush on each core before running the new VM.
3280          * On POWER9, the tlbie in mmu_partition_table_set_entry()
3281          * does this flush for us.
3282          */
3283         if (!cpu_has_feature(CPU_FTR_ARCH_300))
3284                 cpumask_setall(&kvm->arch.need_tlb_flush);
3285
3286         /* Start out with the default set of hcalls enabled */
3287         memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
3288                sizeof(kvm->arch.enabled_hcalls));
3289
3290         if (!cpu_has_feature(CPU_FTR_ARCH_300))
3291                 kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
3292
3293         /* Init LPCR for virtual RMA mode */
3294         kvm->arch.host_lpid = mfspr(SPRN_LPID);
3295         kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
3296         lpcr &= LPCR_PECE | LPCR_LPES;
3297         lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
3298                 LPCR_VPM0 | LPCR_VPM1;
3299         kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
3300                 (VRMA_VSID << SLB_VSID_SHIFT_1T);
3301         /* On POWER8 turn on online bit to enable PURR/SPURR */
3302         if (cpu_has_feature(CPU_FTR_ARCH_207S))
3303                 lpcr |= LPCR_ONL;
3304         /*
3305          * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed)
3306          * Set HVICE bit to enable hypervisor virtualization interrupts.
3307          */
3308         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
3309                 lpcr &= ~LPCR_VPM0;
3310                 lpcr |= LPCR_HVICE;
3311         }
3312
3313         kvm->arch.lpcr = lpcr;
3314
3315         /*
3316          * Work out how many sets the TLB has, for the use of
3317          * the TLB invalidation loop in book3s_hv_rmhandlers.S.
3318          */
3319         if (cpu_has_feature(CPU_FTR_ARCH_300))
3320                 kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH;      /* 256 */
3321         else if (cpu_has_feature(CPU_FTR_ARCH_207S))
3322                 kvm->arch.tlb_sets = POWER8_TLB_SETS;           /* 512 */
3323         else
3324                 kvm->arch.tlb_sets = POWER7_TLB_SETS;           /* 128 */
3325
3326         /*
3327          * Track that we now have a HV mode VM active. This blocks secondary
3328          * CPU threads from coming online.
3329          */
3330         kvm_hv_vm_activated();
3331
3332         /*
3333          * Create a debugfs directory for the VM
3334          */
3335         snprintf(buf, sizeof(buf), "vm%d", current->pid);
3336         kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir);
3337         if (!IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
3338                 kvmppc_mmu_debugfs_init(kvm);
3339
3340         return 0;
3341 }
3342
3343 static void kvmppc_free_vcores(struct kvm *kvm)
3344 {
3345         long int i;
3346
3347         for (i = 0; i < KVM_MAX_VCORES; ++i)
3348                 kfree(kvm->arch.vcores[i]);
3349         kvm->arch.online_vcores = 0;
3350 }
3351
3352 static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
3353 {
3354         debugfs_remove_recursive(kvm->arch.debugfs_dir);
3355
3356         kvm_hv_vm_deactivated();
3357
3358         kvmppc_free_vcores(kvm);
3359
3360         kvmppc_free_hpt(kvm);
3361
3362         kvmppc_free_pimap(kvm);
3363 }
3364
3365 /* We don't need to emulate any privileged instructions or dcbz */
3366 static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
3367                                      unsigned int inst, int *advance)
3368 {
3369         return EMULATE_FAIL;
3370 }
3371
3372 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
3373                                         ulong spr_val)
3374 {
3375         return EMULATE_FAIL;
3376 }
3377
3378 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
3379                                         ulong *spr_val)
3380 {
3381         return EMULATE_FAIL;
3382 }
3383
3384 static int kvmppc_core_check_processor_compat_hv(void)
3385 {
3386         if (!cpu_has_feature(CPU_FTR_HVMODE) ||
3387             !cpu_has_feature(CPU_FTR_ARCH_206))
3388                 return -EIO;
3389         /*
3390          * Disable KVM for Power9 in radix mode.
3391          */
3392         if (cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled())
3393                 return -EIO;
3394
3395         return 0;
3396 }
3397
3398 #ifdef CONFIG_KVM_XICS
3399
3400 void kvmppc_free_pimap(struct kvm *kvm)
3401 {
3402         kfree(kvm->arch.pimap);
3403 }
3404
3405 static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void)
3406 {
3407         return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL);
3408 }
3409
3410 static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
3411 {
3412         struct irq_desc *desc;
3413         struct kvmppc_irq_map *irq_map;
3414         struct kvmppc_passthru_irqmap *pimap;
3415         struct irq_chip *chip;
3416         int i;
3417
3418         if (!kvm_irq_bypass)
3419                 return 1;
3420
3421         desc = irq_to_desc(host_irq);
3422         if (!desc)
3423                 return -EIO;
3424
3425         mutex_lock(&kvm->lock);
3426
3427         pimap = kvm->arch.pimap;
3428         if (pimap == NULL) {
3429                 /* First call, allocate structure to hold IRQ map */
3430                 pimap = kvmppc_alloc_pimap();
3431                 if (pimap == NULL) {
3432                         mutex_unlock(&kvm->lock);
3433                         return -ENOMEM;
3434                 }
3435                 kvm->arch.pimap = pimap;
3436         }
3437
3438         /*
3439          * For now, we only support interrupts for which the EOI operation
3440          * is an OPAL call followed by a write to XIRR, since that's
3441          * what our real-mode EOI code does.
3442          */
3443         chip = irq_data_get_irq_chip(&desc->irq_data);
3444         if (!chip || !is_pnv_opal_msi(chip)) {
3445                 pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n",
3446                         host_irq, guest_gsi);
3447                 mutex_unlock(&kvm->lock);
3448                 return -ENOENT;
3449         }
3450
3451         /*
3452          * See if we already have an entry for this guest IRQ number.
3453          * If it's mapped to a hardware IRQ number, that's an error,
3454          * otherwise re-use this entry.
3455          */
3456         for (i = 0; i < pimap->n_mapped; i++) {
3457                 if (guest_gsi == pimap->mapped[i].v_hwirq) {
3458                         if (pimap->mapped[i].r_hwirq) {
3459                                 mutex_unlock(&kvm->lock);
3460                                 return -EINVAL;
3461                         }
3462                         break;
3463                 }
3464         }
3465
3466         if (i == KVMPPC_PIRQ_MAPPED) {
3467                 mutex_unlock(&kvm->lock);
3468                 return -EAGAIN;         /* table is full */
3469         }
3470
3471         irq_map = &pimap->mapped[i];
3472
3473         irq_map->v_hwirq = guest_gsi;
3474         irq_map->desc = desc;
3475
3476         /*
3477          * Order the above two stores before the next to serialize with
3478          * the KVM real mode handler.
3479          */
3480         smp_wmb();
3481         irq_map->r_hwirq = desc->irq_data.hwirq;
3482
3483         if (i == pimap->n_mapped)
3484                 pimap->n_mapped++;
3485
3486         kvmppc_xics_set_mapped(kvm, guest_gsi, desc->irq_data.hwirq);
3487
3488         mutex_unlock(&kvm->lock);
3489
3490         return 0;
3491 }
3492
3493 static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
3494 {
3495         struct irq_desc *desc;
3496         struct kvmppc_passthru_irqmap *pimap;
3497         int i;
3498
3499         if (!kvm_irq_bypass)
3500                 return 0;
3501
3502         desc = irq_to_desc(host_irq);
3503         if (!desc)
3504                 return -EIO;
3505
3506         mutex_lock(&kvm->lock);
3507
3508         if (kvm->arch.pimap == NULL) {
3509                 mutex_unlock(&kvm->lock);
3510                 return 0;
3511         }
3512         pimap = kvm->arch.pimap;
3513
3514         for (i = 0; i < pimap->n_mapped; i++) {
3515                 if (guest_gsi == pimap->mapped[i].v_hwirq)
3516                         break;
3517         }
3518
3519         if (i == pimap->n_mapped) {
3520                 mutex_unlock(&kvm->lock);
3521                 return -ENODEV;
3522         }
3523
3524         kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq);
3525
3526         /* invalidate the entry */
3527         pimap->mapped[i].r_hwirq = 0;
3528
3529         /*
3530          * We don't free this structure even when the count goes to
3531          * zero. The structure is freed when we destroy the VM.
3532          */
3533
3534         mutex_unlock(&kvm->lock);
3535         return 0;
3536 }
3537
3538 static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons,
3539                                              struct irq_bypass_producer *prod)
3540 {
3541         int ret = 0;
3542         struct kvm_kernel_irqfd *irqfd =
3543                 container_of(cons, struct kvm_kernel_irqfd, consumer);
3544
3545         irqfd->producer = prod;
3546
3547         ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
3548         if (ret)
3549                 pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n",
3550                         prod->irq, irqfd->gsi, ret);
3551
3552         return ret;
3553 }
3554
3555 static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons,
3556                                               struct irq_bypass_producer *prod)
3557 {
3558         int ret;
3559         struct kvm_kernel_irqfd *irqfd =
3560                 container_of(cons, struct kvm_kernel_irqfd, consumer);
3561
3562         irqfd->producer = NULL;
3563
3564         /*
3565          * When producer of consumer is unregistered, we change back to
3566          * default external interrupt handling mode - KVM real mode
3567          * will switch back to host.
3568          */
3569         ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
3570         if (ret)
3571                 pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n",
3572                         prod->irq, irqfd->gsi, ret);
3573 }
3574 #endif
3575
3576 static long kvm_arch_vm_ioctl_hv(struct file *filp,
3577                                  unsigned int ioctl, unsigned long arg)
3578 {
3579         struct kvm *kvm __maybe_unused = filp->private_data;
3580         void __user *argp = (void __user *)arg;
3581         long r;
3582
3583         switch (ioctl) {
3584
3585         case KVM_PPC_ALLOCATE_HTAB: {
3586                 u32 htab_order;
3587
3588                 r = -EFAULT;
3589                 if (get_user(htab_order, (u32 __user *)argp))
3590                         break;
3591                 r = kvmppc_alloc_reset_hpt(kvm, &htab_order);
3592                 if (r)
3593                         break;
3594                 r = -EFAULT;
3595                 if (put_user(htab_order, (u32 __user *)argp))
3596                         break;
3597                 r = 0;
3598                 break;
3599         }
3600
3601         case KVM_PPC_GET_HTAB_FD: {
3602                 struct kvm_get_htab_fd ghf;
3603
3604                 r = -EFAULT;
3605                 if (copy_from_user(&ghf, argp, sizeof(ghf)))
3606                         break;
3607                 r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
3608                 break;
3609         }
3610
3611         default:
3612                 r = -ENOTTY;
3613         }
3614
3615         return r;
3616 }
3617
3618 /*
3619  * List of hcall numbers to enable by default.
3620  * For compatibility with old userspace, we enable by default
3621  * all hcalls that were implemented before the hcall-enabling
3622  * facility was added.  Note this list should not include H_RTAS.
3623  */
3624 static unsigned int default_hcall_list[] = {
3625         H_REMOVE,
3626         H_ENTER,
3627         H_READ,
3628         H_PROTECT,
3629         H_BULK_REMOVE,
3630         H_GET_TCE,
3631         H_PUT_TCE,
3632         H_SET_DABR,
3633         H_SET_XDABR,
3634         H_CEDE,
3635         H_PROD,
3636         H_CONFER,
3637         H_REGISTER_VPA,
3638 #ifdef CONFIG_KVM_XICS
3639         H_EOI,
3640         H_CPPR,
3641         H_IPI,
3642         H_IPOLL,
3643         H_XIRR,
3644         H_XIRR_X,
3645 #endif
3646         0
3647 };
3648
3649 static void init_default_hcalls(void)
3650 {
3651         int i;
3652         unsigned int hcall;
3653
3654         for (i = 0; default_hcall_list[i]; ++i) {
3655                 hcall = default_hcall_list[i];
3656                 WARN_ON(!kvmppc_hcall_impl_hv(hcall));
3657                 __set_bit(hcall / 4, default_enabled_hcalls);
3658         }
3659 }
3660
3661 static struct kvmppc_ops kvm_ops_hv = {
3662         .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
3663         .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
3664         .get_one_reg = kvmppc_get_one_reg_hv,
3665         .set_one_reg = kvmppc_set_one_reg_hv,
3666         .vcpu_load   = kvmppc_core_vcpu_load_hv,
3667         .vcpu_put    = kvmppc_core_vcpu_put_hv,
3668         .set_msr     = kvmppc_set_msr_hv,
3669         .vcpu_run    = kvmppc_vcpu_run_hv,
3670         .vcpu_create = kvmppc_core_vcpu_create_hv,
3671         .vcpu_free   = kvmppc_core_vcpu_free_hv,
3672         .check_requests = kvmppc_core_check_requests_hv,
3673         .get_dirty_log  = kvm_vm_ioctl_get_dirty_log_hv,
3674         .flush_memslot  = kvmppc_core_flush_memslot_hv,
3675         .prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
3676         .commit_memory_region  = kvmppc_core_commit_memory_region_hv,
3677         .unmap_hva = kvm_unmap_hva_hv,
3678         .unmap_hva_range = kvm_unmap_hva_range_hv,
3679         .age_hva  = kvm_age_hva_hv,
3680         .test_age_hva = kvm_test_age_hva_hv,
3681         .set_spte_hva = kvm_set_spte_hva_hv,
3682         .mmu_destroy  = kvmppc_mmu_destroy_hv,
3683         .free_memslot = kvmppc_core_free_memslot_hv,
3684         .create_memslot = kvmppc_core_create_memslot_hv,
3685         .init_vm =  kvmppc_core_init_vm_hv,
3686         .destroy_vm = kvmppc_core_destroy_vm_hv,
3687         .get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
3688         .emulate_op = kvmppc_core_emulate_op_hv,
3689         .emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
3690         .emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
3691         .fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
3692         .arch_vm_ioctl  = kvm_arch_vm_ioctl_hv,
3693         .hcall_implemented = kvmppc_hcall_impl_hv,
3694 #ifdef CONFIG_KVM_XICS
3695         .irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv,
3696         .irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv,
3697 #endif
3698 };
3699
3700 static int kvm_init_subcore_bitmap(void)
3701 {
3702         int i, j;
3703         int nr_cores = cpu_nr_cores();
3704         struct sibling_subcore_state *sibling_subcore_state;
3705
3706         for (i = 0; i < nr_cores; i++) {
3707                 int first_cpu = i * threads_per_core;
3708                 int node = cpu_to_node(first_cpu);
3709
3710                 /* Ignore if it is already allocated. */
3711                 if (paca[first_cpu].sibling_subcore_state)
3712                         continue;
3713
3714                 sibling_subcore_state =
3715                         kmalloc_node(sizeof(struct sibling_subcore_state),
3716                                                         GFP_KERNEL, node);
3717                 if (!sibling_subcore_state)
3718                         return -ENOMEM;
3719
3720                 memset(sibling_subcore_state, 0,
3721                                 sizeof(struct sibling_subcore_state));
3722
3723                 for (j = 0; j < threads_per_core; j++) {
3724                         int cpu = first_cpu + j;
3725
3726                         paca[cpu].sibling_subcore_state = sibling_subcore_state;
3727                 }
3728         }
3729         return 0;
3730 }
3731
3732 static int kvmppc_book3s_init_hv(void)
3733 {
3734         int r;
3735         /*
3736          * FIXME!! Do we need to check on all cpus ?
3737          */
3738         r = kvmppc_core_check_processor_compat_hv();
3739         if (r < 0)
3740                 return -ENODEV;
3741
3742         r = kvm_init_subcore_bitmap();
3743         if (r)
3744                 return r;
3745
3746         /*
3747          * We need a way of accessing the XICS interrupt controller,
3748          * either directly, via paca[cpu].kvm_hstate.xics_phys, or
3749          * indirectly, via OPAL.
3750          */
3751 #ifdef CONFIG_SMP
3752         if (!get_paca()->kvm_hstate.xics_phys) {
3753                 struct device_node *np;
3754
3755                 np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc");
3756                 if (!np) {
3757                         pr_err("KVM-HV: Cannot determine method for accessing XICS\n");
3758                         return -ENODEV;
3759                 }
3760         }
3761 #endif
3762
3763         kvm_ops_hv.owner = THIS_MODULE;
3764         kvmppc_hv_ops = &kvm_ops_hv;
3765
3766         init_default_hcalls();
3767
3768         init_vcore_lists();
3769
3770         r = kvmppc_mmu_hv_init();
3771         return r;
3772 }
3773
3774 static void kvmppc_book3s_exit_hv(void)
3775 {
3776         kvmppc_free_host_rm_ops();
3777         kvmppc_hv_ops = NULL;
3778 }
3779
3780 module_init(kvmppc_book3s_init_hv);
3781 module_exit(kvmppc_book3s_exit_hv);
3782 MODULE_LICENSE("GPL");
3783 MODULE_ALIAS_MISCDEV(KVM_MINOR);
3784 MODULE_ALIAS("devname:kvm");
3785