]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - arch/powerpc/mm/hash_utils_64.c
b534bbac3f82034fd1a18d690f5b2c93434e5a56
[karo-tx-linux.git] / arch / powerpc / mm / hash_utils_64.c
1 /*
2  * PowerPC64 port by Mike Corrigan and Dave Engebretsen
3  *   {mikejc|engebret}@us.ibm.com
4  *
5  *    Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com>
6  *
7  * SMP scalability work:
8  *    Copyright (C) 2001 Anton Blanchard <anton@au.ibm.com>, IBM
9  * 
10  *    Module name: htab.c
11  *
12  *    Description:
13  *      PowerPC Hashed Page Table functions
14  *
15  * This program is free software; you can redistribute it and/or
16  * modify it under the terms of the GNU General Public License
17  * as published by the Free Software Foundation; either version
18  * 2 of the License, or (at your option) any later version.
19  */
20
21 #undef DEBUG
22 #undef DEBUG_LOW
23
24 #include <linux/spinlock.h>
25 #include <linux/errno.h>
26 #include <linux/sched.h>
27 #include <linux/proc_fs.h>
28 #include <linux/stat.h>
29 #include <linux/sysctl.h>
30 #include <linux/export.h>
31 #include <linux/ctype.h>
32 #include <linux/cache.h>
33 #include <linux/init.h>
34 #include <linux/signal.h>
35 #include <linux/memblock.h>
36
37 #include <asm/processor.h>
38 #include <asm/pgtable.h>
39 #include <asm/mmu.h>
40 #include <asm/mmu_context.h>
41 #include <asm/page.h>
42 #include <asm/types.h>
43 #include <asm/system.h>
44 #include <asm/uaccess.h>
45 #include <asm/machdep.h>
46 #include <asm/prom.h>
47 #include <asm/abs_addr.h>
48 #include <asm/tlbflush.h>
49 #include <asm/io.h>
50 #include <asm/eeh.h>
51 #include <asm/tlb.h>
52 #include <asm/cacheflush.h>
53 #include <asm/cputable.h>
54 #include <asm/sections.h>
55 #include <asm/spu.h>
56 #include <asm/udbg.h>
57 #include <asm/code-patching.h>
58 #include <asm/fadump.h>
59
60 #ifdef DEBUG
61 #define DBG(fmt...) udbg_printf(fmt)
62 #else
63 #define DBG(fmt...)
64 #endif
65
66 #ifdef DEBUG_LOW
67 #define DBG_LOW(fmt...) udbg_printf(fmt)
68 #else
69 #define DBG_LOW(fmt...)
70 #endif
71
72 #define KB (1024)
73 #define MB (1024*KB)
74 #define GB (1024L*MB)
75
76 /*
77  * Note:  pte   --> Linux PTE
78  *        HPTE  --> PowerPC Hashed Page Table Entry
79  *
80  * Execution context:
81  *   htab_initialize is called with the MMU off (of course), but
82  *   the kernel has been copied down to zero so it can directly
83  *   reference global data.  At this point it is very difficult
84  *   to print debug info.
85  *
86  */
87
88 #ifdef CONFIG_U3_DART
89 extern unsigned long dart_tablebase;
90 #endif /* CONFIG_U3_DART */
91
92 static unsigned long _SDR1;
93 struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT];
94
95 struct hash_pte *htab_address;
96 unsigned long htab_size_bytes;
97 unsigned long htab_hash_mask;
98 EXPORT_SYMBOL_GPL(htab_hash_mask);
99 int mmu_linear_psize = MMU_PAGE_4K;
100 int mmu_virtual_psize = MMU_PAGE_4K;
101 int mmu_vmalloc_psize = MMU_PAGE_4K;
102 #ifdef CONFIG_SPARSEMEM_VMEMMAP
103 int mmu_vmemmap_psize = MMU_PAGE_4K;
104 #endif
105 int mmu_io_psize = MMU_PAGE_4K;
106 int mmu_kernel_ssize = MMU_SEGSIZE_256M;
107 int mmu_highuser_ssize = MMU_SEGSIZE_256M;
108 u16 mmu_slb_size = 64;
109 EXPORT_SYMBOL_GPL(mmu_slb_size);
110 #ifdef CONFIG_PPC_64K_PAGES
111 int mmu_ci_restrictions;
112 #endif
113 #ifdef CONFIG_DEBUG_PAGEALLOC
114 static u8 *linear_map_hash_slots;
115 static unsigned long linear_map_hash_count;
116 static DEFINE_SPINLOCK(linear_map_hash_lock);
117 #endif /* CONFIG_DEBUG_PAGEALLOC */
118
119 /* There are definitions of page sizes arrays to be used when none
120  * is provided by the firmware.
121  */
122
123 /* Pre-POWER4 CPUs (4k pages only)
124  */
125 static struct mmu_psize_def mmu_psize_defaults_old[] = {
126         [MMU_PAGE_4K] = {
127                 .shift  = 12,
128                 .sllp   = 0,
129                 .penc   = 0,
130                 .avpnm  = 0,
131                 .tlbiel = 0,
132         },
133 };
134
135 /* POWER4, GPUL, POWER5
136  *
137  * Support for 16Mb large pages
138  */
139 static struct mmu_psize_def mmu_psize_defaults_gp[] = {
140         [MMU_PAGE_4K] = {
141                 .shift  = 12,
142                 .sllp   = 0,
143                 .penc   = 0,
144                 .avpnm  = 0,
145                 .tlbiel = 1,
146         },
147         [MMU_PAGE_16M] = {
148                 .shift  = 24,
149                 .sllp   = SLB_VSID_L,
150                 .penc   = 0,
151                 .avpnm  = 0x1UL,
152                 .tlbiel = 0,
153         },
154 };
155
156 static unsigned long htab_convert_pte_flags(unsigned long pteflags)
157 {
158         unsigned long rflags = pteflags & 0x1fa;
159
160         /* _PAGE_EXEC -> NOEXEC */
161         if ((pteflags & _PAGE_EXEC) == 0)
162                 rflags |= HPTE_R_N;
163
164         /* PP bits. PAGE_USER is already PP bit 0x2, so we only
165          * need to add in 0x1 if it's a read-only user page
166          */
167         if ((pteflags & _PAGE_USER) && !((pteflags & _PAGE_RW) &&
168                                          (pteflags & _PAGE_DIRTY)))
169                 rflags |= 1;
170
171         /* Always add C */
172         return rflags | HPTE_R_C;
173 }
174
175 int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
176                       unsigned long pstart, unsigned long prot,
177                       int psize, int ssize)
178 {
179         unsigned long vaddr, paddr;
180         unsigned int step, shift;
181         int ret = 0;
182
183         shift = mmu_psize_defs[psize].shift;
184         step = 1 << shift;
185
186         prot = htab_convert_pte_flags(prot);
187
188         DBG("htab_bolt_mapping(%lx..%lx -> %lx (%lx,%d,%d)\n",
189             vstart, vend, pstart, prot, psize, ssize);
190
191         for (vaddr = vstart, paddr = pstart; vaddr < vend;
192              vaddr += step, paddr += step) {
193                 unsigned long hash, hpteg;
194                 unsigned long vsid = get_kernel_vsid(vaddr, ssize);
195                 unsigned long va = hpt_va(vaddr, vsid, ssize);
196                 unsigned long tprot = prot;
197
198                 /* Make kernel text executable */
199                 if (overlaps_kernel_text(vaddr, vaddr + step))
200                         tprot &= ~HPTE_R_N;
201
202                 hash = hpt_hash(va, shift, ssize);
203                 hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP);
204
205                 BUG_ON(!ppc_md.hpte_insert);
206                 ret = ppc_md.hpte_insert(hpteg, va, paddr, tprot,
207                                          HPTE_V_BOLTED, psize, ssize);
208
209                 if (ret < 0)
210                         break;
211 #ifdef CONFIG_DEBUG_PAGEALLOC
212                 if ((paddr >> PAGE_SHIFT) < linear_map_hash_count)
213                         linear_map_hash_slots[paddr >> PAGE_SHIFT] = ret | 0x80;
214 #endif /* CONFIG_DEBUG_PAGEALLOC */
215         }
216         return ret < 0 ? ret : 0;
217 }
218
219 #ifdef CONFIG_MEMORY_HOTPLUG
220 static int htab_remove_mapping(unsigned long vstart, unsigned long vend,
221                       int psize, int ssize)
222 {
223         unsigned long vaddr;
224         unsigned int step, shift;
225
226         shift = mmu_psize_defs[psize].shift;
227         step = 1 << shift;
228
229         if (!ppc_md.hpte_removebolted) {
230                 printk(KERN_WARNING "Platform doesn't implement "
231                                 "hpte_removebolted\n");
232                 return -EINVAL;
233         }
234
235         for (vaddr = vstart; vaddr < vend; vaddr += step)
236                 ppc_md.hpte_removebolted(vaddr, psize, ssize);
237
238         return 0;
239 }
240 #endif /* CONFIG_MEMORY_HOTPLUG */
241
242 static int __init htab_dt_scan_seg_sizes(unsigned long node,
243                                          const char *uname, int depth,
244                                          void *data)
245 {
246         char *type = of_get_flat_dt_prop(node, "device_type", NULL);
247         u32 *prop;
248         unsigned long size = 0;
249
250         /* We are scanning "cpu" nodes only */
251         if (type == NULL || strcmp(type, "cpu") != 0)
252                 return 0;
253
254         prop = (u32 *)of_get_flat_dt_prop(node, "ibm,processor-segment-sizes",
255                                           &size);
256         if (prop == NULL)
257                 return 0;
258         for (; size >= 4; size -= 4, ++prop) {
259                 if (prop[0] == 40) {
260                         DBG("1T segment support detected\n");
261                         cur_cpu_spec->mmu_features |= MMU_FTR_1T_SEGMENT;
262                         return 1;
263                 }
264         }
265         cur_cpu_spec->mmu_features &= ~MMU_FTR_NO_SLBIE_B;
266         return 0;
267 }
268
269 static void __init htab_init_seg_sizes(void)
270 {
271         of_scan_flat_dt(htab_dt_scan_seg_sizes, NULL);
272 }
273
274 static int __init htab_dt_scan_page_sizes(unsigned long node,
275                                           const char *uname, int depth,
276                                           void *data)
277 {
278         char *type = of_get_flat_dt_prop(node, "device_type", NULL);
279         u32 *prop;
280         unsigned long size = 0;
281
282         /* We are scanning "cpu" nodes only */
283         if (type == NULL || strcmp(type, "cpu") != 0)
284                 return 0;
285
286         prop = (u32 *)of_get_flat_dt_prop(node,
287                                           "ibm,segment-page-sizes", &size);
288         if (prop != NULL) {
289                 DBG("Page sizes from device-tree:\n");
290                 size /= 4;
291                 cur_cpu_spec->mmu_features &= ~(MMU_FTR_16M_PAGE);
292                 while(size > 0) {
293                         unsigned int shift = prop[0];
294                         unsigned int slbenc = prop[1];
295                         unsigned int lpnum = prop[2];
296                         unsigned int lpenc = 0;
297                         struct mmu_psize_def *def;
298                         int idx = -1;
299
300                         size -= 3; prop += 3;
301                         while(size > 0 && lpnum) {
302                                 if (prop[0] == shift)
303                                         lpenc = prop[1];
304                                 prop += 2; size -= 2;
305                                 lpnum--;
306                         }
307                         switch(shift) {
308                         case 0xc:
309                                 idx = MMU_PAGE_4K;
310                                 break;
311                         case 0x10:
312                                 idx = MMU_PAGE_64K;
313                                 break;
314                         case 0x14:
315                                 idx = MMU_PAGE_1M;
316                                 break;
317                         case 0x18:
318                                 idx = MMU_PAGE_16M;
319                                 cur_cpu_spec->mmu_features |= MMU_FTR_16M_PAGE;
320                                 break;
321                         case 0x22:
322                                 idx = MMU_PAGE_16G;
323                                 break;
324                         }
325                         if (idx < 0)
326                                 continue;
327                         def = &mmu_psize_defs[idx];
328                         def->shift = shift;
329                         if (shift <= 23)
330                                 def->avpnm = 0;
331                         else
332                                 def->avpnm = (1 << (shift - 23)) - 1;
333                         def->sllp = slbenc;
334                         def->penc = lpenc;
335                         /* We don't know for sure what's up with tlbiel, so
336                          * for now we only set it for 4K and 64K pages
337                          */
338                         if (idx == MMU_PAGE_4K || idx == MMU_PAGE_64K)
339                                 def->tlbiel = 1;
340                         else
341                                 def->tlbiel = 0;
342
343                         DBG(" %d: shift=%02x, sllp=%04lx, avpnm=%08lx, "
344                             "tlbiel=%d, penc=%d\n",
345                             idx, shift, def->sllp, def->avpnm, def->tlbiel,
346                             def->penc);
347                 }
348                 return 1;
349         }
350         return 0;
351 }
352
353 #ifdef CONFIG_HUGETLB_PAGE
354 /* Scan for 16G memory blocks that have been set aside for huge pages
355  * and reserve those blocks for 16G huge pages.
356  */
357 static int __init htab_dt_scan_hugepage_blocks(unsigned long node,
358                                         const char *uname, int depth,
359                                         void *data) {
360         char *type = of_get_flat_dt_prop(node, "device_type", NULL);
361         unsigned long *addr_prop;
362         u32 *page_count_prop;
363         unsigned int expected_pages;
364         long unsigned int phys_addr;
365         long unsigned int block_size;
366
367         /* We are scanning "memory" nodes only */
368         if (type == NULL || strcmp(type, "memory") != 0)
369                 return 0;
370
371         /* This property is the log base 2 of the number of virtual pages that
372          * will represent this memory block. */
373         page_count_prop = of_get_flat_dt_prop(node, "ibm,expected#pages", NULL);
374         if (page_count_prop == NULL)
375                 return 0;
376         expected_pages = (1 << page_count_prop[0]);
377         addr_prop = of_get_flat_dt_prop(node, "reg", NULL);
378         if (addr_prop == NULL)
379                 return 0;
380         phys_addr = addr_prop[0];
381         block_size = addr_prop[1];
382         if (block_size != (16 * GB))
383                 return 0;
384         printk(KERN_INFO "Huge page(16GB) memory: "
385                         "addr = 0x%lX size = 0x%lX pages = %d\n",
386                         phys_addr, block_size, expected_pages);
387         if (phys_addr + (16 * GB) <= memblock_end_of_DRAM()) {
388                 memblock_reserve(phys_addr, block_size * expected_pages);
389                 add_gpage(phys_addr, block_size, expected_pages);
390         }
391         return 0;
392 }
393 #endif /* CONFIG_HUGETLB_PAGE */
394
395 static void __init htab_init_page_sizes(void)
396 {
397         int rc;
398
399         /* Default to 4K pages only */
400         memcpy(mmu_psize_defs, mmu_psize_defaults_old,
401                sizeof(mmu_psize_defaults_old));
402
403         /*
404          * Try to find the available page sizes in the device-tree
405          */
406         rc = of_scan_flat_dt(htab_dt_scan_page_sizes, NULL);
407         if (rc != 0)  /* Found */
408                 goto found;
409
410         /*
411          * Not in the device-tree, let's fallback on known size
412          * list for 16M capable GP & GR
413          */
414         if (mmu_has_feature(MMU_FTR_16M_PAGE))
415                 memcpy(mmu_psize_defs, mmu_psize_defaults_gp,
416                        sizeof(mmu_psize_defaults_gp));
417  found:
418 #ifndef CONFIG_DEBUG_PAGEALLOC
419         /*
420          * Pick a size for the linear mapping. Currently, we only support
421          * 16M, 1M and 4K which is the default
422          */
423         if (mmu_psize_defs[MMU_PAGE_16M].shift)
424                 mmu_linear_psize = MMU_PAGE_16M;
425         else if (mmu_psize_defs[MMU_PAGE_1M].shift)
426                 mmu_linear_psize = MMU_PAGE_1M;
427 #endif /* CONFIG_DEBUG_PAGEALLOC */
428
429 #ifdef CONFIG_PPC_64K_PAGES
430         /*
431          * Pick a size for the ordinary pages. Default is 4K, we support
432          * 64K for user mappings and vmalloc if supported by the processor.
433          * We only use 64k for ioremap if the processor
434          * (and firmware) support cache-inhibited large pages.
435          * If not, we use 4k and set mmu_ci_restrictions so that
436          * hash_page knows to switch processes that use cache-inhibited
437          * mappings to 4k pages.
438          */
439         if (mmu_psize_defs[MMU_PAGE_64K].shift) {
440                 mmu_virtual_psize = MMU_PAGE_64K;
441                 mmu_vmalloc_psize = MMU_PAGE_64K;
442                 if (mmu_linear_psize == MMU_PAGE_4K)
443                         mmu_linear_psize = MMU_PAGE_64K;
444                 if (mmu_has_feature(MMU_FTR_CI_LARGE_PAGE)) {
445                         /*
446                          * Don't use 64k pages for ioremap on pSeries, since
447                          * that would stop us accessing the HEA ethernet.
448                          */
449                         if (!machine_is(pseries))
450                                 mmu_io_psize = MMU_PAGE_64K;
451                 } else
452                         mmu_ci_restrictions = 1;
453         }
454 #endif /* CONFIG_PPC_64K_PAGES */
455
456 #ifdef CONFIG_SPARSEMEM_VMEMMAP
457         /* We try to use 16M pages for vmemmap if that is supported
458          * and we have at least 1G of RAM at boot
459          */
460         if (mmu_psize_defs[MMU_PAGE_16M].shift &&
461             memblock_phys_mem_size() >= 0x40000000)
462                 mmu_vmemmap_psize = MMU_PAGE_16M;
463         else if (mmu_psize_defs[MMU_PAGE_64K].shift)
464                 mmu_vmemmap_psize = MMU_PAGE_64K;
465         else
466                 mmu_vmemmap_psize = MMU_PAGE_4K;
467 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
468
469         printk(KERN_DEBUG "Page orders: linear mapping = %d, "
470                "virtual = %d, io = %d"
471 #ifdef CONFIG_SPARSEMEM_VMEMMAP
472                ", vmemmap = %d"
473 #endif
474                "\n",
475                mmu_psize_defs[mmu_linear_psize].shift,
476                mmu_psize_defs[mmu_virtual_psize].shift,
477                mmu_psize_defs[mmu_io_psize].shift
478 #ifdef CONFIG_SPARSEMEM_VMEMMAP
479                ,mmu_psize_defs[mmu_vmemmap_psize].shift
480 #endif
481                );
482
483 #ifdef CONFIG_HUGETLB_PAGE
484         /* Reserve 16G huge page memory sections for huge pages */
485         of_scan_flat_dt(htab_dt_scan_hugepage_blocks, NULL);
486 #endif /* CONFIG_HUGETLB_PAGE */
487 }
488
489 static int __init htab_dt_scan_pftsize(unsigned long node,
490                                        const char *uname, int depth,
491                                        void *data)
492 {
493         char *type = of_get_flat_dt_prop(node, "device_type", NULL);
494         u32 *prop;
495
496         /* We are scanning "cpu" nodes only */
497         if (type == NULL || strcmp(type, "cpu") != 0)
498                 return 0;
499
500         prop = (u32 *)of_get_flat_dt_prop(node, "ibm,pft-size", NULL);
501         if (prop != NULL) {
502                 /* pft_size[0] is the NUMA CEC cookie */
503                 ppc64_pft_size = prop[1];
504                 return 1;
505         }
506         return 0;
507 }
508
509 static unsigned long __init htab_get_table_size(void)
510 {
511         unsigned long mem_size, rnd_mem_size, pteg_count, psize;
512
513         /* If hash size isn't already provided by the platform, we try to
514          * retrieve it from the device-tree. If it's not there neither, we
515          * calculate it now based on the total RAM size
516          */
517         if (ppc64_pft_size == 0)
518                 of_scan_flat_dt(htab_dt_scan_pftsize, NULL);
519         if (ppc64_pft_size)
520                 return 1UL << ppc64_pft_size;
521
522         /* round mem_size up to next power of 2 */
523         mem_size = memblock_phys_mem_size();
524         rnd_mem_size = 1UL << __ilog2(mem_size);
525         if (rnd_mem_size < mem_size)
526                 rnd_mem_size <<= 1;
527
528         /* # pages / 2 */
529         psize = mmu_psize_defs[mmu_virtual_psize].shift;
530         pteg_count = max(rnd_mem_size >> (psize + 1), 1UL << 11);
531
532         return pteg_count << 7;
533 }
534
535 #ifdef CONFIG_MEMORY_HOTPLUG
536 int create_section_mapping(unsigned long start, unsigned long end)
537 {
538         return htab_bolt_mapping(start, end, __pa(start),
539                                  pgprot_val(PAGE_KERNEL), mmu_linear_psize,
540                                  mmu_kernel_ssize);
541 }
542
543 int remove_section_mapping(unsigned long start, unsigned long end)
544 {
545         return htab_remove_mapping(start, end, mmu_linear_psize,
546                         mmu_kernel_ssize);
547 }
548 #endif /* CONFIG_MEMORY_HOTPLUG */
549
550 #define FUNCTION_TEXT(A)        ((*(unsigned long *)(A)))
551
552 static void __init htab_finish_init(void)
553 {
554         extern unsigned int *htab_call_hpte_insert1;
555         extern unsigned int *htab_call_hpte_insert2;
556         extern unsigned int *htab_call_hpte_remove;
557         extern unsigned int *htab_call_hpte_updatepp;
558
559 #ifdef CONFIG_PPC_HAS_HASH_64K
560         extern unsigned int *ht64_call_hpte_insert1;
561         extern unsigned int *ht64_call_hpte_insert2;
562         extern unsigned int *ht64_call_hpte_remove;
563         extern unsigned int *ht64_call_hpte_updatepp;
564
565         patch_branch(ht64_call_hpte_insert1,
566                 FUNCTION_TEXT(ppc_md.hpte_insert),
567                 BRANCH_SET_LINK);
568         patch_branch(ht64_call_hpte_insert2,
569                 FUNCTION_TEXT(ppc_md.hpte_insert),
570                 BRANCH_SET_LINK);
571         patch_branch(ht64_call_hpte_remove,
572                 FUNCTION_TEXT(ppc_md.hpte_remove),
573                 BRANCH_SET_LINK);
574         patch_branch(ht64_call_hpte_updatepp,
575                 FUNCTION_TEXT(ppc_md.hpte_updatepp),
576                 BRANCH_SET_LINK);
577
578 #endif /* CONFIG_PPC_HAS_HASH_64K */
579
580         patch_branch(htab_call_hpte_insert1,
581                 FUNCTION_TEXT(ppc_md.hpte_insert),
582                 BRANCH_SET_LINK);
583         patch_branch(htab_call_hpte_insert2,
584                 FUNCTION_TEXT(ppc_md.hpte_insert),
585                 BRANCH_SET_LINK);
586         patch_branch(htab_call_hpte_remove,
587                 FUNCTION_TEXT(ppc_md.hpte_remove),
588                 BRANCH_SET_LINK);
589         patch_branch(htab_call_hpte_updatepp,
590                 FUNCTION_TEXT(ppc_md.hpte_updatepp),
591                 BRANCH_SET_LINK);
592 }
593
594 static void __init htab_initialize(void)
595 {
596         unsigned long table;
597         unsigned long pteg_count;
598         unsigned long prot;
599         unsigned long base = 0, size = 0, limit;
600         struct memblock_region *reg;
601
602         DBG(" -> htab_initialize()\n");
603
604         /* Initialize segment sizes */
605         htab_init_seg_sizes();
606
607         /* Initialize page sizes */
608         htab_init_page_sizes();
609
610         if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) {
611                 mmu_kernel_ssize = MMU_SEGSIZE_1T;
612                 mmu_highuser_ssize = MMU_SEGSIZE_1T;
613                 printk(KERN_INFO "Using 1TB segments\n");
614         }
615
616         /*
617          * Calculate the required size of the htab.  We want the number of
618          * PTEGs to equal one half the number of real pages.
619          */ 
620         htab_size_bytes = htab_get_table_size();
621         pteg_count = htab_size_bytes >> 7;
622
623         htab_hash_mask = pteg_count - 1;
624
625         if (firmware_has_feature(FW_FEATURE_LPAR)) {
626                 /* Using a hypervisor which owns the htab */
627                 htab_address = NULL;
628                 _SDR1 = 0; 
629 #ifdef CONFIG_FA_DUMP
630                 /*
631                  * If firmware assisted dump is active firmware preserves
632                  * the contents of htab along with entire partition memory.
633                  * Clear the htab if firmware assisted dump is active so
634                  * that we dont end up using old mappings.
635                  */
636                 if (is_fadump_active() && ppc_md.hpte_clear_all)
637                         ppc_md.hpte_clear_all();
638 #endif
639         } else {
640                 /* Find storage for the HPT.  Must be contiguous in
641                  * the absolute address space. On cell we want it to be
642                  * in the first 2 Gig so we can use it for IOMMU hacks.
643                  */
644                 if (machine_is(cell))
645                         limit = 0x80000000;
646                 else
647                         limit = MEMBLOCK_ALLOC_ANYWHERE;
648
649                 table = memblock_alloc_base(htab_size_bytes, htab_size_bytes, limit);
650
651                 DBG("Hash table allocated at %lx, size: %lx\n", table,
652                     htab_size_bytes);
653
654                 htab_address = abs_to_virt(table);
655
656                 /* htab absolute addr + encoded htabsize */
657                 _SDR1 = table + __ilog2(pteg_count) - 11;
658
659                 /* Initialize the HPT with no entries */
660                 memset((void *)table, 0, htab_size_bytes);
661
662                 /* Set SDR1 */
663                 mtspr(SPRN_SDR1, _SDR1);
664         }
665
666         prot = pgprot_val(PAGE_KERNEL);
667
668 #ifdef CONFIG_DEBUG_PAGEALLOC
669         linear_map_hash_count = memblock_end_of_DRAM() >> PAGE_SHIFT;
670         linear_map_hash_slots = __va(memblock_alloc_base(linear_map_hash_count,
671                                                     1, ppc64_rma_size));
672         memset(linear_map_hash_slots, 0, linear_map_hash_count);
673 #endif /* CONFIG_DEBUG_PAGEALLOC */
674
675         /* On U3 based machines, we need to reserve the DART area and
676          * _NOT_ map it to avoid cache paradoxes as it's remapped non
677          * cacheable later on
678          */
679
680         /* create bolted the linear mapping in the hash table */
681         for_each_memblock(memory, reg) {
682                 base = (unsigned long)__va(reg->base);
683                 size = reg->size;
684
685                 DBG("creating mapping for region: %lx..%lx (prot: %lx)\n",
686                     base, size, prot);
687
688 #ifdef CONFIG_U3_DART
689                 /* Do not map the DART space. Fortunately, it will be aligned
690                  * in such a way that it will not cross two memblock regions and
691                  * will fit within a single 16Mb page.
692                  * The DART space is assumed to be a full 16Mb region even if
693                  * we only use 2Mb of that space. We will use more of it later
694                  * for AGP GART. We have to use a full 16Mb large page.
695                  */
696                 DBG("DART base: %lx\n", dart_tablebase);
697
698                 if (dart_tablebase != 0 && dart_tablebase >= base
699                     && dart_tablebase < (base + size)) {
700                         unsigned long dart_table_end = dart_tablebase + 16 * MB;
701                         if (base != dart_tablebase)
702                                 BUG_ON(htab_bolt_mapping(base, dart_tablebase,
703                                                         __pa(base), prot,
704                                                         mmu_linear_psize,
705                                                         mmu_kernel_ssize));
706                         if ((base + size) > dart_table_end)
707                                 BUG_ON(htab_bolt_mapping(dart_tablebase+16*MB,
708                                                         base + size,
709                                                         __pa(dart_table_end),
710                                                          prot,
711                                                          mmu_linear_psize,
712                                                          mmu_kernel_ssize));
713                         continue;
714                 }
715 #endif /* CONFIG_U3_DART */
716                 BUG_ON(htab_bolt_mapping(base, base + size, __pa(base),
717                                 prot, mmu_linear_psize, mmu_kernel_ssize));
718         }
719         memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE);
720
721         /*
722          * If we have a memory_limit and we've allocated TCEs then we need to
723          * explicitly map the TCE area at the top of RAM. We also cope with the
724          * case that the TCEs start below memory_limit.
725          * tce_alloc_start/end are 16MB aligned so the mapping should work
726          * for either 4K or 16MB pages.
727          */
728         if (tce_alloc_start) {
729                 tce_alloc_start = (unsigned long)__va(tce_alloc_start);
730                 tce_alloc_end = (unsigned long)__va(tce_alloc_end);
731
732                 if (base + size >= tce_alloc_start)
733                         tce_alloc_start = base + size + 1;
734
735                 BUG_ON(htab_bolt_mapping(tce_alloc_start, tce_alloc_end,
736                                          __pa(tce_alloc_start), prot,
737                                          mmu_linear_psize, mmu_kernel_ssize));
738         }
739
740         htab_finish_init();
741
742         DBG(" <- htab_initialize()\n");
743 }
744 #undef KB
745 #undef MB
746
747 void __init early_init_mmu(void)
748 {
749         /* Setup initial STAB address in the PACA */
750         get_paca()->stab_real = __pa((u64)&initial_stab);
751         get_paca()->stab_addr = (u64)&initial_stab;
752
753         /* Initialize the MMU Hash table and create the linear mapping
754          * of memory. Has to be done before stab/slb initialization as
755          * this is currently where the page size encoding is obtained
756          */
757         htab_initialize();
758
759         /* Initialize stab / SLB management except on iSeries
760          */
761         if (mmu_has_feature(MMU_FTR_SLB))
762                 slb_initialize();
763         else if (!firmware_has_feature(FW_FEATURE_ISERIES))
764                 stab_initialize(get_paca()->stab_real);
765 }
766
767 #ifdef CONFIG_SMP
768 void __cpuinit early_init_mmu_secondary(void)
769 {
770         /* Initialize hash table for that CPU */
771         if (!firmware_has_feature(FW_FEATURE_LPAR))
772                 mtspr(SPRN_SDR1, _SDR1);
773
774         /* Initialize STAB/SLB. We use a virtual address as it works
775          * in real mode on pSeries and we want a virtual address on
776          * iSeries anyway
777          */
778         if (mmu_has_feature(MMU_FTR_SLB))
779                 slb_initialize();
780         else
781                 stab_initialize(get_paca()->stab_addr);
782 }
783 #endif /* CONFIG_SMP */
784
785 /*
786  * Called by asm hashtable.S for doing lazy icache flush
787  */
788 unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap)
789 {
790         struct page *page;
791
792         if (!pfn_valid(pte_pfn(pte)))
793                 return pp;
794
795         page = pte_page(pte);
796
797         /* page is dirty */
798         if (!test_bit(PG_arch_1, &page->flags) && !PageReserved(page)) {
799                 if (trap == 0x400) {
800                         flush_dcache_icache_page(page);
801                         set_bit(PG_arch_1, &page->flags);
802                 } else
803                         pp |= HPTE_R_N;
804         }
805         return pp;
806 }
807
808 #ifdef CONFIG_PPC_MM_SLICES
809 unsigned int get_paca_psize(unsigned long addr)
810 {
811         unsigned long index, slices;
812
813         if (addr < SLICE_LOW_TOP) {
814                 slices = get_paca()->context.low_slices_psize;
815                 index = GET_LOW_SLICE_INDEX(addr);
816         } else {
817                 slices = get_paca()->context.high_slices_psize;
818                 index = GET_HIGH_SLICE_INDEX(addr);
819         }
820         return (slices >> (index * 4)) & 0xF;
821 }
822
823 #else
824 unsigned int get_paca_psize(unsigned long addr)
825 {
826         return get_paca()->context.user_psize;
827 }
828 #endif
829
830 /*
831  * Demote a segment to using 4k pages.
832  * For now this makes the whole process use 4k pages.
833  */
834 #ifdef CONFIG_PPC_64K_PAGES
835 void demote_segment_4k(struct mm_struct *mm, unsigned long addr)
836 {
837         if (get_slice_psize(mm, addr) == MMU_PAGE_4K)
838                 return;
839         slice_set_range_psize(mm, addr, 1, MMU_PAGE_4K);
840 #ifdef CONFIG_SPU_BASE
841         spu_flush_all_slbs(mm);
842 #endif
843         if (get_paca_psize(addr) != MMU_PAGE_4K) {
844                 get_paca()->context = mm->context;
845                 slb_flush_and_rebolt();
846         }
847 }
848 #endif /* CONFIG_PPC_64K_PAGES */
849
850 #ifdef CONFIG_PPC_SUBPAGE_PROT
851 /*
852  * This looks up a 2-bit protection code for a 4k subpage of a 64k page.
853  * Userspace sets the subpage permissions using the subpage_prot system call.
854  *
855  * Result is 0: full permissions, _PAGE_RW: read-only,
856  * _PAGE_USER or _PAGE_USER|_PAGE_RW: no access.
857  */
858 static int subpage_protection(struct mm_struct *mm, unsigned long ea)
859 {
860         struct subpage_prot_table *spt = &mm->context.spt;
861         u32 spp = 0;
862         u32 **sbpm, *sbpp;
863
864         if (ea >= spt->maxaddr)
865                 return 0;
866         if (ea < 0x100000000) {
867                 /* addresses below 4GB use spt->low_prot */
868                 sbpm = spt->low_prot;
869         } else {
870                 sbpm = spt->protptrs[ea >> SBP_L3_SHIFT];
871                 if (!sbpm)
872                         return 0;
873         }
874         sbpp = sbpm[(ea >> SBP_L2_SHIFT) & (SBP_L2_COUNT - 1)];
875         if (!sbpp)
876                 return 0;
877         spp = sbpp[(ea >> PAGE_SHIFT) & (SBP_L1_COUNT - 1)];
878
879         /* extract 2-bit bitfield for this 4k subpage */
880         spp >>= 30 - 2 * ((ea >> 12) & 0xf);
881
882         /* turn 0,1,2,3 into combination of _PAGE_USER and _PAGE_RW */
883         spp = ((spp & 2) ? _PAGE_USER : 0) | ((spp & 1) ? _PAGE_RW : 0);
884         return spp;
885 }
886
887 #else /* CONFIG_PPC_SUBPAGE_PROT */
888 static inline int subpage_protection(struct mm_struct *mm, unsigned long ea)
889 {
890         return 0;
891 }
892 #endif
893
894 void hash_failure_debug(unsigned long ea, unsigned long access,
895                         unsigned long vsid, unsigned long trap,
896                         int ssize, int psize, unsigned long pte)
897 {
898         if (!printk_ratelimit())
899                 return;
900         pr_info("mm: Hashing failure ! EA=0x%lx access=0x%lx current=%s\n",
901                 ea, access, current->comm);
902         pr_info("    trap=0x%lx vsid=0x%lx ssize=%d psize=%d pte=0x%lx\n",
903                 trap, vsid, ssize, psize, pte);
904 }
905
906 /* Result code is:
907  *  0 - handled
908  *  1 - normal page fault
909  * -1 - critical hash insertion error
910  * -2 - access not permitted by subpage protection mechanism
911  */
912 int hash_page(unsigned long ea, unsigned long access, unsigned long trap)
913 {
914         pgd_t *pgdir;
915         unsigned long vsid;
916         struct mm_struct *mm;
917         pte_t *ptep;
918         unsigned hugeshift;
919         const struct cpumask *tmp;
920         int rc, user_region = 0, local = 0;
921         int psize, ssize;
922
923         DBG_LOW("hash_page(ea=%016lx, access=%lx, trap=%lx\n",
924                 ea, access, trap);
925
926         if ((ea & ~REGION_MASK) >= PGTABLE_RANGE) {
927                 DBG_LOW(" out of pgtable range !\n");
928                 return 1;
929         }
930
931         /* Get region & vsid */
932         switch (REGION_ID(ea)) {
933         case USER_REGION_ID:
934                 user_region = 1;
935                 mm = current->mm;
936                 if (! mm) {
937                         DBG_LOW(" user region with no mm !\n");
938                         return 1;
939                 }
940                 psize = get_slice_psize(mm, ea);
941                 ssize = user_segment_size(ea);
942                 vsid = get_vsid(mm->context.id, ea, ssize);
943                 break;
944         case VMALLOC_REGION_ID:
945                 mm = &init_mm;
946                 vsid = get_kernel_vsid(ea, mmu_kernel_ssize);
947                 if (ea < VMALLOC_END)
948                         psize = mmu_vmalloc_psize;
949                 else
950                         psize = mmu_io_psize;
951                 ssize = mmu_kernel_ssize;
952                 break;
953         default:
954                 /* Not a valid range
955                  * Send the problem up to do_page_fault 
956                  */
957                 return 1;
958         }
959         DBG_LOW(" mm=%p, mm->pgdir=%p, vsid=%016lx\n", mm, mm->pgd, vsid);
960
961         /* Get pgdir */
962         pgdir = mm->pgd;
963         if (pgdir == NULL)
964                 return 1;
965
966         /* Check CPU locality */
967         tmp = cpumask_of(smp_processor_id());
968         if (user_region && cpumask_equal(mm_cpumask(mm), tmp))
969                 local = 1;
970
971 #ifndef CONFIG_PPC_64K_PAGES
972         /* If we use 4K pages and our psize is not 4K, then we might
973          * be hitting a special driver mapping, and need to align the
974          * address before we fetch the PTE.
975          *
976          * It could also be a hugepage mapping, in which case this is
977          * not necessary, but it's not harmful, either.
978          */
979         if (psize != MMU_PAGE_4K)
980                 ea &= ~((1ul << mmu_psize_defs[psize].shift) - 1);
981 #endif /* CONFIG_PPC_64K_PAGES */
982
983         /* Get PTE and page size from page tables */
984         ptep = find_linux_pte_or_hugepte(pgdir, ea, &hugeshift);
985         if (ptep == NULL || !pte_present(*ptep)) {
986                 DBG_LOW(" no PTE !\n");
987                 return 1;
988         }
989
990         /* Add _PAGE_PRESENT to the required access perm */
991         access |= _PAGE_PRESENT;
992
993         /* Pre-check access permissions (will be re-checked atomically
994          * in __hash_page_XX but this pre-check is a fast path
995          */
996         if (access & ~pte_val(*ptep)) {
997                 DBG_LOW(" no access !\n");
998                 return 1;
999         }
1000
1001 #ifdef CONFIG_HUGETLB_PAGE
1002         if (hugeshift)
1003                 return __hash_page_huge(ea, access, vsid, ptep, trap, local,
1004                                         ssize, hugeshift, psize);
1005 #endif /* CONFIG_HUGETLB_PAGE */
1006
1007 #ifndef CONFIG_PPC_64K_PAGES
1008         DBG_LOW(" i-pte: %016lx\n", pte_val(*ptep));
1009 #else
1010         DBG_LOW(" i-pte: %016lx %016lx\n", pte_val(*ptep),
1011                 pte_val(*(ptep + PTRS_PER_PTE)));
1012 #endif
1013         /* Do actual hashing */
1014 #ifdef CONFIG_PPC_64K_PAGES
1015         /* If _PAGE_4K_PFN is set, make sure this is a 4k segment */
1016         if ((pte_val(*ptep) & _PAGE_4K_PFN) && psize == MMU_PAGE_64K) {
1017                 demote_segment_4k(mm, ea);
1018                 psize = MMU_PAGE_4K;
1019         }
1020
1021         /* If this PTE is non-cacheable and we have restrictions on
1022          * using non cacheable large pages, then we switch to 4k
1023          */
1024         if (mmu_ci_restrictions && psize == MMU_PAGE_64K &&
1025             (pte_val(*ptep) & _PAGE_NO_CACHE)) {
1026                 if (user_region) {
1027                         demote_segment_4k(mm, ea);
1028                         psize = MMU_PAGE_4K;
1029                 } else if (ea < VMALLOC_END) {
1030                         /*
1031                          * some driver did a non-cacheable mapping
1032                          * in vmalloc space, so switch vmalloc
1033                          * to 4k pages
1034                          */
1035                         printk(KERN_ALERT "Reducing vmalloc segment "
1036                                "to 4kB pages because of "
1037                                "non-cacheable mapping\n");
1038                         psize = mmu_vmalloc_psize = MMU_PAGE_4K;
1039 #ifdef CONFIG_SPU_BASE
1040                         spu_flush_all_slbs(mm);
1041 #endif
1042                 }
1043         }
1044         if (user_region) {
1045                 if (psize != get_paca_psize(ea)) {
1046                         get_paca()->context = mm->context;
1047                         slb_flush_and_rebolt();
1048                 }
1049         } else if (get_paca()->vmalloc_sllp !=
1050                    mmu_psize_defs[mmu_vmalloc_psize].sllp) {
1051                 get_paca()->vmalloc_sllp =
1052                         mmu_psize_defs[mmu_vmalloc_psize].sllp;
1053                 slb_vmalloc_update();
1054         }
1055 #endif /* CONFIG_PPC_64K_PAGES */
1056
1057 #ifdef CONFIG_PPC_HAS_HASH_64K
1058         if (psize == MMU_PAGE_64K)
1059                 rc = __hash_page_64K(ea, access, vsid, ptep, trap, local, ssize);
1060         else
1061 #endif /* CONFIG_PPC_HAS_HASH_64K */
1062         {
1063                 int spp = subpage_protection(mm, ea);
1064                 if (access & spp)
1065                         rc = -2;
1066                 else
1067                         rc = __hash_page_4K(ea, access, vsid, ptep, trap,
1068                                             local, ssize, spp);
1069         }
1070
1071         /* Dump some info in case of hash insertion failure, they should
1072          * never happen so it is really useful to know if/when they do
1073          */
1074         if (rc == -1)
1075                 hash_failure_debug(ea, access, vsid, trap, ssize, psize,
1076                                    pte_val(*ptep));
1077 #ifndef CONFIG_PPC_64K_PAGES
1078         DBG_LOW(" o-pte: %016lx\n", pte_val(*ptep));
1079 #else
1080         DBG_LOW(" o-pte: %016lx %016lx\n", pte_val(*ptep),
1081                 pte_val(*(ptep + PTRS_PER_PTE)));
1082 #endif
1083         DBG_LOW(" -> rc=%d\n", rc);
1084         return rc;
1085 }
1086 EXPORT_SYMBOL_GPL(hash_page);
1087
1088 void hash_preload(struct mm_struct *mm, unsigned long ea,
1089                   unsigned long access, unsigned long trap)
1090 {
1091         unsigned long vsid;
1092         pgd_t *pgdir;
1093         pte_t *ptep;
1094         unsigned long flags;
1095         int rc, ssize, local = 0;
1096
1097         BUG_ON(REGION_ID(ea) != USER_REGION_ID);
1098
1099 #ifdef CONFIG_PPC_MM_SLICES
1100         /* We only prefault standard pages for now */
1101         if (unlikely(get_slice_psize(mm, ea) != mm->context.user_psize))
1102                 return;
1103 #endif
1104
1105         DBG_LOW("hash_preload(mm=%p, mm->pgdir=%p, ea=%016lx, access=%lx,"
1106                 " trap=%lx\n", mm, mm->pgd, ea, access, trap);
1107
1108         /* Get Linux PTE if available */
1109         pgdir = mm->pgd;
1110         if (pgdir == NULL)
1111                 return;
1112         ptep = find_linux_pte(pgdir, ea);
1113         if (!ptep)
1114                 return;
1115
1116 #ifdef CONFIG_PPC_64K_PAGES
1117         /* If either _PAGE_4K_PFN or _PAGE_NO_CACHE is set (and we are on
1118          * a 64K kernel), then we don't preload, hash_page() will take
1119          * care of it once we actually try to access the page.
1120          * That way we don't have to duplicate all of the logic for segment
1121          * page size demotion here
1122          */
1123         if (pte_val(*ptep) & (_PAGE_4K_PFN | _PAGE_NO_CACHE))
1124                 return;
1125 #endif /* CONFIG_PPC_64K_PAGES */
1126
1127         /* Get VSID */
1128         ssize = user_segment_size(ea);
1129         vsid = get_vsid(mm->context.id, ea, ssize);
1130
1131         /* Hash doesn't like irqs */
1132         local_irq_save(flags);
1133
1134         /* Is that local to this CPU ? */
1135         if (cpumask_equal(mm_cpumask(mm), cpumask_of(smp_processor_id())))
1136                 local = 1;
1137
1138         /* Hash it in */
1139 #ifdef CONFIG_PPC_HAS_HASH_64K
1140         if (mm->context.user_psize == MMU_PAGE_64K)
1141                 rc = __hash_page_64K(ea, access, vsid, ptep, trap, local, ssize);
1142         else
1143 #endif /* CONFIG_PPC_HAS_HASH_64K */
1144                 rc = __hash_page_4K(ea, access, vsid, ptep, trap, local, ssize,
1145                                     subpage_protection(mm, ea));
1146
1147         /* Dump some info in case of hash insertion failure, they should
1148          * never happen so it is really useful to know if/when they do
1149          */
1150         if (rc == -1)
1151                 hash_failure_debug(ea, access, vsid, trap, ssize,
1152                                    mm->context.user_psize, pte_val(*ptep));
1153
1154         local_irq_restore(flags);
1155 }
1156
1157 /* WARNING: This is called from hash_low_64.S, if you change this prototype,
1158  *          do not forget to update the assembly call site !
1159  */
1160 void flush_hash_page(unsigned long va, real_pte_t pte, int psize, int ssize,
1161                      int local)
1162 {
1163         unsigned long hash, index, shift, hidx, slot;
1164
1165         DBG_LOW("flush_hash_page(va=%016lx)\n", va);
1166         pte_iterate_hashed_subpages(pte, psize, va, index, shift) {
1167                 hash = hpt_hash(va, shift, ssize);
1168                 hidx = __rpte_to_hidx(pte, index);
1169                 if (hidx & _PTEIDX_SECONDARY)
1170                         hash = ~hash;
1171                 slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1172                 slot += hidx & _PTEIDX_GROUP_IX;
1173                 DBG_LOW(" sub %ld: hash=%lx, hidx=%lx\n", index, slot, hidx);
1174                 ppc_md.hpte_invalidate(slot, va, psize, ssize, local);
1175         } pte_iterate_hashed_end();
1176 }
1177
1178 void flush_hash_range(unsigned long number, int local)
1179 {
1180         if (ppc_md.flush_hash_range)
1181                 ppc_md.flush_hash_range(number, local);
1182         else {
1183                 int i;
1184                 struct ppc64_tlb_batch *batch =
1185                         &__get_cpu_var(ppc64_tlb_batch);
1186
1187                 for (i = 0; i < number; i++)
1188                         flush_hash_page(batch->vaddr[i], batch->pte[i],
1189                                         batch->psize, batch->ssize, local);
1190         }
1191 }
1192
1193 /*
1194  * low_hash_fault is called when we the low level hash code failed
1195  * to instert a PTE due to an hypervisor error
1196  */
1197 void low_hash_fault(struct pt_regs *regs, unsigned long address, int rc)
1198 {
1199         if (user_mode(regs)) {
1200 #ifdef CONFIG_PPC_SUBPAGE_PROT
1201                 if (rc == -2)
1202                         _exception(SIGSEGV, regs, SEGV_ACCERR, address);
1203                 else
1204 #endif
1205                         _exception(SIGBUS, regs, BUS_ADRERR, address);
1206         } else
1207                 bad_page_fault(regs, address, SIGBUS);
1208 }
1209
1210 #ifdef CONFIG_DEBUG_PAGEALLOC
1211 static void kernel_map_linear_page(unsigned long vaddr, unsigned long lmi)
1212 {
1213         unsigned long hash, hpteg;
1214         unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
1215         unsigned long va = hpt_va(vaddr, vsid, mmu_kernel_ssize);
1216         unsigned long mode = htab_convert_pte_flags(PAGE_KERNEL);
1217         int ret;
1218
1219         hash = hpt_hash(va, PAGE_SHIFT, mmu_kernel_ssize);
1220         hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP);
1221
1222         ret = ppc_md.hpte_insert(hpteg, va, __pa(vaddr),
1223                                  mode, HPTE_V_BOLTED,
1224                                  mmu_linear_psize, mmu_kernel_ssize);
1225         BUG_ON (ret < 0);
1226         spin_lock(&linear_map_hash_lock);
1227         BUG_ON(linear_map_hash_slots[lmi] & 0x80);
1228         linear_map_hash_slots[lmi] = ret | 0x80;
1229         spin_unlock(&linear_map_hash_lock);
1230 }
1231
1232 static void kernel_unmap_linear_page(unsigned long vaddr, unsigned long lmi)
1233 {
1234         unsigned long hash, hidx, slot;
1235         unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
1236         unsigned long va = hpt_va(vaddr, vsid, mmu_kernel_ssize);
1237
1238         hash = hpt_hash(va, PAGE_SHIFT, mmu_kernel_ssize);
1239         spin_lock(&linear_map_hash_lock);
1240         BUG_ON(!(linear_map_hash_slots[lmi] & 0x80));
1241         hidx = linear_map_hash_slots[lmi] & 0x7f;
1242         linear_map_hash_slots[lmi] = 0;
1243         spin_unlock(&linear_map_hash_lock);
1244         if (hidx & _PTEIDX_SECONDARY)
1245                 hash = ~hash;
1246         slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1247         slot += hidx & _PTEIDX_GROUP_IX;
1248         ppc_md.hpte_invalidate(slot, va, mmu_linear_psize, mmu_kernel_ssize, 0);
1249 }
1250
1251 void kernel_map_pages(struct page *page, int numpages, int enable)
1252 {
1253         unsigned long flags, vaddr, lmi;
1254         int i;
1255
1256         local_irq_save(flags);
1257         for (i = 0; i < numpages; i++, page++) {
1258                 vaddr = (unsigned long)page_address(page);
1259                 lmi = __pa(vaddr) >> PAGE_SHIFT;
1260                 if (lmi >= linear_map_hash_count)
1261                         continue;
1262                 if (enable)
1263                         kernel_map_linear_page(vaddr, lmi);
1264                 else
1265                         kernel_unmap_linear_page(vaddr, lmi);
1266         }
1267         local_irq_restore(flags);
1268 }
1269 #endif /* CONFIG_DEBUG_PAGEALLOC */
1270
1271 void setup_initial_memory_limit(phys_addr_t first_memblock_base,
1272                                 phys_addr_t first_memblock_size)
1273 {
1274         /* We don't currently support the first MEMBLOCK not mapping 0
1275          * physical on those processors
1276          */
1277         BUG_ON(first_memblock_base != 0);
1278
1279         /* On LPAR systems, the first entry is our RMA region,
1280          * non-LPAR 64-bit hash MMU systems don't have a limitation
1281          * on real mode access, but using the first entry works well
1282          * enough. We also clamp it to 1G to avoid some funky things
1283          * such as RTAS bugs etc...
1284          */
1285         ppc64_rma_size = min_t(u64, first_memblock_size, 0x40000000);
1286
1287         /* Finally limit subsequent allocations */
1288         memblock_set_current_limit(ppc64_rma_size);
1289 }