]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - arch/powerpc/platforms/iseries/mf.c
powerpc: move iSeries/iSeries_pci.h to platforms/iseries
[karo-tx-linux.git] / arch / powerpc / platforms / iseries / mf.c
1 /*
2  * Copyright (C) 2001 Troy D. Armstrong  IBM Corporation
3  * Copyright (C) 2004-2005 Stephen Rothwell  IBM Corporation
4  *
5  * This modules exists as an interface between a Linux secondary partition
6  * running on an iSeries and the primary partition's Virtual Service
7  * Processor (VSP) object.  The VSP has final authority over powering on/off
8  * all partitions in the iSeries.  It also provides miscellaneous low-level
9  * machine facility type operations.
10  *
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License as published by
14  * the Free Software Foundation; either version 2 of the License, or
15  * (at your option) any later version.
16  *
17  * This program is distributed in the hope that it will be useful,
18  * but WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  * GNU General Public License for more details.
21  *
22  * You should have received a copy of the GNU General Public License
23  * along with this program; if not, write to the Free Software
24  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
25  */
26
27 #include <linux/types.h>
28 #include <linux/errno.h>
29 #include <linux/kernel.h>
30 #include <linux/init.h>
31 #include <linux/completion.h>
32 #include <linux/delay.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/bcd.h>
35
36 #include <asm/time.h>
37 #include <asm/uaccess.h>
38 #include <asm/paca.h>
39 #include <asm/abs_addr.h>
40 #include <asm/iSeries/vio.h>
41 #include <asm/iSeries/mf.h>
42 #include <asm/iSeries/HvLpConfig.h>
43 #include <asm/iSeries/ItLpQueue.h>
44
45 #include "setup.h"
46
47 extern int piranha_simulator;
48
49 /*
50  * This is the structure layout for the Machine Facilites LPAR event
51  * flows.
52  */
53 struct vsp_cmd_data {
54         u64 token;
55         u16 cmd;
56         HvLpIndex lp_index;
57         u8 result_code;
58         u32 reserved;
59         union {
60                 u64 state;      /* GetStateOut */
61                 u64 ipl_type;   /* GetIplTypeOut, Function02SelectIplTypeIn */
62                 u64 ipl_mode;   /* GetIplModeOut, Function02SelectIplModeIn */
63                 u64 page[4];    /* GetSrcHistoryIn */
64                 u64 flag;       /* GetAutoIplWhenPrimaryIplsOut,
65                                    SetAutoIplWhenPrimaryIplsIn,
66                                    WhiteButtonPowerOffIn,
67                                    Function08FastPowerOffIn,
68                                    IsSpcnRackPowerIncompleteOut */
69                 struct {
70                         u64 token;
71                         u64 address_type;
72                         u64 side;
73                         u32 length;
74                         u32 offset;
75                 } kern;         /* SetKernelImageIn, GetKernelImageIn,
76                                    SetKernelCmdLineIn, GetKernelCmdLineIn */
77                 u32 length_out; /* GetKernelImageOut, GetKernelCmdLineOut */
78                 u8 reserved[80];
79         } sub_data;
80 };
81
82 struct vsp_rsp_data {
83         struct completion com;
84         struct vsp_cmd_data *response;
85 };
86
87 struct alloc_data {
88         u16 size;
89         u16 type;
90         u32 count;
91         u16 reserved1;
92         u8 reserved2;
93         HvLpIndex target_lp;
94 };
95
96 struct ce_msg_data;
97
98 typedef void (*ce_msg_comp_hdlr)(void *token, struct ce_msg_data *vsp_cmd_rsp);
99
100 struct ce_msg_comp_data {
101         ce_msg_comp_hdlr handler;
102         void *token;
103 };
104
105 struct ce_msg_data {
106         u8 ce_msg[12];
107         char reserved[4];
108         struct ce_msg_comp_data *completion;
109 };
110
111 struct io_mf_lp_event {
112         struct HvLpEvent hp_lp_event;
113         u16 subtype_result_code;
114         u16 reserved1;
115         u32 reserved2;
116         union {
117                 struct alloc_data alloc;
118                 struct ce_msg_data ce_msg;
119                 struct vsp_cmd_data vsp_cmd;
120         } data;
121 };
122
123 #define subtype_data(a, b, c, d)        \
124                 (((a) << 24) + ((b) << 16) + ((c) << 8) + (d))
125
126 /*
127  * All outgoing event traffic is kept on a FIFO queue.  The first
128  * pointer points to the one that is outstanding, and all new
129  * requests get stuck on the end.  Also, we keep a certain number of
130  * preallocated pending events so that we can operate very early in
131  * the boot up sequence (before kmalloc is ready).
132  */
133 struct pending_event {
134         struct pending_event *next;
135         struct io_mf_lp_event event;
136         MFCompleteHandler hdlr;
137         char dma_data[72];
138         unsigned dma_data_length;
139         unsigned remote_address;
140 };
141 static spinlock_t pending_event_spinlock;
142 static struct pending_event *pending_event_head;
143 static struct pending_event *pending_event_tail;
144 static struct pending_event *pending_event_avail;
145 static struct pending_event pending_event_prealloc[16];
146
147 /*
148  * Put a pending event onto the available queue, so it can get reused.
149  * Attention! You must have the pending_event_spinlock before calling!
150  */
151 static void free_pending_event(struct pending_event *ev)
152 {
153         if (ev != NULL) {
154                 ev->next = pending_event_avail;
155                 pending_event_avail = ev;
156         }
157 }
158
159 /*
160  * Enqueue the outbound event onto the stack.  If the queue was
161  * empty to begin with, we must also issue it via the Hypervisor
162  * interface.  There is a section of code below that will touch
163  * the first stack pointer without the protection of the pending_event_spinlock.
164  * This is OK, because we know that nobody else will be modifying
165  * the first pointer when we do this.
166  */
167 static int signal_event(struct pending_event *ev)
168 {
169         int rc = 0;
170         unsigned long flags;
171         int go = 1;
172         struct pending_event *ev1;
173         HvLpEvent_Rc hv_rc;
174
175         /* enqueue the event */
176         if (ev != NULL) {
177                 ev->next = NULL;
178                 spin_lock_irqsave(&pending_event_spinlock, flags);
179                 if (pending_event_head == NULL)
180                         pending_event_head = ev;
181                 else {
182                         go = 0;
183                         pending_event_tail->next = ev;
184                 }
185                 pending_event_tail = ev;
186                 spin_unlock_irqrestore(&pending_event_spinlock, flags);
187         }
188
189         /* send the event */
190         while (go) {
191                 go = 0;
192
193                 /* any DMA data to send beforehand? */
194                 if (pending_event_head->dma_data_length > 0)
195                         HvCallEvent_dmaToSp(pending_event_head->dma_data,
196                                         pending_event_head->remote_address,
197                                         pending_event_head->dma_data_length,
198                                         HvLpDma_Direction_LocalToRemote);
199
200                 hv_rc = HvCallEvent_signalLpEvent(
201                                 &pending_event_head->event.hp_lp_event);
202                 if (hv_rc != HvLpEvent_Rc_Good) {
203                         printk(KERN_ERR "mf.c: HvCallEvent_signalLpEvent() "
204                                         "failed with %d\n", (int)hv_rc);
205
206                         spin_lock_irqsave(&pending_event_spinlock, flags);
207                         ev1 = pending_event_head;
208                         pending_event_head = pending_event_head->next;
209                         if (pending_event_head != NULL)
210                                 go = 1;
211                         spin_unlock_irqrestore(&pending_event_spinlock, flags);
212
213                         if (ev1 == ev)
214                                 rc = -EIO;
215                         else if (ev1->hdlr != NULL)
216                                 (*ev1->hdlr)((void *)ev1->event.hp_lp_event.xCorrelationToken, -EIO);
217
218                         spin_lock_irqsave(&pending_event_spinlock, flags);
219                         free_pending_event(ev1);
220                         spin_unlock_irqrestore(&pending_event_spinlock, flags);
221                 }
222         }
223
224         return rc;
225 }
226
227 /*
228  * Allocate a new pending_event structure, and initialize it.
229  */
230 static struct pending_event *new_pending_event(void)
231 {
232         struct pending_event *ev = NULL;
233         HvLpIndex primary_lp = HvLpConfig_getPrimaryLpIndex();
234         unsigned long flags;
235         struct HvLpEvent *hev;
236
237         spin_lock_irqsave(&pending_event_spinlock, flags);
238         if (pending_event_avail != NULL) {
239                 ev = pending_event_avail;
240                 pending_event_avail = pending_event_avail->next;
241         }
242         spin_unlock_irqrestore(&pending_event_spinlock, flags);
243         if (ev == NULL) {
244                 ev = kmalloc(sizeof(struct pending_event), GFP_ATOMIC);
245                 if (ev == NULL) {
246                         printk(KERN_ERR "mf.c: unable to kmalloc %ld bytes\n",
247                                         sizeof(struct pending_event));
248                         return NULL;
249                 }
250         }
251         memset(ev, 0, sizeof(struct pending_event));
252         hev = &ev->event.hp_lp_event;
253         hev->xFlags.xValid = 1;
254         hev->xFlags.xAckType = HvLpEvent_AckType_ImmediateAck;
255         hev->xFlags.xAckInd = HvLpEvent_AckInd_DoAck;
256         hev->xFlags.xFunction = HvLpEvent_Function_Int;
257         hev->xType = HvLpEvent_Type_MachineFac;
258         hev->xSourceLp = HvLpConfig_getLpIndex();
259         hev->xTargetLp = primary_lp;
260         hev->xSizeMinus1 = sizeof(ev->event) - 1;
261         hev->xRc = HvLpEvent_Rc_Good;
262         hev->xSourceInstanceId = HvCallEvent_getSourceLpInstanceId(primary_lp,
263                         HvLpEvent_Type_MachineFac);
264         hev->xTargetInstanceId = HvCallEvent_getTargetLpInstanceId(primary_lp,
265                         HvLpEvent_Type_MachineFac);
266
267         return ev;
268 }
269
270 static int signal_vsp_instruction(struct vsp_cmd_data *vsp_cmd)
271 {
272         struct pending_event *ev = new_pending_event();
273         int rc;
274         struct vsp_rsp_data response;
275
276         if (ev == NULL)
277                 return -ENOMEM;
278
279         init_completion(&response.com);
280         response.response = vsp_cmd;
281         ev->event.hp_lp_event.xSubtype = 6;
282         ev->event.hp_lp_event.x.xSubtypeData =
283                 subtype_data('M', 'F',  'V',  'I');
284         ev->event.data.vsp_cmd.token = (u64)&response;
285         ev->event.data.vsp_cmd.cmd = vsp_cmd->cmd;
286         ev->event.data.vsp_cmd.lp_index = HvLpConfig_getLpIndex();
287         ev->event.data.vsp_cmd.result_code = 0xFF;
288         ev->event.data.vsp_cmd.reserved = 0;
289         memcpy(&(ev->event.data.vsp_cmd.sub_data),
290                         &(vsp_cmd->sub_data), sizeof(vsp_cmd->sub_data));
291         mb();
292
293         rc = signal_event(ev);
294         if (rc == 0)
295                 wait_for_completion(&response.com);
296         return rc;
297 }
298
299
300 /*
301  * Send a 12-byte CE message to the primary partition VSP object
302  */
303 static int signal_ce_msg(char *ce_msg, struct ce_msg_comp_data *completion)
304 {
305         struct pending_event *ev = new_pending_event();
306
307         if (ev == NULL)
308                 return -ENOMEM;
309
310         ev->event.hp_lp_event.xSubtype = 0;
311         ev->event.hp_lp_event.x.xSubtypeData =
312                 subtype_data('M',  'F',  'C',  'E');
313         memcpy(ev->event.data.ce_msg.ce_msg, ce_msg, 12);
314         ev->event.data.ce_msg.completion = completion;
315         return signal_event(ev);
316 }
317
318 /*
319  * Send a 12-byte CE message (with no data) to the primary partition VSP object
320  */
321 static int signal_ce_msg_simple(u8 ce_op, struct ce_msg_comp_data *completion)
322 {
323         u8 ce_msg[12];
324
325         memset(ce_msg, 0, sizeof(ce_msg));
326         ce_msg[3] = ce_op;
327         return signal_ce_msg(ce_msg, completion);
328 }
329
330 /*
331  * Send a 12-byte CE message and DMA data to the primary partition VSP object
332  */
333 static int dma_and_signal_ce_msg(char *ce_msg,
334                 struct ce_msg_comp_data *completion, void *dma_data,
335                 unsigned dma_data_length, unsigned remote_address)
336 {
337         struct pending_event *ev = new_pending_event();
338
339         if (ev == NULL)
340                 return -ENOMEM;
341
342         ev->event.hp_lp_event.xSubtype = 0;
343         ev->event.hp_lp_event.x.xSubtypeData =
344                 subtype_data('M', 'F', 'C', 'E');
345         memcpy(ev->event.data.ce_msg.ce_msg, ce_msg, 12);
346         ev->event.data.ce_msg.completion = completion;
347         memcpy(ev->dma_data, dma_data, dma_data_length);
348         ev->dma_data_length = dma_data_length;
349         ev->remote_address = remote_address;
350         return signal_event(ev);
351 }
352
353 /*
354  * Initiate a nice (hopefully) shutdown of Linux.  We simply are
355  * going to try and send the init process a SIGINT signal.  If
356  * this fails (why?), we'll simply force it off in a not-so-nice
357  * manner.
358  */
359 static int shutdown(void)
360 {
361         int rc = kill_proc(1, SIGINT, 1);
362
363         if (rc) {
364                 printk(KERN_ALERT "mf.c: SIGINT to init failed (%d), "
365                                 "hard shutdown commencing\n", rc);
366                 mf_power_off();
367         } else
368                 printk(KERN_INFO "mf.c: init has been successfully notified "
369                                 "to proceed with shutdown\n");
370         return rc;
371 }
372
373 /*
374  * The primary partition VSP object is sending us a new
375  * event flow.  Handle it...
376  */
377 static void handle_int(struct io_mf_lp_event *event)
378 {
379         struct ce_msg_data *ce_msg_data;
380         struct ce_msg_data *pce_msg_data;
381         unsigned long flags;
382         struct pending_event *pev;
383
384         /* ack the interrupt */
385         event->hp_lp_event.xRc = HvLpEvent_Rc_Good;
386         HvCallEvent_ackLpEvent(&event->hp_lp_event);
387
388         /* process interrupt */
389         switch (event->hp_lp_event.xSubtype) {
390         case 0: /* CE message */
391                 ce_msg_data = &event->data.ce_msg;
392                 switch (ce_msg_data->ce_msg[3]) {
393                 case 0x5B:      /* power control notification */
394                         if ((ce_msg_data->ce_msg[5] & 0x20) != 0) {
395                                 printk(KERN_INFO "mf.c: Commencing partition shutdown\n");
396                                 if (shutdown() == 0)
397                                         signal_ce_msg_simple(0xDB, NULL);
398                         }
399                         break;
400                 case 0xC0:      /* get time */
401                         spin_lock_irqsave(&pending_event_spinlock, flags);
402                         pev = pending_event_head;
403                         if (pev != NULL)
404                                 pending_event_head = pending_event_head->next;
405                         spin_unlock_irqrestore(&pending_event_spinlock, flags);
406                         if (pev == NULL)
407                                 break;
408                         pce_msg_data = &pev->event.data.ce_msg;
409                         if (pce_msg_data->ce_msg[3] != 0x40)
410                                 break;
411                         if (pce_msg_data->completion != NULL) {
412                                 ce_msg_comp_hdlr handler =
413                                         pce_msg_data->completion->handler;
414                                 void *token = pce_msg_data->completion->token;
415
416                                 if (handler != NULL)
417                                         (*handler)(token, ce_msg_data);
418                         }
419                         spin_lock_irqsave(&pending_event_spinlock, flags);
420                         free_pending_event(pev);
421                         spin_unlock_irqrestore(&pending_event_spinlock, flags);
422                         /* send next waiting event */
423                         if (pending_event_head != NULL)
424                                 signal_event(NULL);
425                         break;
426                 }
427                 break;
428         case 1: /* IT sys shutdown */
429                 printk(KERN_INFO "mf.c: Commencing system shutdown\n");
430                 shutdown();
431                 break;
432         }
433 }
434
435 /*
436  * The primary partition VSP object is acknowledging the receipt
437  * of a flow we sent to them.  If there are other flows queued
438  * up, we must send another one now...
439  */
440 static void handle_ack(struct io_mf_lp_event *event)
441 {
442         unsigned long flags;
443         struct pending_event *two = NULL;
444         unsigned long free_it = 0;
445         struct ce_msg_data *ce_msg_data;
446         struct ce_msg_data *pce_msg_data;
447         struct vsp_rsp_data *rsp;
448
449         /* handle current event */
450         if (pending_event_head == NULL) {
451                 printk(KERN_ERR "mf.c: stack empty for receiving ack\n");
452                 return;
453         }
454
455         switch (event->hp_lp_event.xSubtype) {
456         case 0:     /* CE msg */
457                 ce_msg_data = &event->data.ce_msg;
458                 if (ce_msg_data->ce_msg[3] != 0x40) {
459                         free_it = 1;
460                         break;
461                 }
462                 if (ce_msg_data->ce_msg[2] == 0)
463                         break;
464                 free_it = 1;
465                 pce_msg_data = &pending_event_head->event.data.ce_msg;
466                 if (pce_msg_data->completion != NULL) {
467                         ce_msg_comp_hdlr handler =
468                                 pce_msg_data->completion->handler;
469                         void *token = pce_msg_data->completion->token;
470
471                         if (handler != NULL)
472                                 (*handler)(token, ce_msg_data);
473                 }
474                 break;
475         case 4: /* allocate */
476         case 5: /* deallocate */
477                 if (pending_event_head->hdlr != NULL)
478                         (*pending_event_head->hdlr)((void *)event->hp_lp_event.xCorrelationToken, event->data.alloc.count);
479                 free_it = 1;
480                 break;
481         case 6:
482                 free_it = 1;
483                 rsp = (struct vsp_rsp_data *)event->data.vsp_cmd.token;
484                 if (rsp == NULL) {
485                         printk(KERN_ERR "mf.c: no rsp\n");
486                         break;
487                 }
488                 if (rsp->response != NULL)
489                         memcpy(rsp->response, &event->data.vsp_cmd,
490                                         sizeof(event->data.vsp_cmd));
491                 complete(&rsp->com);
492                 break;
493         }
494
495         /* remove from queue */
496         spin_lock_irqsave(&pending_event_spinlock, flags);
497         if ((pending_event_head != NULL) && (free_it == 1)) {
498                 struct pending_event *oldHead = pending_event_head;
499
500                 pending_event_head = pending_event_head->next;
501                 two = pending_event_head;
502                 free_pending_event(oldHead);
503         }
504         spin_unlock_irqrestore(&pending_event_spinlock, flags);
505
506         /* send next waiting event */
507         if (two != NULL)
508                 signal_event(NULL);
509 }
510
511 /*
512  * This is the generic event handler we are registering with
513  * the Hypervisor.  Ensure the flows are for us, and then
514  * parse it enough to know if it is an interrupt or an
515  * acknowledge.
516  */
517 static void hv_handler(struct HvLpEvent *event, struct pt_regs *regs)
518 {
519         if ((event != NULL) && (event->xType == HvLpEvent_Type_MachineFac)) {
520                 switch(event->xFlags.xFunction) {
521                 case HvLpEvent_Function_Ack:
522                         handle_ack((struct io_mf_lp_event *)event);
523                         break;
524                 case HvLpEvent_Function_Int:
525                         handle_int((struct io_mf_lp_event *)event);
526                         break;
527                 default:
528                         printk(KERN_ERR "mf.c: non ack/int event received\n");
529                         break;
530                 }
531         } else
532                 printk(KERN_ERR "mf.c: alien event received\n");
533 }
534
535 /*
536  * Global kernel interface to allocate and seed events into the
537  * Hypervisor.
538  */
539 void mf_allocate_lp_events(HvLpIndex target_lp, HvLpEvent_Type type,
540                 unsigned size, unsigned count, MFCompleteHandler hdlr,
541                 void *user_token)
542 {
543         struct pending_event *ev = new_pending_event();
544         int rc;
545
546         if (ev == NULL) {
547                 rc = -ENOMEM;
548         } else {
549                 ev->event.hp_lp_event.xSubtype = 4;
550                 ev->event.hp_lp_event.xCorrelationToken = (u64)user_token;
551                 ev->event.hp_lp_event.x.xSubtypeData =
552                         subtype_data('M', 'F', 'M', 'A');
553                 ev->event.data.alloc.target_lp = target_lp;
554                 ev->event.data.alloc.type = type;
555                 ev->event.data.alloc.size = size;
556                 ev->event.data.alloc.count = count;
557                 ev->hdlr = hdlr;
558                 rc = signal_event(ev);
559         }
560         if ((rc != 0) && (hdlr != NULL))
561                 (*hdlr)(user_token, rc);
562 }
563 EXPORT_SYMBOL(mf_allocate_lp_events);
564
565 /*
566  * Global kernel interface to unseed and deallocate events already in
567  * Hypervisor.
568  */
569 void mf_deallocate_lp_events(HvLpIndex target_lp, HvLpEvent_Type type,
570                 unsigned count, MFCompleteHandler hdlr, void *user_token)
571 {
572         struct pending_event *ev = new_pending_event();
573         int rc;
574
575         if (ev == NULL)
576                 rc = -ENOMEM;
577         else {
578                 ev->event.hp_lp_event.xSubtype = 5;
579                 ev->event.hp_lp_event.xCorrelationToken = (u64)user_token;
580                 ev->event.hp_lp_event.x.xSubtypeData =
581                         subtype_data('M', 'F', 'M', 'D');
582                 ev->event.data.alloc.target_lp = target_lp;
583                 ev->event.data.alloc.type = type;
584                 ev->event.data.alloc.count = count;
585                 ev->hdlr = hdlr;
586                 rc = signal_event(ev);
587         }
588         if ((rc != 0) && (hdlr != NULL))
589                 (*hdlr)(user_token, rc);
590 }
591 EXPORT_SYMBOL(mf_deallocate_lp_events);
592
593 /*
594  * Global kernel interface to tell the VSP object in the primary
595  * partition to power this partition off.
596  */
597 void mf_power_off(void)
598 {
599         printk(KERN_INFO "mf.c: Down it goes...\n");
600         signal_ce_msg_simple(0x4d, NULL);
601         for (;;)
602                 ;
603 }
604
605 /*
606  * Global kernel interface to tell the VSP object in the primary
607  * partition to reboot this partition.
608  */
609 void mf_reboot(void)
610 {
611         printk(KERN_INFO "mf.c: Preparing to bounce...\n");
612         signal_ce_msg_simple(0x4e, NULL);
613         for (;;)
614                 ;
615 }
616
617 /*
618  * Display a single word SRC onto the VSP control panel.
619  */
620 void mf_display_src(u32 word)
621 {
622         u8 ce[12];
623
624         memset(ce, 0, sizeof(ce));
625         ce[3] = 0x4a;
626         ce[7] = 0x01;
627         ce[8] = word >> 24;
628         ce[9] = word >> 16;
629         ce[10] = word >> 8;
630         ce[11] = word;
631         signal_ce_msg(ce, NULL);
632 }
633
634 /*
635  * Display a single word SRC of the form "PROGXXXX" on the VSP control panel.
636  */
637 void mf_display_progress(u16 value)
638 {
639         u8 ce[12];
640         u8 src[72];
641
642         memcpy(ce, "\x00\x00\x04\x4A\x00\x00\x00\x48\x00\x00\x00\x00", 12);
643         memcpy(src, "\x01\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00"
644                 "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
645                 "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
646                 "\x00\x00\x00\x00PROGxxxx                        ",
647                 72);
648         src[6] = value >> 8;
649         src[7] = value & 255;
650         src[44] = "0123456789ABCDEF"[(value >> 12) & 15];
651         src[45] = "0123456789ABCDEF"[(value >> 8) & 15];
652         src[46] = "0123456789ABCDEF"[(value >> 4) & 15];
653         src[47] = "0123456789ABCDEF"[value & 15];
654         dma_and_signal_ce_msg(ce, NULL, src, sizeof(src), 9 * 64 * 1024);
655 }
656
657 /*
658  * Clear the VSP control panel.  Used to "erase" an SRC that was
659  * previously displayed.
660  */
661 void mf_clear_src(void)
662 {
663         signal_ce_msg_simple(0x4b, NULL);
664 }
665
666 /*
667  * Initialization code here.
668  */
669 void mf_init(void)
670 {
671         int i;
672
673         /* initialize */
674         spin_lock_init(&pending_event_spinlock);
675         for (i = 0;
676              i < sizeof(pending_event_prealloc) / sizeof(*pending_event_prealloc);
677              ++i)
678                 free_pending_event(&pending_event_prealloc[i]);
679         HvLpEvent_registerHandler(HvLpEvent_Type_MachineFac, &hv_handler);
680
681         /* virtual continue ack */
682         signal_ce_msg_simple(0x57, NULL);
683
684         /* initialization complete */
685         printk(KERN_NOTICE "mf.c: iSeries Linux LPAR Machine Facilities "
686                         "initialized\n");
687 }
688
689 struct rtc_time_data {
690         struct completion com;
691         struct ce_msg_data ce_msg;
692         int rc;
693 };
694
695 static void get_rtc_time_complete(void *token, struct ce_msg_data *ce_msg)
696 {
697         struct rtc_time_data *rtc = token;
698
699         memcpy(&rtc->ce_msg, ce_msg, sizeof(rtc->ce_msg));
700         rtc->rc = 0;
701         complete(&rtc->com);
702 }
703
704 static int rtc_set_tm(int rc, u8 *ce_msg, struct rtc_time *tm)
705 {
706         tm->tm_wday = 0;
707         tm->tm_yday = 0;
708         tm->tm_isdst = 0;
709         if (rc) {
710                 tm->tm_sec = 0;
711                 tm->tm_min = 0;
712                 tm->tm_hour = 0;
713                 tm->tm_mday = 15;
714                 tm->tm_mon = 5;
715                 tm->tm_year = 52;
716                 return rc;
717         }
718
719         if ((ce_msg[2] == 0xa9) ||
720             (ce_msg[2] == 0xaf)) {
721                 /* TOD clock is not set */
722                 tm->tm_sec = 1;
723                 tm->tm_min = 1;
724                 tm->tm_hour = 1;
725                 tm->tm_mday = 10;
726                 tm->tm_mon = 8;
727                 tm->tm_year = 71;
728                 mf_set_rtc(tm);
729         }
730         {
731                 u8 year = ce_msg[5];
732                 u8 sec = ce_msg[6];
733                 u8 min = ce_msg[7];
734                 u8 hour = ce_msg[8];
735                 u8 day = ce_msg[10];
736                 u8 mon = ce_msg[11];
737
738                 BCD_TO_BIN(sec);
739                 BCD_TO_BIN(min);
740                 BCD_TO_BIN(hour);
741                 BCD_TO_BIN(day);
742                 BCD_TO_BIN(mon);
743                 BCD_TO_BIN(year);
744
745                 if (year <= 69)
746                         year += 100;
747
748                 tm->tm_sec = sec;
749                 tm->tm_min = min;
750                 tm->tm_hour = hour;
751                 tm->tm_mday = day;
752                 tm->tm_mon = mon;
753                 tm->tm_year = year;
754         }
755
756         return 0;
757 }
758
759 int mf_get_rtc(struct rtc_time *tm)
760 {
761         struct ce_msg_comp_data ce_complete;
762         struct rtc_time_data rtc_data;
763         int rc;
764
765         memset(&ce_complete, 0, sizeof(ce_complete));
766         memset(&rtc_data, 0, sizeof(rtc_data));
767         init_completion(&rtc_data.com);
768         ce_complete.handler = &get_rtc_time_complete;
769         ce_complete.token = &rtc_data;
770         rc = signal_ce_msg_simple(0x40, &ce_complete);
771         if (rc)
772                 return rc;
773         wait_for_completion(&rtc_data.com);
774         return rtc_set_tm(rtc_data.rc, rtc_data.ce_msg.ce_msg, tm);
775 }
776
777 struct boot_rtc_time_data {
778         int busy;
779         struct ce_msg_data ce_msg;
780         int rc;
781 };
782
783 static void get_boot_rtc_time_complete(void *token, struct ce_msg_data *ce_msg)
784 {
785         struct boot_rtc_time_data *rtc = token;
786
787         memcpy(&rtc->ce_msg, ce_msg, sizeof(rtc->ce_msg));
788         rtc->rc = 0;
789         rtc->busy = 0;
790 }
791
792 int mf_get_boot_rtc(struct rtc_time *tm)
793 {
794         struct ce_msg_comp_data ce_complete;
795         struct boot_rtc_time_data rtc_data;
796         int rc;
797
798         memset(&ce_complete, 0, sizeof(ce_complete));
799         memset(&rtc_data, 0, sizeof(rtc_data));
800         rtc_data.busy = 1;
801         ce_complete.handler = &get_boot_rtc_time_complete;
802         ce_complete.token = &rtc_data;
803         rc = signal_ce_msg_simple(0x40, &ce_complete);
804         if (rc)
805                 return rc;
806         /* We need to poll here as we are not yet taking interrupts */
807         while (rtc_data.busy) {
808                 if (hvlpevent_is_pending())
809                         process_hvlpevents(NULL);
810         }
811         return rtc_set_tm(rtc_data.rc, rtc_data.ce_msg.ce_msg, tm);
812 }
813
814 int mf_set_rtc(struct rtc_time *tm)
815 {
816         char ce_time[12];
817         u8 day, mon, hour, min, sec, y1, y2;
818         unsigned year;
819
820         year = 1900 + tm->tm_year;
821         y1 = year / 100;
822         y2 = year % 100;
823
824         sec = tm->tm_sec;
825         min = tm->tm_min;
826         hour = tm->tm_hour;
827         day = tm->tm_mday;
828         mon = tm->tm_mon + 1;
829
830         BIN_TO_BCD(sec);
831         BIN_TO_BCD(min);
832         BIN_TO_BCD(hour);
833         BIN_TO_BCD(mon);
834         BIN_TO_BCD(day);
835         BIN_TO_BCD(y1);
836         BIN_TO_BCD(y2);
837
838         memset(ce_time, 0, sizeof(ce_time));
839         ce_time[3] = 0x41;
840         ce_time[4] = y1;
841         ce_time[5] = y2;
842         ce_time[6] = sec;
843         ce_time[7] = min;
844         ce_time[8] = hour;
845         ce_time[10] = day;
846         ce_time[11] = mon;
847
848         return signal_ce_msg(ce_time, NULL);
849 }
850
851 #ifdef CONFIG_PROC_FS
852
853 static int proc_mf_dump_cmdline(char *page, char **start, off_t off,
854                 int count, int *eof, void *data)
855 {
856         int len;
857         char *p;
858         struct vsp_cmd_data vsp_cmd;
859         int rc;
860         dma_addr_t dma_addr;
861
862         /* The HV appears to return no more than 256 bytes of command line */
863         if (off >= 256)
864                 return 0;
865         if ((off + count) > 256)
866                 count = 256 - off;
867
868         dma_addr = dma_map_single(iSeries_vio_dev, page, off + count,
869                         DMA_FROM_DEVICE);
870         if (dma_mapping_error(dma_addr))
871                 return -ENOMEM;
872         memset(page, 0, off + count);
873         memset(&vsp_cmd, 0, sizeof(vsp_cmd));
874         vsp_cmd.cmd = 33;
875         vsp_cmd.sub_data.kern.token = dma_addr;
876         vsp_cmd.sub_data.kern.address_type = HvLpDma_AddressType_TceIndex;
877         vsp_cmd.sub_data.kern.side = (u64)data;
878         vsp_cmd.sub_data.kern.length = off + count;
879         mb();
880         rc = signal_vsp_instruction(&vsp_cmd);
881         dma_unmap_single(iSeries_vio_dev, dma_addr, off + count,
882                         DMA_FROM_DEVICE);
883         if (rc)
884                 return rc;
885         if (vsp_cmd.result_code != 0)
886                 return -ENOMEM;
887         p = page;
888         len = 0;
889         while (len < (off + count)) {
890                 if ((*p == '\0') || (*p == '\n')) {
891                         if (*p == '\0')
892                                 *p = '\n';
893                         p++;
894                         len++;
895                         *eof = 1;
896                         break;
897                 }
898                 p++;
899                 len++;
900         }
901
902         if (len < off) {
903                 *eof = 1;
904                 len = 0;
905         }
906         return len;
907 }
908
909 #if 0
910 static int mf_getVmlinuxChunk(char *buffer, int *size, int offset, u64 side)
911 {
912         struct vsp_cmd_data vsp_cmd;
913         int rc;
914         int len = *size;
915         dma_addr_t dma_addr;
916
917         dma_addr = dma_map_single(iSeries_vio_dev, buffer, len,
918                         DMA_FROM_DEVICE);
919         memset(buffer, 0, len);
920         memset(&vsp_cmd, 0, sizeof(vsp_cmd));
921         vsp_cmd.cmd = 32;
922         vsp_cmd.sub_data.kern.token = dma_addr;
923         vsp_cmd.sub_data.kern.address_type = HvLpDma_AddressType_TceIndex;
924         vsp_cmd.sub_data.kern.side = side;
925         vsp_cmd.sub_data.kern.offset = offset;
926         vsp_cmd.sub_data.kern.length = len;
927         mb();
928         rc = signal_vsp_instruction(&vsp_cmd);
929         if (rc == 0) {
930                 if (vsp_cmd.result_code == 0)
931                         *size = vsp_cmd.sub_data.length_out;
932                 else
933                         rc = -ENOMEM;
934         }
935
936         dma_unmap_single(iSeries_vio_dev, dma_addr, len, DMA_FROM_DEVICE);
937
938         return rc;
939 }
940
941 static int proc_mf_dump_vmlinux(char *page, char **start, off_t off,
942                 int count, int *eof, void *data)
943 {
944         int sizeToGet = count;
945
946         if (!capable(CAP_SYS_ADMIN))
947                 return -EACCES;
948
949         if (mf_getVmlinuxChunk(page, &sizeToGet, off, (u64)data) == 0) {
950                 if (sizeToGet != 0) {
951                         *start = page + off;
952                         return sizeToGet;
953                 }
954                 *eof = 1;
955                 return 0;
956         }
957         *eof = 1;
958         return 0;
959 }
960 #endif
961
962 static int proc_mf_dump_side(char *page, char **start, off_t off,
963                 int count, int *eof, void *data)
964 {
965         int len;
966         char mf_current_side = ' ';
967         struct vsp_cmd_data vsp_cmd;
968
969         memset(&vsp_cmd, 0, sizeof(vsp_cmd));
970         vsp_cmd.cmd = 2;
971         vsp_cmd.sub_data.ipl_type = 0;
972         mb();
973
974         if (signal_vsp_instruction(&vsp_cmd) == 0) {
975                 if (vsp_cmd.result_code == 0) {
976                         switch (vsp_cmd.sub_data.ipl_type) {
977                         case 0: mf_current_side = 'A';
978                                 break;
979                         case 1: mf_current_side = 'B';
980                                 break;
981                         case 2: mf_current_side = 'C';
982                                 break;
983                         default:        mf_current_side = 'D';
984                                 break;
985                         }
986                 }
987         }
988
989         len = sprintf(page, "%c\n", mf_current_side);
990
991         if (len <= (off + count))
992                 *eof = 1;
993         *start = page + off;
994         len -= off;
995         if (len > count)
996                 len = count;
997         if (len < 0)
998                 len = 0;
999         return len;
1000 }
1001
1002 static int proc_mf_change_side(struct file *file, const char __user *buffer,
1003                 unsigned long count, void *data)
1004 {
1005         char side;
1006         u64 newSide;
1007         struct vsp_cmd_data vsp_cmd;
1008
1009         if (!capable(CAP_SYS_ADMIN))
1010                 return -EACCES;
1011
1012         if (count == 0)
1013                 return 0;
1014
1015         if (get_user(side, buffer))
1016                 return -EFAULT;
1017
1018         switch (side) {
1019         case 'A':       newSide = 0;
1020                         break;
1021         case 'B':       newSide = 1;
1022                         break;
1023         case 'C':       newSide = 2;
1024                         break;
1025         case 'D':       newSide = 3;
1026                         break;
1027         default:
1028                 printk(KERN_ERR "mf_proc.c: proc_mf_change_side: invalid side\n");
1029                 return -EINVAL;
1030         }
1031
1032         memset(&vsp_cmd, 0, sizeof(vsp_cmd));
1033         vsp_cmd.sub_data.ipl_type = newSide;
1034         vsp_cmd.cmd = 10;
1035
1036         (void)signal_vsp_instruction(&vsp_cmd);
1037
1038         return count;
1039 }
1040
1041 #if 0
1042 static void mf_getSrcHistory(char *buffer, int size)
1043 {
1044         struct IplTypeReturnStuff return_stuff;
1045         struct pending_event *ev = new_pending_event();
1046         int rc = 0;
1047         char *pages[4];
1048
1049         pages[0] = kmalloc(4096, GFP_ATOMIC);
1050         pages[1] = kmalloc(4096, GFP_ATOMIC);
1051         pages[2] = kmalloc(4096, GFP_ATOMIC);
1052         pages[3] = kmalloc(4096, GFP_ATOMIC);
1053         if ((ev == NULL) || (pages[0] == NULL) || (pages[1] == NULL)
1054                          || (pages[2] == NULL) || (pages[3] == NULL))
1055                 return -ENOMEM;
1056
1057         return_stuff.xType = 0;
1058         return_stuff.xRc = 0;
1059         return_stuff.xDone = 0;
1060         ev->event.hp_lp_event.xSubtype = 6;
1061         ev->event.hp_lp_event.x.xSubtypeData =
1062                 subtype_data('M', 'F', 'V', 'I');
1063         ev->event.data.vsp_cmd.xEvent = &return_stuff;
1064         ev->event.data.vsp_cmd.cmd = 4;
1065         ev->event.data.vsp_cmd.lp_index = HvLpConfig_getLpIndex();
1066         ev->event.data.vsp_cmd.result_code = 0xFF;
1067         ev->event.data.vsp_cmd.reserved = 0;
1068         ev->event.data.vsp_cmd.sub_data.page[0] = iseries_hv_addr(pages[0]);
1069         ev->event.data.vsp_cmd.sub_data.page[1] = iseries_hv_addr(pages[1]);
1070         ev->event.data.vsp_cmd.sub_data.page[2] = iseries_hv_addr(pages[2]);
1071         ev->event.data.vsp_cmd.sub_data.page[3] = iseries_hv_addr(pages[3]);
1072         mb();
1073         if (signal_event(ev) != 0)
1074                 return;
1075
1076         while (return_stuff.xDone != 1)
1077                 udelay(10);
1078         if (return_stuff.xRc == 0)
1079                 memcpy(buffer, pages[0], size);
1080         kfree(pages[0]);
1081         kfree(pages[1]);
1082         kfree(pages[2]);
1083         kfree(pages[3]);
1084 }
1085 #endif
1086
1087 static int proc_mf_dump_src(char *page, char **start, off_t off,
1088                 int count, int *eof, void *data)
1089 {
1090 #if 0
1091         int len;
1092
1093         mf_getSrcHistory(page, count);
1094         len = count;
1095         len -= off;
1096         if (len < count) {
1097                 *eof = 1;
1098                 if (len <= 0)
1099                         return 0;
1100         } else
1101                 len = count;
1102         *start = page + off;
1103         return len;
1104 #else
1105         return 0;
1106 #endif
1107 }
1108
1109 static int proc_mf_change_src(struct file *file, const char __user *buffer,
1110                 unsigned long count, void *data)
1111 {
1112         char stkbuf[10];
1113
1114         if (!capable(CAP_SYS_ADMIN))
1115                 return -EACCES;
1116
1117         if ((count < 4) && (count != 1)) {
1118                 printk(KERN_ERR "mf_proc: invalid src\n");
1119                 return -EINVAL;
1120         }
1121
1122         if (count > (sizeof(stkbuf) - 1))
1123                 count = sizeof(stkbuf) - 1;
1124         if (copy_from_user(stkbuf, buffer, count))
1125                 return -EFAULT;
1126
1127         if ((count == 1) && (*stkbuf == '\0'))
1128                 mf_clear_src();
1129         else
1130                 mf_display_src(*(u32 *)stkbuf);
1131
1132         return count;
1133 }
1134
1135 static int proc_mf_change_cmdline(struct file *file, const char __user *buffer,
1136                 unsigned long count, void *data)
1137 {
1138         struct vsp_cmd_data vsp_cmd;
1139         dma_addr_t dma_addr;
1140         char *page;
1141         int ret = -EACCES;
1142
1143         if (!capable(CAP_SYS_ADMIN))
1144                 goto out;
1145
1146         dma_addr = 0;
1147         page = dma_alloc_coherent(iSeries_vio_dev, count, &dma_addr,
1148                         GFP_ATOMIC);
1149         ret = -ENOMEM;
1150         if (page == NULL)
1151                 goto out;
1152
1153         ret = -EFAULT;
1154         if (copy_from_user(page, buffer, count))
1155                 goto out_free;
1156
1157         memset(&vsp_cmd, 0, sizeof(vsp_cmd));
1158         vsp_cmd.cmd = 31;
1159         vsp_cmd.sub_data.kern.token = dma_addr;
1160         vsp_cmd.sub_data.kern.address_type = HvLpDma_AddressType_TceIndex;
1161         vsp_cmd.sub_data.kern.side = (u64)data;
1162         vsp_cmd.sub_data.kern.length = count;
1163         mb();
1164         (void)signal_vsp_instruction(&vsp_cmd);
1165         ret = count;
1166
1167 out_free:
1168         dma_free_coherent(iSeries_vio_dev, count, page, dma_addr);
1169 out:
1170         return ret;
1171 }
1172
1173 static ssize_t proc_mf_change_vmlinux(struct file *file,
1174                                       const char __user *buf,
1175                                       size_t count, loff_t *ppos)
1176 {
1177         struct proc_dir_entry *dp = PDE(file->f_dentry->d_inode);
1178         ssize_t rc;
1179         dma_addr_t dma_addr;
1180         char *page;
1181         struct vsp_cmd_data vsp_cmd;
1182
1183         rc = -EACCES;
1184         if (!capable(CAP_SYS_ADMIN))
1185                 goto out;
1186
1187         dma_addr = 0;
1188         page = dma_alloc_coherent(iSeries_vio_dev, count, &dma_addr,
1189                         GFP_ATOMIC);
1190         rc = -ENOMEM;
1191         if (page == NULL) {
1192                 printk(KERN_ERR "mf.c: couldn't allocate memory to set vmlinux chunk\n");
1193                 goto out;
1194         }
1195         rc = -EFAULT;
1196         if (copy_from_user(page, buf, count))
1197                 goto out_free;
1198
1199         memset(&vsp_cmd, 0, sizeof(vsp_cmd));
1200         vsp_cmd.cmd = 30;
1201         vsp_cmd.sub_data.kern.token = dma_addr;
1202         vsp_cmd.sub_data.kern.address_type = HvLpDma_AddressType_TceIndex;
1203         vsp_cmd.sub_data.kern.side = (u64)dp->data;
1204         vsp_cmd.sub_data.kern.offset = *ppos;
1205         vsp_cmd.sub_data.kern.length = count;
1206         mb();
1207         rc = signal_vsp_instruction(&vsp_cmd);
1208         if (rc)
1209                 goto out_free;
1210         rc = -ENOMEM;
1211         if (vsp_cmd.result_code != 0)
1212                 goto out_free;
1213
1214         *ppos += count;
1215         rc = count;
1216 out_free:
1217         dma_free_coherent(iSeries_vio_dev, count, page, dma_addr);
1218 out:
1219         return rc;
1220 }
1221
1222 static struct file_operations proc_vmlinux_operations = {
1223         .write          = proc_mf_change_vmlinux,
1224 };
1225
1226 static int __init mf_proc_init(void)
1227 {
1228         struct proc_dir_entry *mf_proc_root;
1229         struct proc_dir_entry *ent;
1230         struct proc_dir_entry *mf;
1231         char name[2];
1232         int i;
1233
1234         mf_proc_root = proc_mkdir("iSeries/mf", NULL);
1235         if (!mf_proc_root)
1236                 return 1;
1237
1238         name[1] = '\0';
1239         for (i = 0; i < 4; i++) {
1240                 name[0] = 'A' + i;
1241                 mf = proc_mkdir(name, mf_proc_root);
1242                 if (!mf)
1243                         return 1;
1244
1245                 ent = create_proc_entry("cmdline", S_IFREG|S_IRUSR|S_IWUSR, mf);
1246                 if (!ent)
1247                         return 1;
1248                 ent->nlink = 1;
1249                 ent->data = (void *)(long)i;
1250                 ent->read_proc = proc_mf_dump_cmdline;
1251                 ent->write_proc = proc_mf_change_cmdline;
1252
1253                 if (i == 3)     /* no vmlinux entry for 'D' */
1254                         continue;
1255
1256                 ent = create_proc_entry("vmlinux", S_IFREG|S_IWUSR, mf);
1257                 if (!ent)
1258                         return 1;
1259                 ent->nlink = 1;
1260                 ent->data = (void *)(long)i;
1261                 ent->proc_fops = &proc_vmlinux_operations;
1262         }
1263
1264         ent = create_proc_entry("side", S_IFREG|S_IRUSR|S_IWUSR, mf_proc_root);
1265         if (!ent)
1266                 return 1;
1267         ent->nlink = 1;
1268         ent->data = (void *)0;
1269         ent->read_proc = proc_mf_dump_side;
1270         ent->write_proc = proc_mf_change_side;
1271
1272         ent = create_proc_entry("src", S_IFREG|S_IRUSR|S_IWUSR, mf_proc_root);
1273         if (!ent)
1274                 return 1;
1275         ent->nlink = 1;
1276         ent->data = (void *)0;
1277         ent->read_proc = proc_mf_dump_src;
1278         ent->write_proc = proc_mf_change_src;
1279
1280         return 0;
1281 }
1282
1283 __initcall(mf_proc_init);
1284
1285 #endif /* CONFIG_PROC_FS */
1286
1287 /*
1288  * Get the RTC from the virtual service processor
1289  * This requires flowing LpEvents to the primary partition
1290  */
1291 void iSeries_get_rtc_time(struct rtc_time *rtc_tm)
1292 {
1293         if (piranha_simulator)
1294                 return;
1295
1296         mf_get_rtc(rtc_tm);
1297         rtc_tm->tm_mon--;
1298 }
1299
1300 /*
1301  * Set the RTC in the virtual service processor
1302  * This requires flowing LpEvents to the primary partition
1303  */
1304 int iSeries_set_rtc_time(struct rtc_time *tm)
1305 {
1306         mf_set_rtc(tm);
1307         return 0;
1308 }
1309
1310 void iSeries_get_boot_time(struct rtc_time *tm)
1311 {
1312         if (piranha_simulator)
1313                 return;
1314
1315         mf_get_boot_rtc(tm);
1316         tm->tm_mon  -= 1;
1317 }