]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - arch/s390/kernel/setup.c
arm: imx6: defconfig: update tx6 defconfigs
[karo-tx-linux.git] / arch / s390 / kernel / setup.c
1 /*
2  *  S390 version
3  *    Copyright IBM Corp. 1999, 2012
4  *    Author(s): Hartmut Penner (hp@de.ibm.com),
5  *               Martin Schwidefsky (schwidefsky@de.ibm.com)
6  *
7  *  Derived from "arch/i386/kernel/setup.c"
8  *    Copyright (C) 1995, Linus Torvalds
9  */
10
11 /*
12  * This file handles the architecture-dependent parts of initialization
13  */
14
15 #define KMSG_COMPONENT "setup"
16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17
18 #include <linux/errno.h>
19 #include <linux/export.h>
20 #include <linux/sched.h>
21 #include <linux/kernel.h>
22 #include <linux/memblock.h>
23 #include <linux/mm.h>
24 #include <linux/stddef.h>
25 #include <linux/unistd.h>
26 #include <linux/ptrace.h>
27 #include <linux/user.h>
28 #include <linux/tty.h>
29 #include <linux/ioport.h>
30 #include <linux/delay.h>
31 #include <linux/init.h>
32 #include <linux/initrd.h>
33 #include <linux/bootmem.h>
34 #include <linux/root_dev.h>
35 #include <linux/console.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/device.h>
38 #include <linux/notifier.h>
39 #include <linux/pfn.h>
40 #include <linux/ctype.h>
41 #include <linux/reboot.h>
42 #include <linux/topology.h>
43 #include <linux/ftrace.h>
44 #include <linux/kexec.h>
45 #include <linux/crash_dump.h>
46 #include <linux/memory.h>
47 #include <linux/compat.h>
48
49 #include <asm/ipl.h>
50 #include <asm/uaccess.h>
51 #include <asm/facility.h>
52 #include <asm/smp.h>
53 #include <asm/mmu_context.h>
54 #include <asm/cpcmd.h>
55 #include <asm/lowcore.h>
56 #include <asm/irq.h>
57 #include <asm/page.h>
58 #include <asm/ptrace.h>
59 #include <asm/sections.h>
60 #include <asm/ebcdic.h>
61 #include <asm/kvm_virtio.h>
62 #include <asm/diag.h>
63 #include <asm/os_info.h>
64 #include <asm/sclp.h>
65 #include "entry.h"
66
67 /*
68  * User copy operations.
69  */
70 struct uaccess_ops uaccess;
71 EXPORT_SYMBOL(uaccess);
72
73 /*
74  * Machine setup..
75  */
76 unsigned int console_mode = 0;
77 EXPORT_SYMBOL(console_mode);
78
79 unsigned int console_devno = -1;
80 EXPORT_SYMBOL(console_devno);
81
82 unsigned int console_irq = -1;
83 EXPORT_SYMBOL(console_irq);
84
85 unsigned long elf_hwcap = 0;
86 char elf_platform[ELF_PLATFORM_SIZE];
87
88 struct mem_chunk __initdata memory_chunk[MEMORY_CHUNKS];
89
90 int __initdata memory_end_set;
91 unsigned long __initdata memory_end;
92
93 unsigned long VMALLOC_START;
94 EXPORT_SYMBOL(VMALLOC_START);
95
96 unsigned long VMALLOC_END;
97 EXPORT_SYMBOL(VMALLOC_END);
98
99 struct page *vmemmap;
100 EXPORT_SYMBOL(vmemmap);
101
102 #ifdef CONFIG_64BIT
103 unsigned long MODULES_VADDR;
104 unsigned long MODULES_END;
105 #endif
106
107 /* An array with a pointer to the lowcore of every CPU. */
108 struct _lowcore *lowcore_ptr[NR_CPUS];
109 EXPORT_SYMBOL(lowcore_ptr);
110
111 /*
112  * This is set up by the setup-routine at boot-time
113  * for S390 need to find out, what we have to setup
114  * using address 0x10400 ...
115  */
116
117 #include <asm/setup.h>
118
119 /*
120  * condev= and conmode= setup parameter.
121  */
122
123 static int __init condev_setup(char *str)
124 {
125         int vdev;
126
127         vdev = simple_strtoul(str, &str, 0);
128         if (vdev >= 0 && vdev < 65536) {
129                 console_devno = vdev;
130                 console_irq = -1;
131         }
132         return 1;
133 }
134
135 __setup("condev=", condev_setup);
136
137 static void __init set_preferred_console(void)
138 {
139         if (MACHINE_IS_KVM) {
140                 if (sclp_has_vt220())
141                         add_preferred_console("ttyS", 1, NULL);
142                 else if (sclp_has_linemode())
143                         add_preferred_console("ttyS", 0, NULL);
144                 else
145                         add_preferred_console("hvc", 0, NULL);
146         } else if (CONSOLE_IS_3215 || CONSOLE_IS_SCLP)
147                 add_preferred_console("ttyS", 0, NULL);
148         else if (CONSOLE_IS_3270)
149                 add_preferred_console("tty3270", 0, NULL);
150 }
151
152 static int __init conmode_setup(char *str)
153 {
154 #if defined(CONFIG_SCLP_CONSOLE) || defined(CONFIG_SCLP_VT220_CONSOLE)
155         if (strncmp(str, "hwc", 4) == 0 || strncmp(str, "sclp", 5) == 0)
156                 SET_CONSOLE_SCLP;
157 #endif
158 #if defined(CONFIG_TN3215_CONSOLE)
159         if (strncmp(str, "3215", 5) == 0)
160                 SET_CONSOLE_3215;
161 #endif
162 #if defined(CONFIG_TN3270_CONSOLE)
163         if (strncmp(str, "3270", 5) == 0)
164                 SET_CONSOLE_3270;
165 #endif
166         set_preferred_console();
167         return 1;
168 }
169
170 __setup("conmode=", conmode_setup);
171
172 static void __init conmode_default(void)
173 {
174         char query_buffer[1024];
175         char *ptr;
176
177         if (MACHINE_IS_VM) {
178                 cpcmd("QUERY CONSOLE", query_buffer, 1024, NULL);
179                 console_devno = simple_strtoul(query_buffer + 5, NULL, 16);
180                 ptr = strstr(query_buffer, "SUBCHANNEL =");
181                 console_irq = simple_strtoul(ptr + 13, NULL, 16);
182                 cpcmd("QUERY TERM", query_buffer, 1024, NULL);
183                 ptr = strstr(query_buffer, "CONMODE");
184                 /*
185                  * Set the conmode to 3215 so that the device recognition 
186                  * will set the cu_type of the console to 3215. If the
187                  * conmode is 3270 and we don't set it back then both
188                  * 3215 and the 3270 driver will try to access the console
189                  * device (3215 as console and 3270 as normal tty).
190                  */
191                 cpcmd("TERM CONMODE 3215", NULL, 0, NULL);
192                 if (ptr == NULL) {
193 #if defined(CONFIG_SCLP_CONSOLE) || defined(CONFIG_SCLP_VT220_CONSOLE)
194                         SET_CONSOLE_SCLP;
195 #endif
196                         return;
197                 }
198                 if (strncmp(ptr + 8, "3270", 4) == 0) {
199 #if defined(CONFIG_TN3270_CONSOLE)
200                         SET_CONSOLE_3270;
201 #elif defined(CONFIG_TN3215_CONSOLE)
202                         SET_CONSOLE_3215;
203 #elif defined(CONFIG_SCLP_CONSOLE) || defined(CONFIG_SCLP_VT220_CONSOLE)
204                         SET_CONSOLE_SCLP;
205 #endif
206                 } else if (strncmp(ptr + 8, "3215", 4) == 0) {
207 #if defined(CONFIG_TN3215_CONSOLE)
208                         SET_CONSOLE_3215;
209 #elif defined(CONFIG_TN3270_CONSOLE)
210                         SET_CONSOLE_3270;
211 #elif defined(CONFIG_SCLP_CONSOLE) || defined(CONFIG_SCLP_VT220_CONSOLE)
212                         SET_CONSOLE_SCLP;
213 #endif
214                 }
215         } else {
216 #if defined(CONFIG_SCLP_CONSOLE) || defined(CONFIG_SCLP_VT220_CONSOLE)
217                 SET_CONSOLE_SCLP;
218 #endif
219         }
220 }
221
222 #ifdef CONFIG_ZFCPDUMP
223 static void __init setup_zfcpdump(void)
224 {
225         if (ipl_info.type != IPL_TYPE_FCP_DUMP)
226                 return;
227         if (OLDMEM_BASE)
228                 return;
229         strcat(boot_command_line, " cio_ignore=all,!ipldev,!condev");
230         console_loglevel = 2;
231 }
232 #else
233 static inline void setup_zfcpdump(void) {}
234 #endif /* CONFIG_ZFCPDUMP */
235
236  /*
237  * Reboot, halt and power_off stubs. They just call _machine_restart,
238  * _machine_halt or _machine_power_off. 
239  */
240
241 void machine_restart(char *command)
242 {
243         if ((!in_interrupt() && !in_atomic()) || oops_in_progress)
244                 /*
245                  * Only unblank the console if we are called in enabled
246                  * context or a bust_spinlocks cleared the way for us.
247                  */
248                 console_unblank();
249         _machine_restart(command);
250 }
251
252 void machine_halt(void)
253 {
254         if (!in_interrupt() || oops_in_progress)
255                 /*
256                  * Only unblank the console if we are called in enabled
257                  * context or a bust_spinlocks cleared the way for us.
258                  */
259                 console_unblank();
260         _machine_halt();
261 }
262
263 void machine_power_off(void)
264 {
265         if (!in_interrupt() || oops_in_progress)
266                 /*
267                  * Only unblank the console if we are called in enabled
268                  * context or a bust_spinlocks cleared the way for us.
269                  */
270                 console_unblank();
271         _machine_power_off();
272 }
273
274 /*
275  * Dummy power off function.
276  */
277 void (*pm_power_off)(void) = machine_power_off;
278 EXPORT_SYMBOL_GPL(pm_power_off);
279
280 static int __init early_parse_mem(char *p)
281 {
282         memory_end = memparse(p, &p);
283         memory_end_set = 1;
284         return 0;
285 }
286 early_param("mem", early_parse_mem);
287
288 static int __init parse_vmalloc(char *arg)
289 {
290         if (!arg)
291                 return -EINVAL;
292         VMALLOC_END = (memparse(arg, &arg) + PAGE_SIZE - 1) & PAGE_MASK;
293         return 0;
294 }
295 early_param("vmalloc", parse_vmalloc);
296
297 static int __init early_parse_user_mode(char *p)
298 {
299         if (!p || strcmp(p, "primary") == 0)
300                 return 0;
301         return 1;
302 }
303 early_param("user_mode", early_parse_user_mode);
304
305 void *restart_stack __attribute__((__section__(".data")));
306
307 static void __init setup_lowcore(void)
308 {
309         struct _lowcore *lc;
310
311         /*
312          * Setup lowcore for boot cpu
313          */
314         BUILD_BUG_ON(sizeof(struct _lowcore) != LC_PAGES * 4096);
315         lc = __alloc_bootmem_low(LC_PAGES * PAGE_SIZE, LC_PAGES * PAGE_SIZE, 0);
316         lc->restart_psw.mask = PSW_KERNEL_BITS;
317         lc->restart_psw.addr =
318                 PSW_ADDR_AMODE | (unsigned long) restart_int_handler;
319         lc->external_new_psw.mask = PSW_KERNEL_BITS |
320                 PSW_MASK_DAT | PSW_MASK_MCHECK;
321         lc->external_new_psw.addr =
322                 PSW_ADDR_AMODE | (unsigned long) ext_int_handler;
323         lc->svc_new_psw.mask = PSW_KERNEL_BITS |
324                 PSW_MASK_DAT | PSW_MASK_IO | PSW_MASK_EXT | PSW_MASK_MCHECK;
325         lc->svc_new_psw.addr = PSW_ADDR_AMODE | (unsigned long) system_call;
326         lc->program_new_psw.mask = PSW_KERNEL_BITS |
327                 PSW_MASK_DAT | PSW_MASK_MCHECK;
328         lc->program_new_psw.addr =
329                 PSW_ADDR_AMODE | (unsigned long) pgm_check_handler;
330         lc->mcck_new_psw.mask = PSW_KERNEL_BITS;
331         lc->mcck_new_psw.addr =
332                 PSW_ADDR_AMODE | (unsigned long) mcck_int_handler;
333         lc->io_new_psw.mask = PSW_KERNEL_BITS |
334                 PSW_MASK_DAT | PSW_MASK_MCHECK;
335         lc->io_new_psw.addr = PSW_ADDR_AMODE | (unsigned long) io_int_handler;
336         lc->clock_comparator = -1ULL;
337         lc->kernel_stack = ((unsigned long) &init_thread_union)
338                 + THREAD_SIZE - STACK_FRAME_OVERHEAD - sizeof(struct pt_regs);
339         lc->async_stack = (unsigned long)
340                 __alloc_bootmem(ASYNC_SIZE, ASYNC_SIZE, 0)
341                 + ASYNC_SIZE - STACK_FRAME_OVERHEAD - sizeof(struct pt_regs);
342         lc->panic_stack = (unsigned long)
343                 __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, 0)
344                 + PAGE_SIZE - STACK_FRAME_OVERHEAD - sizeof(struct pt_regs);
345         lc->current_task = (unsigned long) init_thread_union.thread_info.task;
346         lc->thread_info = (unsigned long) &init_thread_union;
347         lc->machine_flags = S390_lowcore.machine_flags;
348         lc->stfl_fac_list = S390_lowcore.stfl_fac_list;
349         memcpy(lc->stfle_fac_list, S390_lowcore.stfle_fac_list,
350                MAX_FACILITY_BIT/8);
351 #ifndef CONFIG_64BIT
352         if (MACHINE_HAS_IEEE) {
353                 lc->extended_save_area_addr = (__u32)
354                         __alloc_bootmem_low(PAGE_SIZE, PAGE_SIZE, 0);
355                 /* enable extended save area */
356                 __ctl_set_bit(14, 29);
357         }
358 #else
359         lc->vdso_per_cpu_data = (unsigned long) &lc->paste[0];
360 #endif
361         lc->sync_enter_timer = S390_lowcore.sync_enter_timer;
362         lc->async_enter_timer = S390_lowcore.async_enter_timer;
363         lc->exit_timer = S390_lowcore.exit_timer;
364         lc->user_timer = S390_lowcore.user_timer;
365         lc->system_timer = S390_lowcore.system_timer;
366         lc->steal_timer = S390_lowcore.steal_timer;
367         lc->last_update_timer = S390_lowcore.last_update_timer;
368         lc->last_update_clock = S390_lowcore.last_update_clock;
369         lc->ftrace_func = S390_lowcore.ftrace_func;
370
371         restart_stack = __alloc_bootmem(ASYNC_SIZE, ASYNC_SIZE, 0);
372         restart_stack += ASYNC_SIZE;
373
374         /*
375          * Set up PSW restart to call ipl.c:do_restart(). Copy the relevant
376          * restart data to the absolute zero lowcore. This is necesary if
377          * PSW restart is done on an offline CPU that has lowcore zero.
378          */
379         lc->restart_stack = (unsigned long) restart_stack;
380         lc->restart_fn = (unsigned long) do_restart;
381         lc->restart_data = 0;
382         lc->restart_source = -1UL;
383
384         /* Setup absolute zero lowcore */
385         mem_assign_absolute(S390_lowcore.restart_stack, lc->restart_stack);
386         mem_assign_absolute(S390_lowcore.restart_fn, lc->restart_fn);
387         mem_assign_absolute(S390_lowcore.restart_data, lc->restart_data);
388         mem_assign_absolute(S390_lowcore.restart_source, lc->restart_source);
389         mem_assign_absolute(S390_lowcore.restart_psw, lc->restart_psw);
390
391         set_prefix((u32)(unsigned long) lc);
392         lowcore_ptr[0] = lc;
393 }
394
395 static struct resource code_resource = {
396         .name  = "Kernel code",
397         .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
398 };
399
400 static struct resource data_resource = {
401         .name = "Kernel data",
402         .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
403 };
404
405 static struct resource bss_resource = {
406         .name = "Kernel bss",
407         .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
408 };
409
410 static struct resource __initdata *standard_resources[] = {
411         &code_resource,
412         &data_resource,
413         &bss_resource,
414 };
415
416 static void __init setup_resources(void)
417 {
418         struct resource *res, *std_res, *sub_res;
419         int i, j;
420
421         code_resource.start = (unsigned long) &_text;
422         code_resource.end = (unsigned long) &_etext - 1;
423         data_resource.start = (unsigned long) &_etext;
424         data_resource.end = (unsigned long) &_edata - 1;
425         bss_resource.start = (unsigned long) &__bss_start;
426         bss_resource.end = (unsigned long) &__bss_stop - 1;
427
428         for (i = 0; i < MEMORY_CHUNKS; i++) {
429                 if (!memory_chunk[i].size)
430                         continue;
431                 res = alloc_bootmem_low(sizeof(*res));
432                 res->flags = IORESOURCE_BUSY | IORESOURCE_MEM;
433                 switch (memory_chunk[i].type) {
434                 case CHUNK_READ_WRITE:
435                         res->name = "System RAM";
436                         break;
437                 case CHUNK_READ_ONLY:
438                         res->name = "System ROM";
439                         res->flags |= IORESOURCE_READONLY;
440                         break;
441                 default:
442                         res->name = "reserved";
443                 }
444                 res->start = memory_chunk[i].addr;
445                 res->end = res->start + memory_chunk[i].size - 1;
446                 request_resource(&iomem_resource, res);
447
448                 for (j = 0; j < ARRAY_SIZE(standard_resources); j++) {
449                         std_res = standard_resources[j];
450                         if (std_res->start < res->start ||
451                             std_res->start > res->end)
452                                 continue;
453                         if (std_res->end > res->end) {
454                                 sub_res = alloc_bootmem_low(sizeof(*sub_res));
455                                 *sub_res = *std_res;
456                                 sub_res->end = res->end;
457                                 std_res->start = res->end + 1;
458                                 request_resource(res, sub_res);
459                         } else {
460                                 request_resource(res, std_res);
461                         }
462                 }
463         }
464 }
465
466 static void __init setup_memory_end(void)
467 {
468         unsigned long vmax, vmalloc_size, tmp;
469         unsigned long real_memory_size = 0;
470         int i;
471
472
473 #ifdef CONFIG_ZFCPDUMP
474         if (ipl_info.type == IPL_TYPE_FCP_DUMP && !OLDMEM_BASE) {
475                 memory_end = ZFCPDUMP_HSA_SIZE;
476                 memory_end_set = 1;
477         }
478 #endif
479         memory_end &= PAGE_MASK;
480
481         /*
482          * Make sure all chunks are MAX_ORDER aligned so we don't need the
483          * extra checks that HOLES_IN_ZONE would require.
484          */
485         for (i = 0; i < MEMORY_CHUNKS; i++) {
486                 unsigned long start, end;
487                 struct mem_chunk *chunk;
488                 unsigned long align;
489
490                 chunk = &memory_chunk[i];
491                 if (!chunk->size)
492                         continue;
493                 align = 1UL << (MAX_ORDER + PAGE_SHIFT - 1);
494                 start = (chunk->addr + align - 1) & ~(align - 1);
495                 end = (chunk->addr + chunk->size) & ~(align - 1);
496                 if (start >= end)
497                         memset(chunk, 0, sizeof(*chunk));
498                 else {
499                         chunk->addr = start;
500                         chunk->size = end - start;
501                 }
502                 real_memory_size = max(real_memory_size,
503                                        chunk->addr + chunk->size);
504         }
505
506         /* Choose kernel address space layout: 2, 3, or 4 levels. */
507 #ifdef CONFIG_64BIT
508         vmalloc_size = VMALLOC_END ?: (128UL << 30) - MODULES_LEN;
509         tmp = (memory_end ?: real_memory_size) / PAGE_SIZE;
510         tmp = tmp * (sizeof(struct page) + PAGE_SIZE) + vmalloc_size;
511         if (tmp <= (1UL << 42))
512                 vmax = 1UL << 42;       /* 3-level kernel page table */
513         else
514                 vmax = 1UL << 53;       /* 4-level kernel page table */
515         /* module area is at the end of the kernel address space. */
516         MODULES_END = vmax;
517         MODULES_VADDR = MODULES_END - MODULES_LEN;
518         VMALLOC_END = MODULES_VADDR;
519 #else
520         vmalloc_size = VMALLOC_END ?: 96UL << 20;
521         vmax = 1UL << 31;               /* 2-level kernel page table */
522         /* vmalloc area is at the end of the kernel address space. */
523         VMALLOC_END = vmax;
524 #endif
525         VMALLOC_START = vmax - vmalloc_size;
526
527         /* Split remaining virtual space between 1:1 mapping & vmemmap array */
528         tmp = VMALLOC_START / (PAGE_SIZE + sizeof(struct page));
529         /* vmemmap contains a multiple of PAGES_PER_SECTION struct pages */
530         tmp = SECTION_ALIGN_UP(tmp);
531         tmp = VMALLOC_START - tmp * sizeof(struct page);
532         tmp &= ~((vmax >> 11) - 1);     /* align to page table level */
533         tmp = min(tmp, 1UL << MAX_PHYSMEM_BITS);
534         vmemmap = (struct page *) tmp;
535
536         /* Take care that memory_end is set and <= vmemmap */
537         memory_end = min(memory_end ?: real_memory_size, tmp);
538
539         /* Fixup memory chunk array to fit into 0..memory_end */
540         for (i = 0; i < MEMORY_CHUNKS; i++) {
541                 struct mem_chunk *chunk = &memory_chunk[i];
542
543                 if (!chunk->size)
544                         continue;
545                 if (chunk->addr >= memory_end) {
546                         memset(chunk, 0, sizeof(*chunk));
547                         continue;
548                 }
549                 if (chunk->addr + chunk->size > memory_end)
550                         chunk->size = memory_end - chunk->addr;
551         }
552 }
553
554 static void __init setup_vmcoreinfo(void)
555 {
556         mem_assign_absolute(S390_lowcore.vmcore_info, paddr_vmcoreinfo_note());
557 }
558
559 #ifdef CONFIG_CRASH_DUMP
560
561 /*
562  * Find suitable location for crashkernel memory
563  */
564 static unsigned long __init find_crash_base(unsigned long crash_size,
565                                             char **msg)
566 {
567         unsigned long crash_base;
568         struct mem_chunk *chunk;
569         int i;
570
571         if (memory_chunk[0].size < crash_size) {
572                 *msg = "first memory chunk must be at least crashkernel size";
573                 return 0;
574         }
575         if (OLDMEM_BASE && crash_size == OLDMEM_SIZE)
576                 return OLDMEM_BASE;
577
578         for (i = MEMORY_CHUNKS - 1; i >= 0; i--) {
579                 chunk = &memory_chunk[i];
580                 if (chunk->size == 0)
581                         continue;
582                 if (chunk->type != CHUNK_READ_WRITE)
583                         continue;
584                 if (chunk->size < crash_size)
585                         continue;
586                 crash_base = (chunk->addr + chunk->size) - crash_size;
587                 if (crash_base < crash_size)
588                         continue;
589                 if (crash_base < ZFCPDUMP_HSA_SIZE_MAX)
590                         continue;
591                 if (crash_base < (unsigned long) INITRD_START + INITRD_SIZE)
592                         continue;
593                 return crash_base;
594         }
595         *msg = "no suitable area found";
596         return 0;
597 }
598
599 /*
600  * Check if crash_base and crash_size is valid
601  */
602 static int __init verify_crash_base(unsigned long crash_base,
603                                     unsigned long crash_size,
604                                     char **msg)
605 {
606         struct mem_chunk *chunk;
607         int i;
608
609         /*
610          * Because we do the swap to zero, we must have at least 'crash_size'
611          * bytes free space before crash_base
612          */
613         if (crash_size > crash_base) {
614                 *msg = "crashkernel offset must be greater than size";
615                 return -EINVAL;
616         }
617
618         /* First memory chunk must be at least crash_size */
619         if (memory_chunk[0].size < crash_size) {
620                 *msg = "first memory chunk must be at least crashkernel size";
621                 return -EINVAL;
622         }
623         /* Check if we fit into the respective memory chunk */
624         for (i = 0; i < MEMORY_CHUNKS; i++) {
625                 chunk = &memory_chunk[i];
626                 if (chunk->size == 0)
627                         continue;
628                 if (crash_base < chunk->addr)
629                         continue;
630                 if (crash_base >= chunk->addr + chunk->size)
631                         continue;
632                 /* we have found the memory chunk */
633                 if (crash_base + crash_size > chunk->addr + chunk->size) {
634                         *msg = "selected memory chunk is too small for "
635                                 "crashkernel memory";
636                         return -EINVAL;
637                 }
638                 return 0;
639         }
640         *msg = "invalid memory range specified";
641         return -EINVAL;
642 }
643
644 /*
645  * When kdump is enabled, we have to ensure that no memory from
646  * the area [0 - crashkernel memory size] and
647  * [crashk_res.start - crashk_res.end] is set offline.
648  */
649 static int kdump_mem_notifier(struct notifier_block *nb,
650                               unsigned long action, void *data)
651 {
652         struct memory_notify *arg = data;
653
654         if (arg->start_pfn < PFN_DOWN(resource_size(&crashk_res)))
655                 return NOTIFY_BAD;
656         if (arg->start_pfn > PFN_DOWN(crashk_res.end))
657                 return NOTIFY_OK;
658         if (arg->start_pfn + arg->nr_pages - 1 < PFN_DOWN(crashk_res.start))
659                 return NOTIFY_OK;
660         return NOTIFY_BAD;
661 }
662
663 static struct notifier_block kdump_mem_nb = {
664         .notifier_call = kdump_mem_notifier,
665 };
666
667 #endif
668
669 /*
670  * Make sure that oldmem, where the dump is stored, is protected
671  */
672 static void reserve_oldmem(void)
673 {
674 #ifdef CONFIG_CRASH_DUMP
675         unsigned long real_size = 0;
676         int i;
677
678         if (!OLDMEM_BASE)
679                 return;
680         for (i = 0; i < MEMORY_CHUNKS; i++) {
681                 struct mem_chunk *chunk = &memory_chunk[i];
682
683                 real_size = max(real_size, chunk->addr + chunk->size);
684         }
685         create_mem_hole(memory_chunk, OLDMEM_BASE, OLDMEM_SIZE);
686         create_mem_hole(memory_chunk, OLDMEM_SIZE, real_size - OLDMEM_SIZE);
687 #endif
688 }
689
690 /*
691  * Reserve memory for kdump kernel to be loaded with kexec
692  */
693 static void __init reserve_crashkernel(void)
694 {
695 #ifdef CONFIG_CRASH_DUMP
696         unsigned long long crash_base, crash_size;
697         char *msg = NULL;
698         int rc;
699
700         rc = parse_crashkernel(boot_command_line, memory_end, &crash_size,
701                                &crash_base);
702         if (rc || crash_size == 0)
703                 return;
704         crash_base = ALIGN(crash_base, KEXEC_CRASH_MEM_ALIGN);
705         crash_size = ALIGN(crash_size, KEXEC_CRASH_MEM_ALIGN);
706         if (register_memory_notifier(&kdump_mem_nb))
707                 return;
708         if (!crash_base)
709                 crash_base = find_crash_base(crash_size, &msg);
710         if (!crash_base) {
711                 pr_info("crashkernel reservation failed: %s\n", msg);
712                 unregister_memory_notifier(&kdump_mem_nb);
713                 return;
714         }
715         if (verify_crash_base(crash_base, crash_size, &msg)) {
716                 pr_info("crashkernel reservation failed: %s\n", msg);
717                 unregister_memory_notifier(&kdump_mem_nb);
718                 return;
719         }
720         if (!OLDMEM_BASE && MACHINE_IS_VM)
721                 diag10_range(PFN_DOWN(crash_base), PFN_DOWN(crash_size));
722         crashk_res.start = crash_base;
723         crashk_res.end = crash_base + crash_size - 1;
724         insert_resource(&iomem_resource, &crashk_res);
725         create_mem_hole(memory_chunk, crash_base, crash_size);
726         pr_info("Reserving %lluMB of memory at %lluMB "
727                 "for crashkernel (System RAM: %luMB)\n",
728                 crash_size >> 20, crash_base >> 20, memory_end >> 20);
729         os_info_crashkernel_add(crash_base, crash_size);
730 #endif
731 }
732
733 static void __init setup_memory(void)
734 {
735         unsigned long bootmap_size;
736         unsigned long start_pfn, end_pfn;
737         int i;
738
739         /*
740          * partially used pages are not usable - thus
741          * we are rounding upwards:
742          */
743         start_pfn = PFN_UP(__pa(&_end));
744         end_pfn = max_pfn = PFN_DOWN(memory_end);
745
746 #ifdef CONFIG_BLK_DEV_INITRD
747         /*
748          * Move the initrd in case the bitmap of the bootmem allocater
749          * would overwrite it.
750          */
751
752         if (INITRD_START && INITRD_SIZE) {
753                 unsigned long bmap_size;
754                 unsigned long start;
755
756                 bmap_size = bootmem_bootmap_pages(end_pfn - start_pfn + 1);
757                 bmap_size = PFN_PHYS(bmap_size);
758
759                 if (PFN_PHYS(start_pfn) + bmap_size > INITRD_START) {
760                         start = PFN_PHYS(start_pfn) + bmap_size + PAGE_SIZE;
761
762 #ifdef CONFIG_CRASH_DUMP
763                         if (OLDMEM_BASE) {
764                                 /* Move initrd behind kdump oldmem */
765                                 if (start + INITRD_SIZE > OLDMEM_BASE &&
766                                     start < OLDMEM_BASE + OLDMEM_SIZE)
767                                         start = OLDMEM_BASE + OLDMEM_SIZE;
768                         }
769 #endif
770                         if (start + INITRD_SIZE > memory_end) {
771                                 pr_err("initrd extends beyond end of "
772                                        "memory (0x%08lx > 0x%08lx) "
773                                        "disabling initrd\n",
774                                        start + INITRD_SIZE, memory_end);
775                                 INITRD_START = INITRD_SIZE = 0;
776                         } else {
777                                 pr_info("Moving initrd (0x%08lx -> "
778                                         "0x%08lx, size: %ld)\n",
779                                         INITRD_START, start, INITRD_SIZE);
780                                 memmove((void *) start, (void *) INITRD_START,
781                                         INITRD_SIZE);
782                                 INITRD_START = start;
783                         }
784                 }
785         }
786 #endif
787
788         /*
789          * Initialize the boot-time allocator
790          */
791         bootmap_size = init_bootmem(start_pfn, end_pfn);
792
793         /*
794          * Register RAM areas with the bootmem allocator.
795          */
796
797         for (i = 0; i < MEMORY_CHUNKS; i++) {
798                 unsigned long start_chunk, end_chunk, pfn;
799
800                 if (!memory_chunk[i].size)
801                         continue;
802                 start_chunk = PFN_DOWN(memory_chunk[i].addr);
803                 end_chunk = start_chunk + PFN_DOWN(memory_chunk[i].size);
804                 end_chunk = min(end_chunk, end_pfn);
805                 if (start_chunk >= end_chunk)
806                         continue;
807                 memblock_add_node(PFN_PHYS(start_chunk),
808                                   PFN_PHYS(end_chunk - start_chunk), 0);
809                 pfn = max(start_chunk, start_pfn);
810                 storage_key_init_range(PFN_PHYS(pfn), PFN_PHYS(end_chunk));
811         }
812
813         psw_set_key(PAGE_DEFAULT_KEY);
814
815         free_bootmem_with_active_regions(0, max_pfn);
816
817         /*
818          * Reserve memory used for lowcore/command line/kernel image.
819          */
820         reserve_bootmem(0, (unsigned long)_ehead, BOOTMEM_DEFAULT);
821         reserve_bootmem((unsigned long)_stext,
822                         PFN_PHYS(start_pfn) - (unsigned long)_stext,
823                         BOOTMEM_DEFAULT);
824         /*
825          * Reserve the bootmem bitmap itself as well. We do this in two
826          * steps (first step was init_bootmem()) because this catches
827          * the (very unlikely) case of us accidentally initializing the
828          * bootmem allocator with an invalid RAM area.
829          */
830         reserve_bootmem(start_pfn << PAGE_SHIFT, bootmap_size,
831                         BOOTMEM_DEFAULT);
832
833 #ifdef CONFIG_CRASH_DUMP
834         if (crashk_res.start)
835                 reserve_bootmem(crashk_res.start,
836                                 crashk_res.end - crashk_res.start + 1,
837                                 BOOTMEM_DEFAULT);
838         if (is_kdump_kernel())
839                 reserve_bootmem(elfcorehdr_addr - OLDMEM_BASE,
840                                 PAGE_ALIGN(elfcorehdr_size), BOOTMEM_DEFAULT);
841 #endif
842 #ifdef CONFIG_BLK_DEV_INITRD
843         if (INITRD_START && INITRD_SIZE) {
844                 if (INITRD_START + INITRD_SIZE <= memory_end) {
845                         reserve_bootmem(INITRD_START, INITRD_SIZE,
846                                         BOOTMEM_DEFAULT);
847                         initrd_start = INITRD_START;
848                         initrd_end = initrd_start + INITRD_SIZE;
849                 } else {
850                         pr_err("initrd extends beyond end of "
851                                "memory (0x%08lx > 0x%08lx) "
852                                "disabling initrd\n",
853                                initrd_start + INITRD_SIZE, memory_end);
854                         initrd_start = initrd_end = 0;
855                 }
856         }
857 #endif
858 }
859
860 /*
861  * Setup hardware capabilities.
862  */
863 static void __init setup_hwcaps(void)
864 {
865         static const int stfl_bits[6] = { 0, 2, 7, 17, 19, 21 };
866         struct cpuid cpu_id;
867         int i;
868
869         /*
870          * The store facility list bits numbers as found in the principles
871          * of operation are numbered with bit 1UL<<31 as number 0 to
872          * bit 1UL<<0 as number 31.
873          *   Bit 0: instructions named N3, "backported" to esa-mode
874          *   Bit 2: z/Architecture mode is active
875          *   Bit 7: the store-facility-list-extended facility is installed
876          *   Bit 17: the message-security assist is installed
877          *   Bit 19: the long-displacement facility is installed
878          *   Bit 21: the extended-immediate facility is installed
879          *   Bit 22: extended-translation facility 3 is installed
880          *   Bit 30: extended-translation facility 3 enhancement facility
881          * These get translated to:
882          *   HWCAP_S390_ESAN3 bit 0, HWCAP_S390_ZARCH bit 1,
883          *   HWCAP_S390_STFLE bit 2, HWCAP_S390_MSA bit 3,
884          *   HWCAP_S390_LDISP bit 4, HWCAP_S390_EIMM bit 5 and
885          *   HWCAP_S390_ETF3EH bit 8 (22 && 30).
886          */
887         for (i = 0; i < 6; i++)
888                 if (test_facility(stfl_bits[i]))
889                         elf_hwcap |= 1UL << i;
890
891         if (test_facility(22) && test_facility(30))
892                 elf_hwcap |= HWCAP_S390_ETF3EH;
893
894         /*
895          * Check for additional facilities with store-facility-list-extended.
896          * stfle stores doublewords (8 byte) with bit 1ULL<<63 as bit 0
897          * and 1ULL<<0 as bit 63. Bits 0-31 contain the same information
898          * as stored by stfl, bits 32-xxx contain additional facilities.
899          * How many facility words are stored depends on the number of
900          * doublewords passed to the instruction. The additional facilities
901          * are:
902          *   Bit 42: decimal floating point facility is installed
903          *   Bit 44: perform floating point operation facility is installed
904          * translated to:
905          *   HWCAP_S390_DFP bit 6 (42 && 44).
906          */
907         if ((elf_hwcap & (1UL << 2)) && test_facility(42) && test_facility(44))
908                 elf_hwcap |= HWCAP_S390_DFP;
909
910         /*
911          * Huge page support HWCAP_S390_HPAGE is bit 7.
912          */
913         if (MACHINE_HAS_HPAGE)
914                 elf_hwcap |= HWCAP_S390_HPAGE;
915
916 #if defined(CONFIG_64BIT)
917         /*
918          * 64-bit register support for 31-bit processes
919          * HWCAP_S390_HIGH_GPRS is bit 9.
920          */
921         elf_hwcap |= HWCAP_S390_HIGH_GPRS;
922
923         /*
924          * Transactional execution support HWCAP_S390_TE is bit 10.
925          */
926         if (test_facility(50) && test_facility(73))
927                 elf_hwcap |= HWCAP_S390_TE;
928 #endif
929
930         get_cpu_id(&cpu_id);
931         switch (cpu_id.machine) {
932         case 0x9672:
933 #if !defined(CONFIG_64BIT)
934         default:        /* Use "g5" as default for 31 bit kernels. */
935 #endif
936                 strcpy(elf_platform, "g5");
937                 break;
938         case 0x2064:
939         case 0x2066:
940 #if defined(CONFIG_64BIT)
941         default:        /* Use "z900" as default for 64 bit kernels. */
942 #endif
943                 strcpy(elf_platform, "z900");
944                 break;
945         case 0x2084:
946         case 0x2086:
947                 strcpy(elf_platform, "z990");
948                 break;
949         case 0x2094:
950         case 0x2096:
951                 strcpy(elf_platform, "z9-109");
952                 break;
953         case 0x2097:
954         case 0x2098:
955                 strcpy(elf_platform, "z10");
956                 break;
957         case 0x2817:
958         case 0x2818:
959                 strcpy(elf_platform, "z196");
960                 break;
961         case 0x2827:
962         case 0x2828:
963                 strcpy(elf_platform, "zEC12");
964                 break;
965         }
966 }
967
968 /*
969  * Setup function called from init/main.c just after the banner
970  * was printed.
971  */
972
973 void __init setup_arch(char **cmdline_p)
974 {
975         /*
976          * print what head.S has found out about the machine
977          */
978 #ifndef CONFIG_64BIT
979         if (MACHINE_IS_VM)
980                 pr_info("Linux is running as a z/VM "
981                         "guest operating system in 31-bit mode\n");
982         else if (MACHINE_IS_LPAR)
983                 pr_info("Linux is running natively in 31-bit mode\n");
984         if (MACHINE_HAS_IEEE)
985                 pr_info("The hardware system has IEEE compatible "
986                         "floating point units\n");
987         else
988                 pr_info("The hardware system has no IEEE compatible "
989                         "floating point units\n");
990 #else /* CONFIG_64BIT */
991         if (MACHINE_IS_VM)
992                 pr_info("Linux is running as a z/VM "
993                         "guest operating system in 64-bit mode\n");
994         else if (MACHINE_IS_KVM)
995                 pr_info("Linux is running under KVM in 64-bit mode\n");
996         else if (MACHINE_IS_LPAR)
997                 pr_info("Linux is running natively in 64-bit mode\n");
998 #endif /* CONFIG_64BIT */
999
1000         /* Have one command line that is parsed and saved in /proc/cmdline */
1001         /* boot_command_line has been already set up in early.c */
1002         *cmdline_p = boot_command_line;
1003
1004         ROOT_DEV = Root_RAM0;
1005
1006         init_mm.start_code = PAGE_OFFSET;
1007         init_mm.end_code = (unsigned long) &_etext;
1008         init_mm.end_data = (unsigned long) &_edata;
1009         init_mm.brk = (unsigned long) &_end;
1010
1011         uaccess = MACHINE_HAS_MVCOS ? uaccess_mvcos : uaccess_pt;
1012
1013         parse_early_param();
1014         detect_memory_layout(memory_chunk, memory_end);
1015         os_info_init();
1016         setup_ipl();
1017         reserve_oldmem();
1018         setup_memory_end();
1019         reserve_crashkernel();
1020         setup_memory();
1021         setup_resources();
1022         setup_vmcoreinfo();
1023         setup_lowcore();
1024
1025         cpu_init();
1026         s390_init_cpu_topology();
1027
1028         /*
1029          * Setup capabilities (ELF_HWCAP & ELF_PLATFORM).
1030          */
1031         setup_hwcaps();
1032
1033         /*
1034          * Create kernel page tables and switch to virtual addressing.
1035          */
1036         paging_init();
1037
1038         /* Setup default console */
1039         conmode_default();
1040         set_preferred_console();
1041
1042         /* Setup zfcpdump support */
1043         setup_zfcpdump();
1044 }