]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - arch/sparc/mm/init_64.c
regulator: lm363x: Use generic property for hardware enable pins
[karo-tx-linux.git] / arch / sparc / mm / init_64.c
1 /*
2  *  arch/sparc64/mm/init.c
3  *
4  *  Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
5  *  Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
6  */
7  
8 #include <linux/extable.h>
9 #include <linux/kernel.h>
10 #include <linux/sched.h>
11 #include <linux/string.h>
12 #include <linux/init.h>
13 #include <linux/bootmem.h>
14 #include <linux/mm.h>
15 #include <linux/hugetlb.h>
16 #include <linux/initrd.h>
17 #include <linux/swap.h>
18 #include <linux/pagemap.h>
19 #include <linux/poison.h>
20 #include <linux/fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/kprobes.h>
23 #include <linux/cache.h>
24 #include <linux/sort.h>
25 #include <linux/ioport.h>
26 #include <linux/percpu.h>
27 #include <linux/memblock.h>
28 #include <linux/mmzone.h>
29 #include <linux/gfp.h>
30
31 #include <asm/head.h>
32 #include <asm/page.h>
33 #include <asm/pgalloc.h>
34 #include <asm/pgtable.h>
35 #include <asm/oplib.h>
36 #include <asm/iommu.h>
37 #include <asm/io.h>
38 #include <linux/uaccess.h>
39 #include <asm/mmu_context.h>
40 #include <asm/tlbflush.h>
41 #include <asm/dma.h>
42 #include <asm/starfire.h>
43 #include <asm/tlb.h>
44 #include <asm/spitfire.h>
45 #include <asm/sections.h>
46 #include <asm/tsb.h>
47 #include <asm/hypervisor.h>
48 #include <asm/prom.h>
49 #include <asm/mdesc.h>
50 #include <asm/cpudata.h>
51 #include <asm/setup.h>
52 #include <asm/irq.h>
53
54 #include "init_64.h"
55
56 unsigned long kern_linear_pte_xor[4] __read_mostly;
57 static unsigned long page_cache4v_flag;
58
59 /* A bitmap, two bits for every 256MB of physical memory.  These two
60  * bits determine what page size we use for kernel linear
61  * translations.  They form an index into kern_linear_pte_xor[].  The
62  * value in the indexed slot is XOR'd with the TLB miss virtual
63  * address to form the resulting TTE.  The mapping is:
64  *
65  *      0       ==>     4MB
66  *      1       ==>     256MB
67  *      2       ==>     2GB
68  *      3       ==>     16GB
69  *
70  * All sun4v chips support 256MB pages.  Only SPARC-T4 and later
71  * support 2GB pages, and hopefully future cpus will support the 16GB
72  * pages as well.  For slots 2 and 3, we encode a 256MB TTE xor there
73  * if these larger page sizes are not supported by the cpu.
74  *
75  * It would be nice to determine this from the machine description
76  * 'cpu' properties, but we need to have this table setup before the
77  * MDESC is initialized.
78  */
79
80 #ifndef CONFIG_DEBUG_PAGEALLOC
81 /* A special kernel TSB for 4MB, 256MB, 2GB and 16GB linear mappings.
82  * Space is allocated for this right after the trap table in
83  * arch/sparc64/kernel/head.S
84  */
85 extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
86 #endif
87 extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
88
89 static unsigned long cpu_pgsz_mask;
90
91 #define MAX_BANKS       1024
92
93 static struct linux_prom64_registers pavail[MAX_BANKS];
94 static int pavail_ents;
95
96 u64 numa_latency[MAX_NUMNODES][MAX_NUMNODES];
97
98 static int cmp_p64(const void *a, const void *b)
99 {
100         const struct linux_prom64_registers *x = a, *y = b;
101
102         if (x->phys_addr > y->phys_addr)
103                 return 1;
104         if (x->phys_addr < y->phys_addr)
105                 return -1;
106         return 0;
107 }
108
109 static void __init read_obp_memory(const char *property,
110                                    struct linux_prom64_registers *regs,
111                                    int *num_ents)
112 {
113         phandle node = prom_finddevice("/memory");
114         int prop_size = prom_getproplen(node, property);
115         int ents, ret, i;
116
117         ents = prop_size / sizeof(struct linux_prom64_registers);
118         if (ents > MAX_BANKS) {
119                 prom_printf("The machine has more %s property entries than "
120                             "this kernel can support (%d).\n",
121                             property, MAX_BANKS);
122                 prom_halt();
123         }
124
125         ret = prom_getproperty(node, property, (char *) regs, prop_size);
126         if (ret == -1) {
127                 prom_printf("Couldn't get %s property from /memory.\n",
128                                 property);
129                 prom_halt();
130         }
131
132         /* Sanitize what we got from the firmware, by page aligning
133          * everything.
134          */
135         for (i = 0; i < ents; i++) {
136                 unsigned long base, size;
137
138                 base = regs[i].phys_addr;
139                 size = regs[i].reg_size;
140
141                 size &= PAGE_MASK;
142                 if (base & ~PAGE_MASK) {
143                         unsigned long new_base = PAGE_ALIGN(base);
144
145                         size -= new_base - base;
146                         if ((long) size < 0L)
147                                 size = 0UL;
148                         base = new_base;
149                 }
150                 if (size == 0UL) {
151                         /* If it is empty, simply get rid of it.
152                          * This simplifies the logic of the other
153                          * functions that process these arrays.
154                          */
155                         memmove(&regs[i], &regs[i + 1],
156                                 (ents - i - 1) * sizeof(regs[0]));
157                         i--;
158                         ents--;
159                         continue;
160                 }
161                 regs[i].phys_addr = base;
162                 regs[i].reg_size = size;
163         }
164
165         *num_ents = ents;
166
167         sort(regs, ents, sizeof(struct linux_prom64_registers),
168              cmp_p64, NULL);
169 }
170
171 /* Kernel physical address base and size in bytes.  */
172 unsigned long kern_base __read_mostly;
173 unsigned long kern_size __read_mostly;
174
175 /* Initial ramdisk setup */
176 extern unsigned long sparc_ramdisk_image64;
177 extern unsigned int sparc_ramdisk_image;
178 extern unsigned int sparc_ramdisk_size;
179
180 struct page *mem_map_zero __read_mostly;
181 EXPORT_SYMBOL(mem_map_zero);
182
183 unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
184
185 unsigned long sparc64_kern_pri_context __read_mostly;
186 unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
187 unsigned long sparc64_kern_sec_context __read_mostly;
188
189 int num_kernel_image_mappings;
190
191 #ifdef CONFIG_DEBUG_DCFLUSH
192 atomic_t dcpage_flushes = ATOMIC_INIT(0);
193 #ifdef CONFIG_SMP
194 atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
195 #endif
196 #endif
197
198 inline void flush_dcache_page_impl(struct page *page)
199 {
200         BUG_ON(tlb_type == hypervisor);
201 #ifdef CONFIG_DEBUG_DCFLUSH
202         atomic_inc(&dcpage_flushes);
203 #endif
204
205 #ifdef DCACHE_ALIASING_POSSIBLE
206         __flush_dcache_page(page_address(page),
207                             ((tlb_type == spitfire) &&
208                              page_mapping(page) != NULL));
209 #else
210         if (page_mapping(page) != NULL &&
211             tlb_type == spitfire)
212                 __flush_icache_page(__pa(page_address(page)));
213 #endif
214 }
215
216 #define PG_dcache_dirty         PG_arch_1
217 #define PG_dcache_cpu_shift     32UL
218 #define PG_dcache_cpu_mask      \
219         ((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
220
221 #define dcache_dirty_cpu(page) \
222         (((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
223
224 static inline void set_dcache_dirty(struct page *page, int this_cpu)
225 {
226         unsigned long mask = this_cpu;
227         unsigned long non_cpu_bits;
228
229         non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
230         mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
231
232         __asm__ __volatile__("1:\n\t"
233                              "ldx       [%2], %%g7\n\t"
234                              "and       %%g7, %1, %%g1\n\t"
235                              "or        %%g1, %0, %%g1\n\t"
236                              "casx      [%2], %%g7, %%g1\n\t"
237                              "cmp       %%g7, %%g1\n\t"
238                              "bne,pn    %%xcc, 1b\n\t"
239                              " nop"
240                              : /* no outputs */
241                              : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
242                              : "g1", "g7");
243 }
244
245 static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
246 {
247         unsigned long mask = (1UL << PG_dcache_dirty);
248
249         __asm__ __volatile__("! test_and_clear_dcache_dirty\n"
250                              "1:\n\t"
251                              "ldx       [%2], %%g7\n\t"
252                              "srlx      %%g7, %4, %%g1\n\t"
253                              "and       %%g1, %3, %%g1\n\t"
254                              "cmp       %%g1, %0\n\t"
255                              "bne,pn    %%icc, 2f\n\t"
256                              " andn     %%g7, %1, %%g1\n\t"
257                              "casx      [%2], %%g7, %%g1\n\t"
258                              "cmp       %%g7, %%g1\n\t"
259                              "bne,pn    %%xcc, 1b\n\t"
260                              " nop\n"
261                              "2:"
262                              : /* no outputs */
263                              : "r" (cpu), "r" (mask), "r" (&page->flags),
264                                "i" (PG_dcache_cpu_mask),
265                                "i" (PG_dcache_cpu_shift)
266                              : "g1", "g7");
267 }
268
269 static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
270 {
271         unsigned long tsb_addr = (unsigned long) ent;
272
273         if (tlb_type == cheetah_plus || tlb_type == hypervisor)
274                 tsb_addr = __pa(tsb_addr);
275
276         __tsb_insert(tsb_addr, tag, pte);
277 }
278
279 unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
280
281 static void flush_dcache(unsigned long pfn)
282 {
283         struct page *page;
284
285         page = pfn_to_page(pfn);
286         if (page) {
287                 unsigned long pg_flags;
288
289                 pg_flags = page->flags;
290                 if (pg_flags & (1UL << PG_dcache_dirty)) {
291                         int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
292                                    PG_dcache_cpu_mask);
293                         int this_cpu = get_cpu();
294
295                         /* This is just to optimize away some function calls
296                          * in the SMP case.
297                          */
298                         if (cpu == this_cpu)
299                                 flush_dcache_page_impl(page);
300                         else
301                                 smp_flush_dcache_page_impl(page, cpu);
302
303                         clear_dcache_dirty_cpu(page, cpu);
304
305                         put_cpu();
306                 }
307         }
308 }
309
310 /* mm->context.lock must be held */
311 static void __update_mmu_tsb_insert(struct mm_struct *mm, unsigned long tsb_index,
312                                     unsigned long tsb_hash_shift, unsigned long address,
313                                     unsigned long tte)
314 {
315         struct tsb *tsb = mm->context.tsb_block[tsb_index].tsb;
316         unsigned long tag;
317
318         if (unlikely(!tsb))
319                 return;
320
321         tsb += ((address >> tsb_hash_shift) &
322                 (mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
323         tag = (address >> 22UL);
324         tsb_insert(tsb, tag, tte);
325 }
326
327 #ifdef CONFIG_HUGETLB_PAGE
328 static int __init setup_hugepagesz(char *string)
329 {
330         unsigned long long hugepage_size;
331         unsigned int hugepage_shift;
332         unsigned short hv_pgsz_idx;
333         unsigned int hv_pgsz_mask;
334         int rc = 0;
335
336         hugepage_size = memparse(string, &string);
337         hugepage_shift = ilog2(hugepage_size);
338
339         switch (hugepage_shift) {
340         case HPAGE_256MB_SHIFT:
341                 hv_pgsz_mask = HV_PGSZ_MASK_256MB;
342                 hv_pgsz_idx = HV_PGSZ_IDX_256MB;
343                 break;
344         case HPAGE_SHIFT:
345                 hv_pgsz_mask = HV_PGSZ_MASK_4MB;
346                 hv_pgsz_idx = HV_PGSZ_IDX_4MB;
347                 break;
348         case HPAGE_64K_SHIFT:
349                 hv_pgsz_mask = HV_PGSZ_MASK_64K;
350                 hv_pgsz_idx = HV_PGSZ_IDX_64K;
351                 break;
352         default:
353                 hv_pgsz_mask = 0;
354         }
355
356         if ((hv_pgsz_mask & cpu_pgsz_mask) == 0U) {
357                 pr_warn("hugepagesz=%llu not supported by MMU.\n",
358                         hugepage_size);
359                 goto out;
360         }
361
362         hugetlb_add_hstate(hugepage_shift - PAGE_SHIFT);
363         rc = 1;
364
365 out:
366         return rc;
367 }
368 __setup("hugepagesz=", setup_hugepagesz);
369 #endif  /* CONFIG_HUGETLB_PAGE */
370
371 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t *ptep)
372 {
373         struct mm_struct *mm;
374         unsigned long flags;
375         pte_t pte = *ptep;
376
377         if (tlb_type != hypervisor) {
378                 unsigned long pfn = pte_pfn(pte);
379
380                 if (pfn_valid(pfn))
381                         flush_dcache(pfn);
382         }
383
384         mm = vma->vm_mm;
385
386         /* Don't insert a non-valid PTE into the TSB, we'll deadlock.  */
387         if (!pte_accessible(mm, pte))
388                 return;
389
390         spin_lock_irqsave(&mm->context.lock, flags);
391
392 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
393         if ((mm->context.hugetlb_pte_count || mm->context.thp_pte_count) &&
394             is_hugetlb_pmd(__pmd(pte_val(pte)))) {
395                 /* We are fabricating 8MB pages using 4MB real hw pages.  */
396                 pte_val(pte) |= (address & (1UL << REAL_HPAGE_SHIFT));
397                 __update_mmu_tsb_insert(mm, MM_TSB_HUGE, REAL_HPAGE_SHIFT,
398                                         address, pte_val(pte));
399         } else
400 #endif
401                 __update_mmu_tsb_insert(mm, MM_TSB_BASE, PAGE_SHIFT,
402                                         address, pte_val(pte));
403
404         spin_unlock_irqrestore(&mm->context.lock, flags);
405 }
406
407 void flush_dcache_page(struct page *page)
408 {
409         struct address_space *mapping;
410         int this_cpu;
411
412         if (tlb_type == hypervisor)
413                 return;
414
415         /* Do not bother with the expensive D-cache flush if it
416          * is merely the zero page.  The 'bigcore' testcase in GDB
417          * causes this case to run millions of times.
418          */
419         if (page == ZERO_PAGE(0))
420                 return;
421
422         this_cpu = get_cpu();
423
424         mapping = page_mapping(page);
425         if (mapping && !mapping_mapped(mapping)) {
426                 int dirty = test_bit(PG_dcache_dirty, &page->flags);
427                 if (dirty) {
428                         int dirty_cpu = dcache_dirty_cpu(page);
429
430                         if (dirty_cpu == this_cpu)
431                                 goto out;
432                         smp_flush_dcache_page_impl(page, dirty_cpu);
433                 }
434                 set_dcache_dirty(page, this_cpu);
435         } else {
436                 /* We could delay the flush for the !page_mapping
437                  * case too.  But that case is for exec env/arg
438                  * pages and those are %99 certainly going to get
439                  * faulted into the tlb (and thus flushed) anyways.
440                  */
441                 flush_dcache_page_impl(page);
442         }
443
444 out:
445         put_cpu();
446 }
447 EXPORT_SYMBOL(flush_dcache_page);
448
449 void __kprobes flush_icache_range(unsigned long start, unsigned long end)
450 {
451         /* Cheetah and Hypervisor platform cpus have coherent I-cache. */
452         if (tlb_type == spitfire) {
453                 unsigned long kaddr;
454
455                 /* This code only runs on Spitfire cpus so this is
456                  * why we can assume _PAGE_PADDR_4U.
457                  */
458                 for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) {
459                         unsigned long paddr, mask = _PAGE_PADDR_4U;
460
461                         if (kaddr >= PAGE_OFFSET)
462                                 paddr = kaddr & mask;
463                         else {
464                                 pgd_t *pgdp = pgd_offset_k(kaddr);
465                                 pud_t *pudp = pud_offset(pgdp, kaddr);
466                                 pmd_t *pmdp = pmd_offset(pudp, kaddr);
467                                 pte_t *ptep = pte_offset_kernel(pmdp, kaddr);
468
469                                 paddr = pte_val(*ptep) & mask;
470                         }
471                         __flush_icache_page(paddr);
472                 }
473         }
474 }
475 EXPORT_SYMBOL(flush_icache_range);
476
477 void mmu_info(struct seq_file *m)
478 {
479         static const char *pgsz_strings[] = {
480                 "8K", "64K", "512K", "4MB", "32MB",
481                 "256MB", "2GB", "16GB",
482         };
483         int i, printed;
484
485         if (tlb_type == cheetah)
486                 seq_printf(m, "MMU Type\t: Cheetah\n");
487         else if (tlb_type == cheetah_plus)
488                 seq_printf(m, "MMU Type\t: Cheetah+\n");
489         else if (tlb_type == spitfire)
490                 seq_printf(m, "MMU Type\t: Spitfire\n");
491         else if (tlb_type == hypervisor)
492                 seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
493         else
494                 seq_printf(m, "MMU Type\t: ???\n");
495
496         seq_printf(m, "MMU PGSZs\t: ");
497         printed = 0;
498         for (i = 0; i < ARRAY_SIZE(pgsz_strings); i++) {
499                 if (cpu_pgsz_mask & (1UL << i)) {
500                         seq_printf(m, "%s%s",
501                                    printed ? "," : "", pgsz_strings[i]);
502                         printed++;
503                 }
504         }
505         seq_putc(m, '\n');
506
507 #ifdef CONFIG_DEBUG_DCFLUSH
508         seq_printf(m, "DCPageFlushes\t: %d\n",
509                    atomic_read(&dcpage_flushes));
510 #ifdef CONFIG_SMP
511         seq_printf(m, "DCPageFlushesXC\t: %d\n",
512                    atomic_read(&dcpage_flushes_xcall));
513 #endif /* CONFIG_SMP */
514 #endif /* CONFIG_DEBUG_DCFLUSH */
515 }
516
517 struct linux_prom_translation prom_trans[512] __read_mostly;
518 unsigned int prom_trans_ents __read_mostly;
519
520 unsigned long kern_locked_tte_data;
521
522 /* The obp translations are saved based on 8k pagesize, since obp can
523  * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
524  * HI_OBP_ADDRESS range are handled in ktlb.S.
525  */
526 static inline int in_obp_range(unsigned long vaddr)
527 {
528         return (vaddr >= LOW_OBP_ADDRESS &&
529                 vaddr < HI_OBP_ADDRESS);
530 }
531
532 static int cmp_ptrans(const void *a, const void *b)
533 {
534         const struct linux_prom_translation *x = a, *y = b;
535
536         if (x->virt > y->virt)
537                 return 1;
538         if (x->virt < y->virt)
539                 return -1;
540         return 0;
541 }
542
543 /* Read OBP translations property into 'prom_trans[]'.  */
544 static void __init read_obp_translations(void)
545 {
546         int n, node, ents, first, last, i;
547
548         node = prom_finddevice("/virtual-memory");
549         n = prom_getproplen(node, "translations");
550         if (unlikely(n == 0 || n == -1)) {
551                 prom_printf("prom_mappings: Couldn't get size.\n");
552                 prom_halt();
553         }
554         if (unlikely(n > sizeof(prom_trans))) {
555                 prom_printf("prom_mappings: Size %d is too big.\n", n);
556                 prom_halt();
557         }
558
559         if ((n = prom_getproperty(node, "translations",
560                                   (char *)&prom_trans[0],
561                                   sizeof(prom_trans))) == -1) {
562                 prom_printf("prom_mappings: Couldn't get property.\n");
563                 prom_halt();
564         }
565
566         n = n / sizeof(struct linux_prom_translation);
567
568         ents = n;
569
570         sort(prom_trans, ents, sizeof(struct linux_prom_translation),
571              cmp_ptrans, NULL);
572
573         /* Now kick out all the non-OBP entries.  */
574         for (i = 0; i < ents; i++) {
575                 if (in_obp_range(prom_trans[i].virt))
576                         break;
577         }
578         first = i;
579         for (; i < ents; i++) {
580                 if (!in_obp_range(prom_trans[i].virt))
581                         break;
582         }
583         last = i;
584
585         for (i = 0; i < (last - first); i++) {
586                 struct linux_prom_translation *src = &prom_trans[i + first];
587                 struct linux_prom_translation *dest = &prom_trans[i];
588
589                 *dest = *src;
590         }
591         for (; i < ents; i++) {
592                 struct linux_prom_translation *dest = &prom_trans[i];
593                 dest->virt = dest->size = dest->data = 0x0UL;
594         }
595
596         prom_trans_ents = last - first;
597
598         if (tlb_type == spitfire) {
599                 /* Clear diag TTE bits. */
600                 for (i = 0; i < prom_trans_ents; i++)
601                         prom_trans[i].data &= ~0x0003fe0000000000UL;
602         }
603
604         /* Force execute bit on.  */
605         for (i = 0; i < prom_trans_ents; i++)
606                 prom_trans[i].data |= (tlb_type == hypervisor ?
607                                        _PAGE_EXEC_4V : _PAGE_EXEC_4U);
608 }
609
610 static void __init hypervisor_tlb_lock(unsigned long vaddr,
611                                        unsigned long pte,
612                                        unsigned long mmu)
613 {
614         unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu);
615
616         if (ret != 0) {
617                 prom_printf("hypervisor_tlb_lock[%lx:%x:%lx:%lx]: "
618                             "errors with %lx\n", vaddr, 0, pte, mmu, ret);
619                 prom_halt();
620         }
621 }
622
623 static unsigned long kern_large_tte(unsigned long paddr);
624
625 static void __init remap_kernel(void)
626 {
627         unsigned long phys_page, tte_vaddr, tte_data;
628         int i, tlb_ent = sparc64_highest_locked_tlbent();
629
630         tte_vaddr = (unsigned long) KERNBASE;
631         phys_page = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
632         tte_data = kern_large_tte(phys_page);
633
634         kern_locked_tte_data = tte_data;
635
636         /* Now lock us into the TLBs via Hypervisor or OBP. */
637         if (tlb_type == hypervisor) {
638                 for (i = 0; i < num_kernel_image_mappings; i++) {
639                         hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
640                         hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
641                         tte_vaddr += 0x400000;
642                         tte_data += 0x400000;
643                 }
644         } else {
645                 for (i = 0; i < num_kernel_image_mappings; i++) {
646                         prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr);
647                         prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr);
648                         tte_vaddr += 0x400000;
649                         tte_data += 0x400000;
650                 }
651                 sparc64_highest_unlocked_tlb_ent = tlb_ent - i;
652         }
653         if (tlb_type == cheetah_plus) {
654                 sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
655                                             CTX_CHEETAH_PLUS_NUC);
656                 sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
657                 sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
658         }
659 }
660
661
662 static void __init inherit_prom_mappings(void)
663 {
664         /* Now fixup OBP's idea about where we really are mapped. */
665         printk("Remapping the kernel... ");
666         remap_kernel();
667         printk("done.\n");
668 }
669
670 void prom_world(int enter)
671 {
672         if (!enter)
673                 set_fs(get_fs());
674
675         __asm__ __volatile__("flushw");
676 }
677
678 void __flush_dcache_range(unsigned long start, unsigned long end)
679 {
680         unsigned long va;
681
682         if (tlb_type == spitfire) {
683                 int n = 0;
684
685                 for (va = start; va < end; va += 32) {
686                         spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
687                         if (++n >= 512)
688                                 break;
689                 }
690         } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
691                 start = __pa(start);
692                 end = __pa(end);
693                 for (va = start; va < end; va += 32)
694                         __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
695                                              "membar #Sync"
696                                              : /* no outputs */
697                                              : "r" (va),
698                                                "i" (ASI_DCACHE_INVALIDATE));
699         }
700 }
701 EXPORT_SYMBOL(__flush_dcache_range);
702
703 /* get_new_mmu_context() uses "cache + 1".  */
704 DEFINE_SPINLOCK(ctx_alloc_lock);
705 unsigned long tlb_context_cache = CTX_FIRST_VERSION - 1;
706 #define MAX_CTX_NR      (1UL << CTX_NR_BITS)
707 #define CTX_BMAP_SLOTS  BITS_TO_LONGS(MAX_CTX_NR)
708 DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR);
709
710 /* Caller does TLB context flushing on local CPU if necessary.
711  * The caller also ensures that CTX_VALID(mm->context) is false.
712  *
713  * We must be careful about boundary cases so that we never
714  * let the user have CTX 0 (nucleus) or we ever use a CTX
715  * version of zero (and thus NO_CONTEXT would not be caught
716  * by version mis-match tests in mmu_context.h).
717  *
718  * Always invoked with interrupts disabled.
719  */
720 void get_new_mmu_context(struct mm_struct *mm)
721 {
722         unsigned long ctx, new_ctx;
723         unsigned long orig_pgsz_bits;
724         int new_version;
725
726         spin_lock(&ctx_alloc_lock);
727         orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
728         ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
729         new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
730         new_version = 0;
731         if (new_ctx >= (1 << CTX_NR_BITS)) {
732                 new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
733                 if (new_ctx >= ctx) {
734                         int i;
735                         new_ctx = (tlb_context_cache & CTX_VERSION_MASK) +
736                                 CTX_FIRST_VERSION;
737                         if (new_ctx == 1)
738                                 new_ctx = CTX_FIRST_VERSION;
739
740                         /* Don't call memset, for 16 entries that's just
741                          * plain silly...
742                          */
743                         mmu_context_bmap[0] = 3;
744                         mmu_context_bmap[1] = 0;
745                         mmu_context_bmap[2] = 0;
746                         mmu_context_bmap[3] = 0;
747                         for (i = 4; i < CTX_BMAP_SLOTS; i += 4) {
748                                 mmu_context_bmap[i + 0] = 0;
749                                 mmu_context_bmap[i + 1] = 0;
750                                 mmu_context_bmap[i + 2] = 0;
751                                 mmu_context_bmap[i + 3] = 0;
752                         }
753                         new_version = 1;
754                         goto out;
755                 }
756         }
757         mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
758         new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
759 out:
760         tlb_context_cache = new_ctx;
761         mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
762         spin_unlock(&ctx_alloc_lock);
763
764         if (unlikely(new_version))
765                 smp_new_mmu_context_version();
766 }
767
768 static int numa_enabled = 1;
769 static int numa_debug;
770
771 static int __init early_numa(char *p)
772 {
773         if (!p)
774                 return 0;
775
776         if (strstr(p, "off"))
777                 numa_enabled = 0;
778
779         if (strstr(p, "debug"))
780                 numa_debug = 1;
781
782         return 0;
783 }
784 early_param("numa", early_numa);
785
786 #define numadbg(f, a...) \
787 do {    if (numa_debug) \
788                 printk(KERN_INFO f, ## a); \
789 } while (0)
790
791 static void __init find_ramdisk(unsigned long phys_base)
792 {
793 #ifdef CONFIG_BLK_DEV_INITRD
794         if (sparc_ramdisk_image || sparc_ramdisk_image64) {
795                 unsigned long ramdisk_image;
796
797                 /* Older versions of the bootloader only supported a
798                  * 32-bit physical address for the ramdisk image
799                  * location, stored at sparc_ramdisk_image.  Newer
800                  * SILO versions set sparc_ramdisk_image to zero and
801                  * provide a full 64-bit physical address at
802                  * sparc_ramdisk_image64.
803                  */
804                 ramdisk_image = sparc_ramdisk_image;
805                 if (!ramdisk_image)
806                         ramdisk_image = sparc_ramdisk_image64;
807
808                 /* Another bootloader quirk.  The bootloader normalizes
809                  * the physical address to KERNBASE, so we have to
810                  * factor that back out and add in the lowest valid
811                  * physical page address to get the true physical address.
812                  */
813                 ramdisk_image -= KERNBASE;
814                 ramdisk_image += phys_base;
815
816                 numadbg("Found ramdisk at physical address 0x%lx, size %u\n",
817                         ramdisk_image, sparc_ramdisk_size);
818
819                 initrd_start = ramdisk_image;
820                 initrd_end = ramdisk_image + sparc_ramdisk_size;
821
822                 memblock_reserve(initrd_start, sparc_ramdisk_size);
823
824                 initrd_start += PAGE_OFFSET;
825                 initrd_end += PAGE_OFFSET;
826         }
827 #endif
828 }
829
830 struct node_mem_mask {
831         unsigned long mask;
832         unsigned long match;
833 };
834 static struct node_mem_mask node_masks[MAX_NUMNODES];
835 static int num_node_masks;
836
837 #ifdef CONFIG_NEED_MULTIPLE_NODES
838
839 struct mdesc_mlgroup {
840         u64     node;
841         u64     latency;
842         u64     match;
843         u64     mask;
844 };
845
846 static struct mdesc_mlgroup *mlgroups;
847 static int num_mlgroups;
848
849 int numa_cpu_lookup_table[NR_CPUS];
850 cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
851
852 struct mdesc_mblock {
853         u64     base;
854         u64     size;
855         u64     offset; /* RA-to-PA */
856 };
857 static struct mdesc_mblock *mblocks;
858 static int num_mblocks;
859
860 static struct mdesc_mblock * __init addr_to_mblock(unsigned long addr)
861 {
862         struct mdesc_mblock *m = NULL;
863         int i;
864
865         for (i = 0; i < num_mblocks; i++) {
866                 m = &mblocks[i];
867
868                 if (addr >= m->base &&
869                     addr < (m->base + m->size)) {
870                         break;
871                 }
872         }
873
874         return m;
875 }
876
877 static u64 __init memblock_nid_range_sun4u(u64 start, u64 end, int *nid)
878 {
879         int prev_nid, new_nid;
880
881         prev_nid = -1;
882         for ( ; start < end; start += PAGE_SIZE) {
883                 for (new_nid = 0; new_nid < num_node_masks; new_nid++) {
884                         struct node_mem_mask *p = &node_masks[new_nid];
885
886                         if ((start & p->mask) == p->match) {
887                                 if (prev_nid == -1)
888                                         prev_nid = new_nid;
889                                 break;
890                         }
891                 }
892
893                 if (new_nid == num_node_masks) {
894                         prev_nid = 0;
895                         WARN_ONCE(1, "addr[%Lx] doesn't match a NUMA node rule. Some memory will be owned by node 0.",
896                                   start);
897                         break;
898                 }
899
900                 if (prev_nid != new_nid)
901                         break;
902         }
903         *nid = prev_nid;
904
905         return start > end ? end : start;
906 }
907
908 static u64 __init memblock_nid_range(u64 start, u64 end, int *nid)
909 {
910         u64 ret_end, pa_start, m_mask, m_match, m_end;
911         struct mdesc_mblock *mblock;
912         int _nid, i;
913
914         if (tlb_type != hypervisor)
915                 return memblock_nid_range_sun4u(start, end, nid);
916
917         mblock = addr_to_mblock(start);
918         if (!mblock) {
919                 WARN_ONCE(1, "memblock_nid_range: Can't find mblock addr[%Lx]",
920                           start);
921
922                 _nid = 0;
923                 ret_end = end;
924                 goto done;
925         }
926
927         pa_start = start + mblock->offset;
928         m_match = 0;
929         m_mask = 0;
930
931         for (_nid = 0; _nid < num_node_masks; _nid++) {
932                 struct node_mem_mask *const m = &node_masks[_nid];
933
934                 if ((pa_start & m->mask) == m->match) {
935                         m_match = m->match;
936                         m_mask = m->mask;
937                         break;
938                 }
939         }
940
941         if (num_node_masks == _nid) {
942                 /* We could not find NUMA group, so default to 0, but lets
943                  * search for latency group, so we could calculate the correct
944                  * end address that we return
945                  */
946                 _nid = 0;
947
948                 for (i = 0; i < num_mlgroups; i++) {
949                         struct mdesc_mlgroup *const m = &mlgroups[i];
950
951                         if ((pa_start & m->mask) == m->match) {
952                                 m_match = m->match;
953                                 m_mask = m->mask;
954                                 break;
955                         }
956                 }
957
958                 if (i == num_mlgroups) {
959                         WARN_ONCE(1, "memblock_nid_range: Can't find latency group addr[%Lx]",
960                                   start);
961
962                         ret_end = end;
963                         goto done;
964                 }
965         }
966
967         /*
968          * Each latency group has match and mask, and each memory block has an
969          * offset.  An address belongs to a latency group if its address matches
970          * the following formula: ((addr + offset) & mask) == match
971          * It is, however, slow to check every single page if it matches a
972          * particular latency group. As optimization we calculate end value by
973          * using bit arithmetics.
974          */
975         m_end = m_match + (1ul << __ffs(m_mask)) - mblock->offset;
976         m_end += pa_start & ~((1ul << fls64(m_mask)) - 1);
977         ret_end = m_end > end ? end : m_end;
978
979 done:
980         *nid = _nid;
981         return ret_end;
982 }
983 #endif
984
985 /* This must be invoked after performing all of the necessary
986  * memblock_set_node() calls for 'nid'.  We need to be able to get
987  * correct data from get_pfn_range_for_nid().
988  */
989 static void __init allocate_node_data(int nid)
990 {
991         struct pglist_data *p;
992         unsigned long start_pfn, end_pfn;
993 #ifdef CONFIG_NEED_MULTIPLE_NODES
994         unsigned long paddr;
995
996         paddr = memblock_alloc_try_nid(sizeof(struct pglist_data), SMP_CACHE_BYTES, nid);
997         if (!paddr) {
998                 prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid);
999                 prom_halt();
1000         }
1001         NODE_DATA(nid) = __va(paddr);
1002         memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));
1003
1004         NODE_DATA(nid)->node_id = nid;
1005 #endif
1006
1007         p = NODE_DATA(nid);
1008
1009         get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
1010         p->node_start_pfn = start_pfn;
1011         p->node_spanned_pages = end_pfn - start_pfn;
1012 }
1013
1014 static void init_node_masks_nonnuma(void)
1015 {
1016 #ifdef CONFIG_NEED_MULTIPLE_NODES
1017         int i;
1018 #endif
1019
1020         numadbg("Initializing tables for non-numa.\n");
1021
1022         node_masks[0].mask = 0;
1023         node_masks[0].match = 0;
1024         num_node_masks = 1;
1025
1026 #ifdef CONFIG_NEED_MULTIPLE_NODES
1027         for (i = 0; i < NR_CPUS; i++)
1028                 numa_cpu_lookup_table[i] = 0;
1029
1030         cpumask_setall(&numa_cpumask_lookup_table[0]);
1031 #endif
1032 }
1033
1034 #ifdef CONFIG_NEED_MULTIPLE_NODES
1035 struct pglist_data *node_data[MAX_NUMNODES];
1036
1037 EXPORT_SYMBOL(numa_cpu_lookup_table);
1038 EXPORT_SYMBOL(numa_cpumask_lookup_table);
1039 EXPORT_SYMBOL(node_data);
1040
1041 static int scan_pio_for_cfg_handle(struct mdesc_handle *md, u64 pio,
1042                                    u32 cfg_handle)
1043 {
1044         u64 arc;
1045
1046         mdesc_for_each_arc(arc, md, pio, MDESC_ARC_TYPE_FWD) {
1047                 u64 target = mdesc_arc_target(md, arc);
1048                 const u64 *val;
1049
1050                 val = mdesc_get_property(md, target,
1051                                          "cfg-handle", NULL);
1052                 if (val && *val == cfg_handle)
1053                         return 0;
1054         }
1055         return -ENODEV;
1056 }
1057
1058 static int scan_arcs_for_cfg_handle(struct mdesc_handle *md, u64 grp,
1059                                     u32 cfg_handle)
1060 {
1061         u64 arc, candidate, best_latency = ~(u64)0;
1062
1063         candidate = MDESC_NODE_NULL;
1064         mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1065                 u64 target = mdesc_arc_target(md, arc);
1066                 const char *name = mdesc_node_name(md, target);
1067                 const u64 *val;
1068
1069                 if (strcmp(name, "pio-latency-group"))
1070                         continue;
1071
1072                 val = mdesc_get_property(md, target, "latency", NULL);
1073                 if (!val)
1074                         continue;
1075
1076                 if (*val < best_latency) {
1077                         candidate = target;
1078                         best_latency = *val;
1079                 }
1080         }
1081
1082         if (candidate == MDESC_NODE_NULL)
1083                 return -ENODEV;
1084
1085         return scan_pio_for_cfg_handle(md, candidate, cfg_handle);
1086 }
1087
1088 int of_node_to_nid(struct device_node *dp)
1089 {
1090         const struct linux_prom64_registers *regs;
1091         struct mdesc_handle *md;
1092         u32 cfg_handle;
1093         int count, nid;
1094         u64 grp;
1095
1096         /* This is the right thing to do on currently supported
1097          * SUN4U NUMA platforms as well, as the PCI controller does
1098          * not sit behind any particular memory controller.
1099          */
1100         if (!mlgroups)
1101                 return -1;
1102
1103         regs = of_get_property(dp, "reg", NULL);
1104         if (!regs)
1105                 return -1;
1106
1107         cfg_handle = (regs->phys_addr >> 32UL) & 0x0fffffff;
1108
1109         md = mdesc_grab();
1110
1111         count = 0;
1112         nid = -1;
1113         mdesc_for_each_node_by_name(md, grp, "group") {
1114                 if (!scan_arcs_for_cfg_handle(md, grp, cfg_handle)) {
1115                         nid = count;
1116                         break;
1117                 }
1118                 count++;
1119         }
1120
1121         mdesc_release(md);
1122
1123         return nid;
1124 }
1125
1126 static void __init add_node_ranges(void)
1127 {
1128         struct memblock_region *reg;
1129         unsigned long prev_max;
1130
1131 memblock_resized:
1132         prev_max = memblock.memory.max;
1133
1134         for_each_memblock(memory, reg) {
1135                 unsigned long size = reg->size;
1136                 unsigned long start, end;
1137
1138                 start = reg->base;
1139                 end = start + size;
1140                 while (start < end) {
1141                         unsigned long this_end;
1142                         int nid;
1143
1144                         this_end = memblock_nid_range(start, end, &nid);
1145
1146                         numadbg("Setting memblock NUMA node nid[%d] "
1147                                 "start[%lx] end[%lx]\n",
1148                                 nid, start, this_end);
1149
1150                         memblock_set_node(start, this_end - start,
1151                                           &memblock.memory, nid);
1152                         if (memblock.memory.max != prev_max)
1153                                 goto memblock_resized;
1154                         start = this_end;
1155                 }
1156         }
1157 }
1158
1159 static int __init grab_mlgroups(struct mdesc_handle *md)
1160 {
1161         unsigned long paddr;
1162         int count = 0;
1163         u64 node;
1164
1165         mdesc_for_each_node_by_name(md, node, "memory-latency-group")
1166                 count++;
1167         if (!count)
1168                 return -ENOENT;
1169
1170         paddr = memblock_alloc(count * sizeof(struct mdesc_mlgroup),
1171                           SMP_CACHE_BYTES);
1172         if (!paddr)
1173                 return -ENOMEM;
1174
1175         mlgroups = __va(paddr);
1176         num_mlgroups = count;
1177
1178         count = 0;
1179         mdesc_for_each_node_by_name(md, node, "memory-latency-group") {
1180                 struct mdesc_mlgroup *m = &mlgroups[count++];
1181                 const u64 *val;
1182
1183                 m->node = node;
1184
1185                 val = mdesc_get_property(md, node, "latency", NULL);
1186                 m->latency = *val;
1187                 val = mdesc_get_property(md, node, "address-match", NULL);
1188                 m->match = *val;
1189                 val = mdesc_get_property(md, node, "address-mask", NULL);
1190                 m->mask = *val;
1191
1192                 numadbg("MLGROUP[%d]: node[%llx] latency[%llx] "
1193                         "match[%llx] mask[%llx]\n",
1194                         count - 1, m->node, m->latency, m->match, m->mask);
1195         }
1196
1197         return 0;
1198 }
1199
1200 static int __init grab_mblocks(struct mdesc_handle *md)
1201 {
1202         unsigned long paddr;
1203         int count = 0;
1204         u64 node;
1205
1206         mdesc_for_each_node_by_name(md, node, "mblock")
1207                 count++;
1208         if (!count)
1209                 return -ENOENT;
1210
1211         paddr = memblock_alloc(count * sizeof(struct mdesc_mblock),
1212                           SMP_CACHE_BYTES);
1213         if (!paddr)
1214                 return -ENOMEM;
1215
1216         mblocks = __va(paddr);
1217         num_mblocks = count;
1218
1219         count = 0;
1220         mdesc_for_each_node_by_name(md, node, "mblock") {
1221                 struct mdesc_mblock *m = &mblocks[count++];
1222                 const u64 *val;
1223
1224                 val = mdesc_get_property(md, node, "base", NULL);
1225                 m->base = *val;
1226                 val = mdesc_get_property(md, node, "size", NULL);
1227                 m->size = *val;
1228                 val = mdesc_get_property(md, node,
1229                                          "address-congruence-offset", NULL);
1230
1231                 /* The address-congruence-offset property is optional.
1232                  * Explicity zero it be identifty this.
1233                  */
1234                 if (val)
1235                         m->offset = *val;
1236                 else
1237                         m->offset = 0UL;
1238
1239                 numadbg("MBLOCK[%d]: base[%llx] size[%llx] offset[%llx]\n",
1240                         count - 1, m->base, m->size, m->offset);
1241         }
1242
1243         return 0;
1244 }
1245
1246 static void __init numa_parse_mdesc_group_cpus(struct mdesc_handle *md,
1247                                                u64 grp, cpumask_t *mask)
1248 {
1249         u64 arc;
1250
1251         cpumask_clear(mask);
1252
1253         mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_BACK) {
1254                 u64 target = mdesc_arc_target(md, arc);
1255                 const char *name = mdesc_node_name(md, target);
1256                 const u64 *id;
1257
1258                 if (strcmp(name, "cpu"))
1259                         continue;
1260                 id = mdesc_get_property(md, target, "id", NULL);
1261                 if (*id < nr_cpu_ids)
1262                         cpumask_set_cpu(*id, mask);
1263         }
1264 }
1265
1266 static struct mdesc_mlgroup * __init find_mlgroup(u64 node)
1267 {
1268         int i;
1269
1270         for (i = 0; i < num_mlgroups; i++) {
1271                 struct mdesc_mlgroup *m = &mlgroups[i];
1272                 if (m->node == node)
1273                         return m;
1274         }
1275         return NULL;
1276 }
1277
1278 int __node_distance(int from, int to)
1279 {
1280         if ((from >= MAX_NUMNODES) || (to >= MAX_NUMNODES)) {
1281                 pr_warn("Returning default NUMA distance value for %d->%d\n",
1282                         from, to);
1283                 return (from == to) ? LOCAL_DISTANCE : REMOTE_DISTANCE;
1284         }
1285         return numa_latency[from][to];
1286 }
1287
1288 static int __init find_best_numa_node_for_mlgroup(struct mdesc_mlgroup *grp)
1289 {
1290         int i;
1291
1292         for (i = 0; i < MAX_NUMNODES; i++) {
1293                 struct node_mem_mask *n = &node_masks[i];
1294
1295                 if ((grp->mask == n->mask) && (grp->match == n->match))
1296                         break;
1297         }
1298         return i;
1299 }
1300
1301 static void __init find_numa_latencies_for_group(struct mdesc_handle *md,
1302                                                  u64 grp, int index)
1303 {
1304         u64 arc;
1305
1306         mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1307                 int tnode;
1308                 u64 target = mdesc_arc_target(md, arc);
1309                 struct mdesc_mlgroup *m = find_mlgroup(target);
1310
1311                 if (!m)
1312                         continue;
1313                 tnode = find_best_numa_node_for_mlgroup(m);
1314                 if (tnode == MAX_NUMNODES)
1315                         continue;
1316                 numa_latency[index][tnode] = m->latency;
1317         }
1318 }
1319
1320 static int __init numa_attach_mlgroup(struct mdesc_handle *md, u64 grp,
1321                                       int index)
1322 {
1323         struct mdesc_mlgroup *candidate = NULL;
1324         u64 arc, best_latency = ~(u64)0;
1325         struct node_mem_mask *n;
1326
1327         mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1328                 u64 target = mdesc_arc_target(md, arc);
1329                 struct mdesc_mlgroup *m = find_mlgroup(target);
1330                 if (!m)
1331                         continue;
1332                 if (m->latency < best_latency) {
1333                         candidate = m;
1334                         best_latency = m->latency;
1335                 }
1336         }
1337         if (!candidate)
1338                 return -ENOENT;
1339
1340         if (num_node_masks != index) {
1341                 printk(KERN_ERR "Inconsistent NUMA state, "
1342                        "index[%d] != num_node_masks[%d]\n",
1343                        index, num_node_masks);
1344                 return -EINVAL;
1345         }
1346
1347         n = &node_masks[num_node_masks++];
1348
1349         n->mask = candidate->mask;
1350         n->match = candidate->match;
1351
1352         numadbg("NUMA NODE[%d]: mask[%lx] match[%lx] (latency[%llx])\n",
1353                 index, n->mask, n->match, candidate->latency);
1354
1355         return 0;
1356 }
1357
1358 static int __init numa_parse_mdesc_group(struct mdesc_handle *md, u64 grp,
1359                                          int index)
1360 {
1361         cpumask_t mask;
1362         int cpu;
1363
1364         numa_parse_mdesc_group_cpus(md, grp, &mask);
1365
1366         for_each_cpu(cpu, &mask)
1367                 numa_cpu_lookup_table[cpu] = index;
1368         cpumask_copy(&numa_cpumask_lookup_table[index], &mask);
1369
1370         if (numa_debug) {
1371                 printk(KERN_INFO "NUMA GROUP[%d]: cpus [ ", index);
1372                 for_each_cpu(cpu, &mask)
1373                         printk("%d ", cpu);
1374                 printk("]\n");
1375         }
1376
1377         return numa_attach_mlgroup(md, grp, index);
1378 }
1379
1380 static int __init numa_parse_mdesc(void)
1381 {
1382         struct mdesc_handle *md = mdesc_grab();
1383         int i, j, err, count;
1384         u64 node;
1385
1386         node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups");
1387         if (node == MDESC_NODE_NULL) {
1388                 mdesc_release(md);
1389                 return -ENOENT;
1390         }
1391
1392         err = grab_mblocks(md);
1393         if (err < 0)
1394                 goto out;
1395
1396         err = grab_mlgroups(md);
1397         if (err < 0)
1398                 goto out;
1399
1400         count = 0;
1401         mdesc_for_each_node_by_name(md, node, "group") {
1402                 err = numa_parse_mdesc_group(md, node, count);
1403                 if (err < 0)
1404                         break;
1405                 count++;
1406         }
1407
1408         count = 0;
1409         mdesc_for_each_node_by_name(md, node, "group") {
1410                 find_numa_latencies_for_group(md, node, count);
1411                 count++;
1412         }
1413
1414         /* Normalize numa latency matrix according to ACPI SLIT spec. */
1415         for (i = 0; i < MAX_NUMNODES; i++) {
1416                 u64 self_latency = numa_latency[i][i];
1417
1418                 for (j = 0; j < MAX_NUMNODES; j++) {
1419                         numa_latency[i][j] =
1420                                 (numa_latency[i][j] * LOCAL_DISTANCE) /
1421                                 self_latency;
1422                 }
1423         }
1424
1425         add_node_ranges();
1426
1427         for (i = 0; i < num_node_masks; i++) {
1428                 allocate_node_data(i);
1429                 node_set_online(i);
1430         }
1431
1432         err = 0;
1433 out:
1434         mdesc_release(md);
1435         return err;
1436 }
1437
1438 static int __init numa_parse_jbus(void)
1439 {
1440         unsigned long cpu, index;
1441
1442         /* NUMA node id is encoded in bits 36 and higher, and there is
1443          * a 1-to-1 mapping from CPU ID to NUMA node ID.
1444          */
1445         index = 0;
1446         for_each_present_cpu(cpu) {
1447                 numa_cpu_lookup_table[cpu] = index;
1448                 cpumask_copy(&numa_cpumask_lookup_table[index], cpumask_of(cpu));
1449                 node_masks[index].mask = ~((1UL << 36UL) - 1UL);
1450                 node_masks[index].match = cpu << 36UL;
1451
1452                 index++;
1453         }
1454         num_node_masks = index;
1455
1456         add_node_ranges();
1457
1458         for (index = 0; index < num_node_masks; index++) {
1459                 allocate_node_data(index);
1460                 node_set_online(index);
1461         }
1462
1463         return 0;
1464 }
1465
1466 static int __init numa_parse_sun4u(void)
1467 {
1468         if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1469                 unsigned long ver;
1470
1471                 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
1472                 if ((ver >> 32UL) == __JALAPENO_ID ||
1473                     (ver >> 32UL) == __SERRANO_ID)
1474                         return numa_parse_jbus();
1475         }
1476         return -1;
1477 }
1478
1479 static int __init bootmem_init_numa(void)
1480 {
1481         int i, j;
1482         int err = -1;
1483
1484         numadbg("bootmem_init_numa()\n");
1485
1486         /* Some sane defaults for numa latency values */
1487         for (i = 0; i < MAX_NUMNODES; i++) {
1488                 for (j = 0; j < MAX_NUMNODES; j++)
1489                         numa_latency[i][j] = (i == j) ?
1490                                 LOCAL_DISTANCE : REMOTE_DISTANCE;
1491         }
1492
1493         if (numa_enabled) {
1494                 if (tlb_type == hypervisor)
1495                         err = numa_parse_mdesc();
1496                 else
1497                         err = numa_parse_sun4u();
1498         }
1499         return err;
1500 }
1501
1502 #else
1503
1504 static int bootmem_init_numa(void)
1505 {
1506         return -1;
1507 }
1508
1509 #endif
1510
1511 static void __init bootmem_init_nonnuma(void)
1512 {
1513         unsigned long top_of_ram = memblock_end_of_DRAM();
1514         unsigned long total_ram = memblock_phys_mem_size();
1515
1516         numadbg("bootmem_init_nonnuma()\n");
1517
1518         printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
1519                top_of_ram, total_ram);
1520         printk(KERN_INFO "Memory hole size: %ldMB\n",
1521                (top_of_ram - total_ram) >> 20);
1522
1523         init_node_masks_nonnuma();
1524         memblock_set_node(0, (phys_addr_t)ULLONG_MAX, &memblock.memory, 0);
1525         allocate_node_data(0);
1526         node_set_online(0);
1527 }
1528
1529 static unsigned long __init bootmem_init(unsigned long phys_base)
1530 {
1531         unsigned long end_pfn;
1532
1533         end_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
1534         max_pfn = max_low_pfn = end_pfn;
1535         min_low_pfn = (phys_base >> PAGE_SHIFT);
1536
1537         if (bootmem_init_numa() < 0)
1538                 bootmem_init_nonnuma();
1539
1540         /* Dump memblock with node info. */
1541         memblock_dump_all();
1542
1543         /* XXX cpu notifier XXX */
1544
1545         sparse_memory_present_with_active_regions(MAX_NUMNODES);
1546         sparse_init();
1547
1548         return end_pfn;
1549 }
1550
1551 static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
1552 static int pall_ents __initdata;
1553
1554 static unsigned long max_phys_bits = 40;
1555
1556 bool kern_addr_valid(unsigned long addr)
1557 {
1558         pgd_t *pgd;
1559         pud_t *pud;
1560         pmd_t *pmd;
1561         pte_t *pte;
1562
1563         if ((long)addr < 0L) {
1564                 unsigned long pa = __pa(addr);
1565
1566                 if ((addr >> max_phys_bits) != 0UL)
1567                         return false;
1568
1569                 return pfn_valid(pa >> PAGE_SHIFT);
1570         }
1571
1572         if (addr >= (unsigned long) KERNBASE &&
1573             addr < (unsigned long)&_end)
1574                 return true;
1575
1576         pgd = pgd_offset_k(addr);
1577         if (pgd_none(*pgd))
1578                 return 0;
1579
1580         pud = pud_offset(pgd, addr);
1581         if (pud_none(*pud))
1582                 return 0;
1583
1584         if (pud_large(*pud))
1585                 return pfn_valid(pud_pfn(*pud));
1586
1587         pmd = pmd_offset(pud, addr);
1588         if (pmd_none(*pmd))
1589                 return 0;
1590
1591         if (pmd_large(*pmd))
1592                 return pfn_valid(pmd_pfn(*pmd));
1593
1594         pte = pte_offset_kernel(pmd, addr);
1595         if (pte_none(*pte))
1596                 return 0;
1597
1598         return pfn_valid(pte_pfn(*pte));
1599 }
1600 EXPORT_SYMBOL(kern_addr_valid);
1601
1602 static unsigned long __ref kernel_map_hugepud(unsigned long vstart,
1603                                               unsigned long vend,
1604                                               pud_t *pud)
1605 {
1606         const unsigned long mask16gb = (1UL << 34) - 1UL;
1607         u64 pte_val = vstart;
1608
1609         /* Each PUD is 8GB */
1610         if ((vstart & mask16gb) ||
1611             (vend - vstart <= mask16gb)) {
1612                 pte_val ^= kern_linear_pte_xor[2];
1613                 pud_val(*pud) = pte_val | _PAGE_PUD_HUGE;
1614
1615                 return vstart + PUD_SIZE;
1616         }
1617
1618         pte_val ^= kern_linear_pte_xor[3];
1619         pte_val |= _PAGE_PUD_HUGE;
1620
1621         vend = vstart + mask16gb + 1UL;
1622         while (vstart < vend) {
1623                 pud_val(*pud) = pte_val;
1624
1625                 pte_val += PUD_SIZE;
1626                 vstart += PUD_SIZE;
1627                 pud++;
1628         }
1629         return vstart;
1630 }
1631
1632 static bool kernel_can_map_hugepud(unsigned long vstart, unsigned long vend,
1633                                    bool guard)
1634 {
1635         if (guard && !(vstart & ~PUD_MASK) && (vend - vstart) >= PUD_SIZE)
1636                 return true;
1637
1638         return false;
1639 }
1640
1641 static unsigned long __ref kernel_map_hugepmd(unsigned long vstart,
1642                                               unsigned long vend,
1643                                               pmd_t *pmd)
1644 {
1645         const unsigned long mask256mb = (1UL << 28) - 1UL;
1646         const unsigned long mask2gb = (1UL << 31) - 1UL;
1647         u64 pte_val = vstart;
1648
1649         /* Each PMD is 8MB */
1650         if ((vstart & mask256mb) ||
1651             (vend - vstart <= mask256mb)) {
1652                 pte_val ^= kern_linear_pte_xor[0];
1653                 pmd_val(*pmd) = pte_val | _PAGE_PMD_HUGE;
1654
1655                 return vstart + PMD_SIZE;
1656         }
1657
1658         if ((vstart & mask2gb) ||
1659             (vend - vstart <= mask2gb)) {
1660                 pte_val ^= kern_linear_pte_xor[1];
1661                 pte_val |= _PAGE_PMD_HUGE;
1662                 vend = vstart + mask256mb + 1UL;
1663         } else {
1664                 pte_val ^= kern_linear_pte_xor[2];
1665                 pte_val |= _PAGE_PMD_HUGE;
1666                 vend = vstart + mask2gb + 1UL;
1667         }
1668
1669         while (vstart < vend) {
1670                 pmd_val(*pmd) = pte_val;
1671
1672                 pte_val += PMD_SIZE;
1673                 vstart += PMD_SIZE;
1674                 pmd++;
1675         }
1676
1677         return vstart;
1678 }
1679
1680 static bool kernel_can_map_hugepmd(unsigned long vstart, unsigned long vend,
1681                                    bool guard)
1682 {
1683         if (guard && !(vstart & ~PMD_MASK) && (vend - vstart) >= PMD_SIZE)
1684                 return true;
1685
1686         return false;
1687 }
1688
1689 static unsigned long __ref kernel_map_range(unsigned long pstart,
1690                                             unsigned long pend, pgprot_t prot,
1691                                             bool use_huge)
1692 {
1693         unsigned long vstart = PAGE_OFFSET + pstart;
1694         unsigned long vend = PAGE_OFFSET + pend;
1695         unsigned long alloc_bytes = 0UL;
1696
1697         if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
1698                 prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
1699                             vstart, vend);
1700                 prom_halt();
1701         }
1702
1703         while (vstart < vend) {
1704                 unsigned long this_end, paddr = __pa(vstart);
1705                 pgd_t *pgd = pgd_offset_k(vstart);
1706                 pud_t *pud;
1707                 pmd_t *pmd;
1708                 pte_t *pte;
1709
1710                 if (pgd_none(*pgd)) {
1711                         pud_t *new;
1712
1713                         new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1714                         alloc_bytes += PAGE_SIZE;
1715                         pgd_populate(&init_mm, pgd, new);
1716                 }
1717                 pud = pud_offset(pgd, vstart);
1718                 if (pud_none(*pud)) {
1719                         pmd_t *new;
1720
1721                         if (kernel_can_map_hugepud(vstart, vend, use_huge)) {
1722                                 vstart = kernel_map_hugepud(vstart, vend, pud);
1723                                 continue;
1724                         }
1725                         new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1726                         alloc_bytes += PAGE_SIZE;
1727                         pud_populate(&init_mm, pud, new);
1728                 }
1729
1730                 pmd = pmd_offset(pud, vstart);
1731                 if (pmd_none(*pmd)) {
1732                         pte_t *new;
1733
1734                         if (kernel_can_map_hugepmd(vstart, vend, use_huge)) {
1735                                 vstart = kernel_map_hugepmd(vstart, vend, pmd);
1736                                 continue;
1737                         }
1738                         new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1739                         alloc_bytes += PAGE_SIZE;
1740                         pmd_populate_kernel(&init_mm, pmd, new);
1741                 }
1742
1743                 pte = pte_offset_kernel(pmd, vstart);
1744                 this_end = (vstart + PMD_SIZE) & PMD_MASK;
1745                 if (this_end > vend)
1746                         this_end = vend;
1747
1748                 while (vstart < this_end) {
1749                         pte_val(*pte) = (paddr | pgprot_val(prot));
1750
1751                         vstart += PAGE_SIZE;
1752                         paddr += PAGE_SIZE;
1753                         pte++;
1754                 }
1755         }
1756
1757         return alloc_bytes;
1758 }
1759
1760 static void __init flush_all_kernel_tsbs(void)
1761 {
1762         int i;
1763
1764         for (i = 0; i < KERNEL_TSB_NENTRIES; i++) {
1765                 struct tsb *ent = &swapper_tsb[i];
1766
1767                 ent->tag = (1UL << TSB_TAG_INVALID_BIT);
1768         }
1769 #ifndef CONFIG_DEBUG_PAGEALLOC
1770         for (i = 0; i < KERNEL_TSB4M_NENTRIES; i++) {
1771                 struct tsb *ent = &swapper_4m_tsb[i];
1772
1773                 ent->tag = (1UL << TSB_TAG_INVALID_BIT);
1774         }
1775 #endif
1776 }
1777
1778 extern unsigned int kvmap_linear_patch[1];
1779
1780 static void __init kernel_physical_mapping_init(void)
1781 {
1782         unsigned long i, mem_alloced = 0UL;
1783         bool use_huge = true;
1784
1785 #ifdef CONFIG_DEBUG_PAGEALLOC
1786         use_huge = false;
1787 #endif
1788         for (i = 0; i < pall_ents; i++) {
1789                 unsigned long phys_start, phys_end;
1790
1791                 phys_start = pall[i].phys_addr;
1792                 phys_end = phys_start + pall[i].reg_size;
1793
1794                 mem_alloced += kernel_map_range(phys_start, phys_end,
1795                                                 PAGE_KERNEL, use_huge);
1796         }
1797
1798         printk("Allocated %ld bytes for kernel page tables.\n",
1799                mem_alloced);
1800
1801         kvmap_linear_patch[0] = 0x01000000; /* nop */
1802         flushi(&kvmap_linear_patch[0]);
1803
1804         flush_all_kernel_tsbs();
1805
1806         __flush_tlb_all();
1807 }
1808
1809 #ifdef CONFIG_DEBUG_PAGEALLOC
1810 void __kernel_map_pages(struct page *page, int numpages, int enable)
1811 {
1812         unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
1813         unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
1814
1815         kernel_map_range(phys_start, phys_end,
1816                          (enable ? PAGE_KERNEL : __pgprot(0)), false);
1817
1818         flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
1819                                PAGE_OFFSET + phys_end);
1820
1821         /* we should perform an IPI and flush all tlbs,
1822          * but that can deadlock->flush only current cpu.
1823          */
1824         __flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
1825                                  PAGE_OFFSET + phys_end);
1826 }
1827 #endif
1828
1829 unsigned long __init find_ecache_flush_span(unsigned long size)
1830 {
1831         int i;
1832
1833         for (i = 0; i < pavail_ents; i++) {
1834                 if (pavail[i].reg_size >= size)
1835                         return pavail[i].phys_addr;
1836         }
1837
1838         return ~0UL;
1839 }
1840
1841 unsigned long PAGE_OFFSET;
1842 EXPORT_SYMBOL(PAGE_OFFSET);
1843
1844 unsigned long VMALLOC_END   = 0x0000010000000000UL;
1845 EXPORT_SYMBOL(VMALLOC_END);
1846
1847 unsigned long sparc64_va_hole_top =    0xfffff80000000000UL;
1848 unsigned long sparc64_va_hole_bottom = 0x0000080000000000UL;
1849
1850 static void __init setup_page_offset(void)
1851 {
1852         if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1853                 /* Cheetah/Panther support a full 64-bit virtual
1854                  * address, so we can use all that our page tables
1855                  * support.
1856                  */
1857                 sparc64_va_hole_top =    0xfff0000000000000UL;
1858                 sparc64_va_hole_bottom = 0x0010000000000000UL;
1859
1860                 max_phys_bits = 42;
1861         } else if (tlb_type == hypervisor) {
1862                 switch (sun4v_chip_type) {
1863                 case SUN4V_CHIP_NIAGARA1:
1864                 case SUN4V_CHIP_NIAGARA2:
1865                         /* T1 and T2 support 48-bit virtual addresses.  */
1866                         sparc64_va_hole_top =    0xffff800000000000UL;
1867                         sparc64_va_hole_bottom = 0x0000800000000000UL;
1868
1869                         max_phys_bits = 39;
1870                         break;
1871                 case SUN4V_CHIP_NIAGARA3:
1872                         /* T3 supports 48-bit virtual addresses.  */
1873                         sparc64_va_hole_top =    0xffff800000000000UL;
1874                         sparc64_va_hole_bottom = 0x0000800000000000UL;
1875
1876                         max_phys_bits = 43;
1877                         break;
1878                 case SUN4V_CHIP_NIAGARA4:
1879                 case SUN4V_CHIP_NIAGARA5:
1880                 case SUN4V_CHIP_SPARC64X:
1881                 case SUN4V_CHIP_SPARC_M6:
1882                         /* T4 and later support 52-bit virtual addresses.  */
1883                         sparc64_va_hole_top =    0xfff8000000000000UL;
1884                         sparc64_va_hole_bottom = 0x0008000000000000UL;
1885                         max_phys_bits = 47;
1886                         break;
1887                 case SUN4V_CHIP_SPARC_M7:
1888                 case SUN4V_CHIP_SPARC_SN:
1889                 default:
1890                         /* M7 and later support 52-bit virtual addresses.  */
1891                         sparc64_va_hole_top =    0xfff8000000000000UL;
1892                         sparc64_va_hole_bottom = 0x0008000000000000UL;
1893                         max_phys_bits = 49;
1894                         break;
1895                 }
1896         }
1897
1898         if (max_phys_bits > MAX_PHYS_ADDRESS_BITS) {
1899                 prom_printf("MAX_PHYS_ADDRESS_BITS is too small, need %lu\n",
1900                             max_phys_bits);
1901                 prom_halt();
1902         }
1903
1904         PAGE_OFFSET = sparc64_va_hole_top;
1905         VMALLOC_END = ((sparc64_va_hole_bottom >> 1) +
1906                        (sparc64_va_hole_bottom >> 2));
1907
1908         pr_info("MM: PAGE_OFFSET is 0x%016lx (max_phys_bits == %lu)\n",
1909                 PAGE_OFFSET, max_phys_bits);
1910         pr_info("MM: VMALLOC [0x%016lx --> 0x%016lx]\n",
1911                 VMALLOC_START, VMALLOC_END);
1912         pr_info("MM: VMEMMAP [0x%016lx --> 0x%016lx]\n",
1913                 VMEMMAP_BASE, VMEMMAP_BASE << 1);
1914 }
1915
1916 static void __init tsb_phys_patch(void)
1917 {
1918         struct tsb_ldquad_phys_patch_entry *pquad;
1919         struct tsb_phys_patch_entry *p;
1920
1921         pquad = &__tsb_ldquad_phys_patch;
1922         while (pquad < &__tsb_ldquad_phys_patch_end) {
1923                 unsigned long addr = pquad->addr;
1924
1925                 if (tlb_type == hypervisor)
1926                         *(unsigned int *) addr = pquad->sun4v_insn;
1927                 else
1928                         *(unsigned int *) addr = pquad->sun4u_insn;
1929                 wmb();
1930                 __asm__ __volatile__("flush     %0"
1931                                      : /* no outputs */
1932                                      : "r" (addr));
1933
1934                 pquad++;
1935         }
1936
1937         p = &__tsb_phys_patch;
1938         while (p < &__tsb_phys_patch_end) {
1939                 unsigned long addr = p->addr;
1940
1941                 *(unsigned int *) addr = p->insn;
1942                 wmb();
1943                 __asm__ __volatile__("flush     %0"
1944                                      : /* no outputs */
1945                                      : "r" (addr));
1946
1947                 p++;
1948         }
1949 }
1950
1951 /* Don't mark as init, we give this to the Hypervisor.  */
1952 #ifndef CONFIG_DEBUG_PAGEALLOC
1953 #define NUM_KTSB_DESCR  2
1954 #else
1955 #define NUM_KTSB_DESCR  1
1956 #endif
1957 static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR];
1958
1959 /* The swapper TSBs are loaded with a base sequence of:
1960  *
1961  *      sethi   %uhi(SYMBOL), REG1
1962  *      sethi   %hi(SYMBOL), REG2
1963  *      or      REG1, %ulo(SYMBOL), REG1
1964  *      or      REG2, %lo(SYMBOL), REG2
1965  *      sllx    REG1, 32, REG1
1966  *      or      REG1, REG2, REG1
1967  *
1968  * When we use physical addressing for the TSB accesses, we patch the
1969  * first four instructions in the above sequence.
1970  */
1971
1972 static void patch_one_ktsb_phys(unsigned int *start, unsigned int *end, unsigned long pa)
1973 {
1974         unsigned long high_bits, low_bits;
1975
1976         high_bits = (pa >> 32) & 0xffffffff;
1977         low_bits = (pa >> 0) & 0xffffffff;
1978
1979         while (start < end) {
1980                 unsigned int *ia = (unsigned int *)(unsigned long)*start;
1981
1982                 ia[0] = (ia[0] & ~0x3fffff) | (high_bits >> 10);
1983                 __asm__ __volatile__("flush     %0" : : "r" (ia));
1984
1985                 ia[1] = (ia[1] & ~0x3fffff) | (low_bits >> 10);
1986                 __asm__ __volatile__("flush     %0" : : "r" (ia + 1));
1987
1988                 ia[2] = (ia[2] & ~0x1fff) | (high_bits & 0x3ff);
1989                 __asm__ __volatile__("flush     %0" : : "r" (ia + 2));
1990
1991                 ia[3] = (ia[3] & ~0x1fff) | (low_bits & 0x3ff);
1992                 __asm__ __volatile__("flush     %0" : : "r" (ia + 3));
1993
1994                 start++;
1995         }
1996 }
1997
1998 static void ktsb_phys_patch(void)
1999 {
2000         extern unsigned int __swapper_tsb_phys_patch;
2001         extern unsigned int __swapper_tsb_phys_patch_end;
2002         unsigned long ktsb_pa;
2003
2004         ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
2005         patch_one_ktsb_phys(&__swapper_tsb_phys_patch,
2006                             &__swapper_tsb_phys_patch_end, ktsb_pa);
2007 #ifndef CONFIG_DEBUG_PAGEALLOC
2008         {
2009         extern unsigned int __swapper_4m_tsb_phys_patch;
2010         extern unsigned int __swapper_4m_tsb_phys_patch_end;
2011         ktsb_pa = (kern_base +
2012                    ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
2013         patch_one_ktsb_phys(&__swapper_4m_tsb_phys_patch,
2014                             &__swapper_4m_tsb_phys_patch_end, ktsb_pa);
2015         }
2016 #endif
2017 }
2018
2019 static void __init sun4v_ktsb_init(void)
2020 {
2021         unsigned long ktsb_pa;
2022
2023         /* First KTSB for PAGE_SIZE mappings.  */
2024         ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
2025
2026         switch (PAGE_SIZE) {
2027         case 8 * 1024:
2028         default:
2029                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
2030                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
2031                 break;
2032
2033         case 64 * 1024:
2034                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
2035                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
2036                 break;
2037
2038         case 512 * 1024:
2039                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
2040                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
2041                 break;
2042
2043         case 4 * 1024 * 1024:
2044                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
2045                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
2046                 break;
2047         }
2048
2049         ktsb_descr[0].assoc = 1;
2050         ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
2051         ktsb_descr[0].ctx_idx = 0;
2052         ktsb_descr[0].tsb_base = ktsb_pa;
2053         ktsb_descr[0].resv = 0;
2054
2055 #ifndef CONFIG_DEBUG_PAGEALLOC
2056         /* Second KTSB for 4MB/256MB/2GB/16GB mappings.  */
2057         ktsb_pa = (kern_base +
2058                    ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
2059
2060         ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
2061         ktsb_descr[1].pgsz_mask = ((HV_PGSZ_MASK_4MB |
2062                                     HV_PGSZ_MASK_256MB |
2063                                     HV_PGSZ_MASK_2GB |
2064                                     HV_PGSZ_MASK_16GB) &
2065                                    cpu_pgsz_mask);
2066         ktsb_descr[1].assoc = 1;
2067         ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
2068         ktsb_descr[1].ctx_idx = 0;
2069         ktsb_descr[1].tsb_base = ktsb_pa;
2070         ktsb_descr[1].resv = 0;
2071 #endif
2072 }
2073
2074 void sun4v_ktsb_register(void)
2075 {
2076         unsigned long pa, ret;
2077
2078         pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
2079
2080         ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa);
2081         if (ret != 0) {
2082                 prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
2083                             "errors with %lx\n", pa, ret);
2084                 prom_halt();
2085         }
2086 }
2087
2088 static void __init sun4u_linear_pte_xor_finalize(void)
2089 {
2090 #ifndef CONFIG_DEBUG_PAGEALLOC
2091         /* This is where we would add Panther support for
2092          * 32MB and 256MB pages.
2093          */
2094 #endif
2095 }
2096
2097 static void __init sun4v_linear_pte_xor_finalize(void)
2098 {
2099         unsigned long pagecv_flag;
2100
2101         /* Bit 9 of TTE is no longer CV bit on M7 processor and it instead
2102          * enables MCD error. Do not set bit 9 on M7 processor.
2103          */
2104         switch (sun4v_chip_type) {
2105         case SUN4V_CHIP_SPARC_M7:
2106         case SUN4V_CHIP_SPARC_SN:
2107                 pagecv_flag = 0x00;
2108                 break;
2109         default:
2110                 pagecv_flag = _PAGE_CV_4V;
2111                 break;
2112         }
2113 #ifndef CONFIG_DEBUG_PAGEALLOC
2114         if (cpu_pgsz_mask & HV_PGSZ_MASK_256MB) {
2115                 kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
2116                         PAGE_OFFSET;
2117                 kern_linear_pte_xor[1] |= (_PAGE_CP_4V | pagecv_flag |
2118                                            _PAGE_P_4V | _PAGE_W_4V);
2119         } else {
2120                 kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
2121         }
2122
2123         if (cpu_pgsz_mask & HV_PGSZ_MASK_2GB) {
2124                 kern_linear_pte_xor[2] = (_PAGE_VALID | _PAGE_SZ2GB_4V) ^
2125                         PAGE_OFFSET;
2126                 kern_linear_pte_xor[2] |= (_PAGE_CP_4V | pagecv_flag |
2127                                            _PAGE_P_4V | _PAGE_W_4V);
2128         } else {
2129                 kern_linear_pte_xor[2] = kern_linear_pte_xor[1];
2130         }
2131
2132         if (cpu_pgsz_mask & HV_PGSZ_MASK_16GB) {
2133                 kern_linear_pte_xor[3] = (_PAGE_VALID | _PAGE_SZ16GB_4V) ^
2134                         PAGE_OFFSET;
2135                 kern_linear_pte_xor[3] |= (_PAGE_CP_4V | pagecv_flag |
2136                                            _PAGE_P_4V | _PAGE_W_4V);
2137         } else {
2138                 kern_linear_pte_xor[3] = kern_linear_pte_xor[2];
2139         }
2140 #endif
2141 }
2142
2143 /* paging_init() sets up the page tables */
2144
2145 static unsigned long last_valid_pfn;
2146
2147 static void sun4u_pgprot_init(void);
2148 static void sun4v_pgprot_init(void);
2149
2150 static phys_addr_t __init available_memory(void)
2151 {
2152         phys_addr_t available = 0ULL;
2153         phys_addr_t pa_start, pa_end;
2154         u64 i;
2155
2156         for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &pa_start,
2157                                 &pa_end, NULL)
2158                 available = available + (pa_end  - pa_start);
2159
2160         return available;
2161 }
2162
2163 #define _PAGE_CACHE_4U  (_PAGE_CP_4U | _PAGE_CV_4U)
2164 #define _PAGE_CACHE_4V  (_PAGE_CP_4V | _PAGE_CV_4V)
2165 #define __DIRTY_BITS_4U  (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
2166 #define __DIRTY_BITS_4V  (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
2167 #define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
2168 #define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
2169
2170 /* We need to exclude reserved regions. This exclusion will include
2171  * vmlinux and initrd. To be more precise the initrd size could be used to
2172  * compute a new lower limit because it is freed later during initialization.
2173  */
2174 static void __init reduce_memory(phys_addr_t limit_ram)
2175 {
2176         phys_addr_t avail_ram = available_memory();
2177         phys_addr_t pa_start, pa_end;
2178         u64 i;
2179
2180         if (limit_ram >= avail_ram)
2181                 return;
2182
2183         for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &pa_start,
2184                                 &pa_end, NULL) {
2185                 phys_addr_t region_size = pa_end - pa_start;
2186                 phys_addr_t clip_start = pa_start;
2187
2188                 avail_ram = avail_ram - region_size;
2189                 /* Are we consuming too much? */
2190                 if (avail_ram < limit_ram) {
2191                         phys_addr_t give_back = limit_ram - avail_ram;
2192
2193                         region_size = region_size - give_back;
2194                         clip_start = clip_start + give_back;
2195                 }
2196
2197                 memblock_remove(clip_start, region_size);
2198
2199                 if (avail_ram <= limit_ram)
2200                         break;
2201                 i = 0UL;
2202         }
2203 }
2204
2205 void __init paging_init(void)
2206 {
2207         unsigned long end_pfn, shift, phys_base;
2208         unsigned long real_end, i;
2209
2210         setup_page_offset();
2211
2212         /* These build time checkes make sure that the dcache_dirty_cpu()
2213          * page->flags usage will work.
2214          *
2215          * When a page gets marked as dcache-dirty, we store the
2216          * cpu number starting at bit 32 in the page->flags.  Also,
2217          * functions like clear_dcache_dirty_cpu use the cpu mask
2218          * in 13-bit signed-immediate instruction fields.
2219          */
2220
2221         /*
2222          * Page flags must not reach into upper 32 bits that are used
2223          * for the cpu number
2224          */
2225         BUILD_BUG_ON(NR_PAGEFLAGS > 32);
2226
2227         /*
2228          * The bit fields placed in the high range must not reach below
2229          * the 32 bit boundary. Otherwise we cannot place the cpu field
2230          * at the 32 bit boundary.
2231          */
2232         BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH +
2233                 ilog2(roundup_pow_of_two(NR_CPUS)) > 32);
2234
2235         BUILD_BUG_ON(NR_CPUS > 4096);
2236
2237         kern_base = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
2238         kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
2239
2240         /* Invalidate both kernel TSBs.  */
2241         memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
2242 #ifndef CONFIG_DEBUG_PAGEALLOC
2243         memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
2244 #endif
2245
2246         /* TTE.cv bit on sparc v9 occupies the same position as TTE.mcde
2247          * bit on M7 processor. This is a conflicting usage of the same
2248          * bit. Enabling TTE.cv on M7 would turn on Memory Corruption
2249          * Detection error on all pages and this will lead to problems
2250          * later. Kernel does not run with MCD enabled and hence rest
2251          * of the required steps to fully configure memory corruption
2252          * detection are not taken. We need to ensure TTE.mcde is not
2253          * set on M7 processor. Compute the value of cacheability
2254          * flag for use later taking this into consideration.
2255          */
2256         switch (sun4v_chip_type) {
2257         case SUN4V_CHIP_SPARC_M7:
2258         case SUN4V_CHIP_SPARC_SN:
2259                 page_cache4v_flag = _PAGE_CP_4V;
2260                 break;
2261         default:
2262                 page_cache4v_flag = _PAGE_CACHE_4V;
2263                 break;
2264         }
2265
2266         if (tlb_type == hypervisor)
2267                 sun4v_pgprot_init();
2268         else
2269                 sun4u_pgprot_init();
2270
2271         if (tlb_type == cheetah_plus ||
2272             tlb_type == hypervisor) {
2273                 tsb_phys_patch();
2274                 ktsb_phys_patch();
2275         }
2276
2277         if (tlb_type == hypervisor)
2278                 sun4v_patch_tlb_handlers();
2279
2280         /* Find available physical memory...
2281          *
2282          * Read it twice in order to work around a bug in openfirmware.
2283          * The call to grab this table itself can cause openfirmware to
2284          * allocate memory, which in turn can take away some space from
2285          * the list of available memory.  Reading it twice makes sure
2286          * we really do get the final value.
2287          */
2288         read_obp_translations();
2289         read_obp_memory("reg", &pall[0], &pall_ents);
2290         read_obp_memory("available", &pavail[0], &pavail_ents);
2291         read_obp_memory("available", &pavail[0], &pavail_ents);
2292
2293         phys_base = 0xffffffffffffffffUL;
2294         for (i = 0; i < pavail_ents; i++) {
2295                 phys_base = min(phys_base, pavail[i].phys_addr);
2296                 memblock_add(pavail[i].phys_addr, pavail[i].reg_size);
2297         }
2298
2299         memblock_reserve(kern_base, kern_size);
2300
2301         find_ramdisk(phys_base);
2302
2303         if (cmdline_memory_size)
2304                 reduce_memory(cmdline_memory_size);
2305
2306         memblock_allow_resize();
2307         memblock_dump_all();
2308
2309         set_bit(0, mmu_context_bmap);
2310
2311         shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
2312
2313         real_end = (unsigned long)_end;
2314         num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << ILOG2_4MB);
2315         printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
2316                num_kernel_image_mappings);
2317
2318         /* Set kernel pgd to upper alias so physical page computations
2319          * work.
2320          */
2321         init_mm.pgd += ((shift) / (sizeof(pgd_t)));
2322         
2323         memset(swapper_pg_dir, 0, sizeof(swapper_pg_dir));
2324
2325         inherit_prom_mappings();
2326         
2327         /* Ok, we can use our TLB miss and window trap handlers safely.  */
2328         setup_tba();
2329
2330         __flush_tlb_all();
2331
2332         prom_build_devicetree();
2333         of_populate_present_mask();
2334 #ifndef CONFIG_SMP
2335         of_fill_in_cpu_data();
2336 #endif
2337
2338         if (tlb_type == hypervisor) {
2339                 sun4v_mdesc_init();
2340                 mdesc_populate_present_mask(cpu_all_mask);
2341 #ifndef CONFIG_SMP
2342                 mdesc_fill_in_cpu_data(cpu_all_mask);
2343 #endif
2344                 mdesc_get_page_sizes(cpu_all_mask, &cpu_pgsz_mask);
2345
2346                 sun4v_linear_pte_xor_finalize();
2347
2348                 sun4v_ktsb_init();
2349                 sun4v_ktsb_register();
2350         } else {
2351                 unsigned long impl, ver;
2352
2353                 cpu_pgsz_mask = (HV_PGSZ_MASK_8K | HV_PGSZ_MASK_64K |
2354                                  HV_PGSZ_MASK_512K | HV_PGSZ_MASK_4MB);
2355
2356                 __asm__ __volatile__("rdpr %%ver, %0" : "=r" (ver));
2357                 impl = ((ver >> 32) & 0xffff);
2358                 if (impl == PANTHER_IMPL)
2359                         cpu_pgsz_mask |= (HV_PGSZ_MASK_32MB |
2360                                           HV_PGSZ_MASK_256MB);
2361
2362                 sun4u_linear_pte_xor_finalize();
2363         }
2364
2365         /* Flush the TLBs and the 4M TSB so that the updated linear
2366          * pte XOR settings are realized for all mappings.
2367          */
2368         __flush_tlb_all();
2369 #ifndef CONFIG_DEBUG_PAGEALLOC
2370         memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
2371 #endif
2372         __flush_tlb_all();
2373
2374         /* Setup bootmem... */
2375         last_valid_pfn = end_pfn = bootmem_init(phys_base);
2376
2377         kernel_physical_mapping_init();
2378
2379         {
2380                 unsigned long max_zone_pfns[MAX_NR_ZONES];
2381
2382                 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
2383
2384                 max_zone_pfns[ZONE_NORMAL] = end_pfn;
2385
2386                 free_area_init_nodes(max_zone_pfns);
2387         }
2388
2389         printk("Booting Linux...\n");
2390 }
2391
2392 int page_in_phys_avail(unsigned long paddr)
2393 {
2394         int i;
2395
2396         paddr &= PAGE_MASK;
2397
2398         for (i = 0; i < pavail_ents; i++) {
2399                 unsigned long start, end;
2400
2401                 start = pavail[i].phys_addr;
2402                 end = start + pavail[i].reg_size;
2403
2404                 if (paddr >= start && paddr < end)
2405                         return 1;
2406         }
2407         if (paddr >= kern_base && paddr < (kern_base + kern_size))
2408                 return 1;
2409 #ifdef CONFIG_BLK_DEV_INITRD
2410         if (paddr >= __pa(initrd_start) &&
2411             paddr < __pa(PAGE_ALIGN(initrd_end)))
2412                 return 1;
2413 #endif
2414
2415         return 0;
2416 }
2417
2418 static void __init register_page_bootmem_info(void)
2419 {
2420 #ifdef CONFIG_NEED_MULTIPLE_NODES
2421         int i;
2422
2423         for_each_online_node(i)
2424                 if (NODE_DATA(i)->node_spanned_pages)
2425                         register_page_bootmem_info_node(NODE_DATA(i));
2426 #endif
2427 }
2428 void __init mem_init(void)
2429 {
2430         high_memory = __va(last_valid_pfn << PAGE_SHIFT);
2431
2432         register_page_bootmem_info();
2433         free_all_bootmem();
2434
2435         /*
2436          * Set up the zero page, mark it reserved, so that page count
2437          * is not manipulated when freeing the page from user ptes.
2438          */
2439         mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
2440         if (mem_map_zero == NULL) {
2441                 prom_printf("paging_init: Cannot alloc zero page.\n");
2442                 prom_halt();
2443         }
2444         mark_page_reserved(mem_map_zero);
2445
2446         mem_init_print_info(NULL);
2447
2448         if (tlb_type == cheetah || tlb_type == cheetah_plus)
2449                 cheetah_ecache_flush_init();
2450 }
2451
2452 void free_initmem(void)
2453 {
2454         unsigned long addr, initend;
2455         int do_free = 1;
2456
2457         /* If the physical memory maps were trimmed by kernel command
2458          * line options, don't even try freeing this initmem stuff up.
2459          * The kernel image could have been in the trimmed out region
2460          * and if so the freeing below will free invalid page structs.
2461          */
2462         if (cmdline_memory_size)
2463                 do_free = 0;
2464
2465         /*
2466          * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
2467          */
2468         addr = PAGE_ALIGN((unsigned long)(__init_begin));
2469         initend = (unsigned long)(__init_end) & PAGE_MASK;
2470         for (; addr < initend; addr += PAGE_SIZE) {
2471                 unsigned long page;
2472
2473                 page = (addr +
2474                         ((unsigned long) __va(kern_base)) -
2475                         ((unsigned long) KERNBASE));
2476                 memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
2477
2478                 if (do_free)
2479                         free_reserved_page(virt_to_page(page));
2480         }
2481 }
2482
2483 #ifdef CONFIG_BLK_DEV_INITRD
2484 void free_initrd_mem(unsigned long start, unsigned long end)
2485 {
2486         free_reserved_area((void *)start, (void *)end, POISON_FREE_INITMEM,
2487                            "initrd");
2488 }
2489 #endif
2490
2491 pgprot_t PAGE_KERNEL __read_mostly;
2492 EXPORT_SYMBOL(PAGE_KERNEL);
2493
2494 pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
2495 pgprot_t PAGE_COPY __read_mostly;
2496
2497 pgprot_t PAGE_SHARED __read_mostly;
2498 EXPORT_SYMBOL(PAGE_SHARED);
2499
2500 unsigned long pg_iobits __read_mostly;
2501
2502 unsigned long _PAGE_IE __read_mostly;
2503 EXPORT_SYMBOL(_PAGE_IE);
2504
2505 unsigned long _PAGE_E __read_mostly;
2506 EXPORT_SYMBOL(_PAGE_E);
2507
2508 unsigned long _PAGE_CACHE __read_mostly;
2509 EXPORT_SYMBOL(_PAGE_CACHE);
2510
2511 #ifdef CONFIG_SPARSEMEM_VMEMMAP
2512 int __meminit vmemmap_populate(unsigned long vstart, unsigned long vend,
2513                                int node)
2514 {
2515         unsigned long pte_base;
2516
2517         pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2518                     _PAGE_CP_4U | _PAGE_CV_4U |
2519                     _PAGE_P_4U | _PAGE_W_4U);
2520         if (tlb_type == hypervisor)
2521                 pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2522                             page_cache4v_flag | _PAGE_P_4V | _PAGE_W_4V);
2523
2524         pte_base |= _PAGE_PMD_HUGE;
2525
2526         vstart = vstart & PMD_MASK;
2527         vend = ALIGN(vend, PMD_SIZE);
2528         for (; vstart < vend; vstart += PMD_SIZE) {
2529                 pgd_t *pgd = pgd_offset_k(vstart);
2530                 unsigned long pte;
2531                 pud_t *pud;
2532                 pmd_t *pmd;
2533
2534                 if (pgd_none(*pgd)) {
2535                         pud_t *new = vmemmap_alloc_block(PAGE_SIZE, node);
2536
2537                         if (!new)
2538                                 return -ENOMEM;
2539                         pgd_populate(&init_mm, pgd, new);
2540                 }
2541
2542                 pud = pud_offset(pgd, vstart);
2543                 if (pud_none(*pud)) {
2544                         pmd_t *new = vmemmap_alloc_block(PAGE_SIZE, node);
2545
2546                         if (!new)
2547                                 return -ENOMEM;
2548                         pud_populate(&init_mm, pud, new);
2549                 }
2550
2551                 pmd = pmd_offset(pud, vstart);
2552
2553                 pte = pmd_val(*pmd);
2554                 if (!(pte & _PAGE_VALID)) {
2555                         void *block = vmemmap_alloc_block(PMD_SIZE, node);
2556
2557                         if (!block)
2558                                 return -ENOMEM;
2559
2560                         pmd_val(*pmd) = pte_base | __pa(block);
2561                 }
2562         }
2563
2564         return 0;
2565 }
2566
2567 void vmemmap_free(unsigned long start, unsigned long end)
2568 {
2569 }
2570 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
2571
2572 static void prot_init_common(unsigned long page_none,
2573                              unsigned long page_shared,
2574                              unsigned long page_copy,
2575                              unsigned long page_readonly,
2576                              unsigned long page_exec_bit)
2577 {
2578         PAGE_COPY = __pgprot(page_copy);
2579         PAGE_SHARED = __pgprot(page_shared);
2580
2581         protection_map[0x0] = __pgprot(page_none);
2582         protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
2583         protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
2584         protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
2585         protection_map[0x4] = __pgprot(page_readonly);
2586         protection_map[0x5] = __pgprot(page_readonly);
2587         protection_map[0x6] = __pgprot(page_copy);
2588         protection_map[0x7] = __pgprot(page_copy);
2589         protection_map[0x8] = __pgprot(page_none);
2590         protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
2591         protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
2592         protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
2593         protection_map[0xc] = __pgprot(page_readonly);
2594         protection_map[0xd] = __pgprot(page_readonly);
2595         protection_map[0xe] = __pgprot(page_shared);
2596         protection_map[0xf] = __pgprot(page_shared);
2597 }
2598
2599 static void __init sun4u_pgprot_init(void)
2600 {
2601         unsigned long page_none, page_shared, page_copy, page_readonly;
2602         unsigned long page_exec_bit;
2603         int i;
2604
2605         PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2606                                 _PAGE_CACHE_4U | _PAGE_P_4U |
2607                                 __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2608                                 _PAGE_EXEC_4U);
2609         PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2610                                        _PAGE_CACHE_4U | _PAGE_P_4U |
2611                                        __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2612                                        _PAGE_EXEC_4U | _PAGE_L_4U);
2613
2614         _PAGE_IE = _PAGE_IE_4U;
2615         _PAGE_E = _PAGE_E_4U;
2616         _PAGE_CACHE = _PAGE_CACHE_4U;
2617
2618         pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
2619                      __ACCESS_BITS_4U | _PAGE_E_4U);
2620
2621 #ifdef CONFIG_DEBUG_PAGEALLOC
2622         kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
2623 #else
2624         kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
2625                 PAGE_OFFSET;
2626 #endif
2627         kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
2628                                    _PAGE_P_4U | _PAGE_W_4U);
2629
2630         for (i = 1; i < 4; i++)
2631                 kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
2632
2633         _PAGE_ALL_SZ_BITS =  (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
2634                               _PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
2635                               _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
2636
2637
2638         page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
2639         page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2640                        __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
2641         page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2642                        __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2643         page_readonly   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2644                            __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2645
2646         page_exec_bit = _PAGE_EXEC_4U;
2647
2648         prot_init_common(page_none, page_shared, page_copy, page_readonly,
2649                          page_exec_bit);
2650 }
2651
2652 static void __init sun4v_pgprot_init(void)
2653 {
2654         unsigned long page_none, page_shared, page_copy, page_readonly;
2655         unsigned long page_exec_bit;
2656         int i;
2657
2658         PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
2659                                 page_cache4v_flag | _PAGE_P_4V |
2660                                 __ACCESS_BITS_4V | __DIRTY_BITS_4V |
2661                                 _PAGE_EXEC_4V);
2662         PAGE_KERNEL_LOCKED = PAGE_KERNEL;
2663
2664         _PAGE_IE = _PAGE_IE_4V;
2665         _PAGE_E = _PAGE_E_4V;
2666         _PAGE_CACHE = page_cache4v_flag;
2667
2668 #ifdef CONFIG_DEBUG_PAGEALLOC
2669         kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
2670 #else
2671         kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
2672                 PAGE_OFFSET;
2673 #endif
2674         kern_linear_pte_xor[0] |= (page_cache4v_flag | _PAGE_P_4V |
2675                                    _PAGE_W_4V);
2676
2677         for (i = 1; i < 4; i++)
2678                 kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
2679
2680         pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
2681                      __ACCESS_BITS_4V | _PAGE_E_4V);
2682
2683         _PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
2684                              _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
2685                              _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
2686                              _PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
2687
2688         page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | page_cache4v_flag;
2689         page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2690                        __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
2691         page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2692                        __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2693         page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2694                          __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2695
2696         page_exec_bit = _PAGE_EXEC_4V;
2697
2698         prot_init_common(page_none, page_shared, page_copy, page_readonly,
2699                          page_exec_bit);
2700 }
2701
2702 unsigned long pte_sz_bits(unsigned long sz)
2703 {
2704         if (tlb_type == hypervisor) {
2705                 switch (sz) {
2706                 case 8 * 1024:
2707                 default:
2708                         return _PAGE_SZ8K_4V;
2709                 case 64 * 1024:
2710                         return _PAGE_SZ64K_4V;
2711                 case 512 * 1024:
2712                         return _PAGE_SZ512K_4V;
2713                 case 4 * 1024 * 1024:
2714                         return _PAGE_SZ4MB_4V;
2715                 }
2716         } else {
2717                 switch (sz) {
2718                 case 8 * 1024:
2719                 default:
2720                         return _PAGE_SZ8K_4U;
2721                 case 64 * 1024:
2722                         return _PAGE_SZ64K_4U;
2723                 case 512 * 1024:
2724                         return _PAGE_SZ512K_4U;
2725                 case 4 * 1024 * 1024:
2726                         return _PAGE_SZ4MB_4U;
2727                 }
2728         }
2729 }
2730
2731 pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
2732 {
2733         pte_t pte;
2734
2735         pte_val(pte)  = page | pgprot_val(pgprot_noncached(prot));
2736         pte_val(pte) |= (((unsigned long)space) << 32);
2737         pte_val(pte) |= pte_sz_bits(page_size);
2738
2739         return pte;
2740 }
2741
2742 static unsigned long kern_large_tte(unsigned long paddr)
2743 {
2744         unsigned long val;
2745
2746         val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2747                _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
2748                _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
2749         if (tlb_type == hypervisor)
2750                 val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2751                        page_cache4v_flag | _PAGE_P_4V |
2752                        _PAGE_EXEC_4V | _PAGE_W_4V);
2753
2754         return val | paddr;
2755 }
2756
2757 /* If not locked, zap it. */
2758 void __flush_tlb_all(void)
2759 {
2760         unsigned long pstate;
2761         int i;
2762
2763         __asm__ __volatile__("flushw\n\t"
2764                              "rdpr      %%pstate, %0\n\t"
2765                              "wrpr      %0, %1, %%pstate"
2766                              : "=r" (pstate)
2767                              : "i" (PSTATE_IE));
2768         if (tlb_type == hypervisor) {
2769                 sun4v_mmu_demap_all();
2770         } else if (tlb_type == spitfire) {
2771                 for (i = 0; i < 64; i++) {
2772                         /* Spitfire Errata #32 workaround */
2773                         /* NOTE: Always runs on spitfire, so no
2774                          *       cheetah+ page size encodings.
2775                          */
2776                         __asm__ __volatile__("stxa      %0, [%1] %2\n\t"
2777                                              "flush     %%g6"
2778                                              : /* No outputs */
2779                                              : "r" (0),
2780                                              "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2781
2782                         if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
2783                                 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2784                                                      "membar #Sync"
2785                                                      : /* no outputs */
2786                                                      : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
2787                                 spitfire_put_dtlb_data(i, 0x0UL);
2788                         }
2789
2790                         /* Spitfire Errata #32 workaround */
2791                         /* NOTE: Always runs on spitfire, so no
2792                          *       cheetah+ page size encodings.
2793                          */
2794                         __asm__ __volatile__("stxa      %0, [%1] %2\n\t"
2795                                              "flush     %%g6"
2796                                              : /* No outputs */
2797                                              : "r" (0),
2798                                              "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2799
2800                         if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
2801                                 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2802                                                      "membar #Sync"
2803                                                      : /* no outputs */
2804                                                      : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
2805                                 spitfire_put_itlb_data(i, 0x0UL);
2806                         }
2807                 }
2808         } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
2809                 cheetah_flush_dtlb_all();
2810                 cheetah_flush_itlb_all();
2811         }
2812         __asm__ __volatile__("wrpr      %0, 0, %%pstate"
2813                              : : "r" (pstate));
2814 }
2815
2816 pte_t *pte_alloc_one_kernel(struct mm_struct *mm,
2817                             unsigned long address)
2818 {
2819         struct page *page = alloc_page(GFP_KERNEL | __GFP_NOTRACK | __GFP_ZERO);
2820         pte_t *pte = NULL;
2821
2822         if (page)
2823                 pte = (pte_t *) page_address(page);
2824
2825         return pte;
2826 }
2827
2828 pgtable_t pte_alloc_one(struct mm_struct *mm,
2829                         unsigned long address)
2830 {
2831         struct page *page = alloc_page(GFP_KERNEL | __GFP_NOTRACK | __GFP_ZERO);
2832         if (!page)
2833                 return NULL;
2834         if (!pgtable_page_ctor(page)) {
2835                 free_hot_cold_page(page, 0);
2836                 return NULL;
2837         }
2838         return (pte_t *) page_address(page);
2839 }
2840
2841 void pte_free_kernel(struct mm_struct *mm, pte_t *pte)
2842 {
2843         free_page((unsigned long)pte);
2844 }
2845
2846 static void __pte_free(pgtable_t pte)
2847 {
2848         struct page *page = virt_to_page(pte);
2849
2850         pgtable_page_dtor(page);
2851         __free_page(page);
2852 }
2853
2854 void pte_free(struct mm_struct *mm, pgtable_t pte)
2855 {
2856         __pte_free(pte);
2857 }
2858
2859 void pgtable_free(void *table, bool is_page)
2860 {
2861         if (is_page)
2862                 __pte_free(table);
2863         else
2864                 kmem_cache_free(pgtable_cache, table);
2865 }
2866
2867 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2868 void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
2869                           pmd_t *pmd)
2870 {
2871         unsigned long pte, flags;
2872         struct mm_struct *mm;
2873         pmd_t entry = *pmd;
2874
2875         if (!pmd_large(entry) || !pmd_young(entry))
2876                 return;
2877
2878         pte = pmd_val(entry);
2879
2880         /* Don't insert a non-valid PMD into the TSB, we'll deadlock.  */
2881         if (!(pte & _PAGE_VALID))
2882                 return;
2883
2884         /* We are fabricating 8MB pages using 4MB real hw pages.  */
2885         pte |= (addr & (1UL << REAL_HPAGE_SHIFT));
2886
2887         mm = vma->vm_mm;
2888
2889         spin_lock_irqsave(&mm->context.lock, flags);
2890
2891         if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL)
2892                 __update_mmu_tsb_insert(mm, MM_TSB_HUGE, REAL_HPAGE_SHIFT,
2893                                         addr, pte);
2894
2895         spin_unlock_irqrestore(&mm->context.lock, flags);
2896 }
2897 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2898
2899 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
2900 static void context_reload(void *__data)
2901 {
2902         struct mm_struct *mm = __data;
2903
2904         if (mm == current->mm)
2905                 load_secondary_context(mm);
2906 }
2907
2908 void hugetlb_setup(struct pt_regs *regs)
2909 {
2910         struct mm_struct *mm = current->mm;
2911         struct tsb_config *tp;
2912
2913         if (faulthandler_disabled() || !mm) {
2914                 const struct exception_table_entry *entry;
2915
2916                 entry = search_exception_tables(regs->tpc);
2917                 if (entry) {
2918                         regs->tpc = entry->fixup;
2919                         regs->tnpc = regs->tpc + 4;
2920                         return;
2921                 }
2922                 pr_alert("Unexpected HugeTLB setup in atomic context.\n");
2923                 die_if_kernel("HugeTSB in atomic", regs);
2924         }
2925
2926         tp = &mm->context.tsb_block[MM_TSB_HUGE];
2927         if (likely(tp->tsb == NULL))
2928                 tsb_grow(mm, MM_TSB_HUGE, 0);
2929
2930         tsb_context_switch(mm);
2931         smp_tsb_sync(mm);
2932
2933         /* On UltraSPARC-III+ and later, configure the second half of
2934          * the Data-TLB for huge pages.
2935          */
2936         if (tlb_type == cheetah_plus) {
2937                 bool need_context_reload = false;
2938                 unsigned long ctx;
2939
2940                 spin_lock_irq(&ctx_alloc_lock);
2941                 ctx = mm->context.sparc64_ctx_val;
2942                 ctx &= ~CTX_PGSZ_MASK;
2943                 ctx |= CTX_PGSZ_BASE << CTX_PGSZ0_SHIFT;
2944                 ctx |= CTX_PGSZ_HUGE << CTX_PGSZ1_SHIFT;
2945
2946                 if (ctx != mm->context.sparc64_ctx_val) {
2947                         /* When changing the page size fields, we
2948                          * must perform a context flush so that no
2949                          * stale entries match.  This flush must
2950                          * occur with the original context register
2951                          * settings.
2952                          */
2953                         do_flush_tlb_mm(mm);
2954
2955                         /* Reload the context register of all processors
2956                          * also executing in this address space.
2957                          */
2958                         mm->context.sparc64_ctx_val = ctx;
2959                         need_context_reload = true;
2960                 }
2961                 spin_unlock_irq(&ctx_alloc_lock);
2962
2963                 if (need_context_reload)
2964                         on_each_cpu(context_reload, mm, 0);
2965         }
2966 }
2967 #endif
2968
2969 static struct resource code_resource = {
2970         .name   = "Kernel code",
2971         .flags  = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
2972 };
2973
2974 static struct resource data_resource = {
2975         .name   = "Kernel data",
2976         .flags  = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
2977 };
2978
2979 static struct resource bss_resource = {
2980         .name   = "Kernel bss",
2981         .flags  = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
2982 };
2983
2984 static inline resource_size_t compute_kern_paddr(void *addr)
2985 {
2986         return (resource_size_t) (addr - KERNBASE + kern_base);
2987 }
2988
2989 static void __init kernel_lds_init(void)
2990 {
2991         code_resource.start = compute_kern_paddr(_text);
2992         code_resource.end   = compute_kern_paddr(_etext - 1);
2993         data_resource.start = compute_kern_paddr(_etext);
2994         data_resource.end   = compute_kern_paddr(_edata - 1);
2995         bss_resource.start  = compute_kern_paddr(__bss_start);
2996         bss_resource.end    = compute_kern_paddr(_end - 1);
2997 }
2998
2999 static int __init report_memory(void)
3000 {
3001         int i;
3002         struct resource *res;
3003
3004         kernel_lds_init();
3005
3006         for (i = 0; i < pavail_ents; i++) {
3007                 res = kzalloc(sizeof(struct resource), GFP_KERNEL);
3008
3009                 if (!res) {
3010                         pr_warn("Failed to allocate source.\n");
3011                         break;
3012                 }
3013
3014                 res->name = "System RAM";
3015                 res->start = pavail[i].phys_addr;
3016                 res->end = pavail[i].phys_addr + pavail[i].reg_size - 1;
3017                 res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM;
3018
3019                 if (insert_resource(&iomem_resource, res) < 0) {
3020                         pr_warn("Resource insertion failed.\n");
3021                         break;
3022                 }
3023
3024                 insert_resource(res, &code_resource);
3025                 insert_resource(res, &data_resource);
3026                 insert_resource(res, &bss_resource);
3027         }
3028
3029         return 0;
3030 }
3031 arch_initcall(report_memory);
3032
3033 #ifdef CONFIG_SMP
3034 #define do_flush_tlb_kernel_range       smp_flush_tlb_kernel_range
3035 #else
3036 #define do_flush_tlb_kernel_range       __flush_tlb_kernel_range
3037 #endif
3038
3039 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
3040 {
3041         if (start < HI_OBP_ADDRESS && end > LOW_OBP_ADDRESS) {
3042                 if (start < LOW_OBP_ADDRESS) {
3043                         flush_tsb_kernel_range(start, LOW_OBP_ADDRESS);
3044                         do_flush_tlb_kernel_range(start, LOW_OBP_ADDRESS);
3045                 }
3046                 if (end > HI_OBP_ADDRESS) {
3047                         flush_tsb_kernel_range(HI_OBP_ADDRESS, end);
3048                         do_flush_tlb_kernel_range(HI_OBP_ADDRESS, end);
3049                 }
3050         } else {
3051                 flush_tsb_kernel_range(start, end);
3052                 do_flush_tlb_kernel_range(start, end);
3053         }
3054 }