]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - arch/sparc64/kernel/irq.c
[SPARC64]: Send all device interrupts via one PIL.
[karo-tx-linux.git] / arch / sparc64 / kernel / irq.c
1 /* $Id: irq.c,v 1.114 2002/01/11 08:45:38 davem Exp $
2  * irq.c: UltraSparc IRQ handling/init/registry.
3  *
4  * Copyright (C) 1997  David S. Miller  (davem@caip.rutgers.edu)
5  * Copyright (C) 1998  Eddie C. Dost    (ecd@skynet.be)
6  * Copyright (C) 1998  Jakub Jelinek    (jj@ultra.linux.cz)
7  */
8
9 #include <linux/config.h>
10 #include <linux/module.h>
11 #include <linux/sched.h>
12 #include <linux/ptrace.h>
13 #include <linux/errno.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/signal.h>
16 #include <linux/mm.h>
17 #include <linux/interrupt.h>
18 #include <linux/slab.h>
19 #include <linux/random.h>
20 #include <linux/init.h>
21 #include <linux/delay.h>
22 #include <linux/proc_fs.h>
23 #include <linux/seq_file.h>
24 #include <linux/bootmem.h>
25
26 #include <asm/ptrace.h>
27 #include <asm/processor.h>
28 #include <asm/atomic.h>
29 #include <asm/system.h>
30 #include <asm/irq.h>
31 #include <asm/io.h>
32 #include <asm/sbus.h>
33 #include <asm/iommu.h>
34 #include <asm/upa.h>
35 #include <asm/oplib.h>
36 #include <asm/timer.h>
37 #include <asm/smp.h>
38 #include <asm/starfire.h>
39 #include <asm/uaccess.h>
40 #include <asm/cache.h>
41 #include <asm/cpudata.h>
42 #include <asm/auxio.h>
43 #include <asm/head.h>
44
45 #ifdef CONFIG_SMP
46 static void distribute_irqs(void);
47 #endif
48
49 /* UPA nodes send interrupt packet to UltraSparc with first data reg
50  * value low 5 (7 on Starfire) bits holding the IRQ identifier being
51  * delivered.  We must translate this into a non-vector IRQ so we can
52  * set the softint on this cpu.
53  *
54  * To make processing these packets efficient and race free we use
55  * an array of irq buckets below.  The interrupt vector handler in
56  * entry.S feeds incoming packets into per-cpu pil-indexed lists.
57  * The IVEC handler does not need to act atomically, the PIL dispatch
58  * code uses CAS to get an atomic snapshot of the list and clear it
59  * at the same time.
60  */
61
62 struct ino_bucket ivector_table[NUM_IVECS] __attribute__ ((aligned (SMP_CACHE_BYTES)));
63
64 /* This has to be in the main kernel image, it cannot be
65  * turned into per-cpu data.  The reason is that the main
66  * kernel image is locked into the TLB and this structure
67  * is accessed from the vectored interrupt trap handler.  If
68  * access to this structure takes a TLB miss it could cause
69  * the 5-level sparc v9 trap stack to overflow.
70  */
71 #define irq_work(__cpu) &(trap_block[(__cpu)].irq_worklist)
72
73 static struct irqaction *irq_action[NR_IRQS+1];
74
75 /* This only synchronizes entities which modify IRQ handler
76  * state and some selected user-level spots that want to
77  * read things in the table.  IRQ handler processing orders
78  * its' accesses such that no locking is needed.
79  */
80 static DEFINE_SPINLOCK(irq_action_lock);
81
82 static void register_irq_proc (unsigned int irq);
83
84 /*
85  * Upper 2b of irqaction->flags holds the ino.
86  * irqaction->mask holds the smp affinity information.
87  */
88 #define put_ino_in_irqaction(action, irq) \
89         action->flags &= 0xffffffffffffUL; \
90         action->flags |= __irq_ino(irq) << 48;
91
92 #define get_ino_in_irqaction(action)    (action->flags >> 48)
93
94 #define put_smpaff_in_irqaction(action, smpaff) (action)->mask = (smpaff)
95 #define get_smpaff_in_irqaction(action)         ((action)->mask)
96
97 int show_interrupts(struct seq_file *p, void *v)
98 {
99         unsigned long flags;
100         int i = *(loff_t *) v;
101         struct irqaction *action;
102 #ifdef CONFIG_SMP
103         int j;
104 #endif
105
106         spin_lock_irqsave(&irq_action_lock, flags);
107         if (i <= NR_IRQS) {
108                 if (!(action = *(i + irq_action)))
109                         goto out_unlock;
110                 seq_printf(p, "%3d: ", i);
111 #ifndef CONFIG_SMP
112                 seq_printf(p, "%10u ", kstat_irqs(i));
113 #else
114                 for_each_online_cpu(j) {
115                         seq_printf(p, "%10u ",
116                                    kstat_cpu(j).irqs[i]);
117                 }
118 #endif
119                 seq_printf(p, " %s:%lx", action->name,
120                            get_ino_in_irqaction(action));
121                 for (action = action->next; action; action = action->next) {
122                         seq_printf(p, ", %s:%lx", action->name,
123                                    get_ino_in_irqaction(action));
124                 }
125                 seq_putc(p, '\n');
126         }
127 out_unlock:
128         spin_unlock_irqrestore(&irq_action_lock, flags);
129
130         return 0;
131 }
132
133 extern unsigned long real_hard_smp_processor_id(void);
134
135 static unsigned int sun4u_compute_tid(unsigned long imap, unsigned long cpuid)
136 {
137         unsigned int tid;
138
139         if (this_is_starfire) {
140                 tid = starfire_translate(imap, cpuid);
141                 tid <<= IMAP_TID_SHIFT;
142                 tid &= IMAP_TID_UPA;
143         } else {
144                 if (tlb_type == cheetah || tlb_type == cheetah_plus) {
145                         unsigned long ver;
146
147                         __asm__ ("rdpr %%ver, %0" : "=r" (ver));
148                         if ((ver >> 32UL) == __JALAPENO_ID ||
149                             (ver >> 32UL) == __SERRANO_ID) {
150                                 tid = cpuid << IMAP_TID_SHIFT;
151                                 tid &= IMAP_TID_JBUS;
152                         } else {
153                                 unsigned int a = cpuid & 0x1f;
154                                 unsigned int n = (cpuid >> 5) & 0x1f;
155
156                                 tid = ((a << IMAP_AID_SHIFT) |
157                                        (n << IMAP_NID_SHIFT));
158                                 tid &= (IMAP_AID_SAFARI |
159                                         IMAP_NID_SAFARI);;
160                         }
161                 } else {
162                         tid = cpuid << IMAP_TID_SHIFT;
163                         tid &= IMAP_TID_UPA;
164                 }
165         }
166
167         return tid;
168 }
169
170 /* Now these are always passed a true fully specified sun4u INO. */
171 void enable_irq(unsigned int irq)
172 {
173         struct ino_bucket *bucket = __bucket(irq);
174         unsigned long imap, cpuid;
175
176         imap = bucket->imap;
177         if (imap == 0UL)
178                 return;
179
180         preempt_disable();
181
182         /* This gets the physical processor ID, even on uniprocessor,
183          * so we can always program the interrupt target correctly.
184          */
185         cpuid = real_hard_smp_processor_id();
186
187         if (tlb_type == hypervisor) {
188                 unsigned int ino = __irq_ino(irq);
189                 int err;
190
191                 err = sun4v_intr_settarget(ino, cpuid);
192                 if (err != HV_EOK)
193                         printk("sun4v_intr_settarget(%x,%lu): err(%d)\n",
194                                ino, cpuid, err);
195                 err = sun4v_intr_setenabled(ino, HV_INTR_ENABLED);
196                 if (err != HV_EOK)
197                         printk("sun4v_intr_setenabled(%x): err(%d)\n",
198                                ino, err);
199         } else {
200                 unsigned int tid = sun4u_compute_tid(imap, cpuid);
201
202                 /* NOTE NOTE NOTE, IGN and INO are read-only, IGN is a product
203                  * of this SYSIO's preconfigured IGN in the SYSIO Control
204                  * Register, the hardware just mirrors that value here.
205                  * However for Graphics and UPA Slave devices the full
206                  * IMAP_INR field can be set by the programmer here.
207                  *
208                  * Things like FFB can now be handled via the new IRQ
209                  * mechanism.
210                  */
211                 upa_writel(tid | IMAP_VALID, imap);
212         }
213
214         preempt_enable();
215 }
216
217 /* This now gets passed true ino's as well. */
218 void disable_irq(unsigned int irq)
219 {
220         struct ino_bucket *bucket = __bucket(irq);
221         unsigned long imap;
222
223         imap = bucket->imap;
224         if (imap != 0UL) {
225                 if (tlb_type == hypervisor) {
226                         unsigned int ino = __irq_ino(irq);
227                         int err;
228
229                         err = sun4v_intr_setenabled(ino, HV_INTR_DISABLED);
230                         if (err != HV_EOK)
231                                 printk("sun4v_intr_setenabled(%x): "
232                                        "err(%d)\n", ino, err);
233                 } else {
234                         u32 tmp;
235
236                         /* NOTE: We do not want to futz with the IRQ clear registers
237                          *       and move the state to IDLE, the SCSI code does call
238                          *       disable_irq() to assure atomicity in the queue cmd
239                          *       SCSI adapter driver code.  Thus we'd lose interrupts.
240                          */
241                         tmp = upa_readl(imap);
242                         tmp &= ~IMAP_VALID;
243                         upa_writel(tmp, imap);
244                 }
245         }
246 }
247
248 static void build_irq_error(const char *msg, unsigned int ino, int pil, int inofixup,
249                             unsigned long iclr, unsigned long imap,
250                             struct ino_bucket *bucket)
251 {
252         prom_printf("IRQ: INO %04x (%d:%016lx:%016lx) --> "
253                     "(%d:%d:%016lx:%016lx), halting...\n",
254                     ino, bucket->pil, bucket->iclr, bucket->imap,
255                     pil, inofixup, iclr, imap);
256         prom_halt();
257 }
258
259 unsigned int build_irq(int pil, int inofixup, unsigned long iclr, unsigned long imap)
260 {
261         struct ino_bucket *bucket;
262         int ino;
263
264         BUG_ON(pil == 0);
265         BUG_ON(tlb_type == hypervisor);
266
267         /* RULE: Both must be specified in all other cases. */
268         if (iclr == 0UL || imap == 0UL) {
269                 prom_printf("Invalid build_irq %d %d %016lx %016lx\n",
270                             pil, inofixup, iclr, imap);
271                 prom_halt();
272         }
273         
274         ino = (upa_readl(imap) & (IMAP_IGN | IMAP_INO)) + inofixup;
275         if (ino > NUM_IVECS) {
276                 prom_printf("Invalid INO %04x (%d:%d:%016lx:%016lx)\n",
277                             ino, pil, inofixup, iclr, imap);
278                 prom_halt();
279         }
280
281         bucket = &ivector_table[ino];
282         if (bucket->flags & IBF_ACTIVE)
283                 build_irq_error("IRQ: Trying to build active INO bucket.\n",
284                                 ino, pil, inofixup, iclr, imap, bucket);
285
286         if (bucket->irq_info) {
287                 if (bucket->imap != imap || bucket->iclr != iclr)
288                         build_irq_error("IRQ: Trying to reinit INO bucket.\n",
289                                         ino, pil, inofixup, iclr, imap, bucket);
290
291                 goto out;
292         }
293
294         bucket->irq_info = kzalloc(sizeof(struct irq_desc), GFP_ATOMIC);
295         if (!bucket->irq_info) {
296                 prom_printf("IRQ: Error, kmalloc(irq_desc) failed.\n");
297                 prom_halt();
298         }
299
300         /* Ok, looks good, set it up.  Don't touch the irq_chain or
301          * the pending flag.
302          */
303         bucket->imap  = imap;
304         bucket->iclr  = iclr;
305         bucket->pil   = pil;
306         bucket->flags = 0;
307
308 out:
309         return __irq(bucket);
310 }
311
312 unsigned int sun4v_build_irq(u32 devhandle, unsigned int devino, int pil, unsigned char flags)
313 {
314         struct ino_bucket *bucket;
315         unsigned long sysino;
316
317         sysino = sun4v_devino_to_sysino(devhandle, devino);
318
319         bucket = &ivector_table[sysino];
320
321         /* Catch accidental accesses to these things.  IMAP/ICLR handling
322          * is done by hypervisor calls on sun4v platforms, not by direct
323          * register accesses.
324          *
325          * But we need to make them look unique for the disable_irq() logic
326          * in free_irq().
327          */
328         bucket->imap = ~0UL - sysino;
329         bucket->iclr = ~0UL - sysino;
330
331         bucket->pil = pil;
332         bucket->flags = flags;
333
334         bucket->irq_info = kzalloc(sizeof(struct irq_desc), GFP_ATOMIC);
335         if (!bucket->irq_info) {
336                 prom_printf("IRQ: Error, kmalloc(irq_desc) failed.\n");
337                 prom_halt();
338         }
339
340         return __irq(bucket);
341 }
342
343 static void atomic_bucket_insert(struct ino_bucket *bucket)
344 {
345         unsigned long pstate;
346         unsigned int *ent;
347
348         __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
349         __asm__ __volatile__("wrpr %0, %1, %%pstate"
350                              : : "r" (pstate), "i" (PSTATE_IE));
351         ent = irq_work(smp_processor_id());
352         bucket->irq_chain = *ent;
353         *ent = __irq(bucket);
354         __asm__ __volatile__("wrpr %0, 0x0, %%pstate" : : "r" (pstate));
355 }
356
357 static int check_irq_sharing(int pil, unsigned long irqflags)
358 {
359         struct irqaction *action, *tmp;
360
361         action = *(irq_action + pil);
362         if (action) {
363                 if ((action->flags & SA_SHIRQ) && (irqflags & SA_SHIRQ)) {
364                         for (tmp = action; tmp->next; tmp = tmp->next)
365                                 ;
366                 } else {
367                         return -EBUSY;
368                 }
369         }
370         return 0;
371 }
372
373 static void append_irq_action(int pil, struct irqaction *action)
374 {
375         struct irqaction **pp = irq_action + pil;
376
377         while (*pp)
378                 pp = &((*pp)->next);
379         *pp = action;
380 }
381
382 static struct irqaction *get_action_slot(struct ino_bucket *bucket)
383 {
384         struct irq_desc *desc = bucket->irq_info;
385         int max_irq, i;
386
387         max_irq = 1;
388         if (bucket->flags & IBF_PCI)
389                 max_irq = MAX_IRQ_DESC_ACTION;
390         for (i = 0; i < max_irq; i++) {
391                 struct irqaction *p = &desc->action[i];
392                 u32 mask = (1 << i);
393
394                 if (desc->action_active_mask & mask)
395                         continue;
396
397                 desc->action_active_mask |= mask;
398                 return p;
399         }
400         return NULL;
401 }
402
403 int request_irq(unsigned int irq, irqreturn_t (*handler)(int, void *, struct pt_regs *),
404                 unsigned long irqflags, const char *name, void *dev_id)
405 {
406         struct irqaction *action;
407         struct ino_bucket *bucket = __bucket(irq);
408         unsigned long flags;
409         int pending = 0;
410
411         if (unlikely(!handler))
412                 return -EINVAL;
413
414         if (unlikely(!bucket->irq_info))
415                 return -ENODEV;
416
417         if (irqflags & SA_SAMPLE_RANDOM) {
418                 /*
419                  * This function might sleep, we want to call it first,
420                  * outside of the atomic block. In SA_STATIC_ALLOC case,
421                  * random driver's kmalloc will fail, but it is safe.
422                  * If already initialized, random driver will not reinit.
423                  * Yes, this might clear the entropy pool if the wrong
424                  * driver is attempted to be loaded, without actually
425                  * installing a new handler, but is this really a problem,
426                  * only the sysadmin is able to do this.
427                  */
428                 rand_initialize_irq(irq);
429         }
430
431         spin_lock_irqsave(&irq_action_lock, flags);
432
433         if (check_irq_sharing(bucket->pil, irqflags)) {
434                 spin_unlock_irqrestore(&irq_action_lock, flags);
435                 return -EBUSY;
436         }
437
438         action = get_action_slot(bucket);
439         if (!action) { 
440                 spin_unlock_irqrestore(&irq_action_lock, flags);
441                 return -ENOMEM;
442         }
443
444         bucket->flags |= IBF_ACTIVE;
445         pending = bucket->pending;
446         if (pending)
447                 bucket->pending = 0;
448
449         action->handler = handler;
450         action->flags = irqflags;
451         action->name = name;
452         action->next = NULL;
453         action->dev_id = dev_id;
454         put_ino_in_irqaction(action, irq);
455         put_smpaff_in_irqaction(action, CPU_MASK_NONE);
456
457         append_irq_action(bucket->pil, action);
458
459         enable_irq(irq);
460
461         /* We ate the IVEC already, this makes sure it does not get lost. */
462         if (pending) {
463                 atomic_bucket_insert(bucket);
464                 set_softint(1 << PIL_DEVICE_IRQ);
465         }
466
467         spin_unlock_irqrestore(&irq_action_lock, flags);
468
469         register_irq_proc(__irq_ino(irq));
470
471 #ifdef CONFIG_SMP
472         distribute_irqs();
473 #endif
474         return 0;
475 }
476
477 EXPORT_SYMBOL(request_irq);
478
479 static struct irqaction *unlink_irq_action(unsigned int irq, void *dev_id)
480 {
481         struct ino_bucket *bucket = __bucket(irq);
482         struct irqaction *action, **pp;
483
484         pp = irq_action + bucket->pil;
485         action = *pp;
486         if (unlikely(!action))
487                 return NULL;
488
489         if (unlikely(!action->handler)) {
490                 printk("Freeing free IRQ %d\n", bucket->pil);
491                 return NULL;
492         }
493
494         while (action && action->dev_id != dev_id) {
495                 pp = &action->next;
496                 action = *pp;
497         }
498
499         if (likely(action))
500                 *pp = action->next;
501
502         return action;
503 }
504
505 void free_irq(unsigned int irq, void *dev_id)
506 {
507         struct irqaction *action;
508         struct ino_bucket *bucket;
509         struct irq_desc *desc;
510         unsigned long flags;
511         int ent, i;
512
513         spin_lock_irqsave(&irq_action_lock, flags);
514
515         action = unlink_irq_action(irq, dev_id);
516
517         spin_unlock_irqrestore(&irq_action_lock, flags);
518
519         if (unlikely(!action))
520                 return;
521
522         synchronize_irq(irq);
523
524         spin_lock_irqsave(&irq_action_lock, flags);
525
526         bucket = __bucket(irq);
527         desc = bucket->irq_info;
528
529         for (i = 0; i < MAX_IRQ_DESC_ACTION; i++) {
530                 struct irqaction *p = &desc->action[i];
531
532                 if (p == action) {
533                         desc->action_active_mask &= ~(1 << i);
534                         break;
535                 }
536         }
537
538         if (!desc->action_active_mask) {
539                 unsigned long imap = bucket->imap;
540
541                 /* This unique interrupt source is now inactive. */
542                 bucket->flags &= ~IBF_ACTIVE;
543
544                 /* See if any other buckets share this bucket's IMAP
545                  * and are still active.
546                  */
547                 for (ent = 0; ent < NUM_IVECS; ent++) {
548                         struct ino_bucket *bp = &ivector_table[ent];
549                         if (bp != bucket        &&
550                             bp->imap == imap    &&
551                             (bp->flags & IBF_ACTIVE) != 0)
552                                 break;
553                 }
554
555                 /* Only disable when no other sub-irq levels of
556                  * the same IMAP are active.
557                  */
558                 if (ent == NUM_IVECS)
559                         disable_irq(irq);
560         }
561
562         spin_unlock_irqrestore(&irq_action_lock, flags);
563 }
564
565 EXPORT_SYMBOL(free_irq);
566
567 #ifdef CONFIG_SMP
568 void synchronize_irq(unsigned int irq)
569 {
570         struct ino_bucket *bucket = __bucket(irq);
571
572 #if 0
573         /* The following is how I wish I could implement this.
574          * Unfortunately the ICLR registers are read-only, you can
575          * only write ICLR_foo values to them.  To get the current
576          * IRQ status you would need to get at the IRQ diag registers
577          * in the PCI/SBUS controller and the layout of those vary
578          * from one controller to the next, sigh... -DaveM
579          */
580         unsigned long iclr = bucket->iclr;
581
582         while (1) {
583                 u32 tmp = upa_readl(iclr);
584                 
585                 if (tmp == ICLR_TRANSMIT ||
586                     tmp == ICLR_PENDING) {
587                         cpu_relax();
588                         continue;
589                 }
590                 break;
591         }
592 #else
593         /* So we have to do this with a INPROGRESS bit just like x86.  */
594         while (bucket->flags & IBF_INPROGRESS)
595                 cpu_relax();
596 #endif
597 }
598 #endif /* CONFIG_SMP */
599
600 static void process_bucket(struct ino_bucket *bp, struct pt_regs *regs)
601 {
602         struct irq_desc *desc = bp->irq_info;
603         unsigned char flags = bp->flags;
604         u32 action_mask, i;
605         int random;
606
607         bp->flags |= IBF_INPROGRESS;
608
609         if (unlikely(!(flags & IBF_ACTIVE))) {
610                 bp->pending = 1;
611                 goto out;
612         }
613
614         if (desc->pre_handler)
615                 desc->pre_handler(bp,
616                                   desc->pre_handler_arg1,
617                                   desc->pre_handler_arg2);
618
619         action_mask = desc->action_active_mask;
620         random = 0;
621         for (i = 0; i < MAX_IRQ_DESC_ACTION; i++) {
622                 struct irqaction *p = &desc->action[i];
623                 u32 mask = (1 << i);
624
625                 if (!(action_mask & mask))
626                         continue;
627
628                 action_mask &= ~mask;
629
630                 if (p->handler(__irq(bp), p->dev_id, regs) == IRQ_HANDLED)
631                         random |= p->flags;
632
633                 if (!action_mask)
634                         break;
635         }
636         if (bp->pil != 0) {
637                 if (tlb_type == hypervisor) {
638                         unsigned int ino = __irq_ino(bp);
639                         int err;
640
641                         err = sun4v_intr_setstate(ino, HV_INTR_STATE_IDLE);
642                         if (err != HV_EOK)
643                                 printk("sun4v_intr_setstate(%x): "
644                                        "err(%d)\n", ino, err);
645                 } else {
646                         upa_writel(ICLR_IDLE, bp->iclr);
647                 }
648
649                 /* Test and add entropy */
650                 if (random & SA_SAMPLE_RANDOM)
651                         add_interrupt_randomness(bp->pil);
652         }
653 out:
654         bp->flags &= ~IBF_INPROGRESS;
655 }
656
657 #ifndef CONFIG_SMP
658 extern irqreturn_t timer_interrupt(int, void *, struct pt_regs *);
659
660 void timer_irq(int irq, struct pt_regs *regs)
661 {
662         unsigned long clr_mask = 1 << irq;
663         unsigned long tick_mask = tick_ops->softint_mask;
664
665         if (get_softint() & tick_mask) {
666                 irq = 0;
667                 clr_mask = tick_mask;
668         }
669         clear_softint(clr_mask);
670
671         irq_enter();
672         kstat_this_cpu.irqs[irq]++;
673         timer_interrupt(irq, NULL, regs);
674         irq_exit();
675 }
676 #endif
677
678 void handler_irq(int irq, struct pt_regs *regs)
679 {
680         struct ino_bucket *bp;
681         int cpu = smp_processor_id();
682
683         /* XXX at this point we should be able to assert that
684          * XXX irq is PIL_DEVICE_IRQ...
685          */
686         clear_softint(1 << irq);
687
688         irq_enter();
689
690         /* Sliiiick... */
691         bp = __bucket(xchg32(irq_work(cpu), 0));
692         while (bp) {
693                 struct ino_bucket *nbp = __bucket(bp->irq_chain);
694
695                 kstat_this_cpu.irqs[bp->pil]++;
696
697                 bp->irq_chain = 0;
698                 process_bucket(bp, regs);
699                 bp = nbp;
700         }
701         irq_exit();
702 }
703
704 #ifdef CONFIG_BLK_DEV_FD
705 extern irqreturn_t floppy_interrupt(int, void *, struct pt_regs *);
706
707 /* XXX No easy way to include asm/floppy.h XXX */
708 extern unsigned char *pdma_vaddr;
709 extern unsigned long pdma_size;
710 extern volatile int doing_pdma;
711 extern unsigned long fdc_status;
712
713 irqreturn_t sparc_floppy_irq(int irq, void *dev_cookie, struct pt_regs *regs)
714 {
715         if (likely(doing_pdma)) {
716                 void __iomem *stat = (void __iomem *) fdc_status;
717                 unsigned char *vaddr = pdma_vaddr;
718                 unsigned long size = pdma_size;
719                 u8 val;
720
721                 while (size) {
722                         val = readb(stat);
723                         if (unlikely(!(val & 0x80))) {
724                                 pdma_vaddr = vaddr;
725                                 pdma_size = size;
726                                 return IRQ_HANDLED;
727                         }
728                         if (unlikely(!(val & 0x20))) {
729                                 pdma_vaddr = vaddr;
730                                 pdma_size = size;
731                                 doing_pdma = 0;
732                                 goto main_interrupt;
733                         }
734                         if (val & 0x40) {
735                                 /* read */
736                                 *vaddr++ = readb(stat + 1);
737                         } else {
738                                 unsigned char data = *vaddr++;
739
740                                 /* write */
741                                 writeb(data, stat + 1);
742                         }
743                         size--;
744                 }
745
746                 pdma_vaddr = vaddr;
747                 pdma_size = size;
748
749                 /* Send Terminal Count pulse to floppy controller. */
750                 val = readb(auxio_register);
751                 val |= AUXIO_AUX1_FTCNT;
752                 writeb(val, auxio_register);
753                 val &= ~AUXIO_AUX1_FTCNT;
754                 writeb(val, auxio_register);
755
756                 doing_pdma = 0;
757         }
758
759 main_interrupt:
760         return floppy_interrupt(irq, dev_cookie, regs);
761 }
762 EXPORT_SYMBOL(sparc_floppy_irq);
763 #endif
764
765 /* We really don't need these at all on the Sparc.  We only have
766  * stubs here because they are exported to modules.
767  */
768 unsigned long probe_irq_on(void)
769 {
770         return 0;
771 }
772
773 EXPORT_SYMBOL(probe_irq_on);
774
775 int probe_irq_off(unsigned long mask)
776 {
777         return 0;
778 }
779
780 EXPORT_SYMBOL(probe_irq_off);
781
782 #ifdef CONFIG_SMP
783 static int retarget_one_irq(struct irqaction *p, int goal_cpu)
784 {
785         struct ino_bucket *bucket = get_ino_in_irqaction(p) + ivector_table;
786
787         while (!cpu_online(goal_cpu)) {
788                 if (++goal_cpu >= NR_CPUS)
789                         goal_cpu = 0;
790         }
791
792         if (tlb_type == hypervisor) {
793                 unsigned int ino = __irq_ino(bucket);
794
795                 sun4v_intr_settarget(ino, goal_cpu);
796                 sun4v_intr_setenabled(ino, HV_INTR_ENABLED);
797         } else {
798                 unsigned long imap = bucket->imap;
799                 unsigned int tid = sun4u_compute_tid(imap, goal_cpu);
800
801                 upa_writel(tid | IMAP_VALID, imap);
802         }
803
804         do {
805                 if (++goal_cpu >= NR_CPUS)
806                         goal_cpu = 0;
807         } while (!cpu_online(goal_cpu));
808
809         return goal_cpu;
810 }
811
812 /* Called from request_irq. */
813 static void distribute_irqs(void)
814 {
815         unsigned long flags;
816         int cpu, level;
817
818         spin_lock_irqsave(&irq_action_lock, flags);
819         cpu = 0;
820
821         /*
822          * Skip the timer at [0], and very rare error/power intrs at [15].
823          * Also level [12], it causes problems on Ex000 systems.
824          */
825         for (level = 1; level < NR_IRQS; level++) {
826                 struct irqaction *p = irq_action[level];
827
828                 if (level == 12)
829                         continue;
830
831                 while(p) {
832                         cpu = retarget_one_irq(p, cpu);
833                         p = p->next;
834                 }
835         }
836         spin_unlock_irqrestore(&irq_action_lock, flags);
837 }
838 #endif
839
840 struct sun5_timer {
841         u64     count0;
842         u64     limit0;
843         u64     count1;
844         u64     limit1;
845 };
846
847 static struct sun5_timer *prom_timers;
848 static u64 prom_limit0, prom_limit1;
849
850 static void map_prom_timers(void)
851 {
852         unsigned int addr[3];
853         int tnode, err;
854
855         /* PROM timer node hangs out in the top level of device siblings... */
856         tnode = prom_finddevice("/counter-timer");
857
858         /* Assume if node is not present, PROM uses different tick mechanism
859          * which we should not care about.
860          */
861         if (tnode == 0 || tnode == -1) {
862                 prom_timers = (struct sun5_timer *) 0;
863                 return;
864         }
865
866         /* If PROM is really using this, it must be mapped by him. */
867         err = prom_getproperty(tnode, "address", (char *)addr, sizeof(addr));
868         if (err == -1) {
869                 prom_printf("PROM does not have timer mapped, trying to continue.\n");
870                 prom_timers = (struct sun5_timer *) 0;
871                 return;
872         }
873         prom_timers = (struct sun5_timer *) ((unsigned long)addr[0]);
874 }
875
876 static void kill_prom_timer(void)
877 {
878         if (!prom_timers)
879                 return;
880
881         /* Save them away for later. */
882         prom_limit0 = prom_timers->limit0;
883         prom_limit1 = prom_timers->limit1;
884
885         /* Just as in sun4c/sun4m PROM uses timer which ticks at IRQ 14.
886          * We turn both off here just to be paranoid.
887          */
888         prom_timers->limit0 = 0;
889         prom_timers->limit1 = 0;
890
891         /* Wheee, eat the interrupt packet too... */
892         __asm__ __volatile__(
893 "       mov     0x40, %%g2\n"
894 "       ldxa    [%%g0] %0, %%g1\n"
895 "       ldxa    [%%g2] %1, %%g1\n"
896 "       stxa    %%g0, [%%g0] %0\n"
897 "       membar  #Sync\n"
898         : /* no outputs */
899         : "i" (ASI_INTR_RECEIVE), "i" (ASI_INTR_R)
900         : "g1", "g2");
901 }
902
903 void init_irqwork_curcpu(void)
904 {
905         int cpu = hard_smp_processor_id();
906
907         trap_block[cpu].irq_worklist = 0;
908 }
909
910 static void __cpuinit register_one_mondo(unsigned long paddr, unsigned long type)
911 {
912         unsigned long num_entries = 128;
913         unsigned long status;
914
915         status = sun4v_cpu_qconf(type, paddr, num_entries);
916         if (status != HV_EOK) {
917                 prom_printf("SUN4V: sun4v_cpu_qconf(%lu:%lx:%lu) failed, "
918                             "err %lu\n", type, paddr, num_entries, status);
919                 prom_halt();
920         }
921 }
922
923 static void __cpuinit sun4v_register_mondo_queues(int this_cpu)
924 {
925         struct trap_per_cpu *tb = &trap_block[this_cpu];
926
927         register_one_mondo(tb->cpu_mondo_pa, HV_CPU_QUEUE_CPU_MONDO);
928         register_one_mondo(tb->dev_mondo_pa, HV_CPU_QUEUE_DEVICE_MONDO);
929         register_one_mondo(tb->resum_mondo_pa, HV_CPU_QUEUE_RES_ERROR);
930         register_one_mondo(tb->nonresum_mondo_pa, HV_CPU_QUEUE_NONRES_ERROR);
931 }
932
933 static void __cpuinit alloc_one_mondo(unsigned long *pa_ptr, int use_bootmem)
934 {
935         void *page;
936
937         if (use_bootmem)
938                 page = alloc_bootmem_low_pages(PAGE_SIZE);
939         else
940                 page = (void *) get_zeroed_page(GFP_ATOMIC);
941
942         if (!page) {
943                 prom_printf("SUN4V: Error, cannot allocate mondo queue.\n");
944                 prom_halt();
945         }
946
947         *pa_ptr = __pa(page);
948 }
949
950 static void __cpuinit alloc_one_kbuf(unsigned long *pa_ptr, int use_bootmem)
951 {
952         void *page;
953
954         if (use_bootmem)
955                 page = alloc_bootmem_low_pages(PAGE_SIZE);
956         else
957                 page = (void *) get_zeroed_page(GFP_ATOMIC);
958
959         if (!page) {
960                 prom_printf("SUN4V: Error, cannot allocate kbuf page.\n");
961                 prom_halt();
962         }
963
964         *pa_ptr = __pa(page);
965 }
966
967 static void __cpuinit init_cpu_send_mondo_info(struct trap_per_cpu *tb, int use_bootmem)
968 {
969 #ifdef CONFIG_SMP
970         void *page;
971
972         BUILD_BUG_ON((NR_CPUS * sizeof(u16)) > (PAGE_SIZE - 64));
973
974         if (use_bootmem)
975                 page = alloc_bootmem_low_pages(PAGE_SIZE);
976         else
977                 page = (void *) get_zeroed_page(GFP_ATOMIC);
978
979         if (!page) {
980                 prom_printf("SUN4V: Error, cannot allocate cpu mondo page.\n");
981                 prom_halt();
982         }
983
984         tb->cpu_mondo_block_pa = __pa(page);
985         tb->cpu_list_pa = __pa(page + 64);
986 #endif
987 }
988
989 /* Allocate and register the mondo and error queues for this cpu.  */
990 void __cpuinit sun4v_init_mondo_queues(int use_bootmem, int cpu, int alloc, int load)
991 {
992         struct trap_per_cpu *tb = &trap_block[cpu];
993
994         if (alloc) {
995                 alloc_one_mondo(&tb->cpu_mondo_pa, use_bootmem);
996                 alloc_one_mondo(&tb->dev_mondo_pa, use_bootmem);
997                 alloc_one_mondo(&tb->resum_mondo_pa, use_bootmem);
998                 alloc_one_kbuf(&tb->resum_kernel_buf_pa, use_bootmem);
999                 alloc_one_mondo(&tb->nonresum_mondo_pa, use_bootmem);
1000                 alloc_one_kbuf(&tb->nonresum_kernel_buf_pa, use_bootmem);
1001
1002                 init_cpu_send_mondo_info(tb, use_bootmem);
1003         }
1004
1005         if (load) {
1006                 if (cpu != hard_smp_processor_id()) {
1007                         prom_printf("SUN4V: init mondo on cpu %d not %d\n",
1008                                     cpu, hard_smp_processor_id());
1009                         prom_halt();
1010                 }
1011                 sun4v_register_mondo_queues(cpu);
1012         }
1013 }
1014
1015 /* Only invoked on boot processor. */
1016 void __init init_IRQ(void)
1017 {
1018         map_prom_timers();
1019         kill_prom_timer();
1020         memset(&ivector_table[0], 0, sizeof(ivector_table));
1021
1022         if (tlb_type == hypervisor)
1023                 sun4v_init_mondo_queues(1, hard_smp_processor_id(), 1, 1);
1024
1025         /* We need to clear any IRQ's pending in the soft interrupt
1026          * registers, a spurious one could be left around from the
1027          * PROM timer which we just disabled.
1028          */
1029         clear_softint(get_softint());
1030
1031         /* Now that ivector table is initialized, it is safe
1032          * to receive IRQ vector traps.  We will normally take
1033          * one or two right now, in case some device PROM used
1034          * to boot us wants to speak to us.  We just ignore them.
1035          */
1036         __asm__ __volatile__("rdpr      %%pstate, %%g1\n\t"
1037                              "or        %%g1, %0, %%g1\n\t"
1038                              "wrpr      %%g1, 0x0, %%pstate"
1039                              : /* No outputs */
1040                              : "i" (PSTATE_IE)
1041                              : "g1");
1042 }
1043
1044 static struct proc_dir_entry * root_irq_dir;
1045 static struct proc_dir_entry * irq_dir [NUM_IVECS];
1046
1047 #ifdef CONFIG_SMP
1048
1049 static int irq_affinity_read_proc (char *page, char **start, off_t off,
1050                         int count, int *eof, void *data)
1051 {
1052         struct ino_bucket *bp = ivector_table + (long)data;
1053         struct irq_desc *desc = bp->irq_info;
1054         struct irqaction *ap = desc->action;
1055         cpumask_t mask;
1056         int len;
1057
1058         mask = get_smpaff_in_irqaction(ap);
1059         if (cpus_empty(mask))
1060                 mask = cpu_online_map;
1061
1062         len = cpumask_scnprintf(page, count, mask);
1063         if (count - len < 2)
1064                 return -EINVAL;
1065         len += sprintf(page + len, "\n");
1066         return len;
1067 }
1068
1069 static inline void set_intr_affinity(int irq, cpumask_t hw_aff)
1070 {
1071         struct ino_bucket *bp = ivector_table + irq;
1072         struct irq_desc *desc = bp->irq_info;
1073         struct irqaction *ap = desc->action;
1074
1075         /* Users specify affinity in terms of hw cpu ids.
1076          * As soon as we do this, handler_irq() might see and take action.
1077          */
1078         put_smpaff_in_irqaction(ap, hw_aff);
1079
1080         /* Migration is simply done by the next cpu to service this
1081          * interrupt.
1082          */
1083 }
1084
1085 static int irq_affinity_write_proc (struct file *file, const char __user *buffer,
1086                                         unsigned long count, void *data)
1087 {
1088         int irq = (long) data, full_count = count, err;
1089         cpumask_t new_value;
1090
1091         err = cpumask_parse(buffer, count, new_value);
1092
1093         /*
1094          * Do not allow disabling IRQs completely - it's a too easy
1095          * way to make the system unusable accidentally :-) At least
1096          * one online CPU still has to be targeted.
1097          */
1098         cpus_and(new_value, new_value, cpu_online_map);
1099         if (cpus_empty(new_value))
1100                 return -EINVAL;
1101
1102         set_intr_affinity(irq, new_value);
1103
1104         return full_count;
1105 }
1106
1107 #endif
1108
1109 #define MAX_NAMELEN 10
1110
1111 static void register_irq_proc (unsigned int irq)
1112 {
1113         char name [MAX_NAMELEN];
1114
1115         if (!root_irq_dir || irq_dir[irq])
1116                 return;
1117
1118         memset(name, 0, MAX_NAMELEN);
1119         sprintf(name, "%x", irq);
1120
1121         /* create /proc/irq/1234 */
1122         irq_dir[irq] = proc_mkdir(name, root_irq_dir);
1123
1124 #ifdef CONFIG_SMP
1125         /* XXX SMP affinity not supported on starfire yet. */
1126         if (this_is_starfire == 0) {
1127                 struct proc_dir_entry *entry;
1128
1129                 /* create /proc/irq/1234/smp_affinity */
1130                 entry = create_proc_entry("smp_affinity", 0600, irq_dir[irq]);
1131
1132                 if (entry) {
1133                         entry->nlink = 1;
1134                         entry->data = (void *)(long)irq;
1135                         entry->read_proc = irq_affinity_read_proc;
1136                         entry->write_proc = irq_affinity_write_proc;
1137                 }
1138         }
1139 #endif
1140 }
1141
1142 void init_irq_proc (void)
1143 {
1144         /* create /proc/irq */
1145         root_irq_dir = proc_mkdir("irq", NULL);
1146 }
1147