]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - arch/x86/kernel/cpu/perf_event_intel.c
tile: expect new initramfs name from hypervisor file system
[karo-tx-linux.git] / arch / x86 / kernel / cpu / perf_event_intel.c
1 /*
2  * Per core/cpu state
3  *
4  * Used to coordinate shared registers between HT threads or
5  * among events on a single PMU.
6  */
7
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10 #include <linux/stddef.h>
11 #include <linux/types.h>
12 #include <linux/init.h>
13 #include <linux/slab.h>
14 #include <linux/export.h>
15
16 #include <asm/hardirq.h>
17 #include <asm/apic.h>
18
19 #include "perf_event.h"
20
21 /*
22  * Intel PerfMon, used on Core and later.
23  */
24 static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
25 {
26         [PERF_COUNT_HW_CPU_CYCLES]              = 0x003c,
27         [PERF_COUNT_HW_INSTRUCTIONS]            = 0x00c0,
28         [PERF_COUNT_HW_CACHE_REFERENCES]        = 0x4f2e,
29         [PERF_COUNT_HW_CACHE_MISSES]            = 0x412e,
30         [PERF_COUNT_HW_BRANCH_INSTRUCTIONS]     = 0x00c4,
31         [PERF_COUNT_HW_BRANCH_MISSES]           = 0x00c5,
32         [PERF_COUNT_HW_BUS_CYCLES]              = 0x013c,
33         [PERF_COUNT_HW_REF_CPU_CYCLES]          = 0x0300, /* pseudo-encoding */
34 };
35
36 static struct event_constraint intel_core_event_constraints[] __read_mostly =
37 {
38         INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
39         INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
40         INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
41         INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
42         INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
43         INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
44         EVENT_CONSTRAINT_END
45 };
46
47 static struct event_constraint intel_core2_event_constraints[] __read_mostly =
48 {
49         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
50         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
51         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
52         INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
53         INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
54         INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
55         INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
56         INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
57         INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
58         INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
59         INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
60         INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
61         INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
62         EVENT_CONSTRAINT_END
63 };
64
65 static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
66 {
67         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
68         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
69         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
70         INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
71         INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
72         INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
73         INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
74         INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
75         INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
76         INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
77         INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
78         EVENT_CONSTRAINT_END
79 };
80
81 static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
82 {
83         INTEL_EVENT_EXTRA_REG(0xb7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
84         EVENT_EXTRA_END
85 };
86
87 static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
88 {
89         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
90         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
91         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
92         INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
93         INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
94         INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
95         INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
96         EVENT_CONSTRAINT_END
97 };
98
99 static struct event_constraint intel_snb_event_constraints[] __read_mostly =
100 {
101         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
102         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
103         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
104         INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
105         INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
106         INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
107         EVENT_CONSTRAINT_END
108 };
109
110 static struct event_constraint intel_ivb_event_constraints[] __read_mostly =
111 {
112         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
113         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
114         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
115         INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */
116         INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMTPY */
117         INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */
118         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
119         INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
120         INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */
121         INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
122         INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
123         INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
124         INTEL_EVENT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
125         INTEL_EVENT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
126         INTEL_EVENT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
127         INTEL_EVENT_CONSTRAINT(0xd3, 0xf), /*  MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
128         EVENT_CONSTRAINT_END
129 };
130
131 static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
132 {
133         INTEL_EVENT_EXTRA_REG(0xb7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
134         INTEL_EVENT_EXTRA_REG(0xbb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
135         EVENT_EXTRA_END
136 };
137
138 static struct event_constraint intel_v1_event_constraints[] __read_mostly =
139 {
140         EVENT_CONSTRAINT_END
141 };
142
143 static struct event_constraint intel_gen_event_constraints[] __read_mostly =
144 {
145         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
146         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
147         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
148         EVENT_CONSTRAINT_END
149 };
150
151 static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
152         INTEL_EVENT_EXTRA_REG(0xb7, MSR_OFFCORE_RSP_0, 0x3fffffffffull, RSP_0),
153         INTEL_EVENT_EXTRA_REG(0xbb, MSR_OFFCORE_RSP_1, 0x3fffffffffull, RSP_1),
154         EVENT_EXTRA_END
155 };
156
157 static u64 intel_pmu_event_map(int hw_event)
158 {
159         return intel_perfmon_event_map[hw_event];
160 }
161
162 #define SNB_DMND_DATA_RD        (1ULL << 0)
163 #define SNB_DMND_RFO            (1ULL << 1)
164 #define SNB_DMND_IFETCH         (1ULL << 2)
165 #define SNB_DMND_WB             (1ULL << 3)
166 #define SNB_PF_DATA_RD          (1ULL << 4)
167 #define SNB_PF_RFO              (1ULL << 5)
168 #define SNB_PF_IFETCH           (1ULL << 6)
169 #define SNB_LLC_DATA_RD         (1ULL << 7)
170 #define SNB_LLC_RFO             (1ULL << 8)
171 #define SNB_LLC_IFETCH          (1ULL << 9)
172 #define SNB_BUS_LOCKS           (1ULL << 10)
173 #define SNB_STRM_ST             (1ULL << 11)
174 #define SNB_OTHER               (1ULL << 15)
175 #define SNB_RESP_ANY            (1ULL << 16)
176 #define SNB_NO_SUPP             (1ULL << 17)
177 #define SNB_LLC_HITM            (1ULL << 18)
178 #define SNB_LLC_HITE            (1ULL << 19)
179 #define SNB_LLC_HITS            (1ULL << 20)
180 #define SNB_LLC_HITF            (1ULL << 21)
181 #define SNB_LOCAL               (1ULL << 22)
182 #define SNB_REMOTE              (0xffULL << 23)
183 #define SNB_SNP_NONE            (1ULL << 31)
184 #define SNB_SNP_NOT_NEEDED      (1ULL << 32)
185 #define SNB_SNP_MISS            (1ULL << 33)
186 #define SNB_NO_FWD              (1ULL << 34)
187 #define SNB_SNP_FWD             (1ULL << 35)
188 #define SNB_HITM                (1ULL << 36)
189 #define SNB_NON_DRAM            (1ULL << 37)
190
191 #define SNB_DMND_READ           (SNB_DMND_DATA_RD|SNB_LLC_DATA_RD)
192 #define SNB_DMND_WRITE          (SNB_DMND_RFO|SNB_LLC_RFO)
193 #define SNB_DMND_PREFETCH       (SNB_PF_DATA_RD|SNB_PF_RFO)
194
195 #define SNB_SNP_ANY             (SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \
196                                  SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \
197                                  SNB_HITM)
198
199 #define SNB_DRAM_ANY            (SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY)
200 #define SNB_DRAM_REMOTE         (SNB_REMOTE|SNB_SNP_ANY)
201
202 #define SNB_L3_ACCESS           SNB_RESP_ANY
203 #define SNB_L3_MISS             (SNB_DRAM_ANY|SNB_NON_DRAM)
204
205 static __initconst const u64 snb_hw_cache_extra_regs
206                                 [PERF_COUNT_HW_CACHE_MAX]
207                                 [PERF_COUNT_HW_CACHE_OP_MAX]
208                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
209 {
210  [ C(LL  ) ] = {
211         [ C(OP_READ) ] = {
212                 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_L3_ACCESS,
213                 [ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_L3_MISS,
214         },
215         [ C(OP_WRITE) ] = {
216                 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_L3_ACCESS,
217                 [ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_L3_MISS,
218         },
219         [ C(OP_PREFETCH) ] = {
220                 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_L3_ACCESS,
221                 [ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_L3_MISS,
222         },
223  },
224  [ C(NODE) ] = {
225         [ C(OP_READ) ] = {
226                 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_DRAM_ANY,
227                 [ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_DRAM_REMOTE,
228         },
229         [ C(OP_WRITE) ] = {
230                 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_DRAM_ANY,
231                 [ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_DRAM_REMOTE,
232         },
233         [ C(OP_PREFETCH) ] = {
234                 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_DRAM_ANY,
235                 [ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_DRAM_REMOTE,
236         },
237  },
238 };
239
240 static __initconst const u64 snb_hw_cache_event_ids
241                                 [PERF_COUNT_HW_CACHE_MAX]
242                                 [PERF_COUNT_HW_CACHE_OP_MAX]
243                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
244 {
245  [ C(L1D) ] = {
246         [ C(OP_READ) ] = {
247                 [ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS        */
248                 [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPLACEMENT              */
249         },
250         [ C(OP_WRITE) ] = {
251                 [ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES       */
252                 [ C(RESULT_MISS)   ] = 0x0851, /* L1D.ALL_M_REPLACEMENT        */
253         },
254         [ C(OP_PREFETCH) ] = {
255                 [ C(RESULT_ACCESS) ] = 0x0,
256                 [ C(RESULT_MISS)   ] = 0x024e, /* HW_PRE_REQ.DL1_MISS          */
257         },
258  },
259  [ C(L1I ) ] = {
260         [ C(OP_READ) ] = {
261                 [ C(RESULT_ACCESS) ] = 0x0,
262                 [ C(RESULT_MISS)   ] = 0x0280, /* ICACHE.MISSES */
263         },
264         [ C(OP_WRITE) ] = {
265                 [ C(RESULT_ACCESS) ] = -1,
266                 [ C(RESULT_MISS)   ] = -1,
267         },
268         [ C(OP_PREFETCH) ] = {
269                 [ C(RESULT_ACCESS) ] = 0x0,
270                 [ C(RESULT_MISS)   ] = 0x0,
271         },
272  },
273  [ C(LL  ) ] = {
274         [ C(OP_READ) ] = {
275                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
276                 [ C(RESULT_ACCESS) ] = 0x01b7,
277                 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
278                 [ C(RESULT_MISS)   ] = 0x01b7,
279         },
280         [ C(OP_WRITE) ] = {
281                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
282                 [ C(RESULT_ACCESS) ] = 0x01b7,
283                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
284                 [ C(RESULT_MISS)   ] = 0x01b7,
285         },
286         [ C(OP_PREFETCH) ] = {
287                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
288                 [ C(RESULT_ACCESS) ] = 0x01b7,
289                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
290                 [ C(RESULT_MISS)   ] = 0x01b7,
291         },
292  },
293  [ C(DTLB) ] = {
294         [ C(OP_READ) ] = {
295                 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
296                 [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
297         },
298         [ C(OP_WRITE) ] = {
299                 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
300                 [ C(RESULT_MISS)   ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
301         },
302         [ C(OP_PREFETCH) ] = {
303                 [ C(RESULT_ACCESS) ] = 0x0,
304                 [ C(RESULT_MISS)   ] = 0x0,
305         },
306  },
307  [ C(ITLB) ] = {
308         [ C(OP_READ) ] = {
309                 [ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT         */
310                 [ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK    */
311         },
312         [ C(OP_WRITE) ] = {
313                 [ C(RESULT_ACCESS) ] = -1,
314                 [ C(RESULT_MISS)   ] = -1,
315         },
316         [ C(OP_PREFETCH) ] = {
317                 [ C(RESULT_ACCESS) ] = -1,
318                 [ C(RESULT_MISS)   ] = -1,
319         },
320  },
321  [ C(BPU ) ] = {
322         [ C(OP_READ) ] = {
323                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
324                 [ C(RESULT_MISS)   ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
325         },
326         [ C(OP_WRITE) ] = {
327                 [ C(RESULT_ACCESS) ] = -1,
328                 [ C(RESULT_MISS)   ] = -1,
329         },
330         [ C(OP_PREFETCH) ] = {
331                 [ C(RESULT_ACCESS) ] = -1,
332                 [ C(RESULT_MISS)   ] = -1,
333         },
334  },
335  [ C(NODE) ] = {
336         [ C(OP_READ) ] = {
337                 [ C(RESULT_ACCESS) ] = 0x01b7,
338                 [ C(RESULT_MISS)   ] = 0x01b7,
339         },
340         [ C(OP_WRITE) ] = {
341                 [ C(RESULT_ACCESS) ] = 0x01b7,
342                 [ C(RESULT_MISS)   ] = 0x01b7,
343         },
344         [ C(OP_PREFETCH) ] = {
345                 [ C(RESULT_ACCESS) ] = 0x01b7,
346                 [ C(RESULT_MISS)   ] = 0x01b7,
347         },
348  },
349
350 };
351
352 static __initconst const u64 westmere_hw_cache_event_ids
353                                 [PERF_COUNT_HW_CACHE_MAX]
354                                 [PERF_COUNT_HW_CACHE_OP_MAX]
355                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
356 {
357  [ C(L1D) ] = {
358         [ C(OP_READ) ] = {
359                 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
360                 [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
361         },
362         [ C(OP_WRITE) ] = {
363                 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
364                 [ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
365         },
366         [ C(OP_PREFETCH) ] = {
367                 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
368                 [ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
369         },
370  },
371  [ C(L1I ) ] = {
372         [ C(OP_READ) ] = {
373                 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
374                 [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
375         },
376         [ C(OP_WRITE) ] = {
377                 [ C(RESULT_ACCESS) ] = -1,
378                 [ C(RESULT_MISS)   ] = -1,
379         },
380         [ C(OP_PREFETCH) ] = {
381                 [ C(RESULT_ACCESS) ] = 0x0,
382                 [ C(RESULT_MISS)   ] = 0x0,
383         },
384  },
385  [ C(LL  ) ] = {
386         [ C(OP_READ) ] = {
387                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
388                 [ C(RESULT_ACCESS) ] = 0x01b7,
389                 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
390                 [ C(RESULT_MISS)   ] = 0x01b7,
391         },
392         /*
393          * Use RFO, not WRITEBACK, because a write miss would typically occur
394          * on RFO.
395          */
396         [ C(OP_WRITE) ] = {
397                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
398                 [ C(RESULT_ACCESS) ] = 0x01b7,
399                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
400                 [ C(RESULT_MISS)   ] = 0x01b7,
401         },
402         [ C(OP_PREFETCH) ] = {
403                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
404                 [ C(RESULT_ACCESS) ] = 0x01b7,
405                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
406                 [ C(RESULT_MISS)   ] = 0x01b7,
407         },
408  },
409  [ C(DTLB) ] = {
410         [ C(OP_READ) ] = {
411                 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
412                 [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
413         },
414         [ C(OP_WRITE) ] = {
415                 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
416                 [ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
417         },
418         [ C(OP_PREFETCH) ] = {
419                 [ C(RESULT_ACCESS) ] = 0x0,
420                 [ C(RESULT_MISS)   ] = 0x0,
421         },
422  },
423  [ C(ITLB) ] = {
424         [ C(OP_READ) ] = {
425                 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
426                 [ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.ANY              */
427         },
428         [ C(OP_WRITE) ] = {
429                 [ C(RESULT_ACCESS) ] = -1,
430                 [ C(RESULT_MISS)   ] = -1,
431         },
432         [ C(OP_PREFETCH) ] = {
433                 [ C(RESULT_ACCESS) ] = -1,
434                 [ C(RESULT_MISS)   ] = -1,
435         },
436  },
437  [ C(BPU ) ] = {
438         [ C(OP_READ) ] = {
439                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
440                 [ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
441         },
442         [ C(OP_WRITE) ] = {
443                 [ C(RESULT_ACCESS) ] = -1,
444                 [ C(RESULT_MISS)   ] = -1,
445         },
446         [ C(OP_PREFETCH) ] = {
447                 [ C(RESULT_ACCESS) ] = -1,
448                 [ C(RESULT_MISS)   ] = -1,
449         },
450  },
451  [ C(NODE) ] = {
452         [ C(OP_READ) ] = {
453                 [ C(RESULT_ACCESS) ] = 0x01b7,
454                 [ C(RESULT_MISS)   ] = 0x01b7,
455         },
456         [ C(OP_WRITE) ] = {
457                 [ C(RESULT_ACCESS) ] = 0x01b7,
458                 [ C(RESULT_MISS)   ] = 0x01b7,
459         },
460         [ C(OP_PREFETCH) ] = {
461                 [ C(RESULT_ACCESS) ] = 0x01b7,
462                 [ C(RESULT_MISS)   ] = 0x01b7,
463         },
464  },
465 };
466
467 /*
468  * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
469  * See IA32 SDM Vol 3B 30.6.1.3
470  */
471
472 #define NHM_DMND_DATA_RD        (1 << 0)
473 #define NHM_DMND_RFO            (1 << 1)
474 #define NHM_DMND_IFETCH         (1 << 2)
475 #define NHM_DMND_WB             (1 << 3)
476 #define NHM_PF_DATA_RD          (1 << 4)
477 #define NHM_PF_DATA_RFO         (1 << 5)
478 #define NHM_PF_IFETCH           (1 << 6)
479 #define NHM_OFFCORE_OTHER       (1 << 7)
480 #define NHM_UNCORE_HIT          (1 << 8)
481 #define NHM_OTHER_CORE_HIT_SNP  (1 << 9)
482 #define NHM_OTHER_CORE_HITM     (1 << 10)
483                                 /* reserved */
484 #define NHM_REMOTE_CACHE_FWD    (1 << 12)
485 #define NHM_REMOTE_DRAM         (1 << 13)
486 #define NHM_LOCAL_DRAM          (1 << 14)
487 #define NHM_NON_DRAM            (1 << 15)
488
489 #define NHM_LOCAL               (NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
490 #define NHM_REMOTE              (NHM_REMOTE_DRAM)
491
492 #define NHM_DMND_READ           (NHM_DMND_DATA_RD)
493 #define NHM_DMND_WRITE          (NHM_DMND_RFO|NHM_DMND_WB)
494 #define NHM_DMND_PREFETCH       (NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
495
496 #define NHM_L3_HIT      (NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
497 #define NHM_L3_MISS     (NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
498 #define NHM_L3_ACCESS   (NHM_L3_HIT|NHM_L3_MISS)
499
500 static __initconst const u64 nehalem_hw_cache_extra_regs
501                                 [PERF_COUNT_HW_CACHE_MAX]
502                                 [PERF_COUNT_HW_CACHE_OP_MAX]
503                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
504 {
505  [ C(LL  ) ] = {
506         [ C(OP_READ) ] = {
507                 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
508                 [ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_L3_MISS,
509         },
510         [ C(OP_WRITE) ] = {
511                 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
512                 [ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_L3_MISS,
513         },
514         [ C(OP_PREFETCH) ] = {
515                 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
516                 [ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
517         },
518  },
519  [ C(NODE) ] = {
520         [ C(OP_READ) ] = {
521                 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE,
522                 [ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_REMOTE,
523         },
524         [ C(OP_WRITE) ] = {
525                 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE,
526                 [ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_REMOTE,
527         },
528         [ C(OP_PREFETCH) ] = {
529                 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE,
530                 [ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_REMOTE,
531         },
532  },
533 };
534
535 static __initconst const u64 nehalem_hw_cache_event_ids
536                                 [PERF_COUNT_HW_CACHE_MAX]
537                                 [PERF_COUNT_HW_CACHE_OP_MAX]
538                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
539 {
540  [ C(L1D) ] = {
541         [ C(OP_READ) ] = {
542                 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
543                 [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
544         },
545         [ C(OP_WRITE) ] = {
546                 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
547                 [ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
548         },
549         [ C(OP_PREFETCH) ] = {
550                 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
551                 [ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
552         },
553  },
554  [ C(L1I ) ] = {
555         [ C(OP_READ) ] = {
556                 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
557                 [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
558         },
559         [ C(OP_WRITE) ] = {
560                 [ C(RESULT_ACCESS) ] = -1,
561                 [ C(RESULT_MISS)   ] = -1,
562         },
563         [ C(OP_PREFETCH) ] = {
564                 [ C(RESULT_ACCESS) ] = 0x0,
565                 [ C(RESULT_MISS)   ] = 0x0,
566         },
567  },
568  [ C(LL  ) ] = {
569         [ C(OP_READ) ] = {
570                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
571                 [ C(RESULT_ACCESS) ] = 0x01b7,
572                 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
573                 [ C(RESULT_MISS)   ] = 0x01b7,
574         },
575         /*
576          * Use RFO, not WRITEBACK, because a write miss would typically occur
577          * on RFO.
578          */
579         [ C(OP_WRITE) ] = {
580                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
581                 [ C(RESULT_ACCESS) ] = 0x01b7,
582                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
583                 [ C(RESULT_MISS)   ] = 0x01b7,
584         },
585         [ C(OP_PREFETCH) ] = {
586                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
587                 [ C(RESULT_ACCESS) ] = 0x01b7,
588                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
589                 [ C(RESULT_MISS)   ] = 0x01b7,
590         },
591  },
592  [ C(DTLB) ] = {
593         [ C(OP_READ) ] = {
594                 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI   (alias)  */
595                 [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
596         },
597         [ C(OP_WRITE) ] = {
598                 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI   (alias)  */
599                 [ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
600         },
601         [ C(OP_PREFETCH) ] = {
602                 [ C(RESULT_ACCESS) ] = 0x0,
603                 [ C(RESULT_MISS)   ] = 0x0,
604         },
605  },
606  [ C(ITLB) ] = {
607         [ C(OP_READ) ] = {
608                 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
609                 [ C(RESULT_MISS)   ] = 0x20c8, /* ITLB_MISS_RETIRED            */
610         },
611         [ C(OP_WRITE) ] = {
612                 [ C(RESULT_ACCESS) ] = -1,
613                 [ C(RESULT_MISS)   ] = -1,
614         },
615         [ C(OP_PREFETCH) ] = {
616                 [ C(RESULT_ACCESS) ] = -1,
617                 [ C(RESULT_MISS)   ] = -1,
618         },
619  },
620  [ C(BPU ) ] = {
621         [ C(OP_READ) ] = {
622                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
623                 [ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
624         },
625         [ C(OP_WRITE) ] = {
626                 [ C(RESULT_ACCESS) ] = -1,
627                 [ C(RESULT_MISS)   ] = -1,
628         },
629         [ C(OP_PREFETCH) ] = {
630                 [ C(RESULT_ACCESS) ] = -1,
631                 [ C(RESULT_MISS)   ] = -1,
632         },
633  },
634  [ C(NODE) ] = {
635         [ C(OP_READ) ] = {
636                 [ C(RESULT_ACCESS) ] = 0x01b7,
637                 [ C(RESULT_MISS)   ] = 0x01b7,
638         },
639         [ C(OP_WRITE) ] = {
640                 [ C(RESULT_ACCESS) ] = 0x01b7,
641                 [ C(RESULT_MISS)   ] = 0x01b7,
642         },
643         [ C(OP_PREFETCH) ] = {
644                 [ C(RESULT_ACCESS) ] = 0x01b7,
645                 [ C(RESULT_MISS)   ] = 0x01b7,
646         },
647  },
648 };
649
650 static __initconst const u64 core2_hw_cache_event_ids
651                                 [PERF_COUNT_HW_CACHE_MAX]
652                                 [PERF_COUNT_HW_CACHE_OP_MAX]
653                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
654 {
655  [ C(L1D) ] = {
656         [ C(OP_READ) ] = {
657                 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI          */
658                 [ C(RESULT_MISS)   ] = 0x0140, /* L1D_CACHE_LD.I_STATE       */
659         },
660         [ C(OP_WRITE) ] = {
661                 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI          */
662                 [ C(RESULT_MISS)   ] = 0x0141, /* L1D_CACHE_ST.I_STATE       */
663         },
664         [ C(OP_PREFETCH) ] = {
665                 [ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS      */
666                 [ C(RESULT_MISS)   ] = 0,
667         },
668  },
669  [ C(L1I ) ] = {
670         [ C(OP_READ) ] = {
671                 [ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS                  */
672                 [ C(RESULT_MISS)   ] = 0x0081, /* L1I.MISSES                 */
673         },
674         [ C(OP_WRITE) ] = {
675                 [ C(RESULT_ACCESS) ] = -1,
676                 [ C(RESULT_MISS)   ] = -1,
677         },
678         [ C(OP_PREFETCH) ] = {
679                 [ C(RESULT_ACCESS) ] = 0,
680                 [ C(RESULT_MISS)   ] = 0,
681         },
682  },
683  [ C(LL  ) ] = {
684         [ C(OP_READ) ] = {
685                 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
686                 [ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
687         },
688         [ C(OP_WRITE) ] = {
689                 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
690                 [ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
691         },
692         [ C(OP_PREFETCH) ] = {
693                 [ C(RESULT_ACCESS) ] = 0,
694                 [ C(RESULT_MISS)   ] = 0,
695         },
696  },
697  [ C(DTLB) ] = {
698         [ C(OP_READ) ] = {
699                 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI  (alias) */
700                 [ C(RESULT_MISS)   ] = 0x0208, /* DTLB_MISSES.MISS_LD        */
701         },
702         [ C(OP_WRITE) ] = {
703                 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI  (alias) */
704                 [ C(RESULT_MISS)   ] = 0x0808, /* DTLB_MISSES.MISS_ST        */
705         },
706         [ C(OP_PREFETCH) ] = {
707                 [ C(RESULT_ACCESS) ] = 0,
708                 [ C(RESULT_MISS)   ] = 0,
709         },
710  },
711  [ C(ITLB) ] = {
712         [ C(OP_READ) ] = {
713                 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
714                 [ C(RESULT_MISS)   ] = 0x1282, /* ITLBMISSES                 */
715         },
716         [ C(OP_WRITE) ] = {
717                 [ C(RESULT_ACCESS) ] = -1,
718                 [ C(RESULT_MISS)   ] = -1,
719         },
720         [ C(OP_PREFETCH) ] = {
721                 [ C(RESULT_ACCESS) ] = -1,
722                 [ C(RESULT_MISS)   ] = -1,
723         },
724  },
725  [ C(BPU ) ] = {
726         [ C(OP_READ) ] = {
727                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
728                 [ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
729         },
730         [ C(OP_WRITE) ] = {
731                 [ C(RESULT_ACCESS) ] = -1,
732                 [ C(RESULT_MISS)   ] = -1,
733         },
734         [ C(OP_PREFETCH) ] = {
735                 [ C(RESULT_ACCESS) ] = -1,
736                 [ C(RESULT_MISS)   ] = -1,
737         },
738  },
739 };
740
741 static __initconst const u64 atom_hw_cache_event_ids
742                                 [PERF_COUNT_HW_CACHE_MAX]
743                                 [PERF_COUNT_HW_CACHE_OP_MAX]
744                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
745 {
746  [ C(L1D) ] = {
747         [ C(OP_READ) ] = {
748                 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD               */
749                 [ C(RESULT_MISS)   ] = 0,
750         },
751         [ C(OP_WRITE) ] = {
752                 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST               */
753                 [ C(RESULT_MISS)   ] = 0,
754         },
755         [ C(OP_PREFETCH) ] = {
756                 [ C(RESULT_ACCESS) ] = 0x0,
757                 [ C(RESULT_MISS)   ] = 0,
758         },
759  },
760  [ C(L1I ) ] = {
761         [ C(OP_READ) ] = {
762                 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                  */
763                 [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                 */
764         },
765         [ C(OP_WRITE) ] = {
766                 [ C(RESULT_ACCESS) ] = -1,
767                 [ C(RESULT_MISS)   ] = -1,
768         },
769         [ C(OP_PREFETCH) ] = {
770                 [ C(RESULT_ACCESS) ] = 0,
771                 [ C(RESULT_MISS)   ] = 0,
772         },
773  },
774  [ C(LL  ) ] = {
775         [ C(OP_READ) ] = {
776                 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
777                 [ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
778         },
779         [ C(OP_WRITE) ] = {
780                 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
781                 [ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
782         },
783         [ C(OP_PREFETCH) ] = {
784                 [ C(RESULT_ACCESS) ] = 0,
785                 [ C(RESULT_MISS)   ] = 0,
786         },
787  },
788  [ C(DTLB) ] = {
789         [ C(OP_READ) ] = {
790                 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI  (alias) */
791                 [ C(RESULT_MISS)   ] = 0x0508, /* DTLB_MISSES.MISS_LD        */
792         },
793         [ C(OP_WRITE) ] = {
794                 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI  (alias) */
795                 [ C(RESULT_MISS)   ] = 0x0608, /* DTLB_MISSES.MISS_ST        */
796         },
797         [ C(OP_PREFETCH) ] = {
798                 [ C(RESULT_ACCESS) ] = 0,
799                 [ C(RESULT_MISS)   ] = 0,
800         },
801  },
802  [ C(ITLB) ] = {
803         [ C(OP_READ) ] = {
804                 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
805                 [ C(RESULT_MISS)   ] = 0x0282, /* ITLB.MISSES                */
806         },
807         [ C(OP_WRITE) ] = {
808                 [ C(RESULT_ACCESS) ] = -1,
809                 [ C(RESULT_MISS)   ] = -1,
810         },
811         [ C(OP_PREFETCH) ] = {
812                 [ C(RESULT_ACCESS) ] = -1,
813                 [ C(RESULT_MISS)   ] = -1,
814         },
815  },
816  [ C(BPU ) ] = {
817         [ C(OP_READ) ] = {
818                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
819                 [ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
820         },
821         [ C(OP_WRITE) ] = {
822                 [ C(RESULT_ACCESS) ] = -1,
823                 [ C(RESULT_MISS)   ] = -1,
824         },
825         [ C(OP_PREFETCH) ] = {
826                 [ C(RESULT_ACCESS) ] = -1,
827                 [ C(RESULT_MISS)   ] = -1,
828         },
829  },
830 };
831
832 static inline bool intel_pmu_needs_lbr_smpl(struct perf_event *event)
833 {
834         /* user explicitly requested branch sampling */
835         if (has_branch_stack(event))
836                 return true;
837
838         /* implicit branch sampling to correct PEBS skid */
839         if (x86_pmu.intel_cap.pebs_trap && event->attr.precise_ip > 1)
840                 return true;
841
842         return false;
843 }
844
845 static void intel_pmu_disable_all(void)
846 {
847         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
848
849         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
850
851         if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask))
852                 intel_pmu_disable_bts();
853
854         intel_pmu_pebs_disable_all();
855         intel_pmu_lbr_disable_all();
856 }
857
858 static void intel_pmu_enable_all(int added)
859 {
860         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
861
862         intel_pmu_pebs_enable_all();
863         intel_pmu_lbr_enable_all();
864         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL,
865                         x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask);
866
867         if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
868                 struct perf_event *event =
869                         cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
870
871                 if (WARN_ON_ONCE(!event))
872                         return;
873
874                 intel_pmu_enable_bts(event->hw.config);
875         }
876 }
877
878 /*
879  * Workaround for:
880  *   Intel Errata AAK100 (model 26)
881  *   Intel Errata AAP53  (model 30)
882  *   Intel Errata BD53   (model 44)
883  *
884  * The official story:
885  *   These chips need to be 'reset' when adding counters by programming the
886  *   magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
887  *   in sequence on the same PMC or on different PMCs.
888  *
889  * In practise it appears some of these events do in fact count, and
890  * we need to programm all 4 events.
891  */
892 static void intel_pmu_nhm_workaround(void)
893 {
894         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
895         static const unsigned long nhm_magic[4] = {
896                 0x4300B5,
897                 0x4300D2,
898                 0x4300B1,
899                 0x4300B1
900         };
901         struct perf_event *event;
902         int i;
903
904         /*
905          * The Errata requires below steps:
906          * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
907          * 2) Configure 4 PERFEVTSELx with the magic events and clear
908          *    the corresponding PMCx;
909          * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
910          * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
911          * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
912          */
913
914         /*
915          * The real steps we choose are a little different from above.
916          * A) To reduce MSR operations, we don't run step 1) as they
917          *    are already cleared before this function is called;
918          * B) Call x86_perf_event_update to save PMCx before configuring
919          *    PERFEVTSELx with magic number;
920          * C) With step 5), we do clear only when the PERFEVTSELx is
921          *    not used currently.
922          * D) Call x86_perf_event_set_period to restore PMCx;
923          */
924
925         /* We always operate 4 pairs of PERF Counters */
926         for (i = 0; i < 4; i++) {
927                 event = cpuc->events[i];
928                 if (event)
929                         x86_perf_event_update(event);
930         }
931
932         for (i = 0; i < 4; i++) {
933                 wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
934                 wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
935         }
936
937         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
938         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
939
940         for (i = 0; i < 4; i++) {
941                 event = cpuc->events[i];
942
943                 if (event) {
944                         x86_perf_event_set_period(event);
945                         __x86_pmu_enable_event(&event->hw,
946                                         ARCH_PERFMON_EVENTSEL_ENABLE);
947                 } else
948                         wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
949         }
950 }
951
952 static void intel_pmu_nhm_enable_all(int added)
953 {
954         if (added)
955                 intel_pmu_nhm_workaround();
956         intel_pmu_enable_all(added);
957 }
958
959 static inline u64 intel_pmu_get_status(void)
960 {
961         u64 status;
962
963         rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
964
965         return status;
966 }
967
968 static inline void intel_pmu_ack_status(u64 ack)
969 {
970         wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
971 }
972
973 static void intel_pmu_disable_fixed(struct hw_perf_event *hwc)
974 {
975         int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
976         u64 ctrl_val, mask;
977
978         mask = 0xfULL << (idx * 4);
979
980         rdmsrl(hwc->config_base, ctrl_val);
981         ctrl_val &= ~mask;
982         wrmsrl(hwc->config_base, ctrl_val);
983 }
984
985 static void intel_pmu_disable_event(struct perf_event *event)
986 {
987         struct hw_perf_event *hwc = &event->hw;
988         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
989
990         if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
991                 intel_pmu_disable_bts();
992                 intel_pmu_drain_bts_buffer();
993                 return;
994         }
995
996         cpuc->intel_ctrl_guest_mask &= ~(1ull << hwc->idx);
997         cpuc->intel_ctrl_host_mask &= ~(1ull << hwc->idx);
998
999         /*
1000          * must disable before any actual event
1001          * because any event may be combined with LBR
1002          */
1003         if (intel_pmu_needs_lbr_smpl(event))
1004                 intel_pmu_lbr_disable(event);
1005
1006         if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
1007                 intel_pmu_disable_fixed(hwc);
1008                 return;
1009         }
1010
1011         x86_pmu_disable_event(event);
1012
1013         if (unlikely(event->attr.precise_ip))
1014                 intel_pmu_pebs_disable(event);
1015 }
1016
1017 static void intel_pmu_enable_fixed(struct hw_perf_event *hwc)
1018 {
1019         int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
1020         u64 ctrl_val, bits, mask;
1021
1022         /*
1023          * Enable IRQ generation (0x8),
1024          * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
1025          * if requested:
1026          */
1027         bits = 0x8ULL;
1028         if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
1029                 bits |= 0x2;
1030         if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
1031                 bits |= 0x1;
1032
1033         /*
1034          * ANY bit is supported in v3 and up
1035          */
1036         if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
1037                 bits |= 0x4;
1038
1039         bits <<= (idx * 4);
1040         mask = 0xfULL << (idx * 4);
1041
1042         rdmsrl(hwc->config_base, ctrl_val);
1043         ctrl_val &= ~mask;
1044         ctrl_val |= bits;
1045         wrmsrl(hwc->config_base, ctrl_val);
1046 }
1047
1048 static void intel_pmu_enable_event(struct perf_event *event)
1049 {
1050         struct hw_perf_event *hwc = &event->hw;
1051         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1052
1053         if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
1054                 if (!__this_cpu_read(cpu_hw_events.enabled))
1055                         return;
1056
1057                 intel_pmu_enable_bts(hwc->config);
1058                 return;
1059         }
1060         /*
1061          * must enabled before any actual event
1062          * because any event may be combined with LBR
1063          */
1064         if (intel_pmu_needs_lbr_smpl(event))
1065                 intel_pmu_lbr_enable(event);
1066
1067         if (event->attr.exclude_host)
1068                 cpuc->intel_ctrl_guest_mask |= (1ull << hwc->idx);
1069         if (event->attr.exclude_guest)
1070                 cpuc->intel_ctrl_host_mask |= (1ull << hwc->idx);
1071
1072         if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
1073                 intel_pmu_enable_fixed(hwc);
1074                 return;
1075         }
1076
1077         if (unlikely(event->attr.precise_ip))
1078                 intel_pmu_pebs_enable(event);
1079
1080         __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
1081 }
1082
1083 /*
1084  * Save and restart an expired event. Called by NMI contexts,
1085  * so it has to be careful about preempting normal event ops:
1086  */
1087 int intel_pmu_save_and_restart(struct perf_event *event)
1088 {
1089         x86_perf_event_update(event);
1090         return x86_perf_event_set_period(event);
1091 }
1092
1093 static void intel_pmu_reset(void)
1094 {
1095         struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
1096         unsigned long flags;
1097         int idx;
1098
1099         if (!x86_pmu.num_counters)
1100                 return;
1101
1102         local_irq_save(flags);
1103
1104         pr_info("clearing PMU state on CPU#%d\n", smp_processor_id());
1105
1106         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1107                 wrmsrl_safe(x86_pmu_config_addr(idx), 0ull);
1108                 wrmsrl_safe(x86_pmu_event_addr(idx),  0ull);
1109         }
1110         for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++)
1111                 wrmsrl_safe(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
1112
1113         if (ds)
1114                 ds->bts_index = ds->bts_buffer_base;
1115
1116         local_irq_restore(flags);
1117 }
1118
1119 /*
1120  * This handler is triggered by the local APIC, so the APIC IRQ handling
1121  * rules apply:
1122  */
1123 static int intel_pmu_handle_irq(struct pt_regs *regs)
1124 {
1125         struct perf_sample_data data;
1126         struct cpu_hw_events *cpuc;
1127         int bit, loops;
1128         u64 status;
1129         int handled;
1130
1131         cpuc = &__get_cpu_var(cpu_hw_events);
1132
1133         /*
1134          * Some chipsets need to unmask the LVTPC in a particular spot
1135          * inside the nmi handler.  As a result, the unmasking was pushed
1136          * into all the nmi handlers.
1137          *
1138          * This handler doesn't seem to have any issues with the unmasking
1139          * so it was left at the top.
1140          */
1141         apic_write(APIC_LVTPC, APIC_DM_NMI);
1142
1143         intel_pmu_disable_all();
1144         handled = intel_pmu_drain_bts_buffer();
1145         status = intel_pmu_get_status();
1146         if (!status) {
1147                 intel_pmu_enable_all(0);
1148                 return handled;
1149         }
1150
1151         loops = 0;
1152 again:
1153         intel_pmu_ack_status(status);
1154         if (++loops > 100) {
1155                 WARN_ONCE(1, "perfevents: irq loop stuck!\n");
1156                 perf_event_print_debug();
1157                 intel_pmu_reset();
1158                 goto done;
1159         }
1160
1161         inc_irq_stat(apic_perf_irqs);
1162
1163         intel_pmu_lbr_read();
1164
1165         /*
1166          * PEBS overflow sets bit 62 in the global status register
1167          */
1168         if (__test_and_clear_bit(62, (unsigned long *)&status)) {
1169                 handled++;
1170                 x86_pmu.drain_pebs(regs);
1171         }
1172
1173         for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
1174                 struct perf_event *event = cpuc->events[bit];
1175
1176                 handled++;
1177
1178                 if (!test_bit(bit, cpuc->active_mask))
1179                         continue;
1180
1181                 if (!intel_pmu_save_and_restart(event))
1182                         continue;
1183
1184                 perf_sample_data_init(&data, 0, event->hw.last_period);
1185
1186                 if (has_branch_stack(event))
1187                         data.br_stack = &cpuc->lbr_stack;
1188
1189                 if (perf_event_overflow(event, &data, regs))
1190                         x86_pmu_stop(event, 0);
1191         }
1192
1193         /*
1194          * Repeat if there is more work to be done:
1195          */
1196         status = intel_pmu_get_status();
1197         if (status)
1198                 goto again;
1199
1200 done:
1201         intel_pmu_enable_all(0);
1202         return handled;
1203 }
1204
1205 static struct event_constraint *
1206 intel_bts_constraints(struct perf_event *event)
1207 {
1208         struct hw_perf_event *hwc = &event->hw;
1209         unsigned int hw_event, bts_event;
1210
1211         if (event->attr.freq)
1212                 return NULL;
1213
1214         hw_event = hwc->config & INTEL_ARCH_EVENT_MASK;
1215         bts_event = x86_pmu.event_map(PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
1216
1217         if (unlikely(hw_event == bts_event && hwc->sample_period == 1))
1218                 return &bts_constraint;
1219
1220         return NULL;
1221 }
1222
1223 static int intel_alt_er(int idx)
1224 {
1225         if (!(x86_pmu.er_flags & ERF_HAS_RSP_1))
1226                 return idx;
1227
1228         if (idx == EXTRA_REG_RSP_0)
1229                 return EXTRA_REG_RSP_1;
1230
1231         if (idx == EXTRA_REG_RSP_1)
1232                 return EXTRA_REG_RSP_0;
1233
1234         return idx;
1235 }
1236
1237 static void intel_fixup_er(struct perf_event *event, int idx)
1238 {
1239         event->hw.extra_reg.idx = idx;
1240
1241         if (idx == EXTRA_REG_RSP_0) {
1242                 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
1243                 event->hw.config |= 0x01b7;
1244                 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
1245         } else if (idx == EXTRA_REG_RSP_1) {
1246                 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
1247                 event->hw.config |= 0x01bb;
1248                 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
1249         }
1250 }
1251
1252 /*
1253  * manage allocation of shared extra msr for certain events
1254  *
1255  * sharing can be:
1256  * per-cpu: to be shared between the various events on a single PMU
1257  * per-core: per-cpu + shared by HT threads
1258  */
1259 static struct event_constraint *
1260 __intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
1261                                    struct perf_event *event,
1262                                    struct hw_perf_event_extra *reg)
1263 {
1264         struct event_constraint *c = &emptyconstraint;
1265         struct er_account *era;
1266         unsigned long flags;
1267         int idx = reg->idx;
1268
1269         /*
1270          * reg->alloc can be set due to existing state, so for fake cpuc we
1271          * need to ignore this, otherwise we might fail to allocate proper fake
1272          * state for this extra reg constraint. Also see the comment below.
1273          */
1274         if (reg->alloc && !cpuc->is_fake)
1275                 return NULL; /* call x86_get_event_constraint() */
1276
1277 again:
1278         era = &cpuc->shared_regs->regs[idx];
1279         /*
1280          * we use spin_lock_irqsave() to avoid lockdep issues when
1281          * passing a fake cpuc
1282          */
1283         raw_spin_lock_irqsave(&era->lock, flags);
1284
1285         if (!atomic_read(&era->ref) || era->config == reg->config) {
1286
1287                 /*
1288                  * If its a fake cpuc -- as per validate_{group,event}() we
1289                  * shouldn't touch event state and we can avoid doing so
1290                  * since both will only call get_event_constraints() once
1291                  * on each event, this avoids the need for reg->alloc.
1292                  *
1293                  * Not doing the ER fixup will only result in era->reg being
1294                  * wrong, but since we won't actually try and program hardware
1295                  * this isn't a problem either.
1296                  */
1297                 if (!cpuc->is_fake) {
1298                         if (idx != reg->idx)
1299                                 intel_fixup_er(event, idx);
1300
1301                         /*
1302                          * x86_schedule_events() can call get_event_constraints()
1303                          * multiple times on events in the case of incremental
1304                          * scheduling(). reg->alloc ensures we only do the ER
1305                          * allocation once.
1306                          */
1307                         reg->alloc = 1;
1308                 }
1309
1310                 /* lock in msr value */
1311                 era->config = reg->config;
1312                 era->reg = reg->reg;
1313
1314                 /* one more user */
1315                 atomic_inc(&era->ref);
1316
1317                 /*
1318                  * need to call x86_get_event_constraint()
1319                  * to check if associated event has constraints
1320                  */
1321                 c = NULL;
1322         } else {
1323                 idx = intel_alt_er(idx);
1324                 if (idx != reg->idx) {
1325                         raw_spin_unlock_irqrestore(&era->lock, flags);
1326                         goto again;
1327                 }
1328         }
1329         raw_spin_unlock_irqrestore(&era->lock, flags);
1330
1331         return c;
1332 }
1333
1334 static void
1335 __intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
1336                                    struct hw_perf_event_extra *reg)
1337 {
1338         struct er_account *era;
1339
1340         /*
1341          * Only put constraint if extra reg was actually allocated. Also takes
1342          * care of event which do not use an extra shared reg.
1343          *
1344          * Also, if this is a fake cpuc we shouldn't touch any event state
1345          * (reg->alloc) and we don't care about leaving inconsistent cpuc state
1346          * either since it'll be thrown out.
1347          */
1348         if (!reg->alloc || cpuc->is_fake)
1349                 return;
1350
1351         era = &cpuc->shared_regs->regs[reg->idx];
1352
1353         /* one fewer user */
1354         atomic_dec(&era->ref);
1355
1356         /* allocate again next time */
1357         reg->alloc = 0;
1358 }
1359
1360 static struct event_constraint *
1361 intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
1362                               struct perf_event *event)
1363 {
1364         struct event_constraint *c = NULL, *d;
1365         struct hw_perf_event_extra *xreg, *breg;
1366
1367         xreg = &event->hw.extra_reg;
1368         if (xreg->idx != EXTRA_REG_NONE) {
1369                 c = __intel_shared_reg_get_constraints(cpuc, event, xreg);
1370                 if (c == &emptyconstraint)
1371                         return c;
1372         }
1373         breg = &event->hw.branch_reg;
1374         if (breg->idx != EXTRA_REG_NONE) {
1375                 d = __intel_shared_reg_get_constraints(cpuc, event, breg);
1376                 if (d == &emptyconstraint) {
1377                         __intel_shared_reg_put_constraints(cpuc, xreg);
1378                         c = d;
1379                 }
1380         }
1381         return c;
1382 }
1383
1384 struct event_constraint *
1385 x86_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
1386 {
1387         struct event_constraint *c;
1388
1389         if (x86_pmu.event_constraints) {
1390                 for_each_event_constraint(c, x86_pmu.event_constraints) {
1391                         if ((event->hw.config & c->cmask) == c->code)
1392                                 return c;
1393                 }
1394         }
1395
1396         return &unconstrained;
1397 }
1398
1399 static struct event_constraint *
1400 intel_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
1401 {
1402         struct event_constraint *c;
1403
1404         c = intel_bts_constraints(event);
1405         if (c)
1406                 return c;
1407
1408         c = intel_pebs_constraints(event);
1409         if (c)
1410                 return c;
1411
1412         c = intel_shared_regs_constraints(cpuc, event);
1413         if (c)
1414                 return c;
1415
1416         return x86_get_event_constraints(cpuc, event);
1417 }
1418
1419 static void
1420 intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
1421                                         struct perf_event *event)
1422 {
1423         struct hw_perf_event_extra *reg;
1424
1425         reg = &event->hw.extra_reg;
1426         if (reg->idx != EXTRA_REG_NONE)
1427                 __intel_shared_reg_put_constraints(cpuc, reg);
1428
1429         reg = &event->hw.branch_reg;
1430         if (reg->idx != EXTRA_REG_NONE)
1431                 __intel_shared_reg_put_constraints(cpuc, reg);
1432 }
1433
1434 static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
1435                                         struct perf_event *event)
1436 {
1437         intel_put_shared_regs_event_constraints(cpuc, event);
1438 }
1439
1440 static void intel_pebs_aliases_core2(struct perf_event *event)
1441 {
1442         if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
1443                 /*
1444                  * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
1445                  * (0x003c) so that we can use it with PEBS.
1446                  *
1447                  * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
1448                  * PEBS capable. However we can use INST_RETIRED.ANY_P
1449                  * (0x00c0), which is a PEBS capable event, to get the same
1450                  * count.
1451                  *
1452                  * INST_RETIRED.ANY_P counts the number of cycles that retires
1453                  * CNTMASK instructions. By setting CNTMASK to a value (16)
1454                  * larger than the maximum number of instructions that can be
1455                  * retired per cycle (4) and then inverting the condition, we
1456                  * count all cycles that retire 16 or less instructions, which
1457                  * is every cycle.
1458                  *
1459                  * Thereby we gain a PEBS capable cycle counter.
1460                  */
1461                 u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16);
1462
1463                 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
1464                 event->hw.config = alt_config;
1465         }
1466 }
1467
1468 static void intel_pebs_aliases_snb(struct perf_event *event)
1469 {
1470         if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
1471                 /*
1472                  * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
1473                  * (0x003c) so that we can use it with PEBS.
1474                  *
1475                  * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
1476                  * PEBS capable. However we can use UOPS_RETIRED.ALL
1477                  * (0x01c2), which is a PEBS capable event, to get the same
1478                  * count.
1479                  *
1480                  * UOPS_RETIRED.ALL counts the number of cycles that retires
1481                  * CNTMASK micro-ops. By setting CNTMASK to a value (16)
1482                  * larger than the maximum number of micro-ops that can be
1483                  * retired per cycle (4) and then inverting the condition, we
1484                  * count all cycles that retire 16 or less micro-ops, which
1485                  * is every cycle.
1486                  *
1487                  * Thereby we gain a PEBS capable cycle counter.
1488                  */
1489                 u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16);
1490
1491                 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
1492                 event->hw.config = alt_config;
1493         }
1494 }
1495
1496 static int intel_pmu_hw_config(struct perf_event *event)
1497 {
1498         int ret = x86_pmu_hw_config(event);
1499
1500         if (ret)
1501                 return ret;
1502
1503         if (event->attr.precise_ip && x86_pmu.pebs_aliases)
1504                 x86_pmu.pebs_aliases(event);
1505
1506         if (intel_pmu_needs_lbr_smpl(event)) {
1507                 ret = intel_pmu_setup_lbr_filter(event);
1508                 if (ret)
1509                         return ret;
1510         }
1511
1512         if (event->attr.type != PERF_TYPE_RAW)
1513                 return 0;
1514
1515         if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
1516                 return 0;
1517
1518         if (x86_pmu.version < 3)
1519                 return -EINVAL;
1520
1521         if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
1522                 return -EACCES;
1523
1524         event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;
1525
1526         return 0;
1527 }
1528
1529 struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr)
1530 {
1531         if (x86_pmu.guest_get_msrs)
1532                 return x86_pmu.guest_get_msrs(nr);
1533         *nr = 0;
1534         return NULL;
1535 }
1536 EXPORT_SYMBOL_GPL(perf_guest_get_msrs);
1537
1538 static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr)
1539 {
1540         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1541         struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
1542
1543         arr[0].msr = MSR_CORE_PERF_GLOBAL_CTRL;
1544         arr[0].host = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask;
1545         arr[0].guest = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_host_mask;
1546         /*
1547          * If PMU counter has PEBS enabled it is not enough to disable counter
1548          * on a guest entry since PEBS memory write can overshoot guest entry
1549          * and corrupt guest memory. Disabling PEBS solves the problem.
1550          */
1551         arr[1].msr = MSR_IA32_PEBS_ENABLE;
1552         arr[1].host = cpuc->pebs_enabled;
1553         arr[1].guest = 0;
1554
1555         *nr = 2;
1556         return arr;
1557 }
1558
1559 static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr)
1560 {
1561         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1562         struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
1563         int idx;
1564
1565         for (idx = 0; idx < x86_pmu.num_counters; idx++)  {
1566                 struct perf_event *event = cpuc->events[idx];
1567
1568                 arr[idx].msr = x86_pmu_config_addr(idx);
1569                 arr[idx].host = arr[idx].guest = 0;
1570
1571                 if (!test_bit(idx, cpuc->active_mask))
1572                         continue;
1573
1574                 arr[idx].host = arr[idx].guest =
1575                         event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE;
1576
1577                 if (event->attr.exclude_host)
1578                         arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
1579                 else if (event->attr.exclude_guest)
1580                         arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
1581         }
1582
1583         *nr = x86_pmu.num_counters;
1584         return arr;
1585 }
1586
1587 static void core_pmu_enable_event(struct perf_event *event)
1588 {
1589         if (!event->attr.exclude_host)
1590                 x86_pmu_enable_event(event);
1591 }
1592
1593 static void core_pmu_enable_all(int added)
1594 {
1595         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1596         int idx;
1597
1598         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1599                 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
1600
1601                 if (!test_bit(idx, cpuc->active_mask) ||
1602                                 cpuc->events[idx]->attr.exclude_host)
1603                         continue;
1604
1605                 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
1606         }
1607 }
1608
1609 PMU_FORMAT_ATTR(event,  "config:0-7"    );
1610 PMU_FORMAT_ATTR(umask,  "config:8-15"   );
1611 PMU_FORMAT_ATTR(edge,   "config:18"     );
1612 PMU_FORMAT_ATTR(pc,     "config:19"     );
1613 PMU_FORMAT_ATTR(any,    "config:21"     ); /* v3 + */
1614 PMU_FORMAT_ATTR(inv,    "config:23"     );
1615 PMU_FORMAT_ATTR(cmask,  "config:24-31"  );
1616
1617 static struct attribute *intel_arch_formats_attr[] = {
1618         &format_attr_event.attr,
1619         &format_attr_umask.attr,
1620         &format_attr_edge.attr,
1621         &format_attr_pc.attr,
1622         &format_attr_inv.attr,
1623         &format_attr_cmask.attr,
1624         NULL,
1625 };
1626
1627 ssize_t intel_event_sysfs_show(char *page, u64 config)
1628 {
1629         u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT);
1630
1631         return x86_event_sysfs_show(page, config, event);
1632 }
1633
1634 static __initconst const struct x86_pmu core_pmu = {
1635         .name                   = "core",
1636         .handle_irq             = x86_pmu_handle_irq,
1637         .disable_all            = x86_pmu_disable_all,
1638         .enable_all             = core_pmu_enable_all,
1639         .enable                 = core_pmu_enable_event,
1640         .disable                = x86_pmu_disable_event,
1641         .hw_config              = x86_pmu_hw_config,
1642         .schedule_events        = x86_schedule_events,
1643         .eventsel               = MSR_ARCH_PERFMON_EVENTSEL0,
1644         .perfctr                = MSR_ARCH_PERFMON_PERFCTR0,
1645         .event_map              = intel_pmu_event_map,
1646         .max_events             = ARRAY_SIZE(intel_perfmon_event_map),
1647         .apic                   = 1,
1648         /*
1649          * Intel PMCs cannot be accessed sanely above 32 bit width,
1650          * so we install an artificial 1<<31 period regardless of
1651          * the generic event period:
1652          */
1653         .max_period             = (1ULL << 31) - 1,
1654         .get_event_constraints  = intel_get_event_constraints,
1655         .put_event_constraints  = intel_put_event_constraints,
1656         .event_constraints      = intel_core_event_constraints,
1657         .guest_get_msrs         = core_guest_get_msrs,
1658         .format_attrs           = intel_arch_formats_attr,
1659         .events_sysfs_show      = intel_event_sysfs_show,
1660 };
1661
1662 struct intel_shared_regs *allocate_shared_regs(int cpu)
1663 {
1664         struct intel_shared_regs *regs;
1665         int i;
1666
1667         regs = kzalloc_node(sizeof(struct intel_shared_regs),
1668                             GFP_KERNEL, cpu_to_node(cpu));
1669         if (regs) {
1670                 /*
1671                  * initialize the locks to keep lockdep happy
1672                  */
1673                 for (i = 0; i < EXTRA_REG_MAX; i++)
1674                         raw_spin_lock_init(&regs->regs[i].lock);
1675
1676                 regs->core_id = -1;
1677         }
1678         return regs;
1679 }
1680
1681 static int intel_pmu_cpu_prepare(int cpu)
1682 {
1683         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1684
1685         if (!(x86_pmu.extra_regs || x86_pmu.lbr_sel_map))
1686                 return NOTIFY_OK;
1687
1688         cpuc->shared_regs = allocate_shared_regs(cpu);
1689         if (!cpuc->shared_regs)
1690                 return NOTIFY_BAD;
1691
1692         return NOTIFY_OK;
1693 }
1694
1695 static void intel_pmu_cpu_starting(int cpu)
1696 {
1697         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1698         int core_id = topology_core_id(cpu);
1699         int i;
1700
1701         init_debug_store_on_cpu(cpu);
1702         /*
1703          * Deal with CPUs that don't clear their LBRs on power-up.
1704          */
1705         intel_pmu_lbr_reset();
1706
1707         cpuc->lbr_sel = NULL;
1708
1709         if (!cpuc->shared_regs)
1710                 return;
1711
1712         if (!(x86_pmu.er_flags & ERF_NO_HT_SHARING)) {
1713                 for_each_cpu(i, topology_thread_cpumask(cpu)) {
1714                         struct intel_shared_regs *pc;
1715
1716                         pc = per_cpu(cpu_hw_events, i).shared_regs;
1717                         if (pc && pc->core_id == core_id) {
1718                                 cpuc->kfree_on_online = cpuc->shared_regs;
1719                                 cpuc->shared_regs = pc;
1720                                 break;
1721                         }
1722                 }
1723                 cpuc->shared_regs->core_id = core_id;
1724                 cpuc->shared_regs->refcnt++;
1725         }
1726
1727         if (x86_pmu.lbr_sel_map)
1728                 cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR];
1729 }
1730
1731 static void intel_pmu_cpu_dying(int cpu)
1732 {
1733         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1734         struct intel_shared_regs *pc;
1735
1736         pc = cpuc->shared_regs;
1737         if (pc) {
1738                 if (pc->core_id == -1 || --pc->refcnt == 0)
1739                         kfree(pc);
1740                 cpuc->shared_regs = NULL;
1741         }
1742
1743         fini_debug_store_on_cpu(cpu);
1744 }
1745
1746 static void intel_pmu_flush_branch_stack(void)
1747 {
1748         /*
1749          * Intel LBR does not tag entries with the
1750          * PID of the current task, then we need to
1751          * flush it on ctxsw
1752          * For now, we simply reset it
1753          */
1754         if (x86_pmu.lbr_nr)
1755                 intel_pmu_lbr_reset();
1756 }
1757
1758 PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63");
1759
1760 static struct attribute *intel_arch3_formats_attr[] = {
1761         &format_attr_event.attr,
1762         &format_attr_umask.attr,
1763         &format_attr_edge.attr,
1764         &format_attr_pc.attr,
1765         &format_attr_any.attr,
1766         &format_attr_inv.attr,
1767         &format_attr_cmask.attr,
1768
1769         &format_attr_offcore_rsp.attr, /* XXX do NHM/WSM + SNB breakout */
1770         NULL,
1771 };
1772
1773 static __initconst const struct x86_pmu intel_pmu = {
1774         .name                   = "Intel",
1775         .handle_irq             = intel_pmu_handle_irq,
1776         .disable_all            = intel_pmu_disable_all,
1777         .enable_all             = intel_pmu_enable_all,
1778         .enable                 = intel_pmu_enable_event,
1779         .disable                = intel_pmu_disable_event,
1780         .hw_config              = intel_pmu_hw_config,
1781         .schedule_events        = x86_schedule_events,
1782         .eventsel               = MSR_ARCH_PERFMON_EVENTSEL0,
1783         .perfctr                = MSR_ARCH_PERFMON_PERFCTR0,
1784         .event_map              = intel_pmu_event_map,
1785         .max_events             = ARRAY_SIZE(intel_perfmon_event_map),
1786         .apic                   = 1,
1787         /*
1788          * Intel PMCs cannot be accessed sanely above 32 bit width,
1789          * so we install an artificial 1<<31 period regardless of
1790          * the generic event period:
1791          */
1792         .max_period             = (1ULL << 31) - 1,
1793         .get_event_constraints  = intel_get_event_constraints,
1794         .put_event_constraints  = intel_put_event_constraints,
1795         .pebs_aliases           = intel_pebs_aliases_core2,
1796
1797         .format_attrs           = intel_arch3_formats_attr,
1798         .events_sysfs_show      = intel_event_sysfs_show,
1799
1800         .cpu_prepare            = intel_pmu_cpu_prepare,
1801         .cpu_starting           = intel_pmu_cpu_starting,
1802         .cpu_dying              = intel_pmu_cpu_dying,
1803         .guest_get_msrs         = intel_guest_get_msrs,
1804         .flush_branch_stack     = intel_pmu_flush_branch_stack,
1805 };
1806
1807 static __init void intel_clovertown_quirk(void)
1808 {
1809         /*
1810          * PEBS is unreliable due to:
1811          *
1812          *   AJ67  - PEBS may experience CPL leaks
1813          *   AJ68  - PEBS PMI may be delayed by one event
1814          *   AJ69  - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
1815          *   AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
1816          *
1817          * AJ67 could be worked around by restricting the OS/USR flags.
1818          * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
1819          *
1820          * AJ106 could possibly be worked around by not allowing LBR
1821          *       usage from PEBS, including the fixup.
1822          * AJ68  could possibly be worked around by always programming
1823          *       a pebs_event_reset[0] value and coping with the lost events.
1824          *
1825          * But taken together it might just make sense to not enable PEBS on
1826          * these chips.
1827          */
1828         pr_warn("PEBS disabled due to CPU errata\n");
1829         x86_pmu.pebs = 0;
1830         x86_pmu.pebs_constraints = NULL;
1831 }
1832
1833 static int intel_snb_pebs_broken(int cpu)
1834 {
1835         u32 rev = UINT_MAX; /* default to broken for unknown models */
1836
1837         switch (cpu_data(cpu).x86_model) {
1838         case 42: /* SNB */
1839                 rev = 0x28;
1840                 break;
1841
1842         case 45: /* SNB-EP */
1843                 switch (cpu_data(cpu).x86_mask) {
1844                 case 6: rev = 0x618; break;
1845                 case 7: rev = 0x70c; break;
1846                 }
1847         }
1848
1849         return (cpu_data(cpu).microcode < rev);
1850 }
1851
1852 static void intel_snb_check_microcode(void)
1853 {
1854         int pebs_broken = 0;
1855         int cpu;
1856
1857         get_online_cpus();
1858         for_each_online_cpu(cpu) {
1859                 if ((pebs_broken = intel_snb_pebs_broken(cpu)))
1860                         break;
1861         }
1862         put_online_cpus();
1863
1864         if (pebs_broken == x86_pmu.pebs_broken)
1865                 return;
1866
1867         /*
1868          * Serialized by the microcode lock..
1869          */
1870         if (x86_pmu.pebs_broken) {
1871                 pr_info("PEBS enabled due to microcode update\n");
1872                 x86_pmu.pebs_broken = 0;
1873         } else {
1874                 pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n");
1875                 x86_pmu.pebs_broken = 1;
1876         }
1877 }
1878
1879 static __init void intel_sandybridge_quirk(void)
1880 {
1881         x86_pmu.check_microcode = intel_snb_check_microcode;
1882         intel_snb_check_microcode();
1883 }
1884
1885 static const struct { int id; char *name; } intel_arch_events_map[] __initconst = {
1886         { PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" },
1887         { PERF_COUNT_HW_INSTRUCTIONS, "instructions" },
1888         { PERF_COUNT_HW_BUS_CYCLES, "bus cycles" },
1889         { PERF_COUNT_HW_CACHE_REFERENCES, "cache references" },
1890         { PERF_COUNT_HW_CACHE_MISSES, "cache misses" },
1891         { PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" },
1892         { PERF_COUNT_HW_BRANCH_MISSES, "branch misses" },
1893 };
1894
1895 static __init void intel_arch_events_quirk(void)
1896 {
1897         int bit;
1898
1899         /* disable event that reported as not presend by cpuid */
1900         for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) {
1901                 intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0;
1902                 pr_warn("CPUID marked event: \'%s\' unavailable\n",
1903                         intel_arch_events_map[bit].name);
1904         }
1905 }
1906
1907 static __init void intel_nehalem_quirk(void)
1908 {
1909         union cpuid10_ebx ebx;
1910
1911         ebx.full = x86_pmu.events_maskl;
1912         if (ebx.split.no_branch_misses_retired) {
1913                 /*
1914                  * Erratum AAJ80 detected, we work it around by using
1915                  * the BR_MISP_EXEC.ANY event. This will over-count
1916                  * branch-misses, but it's still much better than the
1917                  * architectural event which is often completely bogus:
1918                  */
1919                 intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
1920                 ebx.split.no_branch_misses_retired = 0;
1921                 x86_pmu.events_maskl = ebx.full;
1922                 pr_info("CPU erratum AAJ80 worked around\n");
1923         }
1924 }
1925
1926 __init int intel_pmu_init(void)
1927 {
1928         union cpuid10_edx edx;
1929         union cpuid10_eax eax;
1930         union cpuid10_ebx ebx;
1931         struct event_constraint *c;
1932         unsigned int unused;
1933         int version;
1934
1935         if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
1936                 switch (boot_cpu_data.x86) {
1937                 case 0x6:
1938                         return p6_pmu_init();
1939                 case 0xb:
1940                         return knc_pmu_init();
1941                 case 0xf:
1942                         return p4_pmu_init();
1943                 }
1944                 return -ENODEV;
1945         }
1946
1947         /*
1948          * Check whether the Architectural PerfMon supports
1949          * Branch Misses Retired hw_event or not.
1950          */
1951         cpuid(10, &eax.full, &ebx.full, &unused, &edx.full);
1952         if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT)
1953                 return -ENODEV;
1954
1955         version = eax.split.version_id;
1956         if (version < 2)
1957                 x86_pmu = core_pmu;
1958         else
1959                 x86_pmu = intel_pmu;
1960
1961         x86_pmu.version                 = version;
1962         x86_pmu.num_counters            = eax.split.num_counters;
1963         x86_pmu.cntval_bits             = eax.split.bit_width;
1964         x86_pmu.cntval_mask             = (1ULL << eax.split.bit_width) - 1;
1965
1966         x86_pmu.events_maskl            = ebx.full;
1967         x86_pmu.events_mask_len         = eax.split.mask_length;
1968
1969         x86_pmu.max_pebs_events         = min_t(unsigned, MAX_PEBS_EVENTS, x86_pmu.num_counters);
1970
1971         /*
1972          * Quirk: v2 perfmon does not report fixed-purpose events, so
1973          * assume at least 3 events:
1974          */
1975         if (version > 1)
1976                 x86_pmu.num_counters_fixed = max((int)edx.split.num_counters_fixed, 3);
1977
1978         /*
1979          * v2 and above have a perf capabilities MSR
1980          */
1981         if (version > 1) {
1982                 u64 capabilities;
1983
1984                 rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities);
1985                 x86_pmu.intel_cap.capabilities = capabilities;
1986         }
1987
1988         intel_ds_init();
1989
1990         x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */
1991
1992         /*
1993          * Install the hw-cache-events table:
1994          */
1995         switch (boot_cpu_data.x86_model) {
1996         case 14: /* 65 nm core solo/duo, "Yonah" */
1997                 pr_cont("Core events, ");
1998                 break;
1999
2000         case 15: /* original 65 nm celeron/pentium/core2/xeon, "Merom"/"Conroe" */
2001                 x86_add_quirk(intel_clovertown_quirk);
2002         case 22: /* single-core 65 nm celeron/core2solo "Merom-L"/"Conroe-L" */
2003         case 23: /* current 45 nm celeron/core2/xeon "Penryn"/"Wolfdale" */
2004         case 29: /* six-core 45 nm xeon "Dunnington" */
2005                 memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
2006                        sizeof(hw_cache_event_ids));
2007
2008                 intel_pmu_lbr_init_core();
2009
2010                 x86_pmu.event_constraints = intel_core2_event_constraints;
2011                 x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
2012                 pr_cont("Core2 events, ");
2013                 break;
2014
2015         case 26: /* 45 nm nehalem, "Bloomfield" */
2016         case 30: /* 45 nm nehalem, "Lynnfield" */
2017         case 46: /* 45 nm nehalem-ex, "Beckton" */
2018                 memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
2019                        sizeof(hw_cache_event_ids));
2020                 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
2021                        sizeof(hw_cache_extra_regs));
2022
2023                 intel_pmu_lbr_init_nhm();
2024
2025                 x86_pmu.event_constraints = intel_nehalem_event_constraints;
2026                 x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
2027                 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
2028                 x86_pmu.extra_regs = intel_nehalem_extra_regs;
2029
2030                 /* UOPS_ISSUED.STALLED_CYCLES */
2031                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
2032                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
2033                 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
2034                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
2035                         X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
2036
2037                 x86_add_quirk(intel_nehalem_quirk);
2038
2039                 pr_cont("Nehalem events, ");
2040                 break;
2041
2042         case 28: /* Atom */
2043         case 38: /* Lincroft */
2044         case 39: /* Penwell */
2045         case 53: /* Cloverview */
2046         case 54: /* Cedarview */
2047                 memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
2048                        sizeof(hw_cache_event_ids));
2049
2050                 intel_pmu_lbr_init_atom();
2051
2052                 x86_pmu.event_constraints = intel_gen_event_constraints;
2053                 x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
2054                 pr_cont("Atom events, ");
2055                 break;
2056
2057         case 37: /* 32 nm nehalem, "Clarkdale" */
2058         case 44: /* 32 nm nehalem, "Gulftown" */
2059         case 47: /* 32 nm Xeon E7 */
2060                 memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
2061                        sizeof(hw_cache_event_ids));
2062                 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
2063                        sizeof(hw_cache_extra_regs));
2064
2065                 intel_pmu_lbr_init_nhm();
2066
2067                 x86_pmu.event_constraints = intel_westmere_event_constraints;
2068                 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
2069                 x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
2070                 x86_pmu.extra_regs = intel_westmere_extra_regs;
2071                 x86_pmu.er_flags |= ERF_HAS_RSP_1;
2072
2073                 /* UOPS_ISSUED.STALLED_CYCLES */
2074                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
2075                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
2076                 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
2077                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
2078                         X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
2079
2080                 pr_cont("Westmere events, ");
2081                 break;
2082
2083         case 42: /* SandyBridge */
2084         case 45: /* SandyBridge, "Romely-EP" */
2085                 x86_add_quirk(intel_sandybridge_quirk);
2086                 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
2087                        sizeof(hw_cache_event_ids));
2088                 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
2089                        sizeof(hw_cache_extra_regs));
2090
2091                 intel_pmu_lbr_init_snb();
2092
2093                 x86_pmu.event_constraints = intel_snb_event_constraints;
2094                 x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints;
2095                 x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
2096                 x86_pmu.extra_regs = intel_snb_extra_regs;
2097                 /* all extra regs are per-cpu when HT is on */
2098                 x86_pmu.er_flags |= ERF_HAS_RSP_1;
2099                 x86_pmu.er_flags |= ERF_NO_HT_SHARING;
2100
2101                 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
2102                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
2103                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
2104                 /* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
2105                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
2106                         X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1);
2107
2108                 pr_cont("SandyBridge events, ");
2109                 break;
2110         case 58: /* IvyBridge */
2111         case 62: /* IvyBridge EP */
2112                 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
2113                        sizeof(hw_cache_event_ids));
2114                 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
2115                        sizeof(hw_cache_extra_regs));
2116
2117                 intel_pmu_lbr_init_snb();
2118
2119                 x86_pmu.event_constraints = intel_ivb_event_constraints;
2120                 x86_pmu.pebs_constraints = intel_ivb_pebs_event_constraints;
2121                 x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
2122                 x86_pmu.extra_regs = intel_snb_extra_regs;
2123                 /* all extra regs are per-cpu when HT is on */
2124                 x86_pmu.er_flags |= ERF_HAS_RSP_1;
2125                 x86_pmu.er_flags |= ERF_NO_HT_SHARING;
2126
2127                 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
2128                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
2129                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
2130
2131                 pr_cont("IvyBridge events, ");
2132                 break;
2133
2134
2135         default:
2136                 switch (x86_pmu.version) {
2137                 case 1:
2138                         x86_pmu.event_constraints = intel_v1_event_constraints;
2139                         pr_cont("generic architected perfmon v1, ");
2140                         break;
2141                 default:
2142                         /*
2143                          * default constraints for v2 and up
2144                          */
2145                         x86_pmu.event_constraints = intel_gen_event_constraints;
2146                         pr_cont("generic architected perfmon, ");
2147                         break;
2148                 }
2149         }
2150
2151         if (x86_pmu.num_counters > INTEL_PMC_MAX_GENERIC) {
2152                 WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
2153                      x86_pmu.num_counters, INTEL_PMC_MAX_GENERIC);
2154                 x86_pmu.num_counters = INTEL_PMC_MAX_GENERIC;
2155         }
2156         x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
2157
2158         if (x86_pmu.num_counters_fixed > INTEL_PMC_MAX_FIXED) {
2159                 WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
2160                      x86_pmu.num_counters_fixed, INTEL_PMC_MAX_FIXED);
2161                 x86_pmu.num_counters_fixed = INTEL_PMC_MAX_FIXED;
2162         }
2163
2164         x86_pmu.intel_ctrl |=
2165                 ((1LL << x86_pmu.num_counters_fixed)-1) << INTEL_PMC_IDX_FIXED;
2166
2167         if (x86_pmu.event_constraints) {
2168                 /*
2169                  * event on fixed counter2 (REF_CYCLES) only works on this
2170                  * counter, so do not extend mask to generic counters
2171                  */
2172                 for_each_event_constraint(c, x86_pmu.event_constraints) {
2173                         if (c->cmask != X86_RAW_EVENT_MASK
2174                             || c->idxmsk64 == INTEL_PMC_MSK_FIXED_REF_CYCLES) {
2175                                 continue;
2176                         }
2177
2178                         c->idxmsk64 |= (1ULL << x86_pmu.num_counters) - 1;
2179                         c->weight += x86_pmu.num_counters;
2180                 }
2181         }
2182
2183         return 0;
2184 }