]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - arch/x86/kernel/machine_kexec_64.c
x86/mm: Decouple <linux/vmalloc.h> from <asm/io.h>
[karo-tx-linux.git] / arch / x86 / kernel / machine_kexec_64.c
1 /*
2  * handle transition of Linux booting another kernel
3  * Copyright (C) 2002-2005 Eric Biederman  <ebiederm@xmission.com>
4  *
5  * This source code is licensed under the GNU General Public License,
6  * Version 2.  See the file COPYING for more details.
7  */
8
9 #define pr_fmt(fmt)     "kexec: " fmt
10
11 #include <linux/mm.h>
12 #include <linux/kexec.h>
13 #include <linux/string.h>
14 #include <linux/gfp.h>
15 #include <linux/reboot.h>
16 #include <linux/numa.h>
17 #include <linux/ftrace.h>
18 #include <linux/io.h>
19 #include <linux/suspend.h>
20 #include <linux/vmalloc.h>
21
22 #include <asm/init.h>
23 #include <asm/pgtable.h>
24 #include <asm/tlbflush.h>
25 #include <asm/mmu_context.h>
26 #include <asm/io_apic.h>
27 #include <asm/debugreg.h>
28 #include <asm/kexec-bzimage64.h>
29
30 #ifdef CONFIG_KEXEC_FILE
31 static struct kexec_file_ops *kexec_file_loaders[] = {
32                 &kexec_bzImage64_ops,
33 };
34 #endif
35
36 static void free_transition_pgtable(struct kimage *image)
37 {
38         free_page((unsigned long)image->arch.pud);
39         free_page((unsigned long)image->arch.pmd);
40         free_page((unsigned long)image->arch.pte);
41 }
42
43 static int init_transition_pgtable(struct kimage *image, pgd_t *pgd)
44 {
45         pud_t *pud;
46         pmd_t *pmd;
47         pte_t *pte;
48         unsigned long vaddr, paddr;
49         int result = -ENOMEM;
50
51         vaddr = (unsigned long)relocate_kernel;
52         paddr = __pa(page_address(image->control_code_page)+PAGE_SIZE);
53         pgd += pgd_index(vaddr);
54         if (!pgd_present(*pgd)) {
55                 pud = (pud_t *)get_zeroed_page(GFP_KERNEL);
56                 if (!pud)
57                         goto err;
58                 image->arch.pud = pud;
59                 set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE));
60         }
61         pud = pud_offset(pgd, vaddr);
62         if (!pud_present(*pud)) {
63                 pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL);
64                 if (!pmd)
65                         goto err;
66                 image->arch.pmd = pmd;
67                 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
68         }
69         pmd = pmd_offset(pud, vaddr);
70         if (!pmd_present(*pmd)) {
71                 pte = (pte_t *)get_zeroed_page(GFP_KERNEL);
72                 if (!pte)
73                         goto err;
74                 image->arch.pte = pte;
75                 set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
76         }
77         pte = pte_offset_kernel(pmd, vaddr);
78         set_pte(pte, pfn_pte(paddr >> PAGE_SHIFT, PAGE_KERNEL_EXEC));
79         return 0;
80 err:
81         free_transition_pgtable(image);
82         return result;
83 }
84
85 static void *alloc_pgt_page(void *data)
86 {
87         struct kimage *image = (struct kimage *)data;
88         struct page *page;
89         void *p = NULL;
90
91         page = kimage_alloc_control_pages(image, 0);
92         if (page) {
93                 p = page_address(page);
94                 clear_page(p);
95         }
96
97         return p;
98 }
99
100 static int init_pgtable(struct kimage *image, unsigned long start_pgtable)
101 {
102         struct x86_mapping_info info = {
103                 .alloc_pgt_page = alloc_pgt_page,
104                 .context        = image,
105                 .pmd_flag       = __PAGE_KERNEL_LARGE_EXEC,
106         };
107         unsigned long mstart, mend;
108         pgd_t *level4p;
109         int result;
110         int i;
111
112         level4p = (pgd_t *)__va(start_pgtable);
113         clear_page(level4p);
114         for (i = 0; i < nr_pfn_mapped; i++) {
115                 mstart = pfn_mapped[i].start << PAGE_SHIFT;
116                 mend   = pfn_mapped[i].end << PAGE_SHIFT;
117
118                 result = kernel_ident_mapping_init(&info,
119                                                  level4p, mstart, mend);
120                 if (result)
121                         return result;
122         }
123
124         /*
125          * segments's mem ranges could be outside 0 ~ max_pfn,
126          * for example when jump back to original kernel from kexeced kernel.
127          * or first kernel is booted with user mem map, and second kernel
128          * could be loaded out of that range.
129          */
130         for (i = 0; i < image->nr_segments; i++) {
131                 mstart = image->segment[i].mem;
132                 mend   = mstart + image->segment[i].memsz;
133
134                 result = kernel_ident_mapping_init(&info,
135                                                  level4p, mstart, mend);
136
137                 if (result)
138                         return result;
139         }
140
141         return init_transition_pgtable(image, level4p);
142 }
143
144 static void set_idt(void *newidt, u16 limit)
145 {
146         struct desc_ptr curidt;
147
148         /* x86-64 supports unaliged loads & stores */
149         curidt.size    = limit;
150         curidt.address = (unsigned long)newidt;
151
152         __asm__ __volatile__ (
153                 "lidtq %0\n"
154                 : : "m" (curidt)
155                 );
156 };
157
158
159 static void set_gdt(void *newgdt, u16 limit)
160 {
161         struct desc_ptr curgdt;
162
163         /* x86-64 supports unaligned loads & stores */
164         curgdt.size    = limit;
165         curgdt.address = (unsigned long)newgdt;
166
167         __asm__ __volatile__ (
168                 "lgdtq %0\n"
169                 : : "m" (curgdt)
170                 );
171 };
172
173 static void load_segments(void)
174 {
175         __asm__ __volatile__ (
176                 "\tmovl %0,%%ds\n"
177                 "\tmovl %0,%%es\n"
178                 "\tmovl %0,%%ss\n"
179                 "\tmovl %0,%%fs\n"
180                 "\tmovl %0,%%gs\n"
181                 : : "a" (__KERNEL_DS) : "memory"
182                 );
183 }
184
185 #ifdef CONFIG_KEXEC_FILE
186 /* Update purgatory as needed after various image segments have been prepared */
187 static int arch_update_purgatory(struct kimage *image)
188 {
189         int ret = 0;
190
191         if (!image->file_mode)
192                 return 0;
193
194         /* Setup copying of backup region */
195         if (image->type == KEXEC_TYPE_CRASH) {
196                 ret = kexec_purgatory_get_set_symbol(image, "backup_dest",
197                                 &image->arch.backup_load_addr,
198                                 sizeof(image->arch.backup_load_addr), 0);
199                 if (ret)
200                         return ret;
201
202                 ret = kexec_purgatory_get_set_symbol(image, "backup_src",
203                                 &image->arch.backup_src_start,
204                                 sizeof(image->arch.backup_src_start), 0);
205                 if (ret)
206                         return ret;
207
208                 ret = kexec_purgatory_get_set_symbol(image, "backup_sz",
209                                 &image->arch.backup_src_sz,
210                                 sizeof(image->arch.backup_src_sz), 0);
211                 if (ret)
212                         return ret;
213         }
214
215         return ret;
216 }
217 #else /* !CONFIG_KEXEC_FILE */
218 static inline int arch_update_purgatory(struct kimage *image)
219 {
220         return 0;
221 }
222 #endif /* CONFIG_KEXEC_FILE */
223
224 int machine_kexec_prepare(struct kimage *image)
225 {
226         unsigned long start_pgtable;
227         int result;
228
229         /* Calculate the offsets */
230         start_pgtable = page_to_pfn(image->control_code_page) << PAGE_SHIFT;
231
232         /* Setup the identity mapped 64bit page table */
233         result = init_pgtable(image, start_pgtable);
234         if (result)
235                 return result;
236
237         /* update purgatory as needed */
238         result = arch_update_purgatory(image);
239         if (result)
240                 return result;
241
242         return 0;
243 }
244
245 void machine_kexec_cleanup(struct kimage *image)
246 {
247         free_transition_pgtable(image);
248 }
249
250 /*
251  * Do not allocate memory (or fail in any way) in machine_kexec().
252  * We are past the point of no return, committed to rebooting now.
253  */
254 void machine_kexec(struct kimage *image)
255 {
256         unsigned long page_list[PAGES_NR];
257         void *control_page;
258         int save_ftrace_enabled;
259
260 #ifdef CONFIG_KEXEC_JUMP
261         if (image->preserve_context)
262                 save_processor_state();
263 #endif
264
265         save_ftrace_enabled = __ftrace_enabled_save();
266
267         /* Interrupts aren't acceptable while we reboot */
268         local_irq_disable();
269         hw_breakpoint_disable();
270
271         if (image->preserve_context) {
272 #ifdef CONFIG_X86_IO_APIC
273                 /*
274                  * We need to put APICs in legacy mode so that we can
275                  * get timer interrupts in second kernel. kexec/kdump
276                  * paths already have calls to disable_IO_APIC() in
277                  * one form or other. kexec jump path also need
278                  * one.
279                  */
280                 disable_IO_APIC();
281 #endif
282         }
283
284         control_page = page_address(image->control_code_page) + PAGE_SIZE;
285         memcpy(control_page, relocate_kernel, KEXEC_CONTROL_CODE_MAX_SIZE);
286
287         page_list[PA_CONTROL_PAGE] = virt_to_phys(control_page);
288         page_list[VA_CONTROL_PAGE] = (unsigned long)control_page;
289         page_list[PA_TABLE_PAGE] =
290           (unsigned long)__pa(page_address(image->control_code_page));
291
292         if (image->type == KEXEC_TYPE_DEFAULT)
293                 page_list[PA_SWAP_PAGE] = (page_to_pfn(image->swap_page)
294                                                 << PAGE_SHIFT);
295
296         /*
297          * The segment registers are funny things, they have both a
298          * visible and an invisible part.  Whenever the visible part is
299          * set to a specific selector, the invisible part is loaded
300          * with from a table in memory.  At no other time is the
301          * descriptor table in memory accessed.
302          *
303          * I take advantage of this here by force loading the
304          * segments, before I zap the gdt with an invalid value.
305          */
306         load_segments();
307         /*
308          * The gdt & idt are now invalid.
309          * If you want to load them you must set up your own idt & gdt.
310          */
311         set_gdt(phys_to_virt(0), 0);
312         set_idt(phys_to_virt(0), 0);
313
314         /* now call it */
315         image->start = relocate_kernel((unsigned long)image->head,
316                                        (unsigned long)page_list,
317                                        image->start,
318                                        image->preserve_context);
319
320 #ifdef CONFIG_KEXEC_JUMP
321         if (image->preserve_context)
322                 restore_processor_state();
323 #endif
324
325         __ftrace_enabled_restore(save_ftrace_enabled);
326 }
327
328 void arch_crash_save_vmcoreinfo(void)
329 {
330         VMCOREINFO_SYMBOL(phys_base);
331         VMCOREINFO_SYMBOL(init_level4_pgt);
332
333 #ifdef CONFIG_NUMA
334         VMCOREINFO_SYMBOL(node_data);
335         VMCOREINFO_LENGTH(node_data, MAX_NUMNODES);
336 #endif
337         vmcoreinfo_append_str("KERNELOFFSET=%lx\n",
338                               (unsigned long)&_text - __START_KERNEL);
339 }
340
341 /* arch-dependent functionality related to kexec file-based syscall */
342
343 #ifdef CONFIG_KEXEC_FILE
344 int arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
345                                   unsigned long buf_len)
346 {
347         int i, ret = -ENOEXEC;
348         struct kexec_file_ops *fops;
349
350         for (i = 0; i < ARRAY_SIZE(kexec_file_loaders); i++) {
351                 fops = kexec_file_loaders[i];
352                 if (!fops || !fops->probe)
353                         continue;
354
355                 ret = fops->probe(buf, buf_len);
356                 if (!ret) {
357                         image->fops = fops;
358                         return ret;
359                 }
360         }
361
362         return ret;
363 }
364
365 void *arch_kexec_kernel_image_load(struct kimage *image)
366 {
367         vfree(image->arch.elf_headers);
368         image->arch.elf_headers = NULL;
369
370         if (!image->fops || !image->fops->load)
371                 return ERR_PTR(-ENOEXEC);
372
373         return image->fops->load(image, image->kernel_buf,
374                                  image->kernel_buf_len, image->initrd_buf,
375                                  image->initrd_buf_len, image->cmdline_buf,
376                                  image->cmdline_buf_len);
377 }
378
379 int arch_kimage_file_post_load_cleanup(struct kimage *image)
380 {
381         if (!image->fops || !image->fops->cleanup)
382                 return 0;
383
384         return image->fops->cleanup(image->image_loader_data);
385 }
386
387 int arch_kexec_kernel_verify_sig(struct kimage *image, void *kernel,
388                                  unsigned long kernel_len)
389 {
390         if (!image->fops || !image->fops->verify_sig) {
391                 pr_debug("kernel loader does not support signature verification.");
392                 return -EKEYREJECTED;
393         }
394
395         return image->fops->verify_sig(kernel, kernel_len);
396 }
397
398 /*
399  * Apply purgatory relocations.
400  *
401  * ehdr: Pointer to elf headers
402  * sechdrs: Pointer to section headers.
403  * relsec: section index of SHT_RELA section.
404  *
405  * TODO: Some of the code belongs to generic code. Move that in kexec.c.
406  */
407 int arch_kexec_apply_relocations_add(const Elf64_Ehdr *ehdr,
408                                      Elf64_Shdr *sechdrs, unsigned int relsec)
409 {
410         unsigned int i;
411         Elf64_Rela *rel;
412         Elf64_Sym *sym;
413         void *location;
414         Elf64_Shdr *section, *symtabsec;
415         unsigned long address, sec_base, value;
416         const char *strtab, *name, *shstrtab;
417
418         /*
419          * ->sh_offset has been modified to keep the pointer to section
420          * contents in memory
421          */
422         rel = (void *)sechdrs[relsec].sh_offset;
423
424         /* Section to which relocations apply */
425         section = &sechdrs[sechdrs[relsec].sh_info];
426
427         pr_debug("Applying relocate section %u to %u\n", relsec,
428                  sechdrs[relsec].sh_info);
429
430         /* Associated symbol table */
431         symtabsec = &sechdrs[sechdrs[relsec].sh_link];
432
433         /* String table */
434         if (symtabsec->sh_link >= ehdr->e_shnum) {
435                 /* Invalid strtab section number */
436                 pr_err("Invalid string table section index %d\n",
437                        symtabsec->sh_link);
438                 return -ENOEXEC;
439         }
440
441         strtab = (char *)sechdrs[symtabsec->sh_link].sh_offset;
442
443         /* section header string table */
444         shstrtab = (char *)sechdrs[ehdr->e_shstrndx].sh_offset;
445
446         for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) {
447
448                 /*
449                  * rel[i].r_offset contains byte offset from beginning
450                  * of section to the storage unit affected.
451                  *
452                  * This is location to update (->sh_offset). This is temporary
453                  * buffer where section is currently loaded. This will finally
454                  * be loaded to a different address later, pointed to by
455                  * ->sh_addr. kexec takes care of moving it
456                  *  (kexec_load_segment()).
457                  */
458                 location = (void *)(section->sh_offset + rel[i].r_offset);
459
460                 /* Final address of the location */
461                 address = section->sh_addr + rel[i].r_offset;
462
463                 /*
464                  * rel[i].r_info contains information about symbol table index
465                  * w.r.t which relocation must be made and type of relocation
466                  * to apply. ELF64_R_SYM() and ELF64_R_TYPE() macros get
467                  * these respectively.
468                  */
469                 sym = (Elf64_Sym *)symtabsec->sh_offset +
470                                 ELF64_R_SYM(rel[i].r_info);
471
472                 if (sym->st_name)
473                         name = strtab + sym->st_name;
474                 else
475                         name = shstrtab + sechdrs[sym->st_shndx].sh_name;
476
477                 pr_debug("Symbol: %s info: %02x shndx: %02x value=%llx size: %llx\n",
478                          name, sym->st_info, sym->st_shndx, sym->st_value,
479                          sym->st_size);
480
481                 if (sym->st_shndx == SHN_UNDEF) {
482                         pr_err("Undefined symbol: %s\n", name);
483                         return -ENOEXEC;
484                 }
485
486                 if (sym->st_shndx == SHN_COMMON) {
487                         pr_err("symbol '%s' in common section\n", name);
488                         return -ENOEXEC;
489                 }
490
491                 if (sym->st_shndx == SHN_ABS)
492                         sec_base = 0;
493                 else if (sym->st_shndx >= ehdr->e_shnum) {
494                         pr_err("Invalid section %d for symbol %s\n",
495                                sym->st_shndx, name);
496                         return -ENOEXEC;
497                 } else
498                         sec_base = sechdrs[sym->st_shndx].sh_addr;
499
500                 value = sym->st_value;
501                 value += sec_base;
502                 value += rel[i].r_addend;
503
504                 switch (ELF64_R_TYPE(rel[i].r_info)) {
505                 case R_X86_64_NONE:
506                         break;
507                 case R_X86_64_64:
508                         *(u64 *)location = value;
509                         break;
510                 case R_X86_64_32:
511                         *(u32 *)location = value;
512                         if (value != *(u32 *)location)
513                                 goto overflow;
514                         break;
515                 case R_X86_64_32S:
516                         *(s32 *)location = value;
517                         if ((s64)value != *(s32 *)location)
518                                 goto overflow;
519                         break;
520                 case R_X86_64_PC32:
521                         value -= (u64)address;
522                         *(u32 *)location = value;
523                         break;
524                 default:
525                         pr_err("Unknown rela relocation: %llu\n",
526                                ELF64_R_TYPE(rel[i].r_info));
527                         return -ENOEXEC;
528                 }
529         }
530         return 0;
531
532 overflow:
533         pr_err("Overflow in relocation type %d value 0x%lx\n",
534                (int)ELF64_R_TYPE(rel[i].r_info), value);
535         return -ENOEXEC;
536 }
537 #endif /* CONFIG_KEXEC_FILE */