]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - arch/x86/kvm/mmu.c
1cda35277278ab80b46effdd24e94e5e1596b9fb
[karo-tx-linux.git] / arch / x86 / kvm / mmu.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * MMU support
8  *
9  * Copyright (C) 2006 Qumranet, Inc.
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Avi Kivity   <avi@qumranet.com>
15  *
16  * This work is licensed under the terms of the GNU GPL, version 2.  See
17  * the COPYING file in the top-level directory.
18  *
19  */
20
21 #include "irq.h"
22 #include "mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25 #include "cpuid.h"
26
27 #include <linux/kvm_host.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/mm.h>
31 #include <linux/highmem.h>
32 #include <linux/moduleparam.h>
33 #include <linux/export.h>
34 #include <linux/swap.h>
35 #include <linux/hugetlb.h>
36 #include <linux/compiler.h>
37 #include <linux/srcu.h>
38 #include <linux/slab.h>
39 #include <linux/uaccess.h>
40 #include <linux/hash.h>
41 #include <linux/kern_levels.h>
42
43 #include <asm/page.h>
44 #include <asm/cmpxchg.h>
45 #include <asm/io.h>
46 #include <asm/vmx.h>
47 #include <asm/kvm_page_track.h>
48
49 /*
50  * When setting this variable to true it enables Two-Dimensional-Paging
51  * where the hardware walks 2 page tables:
52  * 1. the guest-virtual to guest-physical
53  * 2. while doing 1. it walks guest-physical to host-physical
54  * If the hardware supports that we don't need to do shadow paging.
55  */
56 bool tdp_enabled = false;
57
58 enum {
59         AUDIT_PRE_PAGE_FAULT,
60         AUDIT_POST_PAGE_FAULT,
61         AUDIT_PRE_PTE_WRITE,
62         AUDIT_POST_PTE_WRITE,
63         AUDIT_PRE_SYNC,
64         AUDIT_POST_SYNC
65 };
66
67 #undef MMU_DEBUG
68
69 #ifdef MMU_DEBUG
70 static bool dbg = 0;
71 module_param(dbg, bool, 0644);
72
73 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
74 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
75 #define MMU_WARN_ON(x) WARN_ON(x)
76 #else
77 #define pgprintk(x...) do { } while (0)
78 #define rmap_printk(x...) do { } while (0)
79 #define MMU_WARN_ON(x) do { } while (0)
80 #endif
81
82 #define PTE_PREFETCH_NUM                8
83
84 #define PT_FIRST_AVAIL_BITS_SHIFT 10
85 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
86
87 #define PT64_LEVEL_BITS 9
88
89 #define PT64_LEVEL_SHIFT(level) \
90                 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
91
92 #define PT64_INDEX(address, level)\
93         (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
94
95
96 #define PT32_LEVEL_BITS 10
97
98 #define PT32_LEVEL_SHIFT(level) \
99                 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
100
101 #define PT32_LVL_OFFSET_MASK(level) \
102         (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
103                                                 * PT32_LEVEL_BITS))) - 1))
104
105 #define PT32_INDEX(address, level)\
106         (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
107
108
109 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
110 #define PT64_DIR_BASE_ADDR_MASK \
111         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
112 #define PT64_LVL_ADDR_MASK(level) \
113         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
114                                                 * PT64_LEVEL_BITS))) - 1))
115 #define PT64_LVL_OFFSET_MASK(level) \
116         (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
117                                                 * PT64_LEVEL_BITS))) - 1))
118
119 #define PT32_BASE_ADDR_MASK PAGE_MASK
120 #define PT32_DIR_BASE_ADDR_MASK \
121         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
122 #define PT32_LVL_ADDR_MASK(level) \
123         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
124                                             * PT32_LEVEL_BITS))) - 1))
125
126 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
127                         | shadow_x_mask | shadow_nx_mask)
128
129 #define ACC_EXEC_MASK    1
130 #define ACC_WRITE_MASK   PT_WRITABLE_MASK
131 #define ACC_USER_MASK    PT_USER_MASK
132 #define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
133
134 /* The mask for the R/X bits in EPT PTEs */
135 #define PT64_EPT_READABLE_MASK                  0x1ull
136 #define PT64_EPT_EXECUTABLE_MASK                0x4ull
137
138 #include <trace/events/kvm.h>
139
140 #define CREATE_TRACE_POINTS
141 #include "mmutrace.h"
142
143 #define SPTE_HOST_WRITEABLE     (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
144 #define SPTE_MMU_WRITEABLE      (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
145
146 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
147
148 /* make pte_list_desc fit well in cache line */
149 #define PTE_LIST_EXT 3
150
151 struct pte_list_desc {
152         u64 *sptes[PTE_LIST_EXT];
153         struct pte_list_desc *more;
154 };
155
156 struct kvm_shadow_walk_iterator {
157         u64 addr;
158         hpa_t shadow_addr;
159         u64 *sptep;
160         int level;
161         unsigned index;
162 };
163
164 #define for_each_shadow_entry(_vcpu, _addr, _walker)    \
165         for (shadow_walk_init(&(_walker), _vcpu, _addr);        \
166              shadow_walk_okay(&(_walker));                      \
167              shadow_walk_next(&(_walker)))
168
169 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)     \
170         for (shadow_walk_init(&(_walker), _vcpu, _addr);                \
171              shadow_walk_okay(&(_walker)) &&                            \
172                 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });  \
173              __shadow_walk_next(&(_walker), spte))
174
175 static struct kmem_cache *pte_list_desc_cache;
176 static struct kmem_cache *mmu_page_header_cache;
177 static struct percpu_counter kvm_total_used_mmu_pages;
178
179 static u64 __read_mostly shadow_nx_mask;
180 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
181 static u64 __read_mostly shadow_user_mask;
182 static u64 __read_mostly shadow_accessed_mask;
183 static u64 __read_mostly shadow_dirty_mask;
184 static u64 __read_mostly shadow_mmio_mask;
185 static u64 __read_mostly shadow_present_mask;
186
187 /*
188  * The mask/value to distinguish a PTE that has been marked not-present for
189  * access tracking purposes.
190  * The mask would be either 0 if access tracking is disabled, or
191  * SPTE_SPECIAL_MASK|VMX_EPT_RWX_MASK if access tracking is enabled.
192  */
193 static u64 __read_mostly shadow_acc_track_mask;
194 static const u64 shadow_acc_track_value = SPTE_SPECIAL_MASK;
195
196 /*
197  * The mask/shift to use for saving the original R/X bits when marking the PTE
198  * as not-present for access tracking purposes. We do not save the W bit as the
199  * PTEs being access tracked also need to be dirty tracked, so the W bit will be
200  * restored only when a write is attempted to the page.
201  */
202 static const u64 shadow_acc_track_saved_bits_mask = PT64_EPT_READABLE_MASK |
203                                                     PT64_EPT_EXECUTABLE_MASK;
204 static const u64 shadow_acc_track_saved_bits_shift = PT64_SECOND_AVAIL_BITS_SHIFT;
205
206 static void mmu_spte_set(u64 *sptep, u64 spte);
207 static void mmu_free_roots(struct kvm_vcpu *vcpu);
208
209 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
210 {
211         shadow_mmio_mask = mmio_mask | SPTE_SPECIAL_MASK;
212 }
213 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
214
215 static inline bool is_access_track_spte(u64 spte)
216 {
217         /* Always false if shadow_acc_track_mask is zero.  */
218         return (spte & shadow_acc_track_mask) == shadow_acc_track_value;
219 }
220
221 /*
222  * the low bit of the generation number is always presumed to be zero.
223  * This disables mmio caching during memslot updates.  The concept is
224  * similar to a seqcount but instead of retrying the access we just punt
225  * and ignore the cache.
226  *
227  * spte bits 3-11 are used as bits 1-9 of the generation number,
228  * the bits 52-61 are used as bits 10-19 of the generation number.
229  */
230 #define MMIO_SPTE_GEN_LOW_SHIFT         2
231 #define MMIO_SPTE_GEN_HIGH_SHIFT        52
232
233 #define MMIO_GEN_SHIFT                  20
234 #define MMIO_GEN_LOW_SHIFT              10
235 #define MMIO_GEN_LOW_MASK               ((1 << MMIO_GEN_LOW_SHIFT) - 2)
236 #define MMIO_GEN_MASK                   ((1 << MMIO_GEN_SHIFT) - 1)
237
238 static u64 generation_mmio_spte_mask(unsigned int gen)
239 {
240         u64 mask;
241
242         WARN_ON(gen & ~MMIO_GEN_MASK);
243
244         mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
245         mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
246         return mask;
247 }
248
249 static unsigned int get_mmio_spte_generation(u64 spte)
250 {
251         unsigned int gen;
252
253         spte &= ~shadow_mmio_mask;
254
255         gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
256         gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
257         return gen;
258 }
259
260 static unsigned int kvm_current_mmio_generation(struct kvm_vcpu *vcpu)
261 {
262         return kvm_vcpu_memslots(vcpu)->generation & MMIO_GEN_MASK;
263 }
264
265 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
266                            unsigned access)
267 {
268         unsigned int gen = kvm_current_mmio_generation(vcpu);
269         u64 mask = generation_mmio_spte_mask(gen);
270
271         access &= ACC_WRITE_MASK | ACC_USER_MASK;
272         mask |= shadow_mmio_mask | access | gfn << PAGE_SHIFT;
273
274         trace_mark_mmio_spte(sptep, gfn, access, gen);
275         mmu_spte_set(sptep, mask);
276 }
277
278 static bool is_mmio_spte(u64 spte)
279 {
280         return (spte & shadow_mmio_mask) == shadow_mmio_mask;
281 }
282
283 static gfn_t get_mmio_spte_gfn(u64 spte)
284 {
285         u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
286         return (spte & ~mask) >> PAGE_SHIFT;
287 }
288
289 static unsigned get_mmio_spte_access(u64 spte)
290 {
291         u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
292         return (spte & ~mask) & ~PAGE_MASK;
293 }
294
295 static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
296                           kvm_pfn_t pfn, unsigned access)
297 {
298         if (unlikely(is_noslot_pfn(pfn))) {
299                 mark_mmio_spte(vcpu, sptep, gfn, access);
300                 return true;
301         }
302
303         return false;
304 }
305
306 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
307 {
308         unsigned int kvm_gen, spte_gen;
309
310         kvm_gen = kvm_current_mmio_generation(vcpu);
311         spte_gen = get_mmio_spte_generation(spte);
312
313         trace_check_mmio_spte(spte, kvm_gen, spte_gen);
314         return likely(kvm_gen == spte_gen);
315 }
316
317 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
318                 u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask,
319                 u64 acc_track_mask)
320 {
321         if (acc_track_mask != 0)
322                 acc_track_mask |= SPTE_SPECIAL_MASK;
323
324         shadow_user_mask = user_mask;
325         shadow_accessed_mask = accessed_mask;
326         shadow_dirty_mask = dirty_mask;
327         shadow_nx_mask = nx_mask;
328         shadow_x_mask = x_mask;
329         shadow_present_mask = p_mask;
330         shadow_acc_track_mask = acc_track_mask;
331         WARN_ON(shadow_accessed_mask != 0 && shadow_acc_track_mask != 0);
332 }
333 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
334
335 void kvm_mmu_clear_all_pte_masks(void)
336 {
337         shadow_user_mask = 0;
338         shadow_accessed_mask = 0;
339         shadow_dirty_mask = 0;
340         shadow_nx_mask = 0;
341         shadow_x_mask = 0;
342         shadow_mmio_mask = 0;
343         shadow_present_mask = 0;
344         shadow_acc_track_mask = 0;
345 }
346
347 static int is_cpuid_PSE36(void)
348 {
349         return 1;
350 }
351
352 static int is_nx(struct kvm_vcpu *vcpu)
353 {
354         return vcpu->arch.efer & EFER_NX;
355 }
356
357 static int is_shadow_present_pte(u64 pte)
358 {
359         return (pte != 0) && !is_mmio_spte(pte);
360 }
361
362 static int is_large_pte(u64 pte)
363 {
364         return pte & PT_PAGE_SIZE_MASK;
365 }
366
367 static int is_last_spte(u64 pte, int level)
368 {
369         if (level == PT_PAGE_TABLE_LEVEL)
370                 return 1;
371         if (is_large_pte(pte))
372                 return 1;
373         return 0;
374 }
375
376 static bool is_executable_pte(u64 spte)
377 {
378         return (spte & (shadow_x_mask | shadow_nx_mask)) == shadow_x_mask;
379 }
380
381 static kvm_pfn_t spte_to_pfn(u64 pte)
382 {
383         return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
384 }
385
386 static gfn_t pse36_gfn_delta(u32 gpte)
387 {
388         int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
389
390         return (gpte & PT32_DIR_PSE36_MASK) << shift;
391 }
392
393 #ifdef CONFIG_X86_64
394 static void __set_spte(u64 *sptep, u64 spte)
395 {
396         WRITE_ONCE(*sptep, spte);
397 }
398
399 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
400 {
401         WRITE_ONCE(*sptep, spte);
402 }
403
404 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
405 {
406         return xchg(sptep, spte);
407 }
408
409 static u64 __get_spte_lockless(u64 *sptep)
410 {
411         return ACCESS_ONCE(*sptep);
412 }
413 #else
414 union split_spte {
415         struct {
416                 u32 spte_low;
417                 u32 spte_high;
418         };
419         u64 spte;
420 };
421
422 static void count_spte_clear(u64 *sptep, u64 spte)
423 {
424         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
425
426         if (is_shadow_present_pte(spte))
427                 return;
428
429         /* Ensure the spte is completely set before we increase the count */
430         smp_wmb();
431         sp->clear_spte_count++;
432 }
433
434 static void __set_spte(u64 *sptep, u64 spte)
435 {
436         union split_spte *ssptep, sspte;
437
438         ssptep = (union split_spte *)sptep;
439         sspte = (union split_spte)spte;
440
441         ssptep->spte_high = sspte.spte_high;
442
443         /*
444          * If we map the spte from nonpresent to present, We should store
445          * the high bits firstly, then set present bit, so cpu can not
446          * fetch this spte while we are setting the spte.
447          */
448         smp_wmb();
449
450         WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
451 }
452
453 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
454 {
455         union split_spte *ssptep, sspte;
456
457         ssptep = (union split_spte *)sptep;
458         sspte = (union split_spte)spte;
459
460         WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
461
462         /*
463          * If we map the spte from present to nonpresent, we should clear
464          * present bit firstly to avoid vcpu fetch the old high bits.
465          */
466         smp_wmb();
467
468         ssptep->spte_high = sspte.spte_high;
469         count_spte_clear(sptep, spte);
470 }
471
472 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
473 {
474         union split_spte *ssptep, sspte, orig;
475
476         ssptep = (union split_spte *)sptep;
477         sspte = (union split_spte)spte;
478
479         /* xchg acts as a barrier before the setting of the high bits */
480         orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
481         orig.spte_high = ssptep->spte_high;
482         ssptep->spte_high = sspte.spte_high;
483         count_spte_clear(sptep, spte);
484
485         return orig.spte;
486 }
487
488 /*
489  * The idea using the light way get the spte on x86_32 guest is from
490  * gup_get_pte(arch/x86/mm/gup.c).
491  *
492  * An spte tlb flush may be pending, because kvm_set_pte_rmapp
493  * coalesces them and we are running out of the MMU lock.  Therefore
494  * we need to protect against in-progress updates of the spte.
495  *
496  * Reading the spte while an update is in progress may get the old value
497  * for the high part of the spte.  The race is fine for a present->non-present
498  * change (because the high part of the spte is ignored for non-present spte),
499  * but for a present->present change we must reread the spte.
500  *
501  * All such changes are done in two steps (present->non-present and
502  * non-present->present), hence it is enough to count the number of
503  * present->non-present updates: if it changed while reading the spte,
504  * we might have hit the race.  This is done using clear_spte_count.
505  */
506 static u64 __get_spte_lockless(u64 *sptep)
507 {
508         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
509         union split_spte spte, *orig = (union split_spte *)sptep;
510         int count;
511
512 retry:
513         count = sp->clear_spte_count;
514         smp_rmb();
515
516         spte.spte_low = orig->spte_low;
517         smp_rmb();
518
519         spte.spte_high = orig->spte_high;
520         smp_rmb();
521
522         if (unlikely(spte.spte_low != orig->spte_low ||
523               count != sp->clear_spte_count))
524                 goto retry;
525
526         return spte.spte;
527 }
528 #endif
529
530 static bool spte_can_locklessly_be_made_writable(u64 spte)
531 {
532         return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
533                 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
534 }
535
536 static bool spte_has_volatile_bits(u64 spte)
537 {
538         if (!is_shadow_present_pte(spte))
539                 return false;
540
541         /*
542          * Always atomically update spte if it can be updated
543          * out of mmu-lock, it can ensure dirty bit is not lost,
544          * also, it can help us to get a stable is_writable_pte()
545          * to ensure tlb flush is not missed.
546          */
547         if (spte_can_locklessly_be_made_writable(spte) ||
548             is_access_track_spte(spte))
549                 return true;
550
551         if (shadow_accessed_mask) {
552                 if ((spte & shadow_accessed_mask) == 0 ||
553                     (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
554                         return true;
555         }
556
557         return false;
558 }
559
560 static bool is_accessed_spte(u64 spte)
561 {
562         return shadow_accessed_mask ? spte & shadow_accessed_mask
563                                     : !is_access_track_spte(spte);
564 }
565
566 static bool is_dirty_spte(u64 spte)
567 {
568         return shadow_dirty_mask ? spte & shadow_dirty_mask
569                                  : spte & PT_WRITABLE_MASK;
570 }
571
572 /* Rules for using mmu_spte_set:
573  * Set the sptep from nonpresent to present.
574  * Note: the sptep being assigned *must* be either not present
575  * or in a state where the hardware will not attempt to update
576  * the spte.
577  */
578 static void mmu_spte_set(u64 *sptep, u64 new_spte)
579 {
580         WARN_ON(is_shadow_present_pte(*sptep));
581         __set_spte(sptep, new_spte);
582 }
583
584 /*
585  * Update the SPTE (excluding the PFN), but do not track changes in its
586  * accessed/dirty status.
587  */
588 static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
589 {
590         u64 old_spte = *sptep;
591
592         WARN_ON(!is_shadow_present_pte(new_spte));
593
594         if (!is_shadow_present_pte(old_spte)) {
595                 mmu_spte_set(sptep, new_spte);
596                 return old_spte;
597         }
598
599         if (!spte_has_volatile_bits(old_spte))
600                 __update_clear_spte_fast(sptep, new_spte);
601         else
602                 old_spte = __update_clear_spte_slow(sptep, new_spte);
603
604         WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
605
606         return old_spte;
607 }
608
609 /* Rules for using mmu_spte_update:
610  * Update the state bits, it means the mapped pfn is not changed.
611  *
612  * Whenever we overwrite a writable spte with a read-only one we
613  * should flush remote TLBs. Otherwise rmap_write_protect
614  * will find a read-only spte, even though the writable spte
615  * might be cached on a CPU's TLB, the return value indicates this
616  * case.
617  *
618  * Returns true if the TLB needs to be flushed
619  */
620 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
621 {
622         bool flush = false;
623         u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
624
625         if (!is_shadow_present_pte(old_spte))
626                 return false;
627
628         /*
629          * For the spte updated out of mmu-lock is safe, since
630          * we always atomically update it, see the comments in
631          * spte_has_volatile_bits().
632          */
633         if (spte_can_locklessly_be_made_writable(old_spte) &&
634               !is_writable_pte(new_spte))
635                 flush = true;
636
637         /*
638          * Flush TLB when accessed/dirty states are changed in the page tables,
639          * to guarantee consistency between TLB and page tables.
640          */
641
642         if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
643                 flush = true;
644                 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
645         }
646
647         if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
648                 flush = true;
649                 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
650         }
651
652         return flush;
653 }
654
655 /*
656  * Rules for using mmu_spte_clear_track_bits:
657  * It sets the sptep from present to nonpresent, and track the
658  * state bits, it is used to clear the last level sptep.
659  * Returns non-zero if the PTE was previously valid.
660  */
661 static int mmu_spte_clear_track_bits(u64 *sptep)
662 {
663         kvm_pfn_t pfn;
664         u64 old_spte = *sptep;
665
666         if (!spte_has_volatile_bits(old_spte))
667                 __update_clear_spte_fast(sptep, 0ull);
668         else
669                 old_spte = __update_clear_spte_slow(sptep, 0ull);
670
671         if (!is_shadow_present_pte(old_spte))
672                 return 0;
673
674         pfn = spte_to_pfn(old_spte);
675
676         /*
677          * KVM does not hold the refcount of the page used by
678          * kvm mmu, before reclaiming the page, we should
679          * unmap it from mmu first.
680          */
681         WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
682
683         if (is_accessed_spte(old_spte))
684                 kvm_set_pfn_accessed(pfn);
685
686         if (is_dirty_spte(old_spte))
687                 kvm_set_pfn_dirty(pfn);
688
689         return 1;
690 }
691
692 /*
693  * Rules for using mmu_spte_clear_no_track:
694  * Directly clear spte without caring the state bits of sptep,
695  * it is used to set the upper level spte.
696  */
697 static void mmu_spte_clear_no_track(u64 *sptep)
698 {
699         __update_clear_spte_fast(sptep, 0ull);
700 }
701
702 static u64 mmu_spte_get_lockless(u64 *sptep)
703 {
704         return __get_spte_lockless(sptep);
705 }
706
707 static u64 mark_spte_for_access_track(u64 spte)
708 {
709         if (shadow_accessed_mask != 0)
710                 return spte & ~shadow_accessed_mask;
711
712         if (shadow_acc_track_mask == 0 || is_access_track_spte(spte))
713                 return spte;
714
715         /*
716          * Making an Access Tracking PTE will result in removal of write access
717          * from the PTE. So, verify that we will be able to restore the write
718          * access in the fast page fault path later on.
719          */
720         WARN_ONCE((spte & PT_WRITABLE_MASK) &&
721                   !spte_can_locklessly_be_made_writable(spte),
722                   "kvm: Writable SPTE is not locklessly dirty-trackable\n");
723
724         WARN_ONCE(spte & (shadow_acc_track_saved_bits_mask <<
725                           shadow_acc_track_saved_bits_shift),
726                   "kvm: Access Tracking saved bit locations are not zero\n");
727
728         spte |= (spte & shadow_acc_track_saved_bits_mask) <<
729                 shadow_acc_track_saved_bits_shift;
730         spte &= ~shadow_acc_track_mask;
731         spte |= shadow_acc_track_value;
732
733         return spte;
734 }
735
736 /* Restore an acc-track PTE back to a regular PTE */
737 static u64 restore_acc_track_spte(u64 spte)
738 {
739         u64 new_spte = spte;
740         u64 saved_bits = (spte >> shadow_acc_track_saved_bits_shift)
741                          & shadow_acc_track_saved_bits_mask;
742
743         WARN_ON_ONCE(!is_access_track_spte(spte));
744
745         new_spte &= ~shadow_acc_track_mask;
746         new_spte &= ~(shadow_acc_track_saved_bits_mask <<
747                       shadow_acc_track_saved_bits_shift);
748         new_spte |= saved_bits;
749
750         return new_spte;
751 }
752
753 /* Returns the Accessed status of the PTE and resets it at the same time. */
754 static bool mmu_spte_age(u64 *sptep)
755 {
756         u64 spte = mmu_spte_get_lockless(sptep);
757
758         if (!is_accessed_spte(spte))
759                 return false;
760
761         if (shadow_accessed_mask) {
762                 clear_bit((ffs(shadow_accessed_mask) - 1),
763                           (unsigned long *)sptep);
764         } else {
765                 /*
766                  * Capture the dirty status of the page, so that it doesn't get
767                  * lost when the SPTE is marked for access tracking.
768                  */
769                 if (is_writable_pte(spte))
770                         kvm_set_pfn_dirty(spte_to_pfn(spte));
771
772                 spte = mark_spte_for_access_track(spte);
773                 mmu_spte_update_no_track(sptep, spte);
774         }
775
776         return true;
777 }
778
779 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
780 {
781         /*
782          * Prevent page table teardown by making any free-er wait during
783          * kvm_flush_remote_tlbs() IPI to all active vcpus.
784          */
785         local_irq_disable();
786
787         /*
788          * Make sure a following spte read is not reordered ahead of the write
789          * to vcpu->mode.
790          */
791         smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
792 }
793
794 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
795 {
796         /*
797          * Make sure the write to vcpu->mode is not reordered in front of
798          * reads to sptes.  If it does, kvm_commit_zap_page() can see us
799          * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
800          */
801         smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
802         local_irq_enable();
803 }
804
805 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
806                                   struct kmem_cache *base_cache, int min)
807 {
808         void *obj;
809
810         if (cache->nobjs >= min)
811                 return 0;
812         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
813                 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
814                 if (!obj)
815                         return -ENOMEM;
816                 cache->objects[cache->nobjs++] = obj;
817         }
818         return 0;
819 }
820
821 static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
822 {
823         return cache->nobjs;
824 }
825
826 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
827                                   struct kmem_cache *cache)
828 {
829         while (mc->nobjs)
830                 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
831 }
832
833 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
834                                        int min)
835 {
836         void *page;
837
838         if (cache->nobjs >= min)
839                 return 0;
840         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
841                 page = (void *)__get_free_page(GFP_KERNEL);
842                 if (!page)
843                         return -ENOMEM;
844                 cache->objects[cache->nobjs++] = page;
845         }
846         return 0;
847 }
848
849 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
850 {
851         while (mc->nobjs)
852                 free_page((unsigned long)mc->objects[--mc->nobjs]);
853 }
854
855 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
856 {
857         int r;
858
859         r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
860                                    pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
861         if (r)
862                 goto out;
863         r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
864         if (r)
865                 goto out;
866         r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
867                                    mmu_page_header_cache, 4);
868 out:
869         return r;
870 }
871
872 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
873 {
874         mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
875                                 pte_list_desc_cache);
876         mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
877         mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
878                                 mmu_page_header_cache);
879 }
880
881 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
882 {
883         void *p;
884
885         BUG_ON(!mc->nobjs);
886         p = mc->objects[--mc->nobjs];
887         return p;
888 }
889
890 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
891 {
892         return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
893 }
894
895 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
896 {
897         kmem_cache_free(pte_list_desc_cache, pte_list_desc);
898 }
899
900 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
901 {
902         if (!sp->role.direct)
903                 return sp->gfns[index];
904
905         return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
906 }
907
908 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
909 {
910         if (sp->role.direct)
911                 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
912         else
913                 sp->gfns[index] = gfn;
914 }
915
916 /*
917  * Return the pointer to the large page information for a given gfn,
918  * handling slots that are not large page aligned.
919  */
920 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
921                                               struct kvm_memory_slot *slot,
922                                               int level)
923 {
924         unsigned long idx;
925
926         idx = gfn_to_index(gfn, slot->base_gfn, level);
927         return &slot->arch.lpage_info[level - 2][idx];
928 }
929
930 static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
931                                             gfn_t gfn, int count)
932 {
933         struct kvm_lpage_info *linfo;
934         int i;
935
936         for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
937                 linfo = lpage_info_slot(gfn, slot, i);
938                 linfo->disallow_lpage += count;
939                 WARN_ON(linfo->disallow_lpage < 0);
940         }
941 }
942
943 void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
944 {
945         update_gfn_disallow_lpage_count(slot, gfn, 1);
946 }
947
948 void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
949 {
950         update_gfn_disallow_lpage_count(slot, gfn, -1);
951 }
952
953 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
954 {
955         struct kvm_memslots *slots;
956         struct kvm_memory_slot *slot;
957         gfn_t gfn;
958
959         kvm->arch.indirect_shadow_pages++;
960         gfn = sp->gfn;
961         slots = kvm_memslots_for_spte_role(kvm, sp->role);
962         slot = __gfn_to_memslot(slots, gfn);
963
964         /* the non-leaf shadow pages are keeping readonly. */
965         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
966                 return kvm_slot_page_track_add_page(kvm, slot, gfn,
967                                                     KVM_PAGE_TRACK_WRITE);
968
969         kvm_mmu_gfn_disallow_lpage(slot, gfn);
970 }
971
972 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
973 {
974         struct kvm_memslots *slots;
975         struct kvm_memory_slot *slot;
976         gfn_t gfn;
977
978         kvm->arch.indirect_shadow_pages--;
979         gfn = sp->gfn;
980         slots = kvm_memslots_for_spte_role(kvm, sp->role);
981         slot = __gfn_to_memslot(slots, gfn);
982         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
983                 return kvm_slot_page_track_remove_page(kvm, slot, gfn,
984                                                        KVM_PAGE_TRACK_WRITE);
985
986         kvm_mmu_gfn_allow_lpage(slot, gfn);
987 }
988
989 static bool __mmu_gfn_lpage_is_disallowed(gfn_t gfn, int level,
990                                           struct kvm_memory_slot *slot)
991 {
992         struct kvm_lpage_info *linfo;
993
994         if (slot) {
995                 linfo = lpage_info_slot(gfn, slot, level);
996                 return !!linfo->disallow_lpage;
997         }
998
999         return true;
1000 }
1001
1002 static bool mmu_gfn_lpage_is_disallowed(struct kvm_vcpu *vcpu, gfn_t gfn,
1003                                         int level)
1004 {
1005         struct kvm_memory_slot *slot;
1006
1007         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1008         return __mmu_gfn_lpage_is_disallowed(gfn, level, slot);
1009 }
1010
1011 static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
1012 {
1013         unsigned long page_size;
1014         int i, ret = 0;
1015
1016         page_size = kvm_host_page_size(kvm, gfn);
1017
1018         for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1019                 if (page_size >= KVM_HPAGE_SIZE(i))
1020                         ret = i;
1021                 else
1022                         break;
1023         }
1024
1025         return ret;
1026 }
1027
1028 static inline bool memslot_valid_for_gpte(struct kvm_memory_slot *slot,
1029                                           bool no_dirty_log)
1030 {
1031         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1032                 return false;
1033         if (no_dirty_log && slot->dirty_bitmap)
1034                 return false;
1035
1036         return true;
1037 }
1038
1039 static struct kvm_memory_slot *
1040 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
1041                             bool no_dirty_log)
1042 {
1043         struct kvm_memory_slot *slot;
1044
1045         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1046         if (!memslot_valid_for_gpte(slot, no_dirty_log))
1047                 slot = NULL;
1048
1049         return slot;
1050 }
1051
1052 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn,
1053                          bool *force_pt_level)
1054 {
1055         int host_level, level, max_level;
1056         struct kvm_memory_slot *slot;
1057
1058         if (unlikely(*force_pt_level))
1059                 return PT_PAGE_TABLE_LEVEL;
1060
1061         slot = kvm_vcpu_gfn_to_memslot(vcpu, large_gfn);
1062         *force_pt_level = !memslot_valid_for_gpte(slot, true);
1063         if (unlikely(*force_pt_level))
1064                 return PT_PAGE_TABLE_LEVEL;
1065
1066         host_level = host_mapping_level(vcpu->kvm, large_gfn);
1067
1068         if (host_level == PT_PAGE_TABLE_LEVEL)
1069                 return host_level;
1070
1071         max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
1072
1073         for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
1074                 if (__mmu_gfn_lpage_is_disallowed(large_gfn, level, slot))
1075                         break;
1076
1077         return level - 1;
1078 }
1079
1080 /*
1081  * About rmap_head encoding:
1082  *
1083  * If the bit zero of rmap_head->val is clear, then it points to the only spte
1084  * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
1085  * pte_list_desc containing more mappings.
1086  */
1087
1088 /*
1089  * Returns the number of pointers in the rmap chain, not counting the new one.
1090  */
1091 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
1092                         struct kvm_rmap_head *rmap_head)
1093 {
1094         struct pte_list_desc *desc;
1095         int i, count = 0;
1096
1097         if (!rmap_head->val) {
1098                 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
1099                 rmap_head->val = (unsigned long)spte;
1100         } else if (!(rmap_head->val & 1)) {
1101                 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
1102                 desc = mmu_alloc_pte_list_desc(vcpu);
1103                 desc->sptes[0] = (u64 *)rmap_head->val;
1104                 desc->sptes[1] = spte;
1105                 rmap_head->val = (unsigned long)desc | 1;
1106                 ++count;
1107         } else {
1108                 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
1109                 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1110                 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
1111                         desc = desc->more;
1112                         count += PTE_LIST_EXT;
1113                 }
1114                 if (desc->sptes[PTE_LIST_EXT-1]) {
1115                         desc->more = mmu_alloc_pte_list_desc(vcpu);
1116                         desc = desc->more;
1117                 }
1118                 for (i = 0; desc->sptes[i]; ++i)
1119                         ++count;
1120                 desc->sptes[i] = spte;
1121         }
1122         return count;
1123 }
1124
1125 static void
1126 pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
1127                            struct pte_list_desc *desc, int i,
1128                            struct pte_list_desc *prev_desc)
1129 {
1130         int j;
1131
1132         for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
1133                 ;
1134         desc->sptes[i] = desc->sptes[j];
1135         desc->sptes[j] = NULL;
1136         if (j != 0)
1137                 return;
1138         if (!prev_desc && !desc->more)
1139                 rmap_head->val = (unsigned long)desc->sptes[0];
1140         else
1141                 if (prev_desc)
1142                         prev_desc->more = desc->more;
1143                 else
1144                         rmap_head->val = (unsigned long)desc->more | 1;
1145         mmu_free_pte_list_desc(desc);
1146 }
1147
1148 static void pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
1149 {
1150         struct pte_list_desc *desc;
1151         struct pte_list_desc *prev_desc;
1152         int i;
1153
1154         if (!rmap_head->val) {
1155                 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
1156                 BUG();
1157         } else if (!(rmap_head->val & 1)) {
1158                 rmap_printk("pte_list_remove:  %p 1->0\n", spte);
1159                 if ((u64 *)rmap_head->val != spte) {
1160                         printk(KERN_ERR "pte_list_remove:  %p 1->BUG\n", spte);
1161                         BUG();
1162                 }
1163                 rmap_head->val = 0;
1164         } else {
1165                 rmap_printk("pte_list_remove:  %p many->many\n", spte);
1166                 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1167                 prev_desc = NULL;
1168                 while (desc) {
1169                         for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
1170                                 if (desc->sptes[i] == spte) {
1171                                         pte_list_desc_remove_entry(rmap_head,
1172                                                         desc, i, prev_desc);
1173                                         return;
1174                                 }
1175                         }
1176                         prev_desc = desc;
1177                         desc = desc->more;
1178                 }
1179                 pr_err("pte_list_remove: %p many->many\n", spte);
1180                 BUG();
1181         }
1182 }
1183
1184 static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
1185                                            struct kvm_memory_slot *slot)
1186 {
1187         unsigned long idx;
1188
1189         idx = gfn_to_index(gfn, slot->base_gfn, level);
1190         return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
1191 }
1192
1193 static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
1194                                          struct kvm_mmu_page *sp)
1195 {
1196         struct kvm_memslots *slots;
1197         struct kvm_memory_slot *slot;
1198
1199         slots = kvm_memslots_for_spte_role(kvm, sp->role);
1200         slot = __gfn_to_memslot(slots, gfn);
1201         return __gfn_to_rmap(gfn, sp->role.level, slot);
1202 }
1203
1204 static bool rmap_can_add(struct kvm_vcpu *vcpu)
1205 {
1206         struct kvm_mmu_memory_cache *cache;
1207
1208         cache = &vcpu->arch.mmu_pte_list_desc_cache;
1209         return mmu_memory_cache_free_objects(cache);
1210 }
1211
1212 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1213 {
1214         struct kvm_mmu_page *sp;
1215         struct kvm_rmap_head *rmap_head;
1216
1217         sp = page_header(__pa(spte));
1218         kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1219         rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1220         return pte_list_add(vcpu, spte, rmap_head);
1221 }
1222
1223 static void rmap_remove(struct kvm *kvm, u64 *spte)
1224 {
1225         struct kvm_mmu_page *sp;
1226         gfn_t gfn;
1227         struct kvm_rmap_head *rmap_head;
1228
1229         sp = page_header(__pa(spte));
1230         gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1231         rmap_head = gfn_to_rmap(kvm, gfn, sp);
1232         pte_list_remove(spte, rmap_head);
1233 }
1234
1235 /*
1236  * Used by the following functions to iterate through the sptes linked by a
1237  * rmap.  All fields are private and not assumed to be used outside.
1238  */
1239 struct rmap_iterator {
1240         /* private fields */
1241         struct pte_list_desc *desc;     /* holds the sptep if not NULL */
1242         int pos;                        /* index of the sptep */
1243 };
1244
1245 /*
1246  * Iteration must be started by this function.  This should also be used after
1247  * removing/dropping sptes from the rmap link because in such cases the
1248  * information in the itererator may not be valid.
1249  *
1250  * Returns sptep if found, NULL otherwise.
1251  */
1252 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1253                            struct rmap_iterator *iter)
1254 {
1255         u64 *sptep;
1256
1257         if (!rmap_head->val)
1258                 return NULL;
1259
1260         if (!(rmap_head->val & 1)) {
1261                 iter->desc = NULL;
1262                 sptep = (u64 *)rmap_head->val;
1263                 goto out;
1264         }
1265
1266         iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1267         iter->pos = 0;
1268         sptep = iter->desc->sptes[iter->pos];
1269 out:
1270         BUG_ON(!is_shadow_present_pte(*sptep));
1271         return sptep;
1272 }
1273
1274 /*
1275  * Must be used with a valid iterator: e.g. after rmap_get_first().
1276  *
1277  * Returns sptep if found, NULL otherwise.
1278  */
1279 static u64 *rmap_get_next(struct rmap_iterator *iter)
1280 {
1281         u64 *sptep;
1282
1283         if (iter->desc) {
1284                 if (iter->pos < PTE_LIST_EXT - 1) {
1285                         ++iter->pos;
1286                         sptep = iter->desc->sptes[iter->pos];
1287                         if (sptep)
1288                                 goto out;
1289                 }
1290
1291                 iter->desc = iter->desc->more;
1292
1293                 if (iter->desc) {
1294                         iter->pos = 0;
1295                         /* desc->sptes[0] cannot be NULL */
1296                         sptep = iter->desc->sptes[iter->pos];
1297                         goto out;
1298                 }
1299         }
1300
1301         return NULL;
1302 out:
1303         BUG_ON(!is_shadow_present_pte(*sptep));
1304         return sptep;
1305 }
1306
1307 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)                 \
1308         for (_spte_ = rmap_get_first(_rmap_head_, _iter_);              \
1309              _spte_; _spte_ = rmap_get_next(_iter_))
1310
1311 static void drop_spte(struct kvm *kvm, u64 *sptep)
1312 {
1313         if (mmu_spte_clear_track_bits(sptep))
1314                 rmap_remove(kvm, sptep);
1315 }
1316
1317
1318 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1319 {
1320         if (is_large_pte(*sptep)) {
1321                 WARN_ON(page_header(__pa(sptep))->role.level ==
1322                         PT_PAGE_TABLE_LEVEL);
1323                 drop_spte(kvm, sptep);
1324                 --kvm->stat.lpages;
1325                 return true;
1326         }
1327
1328         return false;
1329 }
1330
1331 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1332 {
1333         if (__drop_large_spte(vcpu->kvm, sptep))
1334                 kvm_flush_remote_tlbs(vcpu->kvm);
1335 }
1336
1337 /*
1338  * Write-protect on the specified @sptep, @pt_protect indicates whether
1339  * spte write-protection is caused by protecting shadow page table.
1340  *
1341  * Note: write protection is difference between dirty logging and spte
1342  * protection:
1343  * - for dirty logging, the spte can be set to writable at anytime if
1344  *   its dirty bitmap is properly set.
1345  * - for spte protection, the spte can be writable only after unsync-ing
1346  *   shadow page.
1347  *
1348  * Return true if tlb need be flushed.
1349  */
1350 static bool spte_write_protect(u64 *sptep, bool pt_protect)
1351 {
1352         u64 spte = *sptep;
1353
1354         if (!is_writable_pte(spte) &&
1355               !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
1356                 return false;
1357
1358         rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1359
1360         if (pt_protect)
1361                 spte &= ~SPTE_MMU_WRITEABLE;
1362         spte = spte & ~PT_WRITABLE_MASK;
1363
1364         return mmu_spte_update(sptep, spte);
1365 }
1366
1367 static bool __rmap_write_protect(struct kvm *kvm,
1368                                  struct kvm_rmap_head *rmap_head,
1369                                  bool pt_protect)
1370 {
1371         u64 *sptep;
1372         struct rmap_iterator iter;
1373         bool flush = false;
1374
1375         for_each_rmap_spte(rmap_head, &iter, sptep)
1376                 flush |= spte_write_protect(sptep, pt_protect);
1377
1378         return flush;
1379 }
1380
1381 static bool spte_clear_dirty(u64 *sptep)
1382 {
1383         u64 spte = *sptep;
1384
1385         rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1386
1387         spte &= ~shadow_dirty_mask;
1388
1389         return mmu_spte_update(sptep, spte);
1390 }
1391
1392 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1393 {
1394         u64 *sptep;
1395         struct rmap_iterator iter;
1396         bool flush = false;
1397
1398         for_each_rmap_spte(rmap_head, &iter, sptep)
1399                 flush |= spte_clear_dirty(sptep);
1400
1401         return flush;
1402 }
1403
1404 static bool spte_set_dirty(u64 *sptep)
1405 {
1406         u64 spte = *sptep;
1407
1408         rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1409
1410         spte |= shadow_dirty_mask;
1411
1412         return mmu_spte_update(sptep, spte);
1413 }
1414
1415 static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1416 {
1417         u64 *sptep;
1418         struct rmap_iterator iter;
1419         bool flush = false;
1420
1421         for_each_rmap_spte(rmap_head, &iter, sptep)
1422                 flush |= spte_set_dirty(sptep);
1423
1424         return flush;
1425 }
1426
1427 /**
1428  * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1429  * @kvm: kvm instance
1430  * @slot: slot to protect
1431  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1432  * @mask: indicates which pages we should protect
1433  *
1434  * Used when we do not need to care about huge page mappings: e.g. during dirty
1435  * logging we do not have any such mappings.
1436  */
1437 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1438                                      struct kvm_memory_slot *slot,
1439                                      gfn_t gfn_offset, unsigned long mask)
1440 {
1441         struct kvm_rmap_head *rmap_head;
1442
1443         while (mask) {
1444                 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1445                                           PT_PAGE_TABLE_LEVEL, slot);
1446                 __rmap_write_protect(kvm, rmap_head, false);
1447
1448                 /* clear the first set bit */
1449                 mask &= mask - 1;
1450         }
1451 }
1452
1453 /**
1454  * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages
1455  * @kvm: kvm instance
1456  * @slot: slot to clear D-bit
1457  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1458  * @mask: indicates which pages we should clear D-bit
1459  *
1460  * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1461  */
1462 void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1463                                      struct kvm_memory_slot *slot,
1464                                      gfn_t gfn_offset, unsigned long mask)
1465 {
1466         struct kvm_rmap_head *rmap_head;
1467
1468         while (mask) {
1469                 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1470                                           PT_PAGE_TABLE_LEVEL, slot);
1471                 __rmap_clear_dirty(kvm, rmap_head);
1472
1473                 /* clear the first set bit */
1474                 mask &= mask - 1;
1475         }
1476 }
1477 EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1478
1479 /**
1480  * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1481  * PT level pages.
1482  *
1483  * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1484  * enable dirty logging for them.
1485  *
1486  * Used when we do not need to care about huge page mappings: e.g. during dirty
1487  * logging we do not have any such mappings.
1488  */
1489 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1490                                 struct kvm_memory_slot *slot,
1491                                 gfn_t gfn_offset, unsigned long mask)
1492 {
1493         if (kvm_x86_ops->enable_log_dirty_pt_masked)
1494                 kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1495                                 mask);
1496         else
1497                 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1498 }
1499
1500 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1501                                     struct kvm_memory_slot *slot, u64 gfn)
1502 {
1503         struct kvm_rmap_head *rmap_head;
1504         int i;
1505         bool write_protected = false;
1506
1507         for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1508                 rmap_head = __gfn_to_rmap(gfn, i, slot);
1509                 write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1510         }
1511
1512         return write_protected;
1513 }
1514
1515 static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1516 {
1517         struct kvm_memory_slot *slot;
1518
1519         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1520         return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
1521 }
1522
1523 static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1524 {
1525         u64 *sptep;
1526         struct rmap_iterator iter;
1527         bool flush = false;
1528
1529         while ((sptep = rmap_get_first(rmap_head, &iter))) {
1530                 rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1531
1532                 drop_spte(kvm, sptep);
1533                 flush = true;
1534         }
1535
1536         return flush;
1537 }
1538
1539 static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1540                            struct kvm_memory_slot *slot, gfn_t gfn, int level,
1541                            unsigned long data)
1542 {
1543         return kvm_zap_rmapp(kvm, rmap_head);
1544 }
1545
1546 static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1547                              struct kvm_memory_slot *slot, gfn_t gfn, int level,
1548                              unsigned long data)
1549 {
1550         u64 *sptep;
1551         struct rmap_iterator iter;
1552         int need_flush = 0;
1553         u64 new_spte;
1554         pte_t *ptep = (pte_t *)data;
1555         kvm_pfn_t new_pfn;
1556
1557         WARN_ON(pte_huge(*ptep));
1558         new_pfn = pte_pfn(*ptep);
1559
1560 restart:
1561         for_each_rmap_spte(rmap_head, &iter, sptep) {
1562                 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1563                             sptep, *sptep, gfn, level);
1564
1565                 need_flush = 1;
1566
1567                 if (pte_write(*ptep)) {
1568                         drop_spte(kvm, sptep);
1569                         goto restart;
1570                 } else {
1571                         new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1572                         new_spte |= (u64)new_pfn << PAGE_SHIFT;
1573
1574                         new_spte &= ~PT_WRITABLE_MASK;
1575                         new_spte &= ~SPTE_HOST_WRITEABLE;
1576
1577                         new_spte = mark_spte_for_access_track(new_spte);
1578
1579                         mmu_spte_clear_track_bits(sptep);
1580                         mmu_spte_set(sptep, new_spte);
1581                 }
1582         }
1583
1584         if (need_flush)
1585                 kvm_flush_remote_tlbs(kvm);
1586
1587         return 0;
1588 }
1589
1590 struct slot_rmap_walk_iterator {
1591         /* input fields. */
1592         struct kvm_memory_slot *slot;
1593         gfn_t start_gfn;
1594         gfn_t end_gfn;
1595         int start_level;
1596         int end_level;
1597
1598         /* output fields. */
1599         gfn_t gfn;
1600         struct kvm_rmap_head *rmap;
1601         int level;
1602
1603         /* private field. */
1604         struct kvm_rmap_head *end_rmap;
1605 };
1606
1607 static void
1608 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1609 {
1610         iterator->level = level;
1611         iterator->gfn = iterator->start_gfn;
1612         iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1613         iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1614                                            iterator->slot);
1615 }
1616
1617 static void
1618 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1619                     struct kvm_memory_slot *slot, int start_level,
1620                     int end_level, gfn_t start_gfn, gfn_t end_gfn)
1621 {
1622         iterator->slot = slot;
1623         iterator->start_level = start_level;
1624         iterator->end_level = end_level;
1625         iterator->start_gfn = start_gfn;
1626         iterator->end_gfn = end_gfn;
1627
1628         rmap_walk_init_level(iterator, iterator->start_level);
1629 }
1630
1631 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1632 {
1633         return !!iterator->rmap;
1634 }
1635
1636 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1637 {
1638         if (++iterator->rmap <= iterator->end_rmap) {
1639                 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1640                 return;
1641         }
1642
1643         if (++iterator->level > iterator->end_level) {
1644                 iterator->rmap = NULL;
1645                 return;
1646         }
1647
1648         rmap_walk_init_level(iterator, iterator->level);
1649 }
1650
1651 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,    \
1652            _start_gfn, _end_gfn, _iter_)                                \
1653         for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,         \
1654                                  _end_level_, _start_gfn, _end_gfn);    \
1655              slot_rmap_walk_okay(_iter_);                               \
1656              slot_rmap_walk_next(_iter_))
1657
1658 static int kvm_handle_hva_range(struct kvm *kvm,
1659                                 unsigned long start,
1660                                 unsigned long end,
1661                                 unsigned long data,
1662                                 int (*handler)(struct kvm *kvm,
1663                                                struct kvm_rmap_head *rmap_head,
1664                                                struct kvm_memory_slot *slot,
1665                                                gfn_t gfn,
1666                                                int level,
1667                                                unsigned long data))
1668 {
1669         struct kvm_memslots *slots;
1670         struct kvm_memory_slot *memslot;
1671         struct slot_rmap_walk_iterator iterator;
1672         int ret = 0;
1673         int i;
1674
1675         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1676                 slots = __kvm_memslots(kvm, i);
1677                 kvm_for_each_memslot(memslot, slots) {
1678                         unsigned long hva_start, hva_end;
1679                         gfn_t gfn_start, gfn_end;
1680
1681                         hva_start = max(start, memslot->userspace_addr);
1682                         hva_end = min(end, memslot->userspace_addr +
1683                                       (memslot->npages << PAGE_SHIFT));
1684                         if (hva_start >= hva_end)
1685                                 continue;
1686                         /*
1687                          * {gfn(page) | page intersects with [hva_start, hva_end)} =
1688                          * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1689                          */
1690                         gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1691                         gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1692
1693                         for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
1694                                                  PT_MAX_HUGEPAGE_LEVEL,
1695                                                  gfn_start, gfn_end - 1,
1696                                                  &iterator)
1697                                 ret |= handler(kvm, iterator.rmap, memslot,
1698                                                iterator.gfn, iterator.level, data);
1699                 }
1700         }
1701
1702         return ret;
1703 }
1704
1705 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1706                           unsigned long data,
1707                           int (*handler)(struct kvm *kvm,
1708                                          struct kvm_rmap_head *rmap_head,
1709                                          struct kvm_memory_slot *slot,
1710                                          gfn_t gfn, int level,
1711                                          unsigned long data))
1712 {
1713         return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1714 }
1715
1716 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1717 {
1718         return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1719 }
1720
1721 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1722 {
1723         return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1724 }
1725
1726 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1727 {
1728         kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1729 }
1730
1731 static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1732                          struct kvm_memory_slot *slot, gfn_t gfn, int level,
1733                          unsigned long data)
1734 {
1735         u64 *sptep;
1736         struct rmap_iterator uninitialized_var(iter);
1737         int young = 0;
1738
1739         for_each_rmap_spte(rmap_head, &iter, sptep)
1740                 young |= mmu_spte_age(sptep);
1741
1742         trace_kvm_age_page(gfn, level, slot, young);
1743         return young;
1744 }
1745
1746 static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1747                               struct kvm_memory_slot *slot, gfn_t gfn,
1748                               int level, unsigned long data)
1749 {
1750         u64 *sptep;
1751         struct rmap_iterator iter;
1752
1753         /*
1754          * If there's no access bit in the secondary pte set by the hardware and
1755          * fast access tracking is also not enabled, it's up to gup-fast/gup to
1756          * set the access bit in the primary pte or in the page structure.
1757          */
1758         if (!shadow_accessed_mask && !shadow_acc_track_mask)
1759                 goto out;
1760
1761         for_each_rmap_spte(rmap_head, &iter, sptep)
1762                 if (is_accessed_spte(*sptep))
1763                         return 1;
1764 out:
1765         return 0;
1766 }
1767
1768 #define RMAP_RECYCLE_THRESHOLD 1000
1769
1770 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1771 {
1772         struct kvm_rmap_head *rmap_head;
1773         struct kvm_mmu_page *sp;
1774
1775         sp = page_header(__pa(spte));
1776
1777         rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1778
1779         kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
1780         kvm_flush_remote_tlbs(vcpu->kvm);
1781 }
1782
1783 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1784 {
1785         /*
1786          * In case of absence of EPT Access and Dirty Bits supports,
1787          * emulate the accessed bit for EPT, by checking if this page has
1788          * an EPT mapping, and clearing it if it does. On the next access,
1789          * a new EPT mapping will be established.
1790          * This has some overhead, but not as much as the cost of swapping
1791          * out actively used pages or breaking up actively used hugepages.
1792          */
1793         if (!shadow_accessed_mask && !shadow_acc_track_mask)
1794                 return kvm_handle_hva_range(kvm, start, end, 0,
1795                                             kvm_unmap_rmapp);
1796
1797         return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
1798 }
1799
1800 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1801 {
1802         return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1803 }
1804
1805 #ifdef MMU_DEBUG
1806 static int is_empty_shadow_page(u64 *spt)
1807 {
1808         u64 *pos;
1809         u64 *end;
1810
1811         for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1812                 if (is_shadow_present_pte(*pos)) {
1813                         printk(KERN_ERR "%s: %p %llx\n", __func__,
1814                                pos, *pos);
1815                         return 0;
1816                 }
1817         return 1;
1818 }
1819 #endif
1820
1821 /*
1822  * This value is the sum of all of the kvm instances's
1823  * kvm->arch.n_used_mmu_pages values.  We need a global,
1824  * aggregate version in order to make the slab shrinker
1825  * faster
1826  */
1827 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1828 {
1829         kvm->arch.n_used_mmu_pages += nr;
1830         percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1831 }
1832
1833 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1834 {
1835         MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1836         hlist_del(&sp->hash_link);
1837         list_del(&sp->link);
1838         free_page((unsigned long)sp->spt);
1839         if (!sp->role.direct)
1840                 free_page((unsigned long)sp->gfns);
1841         kmem_cache_free(mmu_page_header_cache, sp);
1842 }
1843
1844 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1845 {
1846         return hash_64(gfn, KVM_MMU_HASH_SHIFT);
1847 }
1848
1849 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1850                                     struct kvm_mmu_page *sp, u64 *parent_pte)
1851 {
1852         if (!parent_pte)
1853                 return;
1854
1855         pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1856 }
1857
1858 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1859                                        u64 *parent_pte)
1860 {
1861         pte_list_remove(parent_pte, &sp->parent_ptes);
1862 }
1863
1864 static void drop_parent_pte(struct kvm_mmu_page *sp,
1865                             u64 *parent_pte)
1866 {
1867         mmu_page_remove_parent_pte(sp, parent_pte);
1868         mmu_spte_clear_no_track(parent_pte);
1869 }
1870
1871 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
1872 {
1873         struct kvm_mmu_page *sp;
1874
1875         sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1876         sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1877         if (!direct)
1878                 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1879         set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1880
1881         /*
1882          * The active_mmu_pages list is the FIFO list, do not move the
1883          * page until it is zapped. kvm_zap_obsolete_pages depends on
1884          * this feature. See the comments in kvm_zap_obsolete_pages().
1885          */
1886         list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1887         kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1888         return sp;
1889 }
1890
1891 static void mark_unsync(u64 *spte);
1892 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1893 {
1894         u64 *sptep;
1895         struct rmap_iterator iter;
1896
1897         for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
1898                 mark_unsync(sptep);
1899         }
1900 }
1901
1902 static void mark_unsync(u64 *spte)
1903 {
1904         struct kvm_mmu_page *sp;
1905         unsigned int index;
1906
1907         sp = page_header(__pa(spte));
1908         index = spte - sp->spt;
1909         if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1910                 return;
1911         if (sp->unsync_children++)
1912                 return;
1913         kvm_mmu_mark_parents_unsync(sp);
1914 }
1915
1916 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1917                                struct kvm_mmu_page *sp)
1918 {
1919         return 0;
1920 }
1921
1922 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1923 {
1924 }
1925
1926 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1927                                  struct kvm_mmu_page *sp, u64 *spte,
1928                                  const void *pte)
1929 {
1930         WARN_ON(1);
1931 }
1932
1933 #define KVM_PAGE_ARRAY_NR 16
1934
1935 struct kvm_mmu_pages {
1936         struct mmu_page_and_offset {
1937                 struct kvm_mmu_page *sp;
1938                 unsigned int idx;
1939         } page[KVM_PAGE_ARRAY_NR];
1940         unsigned int nr;
1941 };
1942
1943 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1944                          int idx)
1945 {
1946         int i;
1947
1948         if (sp->unsync)
1949                 for (i=0; i < pvec->nr; i++)
1950                         if (pvec->page[i].sp == sp)
1951                                 return 0;
1952
1953         pvec->page[pvec->nr].sp = sp;
1954         pvec->page[pvec->nr].idx = idx;
1955         pvec->nr++;
1956         return (pvec->nr == KVM_PAGE_ARRAY_NR);
1957 }
1958
1959 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
1960 {
1961         --sp->unsync_children;
1962         WARN_ON((int)sp->unsync_children < 0);
1963         __clear_bit(idx, sp->unsync_child_bitmap);
1964 }
1965
1966 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1967                            struct kvm_mmu_pages *pvec)
1968 {
1969         int i, ret, nr_unsync_leaf = 0;
1970
1971         for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1972                 struct kvm_mmu_page *child;
1973                 u64 ent = sp->spt[i];
1974
1975                 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
1976                         clear_unsync_child_bit(sp, i);
1977                         continue;
1978                 }
1979
1980                 child = page_header(ent & PT64_BASE_ADDR_MASK);
1981
1982                 if (child->unsync_children) {
1983                         if (mmu_pages_add(pvec, child, i))
1984                                 return -ENOSPC;
1985
1986                         ret = __mmu_unsync_walk(child, pvec);
1987                         if (!ret) {
1988                                 clear_unsync_child_bit(sp, i);
1989                                 continue;
1990                         } else if (ret > 0) {
1991                                 nr_unsync_leaf += ret;
1992                         } else
1993                                 return ret;
1994                 } else if (child->unsync) {
1995                         nr_unsync_leaf++;
1996                         if (mmu_pages_add(pvec, child, i))
1997                                 return -ENOSPC;
1998                 } else
1999                         clear_unsync_child_bit(sp, i);
2000         }
2001
2002         return nr_unsync_leaf;
2003 }
2004
2005 #define INVALID_INDEX (-1)
2006
2007 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
2008                            struct kvm_mmu_pages *pvec)
2009 {
2010         pvec->nr = 0;
2011         if (!sp->unsync_children)
2012                 return 0;
2013
2014         mmu_pages_add(pvec, sp, INVALID_INDEX);
2015         return __mmu_unsync_walk(sp, pvec);
2016 }
2017
2018 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
2019 {
2020         WARN_ON(!sp->unsync);
2021         trace_kvm_mmu_sync_page(sp);
2022         sp->unsync = 0;
2023         --kvm->stat.mmu_unsync;
2024 }
2025
2026 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2027                                     struct list_head *invalid_list);
2028 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2029                                     struct list_head *invalid_list);
2030
2031 /*
2032  * NOTE: we should pay more attention on the zapped-obsolete page
2033  * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
2034  * since it has been deleted from active_mmu_pages but still can be found
2035  * at hast list.
2036  *
2037  * for_each_valid_sp() has skipped that kind of pages.
2038  */
2039 #define for_each_valid_sp(_kvm, _sp, _gfn)                              \
2040         hlist_for_each_entry(_sp,                                       \
2041           &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
2042                 if (is_obsolete_sp((_kvm), (_sp)) || (_sp)->role.invalid) {    \
2043                 } else
2044
2045 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)                 \
2046         for_each_valid_sp(_kvm, _sp, _gfn)                              \
2047                 if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
2048
2049 /* @sp->gfn should be write-protected at the call site */
2050 static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2051                             struct list_head *invalid_list)
2052 {
2053         if (sp->role.cr4_pae != !!is_pae(vcpu)) {
2054                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
2055                 return false;
2056         }
2057
2058         if (vcpu->arch.mmu.sync_page(vcpu, sp) == 0) {
2059                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
2060                 return false;
2061         }
2062
2063         return true;
2064 }
2065
2066 static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
2067                                  struct list_head *invalid_list,
2068                                  bool remote_flush, bool local_flush)
2069 {
2070         if (!list_empty(invalid_list)) {
2071                 kvm_mmu_commit_zap_page(vcpu->kvm, invalid_list);
2072                 return;
2073         }
2074
2075         if (remote_flush)
2076                 kvm_flush_remote_tlbs(vcpu->kvm);
2077         else if (local_flush)
2078                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2079 }
2080
2081 #ifdef CONFIG_KVM_MMU_AUDIT
2082 #include "mmu_audit.c"
2083 #else
2084 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
2085 static void mmu_audit_disable(void) { }
2086 #endif
2087
2088 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
2089 {
2090         return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
2091 }
2092
2093 static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2094                          struct list_head *invalid_list)
2095 {
2096         kvm_unlink_unsync_page(vcpu->kvm, sp);
2097         return __kvm_sync_page(vcpu, sp, invalid_list);
2098 }
2099
2100 /* @gfn should be write-protected at the call site */
2101 static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
2102                            struct list_head *invalid_list)
2103 {
2104         struct kvm_mmu_page *s;
2105         bool ret = false;
2106
2107         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2108                 if (!s->unsync)
2109                         continue;
2110
2111                 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2112                 ret |= kvm_sync_page(vcpu, s, invalid_list);
2113         }
2114
2115         return ret;
2116 }
2117
2118 struct mmu_page_path {
2119         struct kvm_mmu_page *parent[PT64_ROOT_LEVEL];
2120         unsigned int idx[PT64_ROOT_LEVEL];
2121 };
2122
2123 #define for_each_sp(pvec, sp, parents, i)                       \
2124                 for (i = mmu_pages_first(&pvec, &parents);      \
2125                         i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});   \
2126                         i = mmu_pages_next(&pvec, &parents, i))
2127
2128 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
2129                           struct mmu_page_path *parents,
2130                           int i)
2131 {
2132         int n;
2133
2134         for (n = i+1; n < pvec->nr; n++) {
2135                 struct kvm_mmu_page *sp = pvec->page[n].sp;
2136                 unsigned idx = pvec->page[n].idx;
2137                 int level = sp->role.level;
2138
2139                 parents->idx[level-1] = idx;
2140                 if (level == PT_PAGE_TABLE_LEVEL)
2141                         break;
2142
2143                 parents->parent[level-2] = sp;
2144         }
2145
2146         return n;
2147 }
2148
2149 static int mmu_pages_first(struct kvm_mmu_pages *pvec,
2150                            struct mmu_page_path *parents)
2151 {
2152         struct kvm_mmu_page *sp;
2153         int level;
2154
2155         if (pvec->nr == 0)
2156                 return 0;
2157
2158         WARN_ON(pvec->page[0].idx != INVALID_INDEX);
2159
2160         sp = pvec->page[0].sp;
2161         level = sp->role.level;
2162         WARN_ON(level == PT_PAGE_TABLE_LEVEL);
2163
2164         parents->parent[level-2] = sp;
2165
2166         /* Also set up a sentinel.  Further entries in pvec are all
2167          * children of sp, so this element is never overwritten.
2168          */
2169         parents->parent[level-1] = NULL;
2170         return mmu_pages_next(pvec, parents, 0);
2171 }
2172
2173 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
2174 {
2175         struct kvm_mmu_page *sp;
2176         unsigned int level = 0;
2177
2178         do {
2179                 unsigned int idx = parents->idx[level];
2180                 sp = parents->parent[level];
2181                 if (!sp)
2182                         return;
2183
2184                 WARN_ON(idx == INVALID_INDEX);
2185                 clear_unsync_child_bit(sp, idx);
2186                 level++;
2187         } while (!sp->unsync_children);
2188 }
2189
2190 static void mmu_sync_children(struct kvm_vcpu *vcpu,
2191                               struct kvm_mmu_page *parent)
2192 {
2193         int i;
2194         struct kvm_mmu_page *sp;
2195         struct mmu_page_path parents;
2196         struct kvm_mmu_pages pages;
2197         LIST_HEAD(invalid_list);
2198         bool flush = false;
2199
2200         while (mmu_unsync_walk(parent, &pages)) {
2201                 bool protected = false;
2202
2203                 for_each_sp(pages, sp, parents, i)
2204                         protected |= rmap_write_protect(vcpu, sp->gfn);
2205
2206                 if (protected) {
2207                         kvm_flush_remote_tlbs(vcpu->kvm);
2208                         flush = false;
2209                 }
2210
2211                 for_each_sp(pages, sp, parents, i) {
2212                         flush |= kvm_sync_page(vcpu, sp, &invalid_list);
2213                         mmu_pages_clear_parents(&parents);
2214                 }
2215                 if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
2216                         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2217                         cond_resched_lock(&vcpu->kvm->mmu_lock);
2218                         flush = false;
2219                 }
2220         }
2221
2222         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2223 }
2224
2225 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2226 {
2227         atomic_set(&sp->write_flooding_count,  0);
2228 }
2229
2230 static void clear_sp_write_flooding_count(u64 *spte)
2231 {
2232         struct kvm_mmu_page *sp =  page_header(__pa(spte));
2233
2234         __clear_sp_write_flooding_count(sp);
2235 }
2236
2237 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2238                                              gfn_t gfn,
2239                                              gva_t gaddr,
2240                                              unsigned level,
2241                                              int direct,
2242                                              unsigned access)
2243 {
2244         union kvm_mmu_page_role role;
2245         unsigned quadrant;
2246         struct kvm_mmu_page *sp;
2247         bool need_sync = false;
2248         bool flush = false;
2249         int collisions = 0;
2250         LIST_HEAD(invalid_list);
2251
2252         role = vcpu->arch.mmu.base_role;
2253         role.level = level;
2254         role.direct = direct;
2255         if (role.direct)
2256                 role.cr4_pae = 0;
2257         role.access = access;
2258         if (!vcpu->arch.mmu.direct_map
2259             && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
2260                 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2261                 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2262                 role.quadrant = quadrant;
2263         }
2264         for_each_valid_sp(vcpu->kvm, sp, gfn) {
2265                 if (sp->gfn != gfn) {
2266                         collisions++;
2267                         continue;
2268                 }
2269
2270                 if (!need_sync && sp->unsync)
2271                         need_sync = true;
2272
2273                 if (sp->role.word != role.word)
2274                         continue;
2275
2276                 if (sp->unsync) {
2277                         /* The page is good, but __kvm_sync_page might still end
2278                          * up zapping it.  If so, break in order to rebuild it.
2279                          */
2280                         if (!__kvm_sync_page(vcpu, sp, &invalid_list))
2281                                 break;
2282
2283                         WARN_ON(!list_empty(&invalid_list));
2284                         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2285                 }
2286
2287                 if (sp->unsync_children)
2288                         kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2289
2290                 __clear_sp_write_flooding_count(sp);
2291                 trace_kvm_mmu_get_page(sp, false);
2292                 goto out;
2293         }
2294
2295         ++vcpu->kvm->stat.mmu_cache_miss;
2296
2297         sp = kvm_mmu_alloc_page(vcpu, direct);
2298
2299         sp->gfn = gfn;
2300         sp->role = role;
2301         hlist_add_head(&sp->hash_link,
2302                 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
2303         if (!direct) {
2304                 /*
2305                  * we should do write protection before syncing pages
2306                  * otherwise the content of the synced shadow page may
2307                  * be inconsistent with guest page table.
2308                  */
2309                 account_shadowed(vcpu->kvm, sp);
2310                 if (level == PT_PAGE_TABLE_LEVEL &&
2311                       rmap_write_protect(vcpu, gfn))
2312                         kvm_flush_remote_tlbs(vcpu->kvm);
2313
2314                 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
2315                         flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
2316         }
2317         sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
2318         clear_page(sp->spt);
2319         trace_kvm_mmu_get_page(sp, true);
2320
2321         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2322 out:
2323         if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
2324                 vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
2325         return sp;
2326 }
2327
2328 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2329                              struct kvm_vcpu *vcpu, u64 addr)
2330 {
2331         iterator->addr = addr;
2332         iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
2333         iterator->level = vcpu->arch.mmu.shadow_root_level;
2334
2335         if (iterator->level == PT64_ROOT_LEVEL &&
2336             vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
2337             !vcpu->arch.mmu.direct_map)
2338                 --iterator->level;
2339
2340         if (iterator->level == PT32E_ROOT_LEVEL) {
2341                 iterator->shadow_addr
2342                         = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
2343                 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2344                 --iterator->level;
2345                 if (!iterator->shadow_addr)
2346                         iterator->level = 0;
2347         }
2348 }
2349
2350 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2351 {
2352         if (iterator->level < PT_PAGE_TABLE_LEVEL)
2353                 return false;
2354
2355         iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2356         iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2357         return true;
2358 }
2359
2360 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2361                                u64 spte)
2362 {
2363         if (is_last_spte(spte, iterator->level)) {
2364                 iterator->level = 0;
2365                 return;
2366         }
2367
2368         iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2369         --iterator->level;
2370 }
2371
2372 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2373 {
2374         return __shadow_walk_next(iterator, *iterator->sptep);
2375 }
2376
2377 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2378                              struct kvm_mmu_page *sp)
2379 {
2380         u64 spte;
2381
2382         BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2383
2384         spte = __pa(sp->spt) | shadow_present_mask | PT_WRITABLE_MASK |
2385                shadow_user_mask | shadow_x_mask | shadow_accessed_mask;
2386
2387         mmu_spte_set(sptep, spte);
2388
2389         mmu_page_add_parent_pte(vcpu, sp, sptep);
2390
2391         if (sp->unsync_children || sp->unsync)
2392                 mark_unsync(sptep);
2393 }
2394
2395 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2396                                    unsigned direct_access)
2397 {
2398         if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2399                 struct kvm_mmu_page *child;
2400
2401                 /*
2402                  * For the direct sp, if the guest pte's dirty bit
2403                  * changed form clean to dirty, it will corrupt the
2404                  * sp's access: allow writable in the read-only sp,
2405                  * so we should update the spte at this point to get
2406                  * a new sp with the correct access.
2407                  */
2408                 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2409                 if (child->role.access == direct_access)
2410                         return;
2411
2412                 drop_parent_pte(child, sptep);
2413                 kvm_flush_remote_tlbs(vcpu->kvm);
2414         }
2415 }
2416
2417 static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2418                              u64 *spte)
2419 {
2420         u64 pte;
2421         struct kvm_mmu_page *child;
2422
2423         pte = *spte;
2424         if (is_shadow_present_pte(pte)) {
2425                 if (is_last_spte(pte, sp->role.level)) {
2426                         drop_spte(kvm, spte);
2427                         if (is_large_pte(pte))
2428                                 --kvm->stat.lpages;
2429                 } else {
2430                         child = page_header(pte & PT64_BASE_ADDR_MASK);
2431                         drop_parent_pte(child, spte);
2432                 }
2433                 return true;
2434         }
2435
2436         if (is_mmio_spte(pte))
2437                 mmu_spte_clear_no_track(spte);
2438
2439         return false;
2440 }
2441
2442 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2443                                          struct kvm_mmu_page *sp)
2444 {
2445         unsigned i;
2446
2447         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2448                 mmu_page_zap_pte(kvm, sp, sp->spt + i);
2449 }
2450
2451 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2452 {
2453         u64 *sptep;
2454         struct rmap_iterator iter;
2455
2456         while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2457                 drop_parent_pte(sp, sptep);
2458 }
2459
2460 static int mmu_zap_unsync_children(struct kvm *kvm,
2461                                    struct kvm_mmu_page *parent,
2462                                    struct list_head *invalid_list)
2463 {
2464         int i, zapped = 0;
2465         struct mmu_page_path parents;
2466         struct kvm_mmu_pages pages;
2467
2468         if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2469                 return 0;
2470
2471         while (mmu_unsync_walk(parent, &pages)) {
2472                 struct kvm_mmu_page *sp;
2473
2474                 for_each_sp(pages, sp, parents, i) {
2475                         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2476                         mmu_pages_clear_parents(&parents);
2477                         zapped++;
2478                 }
2479         }
2480
2481         return zapped;
2482 }
2483
2484 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2485                                     struct list_head *invalid_list)
2486 {
2487         int ret;
2488
2489         trace_kvm_mmu_prepare_zap_page(sp);
2490         ++kvm->stat.mmu_shadow_zapped;
2491         ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
2492         kvm_mmu_page_unlink_children(kvm, sp);
2493         kvm_mmu_unlink_parents(kvm, sp);
2494
2495         if (!sp->role.invalid && !sp->role.direct)
2496                 unaccount_shadowed(kvm, sp);
2497
2498         if (sp->unsync)
2499                 kvm_unlink_unsync_page(kvm, sp);
2500         if (!sp->root_count) {
2501                 /* Count self */
2502                 ret++;
2503                 list_move(&sp->link, invalid_list);
2504                 kvm_mod_used_mmu_pages(kvm, -1);
2505         } else {
2506                 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2507
2508                 /*
2509                  * The obsolete pages can not be used on any vcpus.
2510                  * See the comments in kvm_mmu_invalidate_zap_all_pages().
2511                  */
2512                 if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
2513                         kvm_reload_remote_mmus(kvm);
2514         }
2515
2516         sp->role.invalid = 1;
2517         return ret;
2518 }
2519
2520 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2521                                     struct list_head *invalid_list)
2522 {
2523         struct kvm_mmu_page *sp, *nsp;
2524
2525         if (list_empty(invalid_list))
2526                 return;
2527
2528         /*
2529          * We need to make sure everyone sees our modifications to
2530          * the page tables and see changes to vcpu->mode here. The barrier
2531          * in the kvm_flush_remote_tlbs() achieves this. This pairs
2532          * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2533          *
2534          * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2535          * guest mode and/or lockless shadow page table walks.
2536          */
2537         kvm_flush_remote_tlbs(kvm);
2538
2539         list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2540                 WARN_ON(!sp->role.invalid || sp->root_count);
2541                 kvm_mmu_free_page(sp);
2542         }
2543 }
2544
2545 static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2546                                         struct list_head *invalid_list)
2547 {
2548         struct kvm_mmu_page *sp;
2549
2550         if (list_empty(&kvm->arch.active_mmu_pages))
2551                 return false;
2552
2553         sp = list_last_entry(&kvm->arch.active_mmu_pages,
2554                              struct kvm_mmu_page, link);
2555         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2556
2557         return true;
2558 }
2559
2560 /*
2561  * Changing the number of mmu pages allocated to the vm
2562  * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2563  */
2564 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2565 {
2566         LIST_HEAD(invalid_list);
2567
2568         spin_lock(&kvm->mmu_lock);
2569
2570         if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2571                 /* Need to free some mmu pages to achieve the goal. */
2572                 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2573                         if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2574                                 break;
2575
2576                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2577                 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2578         }
2579
2580         kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2581
2582         spin_unlock(&kvm->mmu_lock);
2583 }
2584
2585 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2586 {
2587         struct kvm_mmu_page *sp;
2588         LIST_HEAD(invalid_list);
2589         int r;
2590
2591         pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2592         r = 0;
2593         spin_lock(&kvm->mmu_lock);
2594         for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2595                 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2596                          sp->role.word);
2597                 r = 1;
2598                 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2599         }
2600         kvm_mmu_commit_zap_page(kvm, &invalid_list);
2601         spin_unlock(&kvm->mmu_lock);
2602
2603         return r;
2604 }
2605 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2606
2607 static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2608 {
2609         trace_kvm_mmu_unsync_page(sp);
2610         ++vcpu->kvm->stat.mmu_unsync;
2611         sp->unsync = 1;
2612
2613         kvm_mmu_mark_parents_unsync(sp);
2614 }
2615
2616 static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2617                                    bool can_unsync)
2618 {
2619         struct kvm_mmu_page *sp;
2620
2621         if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2622                 return true;
2623
2624         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2625                 if (!can_unsync)
2626                         return true;
2627
2628                 if (sp->unsync)
2629                         continue;
2630
2631                 WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
2632                 kvm_unsync_page(vcpu, sp);
2633         }
2634
2635         return false;
2636 }
2637
2638 static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
2639 {
2640         if (pfn_valid(pfn))
2641                 return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn));
2642
2643         return true;
2644 }
2645
2646 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2647                     unsigned pte_access, int level,
2648                     gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2649                     bool can_unsync, bool host_writable)
2650 {
2651         u64 spte = 0;
2652         int ret = 0;
2653
2654         if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
2655                 return 0;
2656
2657         /*
2658          * For the EPT case, shadow_present_mask is 0 if hardware
2659          * supports exec-only page table entries.  In that case,
2660          * ACC_USER_MASK and shadow_user_mask are used to represent
2661          * read access.  See FNAME(gpte_access) in paging_tmpl.h.
2662          */
2663         spte |= shadow_present_mask;
2664         if (!speculative)
2665                 spte |= shadow_accessed_mask;
2666
2667         if (pte_access & ACC_EXEC_MASK)
2668                 spte |= shadow_x_mask;
2669         else
2670                 spte |= shadow_nx_mask;
2671
2672         if (pte_access & ACC_USER_MASK)
2673                 spte |= shadow_user_mask;
2674
2675         if (level > PT_PAGE_TABLE_LEVEL)
2676                 spte |= PT_PAGE_SIZE_MASK;
2677         if (tdp_enabled)
2678                 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2679                         kvm_is_mmio_pfn(pfn));
2680
2681         if (host_writable)
2682                 spte |= SPTE_HOST_WRITEABLE;
2683         else
2684                 pte_access &= ~ACC_WRITE_MASK;
2685
2686         spte |= (u64)pfn << PAGE_SHIFT;
2687
2688         if (pte_access & ACC_WRITE_MASK) {
2689
2690                 /*
2691                  * Other vcpu creates new sp in the window between
2692                  * mapping_level() and acquiring mmu-lock. We can
2693                  * allow guest to retry the access, the mapping can
2694                  * be fixed if guest refault.
2695                  */
2696                 if (level > PT_PAGE_TABLE_LEVEL &&
2697                     mmu_gfn_lpage_is_disallowed(vcpu, gfn, level))
2698                         goto done;
2699
2700                 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
2701
2702                 /*
2703                  * Optimization: for pte sync, if spte was writable the hash
2704                  * lookup is unnecessary (and expensive). Write protection
2705                  * is responsibility of mmu_get_page / kvm_sync_page.
2706                  * Same reasoning can be applied to dirty page accounting.
2707                  */
2708                 if (!can_unsync && is_writable_pte(*sptep))
2709                         goto set_pte;
2710
2711                 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2712                         pgprintk("%s: found shadow page for %llx, marking ro\n",
2713                                  __func__, gfn);
2714                         ret = 1;
2715                         pte_access &= ~ACC_WRITE_MASK;
2716                         spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
2717                 }
2718         }
2719
2720         if (pte_access & ACC_WRITE_MASK) {
2721                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
2722                 spte |= shadow_dirty_mask;
2723         }
2724
2725         if (speculative)
2726                 spte = mark_spte_for_access_track(spte);
2727
2728 set_pte:
2729         if (mmu_spte_update(sptep, spte))
2730                 kvm_flush_remote_tlbs(vcpu->kvm);
2731 done:
2732         return ret;
2733 }
2734
2735 static bool mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, unsigned pte_access,
2736                          int write_fault, int level, gfn_t gfn, kvm_pfn_t pfn,
2737                          bool speculative, bool host_writable)
2738 {
2739         int was_rmapped = 0;
2740         int rmap_count;
2741         bool emulate = false;
2742
2743         pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2744                  *sptep, write_fault, gfn);
2745
2746         if (is_shadow_present_pte(*sptep)) {
2747                 /*
2748                  * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2749                  * the parent of the now unreachable PTE.
2750                  */
2751                 if (level > PT_PAGE_TABLE_LEVEL &&
2752                     !is_large_pte(*sptep)) {
2753                         struct kvm_mmu_page *child;
2754                         u64 pte = *sptep;
2755
2756                         child = page_header(pte & PT64_BASE_ADDR_MASK);
2757                         drop_parent_pte(child, sptep);
2758                         kvm_flush_remote_tlbs(vcpu->kvm);
2759                 } else if (pfn != spte_to_pfn(*sptep)) {
2760                         pgprintk("hfn old %llx new %llx\n",
2761                                  spte_to_pfn(*sptep), pfn);
2762                         drop_spte(vcpu->kvm, sptep);
2763                         kvm_flush_remote_tlbs(vcpu->kvm);
2764                 } else
2765                         was_rmapped = 1;
2766         }
2767
2768         if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
2769               true, host_writable)) {
2770                 if (write_fault)
2771                         emulate = true;
2772                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2773         }
2774
2775         if (unlikely(is_mmio_spte(*sptep)))
2776                 emulate = true;
2777
2778         pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2779         pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2780                  is_large_pte(*sptep)? "2MB" : "4kB",
2781                  *sptep & PT_WRITABLE_MASK ? "RW" : "R", gfn,
2782                  *sptep, sptep);
2783         if (!was_rmapped && is_large_pte(*sptep))
2784                 ++vcpu->kvm->stat.lpages;
2785
2786         if (is_shadow_present_pte(*sptep)) {
2787                 if (!was_rmapped) {
2788                         rmap_count = rmap_add(vcpu, sptep, gfn);
2789                         if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2790                                 rmap_recycle(vcpu, sptep, gfn);
2791                 }
2792         }
2793
2794         kvm_release_pfn_clean(pfn);
2795
2796         return emulate;
2797 }
2798
2799 static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2800                                      bool no_dirty_log)
2801 {
2802         struct kvm_memory_slot *slot;
2803
2804         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2805         if (!slot)
2806                 return KVM_PFN_ERR_FAULT;
2807
2808         return gfn_to_pfn_memslot_atomic(slot, gfn);
2809 }
2810
2811 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2812                                     struct kvm_mmu_page *sp,
2813                                     u64 *start, u64 *end)
2814 {
2815         struct page *pages[PTE_PREFETCH_NUM];
2816         struct kvm_memory_slot *slot;
2817         unsigned access = sp->role.access;
2818         int i, ret;
2819         gfn_t gfn;
2820
2821         gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2822         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
2823         if (!slot)
2824                 return -1;
2825
2826         ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2827         if (ret <= 0)
2828                 return -1;
2829
2830         for (i = 0; i < ret; i++, gfn++, start++)
2831                 mmu_set_spte(vcpu, start, access, 0, sp->role.level, gfn,
2832                              page_to_pfn(pages[i]), true, true);
2833
2834         return 0;
2835 }
2836
2837 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2838                                   struct kvm_mmu_page *sp, u64 *sptep)
2839 {
2840         u64 *spte, *start = NULL;
2841         int i;
2842
2843         WARN_ON(!sp->role.direct);
2844
2845         i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2846         spte = sp->spt + i;
2847
2848         for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2849                 if (is_shadow_present_pte(*spte) || spte == sptep) {
2850                         if (!start)
2851                                 continue;
2852                         if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2853                                 break;
2854                         start = NULL;
2855                 } else if (!start)
2856                         start = spte;
2857         }
2858 }
2859
2860 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2861 {
2862         struct kvm_mmu_page *sp;
2863
2864         /*
2865          * Since it's no accessed bit on EPT, it's no way to
2866          * distinguish between actually accessed translations
2867          * and prefetched, so disable pte prefetch if EPT is
2868          * enabled.
2869          */
2870         if (!shadow_accessed_mask)
2871                 return;
2872
2873         sp = page_header(__pa(sptep));
2874         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2875                 return;
2876
2877         __direct_pte_prefetch(vcpu, sp, sptep);
2878 }
2879
2880 static int __direct_map(struct kvm_vcpu *vcpu, int write, int map_writable,
2881                         int level, gfn_t gfn, kvm_pfn_t pfn, bool prefault)
2882 {
2883         struct kvm_shadow_walk_iterator iterator;
2884         struct kvm_mmu_page *sp;
2885         int emulate = 0;
2886         gfn_t pseudo_gfn;
2887
2888         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2889                 return 0;
2890
2891         for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2892                 if (iterator.level == level) {
2893                         emulate = mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
2894                                                write, level, gfn, pfn, prefault,
2895                                                map_writable);
2896                         direct_pte_prefetch(vcpu, iterator.sptep);
2897                         ++vcpu->stat.pf_fixed;
2898                         break;
2899                 }
2900
2901                 drop_large_spte(vcpu, iterator.sptep);
2902                 if (!is_shadow_present_pte(*iterator.sptep)) {
2903                         u64 base_addr = iterator.addr;
2904
2905                         base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2906                         pseudo_gfn = base_addr >> PAGE_SHIFT;
2907                         sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2908                                               iterator.level - 1, 1, ACC_ALL);
2909
2910                         link_shadow_page(vcpu, iterator.sptep, sp);
2911                 }
2912         }
2913         return emulate;
2914 }
2915
2916 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2917 {
2918         siginfo_t info;
2919
2920         info.si_signo   = SIGBUS;
2921         info.si_errno   = 0;
2922         info.si_code    = BUS_MCEERR_AR;
2923         info.si_addr    = (void __user *)address;
2924         info.si_addr_lsb = PAGE_SHIFT;
2925
2926         send_sig_info(SIGBUS, &info, tsk);
2927 }
2928
2929 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
2930 {
2931         /*
2932          * Do not cache the mmio info caused by writing the readonly gfn
2933          * into the spte otherwise read access on readonly gfn also can
2934          * caused mmio page fault and treat it as mmio access.
2935          * Return 1 to tell kvm to emulate it.
2936          */
2937         if (pfn == KVM_PFN_ERR_RO_FAULT)
2938                 return 1;
2939
2940         if (pfn == KVM_PFN_ERR_HWPOISON) {
2941                 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
2942                 return 0;
2943         }
2944
2945         return -EFAULT;
2946 }
2947
2948 static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2949                                         gfn_t *gfnp, kvm_pfn_t *pfnp,
2950                                         int *levelp)
2951 {
2952         kvm_pfn_t pfn = *pfnp;
2953         gfn_t gfn = *gfnp;
2954         int level = *levelp;
2955
2956         /*
2957          * Check if it's a transparent hugepage. If this would be an
2958          * hugetlbfs page, level wouldn't be set to
2959          * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2960          * here.
2961          */
2962         if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
2963             level == PT_PAGE_TABLE_LEVEL &&
2964             PageTransCompoundMap(pfn_to_page(pfn)) &&
2965             !mmu_gfn_lpage_is_disallowed(vcpu, gfn, PT_DIRECTORY_LEVEL)) {
2966                 unsigned long mask;
2967                 /*
2968                  * mmu_notifier_retry was successful and we hold the
2969                  * mmu_lock here, so the pmd can't become splitting
2970                  * from under us, and in turn
2971                  * __split_huge_page_refcount() can't run from under
2972                  * us and we can safely transfer the refcount from
2973                  * PG_tail to PG_head as we switch the pfn to tail to
2974                  * head.
2975                  */
2976                 *levelp = level = PT_DIRECTORY_LEVEL;
2977                 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2978                 VM_BUG_ON((gfn & mask) != (pfn & mask));
2979                 if (pfn & mask) {
2980                         gfn &= ~mask;
2981                         *gfnp = gfn;
2982                         kvm_release_pfn_clean(pfn);
2983                         pfn &= ~mask;
2984                         kvm_get_pfn(pfn);
2985                         *pfnp = pfn;
2986                 }
2987         }
2988 }
2989
2990 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2991                                 kvm_pfn_t pfn, unsigned access, int *ret_val)
2992 {
2993         /* The pfn is invalid, report the error! */
2994         if (unlikely(is_error_pfn(pfn))) {
2995                 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2996                 return true;
2997         }
2998
2999         if (unlikely(is_noslot_pfn(pfn)))
3000                 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
3001
3002         return false;
3003 }
3004
3005 static bool page_fault_can_be_fast(u32 error_code)
3006 {
3007         /*
3008          * Do not fix the mmio spte with invalid generation number which
3009          * need to be updated by slow page fault path.
3010          */
3011         if (unlikely(error_code & PFERR_RSVD_MASK))
3012                 return false;
3013
3014         /* See if the page fault is due to an NX violation */
3015         if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
3016                       == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
3017                 return false;
3018
3019         /*
3020          * #PF can be fast if:
3021          * 1. The shadow page table entry is not present, which could mean that
3022          *    the fault is potentially caused by access tracking (if enabled).
3023          * 2. The shadow page table entry is present and the fault
3024          *    is caused by write-protect, that means we just need change the W
3025          *    bit of the spte which can be done out of mmu-lock.
3026          *
3027          * However, if access tracking is disabled we know that a non-present
3028          * page must be a genuine page fault where we have to create a new SPTE.
3029          * So, if access tracking is disabled, we return true only for write
3030          * accesses to a present page.
3031          */
3032
3033         return shadow_acc_track_mask != 0 ||
3034                ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
3035                 == (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
3036 }
3037
3038 /*
3039  * Returns true if the SPTE was fixed successfully. Otherwise,
3040  * someone else modified the SPTE from its original value.
3041  */
3042 static bool
3043 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
3044                         u64 *sptep, u64 old_spte, u64 new_spte)
3045 {
3046         gfn_t gfn;
3047
3048         WARN_ON(!sp->role.direct);
3049
3050         /*
3051          * Theoretically we could also set dirty bit (and flush TLB) here in
3052          * order to eliminate unnecessary PML logging. See comments in
3053          * set_spte. But fast_page_fault is very unlikely to happen with PML
3054          * enabled, so we do not do this. This might result in the same GPA
3055          * to be logged in PML buffer again when the write really happens, and
3056          * eventually to be called by mark_page_dirty twice. But it's also no
3057          * harm. This also avoids the TLB flush needed after setting dirty bit
3058          * so non-PML cases won't be impacted.
3059          *
3060          * Compare with set_spte where instead shadow_dirty_mask is set.
3061          */
3062         if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
3063                 return false;
3064
3065         if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
3066                 /*
3067                  * The gfn of direct spte is stable since it is
3068                  * calculated by sp->gfn.
3069                  */
3070                 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
3071                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3072         }
3073
3074         return true;
3075 }
3076
3077 static bool is_access_allowed(u32 fault_err_code, u64 spte)
3078 {
3079         if (fault_err_code & PFERR_FETCH_MASK)
3080                 return is_executable_pte(spte);
3081
3082         if (fault_err_code & PFERR_WRITE_MASK)
3083                 return is_writable_pte(spte);
3084
3085         /* Fault was on Read access */
3086         return spte & PT_PRESENT_MASK;
3087 }
3088
3089 /*
3090  * Return value:
3091  * - true: let the vcpu to access on the same address again.
3092  * - false: let the real page fault path to fix it.
3093  */
3094 static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
3095                             u32 error_code)
3096 {
3097         struct kvm_shadow_walk_iterator iterator;
3098         struct kvm_mmu_page *sp;
3099         bool fault_handled = false;
3100         u64 spte = 0ull;
3101         uint retry_count = 0;
3102
3103         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3104                 return false;
3105
3106         if (!page_fault_can_be_fast(error_code))
3107                 return false;
3108
3109         walk_shadow_page_lockless_begin(vcpu);
3110
3111         do {
3112                 u64 new_spte;
3113
3114                 for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
3115                         if (!is_shadow_present_pte(spte) ||
3116                             iterator.level < level)
3117                                 break;
3118
3119                 sp = page_header(__pa(iterator.sptep));
3120                 if (!is_last_spte(spte, sp->role.level))
3121                         break;
3122
3123                 /*
3124                  * Check whether the memory access that caused the fault would
3125                  * still cause it if it were to be performed right now. If not,
3126                  * then this is a spurious fault caused by TLB lazily flushed,
3127                  * or some other CPU has already fixed the PTE after the
3128                  * current CPU took the fault.
3129                  *
3130                  * Need not check the access of upper level table entries since
3131                  * they are always ACC_ALL.
3132                  */
3133                 if (is_access_allowed(error_code, spte)) {
3134                         fault_handled = true;
3135                         break;
3136                 }
3137
3138                 new_spte = spte;
3139
3140                 if (is_access_track_spte(spte))
3141                         new_spte = restore_acc_track_spte(new_spte);
3142
3143                 /*
3144                  * Currently, to simplify the code, write-protection can
3145                  * be removed in the fast path only if the SPTE was
3146                  * write-protected for dirty-logging or access tracking.
3147                  */
3148                 if ((error_code & PFERR_WRITE_MASK) &&
3149                     spte_can_locklessly_be_made_writable(spte))
3150                 {
3151                         new_spte |= PT_WRITABLE_MASK;
3152
3153                         /*
3154                          * Do not fix write-permission on the large spte.  Since
3155                          * we only dirty the first page into the dirty-bitmap in
3156                          * fast_pf_fix_direct_spte(), other pages are missed
3157                          * if its slot has dirty logging enabled.
3158                          *
3159                          * Instead, we let the slow page fault path create a
3160                          * normal spte to fix the access.
3161                          *
3162                          * See the comments in kvm_arch_commit_memory_region().
3163                          */
3164                         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
3165                                 break;
3166                 }
3167
3168                 /* Verify that the fault can be handled in the fast path */
3169                 if (new_spte == spte ||
3170                     !is_access_allowed(error_code, new_spte))
3171                         break;
3172
3173                 /*
3174                  * Currently, fast page fault only works for direct mapping
3175                  * since the gfn is not stable for indirect shadow page. See
3176                  * Documentation/virtual/kvm/locking.txt to get more detail.
3177                  */
3178                 fault_handled = fast_pf_fix_direct_spte(vcpu, sp,
3179                                                         iterator.sptep, spte,
3180                                                         new_spte);
3181                 if (fault_handled)
3182                         break;
3183
3184                 if (++retry_count > 4) {
3185                         printk_once(KERN_WARNING
3186                                 "kvm: Fast #PF retrying more than 4 times.\n");
3187                         break;
3188                 }
3189
3190         } while (true);
3191
3192         trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
3193                               spte, fault_handled);
3194         walk_shadow_page_lockless_end(vcpu);
3195
3196         return fault_handled;
3197 }
3198
3199 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3200                          gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable);
3201 static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
3202
3203 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
3204                          gfn_t gfn, bool prefault)
3205 {
3206         int r;
3207         int level;
3208         bool force_pt_level = false;
3209         kvm_pfn_t pfn;
3210         unsigned long mmu_seq;
3211         bool map_writable, write = error_code & PFERR_WRITE_MASK;
3212
3213         level = mapping_level(vcpu, gfn, &force_pt_level);
3214         if (likely(!force_pt_level)) {
3215                 /*
3216                  * This path builds a PAE pagetable - so we can map
3217                  * 2mb pages at maximum. Therefore check if the level
3218                  * is larger than that.
3219                  */
3220                 if (level > PT_DIRECTORY_LEVEL)
3221                         level = PT_DIRECTORY_LEVEL;
3222
3223                 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3224         }
3225
3226         if (fast_page_fault(vcpu, v, level, error_code))
3227                 return 0;
3228
3229         mmu_seq = vcpu->kvm->mmu_notifier_seq;
3230         smp_rmb();
3231
3232         if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
3233                 return 0;
3234
3235         if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
3236                 return r;
3237
3238         spin_lock(&vcpu->kvm->mmu_lock);
3239         if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3240                 goto out_unlock;
3241         make_mmu_pages_available(vcpu);
3242         if (likely(!force_pt_level))
3243                 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3244         r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
3245         spin_unlock(&vcpu->kvm->mmu_lock);
3246
3247         return r;
3248
3249 out_unlock:
3250         spin_unlock(&vcpu->kvm->mmu_lock);
3251         kvm_release_pfn_clean(pfn);
3252         return 0;
3253 }
3254
3255
3256 static void mmu_free_roots(struct kvm_vcpu *vcpu)
3257 {
3258         int i;
3259         struct kvm_mmu_page *sp;
3260         LIST_HEAD(invalid_list);
3261
3262         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3263                 return;
3264
3265         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
3266             (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
3267              vcpu->arch.mmu.direct_map)) {
3268                 hpa_t root = vcpu->arch.mmu.root_hpa;
3269
3270                 spin_lock(&vcpu->kvm->mmu_lock);
3271                 sp = page_header(root);
3272                 --sp->root_count;
3273                 if (!sp->root_count && sp->role.invalid) {
3274                         kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
3275                         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3276                 }
3277                 spin_unlock(&vcpu->kvm->mmu_lock);
3278                 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3279                 return;
3280         }
3281
3282         spin_lock(&vcpu->kvm->mmu_lock);
3283         for (i = 0; i < 4; ++i) {
3284                 hpa_t root = vcpu->arch.mmu.pae_root[i];
3285
3286                 if (root) {
3287                         root &= PT64_BASE_ADDR_MASK;
3288                         sp = page_header(root);
3289                         --sp->root_count;
3290                         if (!sp->root_count && sp->role.invalid)
3291                                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
3292                                                          &invalid_list);
3293                 }
3294                 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
3295         }
3296         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3297         spin_unlock(&vcpu->kvm->mmu_lock);
3298         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3299 }
3300
3301 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3302 {
3303         int ret = 0;
3304
3305         if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
3306                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3307                 ret = 1;
3308         }
3309
3310         return ret;
3311 }
3312
3313 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3314 {
3315         struct kvm_mmu_page *sp;
3316         unsigned i;
3317
3318         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3319                 spin_lock(&vcpu->kvm->mmu_lock);
3320                 make_mmu_pages_available(vcpu);
3321                 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL, 1, ACC_ALL);
3322                 ++sp->root_count;
3323                 spin_unlock(&vcpu->kvm->mmu_lock);
3324                 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
3325         } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
3326                 for (i = 0; i < 4; ++i) {
3327                         hpa_t root = vcpu->arch.mmu.pae_root[i];
3328
3329                         MMU_WARN_ON(VALID_PAGE(root));
3330                         spin_lock(&vcpu->kvm->mmu_lock);
3331                         make_mmu_pages_available(vcpu);
3332                         sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
3333                                         i << 30, PT32_ROOT_LEVEL, 1, ACC_ALL);
3334                         root = __pa(sp->spt);
3335                         ++sp->root_count;
3336                         spin_unlock(&vcpu->kvm->mmu_lock);
3337                         vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
3338                 }
3339                 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3340         } else
3341                 BUG();
3342
3343         return 0;
3344 }
3345
3346 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3347 {
3348         struct kvm_mmu_page *sp;
3349         u64 pdptr, pm_mask;
3350         gfn_t root_gfn;
3351         int i;
3352
3353         root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
3354
3355         if (mmu_check_root(vcpu, root_gfn))
3356                 return 1;
3357
3358         /*
3359          * Do we shadow a long mode page table? If so we need to
3360          * write-protect the guests page table root.
3361          */
3362         if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3363                 hpa_t root = vcpu->arch.mmu.root_hpa;
3364
3365                 MMU_WARN_ON(VALID_PAGE(root));
3366
3367                 spin_lock(&vcpu->kvm->mmu_lock);
3368                 make_mmu_pages_available(vcpu);
3369                 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
3370                                       0, ACC_ALL);
3371                 root = __pa(sp->spt);
3372                 ++sp->root_count;
3373                 spin_unlock(&vcpu->kvm->mmu_lock);
3374                 vcpu->arch.mmu.root_hpa = root;
3375                 return 0;
3376         }
3377
3378         /*
3379          * We shadow a 32 bit page table. This may be a legacy 2-level
3380          * or a PAE 3-level page table. In either case we need to be aware that
3381          * the shadow page table may be a PAE or a long mode page table.
3382          */
3383         pm_mask = PT_PRESENT_MASK;
3384         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
3385                 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3386
3387         for (i = 0; i < 4; ++i) {
3388                 hpa_t root = vcpu->arch.mmu.pae_root[i];
3389
3390                 MMU_WARN_ON(VALID_PAGE(root));
3391                 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
3392                         pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
3393                         if (!(pdptr & PT_PRESENT_MASK)) {
3394                                 vcpu->arch.mmu.pae_root[i] = 0;
3395                                 continue;
3396                         }
3397                         root_gfn = pdptr >> PAGE_SHIFT;
3398                         if (mmu_check_root(vcpu, root_gfn))
3399                                 return 1;
3400                 }
3401                 spin_lock(&vcpu->kvm->mmu_lock);
3402                 make_mmu_pages_available(vcpu);
3403                 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30, PT32_ROOT_LEVEL,
3404                                       0, ACC_ALL);
3405                 root = __pa(sp->spt);
3406                 ++sp->root_count;
3407                 spin_unlock(&vcpu->kvm->mmu_lock);
3408
3409                 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
3410         }
3411         vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3412
3413         /*
3414          * If we shadow a 32 bit page table with a long mode page
3415          * table we enter this path.
3416          */
3417         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3418                 if (vcpu->arch.mmu.lm_root == NULL) {
3419                         /*
3420                          * The additional page necessary for this is only
3421                          * allocated on demand.
3422                          */
3423
3424                         u64 *lm_root;
3425
3426                         lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3427                         if (lm_root == NULL)
3428                                 return 1;
3429
3430                         lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3431
3432                         vcpu->arch.mmu.lm_root = lm_root;
3433                 }
3434
3435                 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3436         }
3437
3438         return 0;
3439 }
3440
3441 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3442 {
3443         if (vcpu->arch.mmu.direct_map)
3444                 return mmu_alloc_direct_roots(vcpu);
3445         else
3446                 return mmu_alloc_shadow_roots(vcpu);
3447 }
3448
3449 static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3450 {
3451         int i;
3452         struct kvm_mmu_page *sp;
3453
3454         if (vcpu->arch.mmu.direct_map)
3455                 return;
3456
3457         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3458                 return;
3459
3460         vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3461         kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3462         if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3463                 hpa_t root = vcpu->arch.mmu.root_hpa;
3464                 sp = page_header(root);
3465                 mmu_sync_children(vcpu, sp);
3466                 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3467                 return;
3468         }
3469         for (i = 0; i < 4; ++i) {
3470                 hpa_t root = vcpu->arch.mmu.pae_root[i];
3471
3472                 if (root && VALID_PAGE(root)) {
3473                         root &= PT64_BASE_ADDR_MASK;
3474                         sp = page_header(root);
3475                         mmu_sync_children(vcpu, sp);
3476                 }
3477         }
3478         kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3479 }
3480
3481 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3482 {
3483         spin_lock(&vcpu->kvm->mmu_lock);
3484         mmu_sync_roots(vcpu);
3485         spin_unlock(&vcpu->kvm->mmu_lock);
3486 }
3487 EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3488
3489 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3490                                   u32 access, struct x86_exception *exception)
3491 {
3492         if (exception)
3493                 exception->error_code = 0;
3494         return vaddr;
3495 }
3496
3497 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3498                                          u32 access,
3499                                          struct x86_exception *exception)
3500 {
3501         if (exception)
3502                 exception->error_code = 0;
3503         return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3504 }
3505
3506 static bool
3507 __is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3508 {
3509         int bit7 = (pte >> 7) & 1, low6 = pte & 0x3f;
3510
3511         return (pte & rsvd_check->rsvd_bits_mask[bit7][level-1]) |
3512                 ((rsvd_check->bad_mt_xwr & (1ull << low6)) != 0);
3513 }
3514
3515 static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
3516 {
3517         return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level);
3518 }
3519
3520 static bool is_shadow_zero_bits_set(struct kvm_mmu *mmu, u64 spte, int level)
3521 {
3522         return __is_rsvd_bits_set(&mmu->shadow_zero_check, spte, level);
3523 }
3524
3525 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3526 {
3527         if (direct)
3528                 return vcpu_match_mmio_gpa(vcpu, addr);
3529
3530         return vcpu_match_mmio_gva(vcpu, addr);
3531 }
3532
3533 /* return true if reserved bit is detected on spte. */
3534 static bool
3535 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3536 {
3537         struct kvm_shadow_walk_iterator iterator;
3538         u64 sptes[PT64_ROOT_LEVEL], spte = 0ull;
3539         int root, leaf;
3540         bool reserved = false;
3541
3542         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3543                 goto exit;
3544
3545         walk_shadow_page_lockless_begin(vcpu);
3546
3547         for (shadow_walk_init(&iterator, vcpu, addr),
3548                  leaf = root = iterator.level;
3549              shadow_walk_okay(&iterator);
3550              __shadow_walk_next(&iterator, spte)) {
3551                 spte = mmu_spte_get_lockless(iterator.sptep);
3552
3553                 sptes[leaf - 1] = spte;
3554                 leaf--;
3555
3556                 if (!is_shadow_present_pte(spte))
3557                         break;
3558
3559                 reserved |= is_shadow_zero_bits_set(&vcpu->arch.mmu, spte,
3560                                                     iterator.level);
3561         }
3562
3563         walk_shadow_page_lockless_end(vcpu);
3564
3565         if (reserved) {
3566                 pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
3567                        __func__, addr);
3568                 while (root > leaf) {
3569                         pr_err("------ spte 0x%llx level %d.\n",
3570                                sptes[root - 1], root);
3571                         root--;
3572                 }
3573         }
3574 exit:
3575         *sptep = spte;
3576         return reserved;
3577 }
3578
3579 int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3580 {
3581         u64 spte;
3582         bool reserved;
3583
3584         if (mmio_info_in_cache(vcpu, addr, direct))
3585                 return RET_MMIO_PF_EMULATE;
3586
3587         reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
3588         if (WARN_ON(reserved))
3589                 return RET_MMIO_PF_BUG;
3590
3591         if (is_mmio_spte(spte)) {
3592                 gfn_t gfn = get_mmio_spte_gfn(spte);
3593                 unsigned access = get_mmio_spte_access(spte);
3594
3595                 if (!check_mmio_spte(vcpu, spte))
3596                         return RET_MMIO_PF_INVALID;
3597
3598                 if (direct)
3599                         addr = 0;
3600
3601                 trace_handle_mmio_page_fault(addr, gfn, access);
3602                 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3603                 return RET_MMIO_PF_EMULATE;
3604         }
3605
3606         /*
3607          * If the page table is zapped by other cpus, let CPU fault again on
3608          * the address.
3609          */
3610         return RET_MMIO_PF_RETRY;
3611 }
3612 EXPORT_SYMBOL_GPL(handle_mmio_page_fault);
3613
3614 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3615                                          u32 error_code, gfn_t gfn)
3616 {
3617         if (unlikely(error_code & PFERR_RSVD_MASK))
3618                 return false;
3619
3620         if (!(error_code & PFERR_PRESENT_MASK) ||
3621               !(error_code & PFERR_WRITE_MASK))
3622                 return false;
3623
3624         /*
3625          * guest is writing the page which is write tracked which can
3626          * not be fixed by page fault handler.
3627          */
3628         if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
3629                 return true;
3630
3631         return false;
3632 }
3633
3634 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
3635 {
3636         struct kvm_shadow_walk_iterator iterator;
3637         u64 spte;
3638
3639         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3640                 return;
3641
3642         walk_shadow_page_lockless_begin(vcpu);
3643         for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
3644                 clear_sp_write_flooding_count(iterator.sptep);
3645                 if (!is_shadow_present_pte(spte))
3646                         break;
3647         }
3648         walk_shadow_page_lockless_end(vcpu);
3649 }
3650
3651 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3652                                 u32 error_code, bool prefault)
3653 {
3654         gfn_t gfn = gva >> PAGE_SHIFT;
3655         int r;
3656
3657         pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3658
3659         if (page_fault_handle_page_track(vcpu, error_code, gfn))
3660                 return 1;
3661
3662         r = mmu_topup_memory_caches(vcpu);
3663         if (r)
3664                 return r;
3665
3666         MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3667
3668
3669         return nonpaging_map(vcpu, gva & PAGE_MASK,
3670                              error_code, gfn, prefault);
3671 }
3672
3673 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3674 {
3675         struct kvm_arch_async_pf arch;
3676
3677         arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3678         arch.gfn = gfn;
3679         arch.direct_map = vcpu->arch.mmu.direct_map;
3680         arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3681
3682         return kvm_setup_async_pf(vcpu, gva, kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3683 }
3684
3685 static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3686 {
3687         if (unlikely(!lapic_in_kernel(vcpu) ||
3688                      kvm_event_needs_reinjection(vcpu)))
3689                 return false;
3690
3691         return kvm_x86_ops->interrupt_allowed(vcpu);
3692 }
3693
3694 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3695                          gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable)
3696 {
3697         struct kvm_memory_slot *slot;
3698         bool async;
3699
3700         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3701         async = false;
3702         *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
3703         if (!async)
3704                 return false; /* *pfn has correct page already */
3705
3706         if (!prefault && can_do_async_pf(vcpu)) {
3707                 trace_kvm_try_async_get_page(gva, gfn);
3708                 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3709                         trace_kvm_async_pf_doublefault(gva, gfn);
3710                         kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3711                         return true;
3712                 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3713                         return true;
3714         }
3715
3716         *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
3717         return false;
3718 }
3719
3720 static bool
3721 check_hugepage_cache_consistency(struct kvm_vcpu *vcpu, gfn_t gfn, int level)
3722 {
3723         int page_num = KVM_PAGES_PER_HPAGE(level);
3724
3725         gfn &= ~(page_num - 1);
3726
3727         return kvm_mtrr_check_gfn_range_consistency(vcpu, gfn, page_num);
3728 }
3729
3730 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3731                           bool prefault)
3732 {
3733         kvm_pfn_t pfn;
3734         int r;
3735         int level;
3736         bool force_pt_level;
3737         gfn_t gfn = gpa >> PAGE_SHIFT;
3738         unsigned long mmu_seq;
3739         int write = error_code & PFERR_WRITE_MASK;
3740         bool map_writable;
3741
3742         MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3743
3744         if (page_fault_handle_page_track(vcpu, error_code, gfn))
3745                 return 1;
3746
3747         r = mmu_topup_memory_caches(vcpu);
3748         if (r)
3749                 return r;
3750
3751         force_pt_level = !check_hugepage_cache_consistency(vcpu, gfn,
3752                                                            PT_DIRECTORY_LEVEL);
3753         level = mapping_level(vcpu, gfn, &force_pt_level);
3754         if (likely(!force_pt_level)) {
3755                 if (level > PT_DIRECTORY_LEVEL &&
3756                     !check_hugepage_cache_consistency(vcpu, gfn, level))
3757                         level = PT_DIRECTORY_LEVEL;
3758                 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3759         }
3760
3761         if (fast_page_fault(vcpu, gpa, level, error_code))
3762                 return 0;
3763
3764         mmu_seq = vcpu->kvm->mmu_notifier_seq;
3765         smp_rmb();
3766
3767         if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3768                 return 0;
3769
3770         if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3771                 return r;
3772
3773         spin_lock(&vcpu->kvm->mmu_lock);
3774         if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3775                 goto out_unlock;
3776         make_mmu_pages_available(vcpu);
3777         if (likely(!force_pt_level))
3778                 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3779         r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
3780         spin_unlock(&vcpu->kvm->mmu_lock);
3781
3782         return r;
3783
3784 out_unlock:
3785         spin_unlock(&vcpu->kvm->mmu_lock);
3786         kvm_release_pfn_clean(pfn);
3787         return 0;
3788 }
3789
3790 static void nonpaging_init_context(struct kvm_vcpu *vcpu,
3791                                    struct kvm_mmu *context)
3792 {
3793         context->page_fault = nonpaging_page_fault;
3794         context->gva_to_gpa = nonpaging_gva_to_gpa;
3795         context->sync_page = nonpaging_sync_page;
3796         context->invlpg = nonpaging_invlpg;
3797         context->update_pte = nonpaging_update_pte;
3798         context->root_level = 0;
3799         context->shadow_root_level = PT32E_ROOT_LEVEL;
3800         context->root_hpa = INVALID_PAGE;
3801         context->direct_map = true;
3802         context->nx = false;
3803 }
3804
3805 void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu)
3806 {
3807         mmu_free_roots(vcpu);
3808 }
3809
3810 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3811 {
3812         return kvm_read_cr3(vcpu);
3813 }
3814
3815 static void inject_page_fault(struct kvm_vcpu *vcpu,
3816                               struct x86_exception *fault)
3817 {
3818         vcpu->arch.mmu.inject_page_fault(vcpu, fault);
3819 }
3820
3821 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
3822                            unsigned access, int *nr_present)
3823 {
3824         if (unlikely(is_mmio_spte(*sptep))) {
3825                 if (gfn != get_mmio_spte_gfn(*sptep)) {
3826                         mmu_spte_clear_no_track(sptep);
3827                         return true;
3828                 }
3829
3830                 (*nr_present)++;
3831                 mark_mmio_spte(vcpu, sptep, gfn, access);
3832                 return true;
3833         }
3834
3835         return false;
3836 }
3837
3838 static inline bool is_last_gpte(struct kvm_mmu *mmu,
3839                                 unsigned level, unsigned gpte)
3840 {
3841         /*
3842          * PT_PAGE_TABLE_LEVEL always terminates.  The RHS has bit 7 set
3843          * iff level <= PT_PAGE_TABLE_LEVEL, which for our purpose means
3844          * level == PT_PAGE_TABLE_LEVEL; set PT_PAGE_SIZE_MASK in gpte then.
3845          */
3846         gpte |= level - PT_PAGE_TABLE_LEVEL - 1;
3847
3848         /*
3849          * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
3850          * If it is clear, there are no large pages at this level, so clear
3851          * PT_PAGE_SIZE_MASK in gpte if that is the case.
3852          */
3853         gpte &= level - mmu->last_nonleaf_level;
3854
3855         return gpte & PT_PAGE_SIZE_MASK;
3856 }
3857
3858 #define PTTYPE_EPT 18 /* arbitrary */
3859 #define PTTYPE PTTYPE_EPT
3860 #include "paging_tmpl.h"
3861 #undef PTTYPE
3862
3863 #define PTTYPE 64
3864 #include "paging_tmpl.h"
3865 #undef PTTYPE
3866
3867 #define PTTYPE 32
3868 #include "paging_tmpl.h"
3869 #undef PTTYPE
3870
3871 static void
3872 __reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3873                         struct rsvd_bits_validate *rsvd_check,
3874                         int maxphyaddr, int level, bool nx, bool gbpages,
3875                         bool pse, bool amd)
3876 {
3877         u64 exb_bit_rsvd = 0;
3878         u64 gbpages_bit_rsvd = 0;
3879         u64 nonleaf_bit8_rsvd = 0;
3880
3881         rsvd_check->bad_mt_xwr = 0;
3882
3883         if (!nx)
3884                 exb_bit_rsvd = rsvd_bits(63, 63);
3885         if (!gbpages)
3886                 gbpages_bit_rsvd = rsvd_bits(7, 7);
3887
3888         /*
3889          * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
3890          * leaf entries) on AMD CPUs only.
3891          */
3892         if (amd)
3893                 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
3894
3895         switch (level) {
3896         case PT32_ROOT_LEVEL:
3897                 /* no rsvd bits for 2 level 4K page table entries */
3898                 rsvd_check->rsvd_bits_mask[0][1] = 0;
3899                 rsvd_check->rsvd_bits_mask[0][0] = 0;
3900                 rsvd_check->rsvd_bits_mask[1][0] =
3901                         rsvd_check->rsvd_bits_mask[0][0];
3902
3903                 if (!pse) {
3904                         rsvd_check->rsvd_bits_mask[1][1] = 0;
3905                         break;
3906                 }
3907
3908                 if (is_cpuid_PSE36())
3909                         /* 36bits PSE 4MB page */
3910                         rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3911                 else
3912                         /* 32 bits PSE 4MB page */
3913                         rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
3914                 break;
3915         case PT32E_ROOT_LEVEL:
3916                 rsvd_check->rsvd_bits_mask[0][2] =
3917                         rsvd_bits(maxphyaddr, 63) |
3918                         rsvd_bits(5, 8) | rsvd_bits(1, 2);      /* PDPTE */
3919                 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3920                         rsvd_bits(maxphyaddr, 62);      /* PDE */
3921                 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3922                         rsvd_bits(maxphyaddr, 62);      /* PTE */
3923                 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3924                         rsvd_bits(maxphyaddr, 62) |
3925                         rsvd_bits(13, 20);              /* large page */
3926                 rsvd_check->rsvd_bits_mask[1][0] =
3927                         rsvd_check->rsvd_bits_mask[0][0];
3928                 break;
3929         case PT64_ROOT_LEVEL:
3930                 rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3931                         nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
3932                         rsvd_bits(maxphyaddr, 51);
3933                 rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3934                         nonleaf_bit8_rsvd | gbpages_bit_rsvd |
3935                         rsvd_bits(maxphyaddr, 51);
3936                 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3937                         rsvd_bits(maxphyaddr, 51);
3938                 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3939                         rsvd_bits(maxphyaddr, 51);
3940                 rsvd_check->rsvd_bits_mask[1][3] =
3941                         rsvd_check->rsvd_bits_mask[0][3];
3942                 rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3943                         gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
3944                         rsvd_bits(13, 29);
3945                 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3946                         rsvd_bits(maxphyaddr, 51) |
3947                         rsvd_bits(13, 20);              /* large page */
3948                 rsvd_check->rsvd_bits_mask[1][0] =
3949                         rsvd_check->rsvd_bits_mask[0][0];
3950                 break;
3951         }
3952 }
3953
3954 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3955                                   struct kvm_mmu *context)
3956 {
3957         __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
3958                                 cpuid_maxphyaddr(vcpu), context->root_level,
3959                                 context->nx, guest_cpuid_has_gbpages(vcpu),
3960                                 is_pse(vcpu), guest_cpuid_is_amd(vcpu));
3961 }
3962
3963 static void
3964 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
3965                             int maxphyaddr, bool execonly)
3966 {
3967         u64 bad_mt_xwr;
3968
3969         rsvd_check->rsvd_bits_mask[0][3] =
3970                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
3971         rsvd_check->rsvd_bits_mask[0][2] =
3972                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3973         rsvd_check->rsvd_bits_mask[0][1] =
3974                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3975         rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
3976
3977         /* large page */
3978         rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
3979         rsvd_check->rsvd_bits_mask[1][2] =
3980                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
3981         rsvd_check->rsvd_bits_mask[1][1] =
3982                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
3983         rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
3984
3985         bad_mt_xwr = 0xFFull << (2 * 8);        /* bits 3..5 must not be 2 */
3986         bad_mt_xwr |= 0xFFull << (3 * 8);       /* bits 3..5 must not be 3 */
3987         bad_mt_xwr |= 0xFFull << (7 * 8);       /* bits 3..5 must not be 7 */
3988         bad_mt_xwr |= REPEAT_BYTE(1ull << 2);   /* bits 0..2 must not be 010 */
3989         bad_mt_xwr |= REPEAT_BYTE(1ull << 6);   /* bits 0..2 must not be 110 */
3990         if (!execonly) {
3991                 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
3992                 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
3993         }
3994         rsvd_check->bad_mt_xwr = bad_mt_xwr;
3995 }
3996
3997 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
3998                 struct kvm_mmu *context, bool execonly)
3999 {
4000         __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4001                                     cpuid_maxphyaddr(vcpu), execonly);
4002 }
4003
4004 /*
4005  * the page table on host is the shadow page table for the page
4006  * table in guest or amd nested guest, its mmu features completely
4007  * follow the features in guest.
4008  */
4009 void
4010 reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
4011 {
4012         bool uses_nx = context->nx || context->base_role.smep_andnot_wp;
4013
4014         /*
4015          * Passing "true" to the last argument is okay; it adds a check
4016          * on bit 8 of the SPTEs which KVM doesn't use anyway.
4017          */
4018         __reset_rsvds_bits_mask(vcpu, &context->shadow_zero_check,
4019                                 boot_cpu_data.x86_phys_bits,
4020                                 context->shadow_root_level, uses_nx,
4021                                 guest_cpuid_has_gbpages(vcpu), is_pse(vcpu),
4022                                 true);
4023 }
4024 EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
4025
4026 static inline bool boot_cpu_is_amd(void)
4027 {
4028         WARN_ON_ONCE(!tdp_enabled);
4029         return shadow_x_mask == 0;
4030 }
4031
4032 /*
4033  * the direct page table on host, use as much mmu features as
4034  * possible, however, kvm currently does not do execution-protection.
4035  */
4036 static void
4037 reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4038                                 struct kvm_mmu *context)
4039 {
4040         if (boot_cpu_is_amd())
4041                 __reset_rsvds_bits_mask(vcpu, &context->shadow_zero_check,
4042                                         boot_cpu_data.x86_phys_bits,
4043                                         context->shadow_root_level, false,
4044                                         boot_cpu_has(X86_FEATURE_GBPAGES),
4045                                         true, true);
4046         else
4047                 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4048                                             boot_cpu_data.x86_phys_bits,
4049                                             false);
4050
4051 }
4052
4053 /*
4054  * as the comments in reset_shadow_zero_bits_mask() except it
4055  * is the shadow page table for intel nested guest.
4056  */
4057 static void
4058 reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4059                                 struct kvm_mmu *context, bool execonly)
4060 {
4061         __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4062                                     boot_cpu_data.x86_phys_bits, execonly);
4063 }
4064
4065 static void update_permission_bitmask(struct kvm_vcpu *vcpu,
4066                                       struct kvm_mmu *mmu, bool ept)
4067 {
4068         unsigned bit, byte, pfec;
4069         u8 map;
4070         bool fault, x, w, u, wf, uf, ff, smapf, cr4_smap, cr4_smep, smap = 0;
4071
4072         cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4073         cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4074         for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4075                 pfec = byte << 1;
4076                 map = 0;
4077                 wf = pfec & PFERR_WRITE_MASK;
4078                 uf = pfec & PFERR_USER_MASK;
4079                 ff = pfec & PFERR_FETCH_MASK;
4080                 /*
4081                  * PFERR_RSVD_MASK bit is set in PFEC if the access is not
4082                  * subject to SMAP restrictions, and cleared otherwise. The
4083                  * bit is only meaningful if the SMAP bit is set in CR4.
4084                  */
4085                 smapf = !(pfec & PFERR_RSVD_MASK);
4086                 for (bit = 0; bit < 8; ++bit) {
4087                         x = bit & ACC_EXEC_MASK;
4088                         w = bit & ACC_WRITE_MASK;
4089                         u = bit & ACC_USER_MASK;
4090
4091                         if (!ept) {
4092                                 /* Not really needed: !nx will cause pte.nx to fault */
4093                                 x |= !mmu->nx;
4094                                 /* Allow supervisor writes if !cr0.wp */
4095                                 w |= !is_write_protection(vcpu) && !uf;
4096                                 /* Disallow supervisor fetches of user code if cr4.smep */
4097                                 x &= !(cr4_smep && u && !uf);
4098
4099                                 /*
4100                                  * SMAP:kernel-mode data accesses from user-mode
4101                                  * mappings should fault. A fault is considered
4102                                  * as a SMAP violation if all of the following
4103                                  * conditions are ture:
4104                                  *   - X86_CR4_SMAP is set in CR4
4105                                  *   - A user page is accessed
4106                                  *   - Page fault in kernel mode
4107                                  *   - if CPL = 3 or X86_EFLAGS_AC is clear
4108                                  *
4109                                  *   Here, we cover the first three conditions.
4110                                  *   The fourth is computed dynamically in
4111                                  *   permission_fault() and is in smapf.
4112                                  *
4113                                  *   Also, SMAP does not affect instruction
4114                                  *   fetches, add the !ff check here to make it
4115                                  *   clearer.
4116                                  */
4117                                 smap = cr4_smap && u && !uf && !ff;
4118                         }
4119
4120                         fault = (ff && !x) || (uf && !u) || (wf && !w) ||
4121                                 (smapf && smap);
4122                         map |= fault << bit;
4123                 }
4124                 mmu->permissions[byte] = map;
4125         }
4126 }
4127
4128 /*
4129 * PKU is an additional mechanism by which the paging controls access to
4130 * user-mode addresses based on the value in the PKRU register.  Protection
4131 * key violations are reported through a bit in the page fault error code.
4132 * Unlike other bits of the error code, the PK bit is not known at the
4133 * call site of e.g. gva_to_gpa; it must be computed directly in
4134 * permission_fault based on two bits of PKRU, on some machine state (CR4,
4135 * CR0, EFER, CPL), and on other bits of the error code and the page tables.
4136 *
4137 * In particular the following conditions come from the error code, the
4138 * page tables and the machine state:
4139 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
4140 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
4141 * - PK is always zero if U=0 in the page tables
4142 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
4143 *
4144 * The PKRU bitmask caches the result of these four conditions.  The error
4145 * code (minus the P bit) and the page table's U bit form an index into the
4146 * PKRU bitmask.  Two bits of the PKRU bitmask are then extracted and ANDed
4147 * with the two bits of the PKRU register corresponding to the protection key.
4148 * For the first three conditions above the bits will be 00, thus masking
4149 * away both AD and WD.  For all reads or if the last condition holds, WD
4150 * only will be masked away.
4151 */
4152 static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
4153                                 bool ept)
4154 {
4155         unsigned bit;
4156         bool wp;
4157
4158         if (ept) {
4159                 mmu->pkru_mask = 0;
4160                 return;
4161         }
4162
4163         /* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
4164         if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
4165                 mmu->pkru_mask = 0;
4166                 return;
4167         }
4168
4169         wp = is_write_protection(vcpu);
4170
4171         for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
4172                 unsigned pfec, pkey_bits;
4173                 bool check_pkey, check_write, ff, uf, wf, pte_user;
4174
4175                 pfec = bit << 1;
4176                 ff = pfec & PFERR_FETCH_MASK;
4177                 uf = pfec & PFERR_USER_MASK;
4178                 wf = pfec & PFERR_WRITE_MASK;
4179
4180                 /* PFEC.RSVD is replaced by ACC_USER_MASK. */
4181                 pte_user = pfec & PFERR_RSVD_MASK;
4182
4183                 /*
4184                  * Only need to check the access which is not an
4185                  * instruction fetch and is to a user page.
4186                  */
4187                 check_pkey = (!ff && pte_user);
4188                 /*
4189                  * write access is controlled by PKRU if it is a
4190                  * user access or CR0.WP = 1.
4191                  */
4192                 check_write = check_pkey && wf && (uf || wp);
4193
4194                 /* PKRU.AD stops both read and write access. */
4195                 pkey_bits = !!check_pkey;
4196                 /* PKRU.WD stops write access. */
4197                 pkey_bits |= (!!check_write) << 1;
4198
4199                 mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4200         }
4201 }
4202
4203 static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
4204 {
4205         unsigned root_level = mmu->root_level;
4206
4207         mmu->last_nonleaf_level = root_level;
4208         if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
4209                 mmu->last_nonleaf_level++;
4210 }
4211
4212 static void paging64_init_context_common(struct kvm_vcpu *vcpu,
4213                                          struct kvm_mmu *context,
4214                                          int level)
4215 {
4216         context->nx = is_nx(vcpu);
4217         context->root_level = level;
4218
4219         reset_rsvds_bits_mask(vcpu, context);
4220         update_permission_bitmask(vcpu, context, false);
4221         update_pkru_bitmask(vcpu, context, false);
4222         update_last_nonleaf_level(vcpu, context);
4223
4224         MMU_WARN_ON(!is_pae(vcpu));
4225         context->page_fault = paging64_page_fault;
4226         context->gva_to_gpa = paging64_gva_to_gpa;
4227         context->sync_page = paging64_sync_page;
4228         context->invlpg = paging64_invlpg;
4229         context->update_pte = paging64_update_pte;
4230         context->shadow_root_level = level;
4231         context->root_hpa = INVALID_PAGE;
4232         context->direct_map = false;
4233 }
4234
4235 static void paging64_init_context(struct kvm_vcpu *vcpu,
4236                                   struct kvm_mmu *context)
4237 {
4238         paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
4239 }
4240
4241 static void paging32_init_context(struct kvm_vcpu *vcpu,
4242                                   struct kvm_mmu *context)
4243 {
4244         context->nx = false;
4245         context->root_level = PT32_ROOT_LEVEL;
4246
4247         reset_rsvds_bits_mask(vcpu, context);
4248         update_permission_bitmask(vcpu, context, false);
4249         update_pkru_bitmask(vcpu, context, false);
4250         update_last_nonleaf_level(vcpu, context);
4251
4252         context->page_fault = paging32_page_fault;
4253         context->gva_to_gpa = paging32_gva_to_gpa;
4254         context->sync_page = paging32_sync_page;
4255         context->invlpg = paging32_invlpg;
4256         context->update_pte = paging32_update_pte;
4257         context->shadow_root_level = PT32E_ROOT_LEVEL;
4258         context->root_hpa = INVALID_PAGE;
4259         context->direct_map = false;
4260 }
4261
4262 static void paging32E_init_context(struct kvm_vcpu *vcpu,
4263                                    struct kvm_mmu *context)
4264 {
4265         paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
4266 }
4267
4268 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4269 {
4270         struct kvm_mmu *context = &vcpu->arch.mmu;
4271
4272         context->base_role.word = 0;
4273         context->base_role.smm = is_smm(vcpu);
4274         context->page_fault = tdp_page_fault;
4275         context->sync_page = nonpaging_sync_page;
4276         context->invlpg = nonpaging_invlpg;
4277         context->update_pte = nonpaging_update_pte;
4278         context->shadow_root_level = kvm_x86_ops->get_tdp_level();
4279         context->root_hpa = INVALID_PAGE;
4280         context->direct_map = true;
4281         context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
4282         context->get_cr3 = get_cr3;
4283         context->get_pdptr = kvm_pdptr_read;
4284         context->inject_page_fault = kvm_inject_page_fault;
4285
4286         if (!is_paging(vcpu)) {
4287                 context->nx = false;
4288                 context->gva_to_gpa = nonpaging_gva_to_gpa;
4289                 context->root_level = 0;
4290         } else if (is_long_mode(vcpu)) {
4291                 context->nx = is_nx(vcpu);
4292                 context->root_level = PT64_ROOT_LEVEL;
4293                 reset_rsvds_bits_mask(vcpu, context);
4294                 context->gva_to_gpa = paging64_gva_to_gpa;
4295         } else if (is_pae(vcpu)) {
4296                 context->nx = is_nx(vcpu);
4297                 context->root_level = PT32E_ROOT_LEVEL;
4298                 reset_rsvds_bits_mask(vcpu, context);
4299                 context->gva_to_gpa = paging64_gva_to_gpa;
4300         } else {
4301                 context->nx = false;
4302                 context->root_level = PT32_ROOT_LEVEL;
4303                 reset_rsvds_bits_mask(vcpu, context);
4304                 context->gva_to_gpa = paging32_gva_to_gpa;
4305         }
4306
4307         update_permission_bitmask(vcpu, context, false);
4308         update_pkru_bitmask(vcpu, context, false);
4309         update_last_nonleaf_level(vcpu, context);
4310         reset_tdp_shadow_zero_bits_mask(vcpu, context);
4311 }
4312
4313 void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
4314 {
4315         bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4316         bool smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4317         struct kvm_mmu *context = &vcpu->arch.mmu;
4318
4319         MMU_WARN_ON(VALID_PAGE(context->root_hpa));
4320
4321         if (!is_paging(vcpu))
4322                 nonpaging_init_context(vcpu, context);
4323         else if (is_long_mode(vcpu))
4324                 paging64_init_context(vcpu, context);
4325         else if (is_pae(vcpu))
4326                 paging32E_init_context(vcpu, context);
4327         else
4328                 paging32_init_context(vcpu, context);
4329
4330         context->base_role.nxe = is_nx(vcpu);
4331         context->base_role.cr4_pae = !!is_pae(vcpu);
4332         context->base_role.cr0_wp  = is_write_protection(vcpu);
4333         context->base_role.smep_andnot_wp
4334                 = smep && !is_write_protection(vcpu);
4335         context->base_role.smap_andnot_wp
4336                 = smap && !is_write_protection(vcpu);
4337         context->base_role.smm = is_smm(vcpu);
4338         reset_shadow_zero_bits_mask(vcpu, context);
4339 }
4340 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
4341
4342 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly)
4343 {
4344         struct kvm_mmu *context = &vcpu->arch.mmu;
4345
4346         MMU_WARN_ON(VALID_PAGE(context->root_hpa));
4347
4348         context->shadow_root_level = kvm_x86_ops->get_tdp_level();
4349
4350         context->nx = true;
4351         context->page_fault = ept_page_fault;
4352         context->gva_to_gpa = ept_gva_to_gpa;
4353         context->sync_page = ept_sync_page;
4354         context->invlpg = ept_invlpg;
4355         context->update_pte = ept_update_pte;
4356         context->root_level = context->shadow_root_level;
4357         context->root_hpa = INVALID_PAGE;
4358         context->direct_map = false;
4359
4360         update_permission_bitmask(vcpu, context, true);
4361         update_pkru_bitmask(vcpu, context, true);
4362         reset_rsvds_bits_mask_ept(vcpu, context, execonly);
4363         reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
4364 }
4365 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4366
4367 static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4368 {
4369         struct kvm_mmu *context = &vcpu->arch.mmu;
4370
4371         kvm_init_shadow_mmu(vcpu);
4372         context->set_cr3           = kvm_x86_ops->set_cr3;
4373         context->get_cr3           = get_cr3;
4374         context->get_pdptr         = kvm_pdptr_read;
4375         context->inject_page_fault = kvm_inject_page_fault;
4376 }
4377
4378 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4379 {
4380         struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4381
4382         g_context->get_cr3           = get_cr3;
4383         g_context->get_pdptr         = kvm_pdptr_read;
4384         g_context->inject_page_fault = kvm_inject_page_fault;
4385
4386         /*
4387          * Note that arch.mmu.gva_to_gpa translates l2_gpa to l1_gpa using
4388          * L1's nested page tables (e.g. EPT12). The nested translation
4389          * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
4390          * L2's page tables as the first level of translation and L1's
4391          * nested page tables as the second level of translation. Basically
4392          * the gva_to_gpa functions between mmu and nested_mmu are swapped.
4393          */
4394         if (!is_paging(vcpu)) {
4395                 g_context->nx = false;
4396                 g_context->root_level = 0;
4397                 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4398         } else if (is_long_mode(vcpu)) {
4399                 g_context->nx = is_nx(vcpu);
4400                 g_context->root_level = PT64_ROOT_LEVEL;
4401                 reset_rsvds_bits_mask(vcpu, g_context);
4402                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4403         } else if (is_pae(vcpu)) {
4404                 g_context->nx = is_nx(vcpu);
4405                 g_context->root_level = PT32E_ROOT_LEVEL;
4406                 reset_rsvds_bits_mask(vcpu, g_context);
4407                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4408         } else {
4409                 g_context->nx = false;
4410                 g_context->root_level = PT32_ROOT_LEVEL;
4411                 reset_rsvds_bits_mask(vcpu, g_context);
4412                 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
4413         }
4414
4415         update_permission_bitmask(vcpu, g_context, false);
4416         update_pkru_bitmask(vcpu, g_context, false);
4417         update_last_nonleaf_level(vcpu, g_context);
4418 }
4419
4420 static void init_kvm_mmu(struct kvm_vcpu *vcpu)
4421 {
4422         if (mmu_is_nested(vcpu))
4423                 init_kvm_nested_mmu(vcpu);
4424         else if (tdp_enabled)
4425                 init_kvm_tdp_mmu(vcpu);
4426         else
4427                 init_kvm_softmmu(vcpu);
4428 }
4429
4430 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
4431 {
4432         kvm_mmu_unload(vcpu);
4433         init_kvm_mmu(vcpu);
4434 }
4435 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
4436
4437 int kvm_mmu_load(struct kvm_vcpu *vcpu)
4438 {
4439         int r;
4440
4441         r = mmu_topup_memory_caches(vcpu);
4442         if (r)
4443                 goto out;
4444         r = mmu_alloc_roots(vcpu);
4445         kvm_mmu_sync_roots(vcpu);
4446         if (r)
4447                 goto out;
4448         /* set_cr3() should ensure TLB has been flushed */
4449         vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
4450 out:
4451         return r;
4452 }
4453 EXPORT_SYMBOL_GPL(kvm_mmu_load);
4454
4455 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
4456 {
4457         mmu_free_roots(vcpu);
4458         WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
4459 }
4460 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
4461
4462 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
4463                                   struct kvm_mmu_page *sp, u64 *spte,
4464                                   const void *new)
4465 {
4466         if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
4467                 ++vcpu->kvm->stat.mmu_pde_zapped;
4468                 return;
4469         }
4470
4471         ++vcpu->kvm->stat.mmu_pte_updated;
4472         vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
4473 }
4474
4475 static bool need_remote_flush(u64 old, u64 new)
4476 {
4477         if (!is_shadow_present_pte(old))
4478                 return false;
4479         if (!is_shadow_present_pte(new))
4480                 return true;
4481         if ((old ^ new) & PT64_BASE_ADDR_MASK)
4482                 return true;
4483         old ^= shadow_nx_mask;
4484         new ^= shadow_nx_mask;
4485         return (old & ~new & PT64_PERM_MASK) != 0;
4486 }
4487
4488 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
4489                                     const u8 *new, int *bytes)
4490 {
4491         u64 gentry;
4492         int r;
4493
4494         /*
4495          * Assume that the pte write on a page table of the same type
4496          * as the current vcpu paging mode since we update the sptes only
4497          * when they have the same mode.
4498          */
4499         if (is_pae(vcpu) && *bytes == 4) {
4500                 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
4501                 *gpa &= ~(gpa_t)7;
4502                 *bytes = 8;
4503                 r = kvm_vcpu_read_guest(vcpu, *gpa, &gentry, 8);
4504                 if (r)
4505                         gentry = 0;
4506                 new = (const u8 *)&gentry;
4507         }
4508
4509         switch (*bytes) {
4510         case 4:
4511                 gentry = *(const u32 *)new;
4512                 break;
4513         case 8:
4514                 gentry = *(const u64 *)new;
4515                 break;
4516         default:
4517                 gentry = 0;
4518                 break;
4519         }
4520
4521         return gentry;
4522 }
4523
4524 /*
4525  * If we're seeing too many writes to a page, it may no longer be a page table,
4526  * or we may be forking, in which case it is better to unmap the page.
4527  */
4528 static bool detect_write_flooding(struct kvm_mmu_page *sp)
4529 {
4530         /*
4531          * Skip write-flooding detected for the sp whose level is 1, because
4532          * it can become unsync, then the guest page is not write-protected.
4533          */
4534         if (sp->role.level == PT_PAGE_TABLE_LEVEL)
4535                 return false;
4536
4537         atomic_inc(&sp->write_flooding_count);
4538         return atomic_read(&sp->write_flooding_count) >= 3;
4539 }
4540
4541 /*
4542  * Misaligned accesses are too much trouble to fix up; also, they usually
4543  * indicate a page is not used as a page table.
4544  */
4545 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
4546                                     int bytes)
4547 {
4548         unsigned offset, pte_size, misaligned;
4549
4550         pgprintk("misaligned: gpa %llx bytes %d role %x\n",
4551                  gpa, bytes, sp->role.word);
4552
4553         offset = offset_in_page(gpa);
4554         pte_size = sp->role.cr4_pae ? 8 : 4;
4555
4556         /*
4557          * Sometimes, the OS only writes the last one bytes to update status
4558          * bits, for example, in linux, andb instruction is used in clear_bit().
4559          */
4560         if (!(offset & (pte_size - 1)) && bytes == 1)
4561                 return false;
4562
4563         misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
4564         misaligned |= bytes < 4;
4565
4566         return misaligned;
4567 }
4568
4569 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
4570 {
4571         unsigned page_offset, quadrant;
4572         u64 *spte;
4573         int level;
4574
4575         page_offset = offset_in_page(gpa);
4576         level = sp->role.level;
4577         *nspte = 1;
4578         if (!sp->role.cr4_pae) {
4579                 page_offset <<= 1;      /* 32->64 */
4580                 /*
4581                  * A 32-bit pde maps 4MB while the shadow pdes map
4582                  * only 2MB.  So we need to double the offset again
4583                  * and zap two pdes instead of one.
4584                  */
4585                 if (level == PT32_ROOT_LEVEL) {
4586                         page_offset &= ~7; /* kill rounding error */
4587                         page_offset <<= 1;
4588                         *nspte = 2;
4589                 }
4590                 quadrant = page_offset >> PAGE_SHIFT;
4591                 page_offset &= ~PAGE_MASK;
4592                 if (quadrant != sp->role.quadrant)
4593                         return NULL;
4594         }
4595
4596         spte = &sp->spt[page_offset / sizeof(*spte)];
4597         return spte;
4598 }
4599
4600 static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
4601                               const u8 *new, int bytes,
4602                               struct kvm_page_track_notifier_node *node)
4603 {
4604         gfn_t gfn = gpa >> PAGE_SHIFT;
4605         struct kvm_mmu_page *sp;
4606         LIST_HEAD(invalid_list);
4607         u64 entry, gentry, *spte;
4608         int npte;
4609         bool remote_flush, local_flush;
4610         union kvm_mmu_page_role mask = { };
4611
4612         mask.cr0_wp = 1;
4613         mask.cr4_pae = 1;
4614         mask.nxe = 1;
4615         mask.smep_andnot_wp = 1;
4616         mask.smap_andnot_wp = 1;
4617         mask.smm = 1;
4618
4619         /*
4620          * If we don't have indirect shadow pages, it means no page is
4621          * write-protected, so we can exit simply.
4622          */
4623         if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
4624                 return;
4625
4626         remote_flush = local_flush = false;
4627
4628         pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
4629
4630         gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
4631
4632         /*
4633          * No need to care whether allocation memory is successful
4634          * or not since pte prefetch is skiped if it does not have
4635          * enough objects in the cache.
4636          */
4637         mmu_topup_memory_caches(vcpu);
4638
4639         spin_lock(&vcpu->kvm->mmu_lock);
4640         ++vcpu->kvm->stat.mmu_pte_write;
4641         kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
4642
4643         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
4644                 if (detect_write_misaligned(sp, gpa, bytes) ||
4645                       detect_write_flooding(sp)) {
4646                         kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
4647                         ++vcpu->kvm->stat.mmu_flooded;
4648                         continue;
4649                 }
4650
4651                 spte = get_written_sptes(sp, gpa, &npte);
4652                 if (!spte)
4653                         continue;
4654
4655                 local_flush = true;
4656                 while (npte--) {
4657                         entry = *spte;
4658                         mmu_page_zap_pte(vcpu->kvm, sp, spte);
4659                         if (gentry &&
4660                               !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
4661                               & mask.word) && rmap_can_add(vcpu))
4662                                 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
4663                         if (need_remote_flush(entry, *spte))
4664                                 remote_flush = true;
4665                         ++spte;
4666                 }
4667         }
4668         kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
4669         kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
4670         spin_unlock(&vcpu->kvm->mmu_lock);
4671 }
4672
4673 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
4674 {
4675         gpa_t gpa;
4676         int r;
4677
4678         if (vcpu->arch.mmu.direct_map)
4679                 return 0;
4680
4681         gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
4682
4683         r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4684
4685         return r;
4686 }
4687 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
4688
4689 static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
4690 {
4691         LIST_HEAD(invalid_list);
4692
4693         if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
4694                 return;
4695
4696         while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
4697                 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
4698                         break;
4699
4700                 ++vcpu->kvm->stat.mmu_recycled;
4701         }
4702         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4703 }
4704
4705 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u64 error_code,
4706                        void *insn, int insn_len)
4707 {
4708         int r, emulation_type = EMULTYPE_RETRY;
4709         enum emulation_result er;
4710         bool direct = vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu);
4711
4712         if (unlikely(error_code & PFERR_RSVD_MASK)) {
4713                 r = handle_mmio_page_fault(vcpu, cr2, direct);
4714                 if (r == RET_MMIO_PF_EMULATE) {
4715                         emulation_type = 0;
4716                         goto emulate;
4717                 }
4718                 if (r == RET_MMIO_PF_RETRY)
4719                         return 1;
4720                 if (r < 0)
4721                         return r;
4722         }
4723
4724         r = vcpu->arch.mmu.page_fault(vcpu, cr2, lower_32_bits(error_code),
4725                                       false);
4726         if (r < 0)
4727                 return r;
4728         if (!r)
4729                 return 1;
4730
4731         /*
4732          * Before emulating the instruction, check if the error code
4733          * was due to a RO violation while translating the guest page.
4734          * This can occur when using nested virtualization with nested
4735          * paging in both guests. If true, we simply unprotect the page
4736          * and resume the guest.
4737          *
4738          * Note: AMD only (since it supports the PFERR_GUEST_PAGE_MASK used
4739          *       in PFERR_NEXT_GUEST_PAGE)
4740          */
4741         if (error_code == PFERR_NESTED_GUEST_PAGE) {
4742                 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2));
4743                 return 1;
4744         }
4745
4746         if (mmio_info_in_cache(vcpu, cr2, direct))
4747                 emulation_type = 0;
4748 emulate:
4749         er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
4750
4751         switch (er) {
4752         case EMULATE_DONE:
4753                 return 1;
4754         case EMULATE_USER_EXIT:
4755                 ++vcpu->stat.mmio_exits;
4756                 /* fall through */
4757         case EMULATE_FAIL:
4758                 return 0;
4759         default:
4760                 BUG();
4761         }
4762 }
4763 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
4764
4765 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
4766 {
4767         vcpu->arch.mmu.invlpg(vcpu, gva);
4768         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
4769         ++vcpu->stat.invlpg;
4770 }
4771 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
4772
4773 void kvm_enable_tdp(void)
4774 {
4775         tdp_enabled = true;
4776 }
4777 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
4778
4779 void kvm_disable_tdp(void)
4780 {
4781         tdp_enabled = false;
4782 }
4783 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
4784
4785 static void free_mmu_pages(struct kvm_vcpu *vcpu)
4786 {
4787         free_page((unsigned long)vcpu->arch.mmu.pae_root);
4788         if (vcpu->arch.mmu.lm_root != NULL)
4789                 free_page((unsigned long)vcpu->arch.mmu.lm_root);
4790 }
4791
4792 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
4793 {
4794         struct page *page;
4795         int i;
4796
4797         /*
4798          * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
4799          * Therefore we need to allocate shadow page tables in the first
4800          * 4GB of memory, which happens to fit the DMA32 zone.
4801          */
4802         page = alloc_page(GFP_KERNEL | __GFP_DMA32);
4803         if (!page)
4804                 return -ENOMEM;
4805
4806         vcpu->arch.mmu.pae_root = page_address(page);
4807         for (i = 0; i < 4; ++i)
4808                 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
4809
4810         return 0;
4811 }
4812
4813 int kvm_mmu_create(struct kvm_vcpu *vcpu)
4814 {
4815         vcpu->arch.walk_mmu = &vcpu->arch.mmu;
4816         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4817         vcpu->arch.mmu.translate_gpa = translate_gpa;
4818         vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
4819
4820         return alloc_mmu_pages(vcpu);
4821 }
4822
4823 void kvm_mmu_setup(struct kvm_vcpu *vcpu)
4824 {
4825         MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
4826
4827         init_kvm_mmu(vcpu);
4828 }
4829
4830 static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
4831                         struct kvm_memory_slot *slot,
4832                         struct kvm_page_track_notifier_node *node)
4833 {
4834         kvm_mmu_invalidate_zap_all_pages(kvm);
4835 }
4836
4837 void kvm_mmu_init_vm(struct kvm *kvm)
4838 {
4839         struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
4840
4841         node->track_write = kvm_mmu_pte_write;
4842         node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
4843         kvm_page_track_register_notifier(kvm, node);
4844 }
4845
4846 void kvm_mmu_uninit_vm(struct kvm *kvm)
4847 {
4848         struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
4849
4850         kvm_page_track_unregister_notifier(kvm, node);
4851 }
4852
4853 /* The return value indicates if tlb flush on all vcpus is needed. */
4854 typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
4855
4856 /* The caller should hold mmu-lock before calling this function. */
4857 static bool
4858 slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
4859                         slot_level_handler fn, int start_level, int end_level,
4860                         gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
4861 {
4862         struct slot_rmap_walk_iterator iterator;
4863         bool flush = false;
4864
4865         for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
4866                         end_gfn, &iterator) {
4867                 if (iterator.rmap)
4868                         flush |= fn(kvm, iterator.rmap);
4869
4870                 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
4871                         if (flush && lock_flush_tlb) {
4872                                 kvm_flush_remote_tlbs(kvm);
4873                                 flush = false;
4874                         }
4875                         cond_resched_lock(&kvm->mmu_lock);
4876                 }
4877         }
4878
4879         if (flush && lock_flush_tlb) {
4880                 kvm_flush_remote_tlbs(kvm);
4881                 flush = false;
4882         }
4883
4884         return flush;
4885 }
4886
4887 static bool
4888 slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4889                   slot_level_handler fn, int start_level, int end_level,
4890                   bool lock_flush_tlb)
4891 {
4892         return slot_handle_level_range(kvm, memslot, fn, start_level,
4893                         end_level, memslot->base_gfn,
4894                         memslot->base_gfn + memslot->npages - 1,
4895                         lock_flush_tlb);
4896 }
4897
4898 static bool
4899 slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4900                       slot_level_handler fn, bool lock_flush_tlb)
4901 {
4902         return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
4903                                  PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
4904 }
4905
4906 static bool
4907 slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4908                         slot_level_handler fn, bool lock_flush_tlb)
4909 {
4910         return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
4911                                  PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
4912 }
4913
4914 static bool
4915 slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
4916                  slot_level_handler fn, bool lock_flush_tlb)
4917 {
4918         return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
4919                                  PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
4920 }
4921
4922 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
4923 {
4924         struct kvm_memslots *slots;
4925         struct kvm_memory_slot *memslot;
4926         int i;
4927
4928         spin_lock(&kvm->mmu_lock);
4929         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
4930                 slots = __kvm_memslots(kvm, i);
4931                 kvm_for_each_memslot(memslot, slots) {
4932                         gfn_t start, end;
4933
4934                         start = max(gfn_start, memslot->base_gfn);
4935                         end = min(gfn_end, memslot->base_gfn + memslot->npages);
4936                         if (start >= end)
4937                                 continue;
4938
4939                         slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
4940                                                 PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL,
4941                                                 start, end - 1, true);
4942                 }
4943         }
4944
4945         spin_unlock(&kvm->mmu_lock);
4946 }
4947
4948 static bool slot_rmap_write_protect(struct kvm *kvm,
4949                                     struct kvm_rmap_head *rmap_head)
4950 {
4951         return __rmap_write_protect(kvm, rmap_head, false);
4952 }
4953
4954 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
4955                                       struct kvm_memory_slot *memslot)
4956 {
4957         bool flush;
4958
4959         spin_lock(&kvm->mmu_lock);
4960         flush = slot_handle_all_level(kvm, memslot, slot_rmap_write_protect,
4961                                       false);
4962         spin_unlock(&kvm->mmu_lock);
4963
4964         /*
4965          * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
4966          * which do tlb flush out of mmu-lock should be serialized by
4967          * kvm->slots_lock otherwise tlb flush would be missed.
4968          */
4969         lockdep_assert_held(&kvm->slots_lock);
4970
4971         /*
4972          * We can flush all the TLBs out of the mmu lock without TLB
4973          * corruption since we just change the spte from writable to
4974          * readonly so that we only need to care the case of changing
4975          * spte from present to present (changing the spte from present
4976          * to nonpresent will flush all the TLBs immediately), in other
4977          * words, the only case we care is mmu_spte_update() where we
4978          * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
4979          * instead of PT_WRITABLE_MASK, that means it does not depend
4980          * on PT_WRITABLE_MASK anymore.
4981          */
4982         if (flush)
4983                 kvm_flush_remote_tlbs(kvm);
4984 }
4985
4986 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
4987                                          struct kvm_rmap_head *rmap_head)
4988 {
4989         u64 *sptep;
4990         struct rmap_iterator iter;
4991         int need_tlb_flush = 0;
4992         kvm_pfn_t pfn;
4993         struct kvm_mmu_page *sp;
4994
4995 restart:
4996         for_each_rmap_spte(rmap_head, &iter, sptep) {
4997                 sp = page_header(__pa(sptep));
4998                 pfn = spte_to_pfn(*sptep);
4999
5000                 /*
5001                  * We cannot do huge page mapping for indirect shadow pages,
5002                  * which are found on the last rmap (level = 1) when not using
5003                  * tdp; such shadow pages are synced with the page table in
5004                  * the guest, and the guest page table is using 4K page size
5005                  * mapping if the indirect sp has level = 1.
5006                  */
5007                 if (sp->role.direct &&
5008                         !kvm_is_reserved_pfn(pfn) &&
5009                         PageTransCompoundMap(pfn_to_page(pfn))) {
5010                         drop_spte(kvm, sptep);
5011                         need_tlb_flush = 1;
5012                         goto restart;
5013                 }
5014         }
5015
5016         return need_tlb_flush;
5017 }
5018
5019 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
5020                                    const struct kvm_memory_slot *memslot)
5021 {
5022         /* FIXME: const-ify all uses of struct kvm_memory_slot.  */
5023         spin_lock(&kvm->mmu_lock);
5024         slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
5025                          kvm_mmu_zap_collapsible_spte, true);
5026         spin_unlock(&kvm->mmu_lock);
5027 }
5028
5029 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
5030                                    struct kvm_memory_slot *memslot)
5031 {
5032         bool flush;
5033
5034         spin_lock(&kvm->mmu_lock);
5035         flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
5036         spin_unlock(&kvm->mmu_lock);
5037
5038         lockdep_assert_held(&kvm->slots_lock);
5039
5040         /*
5041          * It's also safe to flush TLBs out of mmu lock here as currently this
5042          * function is only used for dirty logging, in which case flushing TLB
5043          * out of mmu lock also guarantees no dirty pages will be lost in
5044          * dirty_bitmap.
5045          */
5046         if (flush)
5047                 kvm_flush_remote_tlbs(kvm);
5048 }
5049 EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
5050
5051 void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
5052                                         struct kvm_memory_slot *memslot)
5053 {
5054         bool flush;
5055
5056         spin_lock(&kvm->mmu_lock);
5057         flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
5058                                         false);
5059         spin_unlock(&kvm->mmu_lock);
5060
5061         /* see kvm_mmu_slot_remove_write_access */
5062         lockdep_assert_held(&kvm->slots_lock);
5063
5064         if (flush)
5065                 kvm_flush_remote_tlbs(kvm);
5066 }
5067 EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
5068
5069 void kvm_mmu_slot_set_dirty(struct kvm *kvm,
5070                             struct kvm_memory_slot *memslot)
5071 {
5072         bool flush;
5073
5074         spin_lock(&kvm->mmu_lock);
5075         flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
5076         spin_unlock(&kvm->mmu_lock);
5077
5078         lockdep_assert_held(&kvm->slots_lock);
5079
5080         /* see kvm_mmu_slot_leaf_clear_dirty */
5081         if (flush)
5082                 kvm_flush_remote_tlbs(kvm);
5083 }
5084 EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
5085
5086 #define BATCH_ZAP_PAGES 10
5087 static void kvm_zap_obsolete_pages(struct kvm *kvm)
5088 {
5089         struct kvm_mmu_page *sp, *node;
5090         int batch = 0;
5091
5092 restart:
5093         list_for_each_entry_safe_reverse(sp, node,
5094               &kvm->arch.active_mmu_pages, link) {
5095                 int ret;
5096
5097                 /*
5098                  * No obsolete page exists before new created page since
5099                  * active_mmu_pages is the FIFO list.
5100                  */
5101                 if (!is_obsolete_sp(kvm, sp))
5102                         break;
5103
5104                 /*
5105                  * Since we are reversely walking the list and the invalid
5106                  * list will be moved to the head, skip the invalid page
5107                  * can help us to avoid the infinity list walking.
5108                  */
5109                 if (sp->role.invalid)
5110                         continue;
5111
5112                 /*
5113                  * Need not flush tlb since we only zap the sp with invalid
5114                  * generation number.
5115                  */
5116                 if (batch >= BATCH_ZAP_PAGES &&
5117                       cond_resched_lock(&kvm->mmu_lock)) {
5118                         batch = 0;
5119                         goto restart;
5120                 }
5121
5122                 ret = kvm_mmu_prepare_zap_page(kvm, sp,
5123                                 &kvm->arch.zapped_obsolete_pages);
5124                 batch += ret;
5125
5126                 if (ret)
5127                         goto restart;
5128         }
5129
5130         /*
5131          * Should flush tlb before free page tables since lockless-walking
5132          * may use the pages.
5133          */
5134         kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5135 }
5136
5137 /*
5138  * Fast invalidate all shadow pages and use lock-break technique
5139  * to zap obsolete pages.
5140  *
5141  * It's required when memslot is being deleted or VM is being
5142  * destroyed, in these cases, we should ensure that KVM MMU does
5143  * not use any resource of the being-deleted slot or all slots
5144  * after calling the function.
5145  */
5146 void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
5147 {
5148         spin_lock(&kvm->mmu_lock);
5149         trace_kvm_mmu_invalidate_zap_all_pages(kvm);
5150         kvm->arch.mmu_valid_gen++;
5151
5152         /*
5153          * Notify all vcpus to reload its shadow page table
5154          * and flush TLB. Then all vcpus will switch to new
5155          * shadow page table with the new mmu_valid_gen.
5156          *
5157          * Note: we should do this under the protection of
5158          * mmu-lock, otherwise, vcpu would purge shadow page
5159          * but miss tlb flush.
5160          */
5161         kvm_reload_remote_mmus(kvm);
5162
5163         kvm_zap_obsolete_pages(kvm);
5164         spin_unlock(&kvm->mmu_lock);
5165 }
5166
5167 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
5168 {
5169         return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
5170 }
5171
5172 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, struct kvm_memslots *slots)
5173 {
5174         /*
5175          * The very rare case: if the generation-number is round,
5176          * zap all shadow pages.
5177          */
5178         if (unlikely((slots->generation & MMIO_GEN_MASK) == 0)) {
5179                 kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
5180                 kvm_mmu_invalidate_zap_all_pages(kvm);
5181         }
5182 }
5183
5184 static unsigned long
5185 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
5186 {
5187         struct kvm *kvm;
5188         int nr_to_scan = sc->nr_to_scan;
5189         unsigned long freed = 0;
5190
5191         spin_lock(&kvm_lock);
5192
5193         list_for_each_entry(kvm, &vm_list, vm_list) {
5194                 int idx;
5195                 LIST_HEAD(invalid_list);
5196
5197                 /*
5198                  * Never scan more than sc->nr_to_scan VM instances.
5199                  * Will not hit this condition practically since we do not try
5200                  * to shrink more than one VM and it is very unlikely to see
5201                  * !n_used_mmu_pages so many times.
5202                  */
5203                 if (!nr_to_scan--)
5204                         break;
5205                 /*
5206                  * n_used_mmu_pages is accessed without holding kvm->mmu_lock
5207                  * here. We may skip a VM instance errorneosly, but we do not
5208                  * want to shrink a VM that only started to populate its MMU
5209                  * anyway.
5210                  */
5211                 if (!kvm->arch.n_used_mmu_pages &&
5212                       !kvm_has_zapped_obsolete_pages(kvm))
5213                         continue;
5214
5215                 idx = srcu_read_lock(&kvm->srcu);
5216                 spin_lock(&kvm->mmu_lock);
5217
5218                 if (kvm_has_zapped_obsolete_pages(kvm)) {
5219                         kvm_mmu_commit_zap_page(kvm,
5220                               &kvm->arch.zapped_obsolete_pages);
5221                         goto unlock;
5222                 }
5223
5224                 if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
5225                         freed++;
5226                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
5227
5228 unlock:
5229                 spin_unlock(&kvm->mmu_lock);
5230                 srcu_read_unlock(&kvm->srcu, idx);
5231
5232                 /*
5233                  * unfair on small ones
5234                  * per-vm shrinkers cry out
5235                  * sadness comes quickly
5236                  */
5237                 list_move_tail(&kvm->vm_list, &vm_list);
5238                 break;
5239         }
5240
5241         spin_unlock(&kvm_lock);
5242         return freed;
5243 }
5244
5245 static unsigned long
5246 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
5247 {
5248         return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
5249 }
5250
5251 static struct shrinker mmu_shrinker = {
5252         .count_objects = mmu_shrink_count,
5253         .scan_objects = mmu_shrink_scan,
5254         .seeks = DEFAULT_SEEKS * 10,
5255 };
5256
5257 static void mmu_destroy_caches(void)
5258 {
5259         if (pte_list_desc_cache)
5260                 kmem_cache_destroy(pte_list_desc_cache);
5261         if (mmu_page_header_cache)
5262                 kmem_cache_destroy(mmu_page_header_cache);
5263 }
5264
5265 int kvm_mmu_module_init(void)
5266 {
5267         kvm_mmu_clear_all_pte_masks();
5268
5269         pte_list_desc_cache = kmem_cache_create("pte_list_desc",
5270                                             sizeof(struct pte_list_desc),
5271                                             0, 0, NULL);
5272         if (!pte_list_desc_cache)
5273                 goto nomem;
5274
5275         mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
5276                                                   sizeof(struct kvm_mmu_page),
5277                                                   0, 0, NULL);
5278         if (!mmu_page_header_cache)
5279                 goto nomem;
5280
5281         if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
5282                 goto nomem;
5283
5284         register_shrinker(&mmu_shrinker);
5285
5286         return 0;
5287
5288 nomem:
5289         mmu_destroy_caches();
5290         return -ENOMEM;
5291 }
5292
5293 /*
5294  * Caculate mmu pages needed for kvm.
5295  */
5296 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
5297 {
5298         unsigned int nr_mmu_pages;
5299         unsigned int  nr_pages = 0;
5300         struct kvm_memslots *slots;
5301         struct kvm_memory_slot *memslot;
5302         int i;
5303
5304         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5305                 slots = __kvm_memslots(kvm, i);
5306
5307                 kvm_for_each_memslot(memslot, slots)
5308                         nr_pages += memslot->npages;
5309         }
5310
5311         nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
5312         nr_mmu_pages = max(nr_mmu_pages,
5313                            (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
5314
5315         return nr_mmu_pages;
5316 }
5317
5318 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
5319 {
5320         kvm_mmu_unload(vcpu);
5321         free_mmu_pages(vcpu);
5322         mmu_free_memory_caches(vcpu);
5323 }
5324
5325 void kvm_mmu_module_exit(void)
5326 {
5327         mmu_destroy_caches();
5328         percpu_counter_destroy(&kvm_total_used_mmu_pages);
5329         unregister_shrinker(&mmu_shrinker);
5330         mmu_audit_disable();
5331 }