]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - arch/x86/kvm/vmx.c
KVM: VMX: move msr_ia32_feature_control to vcpu_vmx
[karo-tx-linux.git] / arch / x86 / kvm / vmx.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18
19 #include "irq.h"
20 #include "mmu.h"
21 #include "cpuid.h"
22 #include "lapic.h"
23
24 #include <linux/kvm_host.h>
25 #include <linux/module.h>
26 #include <linux/kernel.h>
27 #include <linux/mm.h>
28 #include <linux/highmem.h>
29 #include <linux/sched.h>
30 #include <linux/moduleparam.h>
31 #include <linux/mod_devicetable.h>
32 #include <linux/trace_events.h>
33 #include <linux/slab.h>
34 #include <linux/tboot.h>
35 #include <linux/hrtimer.h>
36 #include "kvm_cache_regs.h"
37 #include "x86.h"
38
39 #include <asm/cpu.h>
40 #include <asm/io.h>
41 #include <asm/desc.h>
42 #include <asm/vmx.h>
43 #include <asm/virtext.h>
44 #include <asm/mce.h>
45 #include <asm/fpu/internal.h>
46 #include <asm/perf_event.h>
47 #include <asm/debugreg.h>
48 #include <asm/kexec.h>
49 #include <asm/apic.h>
50 #include <asm/irq_remapping.h>
51
52 #include "trace.h"
53 #include "pmu.h"
54
55 #define __ex(x) __kvm_handle_fault_on_reboot(x)
56 #define __ex_clear(x, reg) \
57         ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
58
59 MODULE_AUTHOR("Qumranet");
60 MODULE_LICENSE("GPL");
61
62 static const struct x86_cpu_id vmx_cpu_id[] = {
63         X86_FEATURE_MATCH(X86_FEATURE_VMX),
64         {}
65 };
66 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
67
68 static bool __read_mostly enable_vpid = 1;
69 module_param_named(vpid, enable_vpid, bool, 0444);
70
71 static bool __read_mostly flexpriority_enabled = 1;
72 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
73
74 static bool __read_mostly enable_ept = 1;
75 module_param_named(ept, enable_ept, bool, S_IRUGO);
76
77 static bool __read_mostly enable_unrestricted_guest = 1;
78 module_param_named(unrestricted_guest,
79                         enable_unrestricted_guest, bool, S_IRUGO);
80
81 static bool __read_mostly enable_ept_ad_bits = 1;
82 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
83
84 static bool __read_mostly emulate_invalid_guest_state = true;
85 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
86
87 static bool __read_mostly vmm_exclusive = 1;
88 module_param(vmm_exclusive, bool, S_IRUGO);
89
90 static bool __read_mostly fasteoi = 1;
91 module_param(fasteoi, bool, S_IRUGO);
92
93 static bool __read_mostly enable_apicv = 1;
94 module_param(enable_apicv, bool, S_IRUGO);
95
96 static bool __read_mostly enable_shadow_vmcs = 1;
97 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
98 /*
99  * If nested=1, nested virtualization is supported, i.e., guests may use
100  * VMX and be a hypervisor for its own guests. If nested=0, guests may not
101  * use VMX instructions.
102  */
103 static bool __read_mostly nested = 0;
104 module_param(nested, bool, S_IRUGO);
105
106 static u64 __read_mostly host_xss;
107
108 static bool __read_mostly enable_pml = 1;
109 module_param_named(pml, enable_pml, bool, S_IRUGO);
110
111 #define KVM_VMX_TSC_MULTIPLIER_MAX     0xffffffffffffffffULL
112
113 /* Guest_tsc -> host_tsc conversion requires 64-bit division.  */
114 static int __read_mostly cpu_preemption_timer_multi;
115 static bool __read_mostly enable_preemption_timer = 1;
116 #ifdef CONFIG_X86_64
117 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
118 #endif
119
120 #define KVM_GUEST_CR0_MASK (X86_CR0_NW | X86_CR0_CD)
121 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST (X86_CR0_WP | X86_CR0_NE)
122 #define KVM_VM_CR0_ALWAYS_ON                                            \
123         (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
124 #define KVM_CR4_GUEST_OWNED_BITS                                      \
125         (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR      \
126          | X86_CR4_OSXMMEXCPT | X86_CR4_TSD)
127
128 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
129 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
130
131 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
132
133 #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
134
135 /*
136  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
137  * ple_gap:    upper bound on the amount of time between two successive
138  *             executions of PAUSE in a loop. Also indicate if ple enabled.
139  *             According to test, this time is usually smaller than 128 cycles.
140  * ple_window: upper bound on the amount of time a guest is allowed to execute
141  *             in a PAUSE loop. Tests indicate that most spinlocks are held for
142  *             less than 2^12 cycles
143  * Time is measured based on a counter that runs at the same rate as the TSC,
144  * refer SDM volume 3b section 21.6.13 & 22.1.3.
145  */
146 #define KVM_VMX_DEFAULT_PLE_GAP           128
147 #define KVM_VMX_DEFAULT_PLE_WINDOW        4096
148 #define KVM_VMX_DEFAULT_PLE_WINDOW_GROW   2
149 #define KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK 0
150 #define KVM_VMX_DEFAULT_PLE_WINDOW_MAX    \
151                 INT_MAX / KVM_VMX_DEFAULT_PLE_WINDOW_GROW
152
153 static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
154 module_param(ple_gap, int, S_IRUGO);
155
156 static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
157 module_param(ple_window, int, S_IRUGO);
158
159 /* Default doubles per-vcpu window every exit. */
160 static int ple_window_grow = KVM_VMX_DEFAULT_PLE_WINDOW_GROW;
161 module_param(ple_window_grow, int, S_IRUGO);
162
163 /* Default resets per-vcpu window every exit to ple_window. */
164 static int ple_window_shrink = KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK;
165 module_param(ple_window_shrink, int, S_IRUGO);
166
167 /* Default is to compute the maximum so we can never overflow. */
168 static int ple_window_actual_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
169 static int ple_window_max        = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
170 module_param(ple_window_max, int, S_IRUGO);
171
172 extern const ulong vmx_return;
173
174 #define NR_AUTOLOAD_MSRS 8
175 #define VMCS02_POOL_SIZE 1
176
177 struct vmcs {
178         u32 revision_id;
179         u32 abort;
180         char data[0];
181 };
182
183 /*
184  * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
185  * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
186  * loaded on this CPU (so we can clear them if the CPU goes down).
187  */
188 struct loaded_vmcs {
189         struct vmcs *vmcs;
190         int cpu;
191         int launched;
192         struct list_head loaded_vmcss_on_cpu_link;
193 };
194
195 struct shared_msr_entry {
196         unsigned index;
197         u64 data;
198         u64 mask;
199 };
200
201 /*
202  * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
203  * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
204  * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
205  * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
206  * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
207  * More than one of these structures may exist, if L1 runs multiple L2 guests.
208  * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
209  * underlying hardware which will be used to run L2.
210  * This structure is packed to ensure that its layout is identical across
211  * machines (necessary for live migration).
212  * If there are changes in this struct, VMCS12_REVISION must be changed.
213  */
214 typedef u64 natural_width;
215 struct __packed vmcs12 {
216         /* According to the Intel spec, a VMCS region must start with the
217          * following two fields. Then follow implementation-specific data.
218          */
219         u32 revision_id;
220         u32 abort;
221
222         u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
223         u32 padding[7]; /* room for future expansion */
224
225         u64 io_bitmap_a;
226         u64 io_bitmap_b;
227         u64 msr_bitmap;
228         u64 vm_exit_msr_store_addr;
229         u64 vm_exit_msr_load_addr;
230         u64 vm_entry_msr_load_addr;
231         u64 tsc_offset;
232         u64 virtual_apic_page_addr;
233         u64 apic_access_addr;
234         u64 posted_intr_desc_addr;
235         u64 ept_pointer;
236         u64 eoi_exit_bitmap0;
237         u64 eoi_exit_bitmap1;
238         u64 eoi_exit_bitmap2;
239         u64 eoi_exit_bitmap3;
240         u64 xss_exit_bitmap;
241         u64 guest_physical_address;
242         u64 vmcs_link_pointer;
243         u64 guest_ia32_debugctl;
244         u64 guest_ia32_pat;
245         u64 guest_ia32_efer;
246         u64 guest_ia32_perf_global_ctrl;
247         u64 guest_pdptr0;
248         u64 guest_pdptr1;
249         u64 guest_pdptr2;
250         u64 guest_pdptr3;
251         u64 guest_bndcfgs;
252         u64 host_ia32_pat;
253         u64 host_ia32_efer;
254         u64 host_ia32_perf_global_ctrl;
255         u64 padding64[8]; /* room for future expansion */
256         /*
257          * To allow migration of L1 (complete with its L2 guests) between
258          * machines of different natural widths (32 or 64 bit), we cannot have
259          * unsigned long fields with no explict size. We use u64 (aliased
260          * natural_width) instead. Luckily, x86 is little-endian.
261          */
262         natural_width cr0_guest_host_mask;
263         natural_width cr4_guest_host_mask;
264         natural_width cr0_read_shadow;
265         natural_width cr4_read_shadow;
266         natural_width cr3_target_value0;
267         natural_width cr3_target_value1;
268         natural_width cr3_target_value2;
269         natural_width cr3_target_value3;
270         natural_width exit_qualification;
271         natural_width guest_linear_address;
272         natural_width guest_cr0;
273         natural_width guest_cr3;
274         natural_width guest_cr4;
275         natural_width guest_es_base;
276         natural_width guest_cs_base;
277         natural_width guest_ss_base;
278         natural_width guest_ds_base;
279         natural_width guest_fs_base;
280         natural_width guest_gs_base;
281         natural_width guest_ldtr_base;
282         natural_width guest_tr_base;
283         natural_width guest_gdtr_base;
284         natural_width guest_idtr_base;
285         natural_width guest_dr7;
286         natural_width guest_rsp;
287         natural_width guest_rip;
288         natural_width guest_rflags;
289         natural_width guest_pending_dbg_exceptions;
290         natural_width guest_sysenter_esp;
291         natural_width guest_sysenter_eip;
292         natural_width host_cr0;
293         natural_width host_cr3;
294         natural_width host_cr4;
295         natural_width host_fs_base;
296         natural_width host_gs_base;
297         natural_width host_tr_base;
298         natural_width host_gdtr_base;
299         natural_width host_idtr_base;
300         natural_width host_ia32_sysenter_esp;
301         natural_width host_ia32_sysenter_eip;
302         natural_width host_rsp;
303         natural_width host_rip;
304         natural_width paddingl[8]; /* room for future expansion */
305         u32 pin_based_vm_exec_control;
306         u32 cpu_based_vm_exec_control;
307         u32 exception_bitmap;
308         u32 page_fault_error_code_mask;
309         u32 page_fault_error_code_match;
310         u32 cr3_target_count;
311         u32 vm_exit_controls;
312         u32 vm_exit_msr_store_count;
313         u32 vm_exit_msr_load_count;
314         u32 vm_entry_controls;
315         u32 vm_entry_msr_load_count;
316         u32 vm_entry_intr_info_field;
317         u32 vm_entry_exception_error_code;
318         u32 vm_entry_instruction_len;
319         u32 tpr_threshold;
320         u32 secondary_vm_exec_control;
321         u32 vm_instruction_error;
322         u32 vm_exit_reason;
323         u32 vm_exit_intr_info;
324         u32 vm_exit_intr_error_code;
325         u32 idt_vectoring_info_field;
326         u32 idt_vectoring_error_code;
327         u32 vm_exit_instruction_len;
328         u32 vmx_instruction_info;
329         u32 guest_es_limit;
330         u32 guest_cs_limit;
331         u32 guest_ss_limit;
332         u32 guest_ds_limit;
333         u32 guest_fs_limit;
334         u32 guest_gs_limit;
335         u32 guest_ldtr_limit;
336         u32 guest_tr_limit;
337         u32 guest_gdtr_limit;
338         u32 guest_idtr_limit;
339         u32 guest_es_ar_bytes;
340         u32 guest_cs_ar_bytes;
341         u32 guest_ss_ar_bytes;
342         u32 guest_ds_ar_bytes;
343         u32 guest_fs_ar_bytes;
344         u32 guest_gs_ar_bytes;
345         u32 guest_ldtr_ar_bytes;
346         u32 guest_tr_ar_bytes;
347         u32 guest_interruptibility_info;
348         u32 guest_activity_state;
349         u32 guest_sysenter_cs;
350         u32 host_ia32_sysenter_cs;
351         u32 vmx_preemption_timer_value;
352         u32 padding32[7]; /* room for future expansion */
353         u16 virtual_processor_id;
354         u16 posted_intr_nv;
355         u16 guest_es_selector;
356         u16 guest_cs_selector;
357         u16 guest_ss_selector;
358         u16 guest_ds_selector;
359         u16 guest_fs_selector;
360         u16 guest_gs_selector;
361         u16 guest_ldtr_selector;
362         u16 guest_tr_selector;
363         u16 guest_intr_status;
364         u16 host_es_selector;
365         u16 host_cs_selector;
366         u16 host_ss_selector;
367         u16 host_ds_selector;
368         u16 host_fs_selector;
369         u16 host_gs_selector;
370         u16 host_tr_selector;
371 };
372
373 /*
374  * VMCS12_REVISION is an arbitrary id that should be changed if the content or
375  * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
376  * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
377  */
378 #define VMCS12_REVISION 0x11e57ed0
379
380 /*
381  * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
382  * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
383  * current implementation, 4K are reserved to avoid future complications.
384  */
385 #define VMCS12_SIZE 0x1000
386
387 /* Used to remember the last vmcs02 used for some recently used vmcs12s */
388 struct vmcs02_list {
389         struct list_head list;
390         gpa_t vmptr;
391         struct loaded_vmcs vmcs02;
392 };
393
394 /*
395  * The nested_vmx structure is part of vcpu_vmx, and holds information we need
396  * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
397  */
398 struct nested_vmx {
399         /* Has the level1 guest done vmxon? */
400         bool vmxon;
401         gpa_t vmxon_ptr;
402
403         /* The guest-physical address of the current VMCS L1 keeps for L2 */
404         gpa_t current_vmptr;
405         /* The host-usable pointer to the above */
406         struct page *current_vmcs12_page;
407         struct vmcs12 *current_vmcs12;
408         struct vmcs *current_shadow_vmcs;
409         /*
410          * Indicates if the shadow vmcs must be updated with the
411          * data hold by vmcs12
412          */
413         bool sync_shadow_vmcs;
414
415         /* vmcs02_list cache of VMCSs recently used to run L2 guests */
416         struct list_head vmcs02_pool;
417         int vmcs02_num;
418         u64 vmcs01_tsc_offset;
419         /* L2 must run next, and mustn't decide to exit to L1. */
420         bool nested_run_pending;
421         /*
422          * Guest pages referred to in vmcs02 with host-physical pointers, so
423          * we must keep them pinned while L2 runs.
424          */
425         struct page *apic_access_page;
426         struct page *virtual_apic_page;
427         struct page *pi_desc_page;
428         struct pi_desc *pi_desc;
429         bool pi_pending;
430         u16 posted_intr_nv;
431
432         struct hrtimer preemption_timer;
433         bool preemption_timer_expired;
434
435         /* to migrate it to L2 if VM_ENTRY_LOAD_DEBUG_CONTROLS is off */
436         u64 vmcs01_debugctl;
437
438         u16 vpid02;
439         u16 last_vpid;
440
441         u32 nested_vmx_procbased_ctls_low;
442         u32 nested_vmx_procbased_ctls_high;
443         u32 nested_vmx_true_procbased_ctls_low;
444         u32 nested_vmx_secondary_ctls_low;
445         u32 nested_vmx_secondary_ctls_high;
446         u32 nested_vmx_pinbased_ctls_low;
447         u32 nested_vmx_pinbased_ctls_high;
448         u32 nested_vmx_exit_ctls_low;
449         u32 nested_vmx_exit_ctls_high;
450         u32 nested_vmx_true_exit_ctls_low;
451         u32 nested_vmx_entry_ctls_low;
452         u32 nested_vmx_entry_ctls_high;
453         u32 nested_vmx_true_entry_ctls_low;
454         u32 nested_vmx_misc_low;
455         u32 nested_vmx_misc_high;
456         u32 nested_vmx_ept_caps;
457         u32 nested_vmx_vpid_caps;
458 };
459
460 #define POSTED_INTR_ON  0
461 #define POSTED_INTR_SN  1
462
463 /* Posted-Interrupt Descriptor */
464 struct pi_desc {
465         u32 pir[8];     /* Posted interrupt requested */
466         union {
467                 struct {
468                                 /* bit 256 - Outstanding Notification */
469                         u16     on      : 1,
470                                 /* bit 257 - Suppress Notification */
471                                 sn      : 1,
472                                 /* bit 271:258 - Reserved */
473                                 rsvd_1  : 14;
474                                 /* bit 279:272 - Notification Vector */
475                         u8      nv;
476                                 /* bit 287:280 - Reserved */
477                         u8      rsvd_2;
478                                 /* bit 319:288 - Notification Destination */
479                         u32     ndst;
480                 };
481                 u64 control;
482         };
483         u32 rsvd[6];
484 } __aligned(64);
485
486 static bool pi_test_and_set_on(struct pi_desc *pi_desc)
487 {
488         return test_and_set_bit(POSTED_INTR_ON,
489                         (unsigned long *)&pi_desc->control);
490 }
491
492 static bool pi_test_and_clear_on(struct pi_desc *pi_desc)
493 {
494         return test_and_clear_bit(POSTED_INTR_ON,
495                         (unsigned long *)&pi_desc->control);
496 }
497
498 static int pi_test_and_set_pir(int vector, struct pi_desc *pi_desc)
499 {
500         return test_and_set_bit(vector, (unsigned long *)pi_desc->pir);
501 }
502
503 static inline void pi_clear_sn(struct pi_desc *pi_desc)
504 {
505         return clear_bit(POSTED_INTR_SN,
506                         (unsigned long *)&pi_desc->control);
507 }
508
509 static inline void pi_set_sn(struct pi_desc *pi_desc)
510 {
511         return set_bit(POSTED_INTR_SN,
512                         (unsigned long *)&pi_desc->control);
513 }
514
515 static inline int pi_test_on(struct pi_desc *pi_desc)
516 {
517         return test_bit(POSTED_INTR_ON,
518                         (unsigned long *)&pi_desc->control);
519 }
520
521 static inline int pi_test_sn(struct pi_desc *pi_desc)
522 {
523         return test_bit(POSTED_INTR_SN,
524                         (unsigned long *)&pi_desc->control);
525 }
526
527 struct vcpu_vmx {
528         struct kvm_vcpu       vcpu;
529         unsigned long         host_rsp;
530         u8                    fail;
531         bool                  nmi_known_unmasked;
532         u32                   exit_intr_info;
533         u32                   idt_vectoring_info;
534         ulong                 rflags;
535         struct shared_msr_entry *guest_msrs;
536         int                   nmsrs;
537         int                   save_nmsrs;
538         unsigned long         host_idt_base;
539 #ifdef CONFIG_X86_64
540         u64                   msr_host_kernel_gs_base;
541         u64                   msr_guest_kernel_gs_base;
542 #endif
543         u32 vm_entry_controls_shadow;
544         u32 vm_exit_controls_shadow;
545         /*
546          * loaded_vmcs points to the VMCS currently used in this vcpu. For a
547          * non-nested (L1) guest, it always points to vmcs01. For a nested
548          * guest (L2), it points to a different VMCS.
549          */
550         struct loaded_vmcs    vmcs01;
551         struct loaded_vmcs   *loaded_vmcs;
552         bool                  __launched; /* temporary, used in vmx_vcpu_run */
553         struct msr_autoload {
554                 unsigned nr;
555                 struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
556                 struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
557         } msr_autoload;
558         struct {
559                 int           loaded;
560                 u16           fs_sel, gs_sel, ldt_sel;
561 #ifdef CONFIG_X86_64
562                 u16           ds_sel, es_sel;
563 #endif
564                 int           gs_ldt_reload_needed;
565                 int           fs_reload_needed;
566                 u64           msr_host_bndcfgs;
567                 unsigned long vmcs_host_cr4;    /* May not match real cr4 */
568         } host_state;
569         struct {
570                 int vm86_active;
571                 ulong save_rflags;
572                 struct kvm_segment segs[8];
573         } rmode;
574         struct {
575                 u32 bitmask; /* 4 bits per segment (1 bit per field) */
576                 struct kvm_save_segment {
577                         u16 selector;
578                         unsigned long base;
579                         u32 limit;
580                         u32 ar;
581                 } seg[8];
582         } segment_cache;
583         int vpid;
584         bool emulation_required;
585
586         /* Support for vnmi-less CPUs */
587         int soft_vnmi_blocked;
588         ktime_t entry_time;
589         s64 vnmi_blocked_time;
590         u32 exit_reason;
591
592         /* Posted interrupt descriptor */
593         struct pi_desc pi_desc;
594
595         /* Support for a guest hypervisor (nested VMX) */
596         struct nested_vmx nested;
597
598         /* Dynamic PLE window. */
599         int ple_window;
600         bool ple_window_dirty;
601
602         /* Support for PML */
603 #define PML_ENTITY_NUM          512
604         struct page *pml_pg;
605
606         /* apic deadline value in host tsc */
607         u64 hv_deadline_tsc;
608
609         u64 current_tsc_ratio;
610
611         bool guest_pkru_valid;
612         u32 guest_pkru;
613         u32 host_pkru;
614
615         u64 msr_ia32_feature_control;
616 };
617
618 enum segment_cache_field {
619         SEG_FIELD_SEL = 0,
620         SEG_FIELD_BASE = 1,
621         SEG_FIELD_LIMIT = 2,
622         SEG_FIELD_AR = 3,
623
624         SEG_FIELD_NR = 4
625 };
626
627 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
628 {
629         return container_of(vcpu, struct vcpu_vmx, vcpu);
630 }
631
632 static struct pi_desc *vcpu_to_pi_desc(struct kvm_vcpu *vcpu)
633 {
634         return &(to_vmx(vcpu)->pi_desc);
635 }
636
637 #define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
638 #define FIELD(number, name)     [number] = VMCS12_OFFSET(name)
639 #define FIELD64(number, name)   [number] = VMCS12_OFFSET(name), \
640                                 [number##_HIGH] = VMCS12_OFFSET(name)+4
641
642
643 static unsigned long shadow_read_only_fields[] = {
644         /*
645          * We do NOT shadow fields that are modified when L0
646          * traps and emulates any vmx instruction (e.g. VMPTRLD,
647          * VMXON...) executed by L1.
648          * For example, VM_INSTRUCTION_ERROR is read
649          * by L1 if a vmx instruction fails (part of the error path).
650          * Note the code assumes this logic. If for some reason
651          * we start shadowing these fields then we need to
652          * force a shadow sync when L0 emulates vmx instructions
653          * (e.g. force a sync if VM_INSTRUCTION_ERROR is modified
654          * by nested_vmx_failValid)
655          */
656         VM_EXIT_REASON,
657         VM_EXIT_INTR_INFO,
658         VM_EXIT_INSTRUCTION_LEN,
659         IDT_VECTORING_INFO_FIELD,
660         IDT_VECTORING_ERROR_CODE,
661         VM_EXIT_INTR_ERROR_CODE,
662         EXIT_QUALIFICATION,
663         GUEST_LINEAR_ADDRESS,
664         GUEST_PHYSICAL_ADDRESS
665 };
666 static int max_shadow_read_only_fields =
667         ARRAY_SIZE(shadow_read_only_fields);
668
669 static unsigned long shadow_read_write_fields[] = {
670         TPR_THRESHOLD,
671         GUEST_RIP,
672         GUEST_RSP,
673         GUEST_CR0,
674         GUEST_CR3,
675         GUEST_CR4,
676         GUEST_INTERRUPTIBILITY_INFO,
677         GUEST_RFLAGS,
678         GUEST_CS_SELECTOR,
679         GUEST_CS_AR_BYTES,
680         GUEST_CS_LIMIT,
681         GUEST_CS_BASE,
682         GUEST_ES_BASE,
683         GUEST_BNDCFGS,
684         CR0_GUEST_HOST_MASK,
685         CR0_READ_SHADOW,
686         CR4_READ_SHADOW,
687         TSC_OFFSET,
688         EXCEPTION_BITMAP,
689         CPU_BASED_VM_EXEC_CONTROL,
690         VM_ENTRY_EXCEPTION_ERROR_CODE,
691         VM_ENTRY_INTR_INFO_FIELD,
692         VM_ENTRY_INSTRUCTION_LEN,
693         VM_ENTRY_EXCEPTION_ERROR_CODE,
694         HOST_FS_BASE,
695         HOST_GS_BASE,
696         HOST_FS_SELECTOR,
697         HOST_GS_SELECTOR
698 };
699 static int max_shadow_read_write_fields =
700         ARRAY_SIZE(shadow_read_write_fields);
701
702 static const unsigned short vmcs_field_to_offset_table[] = {
703         FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
704         FIELD(POSTED_INTR_NV, posted_intr_nv),
705         FIELD(GUEST_ES_SELECTOR, guest_es_selector),
706         FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
707         FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
708         FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
709         FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
710         FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
711         FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
712         FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
713         FIELD(GUEST_INTR_STATUS, guest_intr_status),
714         FIELD(HOST_ES_SELECTOR, host_es_selector),
715         FIELD(HOST_CS_SELECTOR, host_cs_selector),
716         FIELD(HOST_SS_SELECTOR, host_ss_selector),
717         FIELD(HOST_DS_SELECTOR, host_ds_selector),
718         FIELD(HOST_FS_SELECTOR, host_fs_selector),
719         FIELD(HOST_GS_SELECTOR, host_gs_selector),
720         FIELD(HOST_TR_SELECTOR, host_tr_selector),
721         FIELD64(IO_BITMAP_A, io_bitmap_a),
722         FIELD64(IO_BITMAP_B, io_bitmap_b),
723         FIELD64(MSR_BITMAP, msr_bitmap),
724         FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
725         FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
726         FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
727         FIELD64(TSC_OFFSET, tsc_offset),
728         FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
729         FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
730         FIELD64(POSTED_INTR_DESC_ADDR, posted_intr_desc_addr),
731         FIELD64(EPT_POINTER, ept_pointer),
732         FIELD64(EOI_EXIT_BITMAP0, eoi_exit_bitmap0),
733         FIELD64(EOI_EXIT_BITMAP1, eoi_exit_bitmap1),
734         FIELD64(EOI_EXIT_BITMAP2, eoi_exit_bitmap2),
735         FIELD64(EOI_EXIT_BITMAP3, eoi_exit_bitmap3),
736         FIELD64(XSS_EXIT_BITMAP, xss_exit_bitmap),
737         FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
738         FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
739         FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
740         FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
741         FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
742         FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
743         FIELD64(GUEST_PDPTR0, guest_pdptr0),
744         FIELD64(GUEST_PDPTR1, guest_pdptr1),
745         FIELD64(GUEST_PDPTR2, guest_pdptr2),
746         FIELD64(GUEST_PDPTR3, guest_pdptr3),
747         FIELD64(GUEST_BNDCFGS, guest_bndcfgs),
748         FIELD64(HOST_IA32_PAT, host_ia32_pat),
749         FIELD64(HOST_IA32_EFER, host_ia32_efer),
750         FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
751         FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
752         FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
753         FIELD(EXCEPTION_BITMAP, exception_bitmap),
754         FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
755         FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
756         FIELD(CR3_TARGET_COUNT, cr3_target_count),
757         FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
758         FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
759         FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
760         FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
761         FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
762         FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
763         FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
764         FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
765         FIELD(TPR_THRESHOLD, tpr_threshold),
766         FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
767         FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
768         FIELD(VM_EXIT_REASON, vm_exit_reason),
769         FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
770         FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
771         FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
772         FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
773         FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
774         FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
775         FIELD(GUEST_ES_LIMIT, guest_es_limit),
776         FIELD(GUEST_CS_LIMIT, guest_cs_limit),
777         FIELD(GUEST_SS_LIMIT, guest_ss_limit),
778         FIELD(GUEST_DS_LIMIT, guest_ds_limit),
779         FIELD(GUEST_FS_LIMIT, guest_fs_limit),
780         FIELD(GUEST_GS_LIMIT, guest_gs_limit),
781         FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
782         FIELD(GUEST_TR_LIMIT, guest_tr_limit),
783         FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
784         FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
785         FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
786         FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
787         FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
788         FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
789         FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
790         FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
791         FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
792         FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
793         FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
794         FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
795         FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
796         FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
797         FIELD(VMX_PREEMPTION_TIMER_VALUE, vmx_preemption_timer_value),
798         FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
799         FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
800         FIELD(CR0_READ_SHADOW, cr0_read_shadow),
801         FIELD(CR4_READ_SHADOW, cr4_read_shadow),
802         FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
803         FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
804         FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
805         FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
806         FIELD(EXIT_QUALIFICATION, exit_qualification),
807         FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
808         FIELD(GUEST_CR0, guest_cr0),
809         FIELD(GUEST_CR3, guest_cr3),
810         FIELD(GUEST_CR4, guest_cr4),
811         FIELD(GUEST_ES_BASE, guest_es_base),
812         FIELD(GUEST_CS_BASE, guest_cs_base),
813         FIELD(GUEST_SS_BASE, guest_ss_base),
814         FIELD(GUEST_DS_BASE, guest_ds_base),
815         FIELD(GUEST_FS_BASE, guest_fs_base),
816         FIELD(GUEST_GS_BASE, guest_gs_base),
817         FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
818         FIELD(GUEST_TR_BASE, guest_tr_base),
819         FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
820         FIELD(GUEST_IDTR_BASE, guest_idtr_base),
821         FIELD(GUEST_DR7, guest_dr7),
822         FIELD(GUEST_RSP, guest_rsp),
823         FIELD(GUEST_RIP, guest_rip),
824         FIELD(GUEST_RFLAGS, guest_rflags),
825         FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
826         FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
827         FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
828         FIELD(HOST_CR0, host_cr0),
829         FIELD(HOST_CR3, host_cr3),
830         FIELD(HOST_CR4, host_cr4),
831         FIELD(HOST_FS_BASE, host_fs_base),
832         FIELD(HOST_GS_BASE, host_gs_base),
833         FIELD(HOST_TR_BASE, host_tr_base),
834         FIELD(HOST_GDTR_BASE, host_gdtr_base),
835         FIELD(HOST_IDTR_BASE, host_idtr_base),
836         FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
837         FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
838         FIELD(HOST_RSP, host_rsp),
839         FIELD(HOST_RIP, host_rip),
840 };
841
842 static inline short vmcs_field_to_offset(unsigned long field)
843 {
844         BUILD_BUG_ON(ARRAY_SIZE(vmcs_field_to_offset_table) > SHRT_MAX);
845
846         if (field >= ARRAY_SIZE(vmcs_field_to_offset_table) ||
847             vmcs_field_to_offset_table[field] == 0)
848                 return -ENOENT;
849
850         return vmcs_field_to_offset_table[field];
851 }
852
853 static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
854 {
855         return to_vmx(vcpu)->nested.current_vmcs12;
856 }
857
858 static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
859 {
860         struct page *page = kvm_vcpu_gfn_to_page(vcpu, addr >> PAGE_SHIFT);
861         if (is_error_page(page))
862                 return NULL;
863
864         return page;
865 }
866
867 static void nested_release_page(struct page *page)
868 {
869         kvm_release_page_dirty(page);
870 }
871
872 static void nested_release_page_clean(struct page *page)
873 {
874         kvm_release_page_clean(page);
875 }
876
877 static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu);
878 static u64 construct_eptp(unsigned long root_hpa);
879 static void kvm_cpu_vmxon(u64 addr);
880 static void kvm_cpu_vmxoff(void);
881 static bool vmx_xsaves_supported(void);
882 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
883 static void vmx_set_segment(struct kvm_vcpu *vcpu,
884                             struct kvm_segment *var, int seg);
885 static void vmx_get_segment(struct kvm_vcpu *vcpu,
886                             struct kvm_segment *var, int seg);
887 static bool guest_state_valid(struct kvm_vcpu *vcpu);
888 static u32 vmx_segment_access_rights(struct kvm_segment *var);
889 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx);
890 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx);
891 static int alloc_identity_pagetable(struct kvm *kvm);
892
893 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
894 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
895 /*
896  * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
897  * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
898  */
899 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
900 static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
901
902 /*
903  * We maintian a per-CPU linked-list of vCPU, so in wakeup_handler() we
904  * can find which vCPU should be waken up.
905  */
906 static DEFINE_PER_CPU(struct list_head, blocked_vcpu_on_cpu);
907 static DEFINE_PER_CPU(spinlock_t, blocked_vcpu_on_cpu_lock);
908
909 static unsigned long *vmx_io_bitmap_a;
910 static unsigned long *vmx_io_bitmap_b;
911 static unsigned long *vmx_msr_bitmap_legacy;
912 static unsigned long *vmx_msr_bitmap_longmode;
913 static unsigned long *vmx_msr_bitmap_legacy_x2apic;
914 static unsigned long *vmx_msr_bitmap_longmode_x2apic;
915 static unsigned long *vmx_msr_bitmap_nested;
916 static unsigned long *vmx_vmread_bitmap;
917 static unsigned long *vmx_vmwrite_bitmap;
918
919 static bool cpu_has_load_ia32_efer;
920 static bool cpu_has_load_perf_global_ctrl;
921
922 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
923 static DEFINE_SPINLOCK(vmx_vpid_lock);
924
925 static struct vmcs_config {
926         int size;
927         int order;
928         u32 revision_id;
929         u32 pin_based_exec_ctrl;
930         u32 cpu_based_exec_ctrl;
931         u32 cpu_based_2nd_exec_ctrl;
932         u32 vmexit_ctrl;
933         u32 vmentry_ctrl;
934 } vmcs_config;
935
936 static struct vmx_capability {
937         u32 ept;
938         u32 vpid;
939 } vmx_capability;
940
941 #define VMX_SEGMENT_FIELD(seg)                                  \
942         [VCPU_SREG_##seg] = {                                   \
943                 .selector = GUEST_##seg##_SELECTOR,             \
944                 .base = GUEST_##seg##_BASE,                     \
945                 .limit = GUEST_##seg##_LIMIT,                   \
946                 .ar_bytes = GUEST_##seg##_AR_BYTES,             \
947         }
948
949 static const struct kvm_vmx_segment_field {
950         unsigned selector;
951         unsigned base;
952         unsigned limit;
953         unsigned ar_bytes;
954 } kvm_vmx_segment_fields[] = {
955         VMX_SEGMENT_FIELD(CS),
956         VMX_SEGMENT_FIELD(DS),
957         VMX_SEGMENT_FIELD(ES),
958         VMX_SEGMENT_FIELD(FS),
959         VMX_SEGMENT_FIELD(GS),
960         VMX_SEGMENT_FIELD(SS),
961         VMX_SEGMENT_FIELD(TR),
962         VMX_SEGMENT_FIELD(LDTR),
963 };
964
965 static u64 host_efer;
966
967 static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
968
969 /*
970  * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
971  * away by decrementing the array size.
972  */
973 static const u32 vmx_msr_index[] = {
974 #ifdef CONFIG_X86_64
975         MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
976 #endif
977         MSR_EFER, MSR_TSC_AUX, MSR_STAR,
978 };
979
980 static inline bool is_exception_n(u32 intr_info, u8 vector)
981 {
982         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
983                              INTR_INFO_VALID_MASK)) ==
984                 (INTR_TYPE_HARD_EXCEPTION | vector | INTR_INFO_VALID_MASK);
985 }
986
987 static inline bool is_debug(u32 intr_info)
988 {
989         return is_exception_n(intr_info, DB_VECTOR);
990 }
991
992 static inline bool is_breakpoint(u32 intr_info)
993 {
994         return is_exception_n(intr_info, BP_VECTOR);
995 }
996
997 static inline bool is_page_fault(u32 intr_info)
998 {
999         return is_exception_n(intr_info, PF_VECTOR);
1000 }
1001
1002 static inline bool is_no_device(u32 intr_info)
1003 {
1004         return is_exception_n(intr_info, NM_VECTOR);
1005 }
1006
1007 static inline bool is_invalid_opcode(u32 intr_info)
1008 {
1009         return is_exception_n(intr_info, UD_VECTOR);
1010 }
1011
1012 static inline bool is_external_interrupt(u32 intr_info)
1013 {
1014         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1015                 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
1016 }
1017
1018 static inline bool is_machine_check(u32 intr_info)
1019 {
1020         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
1021                              INTR_INFO_VALID_MASK)) ==
1022                 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
1023 }
1024
1025 static inline bool cpu_has_vmx_msr_bitmap(void)
1026 {
1027         return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
1028 }
1029
1030 static inline bool cpu_has_vmx_tpr_shadow(void)
1031 {
1032         return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
1033 }
1034
1035 static inline bool cpu_need_tpr_shadow(struct kvm_vcpu *vcpu)
1036 {
1037         return cpu_has_vmx_tpr_shadow() && lapic_in_kernel(vcpu);
1038 }
1039
1040 static inline bool cpu_has_secondary_exec_ctrls(void)
1041 {
1042         return vmcs_config.cpu_based_exec_ctrl &
1043                 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1044 }
1045
1046 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
1047 {
1048         return vmcs_config.cpu_based_2nd_exec_ctrl &
1049                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
1050 }
1051
1052 static inline bool cpu_has_vmx_virtualize_x2apic_mode(void)
1053 {
1054         return vmcs_config.cpu_based_2nd_exec_ctrl &
1055                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
1056 }
1057
1058 static inline bool cpu_has_vmx_apic_register_virt(void)
1059 {
1060         return vmcs_config.cpu_based_2nd_exec_ctrl &
1061                 SECONDARY_EXEC_APIC_REGISTER_VIRT;
1062 }
1063
1064 static inline bool cpu_has_vmx_virtual_intr_delivery(void)
1065 {
1066         return vmcs_config.cpu_based_2nd_exec_ctrl &
1067                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
1068 }
1069
1070 /*
1071  * Comment's format: document - errata name - stepping - processor name.
1072  * Refer from
1073  * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
1074  */
1075 static u32 vmx_preemption_cpu_tfms[] = {
1076 /* 323344.pdf - BA86   - D0 - Xeon 7500 Series */
1077 0x000206E6,
1078 /* 323056.pdf - AAX65  - C2 - Xeon L3406 */
1079 /* 322814.pdf - AAT59  - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
1080 /* 322911.pdf - AAU65  - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
1081 0x00020652,
1082 /* 322911.pdf - AAU65  - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
1083 0x00020655,
1084 /* 322373.pdf - AAO95  - B1 - Xeon 3400 Series */
1085 /* 322166.pdf - AAN92  - B1 - i7-800 and i5-700 Desktop */
1086 /*
1087  * 320767.pdf - AAP86  - B1 -
1088  * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
1089  */
1090 0x000106E5,
1091 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
1092 0x000106A0,
1093 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
1094 0x000106A1,
1095 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
1096 0x000106A4,
1097  /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
1098  /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
1099  /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
1100 0x000106A5,
1101 };
1102
1103 static inline bool cpu_has_broken_vmx_preemption_timer(void)
1104 {
1105         u32 eax = cpuid_eax(0x00000001), i;
1106
1107         /* Clear the reserved bits */
1108         eax &= ~(0x3U << 14 | 0xfU << 28);
1109         for (i = 0; i < sizeof(vmx_preemption_cpu_tfms)/sizeof(u32); i++)
1110                 if (eax == vmx_preemption_cpu_tfms[i])
1111                         return true;
1112
1113         return false;
1114 }
1115
1116 static inline bool cpu_has_vmx_preemption_timer(void)
1117 {
1118         if (cpu_has_broken_vmx_preemption_timer())
1119                 return false;
1120
1121         return vmcs_config.pin_based_exec_ctrl &
1122                 PIN_BASED_VMX_PREEMPTION_TIMER;
1123 }
1124
1125 static inline bool cpu_has_vmx_posted_intr(void)
1126 {
1127         return IS_ENABLED(CONFIG_X86_LOCAL_APIC) &&
1128                 vmcs_config.pin_based_exec_ctrl & PIN_BASED_POSTED_INTR;
1129 }
1130
1131 static inline bool cpu_has_vmx_apicv(void)
1132 {
1133         return cpu_has_vmx_apic_register_virt() &&
1134                 cpu_has_vmx_virtual_intr_delivery() &&
1135                 cpu_has_vmx_posted_intr();
1136 }
1137
1138 static inline bool cpu_has_vmx_flexpriority(void)
1139 {
1140         return cpu_has_vmx_tpr_shadow() &&
1141                 cpu_has_vmx_virtualize_apic_accesses();
1142 }
1143
1144 static inline bool cpu_has_vmx_ept_execute_only(void)
1145 {
1146         return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
1147 }
1148
1149 static inline bool cpu_has_vmx_ept_2m_page(void)
1150 {
1151         return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
1152 }
1153
1154 static inline bool cpu_has_vmx_ept_1g_page(void)
1155 {
1156         return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
1157 }
1158
1159 static inline bool cpu_has_vmx_ept_4levels(void)
1160 {
1161         return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
1162 }
1163
1164 static inline bool cpu_has_vmx_ept_ad_bits(void)
1165 {
1166         return vmx_capability.ept & VMX_EPT_AD_BIT;
1167 }
1168
1169 static inline bool cpu_has_vmx_invept_context(void)
1170 {
1171         return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
1172 }
1173
1174 static inline bool cpu_has_vmx_invept_global(void)
1175 {
1176         return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
1177 }
1178
1179 static inline bool cpu_has_vmx_invvpid_single(void)
1180 {
1181         return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
1182 }
1183
1184 static inline bool cpu_has_vmx_invvpid_global(void)
1185 {
1186         return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
1187 }
1188
1189 static inline bool cpu_has_vmx_ept(void)
1190 {
1191         return vmcs_config.cpu_based_2nd_exec_ctrl &
1192                 SECONDARY_EXEC_ENABLE_EPT;
1193 }
1194
1195 static inline bool cpu_has_vmx_unrestricted_guest(void)
1196 {
1197         return vmcs_config.cpu_based_2nd_exec_ctrl &
1198                 SECONDARY_EXEC_UNRESTRICTED_GUEST;
1199 }
1200
1201 static inline bool cpu_has_vmx_ple(void)
1202 {
1203         return vmcs_config.cpu_based_2nd_exec_ctrl &
1204                 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
1205 }
1206
1207 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
1208 {
1209         return flexpriority_enabled && lapic_in_kernel(vcpu);
1210 }
1211
1212 static inline bool cpu_has_vmx_vpid(void)
1213 {
1214         return vmcs_config.cpu_based_2nd_exec_ctrl &
1215                 SECONDARY_EXEC_ENABLE_VPID;
1216 }
1217
1218 static inline bool cpu_has_vmx_rdtscp(void)
1219 {
1220         return vmcs_config.cpu_based_2nd_exec_ctrl &
1221                 SECONDARY_EXEC_RDTSCP;
1222 }
1223
1224 static inline bool cpu_has_vmx_invpcid(void)
1225 {
1226         return vmcs_config.cpu_based_2nd_exec_ctrl &
1227                 SECONDARY_EXEC_ENABLE_INVPCID;
1228 }
1229
1230 static inline bool cpu_has_virtual_nmis(void)
1231 {
1232         return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
1233 }
1234
1235 static inline bool cpu_has_vmx_wbinvd_exit(void)
1236 {
1237         return vmcs_config.cpu_based_2nd_exec_ctrl &
1238                 SECONDARY_EXEC_WBINVD_EXITING;
1239 }
1240
1241 static inline bool cpu_has_vmx_shadow_vmcs(void)
1242 {
1243         u64 vmx_msr;
1244         rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
1245         /* check if the cpu supports writing r/o exit information fields */
1246         if (!(vmx_msr & MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS))
1247                 return false;
1248
1249         return vmcs_config.cpu_based_2nd_exec_ctrl &
1250                 SECONDARY_EXEC_SHADOW_VMCS;
1251 }
1252
1253 static inline bool cpu_has_vmx_pml(void)
1254 {
1255         return vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_ENABLE_PML;
1256 }
1257
1258 static inline bool cpu_has_vmx_tsc_scaling(void)
1259 {
1260         return vmcs_config.cpu_based_2nd_exec_ctrl &
1261                 SECONDARY_EXEC_TSC_SCALING;
1262 }
1263
1264 static inline bool report_flexpriority(void)
1265 {
1266         return flexpriority_enabled;
1267 }
1268
1269 static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
1270 {
1271         return vmcs12->cpu_based_vm_exec_control & bit;
1272 }
1273
1274 static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
1275 {
1276         return (vmcs12->cpu_based_vm_exec_control &
1277                         CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
1278                 (vmcs12->secondary_vm_exec_control & bit);
1279 }
1280
1281 static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12)
1282 {
1283         return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
1284 }
1285
1286 static inline bool nested_cpu_has_preemption_timer(struct vmcs12 *vmcs12)
1287 {
1288         return vmcs12->pin_based_vm_exec_control &
1289                 PIN_BASED_VMX_PREEMPTION_TIMER;
1290 }
1291
1292 static inline int nested_cpu_has_ept(struct vmcs12 *vmcs12)
1293 {
1294         return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_EPT);
1295 }
1296
1297 static inline bool nested_cpu_has_xsaves(struct vmcs12 *vmcs12)
1298 {
1299         return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES) &&
1300                 vmx_xsaves_supported();
1301 }
1302
1303 static inline bool nested_cpu_has_virt_x2apic_mode(struct vmcs12 *vmcs12)
1304 {
1305         return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
1306 }
1307
1308 static inline bool nested_cpu_has_vpid(struct vmcs12 *vmcs12)
1309 {
1310         return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_VPID);
1311 }
1312
1313 static inline bool nested_cpu_has_apic_reg_virt(struct vmcs12 *vmcs12)
1314 {
1315         return nested_cpu_has2(vmcs12, SECONDARY_EXEC_APIC_REGISTER_VIRT);
1316 }
1317
1318 static inline bool nested_cpu_has_vid(struct vmcs12 *vmcs12)
1319 {
1320         return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
1321 }
1322
1323 static inline bool nested_cpu_has_posted_intr(struct vmcs12 *vmcs12)
1324 {
1325         return vmcs12->pin_based_vm_exec_control & PIN_BASED_POSTED_INTR;
1326 }
1327
1328 static inline bool is_exception(u32 intr_info)
1329 {
1330         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1331                 == (INTR_TYPE_HARD_EXCEPTION | INTR_INFO_VALID_MASK);
1332 }
1333
1334 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
1335                               u32 exit_intr_info,
1336                               unsigned long exit_qualification);
1337 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
1338                         struct vmcs12 *vmcs12,
1339                         u32 reason, unsigned long qualification);
1340
1341 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
1342 {
1343         int i;
1344
1345         for (i = 0; i < vmx->nmsrs; ++i)
1346                 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
1347                         return i;
1348         return -1;
1349 }
1350
1351 static inline void __invvpid(int ext, u16 vpid, gva_t gva)
1352 {
1353     struct {
1354         u64 vpid : 16;
1355         u64 rsvd : 48;
1356         u64 gva;
1357     } operand = { vpid, 0, gva };
1358
1359     asm volatile (__ex(ASM_VMX_INVVPID)
1360                   /* CF==1 or ZF==1 --> rc = -1 */
1361                   "; ja 1f ; ud2 ; 1:"
1362                   : : "a"(&operand), "c"(ext) : "cc", "memory");
1363 }
1364
1365 static inline void __invept(int ext, u64 eptp, gpa_t gpa)
1366 {
1367         struct {
1368                 u64 eptp, gpa;
1369         } operand = {eptp, gpa};
1370
1371         asm volatile (__ex(ASM_VMX_INVEPT)
1372                         /* CF==1 or ZF==1 --> rc = -1 */
1373                         "; ja 1f ; ud2 ; 1:\n"
1374                         : : "a" (&operand), "c" (ext) : "cc", "memory");
1375 }
1376
1377 static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
1378 {
1379         int i;
1380
1381         i = __find_msr_index(vmx, msr);
1382         if (i >= 0)
1383                 return &vmx->guest_msrs[i];
1384         return NULL;
1385 }
1386
1387 static void vmcs_clear(struct vmcs *vmcs)
1388 {
1389         u64 phys_addr = __pa(vmcs);
1390         u8 error;
1391
1392         asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
1393                       : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1394                       : "cc", "memory");
1395         if (error)
1396                 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
1397                        vmcs, phys_addr);
1398 }
1399
1400 static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
1401 {
1402         vmcs_clear(loaded_vmcs->vmcs);
1403         loaded_vmcs->cpu = -1;
1404         loaded_vmcs->launched = 0;
1405 }
1406
1407 static void vmcs_load(struct vmcs *vmcs)
1408 {
1409         u64 phys_addr = __pa(vmcs);
1410         u8 error;
1411
1412         asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
1413                         : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1414                         : "cc", "memory");
1415         if (error)
1416                 printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
1417                        vmcs, phys_addr);
1418 }
1419
1420 #ifdef CONFIG_KEXEC_CORE
1421 /*
1422  * This bitmap is used to indicate whether the vmclear
1423  * operation is enabled on all cpus. All disabled by
1424  * default.
1425  */
1426 static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
1427
1428 static inline void crash_enable_local_vmclear(int cpu)
1429 {
1430         cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
1431 }
1432
1433 static inline void crash_disable_local_vmclear(int cpu)
1434 {
1435         cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
1436 }
1437
1438 static inline int crash_local_vmclear_enabled(int cpu)
1439 {
1440         return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
1441 }
1442
1443 static void crash_vmclear_local_loaded_vmcss(void)
1444 {
1445         int cpu = raw_smp_processor_id();
1446         struct loaded_vmcs *v;
1447
1448         if (!crash_local_vmclear_enabled(cpu))
1449                 return;
1450
1451         list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
1452                             loaded_vmcss_on_cpu_link)
1453                 vmcs_clear(v->vmcs);
1454 }
1455 #else
1456 static inline void crash_enable_local_vmclear(int cpu) { }
1457 static inline void crash_disable_local_vmclear(int cpu) { }
1458 #endif /* CONFIG_KEXEC_CORE */
1459
1460 static void __loaded_vmcs_clear(void *arg)
1461 {
1462         struct loaded_vmcs *loaded_vmcs = arg;
1463         int cpu = raw_smp_processor_id();
1464
1465         if (loaded_vmcs->cpu != cpu)
1466                 return; /* vcpu migration can race with cpu offline */
1467         if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
1468                 per_cpu(current_vmcs, cpu) = NULL;
1469         crash_disable_local_vmclear(cpu);
1470         list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
1471
1472         /*
1473          * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
1474          * is before setting loaded_vmcs->vcpu to -1 which is done in
1475          * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
1476          * then adds the vmcs into percpu list before it is deleted.
1477          */
1478         smp_wmb();
1479
1480         loaded_vmcs_init(loaded_vmcs);
1481         crash_enable_local_vmclear(cpu);
1482 }
1483
1484 static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
1485 {
1486         int cpu = loaded_vmcs->cpu;
1487
1488         if (cpu != -1)
1489                 smp_call_function_single(cpu,
1490                          __loaded_vmcs_clear, loaded_vmcs, 1);
1491 }
1492
1493 static inline void vpid_sync_vcpu_single(int vpid)
1494 {
1495         if (vpid == 0)
1496                 return;
1497
1498         if (cpu_has_vmx_invvpid_single())
1499                 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vpid, 0);
1500 }
1501
1502 static inline void vpid_sync_vcpu_global(void)
1503 {
1504         if (cpu_has_vmx_invvpid_global())
1505                 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
1506 }
1507
1508 static inline void vpid_sync_context(int vpid)
1509 {
1510         if (cpu_has_vmx_invvpid_single())
1511                 vpid_sync_vcpu_single(vpid);
1512         else
1513                 vpid_sync_vcpu_global();
1514 }
1515
1516 static inline void ept_sync_global(void)
1517 {
1518         if (cpu_has_vmx_invept_global())
1519                 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
1520 }
1521
1522 static inline void ept_sync_context(u64 eptp)
1523 {
1524         if (enable_ept) {
1525                 if (cpu_has_vmx_invept_context())
1526                         __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
1527                 else
1528                         ept_sync_global();
1529         }
1530 }
1531
1532 static __always_inline void vmcs_check16(unsigned long field)
1533 {
1534         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2000,
1535                          "16-bit accessor invalid for 64-bit field");
1536         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1537                          "16-bit accessor invalid for 64-bit high field");
1538         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1539                          "16-bit accessor invalid for 32-bit high field");
1540         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1541                          "16-bit accessor invalid for natural width field");
1542 }
1543
1544 static __always_inline void vmcs_check32(unsigned long field)
1545 {
1546         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1547                          "32-bit accessor invalid for 16-bit field");
1548         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1549                          "32-bit accessor invalid for natural width field");
1550 }
1551
1552 static __always_inline void vmcs_check64(unsigned long field)
1553 {
1554         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1555                          "64-bit accessor invalid for 16-bit field");
1556         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1557                          "64-bit accessor invalid for 64-bit high field");
1558         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1559                          "64-bit accessor invalid for 32-bit field");
1560         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1561                          "64-bit accessor invalid for natural width field");
1562 }
1563
1564 static __always_inline void vmcs_checkl(unsigned long field)
1565 {
1566         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1567                          "Natural width accessor invalid for 16-bit field");
1568         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2000,
1569                          "Natural width accessor invalid for 64-bit field");
1570         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1571                          "Natural width accessor invalid for 64-bit high field");
1572         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1573                          "Natural width accessor invalid for 32-bit field");
1574 }
1575
1576 static __always_inline unsigned long __vmcs_readl(unsigned long field)
1577 {
1578         unsigned long value;
1579
1580         asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
1581                       : "=a"(value) : "d"(field) : "cc");
1582         return value;
1583 }
1584
1585 static __always_inline u16 vmcs_read16(unsigned long field)
1586 {
1587         vmcs_check16(field);
1588         return __vmcs_readl(field);
1589 }
1590
1591 static __always_inline u32 vmcs_read32(unsigned long field)
1592 {
1593         vmcs_check32(field);
1594         return __vmcs_readl(field);
1595 }
1596
1597 static __always_inline u64 vmcs_read64(unsigned long field)
1598 {
1599         vmcs_check64(field);
1600 #ifdef CONFIG_X86_64
1601         return __vmcs_readl(field);
1602 #else
1603         return __vmcs_readl(field) | ((u64)__vmcs_readl(field+1) << 32);
1604 #endif
1605 }
1606
1607 static __always_inline unsigned long vmcs_readl(unsigned long field)
1608 {
1609         vmcs_checkl(field);
1610         return __vmcs_readl(field);
1611 }
1612
1613 static noinline void vmwrite_error(unsigned long field, unsigned long value)
1614 {
1615         printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
1616                field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
1617         dump_stack();
1618 }
1619
1620 static __always_inline void __vmcs_writel(unsigned long field, unsigned long value)
1621 {
1622         u8 error;
1623
1624         asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
1625                        : "=q"(error) : "a"(value), "d"(field) : "cc");
1626         if (unlikely(error))
1627                 vmwrite_error(field, value);
1628 }
1629
1630 static __always_inline void vmcs_write16(unsigned long field, u16 value)
1631 {
1632         vmcs_check16(field);
1633         __vmcs_writel(field, value);
1634 }
1635
1636 static __always_inline void vmcs_write32(unsigned long field, u32 value)
1637 {
1638         vmcs_check32(field);
1639         __vmcs_writel(field, value);
1640 }
1641
1642 static __always_inline void vmcs_write64(unsigned long field, u64 value)
1643 {
1644         vmcs_check64(field);
1645         __vmcs_writel(field, value);
1646 #ifndef CONFIG_X86_64
1647         asm volatile ("");
1648         __vmcs_writel(field+1, value >> 32);
1649 #endif
1650 }
1651
1652 static __always_inline void vmcs_writel(unsigned long field, unsigned long value)
1653 {
1654         vmcs_checkl(field);
1655         __vmcs_writel(field, value);
1656 }
1657
1658 static __always_inline void vmcs_clear_bits(unsigned long field, u32 mask)
1659 {
1660         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x2000,
1661                          "vmcs_clear_bits does not support 64-bit fields");
1662         __vmcs_writel(field, __vmcs_readl(field) & ~mask);
1663 }
1664
1665 static __always_inline void vmcs_set_bits(unsigned long field, u32 mask)
1666 {
1667         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x2000,
1668                          "vmcs_set_bits does not support 64-bit fields");
1669         __vmcs_writel(field, __vmcs_readl(field) | mask);
1670 }
1671
1672 static inline void vm_entry_controls_init(struct vcpu_vmx *vmx, u32 val)
1673 {
1674         vmcs_write32(VM_ENTRY_CONTROLS, val);
1675         vmx->vm_entry_controls_shadow = val;
1676 }
1677
1678 static inline void vm_entry_controls_set(struct vcpu_vmx *vmx, u32 val)
1679 {
1680         if (vmx->vm_entry_controls_shadow != val)
1681                 vm_entry_controls_init(vmx, val);
1682 }
1683
1684 static inline u32 vm_entry_controls_get(struct vcpu_vmx *vmx)
1685 {
1686         return vmx->vm_entry_controls_shadow;
1687 }
1688
1689
1690 static inline void vm_entry_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1691 {
1692         vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) | val);
1693 }
1694
1695 static inline void vm_entry_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1696 {
1697         vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) & ~val);
1698 }
1699
1700 static inline void vm_exit_controls_init(struct vcpu_vmx *vmx, u32 val)
1701 {
1702         vmcs_write32(VM_EXIT_CONTROLS, val);
1703         vmx->vm_exit_controls_shadow = val;
1704 }
1705
1706 static inline void vm_exit_controls_set(struct vcpu_vmx *vmx, u32 val)
1707 {
1708         if (vmx->vm_exit_controls_shadow != val)
1709                 vm_exit_controls_init(vmx, val);
1710 }
1711
1712 static inline u32 vm_exit_controls_get(struct vcpu_vmx *vmx)
1713 {
1714         return vmx->vm_exit_controls_shadow;
1715 }
1716
1717
1718 static inline void vm_exit_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1719 {
1720         vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) | val);
1721 }
1722
1723 static inline void vm_exit_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1724 {
1725         vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) & ~val);
1726 }
1727
1728 static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
1729 {
1730         vmx->segment_cache.bitmask = 0;
1731 }
1732
1733 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
1734                                        unsigned field)
1735 {
1736         bool ret;
1737         u32 mask = 1 << (seg * SEG_FIELD_NR + field);
1738
1739         if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
1740                 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
1741                 vmx->segment_cache.bitmask = 0;
1742         }
1743         ret = vmx->segment_cache.bitmask & mask;
1744         vmx->segment_cache.bitmask |= mask;
1745         return ret;
1746 }
1747
1748 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
1749 {
1750         u16 *p = &vmx->segment_cache.seg[seg].selector;
1751
1752         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
1753                 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
1754         return *p;
1755 }
1756
1757 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
1758 {
1759         ulong *p = &vmx->segment_cache.seg[seg].base;
1760
1761         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
1762                 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
1763         return *p;
1764 }
1765
1766 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
1767 {
1768         u32 *p = &vmx->segment_cache.seg[seg].limit;
1769
1770         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
1771                 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
1772         return *p;
1773 }
1774
1775 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
1776 {
1777         u32 *p = &vmx->segment_cache.seg[seg].ar;
1778
1779         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
1780                 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
1781         return *p;
1782 }
1783
1784 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
1785 {
1786         u32 eb;
1787
1788         eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
1789              (1u << NM_VECTOR) | (1u << DB_VECTOR) | (1u << AC_VECTOR);
1790         if ((vcpu->guest_debug &
1791              (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
1792             (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
1793                 eb |= 1u << BP_VECTOR;
1794         if (to_vmx(vcpu)->rmode.vm86_active)
1795                 eb = ~0;
1796         if (enable_ept)
1797                 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
1798         if (vcpu->fpu_active)
1799                 eb &= ~(1u << NM_VECTOR);
1800
1801         /* When we are running a nested L2 guest and L1 specified for it a
1802          * certain exception bitmap, we must trap the same exceptions and pass
1803          * them to L1. When running L2, we will only handle the exceptions
1804          * specified above if L1 did not want them.
1805          */
1806         if (is_guest_mode(vcpu))
1807                 eb |= get_vmcs12(vcpu)->exception_bitmap;
1808
1809         vmcs_write32(EXCEPTION_BITMAP, eb);
1810 }
1811
1812 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1813                 unsigned long entry, unsigned long exit)
1814 {
1815         vm_entry_controls_clearbit(vmx, entry);
1816         vm_exit_controls_clearbit(vmx, exit);
1817 }
1818
1819 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
1820 {
1821         unsigned i;
1822         struct msr_autoload *m = &vmx->msr_autoload;
1823
1824         switch (msr) {
1825         case MSR_EFER:
1826                 if (cpu_has_load_ia32_efer) {
1827                         clear_atomic_switch_msr_special(vmx,
1828                                         VM_ENTRY_LOAD_IA32_EFER,
1829                                         VM_EXIT_LOAD_IA32_EFER);
1830                         return;
1831                 }
1832                 break;
1833         case MSR_CORE_PERF_GLOBAL_CTRL:
1834                 if (cpu_has_load_perf_global_ctrl) {
1835                         clear_atomic_switch_msr_special(vmx,
1836                                         VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1837                                         VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
1838                         return;
1839                 }
1840                 break;
1841         }
1842
1843         for (i = 0; i < m->nr; ++i)
1844                 if (m->guest[i].index == msr)
1845                         break;
1846
1847         if (i == m->nr)
1848                 return;
1849         --m->nr;
1850         m->guest[i] = m->guest[m->nr];
1851         m->host[i] = m->host[m->nr];
1852         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1853         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1854 }
1855
1856 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1857                 unsigned long entry, unsigned long exit,
1858                 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
1859                 u64 guest_val, u64 host_val)
1860 {
1861         vmcs_write64(guest_val_vmcs, guest_val);
1862         vmcs_write64(host_val_vmcs, host_val);
1863         vm_entry_controls_setbit(vmx, entry);
1864         vm_exit_controls_setbit(vmx, exit);
1865 }
1866
1867 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1868                                   u64 guest_val, u64 host_val)
1869 {
1870         unsigned i;
1871         struct msr_autoload *m = &vmx->msr_autoload;
1872
1873         switch (msr) {
1874         case MSR_EFER:
1875                 if (cpu_has_load_ia32_efer) {
1876                         add_atomic_switch_msr_special(vmx,
1877                                         VM_ENTRY_LOAD_IA32_EFER,
1878                                         VM_EXIT_LOAD_IA32_EFER,
1879                                         GUEST_IA32_EFER,
1880                                         HOST_IA32_EFER,
1881                                         guest_val, host_val);
1882                         return;
1883                 }
1884                 break;
1885         case MSR_CORE_PERF_GLOBAL_CTRL:
1886                 if (cpu_has_load_perf_global_ctrl) {
1887                         add_atomic_switch_msr_special(vmx,
1888                                         VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1889                                         VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1890                                         GUEST_IA32_PERF_GLOBAL_CTRL,
1891                                         HOST_IA32_PERF_GLOBAL_CTRL,
1892                                         guest_val, host_val);
1893                         return;
1894                 }
1895                 break;
1896         case MSR_IA32_PEBS_ENABLE:
1897                 /* PEBS needs a quiescent period after being disabled (to write
1898                  * a record).  Disabling PEBS through VMX MSR swapping doesn't
1899                  * provide that period, so a CPU could write host's record into
1900                  * guest's memory.
1901                  */
1902                 wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
1903         }
1904
1905         for (i = 0; i < m->nr; ++i)
1906                 if (m->guest[i].index == msr)
1907                         break;
1908
1909         if (i == NR_AUTOLOAD_MSRS) {
1910                 printk_once(KERN_WARNING "Not enough msr switch entries. "
1911                                 "Can't add msr %x\n", msr);
1912                 return;
1913         } else if (i == m->nr) {
1914                 ++m->nr;
1915                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1916                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1917         }
1918
1919         m->guest[i].index = msr;
1920         m->guest[i].value = guest_val;
1921         m->host[i].index = msr;
1922         m->host[i].value = host_val;
1923 }
1924
1925 static void reload_tss(void)
1926 {
1927         /*
1928          * VT restores TR but not its size.  Useless.
1929          */
1930         struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
1931         struct desc_struct *descs;
1932
1933         descs = (void *)gdt->address;
1934         descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
1935         load_TR_desc();
1936 }
1937
1938 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
1939 {
1940         u64 guest_efer = vmx->vcpu.arch.efer;
1941         u64 ignore_bits = 0;
1942
1943         if (!enable_ept) {
1944                 /*
1945                  * NX is needed to handle CR0.WP=1, CR4.SMEP=1.  Testing
1946                  * host CPUID is more efficient than testing guest CPUID
1947                  * or CR4.  Host SMEP is anyway a requirement for guest SMEP.
1948                  */
1949                 if (boot_cpu_has(X86_FEATURE_SMEP))
1950                         guest_efer |= EFER_NX;
1951                 else if (!(guest_efer & EFER_NX))
1952                         ignore_bits |= EFER_NX;
1953         }
1954
1955         /*
1956          * LMA and LME handled by hardware; SCE meaningless outside long mode.
1957          */
1958         ignore_bits |= EFER_SCE;
1959 #ifdef CONFIG_X86_64
1960         ignore_bits |= EFER_LMA | EFER_LME;
1961         /* SCE is meaningful only in long mode on Intel */
1962         if (guest_efer & EFER_LMA)
1963                 ignore_bits &= ~(u64)EFER_SCE;
1964 #endif
1965
1966         clear_atomic_switch_msr(vmx, MSR_EFER);
1967
1968         /*
1969          * On EPT, we can't emulate NX, so we must switch EFER atomically.
1970          * On CPUs that support "load IA32_EFER", always switch EFER
1971          * atomically, since it's faster than switching it manually.
1972          */
1973         if (cpu_has_load_ia32_efer ||
1974             (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
1975                 if (!(guest_efer & EFER_LMA))
1976                         guest_efer &= ~EFER_LME;
1977                 if (guest_efer != host_efer)
1978                         add_atomic_switch_msr(vmx, MSR_EFER,
1979                                               guest_efer, host_efer);
1980                 return false;
1981         } else {
1982                 guest_efer &= ~ignore_bits;
1983                 guest_efer |= host_efer & ignore_bits;
1984
1985                 vmx->guest_msrs[efer_offset].data = guest_efer;
1986                 vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
1987
1988                 return true;
1989         }
1990 }
1991
1992 static unsigned long segment_base(u16 selector)
1993 {
1994         struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
1995         struct desc_struct *d;
1996         unsigned long table_base;
1997         unsigned long v;
1998
1999         if (!(selector & ~3))
2000                 return 0;
2001
2002         table_base = gdt->address;
2003
2004         if (selector & 4) {           /* from ldt */
2005                 u16 ldt_selector = kvm_read_ldt();
2006
2007                 if (!(ldt_selector & ~3))
2008                         return 0;
2009
2010                 table_base = segment_base(ldt_selector);
2011         }
2012         d = (struct desc_struct *)(table_base + (selector & ~7));
2013         v = get_desc_base(d);
2014 #ifdef CONFIG_X86_64
2015        if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
2016                v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
2017 #endif
2018         return v;
2019 }
2020
2021 static inline unsigned long kvm_read_tr_base(void)
2022 {
2023         u16 tr;
2024         asm("str %0" : "=g"(tr));
2025         return segment_base(tr);
2026 }
2027
2028 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
2029 {
2030         struct vcpu_vmx *vmx = to_vmx(vcpu);
2031         int i;
2032
2033         if (vmx->host_state.loaded)
2034                 return;
2035
2036         vmx->host_state.loaded = 1;
2037         /*
2038          * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
2039          * allow segment selectors with cpl > 0 or ti == 1.
2040          */
2041         vmx->host_state.ldt_sel = kvm_read_ldt();
2042         vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
2043         savesegment(fs, vmx->host_state.fs_sel);
2044         if (!(vmx->host_state.fs_sel & 7)) {
2045                 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
2046                 vmx->host_state.fs_reload_needed = 0;
2047         } else {
2048                 vmcs_write16(HOST_FS_SELECTOR, 0);
2049                 vmx->host_state.fs_reload_needed = 1;
2050         }
2051         savesegment(gs, vmx->host_state.gs_sel);
2052         if (!(vmx->host_state.gs_sel & 7))
2053                 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
2054         else {
2055                 vmcs_write16(HOST_GS_SELECTOR, 0);
2056                 vmx->host_state.gs_ldt_reload_needed = 1;
2057         }
2058
2059 #ifdef CONFIG_X86_64
2060         savesegment(ds, vmx->host_state.ds_sel);
2061         savesegment(es, vmx->host_state.es_sel);
2062 #endif
2063
2064 #ifdef CONFIG_X86_64
2065         vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
2066         vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
2067 #else
2068         vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
2069         vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
2070 #endif
2071
2072 #ifdef CONFIG_X86_64
2073         rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
2074         if (is_long_mode(&vmx->vcpu))
2075                 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
2076 #endif
2077         if (boot_cpu_has(X86_FEATURE_MPX))
2078                 rdmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
2079         for (i = 0; i < vmx->save_nmsrs; ++i)
2080                 kvm_set_shared_msr(vmx->guest_msrs[i].index,
2081                                    vmx->guest_msrs[i].data,
2082                                    vmx->guest_msrs[i].mask);
2083 }
2084
2085 static void __vmx_load_host_state(struct vcpu_vmx *vmx)
2086 {
2087         if (!vmx->host_state.loaded)
2088                 return;
2089
2090         ++vmx->vcpu.stat.host_state_reload;
2091         vmx->host_state.loaded = 0;
2092 #ifdef CONFIG_X86_64
2093         if (is_long_mode(&vmx->vcpu))
2094                 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
2095 #endif
2096         if (vmx->host_state.gs_ldt_reload_needed) {
2097                 kvm_load_ldt(vmx->host_state.ldt_sel);
2098 #ifdef CONFIG_X86_64
2099                 load_gs_index(vmx->host_state.gs_sel);
2100 #else
2101                 loadsegment(gs, vmx->host_state.gs_sel);
2102 #endif
2103         }
2104         if (vmx->host_state.fs_reload_needed)
2105                 loadsegment(fs, vmx->host_state.fs_sel);
2106 #ifdef CONFIG_X86_64
2107         if (unlikely(vmx->host_state.ds_sel | vmx->host_state.es_sel)) {
2108                 loadsegment(ds, vmx->host_state.ds_sel);
2109                 loadsegment(es, vmx->host_state.es_sel);
2110         }
2111 #endif
2112         reload_tss();
2113 #ifdef CONFIG_X86_64
2114         wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
2115 #endif
2116         if (vmx->host_state.msr_host_bndcfgs)
2117                 wrmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
2118         /*
2119          * If the FPU is not active (through the host task or
2120          * the guest vcpu), then restore the cr0.TS bit.
2121          */
2122         if (!fpregs_active() && !vmx->vcpu.guest_fpu_loaded)
2123                 stts();
2124         load_gdt(this_cpu_ptr(&host_gdt));
2125 }
2126
2127 static void vmx_load_host_state(struct vcpu_vmx *vmx)
2128 {
2129         preempt_disable();
2130         __vmx_load_host_state(vmx);
2131         preempt_enable();
2132 }
2133
2134 static void vmx_vcpu_pi_load(struct kvm_vcpu *vcpu, int cpu)
2135 {
2136         struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
2137         struct pi_desc old, new;
2138         unsigned int dest;
2139
2140         if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
2141                 !irq_remapping_cap(IRQ_POSTING_CAP))
2142                 return;
2143
2144         do {
2145                 old.control = new.control = pi_desc->control;
2146
2147                 /*
2148                  * If 'nv' field is POSTED_INTR_WAKEUP_VECTOR, there
2149                  * are two possible cases:
2150                  * 1. After running 'pre_block', context switch
2151                  *    happened. For this case, 'sn' was set in
2152                  *    vmx_vcpu_put(), so we need to clear it here.
2153                  * 2. After running 'pre_block', we were blocked,
2154                  *    and woken up by some other guy. For this case,
2155                  *    we don't need to do anything, 'pi_post_block'
2156                  *    will do everything for us. However, we cannot
2157                  *    check whether it is case #1 or case #2 here
2158                  *    (maybe, not needed), so we also clear sn here,
2159                  *    I think it is not a big deal.
2160                  */
2161                 if (pi_desc->nv != POSTED_INTR_WAKEUP_VECTOR) {
2162                         if (vcpu->cpu != cpu) {
2163                                 dest = cpu_physical_id(cpu);
2164
2165                                 if (x2apic_enabled())
2166                                         new.ndst = dest;
2167                                 else
2168                                         new.ndst = (dest << 8) & 0xFF00;
2169                         }
2170
2171                         /* set 'NV' to 'notification vector' */
2172                         new.nv = POSTED_INTR_VECTOR;
2173                 }
2174
2175                 /* Allow posting non-urgent interrupts */
2176                 new.sn = 0;
2177         } while (cmpxchg(&pi_desc->control, old.control,
2178                         new.control) != old.control);
2179 }
2180
2181 /*
2182  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
2183  * vcpu mutex is already taken.
2184  */
2185 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2186 {
2187         struct vcpu_vmx *vmx = to_vmx(vcpu);
2188         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2189
2190         if (!vmm_exclusive)
2191                 kvm_cpu_vmxon(phys_addr);
2192         else if (vmx->loaded_vmcs->cpu != cpu)
2193                 loaded_vmcs_clear(vmx->loaded_vmcs);
2194
2195         if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
2196                 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
2197                 vmcs_load(vmx->loaded_vmcs->vmcs);
2198         }
2199
2200         if (vmx->loaded_vmcs->cpu != cpu) {
2201                 struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
2202                 unsigned long sysenter_esp;
2203
2204                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2205                 local_irq_disable();
2206                 crash_disable_local_vmclear(cpu);
2207
2208                 /*
2209                  * Read loaded_vmcs->cpu should be before fetching
2210                  * loaded_vmcs->loaded_vmcss_on_cpu_link.
2211                  * See the comments in __loaded_vmcs_clear().
2212                  */
2213                 smp_rmb();
2214
2215                 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
2216                          &per_cpu(loaded_vmcss_on_cpu, cpu));
2217                 crash_enable_local_vmclear(cpu);
2218                 local_irq_enable();
2219
2220                 /*
2221                  * Linux uses per-cpu TSS and GDT, so set these when switching
2222                  * processors.
2223                  */
2224                 vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
2225                 vmcs_writel(HOST_GDTR_BASE, gdt->address);   /* 22.2.4 */
2226
2227                 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
2228                 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
2229
2230                 vmx->loaded_vmcs->cpu = cpu;
2231         }
2232
2233         /* Setup TSC multiplier */
2234         if (kvm_has_tsc_control &&
2235             vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio) {
2236                 vmx->current_tsc_ratio = vcpu->arch.tsc_scaling_ratio;
2237                 vmcs_write64(TSC_MULTIPLIER, vmx->current_tsc_ratio);
2238         }
2239
2240         vmx_vcpu_pi_load(vcpu, cpu);
2241         vmx->host_pkru = read_pkru();
2242 }
2243
2244 static void vmx_vcpu_pi_put(struct kvm_vcpu *vcpu)
2245 {
2246         struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
2247
2248         if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
2249                 !irq_remapping_cap(IRQ_POSTING_CAP))
2250                 return;
2251
2252         /* Set SN when the vCPU is preempted */
2253         if (vcpu->preempted)
2254                 pi_set_sn(pi_desc);
2255 }
2256
2257 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
2258 {
2259         vmx_vcpu_pi_put(vcpu);
2260
2261         __vmx_load_host_state(to_vmx(vcpu));
2262         if (!vmm_exclusive) {
2263                 __loaded_vmcs_clear(to_vmx(vcpu)->loaded_vmcs);
2264                 vcpu->cpu = -1;
2265                 kvm_cpu_vmxoff();
2266         }
2267 }
2268
2269 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
2270 {
2271         ulong cr0;
2272
2273         if (vcpu->fpu_active)
2274                 return;
2275         vcpu->fpu_active = 1;
2276         cr0 = vmcs_readl(GUEST_CR0);
2277         cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
2278         cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
2279         vmcs_writel(GUEST_CR0, cr0);
2280         update_exception_bitmap(vcpu);
2281         vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
2282         if (is_guest_mode(vcpu))
2283                 vcpu->arch.cr0_guest_owned_bits &=
2284                         ~get_vmcs12(vcpu)->cr0_guest_host_mask;
2285         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
2286 }
2287
2288 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
2289
2290 /*
2291  * Return the cr0 value that a nested guest would read. This is a combination
2292  * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
2293  * its hypervisor (cr0_read_shadow).
2294  */
2295 static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
2296 {
2297         return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
2298                 (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
2299 }
2300 static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
2301 {
2302         return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
2303                 (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
2304 }
2305
2306 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
2307 {
2308         /* Note that there is no vcpu->fpu_active = 0 here. The caller must
2309          * set this *before* calling this function.
2310          */
2311         vmx_decache_cr0_guest_bits(vcpu);
2312         vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
2313         update_exception_bitmap(vcpu);
2314         vcpu->arch.cr0_guest_owned_bits = 0;
2315         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
2316         if (is_guest_mode(vcpu)) {
2317                 /*
2318                  * L1's specified read shadow might not contain the TS bit,
2319                  * so now that we turned on shadowing of this bit, we need to
2320                  * set this bit of the shadow. Like in nested_vmx_run we need
2321                  * nested_read_cr0(vmcs12), but vmcs12->guest_cr0 is not yet
2322                  * up-to-date here because we just decached cr0.TS (and we'll
2323                  * only update vmcs12->guest_cr0 on nested exit).
2324                  */
2325                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2326                 vmcs12->guest_cr0 = (vmcs12->guest_cr0 & ~X86_CR0_TS) |
2327                         (vcpu->arch.cr0 & X86_CR0_TS);
2328                 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
2329         } else
2330                 vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
2331 }
2332
2333 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
2334 {
2335         unsigned long rflags, save_rflags;
2336
2337         if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
2338                 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
2339                 rflags = vmcs_readl(GUEST_RFLAGS);
2340                 if (to_vmx(vcpu)->rmode.vm86_active) {
2341                         rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2342                         save_rflags = to_vmx(vcpu)->rmode.save_rflags;
2343                         rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2344                 }
2345                 to_vmx(vcpu)->rflags = rflags;
2346         }
2347         return to_vmx(vcpu)->rflags;
2348 }
2349
2350 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
2351 {
2352         __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
2353         to_vmx(vcpu)->rflags = rflags;
2354         if (to_vmx(vcpu)->rmode.vm86_active) {
2355                 to_vmx(vcpu)->rmode.save_rflags = rflags;
2356                 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2357         }
2358         vmcs_writel(GUEST_RFLAGS, rflags);
2359 }
2360
2361 static u32 vmx_get_pkru(struct kvm_vcpu *vcpu)
2362 {
2363         return to_vmx(vcpu)->guest_pkru;
2364 }
2365
2366 static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
2367 {
2368         u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2369         int ret = 0;
2370
2371         if (interruptibility & GUEST_INTR_STATE_STI)
2372                 ret |= KVM_X86_SHADOW_INT_STI;
2373         if (interruptibility & GUEST_INTR_STATE_MOV_SS)
2374                 ret |= KVM_X86_SHADOW_INT_MOV_SS;
2375
2376         return ret;
2377 }
2378
2379 static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
2380 {
2381         u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2382         u32 interruptibility = interruptibility_old;
2383
2384         interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
2385
2386         if (mask & KVM_X86_SHADOW_INT_MOV_SS)
2387                 interruptibility |= GUEST_INTR_STATE_MOV_SS;
2388         else if (mask & KVM_X86_SHADOW_INT_STI)
2389                 interruptibility |= GUEST_INTR_STATE_STI;
2390
2391         if ((interruptibility != interruptibility_old))
2392                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
2393 }
2394
2395 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
2396 {
2397         unsigned long rip;
2398
2399         rip = kvm_rip_read(vcpu);
2400         rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
2401         kvm_rip_write(vcpu, rip);
2402
2403         /* skipping an emulated instruction also counts */
2404         vmx_set_interrupt_shadow(vcpu, 0);
2405 }
2406
2407 /*
2408  * KVM wants to inject page-faults which it got to the guest. This function
2409  * checks whether in a nested guest, we need to inject them to L1 or L2.
2410  */
2411 static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned nr)
2412 {
2413         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2414
2415         if (!(vmcs12->exception_bitmap & (1u << nr)))
2416                 return 0;
2417
2418         nested_vmx_vmexit(vcpu, to_vmx(vcpu)->exit_reason,
2419                           vmcs_read32(VM_EXIT_INTR_INFO),
2420                           vmcs_readl(EXIT_QUALIFICATION));
2421         return 1;
2422 }
2423
2424 static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
2425                                 bool has_error_code, u32 error_code,
2426                                 bool reinject)
2427 {
2428         struct vcpu_vmx *vmx = to_vmx(vcpu);
2429         u32 intr_info = nr | INTR_INFO_VALID_MASK;
2430
2431         if (!reinject && is_guest_mode(vcpu) &&
2432             nested_vmx_check_exception(vcpu, nr))
2433                 return;
2434
2435         if (has_error_code) {
2436                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
2437                 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
2438         }
2439
2440         if (vmx->rmode.vm86_active) {
2441                 int inc_eip = 0;
2442                 if (kvm_exception_is_soft(nr))
2443                         inc_eip = vcpu->arch.event_exit_inst_len;
2444                 if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
2445                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2446                 return;
2447         }
2448
2449         if (kvm_exception_is_soft(nr)) {
2450                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2451                              vmx->vcpu.arch.event_exit_inst_len);
2452                 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
2453         } else
2454                 intr_info |= INTR_TYPE_HARD_EXCEPTION;
2455
2456         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
2457 }
2458
2459 static bool vmx_rdtscp_supported(void)
2460 {
2461         return cpu_has_vmx_rdtscp();
2462 }
2463
2464 static bool vmx_invpcid_supported(void)
2465 {
2466         return cpu_has_vmx_invpcid() && enable_ept;
2467 }
2468
2469 /*
2470  * Swap MSR entry in host/guest MSR entry array.
2471  */
2472 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
2473 {
2474         struct shared_msr_entry tmp;
2475
2476         tmp = vmx->guest_msrs[to];
2477         vmx->guest_msrs[to] = vmx->guest_msrs[from];
2478         vmx->guest_msrs[from] = tmp;
2479 }
2480
2481 static void vmx_set_msr_bitmap(struct kvm_vcpu *vcpu)
2482 {
2483         unsigned long *msr_bitmap;
2484
2485         if (is_guest_mode(vcpu))
2486                 msr_bitmap = vmx_msr_bitmap_nested;
2487         else if (cpu_has_secondary_exec_ctrls() &&
2488                  (vmcs_read32(SECONDARY_VM_EXEC_CONTROL) &
2489                   SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
2490                 if (is_long_mode(vcpu))
2491                         msr_bitmap = vmx_msr_bitmap_longmode_x2apic;
2492                 else
2493                         msr_bitmap = vmx_msr_bitmap_legacy_x2apic;
2494         } else {
2495                 if (is_long_mode(vcpu))
2496                         msr_bitmap = vmx_msr_bitmap_longmode;
2497                 else
2498                         msr_bitmap = vmx_msr_bitmap_legacy;
2499         }
2500
2501         vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
2502 }
2503
2504 /*
2505  * Set up the vmcs to automatically save and restore system
2506  * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
2507  * mode, as fiddling with msrs is very expensive.
2508  */
2509 static void setup_msrs(struct vcpu_vmx *vmx)
2510 {
2511         int save_nmsrs, index;
2512
2513         save_nmsrs = 0;
2514 #ifdef CONFIG_X86_64
2515         if (is_long_mode(&vmx->vcpu)) {
2516                 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
2517                 if (index >= 0)
2518                         move_msr_up(vmx, index, save_nmsrs++);
2519                 index = __find_msr_index(vmx, MSR_LSTAR);
2520                 if (index >= 0)
2521                         move_msr_up(vmx, index, save_nmsrs++);
2522                 index = __find_msr_index(vmx, MSR_CSTAR);
2523                 if (index >= 0)
2524                         move_msr_up(vmx, index, save_nmsrs++);
2525                 index = __find_msr_index(vmx, MSR_TSC_AUX);
2526                 if (index >= 0 && guest_cpuid_has_rdtscp(&vmx->vcpu))
2527                         move_msr_up(vmx, index, save_nmsrs++);
2528                 /*
2529                  * MSR_STAR is only needed on long mode guests, and only
2530                  * if efer.sce is enabled.
2531                  */
2532                 index = __find_msr_index(vmx, MSR_STAR);
2533                 if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
2534                         move_msr_up(vmx, index, save_nmsrs++);
2535         }
2536 #endif
2537         index = __find_msr_index(vmx, MSR_EFER);
2538         if (index >= 0 && update_transition_efer(vmx, index))
2539                 move_msr_up(vmx, index, save_nmsrs++);
2540
2541         vmx->save_nmsrs = save_nmsrs;
2542
2543         if (cpu_has_vmx_msr_bitmap())
2544                 vmx_set_msr_bitmap(&vmx->vcpu);
2545 }
2546
2547 /*
2548  * reads and returns guest's timestamp counter "register"
2549  * guest_tsc = (host_tsc * tsc multiplier) >> 48 + tsc_offset
2550  * -- Intel TSC Scaling for Virtualization White Paper, sec 1.3
2551  */
2552 static u64 guest_read_tsc(struct kvm_vcpu *vcpu)
2553 {
2554         u64 host_tsc, tsc_offset;
2555
2556         host_tsc = rdtsc();
2557         tsc_offset = vmcs_read64(TSC_OFFSET);
2558         return kvm_scale_tsc(vcpu, host_tsc) + tsc_offset;
2559 }
2560
2561 /*
2562  * Like guest_read_tsc, but always returns L1's notion of the timestamp
2563  * counter, even if a nested guest (L2) is currently running.
2564  */
2565 static u64 vmx_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2566 {
2567         u64 tsc_offset;
2568
2569         tsc_offset = is_guest_mode(vcpu) ?
2570                 to_vmx(vcpu)->nested.vmcs01_tsc_offset :
2571                 vmcs_read64(TSC_OFFSET);
2572         return host_tsc + tsc_offset;
2573 }
2574
2575 static u64 vmx_read_tsc_offset(struct kvm_vcpu *vcpu)
2576 {
2577         return vmcs_read64(TSC_OFFSET);
2578 }
2579
2580 /*
2581  * writes 'offset' into guest's timestamp counter offset register
2582  */
2583 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
2584 {
2585         if (is_guest_mode(vcpu)) {
2586                 /*
2587                  * We're here if L1 chose not to trap WRMSR to TSC. According
2588                  * to the spec, this should set L1's TSC; The offset that L1
2589                  * set for L2 remains unchanged, and still needs to be added
2590                  * to the newly set TSC to get L2's TSC.
2591                  */
2592                 struct vmcs12 *vmcs12;
2593                 to_vmx(vcpu)->nested.vmcs01_tsc_offset = offset;
2594                 /* recalculate vmcs02.TSC_OFFSET: */
2595                 vmcs12 = get_vmcs12(vcpu);
2596                 vmcs_write64(TSC_OFFSET, offset +
2597                         (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
2598                          vmcs12->tsc_offset : 0));
2599         } else {
2600                 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2601                                            vmcs_read64(TSC_OFFSET), offset);
2602                 vmcs_write64(TSC_OFFSET, offset);
2603         }
2604 }
2605
2606 static void vmx_adjust_tsc_offset_guest(struct kvm_vcpu *vcpu, s64 adjustment)
2607 {
2608         u64 offset = vmcs_read64(TSC_OFFSET);
2609
2610         vmcs_write64(TSC_OFFSET, offset + adjustment);
2611         if (is_guest_mode(vcpu)) {
2612                 /* Even when running L2, the adjustment needs to apply to L1 */
2613                 to_vmx(vcpu)->nested.vmcs01_tsc_offset += adjustment;
2614         } else
2615                 trace_kvm_write_tsc_offset(vcpu->vcpu_id, offset,
2616                                            offset + adjustment);
2617 }
2618
2619 static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
2620 {
2621         struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
2622         return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
2623 }
2624
2625 /*
2626  * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
2627  * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
2628  * all guests if the "nested" module option is off, and can also be disabled
2629  * for a single guest by disabling its VMX cpuid bit.
2630  */
2631 static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
2632 {
2633         return nested && guest_cpuid_has_vmx(vcpu);
2634 }
2635
2636 /*
2637  * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
2638  * returned for the various VMX controls MSRs when nested VMX is enabled.
2639  * The same values should also be used to verify that vmcs12 control fields are
2640  * valid during nested entry from L1 to L2.
2641  * Each of these control msrs has a low and high 32-bit half: A low bit is on
2642  * if the corresponding bit in the (32-bit) control field *must* be on, and a
2643  * bit in the high half is on if the corresponding bit in the control field
2644  * may be on. See also vmx_control_verify().
2645  */
2646 static void nested_vmx_setup_ctls_msrs(struct vcpu_vmx *vmx)
2647 {
2648         /*
2649          * Note that as a general rule, the high half of the MSRs (bits in
2650          * the control fields which may be 1) should be initialized by the
2651          * intersection of the underlying hardware's MSR (i.e., features which
2652          * can be supported) and the list of features we want to expose -
2653          * because they are known to be properly supported in our code.
2654          * Also, usually, the low half of the MSRs (bits which must be 1) can
2655          * be set to 0, meaning that L1 may turn off any of these bits. The
2656          * reason is that if one of these bits is necessary, it will appear
2657          * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
2658          * fields of vmcs01 and vmcs02, will turn these bits off - and
2659          * nested_vmx_exit_handled() will not pass related exits to L1.
2660          * These rules have exceptions below.
2661          */
2662
2663         /* pin-based controls */
2664         rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
2665                 vmx->nested.nested_vmx_pinbased_ctls_low,
2666                 vmx->nested.nested_vmx_pinbased_ctls_high);
2667         vmx->nested.nested_vmx_pinbased_ctls_low |=
2668                 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2669         vmx->nested.nested_vmx_pinbased_ctls_high &=
2670                 PIN_BASED_EXT_INTR_MASK |
2671                 PIN_BASED_NMI_EXITING |
2672                 PIN_BASED_VIRTUAL_NMIS;
2673         vmx->nested.nested_vmx_pinbased_ctls_high |=
2674                 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
2675                 PIN_BASED_VMX_PREEMPTION_TIMER;
2676         if (kvm_vcpu_apicv_active(&vmx->vcpu))
2677                 vmx->nested.nested_vmx_pinbased_ctls_high |=
2678                         PIN_BASED_POSTED_INTR;
2679
2680         /* exit controls */
2681         rdmsr(MSR_IA32_VMX_EXIT_CTLS,
2682                 vmx->nested.nested_vmx_exit_ctls_low,
2683                 vmx->nested.nested_vmx_exit_ctls_high);
2684         vmx->nested.nested_vmx_exit_ctls_low =
2685                 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
2686
2687         vmx->nested.nested_vmx_exit_ctls_high &=
2688 #ifdef CONFIG_X86_64
2689                 VM_EXIT_HOST_ADDR_SPACE_SIZE |
2690 #endif
2691                 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
2692         vmx->nested.nested_vmx_exit_ctls_high |=
2693                 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
2694                 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
2695                 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
2696
2697         if (kvm_mpx_supported())
2698                 vmx->nested.nested_vmx_exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
2699
2700         /* We support free control of debug control saving. */
2701         vmx->nested.nested_vmx_true_exit_ctls_low =
2702                 vmx->nested.nested_vmx_exit_ctls_low &
2703                 ~VM_EXIT_SAVE_DEBUG_CONTROLS;
2704
2705         /* entry controls */
2706         rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
2707                 vmx->nested.nested_vmx_entry_ctls_low,
2708                 vmx->nested.nested_vmx_entry_ctls_high);
2709         vmx->nested.nested_vmx_entry_ctls_low =
2710                 VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
2711         vmx->nested.nested_vmx_entry_ctls_high &=
2712 #ifdef CONFIG_X86_64
2713                 VM_ENTRY_IA32E_MODE |
2714 #endif
2715                 VM_ENTRY_LOAD_IA32_PAT;
2716         vmx->nested.nested_vmx_entry_ctls_high |=
2717                 (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
2718         if (kvm_mpx_supported())
2719                 vmx->nested.nested_vmx_entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
2720
2721         /* We support free control of debug control loading. */
2722         vmx->nested.nested_vmx_true_entry_ctls_low =
2723                 vmx->nested.nested_vmx_entry_ctls_low &
2724                 ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
2725
2726         /* cpu-based controls */
2727         rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
2728                 vmx->nested.nested_vmx_procbased_ctls_low,
2729                 vmx->nested.nested_vmx_procbased_ctls_high);
2730         vmx->nested.nested_vmx_procbased_ctls_low =
2731                 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2732         vmx->nested.nested_vmx_procbased_ctls_high &=
2733                 CPU_BASED_VIRTUAL_INTR_PENDING |
2734                 CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING |
2735                 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
2736                 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
2737                 CPU_BASED_CR3_STORE_EXITING |
2738 #ifdef CONFIG_X86_64
2739                 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
2740 #endif
2741                 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
2742                 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
2743                 CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
2744                 CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
2745                 CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2746         /*
2747          * We can allow some features even when not supported by the
2748          * hardware. For example, L1 can specify an MSR bitmap - and we
2749          * can use it to avoid exits to L1 - even when L0 runs L2
2750          * without MSR bitmaps.
2751          */
2752         vmx->nested.nested_vmx_procbased_ctls_high |=
2753                 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
2754                 CPU_BASED_USE_MSR_BITMAPS;
2755
2756         /* We support free control of CR3 access interception. */
2757         vmx->nested.nested_vmx_true_procbased_ctls_low =
2758                 vmx->nested.nested_vmx_procbased_ctls_low &
2759                 ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
2760
2761         /* secondary cpu-based controls */
2762         rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
2763                 vmx->nested.nested_vmx_secondary_ctls_low,
2764                 vmx->nested.nested_vmx_secondary_ctls_high);
2765         vmx->nested.nested_vmx_secondary_ctls_low = 0;
2766         vmx->nested.nested_vmx_secondary_ctls_high &=
2767                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2768                 SECONDARY_EXEC_RDTSCP |
2769                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2770                 SECONDARY_EXEC_ENABLE_VPID |
2771                 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2772                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2773                 SECONDARY_EXEC_WBINVD_EXITING |
2774                 SECONDARY_EXEC_XSAVES |
2775                 SECONDARY_EXEC_PCOMMIT;
2776
2777         if (enable_ept) {
2778                 /* nested EPT: emulate EPT also to L1 */
2779                 vmx->nested.nested_vmx_secondary_ctls_high |=
2780                         SECONDARY_EXEC_ENABLE_EPT;
2781                 vmx->nested.nested_vmx_ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
2782                          VMX_EPTP_WB_BIT | VMX_EPT_2MB_PAGE_BIT |
2783                          VMX_EPT_INVEPT_BIT;
2784                 vmx->nested.nested_vmx_ept_caps &= vmx_capability.ept;
2785                 /*
2786                  * For nested guests, we don't do anything specific
2787                  * for single context invalidation. Hence, only advertise
2788                  * support for global context invalidation.
2789                  */
2790                 vmx->nested.nested_vmx_ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT;
2791         } else
2792                 vmx->nested.nested_vmx_ept_caps = 0;
2793
2794         /*
2795          * Old versions of KVM use the single-context version without
2796          * checking for support, so declare that it is supported even
2797          * though it is treated as global context.  The alternative is
2798          * not failing the single-context invvpid, and it is worse.
2799          */
2800         if (enable_vpid)
2801                 vmx->nested.nested_vmx_vpid_caps = VMX_VPID_INVVPID_BIT |
2802                                 VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT |
2803                                 VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
2804         else
2805                 vmx->nested.nested_vmx_vpid_caps = 0;
2806
2807         if (enable_unrestricted_guest)
2808                 vmx->nested.nested_vmx_secondary_ctls_high |=
2809                         SECONDARY_EXEC_UNRESTRICTED_GUEST;
2810
2811         /* miscellaneous data */
2812         rdmsr(MSR_IA32_VMX_MISC,
2813                 vmx->nested.nested_vmx_misc_low,
2814                 vmx->nested.nested_vmx_misc_high);
2815         vmx->nested.nested_vmx_misc_low &= VMX_MISC_SAVE_EFER_LMA;
2816         vmx->nested.nested_vmx_misc_low |=
2817                 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
2818                 VMX_MISC_ACTIVITY_HLT;
2819         vmx->nested.nested_vmx_misc_high = 0;
2820 }
2821
2822 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
2823 {
2824         /*
2825          * Bits 0 in high must be 0, and bits 1 in low must be 1.
2826          */
2827         return ((control & high) | low) == control;
2828 }
2829
2830 static inline u64 vmx_control_msr(u32 low, u32 high)
2831 {
2832         return low | ((u64)high << 32);
2833 }
2834
2835 /* Returns 0 on success, non-0 otherwise. */
2836 static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2837 {
2838         struct vcpu_vmx *vmx = to_vmx(vcpu);
2839
2840         switch (msr_index) {
2841         case MSR_IA32_VMX_BASIC:
2842                 /*
2843                  * This MSR reports some information about VMX support. We
2844                  * should return information about the VMX we emulate for the
2845                  * guest, and the VMCS structure we give it - not about the
2846                  * VMX support of the underlying hardware.
2847                  */
2848                 *pdata = VMCS12_REVISION | VMX_BASIC_TRUE_CTLS |
2849                            ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
2850                            (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
2851                 break;
2852         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2853         case MSR_IA32_VMX_PINBASED_CTLS:
2854                 *pdata = vmx_control_msr(
2855                         vmx->nested.nested_vmx_pinbased_ctls_low,
2856                         vmx->nested.nested_vmx_pinbased_ctls_high);
2857                 break;
2858         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
2859                 *pdata = vmx_control_msr(
2860                         vmx->nested.nested_vmx_true_procbased_ctls_low,
2861                         vmx->nested.nested_vmx_procbased_ctls_high);
2862                 break;
2863         case MSR_IA32_VMX_PROCBASED_CTLS:
2864                 *pdata = vmx_control_msr(
2865                         vmx->nested.nested_vmx_procbased_ctls_low,
2866                         vmx->nested.nested_vmx_procbased_ctls_high);
2867                 break;
2868         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
2869                 *pdata = vmx_control_msr(
2870                         vmx->nested.nested_vmx_true_exit_ctls_low,
2871                         vmx->nested.nested_vmx_exit_ctls_high);
2872                 break;
2873         case MSR_IA32_VMX_EXIT_CTLS:
2874                 *pdata = vmx_control_msr(
2875                         vmx->nested.nested_vmx_exit_ctls_low,
2876                         vmx->nested.nested_vmx_exit_ctls_high);
2877                 break;
2878         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
2879                 *pdata = vmx_control_msr(
2880                         vmx->nested.nested_vmx_true_entry_ctls_low,
2881                         vmx->nested.nested_vmx_entry_ctls_high);
2882                 break;
2883         case MSR_IA32_VMX_ENTRY_CTLS:
2884                 *pdata = vmx_control_msr(
2885                         vmx->nested.nested_vmx_entry_ctls_low,
2886                         vmx->nested.nested_vmx_entry_ctls_high);
2887                 break;
2888         case MSR_IA32_VMX_MISC:
2889                 *pdata = vmx_control_msr(
2890                         vmx->nested.nested_vmx_misc_low,
2891                         vmx->nested.nested_vmx_misc_high);
2892                 break;
2893         /*
2894          * These MSRs specify bits which the guest must keep fixed (on or off)
2895          * while L1 is in VMXON mode (in L1's root mode, or running an L2).
2896          * We picked the standard core2 setting.
2897          */
2898 #define VMXON_CR0_ALWAYSON      (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
2899 #define VMXON_CR4_ALWAYSON      X86_CR4_VMXE
2900         case MSR_IA32_VMX_CR0_FIXED0:
2901                 *pdata = VMXON_CR0_ALWAYSON;
2902                 break;
2903         case MSR_IA32_VMX_CR0_FIXED1:
2904                 *pdata = -1ULL;
2905                 break;
2906         case MSR_IA32_VMX_CR4_FIXED0:
2907                 *pdata = VMXON_CR4_ALWAYSON;
2908                 break;
2909         case MSR_IA32_VMX_CR4_FIXED1:
2910                 *pdata = -1ULL;
2911                 break;
2912         case MSR_IA32_VMX_VMCS_ENUM:
2913                 *pdata = 0x2e; /* highest index: VMX_PREEMPTION_TIMER_VALUE */
2914                 break;
2915         case MSR_IA32_VMX_PROCBASED_CTLS2:
2916                 *pdata = vmx_control_msr(
2917                         vmx->nested.nested_vmx_secondary_ctls_low,
2918                         vmx->nested.nested_vmx_secondary_ctls_high);
2919                 break;
2920         case MSR_IA32_VMX_EPT_VPID_CAP:
2921                 /* Currently, no nested vpid support */
2922                 *pdata = vmx->nested.nested_vmx_ept_caps |
2923                         ((u64)vmx->nested.nested_vmx_vpid_caps << 32);
2924                 break;
2925         default:
2926                 return 1;
2927         }
2928
2929         return 0;
2930 }
2931
2932 /*
2933  * Reads an msr value (of 'msr_index') into 'pdata'.
2934  * Returns 0 on success, non-0 otherwise.
2935  * Assumes vcpu_load() was already called.
2936  */
2937 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2938 {
2939         struct shared_msr_entry *msr;
2940
2941         switch (msr_info->index) {
2942 #ifdef CONFIG_X86_64
2943         case MSR_FS_BASE:
2944                 msr_info->data = vmcs_readl(GUEST_FS_BASE);
2945                 break;
2946         case MSR_GS_BASE:
2947                 msr_info->data = vmcs_readl(GUEST_GS_BASE);
2948                 break;
2949         case MSR_KERNEL_GS_BASE:
2950                 vmx_load_host_state(to_vmx(vcpu));
2951                 msr_info->data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
2952                 break;
2953 #endif
2954         case MSR_EFER:
2955                 return kvm_get_msr_common(vcpu, msr_info);
2956         case MSR_IA32_TSC:
2957                 msr_info->data = guest_read_tsc(vcpu);
2958                 break;
2959         case MSR_IA32_SYSENTER_CS:
2960                 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
2961                 break;
2962         case MSR_IA32_SYSENTER_EIP:
2963                 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
2964                 break;
2965         case MSR_IA32_SYSENTER_ESP:
2966                 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
2967                 break;
2968         case MSR_IA32_BNDCFGS:
2969                 if (!kvm_mpx_supported())
2970                         return 1;
2971                 msr_info->data = vmcs_read64(GUEST_BNDCFGS);
2972                 break;
2973         case MSR_IA32_FEATURE_CONTROL:
2974                 msr_info->data = to_vmx(vcpu)->msr_ia32_feature_control;
2975                 break;
2976         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2977                 if (!nested_vmx_allowed(vcpu))
2978                         return 1;
2979                 return vmx_get_vmx_msr(vcpu, msr_info->index, &msr_info->data);
2980         case MSR_IA32_XSS:
2981                 if (!vmx_xsaves_supported())
2982                         return 1;
2983                 msr_info->data = vcpu->arch.ia32_xss;
2984                 break;
2985         case MSR_TSC_AUX:
2986                 if (!guest_cpuid_has_rdtscp(vcpu) && !msr_info->host_initiated)
2987                         return 1;
2988                 /* Otherwise falls through */
2989         default:
2990                 msr = find_msr_entry(to_vmx(vcpu), msr_info->index);
2991                 if (msr) {
2992                         msr_info->data = msr->data;
2993                         break;
2994                 }
2995                 return kvm_get_msr_common(vcpu, msr_info);
2996         }
2997
2998         return 0;
2999 }
3000
3001 static void vmx_leave_nested(struct kvm_vcpu *vcpu);
3002
3003 /*
3004  * Writes msr value into into the appropriate "register".
3005  * Returns 0 on success, non-0 otherwise.
3006  * Assumes vcpu_load() was already called.
3007  */
3008 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3009 {
3010         struct vcpu_vmx *vmx = to_vmx(vcpu);
3011         struct shared_msr_entry *msr;
3012         int ret = 0;
3013         u32 msr_index = msr_info->index;
3014         u64 data = msr_info->data;
3015
3016         switch (msr_index) {
3017         case MSR_EFER:
3018                 ret = kvm_set_msr_common(vcpu, msr_info);
3019                 break;
3020 #ifdef CONFIG_X86_64
3021         case MSR_FS_BASE:
3022                 vmx_segment_cache_clear(vmx);
3023                 vmcs_writel(GUEST_FS_BASE, data);
3024                 break;
3025         case MSR_GS_BASE:
3026                 vmx_segment_cache_clear(vmx);
3027                 vmcs_writel(GUEST_GS_BASE, data);
3028                 break;
3029         case MSR_KERNEL_GS_BASE:
3030                 vmx_load_host_state(vmx);
3031                 vmx->msr_guest_kernel_gs_base = data;
3032                 break;
3033 #endif
3034         case MSR_IA32_SYSENTER_CS:
3035                 vmcs_write32(GUEST_SYSENTER_CS, data);
3036                 break;
3037         case MSR_IA32_SYSENTER_EIP:
3038                 vmcs_writel(GUEST_SYSENTER_EIP, data);
3039                 break;
3040         case MSR_IA32_SYSENTER_ESP:
3041                 vmcs_writel(GUEST_SYSENTER_ESP, data);
3042                 break;
3043         case MSR_IA32_BNDCFGS:
3044                 if (!kvm_mpx_supported())
3045                         return 1;
3046                 vmcs_write64(GUEST_BNDCFGS, data);
3047                 break;
3048         case MSR_IA32_TSC:
3049                 kvm_write_tsc(vcpu, msr_info);
3050                 break;
3051         case MSR_IA32_CR_PAT:
3052                 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
3053                         if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
3054                                 return 1;
3055                         vmcs_write64(GUEST_IA32_PAT, data);
3056                         vcpu->arch.pat = data;
3057                         break;
3058                 }
3059                 ret = kvm_set_msr_common(vcpu, msr_info);
3060                 break;
3061         case MSR_IA32_TSC_ADJUST:
3062                 ret = kvm_set_msr_common(vcpu, msr_info);
3063                 break;
3064         case MSR_IA32_FEATURE_CONTROL:
3065                 if (!nested_vmx_allowed(vcpu) ||
3066                     (to_vmx(vcpu)->msr_ia32_feature_control &
3067                      FEATURE_CONTROL_LOCKED && !msr_info->host_initiated))
3068                         return 1;
3069                 vmx->msr_ia32_feature_control = data;
3070                 if (msr_info->host_initiated && data == 0)
3071                         vmx_leave_nested(vcpu);
3072                 break;
3073         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
3074                 return 1; /* they are read-only */
3075         case MSR_IA32_XSS:
3076                 if (!vmx_xsaves_supported())
3077                         return 1;
3078                 /*
3079                  * The only supported bit as of Skylake is bit 8, but
3080                  * it is not supported on KVM.
3081                  */
3082                 if (data != 0)
3083                         return 1;
3084                 vcpu->arch.ia32_xss = data;
3085                 if (vcpu->arch.ia32_xss != host_xss)
3086                         add_atomic_switch_msr(vmx, MSR_IA32_XSS,
3087                                 vcpu->arch.ia32_xss, host_xss);
3088                 else
3089                         clear_atomic_switch_msr(vmx, MSR_IA32_XSS);
3090                 break;
3091         case MSR_TSC_AUX:
3092                 if (!guest_cpuid_has_rdtscp(vcpu) && !msr_info->host_initiated)
3093                         return 1;
3094                 /* Check reserved bit, higher 32 bits should be zero */
3095                 if ((data >> 32) != 0)
3096                         return 1;
3097                 /* Otherwise falls through */
3098         default:
3099                 msr = find_msr_entry(vmx, msr_index);
3100                 if (msr) {
3101                         u64 old_msr_data = msr->data;
3102                         msr->data = data;
3103                         if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
3104                                 preempt_disable();
3105                                 ret = kvm_set_shared_msr(msr->index, msr->data,
3106                                                          msr->mask);
3107                                 preempt_enable();
3108                                 if (ret)
3109                                         msr->data = old_msr_data;
3110                         }
3111                         break;
3112                 }
3113                 ret = kvm_set_msr_common(vcpu, msr_info);
3114         }
3115
3116         return ret;
3117 }
3118
3119 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
3120 {
3121         __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
3122         switch (reg) {
3123         case VCPU_REGS_RSP:
3124                 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
3125                 break;
3126         case VCPU_REGS_RIP:
3127                 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
3128                 break;
3129         case VCPU_EXREG_PDPTR:
3130                 if (enable_ept)
3131                         ept_save_pdptrs(vcpu);
3132                 break;
3133         default:
3134                 break;
3135         }
3136 }
3137
3138 static __init int cpu_has_kvm_support(void)
3139 {
3140         return cpu_has_vmx();
3141 }
3142
3143 static __init int vmx_disabled_by_bios(void)
3144 {
3145         u64 msr;
3146
3147         rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
3148         if (msr & FEATURE_CONTROL_LOCKED) {
3149                 /* launched w/ TXT and VMX disabled */
3150                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
3151                         && tboot_enabled())
3152                         return 1;
3153                 /* launched w/o TXT and VMX only enabled w/ TXT */
3154                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
3155                         && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
3156                         && !tboot_enabled()) {
3157                         printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
3158                                 "activate TXT before enabling KVM\n");
3159                         return 1;
3160                 }
3161                 /* launched w/o TXT and VMX disabled */
3162                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
3163                         && !tboot_enabled())
3164                         return 1;
3165         }
3166
3167         return 0;
3168 }
3169
3170 static void kvm_cpu_vmxon(u64 addr)
3171 {
3172         intel_pt_handle_vmx(1);
3173
3174         asm volatile (ASM_VMX_VMXON_RAX
3175                         : : "a"(&addr), "m"(addr)
3176                         : "memory", "cc");
3177 }
3178
3179 static int hardware_enable(void)
3180 {
3181         int cpu = raw_smp_processor_id();
3182         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
3183         u64 old, test_bits;
3184
3185         if (cr4_read_shadow() & X86_CR4_VMXE)
3186                 return -EBUSY;
3187
3188         INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
3189         INIT_LIST_HEAD(&per_cpu(blocked_vcpu_on_cpu, cpu));
3190         spin_lock_init(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
3191
3192         /*
3193          * Now we can enable the vmclear operation in kdump
3194          * since the loaded_vmcss_on_cpu list on this cpu
3195          * has been initialized.
3196          *
3197          * Though the cpu is not in VMX operation now, there
3198          * is no problem to enable the vmclear operation
3199          * for the loaded_vmcss_on_cpu list is empty!
3200          */
3201         crash_enable_local_vmclear(cpu);
3202
3203         rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
3204
3205         test_bits = FEATURE_CONTROL_LOCKED;
3206         test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
3207         if (tboot_enabled())
3208                 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
3209
3210         if ((old & test_bits) != test_bits) {
3211                 /* enable and lock */
3212                 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
3213         }
3214         cr4_set_bits(X86_CR4_VMXE);
3215
3216         if (vmm_exclusive) {
3217                 kvm_cpu_vmxon(phys_addr);
3218                 ept_sync_global();
3219         }
3220
3221         native_store_gdt(this_cpu_ptr(&host_gdt));
3222
3223         return 0;
3224 }
3225
3226 static void vmclear_local_loaded_vmcss(void)
3227 {
3228         int cpu = raw_smp_processor_id();
3229         struct loaded_vmcs *v, *n;
3230
3231         list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
3232                                  loaded_vmcss_on_cpu_link)
3233                 __loaded_vmcs_clear(v);
3234 }
3235
3236
3237 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
3238  * tricks.
3239  */
3240 static void kvm_cpu_vmxoff(void)
3241 {
3242         asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
3243
3244         intel_pt_handle_vmx(0);
3245 }
3246
3247 static void hardware_disable(void)
3248 {
3249         if (vmm_exclusive) {
3250                 vmclear_local_loaded_vmcss();
3251                 kvm_cpu_vmxoff();
3252         }
3253         cr4_clear_bits(X86_CR4_VMXE);
3254 }
3255
3256 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
3257                                       u32 msr, u32 *result)
3258 {
3259         u32 vmx_msr_low, vmx_msr_high;
3260         u32 ctl = ctl_min | ctl_opt;
3261
3262         rdmsr(msr, vmx_msr_low, vmx_msr_high);
3263
3264         ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
3265         ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
3266
3267         /* Ensure minimum (required) set of control bits are supported. */
3268         if (ctl_min & ~ctl)
3269                 return -EIO;
3270
3271         *result = ctl;
3272         return 0;
3273 }
3274
3275 static __init bool allow_1_setting(u32 msr, u32 ctl)
3276 {
3277         u32 vmx_msr_low, vmx_msr_high;
3278
3279         rdmsr(msr, vmx_msr_low, vmx_msr_high);
3280         return vmx_msr_high & ctl;
3281 }
3282
3283 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
3284 {
3285         u32 vmx_msr_low, vmx_msr_high;
3286         u32 min, opt, min2, opt2;
3287         u32 _pin_based_exec_control = 0;
3288         u32 _cpu_based_exec_control = 0;
3289         u32 _cpu_based_2nd_exec_control = 0;
3290         u32 _vmexit_control = 0;
3291         u32 _vmentry_control = 0;
3292
3293         min = CPU_BASED_HLT_EXITING |
3294 #ifdef CONFIG_X86_64
3295               CPU_BASED_CR8_LOAD_EXITING |
3296               CPU_BASED_CR8_STORE_EXITING |
3297 #endif
3298               CPU_BASED_CR3_LOAD_EXITING |
3299               CPU_BASED_CR3_STORE_EXITING |
3300               CPU_BASED_USE_IO_BITMAPS |
3301               CPU_BASED_MOV_DR_EXITING |
3302               CPU_BASED_USE_TSC_OFFSETING |
3303               CPU_BASED_MWAIT_EXITING |
3304               CPU_BASED_MONITOR_EXITING |
3305               CPU_BASED_INVLPG_EXITING |
3306               CPU_BASED_RDPMC_EXITING;
3307
3308         opt = CPU_BASED_TPR_SHADOW |
3309               CPU_BASED_USE_MSR_BITMAPS |
3310               CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
3311         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
3312                                 &_cpu_based_exec_control) < 0)
3313                 return -EIO;
3314 #ifdef CONFIG_X86_64
3315         if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
3316                 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
3317                                            ~CPU_BASED_CR8_STORE_EXITING;
3318 #endif
3319         if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
3320                 min2 = 0;
3321                 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
3322                         SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
3323                         SECONDARY_EXEC_WBINVD_EXITING |
3324                         SECONDARY_EXEC_ENABLE_VPID |
3325                         SECONDARY_EXEC_ENABLE_EPT |
3326                         SECONDARY_EXEC_UNRESTRICTED_GUEST |
3327                         SECONDARY_EXEC_PAUSE_LOOP_EXITING |
3328                         SECONDARY_EXEC_RDTSCP |
3329                         SECONDARY_EXEC_ENABLE_INVPCID |
3330                         SECONDARY_EXEC_APIC_REGISTER_VIRT |
3331                         SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
3332                         SECONDARY_EXEC_SHADOW_VMCS |
3333                         SECONDARY_EXEC_XSAVES |
3334                         SECONDARY_EXEC_ENABLE_PML |
3335                         SECONDARY_EXEC_PCOMMIT |
3336                         SECONDARY_EXEC_TSC_SCALING;
3337                 if (adjust_vmx_controls(min2, opt2,
3338                                         MSR_IA32_VMX_PROCBASED_CTLS2,
3339                                         &_cpu_based_2nd_exec_control) < 0)
3340                         return -EIO;
3341         }
3342 #ifndef CONFIG_X86_64
3343         if (!(_cpu_based_2nd_exec_control &
3344                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
3345                 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
3346 #endif
3347
3348         if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
3349                 _cpu_based_2nd_exec_control &= ~(
3350                                 SECONDARY_EXEC_APIC_REGISTER_VIRT |
3351                                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
3352                                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
3353
3354         if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
3355                 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
3356                    enabled */
3357                 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
3358                                              CPU_BASED_CR3_STORE_EXITING |
3359                                              CPU_BASED_INVLPG_EXITING);
3360                 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
3361                       vmx_capability.ept, vmx_capability.vpid);
3362         }
3363
3364         min = VM_EXIT_SAVE_DEBUG_CONTROLS;
3365 #ifdef CONFIG_X86_64
3366         min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
3367 #endif
3368         opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT |
3369                 VM_EXIT_ACK_INTR_ON_EXIT | VM_EXIT_CLEAR_BNDCFGS;
3370         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
3371                                 &_vmexit_control) < 0)
3372                 return -EIO;
3373
3374         min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
3375         opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR |
3376                  PIN_BASED_VMX_PREEMPTION_TIMER;
3377         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
3378                                 &_pin_based_exec_control) < 0)
3379                 return -EIO;
3380
3381         if (!(_cpu_based_2nd_exec_control &
3382                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) ||
3383                 !(_vmexit_control & VM_EXIT_ACK_INTR_ON_EXIT))
3384                 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
3385
3386         min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
3387         opt = VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS;
3388         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
3389                                 &_vmentry_control) < 0)
3390                 return -EIO;
3391
3392         rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
3393
3394         /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
3395         if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
3396                 return -EIO;
3397
3398 #ifdef CONFIG_X86_64
3399         /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
3400         if (vmx_msr_high & (1u<<16))
3401                 return -EIO;
3402 #endif
3403
3404         /* Require Write-Back (WB) memory type for VMCS accesses. */
3405         if (((vmx_msr_high >> 18) & 15) != 6)
3406                 return -EIO;
3407
3408         vmcs_conf->size = vmx_msr_high & 0x1fff;
3409         vmcs_conf->order = get_order(vmcs_config.size);
3410         vmcs_conf->revision_id = vmx_msr_low;
3411
3412         vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
3413         vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
3414         vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
3415         vmcs_conf->vmexit_ctrl         = _vmexit_control;
3416         vmcs_conf->vmentry_ctrl        = _vmentry_control;
3417
3418         cpu_has_load_ia32_efer =
3419                 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
3420                                 VM_ENTRY_LOAD_IA32_EFER)
3421                 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
3422                                    VM_EXIT_LOAD_IA32_EFER);
3423
3424         cpu_has_load_perf_global_ctrl =
3425                 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
3426                                 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
3427                 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
3428                                    VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
3429
3430         /*
3431          * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
3432          * but due to errata below it can't be used. Workaround is to use
3433          * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
3434          *
3435          * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
3436          *
3437          * AAK155             (model 26)
3438          * AAP115             (model 30)
3439          * AAT100             (model 37)
3440          * BC86,AAY89,BD102   (model 44)
3441          * BA97               (model 46)
3442          *
3443          */
3444         if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
3445                 switch (boot_cpu_data.x86_model) {
3446                 case 26:
3447                 case 30:
3448                 case 37:
3449                 case 44:
3450                 case 46:
3451                         cpu_has_load_perf_global_ctrl = false;
3452                         printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
3453                                         "does not work properly. Using workaround\n");
3454                         break;
3455                 default:
3456                         break;
3457                 }
3458         }
3459
3460         if (boot_cpu_has(X86_FEATURE_XSAVES))
3461                 rdmsrl(MSR_IA32_XSS, host_xss);
3462
3463         return 0;
3464 }
3465
3466 static struct vmcs *alloc_vmcs_cpu(int cpu)
3467 {
3468         int node = cpu_to_node(cpu);
3469         struct page *pages;
3470         struct vmcs *vmcs;
3471
3472         pages = __alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
3473         if (!pages)
3474                 return NULL;
3475         vmcs = page_address(pages);
3476         memset(vmcs, 0, vmcs_config.size);
3477         vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
3478         return vmcs;
3479 }
3480
3481 static struct vmcs *alloc_vmcs(void)
3482 {
3483         return alloc_vmcs_cpu(raw_smp_processor_id());
3484 }
3485
3486 static void free_vmcs(struct vmcs *vmcs)
3487 {
3488         free_pages((unsigned long)vmcs, vmcs_config.order);
3489 }
3490
3491 /*
3492  * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
3493  */
3494 static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
3495 {
3496         if (!loaded_vmcs->vmcs)
3497                 return;
3498         loaded_vmcs_clear(loaded_vmcs);
3499         free_vmcs(loaded_vmcs->vmcs);
3500         loaded_vmcs->vmcs = NULL;
3501 }
3502
3503 static void free_kvm_area(void)
3504 {
3505         int cpu;
3506
3507         for_each_possible_cpu(cpu) {
3508                 free_vmcs(per_cpu(vmxarea, cpu));
3509                 per_cpu(vmxarea, cpu) = NULL;
3510         }
3511 }
3512
3513 static void init_vmcs_shadow_fields(void)
3514 {
3515         int i, j;
3516
3517         /* No checks for read only fields yet */
3518
3519         for (i = j = 0; i < max_shadow_read_write_fields; i++) {
3520                 switch (shadow_read_write_fields[i]) {
3521                 case GUEST_BNDCFGS:
3522                         if (!kvm_mpx_supported())
3523                                 continue;
3524                         break;
3525                 default:
3526                         break;
3527                 }
3528
3529                 if (j < i)
3530                         shadow_read_write_fields[j] =
3531                                 shadow_read_write_fields[i];
3532                 j++;
3533         }
3534         max_shadow_read_write_fields = j;
3535
3536         /* shadowed fields guest access without vmexit */
3537         for (i = 0; i < max_shadow_read_write_fields; i++) {
3538                 clear_bit(shadow_read_write_fields[i],
3539                           vmx_vmwrite_bitmap);
3540                 clear_bit(shadow_read_write_fields[i],
3541                           vmx_vmread_bitmap);
3542         }
3543         for (i = 0; i < max_shadow_read_only_fields; i++)
3544                 clear_bit(shadow_read_only_fields[i],
3545                           vmx_vmread_bitmap);
3546 }
3547
3548 static __init int alloc_kvm_area(void)
3549 {
3550         int cpu;
3551
3552         for_each_possible_cpu(cpu) {
3553                 struct vmcs *vmcs;
3554
3555                 vmcs = alloc_vmcs_cpu(cpu);
3556                 if (!vmcs) {
3557                         free_kvm_area();
3558                         return -ENOMEM;
3559                 }
3560
3561                 per_cpu(vmxarea, cpu) = vmcs;
3562         }
3563         return 0;
3564 }
3565
3566 static bool emulation_required(struct kvm_vcpu *vcpu)
3567 {
3568         return emulate_invalid_guest_state && !guest_state_valid(vcpu);
3569 }
3570
3571 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
3572                 struct kvm_segment *save)
3573 {
3574         if (!emulate_invalid_guest_state) {
3575                 /*
3576                  * CS and SS RPL should be equal during guest entry according
3577                  * to VMX spec, but in reality it is not always so. Since vcpu
3578                  * is in the middle of the transition from real mode to
3579                  * protected mode it is safe to assume that RPL 0 is a good
3580                  * default value.
3581                  */
3582                 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
3583                         save->selector &= ~SEGMENT_RPL_MASK;
3584                 save->dpl = save->selector & SEGMENT_RPL_MASK;
3585                 save->s = 1;
3586         }
3587         vmx_set_segment(vcpu, save, seg);
3588 }
3589
3590 static void enter_pmode(struct kvm_vcpu *vcpu)
3591 {
3592         unsigned long flags;
3593         struct vcpu_vmx *vmx = to_vmx(vcpu);
3594
3595         /*
3596          * Update real mode segment cache. It may be not up-to-date if sement
3597          * register was written while vcpu was in a guest mode.
3598          */
3599         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3600         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3601         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3602         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3603         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3604         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3605
3606         vmx->rmode.vm86_active = 0;
3607
3608         vmx_segment_cache_clear(vmx);
3609
3610         vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3611
3612         flags = vmcs_readl(GUEST_RFLAGS);
3613         flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
3614         flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
3615         vmcs_writel(GUEST_RFLAGS, flags);
3616
3617         vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
3618                         (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
3619
3620         update_exception_bitmap(vcpu);
3621
3622         fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3623         fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3624         fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3625         fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3626         fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3627         fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3628 }
3629
3630 static void fix_rmode_seg(int seg, struct kvm_segment *save)
3631 {
3632         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3633         struct kvm_segment var = *save;
3634
3635         var.dpl = 0x3;
3636         if (seg == VCPU_SREG_CS)
3637                 var.type = 0x3;
3638
3639         if (!emulate_invalid_guest_state) {
3640                 var.selector = var.base >> 4;
3641                 var.base = var.base & 0xffff0;
3642                 var.limit = 0xffff;
3643                 var.g = 0;
3644                 var.db = 0;
3645                 var.present = 1;
3646                 var.s = 1;
3647                 var.l = 0;
3648                 var.unusable = 0;
3649                 var.type = 0x3;
3650                 var.avl = 0;
3651                 if (save->base & 0xf)
3652                         printk_once(KERN_WARNING "kvm: segment base is not "
3653                                         "paragraph aligned when entering "
3654                                         "protected mode (seg=%d)", seg);
3655         }
3656
3657         vmcs_write16(sf->selector, var.selector);
3658         vmcs_write32(sf->base, var.base);
3659         vmcs_write32(sf->limit, var.limit);
3660         vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
3661 }
3662
3663 static void enter_rmode(struct kvm_vcpu *vcpu)
3664 {
3665         unsigned long flags;
3666         struct vcpu_vmx *vmx = to_vmx(vcpu);
3667
3668         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3669         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3670         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3671         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3672         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3673         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3674         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3675
3676         vmx->rmode.vm86_active = 1;
3677
3678         /*
3679          * Very old userspace does not call KVM_SET_TSS_ADDR before entering
3680          * vcpu. Warn the user that an update is overdue.
3681          */
3682         if (!vcpu->kvm->arch.tss_addr)
3683                 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
3684                              "called before entering vcpu\n");
3685
3686         vmx_segment_cache_clear(vmx);
3687
3688         vmcs_writel(GUEST_TR_BASE, vcpu->kvm->arch.tss_addr);
3689         vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
3690         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3691
3692         flags = vmcs_readl(GUEST_RFLAGS);
3693         vmx->rmode.save_rflags = flags;
3694
3695         flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
3696
3697         vmcs_writel(GUEST_RFLAGS, flags);
3698         vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
3699         update_exception_bitmap(vcpu);
3700
3701         fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3702         fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3703         fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3704         fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3705         fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3706         fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3707
3708         kvm_mmu_reset_context(vcpu);
3709 }
3710
3711 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
3712 {
3713         struct vcpu_vmx *vmx = to_vmx(vcpu);
3714         struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
3715
3716         if (!msr)
3717                 return;
3718
3719         /*
3720          * Force kernel_gs_base reloading before EFER changes, as control
3721          * of this msr depends on is_long_mode().
3722          */
3723         vmx_load_host_state(to_vmx(vcpu));
3724         vcpu->arch.efer = efer;
3725         if (efer & EFER_LMA) {
3726                 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
3727                 msr->data = efer;
3728         } else {
3729                 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
3730
3731                 msr->data = efer & ~EFER_LME;
3732         }
3733         setup_msrs(vmx);
3734 }
3735
3736 #ifdef CONFIG_X86_64
3737
3738 static void enter_lmode(struct kvm_vcpu *vcpu)
3739 {
3740         u32 guest_tr_ar;
3741
3742         vmx_segment_cache_clear(to_vmx(vcpu));
3743
3744         guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
3745         if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
3746                 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
3747                                      __func__);
3748                 vmcs_write32(GUEST_TR_AR_BYTES,
3749                              (guest_tr_ar & ~VMX_AR_TYPE_MASK)
3750                              | VMX_AR_TYPE_BUSY_64_TSS);
3751         }
3752         vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
3753 }
3754
3755 static void exit_lmode(struct kvm_vcpu *vcpu)
3756 {
3757         vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
3758         vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
3759 }
3760
3761 #endif
3762
3763 static inline void __vmx_flush_tlb(struct kvm_vcpu *vcpu, int vpid)
3764 {
3765         vpid_sync_context(vpid);
3766         if (enable_ept) {
3767                 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3768                         return;
3769                 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
3770         }
3771 }
3772
3773 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
3774 {
3775         __vmx_flush_tlb(vcpu, to_vmx(vcpu)->vpid);
3776 }
3777
3778 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
3779 {
3780         ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
3781
3782         vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
3783         vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
3784 }
3785
3786 static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
3787 {
3788         if (enable_ept && is_paging(vcpu))
3789                 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
3790         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
3791 }
3792
3793 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
3794 {
3795         ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
3796
3797         vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
3798         vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
3799 }
3800
3801 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
3802 {
3803         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3804
3805         if (!test_bit(VCPU_EXREG_PDPTR,
3806                       (unsigned long *)&vcpu->arch.regs_dirty))
3807                 return;
3808
3809         if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
3810                 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
3811                 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
3812                 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
3813                 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
3814         }
3815 }
3816
3817 static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
3818 {
3819         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3820
3821         if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
3822                 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
3823                 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
3824                 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
3825                 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
3826         }
3827
3828         __set_bit(VCPU_EXREG_PDPTR,
3829                   (unsigned long *)&vcpu->arch.regs_avail);
3830         __set_bit(VCPU_EXREG_PDPTR,
3831                   (unsigned long *)&vcpu->arch.regs_dirty);
3832 }
3833
3834 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
3835
3836 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
3837                                         unsigned long cr0,
3838                                         struct kvm_vcpu *vcpu)
3839 {
3840         if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
3841                 vmx_decache_cr3(vcpu);
3842         if (!(cr0 & X86_CR0_PG)) {
3843                 /* From paging/starting to nonpaging */
3844                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
3845                              vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
3846                              (CPU_BASED_CR3_LOAD_EXITING |
3847                               CPU_BASED_CR3_STORE_EXITING));
3848                 vcpu->arch.cr0 = cr0;
3849                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3850         } else if (!is_paging(vcpu)) {
3851                 /* From nonpaging to paging */
3852                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
3853                              vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
3854                              ~(CPU_BASED_CR3_LOAD_EXITING |
3855                                CPU_BASED_CR3_STORE_EXITING));
3856                 vcpu->arch.cr0 = cr0;
3857                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3858         }
3859
3860         if (!(cr0 & X86_CR0_WP))
3861                 *hw_cr0 &= ~X86_CR0_WP;
3862 }
3863
3864 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3865 {
3866         struct vcpu_vmx *vmx = to_vmx(vcpu);
3867         unsigned long hw_cr0;
3868
3869         hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK);
3870         if (enable_unrestricted_guest)
3871                 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3872         else {
3873                 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
3874
3875                 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3876                         enter_pmode(vcpu);
3877
3878                 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3879                         enter_rmode(vcpu);
3880         }
3881
3882 #ifdef CONFIG_X86_64
3883         if (vcpu->arch.efer & EFER_LME) {
3884                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
3885                         enter_lmode(vcpu);
3886                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
3887                         exit_lmode(vcpu);
3888         }
3889 #endif
3890
3891         if (enable_ept)
3892                 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
3893
3894         if (!vcpu->fpu_active)
3895                 hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
3896
3897         vmcs_writel(CR0_READ_SHADOW, cr0);
3898         vmcs_writel(GUEST_CR0, hw_cr0);
3899         vcpu->arch.cr0 = cr0;
3900
3901         /* depends on vcpu->arch.cr0 to be set to a new value */
3902         vmx->emulation_required = emulation_required(vcpu);
3903 }
3904
3905 static u64 construct_eptp(unsigned long root_hpa)
3906 {
3907         u64 eptp;
3908
3909         /* TODO write the value reading from MSR */
3910         eptp = VMX_EPT_DEFAULT_MT |
3911                 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
3912         if (enable_ept_ad_bits)
3913                 eptp |= VMX_EPT_AD_ENABLE_BIT;
3914         eptp |= (root_hpa & PAGE_MASK);
3915
3916         return eptp;
3917 }
3918
3919 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
3920 {
3921         unsigned long guest_cr3;
3922         u64 eptp;
3923
3924         guest_cr3 = cr3;
3925         if (enable_ept) {
3926                 eptp = construct_eptp(cr3);
3927                 vmcs_write64(EPT_POINTER, eptp);
3928                 if (is_paging(vcpu) || is_guest_mode(vcpu))
3929                         guest_cr3 = kvm_read_cr3(vcpu);
3930                 else
3931                         guest_cr3 = vcpu->kvm->arch.ept_identity_map_addr;
3932                 ept_load_pdptrs(vcpu);
3933         }
3934
3935         vmx_flush_tlb(vcpu);
3936         vmcs_writel(GUEST_CR3, guest_cr3);
3937 }
3938
3939 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3940 {
3941         /*
3942          * Pass through host's Machine Check Enable value to hw_cr4, which
3943          * is in force while we are in guest mode.  Do not let guests control
3944          * this bit, even if host CR4.MCE == 0.
3945          */
3946         unsigned long hw_cr4 =
3947                 (cr4_read_shadow() & X86_CR4_MCE) |
3948                 (cr4 & ~X86_CR4_MCE) |
3949                 (to_vmx(vcpu)->rmode.vm86_active ?
3950                  KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
3951
3952         if (cr4 & X86_CR4_VMXE) {
3953                 /*
3954                  * To use VMXON (and later other VMX instructions), a guest
3955                  * must first be able to turn on cr4.VMXE (see handle_vmon()).
3956                  * So basically the check on whether to allow nested VMX
3957                  * is here.
3958                  */
3959                 if (!nested_vmx_allowed(vcpu))
3960                         return 1;
3961         }
3962         if (to_vmx(vcpu)->nested.vmxon &&
3963             ((cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON))
3964                 return 1;
3965
3966         vcpu->arch.cr4 = cr4;
3967         if (enable_ept) {
3968                 if (!is_paging(vcpu)) {
3969                         hw_cr4 &= ~X86_CR4_PAE;
3970                         hw_cr4 |= X86_CR4_PSE;
3971                 } else if (!(cr4 & X86_CR4_PAE)) {
3972                         hw_cr4 &= ~X86_CR4_PAE;
3973                 }
3974         }
3975
3976         if (!enable_unrestricted_guest && !is_paging(vcpu))
3977                 /*
3978                  * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
3979                  * hardware.  To emulate this behavior, SMEP/SMAP/PKU needs
3980                  * to be manually disabled when guest switches to non-paging
3981                  * mode.
3982                  *
3983                  * If !enable_unrestricted_guest, the CPU is always running
3984                  * with CR0.PG=1 and CR4 needs to be modified.
3985                  * If enable_unrestricted_guest, the CPU automatically
3986                  * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
3987                  */
3988                 hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
3989
3990         vmcs_writel(CR4_READ_SHADOW, cr4);
3991         vmcs_writel(GUEST_CR4, hw_cr4);
3992         return 0;
3993 }
3994
3995 static void vmx_get_segment(struct kvm_vcpu *vcpu,
3996                             struct kvm_segment *var, int seg)
3997 {
3998         struct vcpu_vmx *vmx = to_vmx(vcpu);
3999         u32 ar;
4000
4001         if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
4002                 *var = vmx->rmode.segs[seg];
4003                 if (seg == VCPU_SREG_TR
4004                     || var->selector == vmx_read_guest_seg_selector(vmx, seg))
4005                         return;
4006                 var->base = vmx_read_guest_seg_base(vmx, seg);
4007                 var->selector = vmx_read_guest_seg_selector(vmx, seg);
4008                 return;
4009         }
4010         var->base = vmx_read_guest_seg_base(vmx, seg);
4011         var->limit = vmx_read_guest_seg_limit(vmx, seg);
4012         var->selector = vmx_read_guest_seg_selector(vmx, seg);
4013         ar = vmx_read_guest_seg_ar(vmx, seg);
4014         var->unusable = (ar >> 16) & 1;
4015         var->type = ar & 15;
4016         var->s = (ar >> 4) & 1;
4017         var->dpl = (ar >> 5) & 3;
4018         /*
4019          * Some userspaces do not preserve unusable property. Since usable
4020          * segment has to be present according to VMX spec we can use present
4021          * property to amend userspace bug by making unusable segment always
4022          * nonpresent. vmx_segment_access_rights() already marks nonpresent
4023          * segment as unusable.
4024          */
4025         var->present = !var->unusable;
4026         var->avl = (ar >> 12) & 1;
4027         var->l = (ar >> 13) & 1;
4028         var->db = (ar >> 14) & 1;
4029         var->g = (ar >> 15) & 1;
4030 }
4031
4032 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
4033 {
4034         struct kvm_segment s;
4035
4036         if (to_vmx(vcpu)->rmode.vm86_active) {
4037                 vmx_get_segment(vcpu, &s, seg);
4038                 return s.base;
4039         }
4040         return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
4041 }
4042
4043 static int vmx_get_cpl(struct kvm_vcpu *vcpu)
4044 {
4045         struct vcpu_vmx *vmx = to_vmx(vcpu);
4046
4047         if (unlikely(vmx->rmode.vm86_active))
4048                 return 0;
4049         else {
4050                 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
4051                 return VMX_AR_DPL(ar);
4052         }
4053 }
4054
4055 static u32 vmx_segment_access_rights(struct kvm_segment *var)
4056 {
4057         u32 ar;
4058
4059         if (var->unusable || !var->present)
4060                 ar = 1 << 16;
4061         else {
4062                 ar = var->type & 15;
4063                 ar |= (var->s & 1) << 4;
4064                 ar |= (var->dpl & 3) << 5;
4065                 ar |= (var->present & 1) << 7;
4066                 ar |= (var->avl & 1) << 12;
4067                 ar |= (var->l & 1) << 13;
4068                 ar |= (var->db & 1) << 14;
4069                 ar |= (var->g & 1) << 15;
4070         }
4071
4072         return ar;
4073 }
4074
4075 static void vmx_set_segment(struct kvm_vcpu *vcpu,
4076                             struct kvm_segment *var, int seg)
4077 {
4078         struct vcpu_vmx *vmx = to_vmx(vcpu);
4079         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
4080
4081         vmx_segment_cache_clear(vmx);
4082
4083         if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
4084                 vmx->rmode.segs[seg] = *var;
4085                 if (seg == VCPU_SREG_TR)
4086                         vmcs_write16(sf->selector, var->selector);
4087                 else if (var->s)
4088                         fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
4089                 goto out;
4090         }
4091
4092         vmcs_writel(sf->base, var->base);
4093         vmcs_write32(sf->limit, var->limit);
4094         vmcs_write16(sf->selector, var->selector);
4095
4096         /*
4097          *   Fix the "Accessed" bit in AR field of segment registers for older
4098          * qemu binaries.
4099          *   IA32 arch specifies that at the time of processor reset the
4100          * "Accessed" bit in the AR field of segment registers is 1. And qemu
4101          * is setting it to 0 in the userland code. This causes invalid guest
4102          * state vmexit when "unrestricted guest" mode is turned on.
4103          *    Fix for this setup issue in cpu_reset is being pushed in the qemu
4104          * tree. Newer qemu binaries with that qemu fix would not need this
4105          * kvm hack.
4106          */
4107         if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
4108                 var->type |= 0x1; /* Accessed */
4109
4110         vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
4111
4112 out:
4113         vmx->emulation_required = emulation_required(vcpu);
4114 }
4115
4116 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
4117 {
4118         u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
4119
4120         *db = (ar >> 14) & 1;
4121         *l = (ar >> 13) & 1;
4122 }
4123
4124 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
4125 {
4126         dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
4127         dt->address = vmcs_readl(GUEST_IDTR_BASE);
4128 }
4129
4130 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
4131 {
4132         vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
4133         vmcs_writel(GUEST_IDTR_BASE, dt->address);
4134 }
4135
4136 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
4137 {
4138         dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
4139         dt->address = vmcs_readl(GUEST_GDTR_BASE);
4140 }
4141
4142 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
4143 {
4144         vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
4145         vmcs_writel(GUEST_GDTR_BASE, dt->address);
4146 }
4147
4148 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
4149 {
4150         struct kvm_segment var;
4151         u32 ar;
4152
4153         vmx_get_segment(vcpu, &var, seg);
4154         var.dpl = 0x3;
4155         if (seg == VCPU_SREG_CS)
4156                 var.type = 0x3;
4157         ar = vmx_segment_access_rights(&var);
4158
4159         if (var.base != (var.selector << 4))
4160                 return false;
4161         if (var.limit != 0xffff)
4162                 return false;
4163         if (ar != 0xf3)
4164                 return false;
4165
4166         return true;
4167 }
4168
4169 static bool code_segment_valid(struct kvm_vcpu *vcpu)
4170 {
4171         struct kvm_segment cs;
4172         unsigned int cs_rpl;
4173
4174         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
4175         cs_rpl = cs.selector & SEGMENT_RPL_MASK;
4176
4177         if (cs.unusable)
4178                 return false;
4179         if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
4180                 return false;
4181         if (!cs.s)
4182                 return false;
4183         if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
4184                 if (cs.dpl > cs_rpl)
4185                         return false;
4186         } else {
4187                 if (cs.dpl != cs_rpl)
4188                         return false;
4189         }
4190         if (!cs.present)
4191                 return false;
4192
4193         /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
4194         return true;
4195 }
4196
4197 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
4198 {
4199         struct kvm_segment ss;
4200         unsigned int ss_rpl;
4201
4202         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
4203         ss_rpl = ss.selector & SEGMENT_RPL_MASK;
4204
4205         if (ss.unusable)
4206                 return true;
4207         if (ss.type != 3 && ss.type != 7)
4208                 return false;
4209         if (!ss.s)
4210                 return false;
4211         if (ss.dpl != ss_rpl) /* DPL != RPL */
4212                 return false;
4213         if (!ss.present)
4214                 return false;
4215
4216         return true;
4217 }
4218
4219 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
4220 {
4221         struct kvm_segment var;
4222         unsigned int rpl;
4223
4224         vmx_get_segment(vcpu, &var, seg);
4225         rpl = var.selector & SEGMENT_RPL_MASK;
4226
4227         if (var.unusable)
4228                 return true;
4229         if (!var.s)
4230                 return false;
4231         if (!var.present)
4232                 return false;
4233         if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
4234                 if (var.dpl < rpl) /* DPL < RPL */
4235                         return false;
4236         }
4237
4238         /* TODO: Add other members to kvm_segment_field to allow checking for other access
4239          * rights flags
4240          */
4241         return true;
4242 }
4243
4244 static bool tr_valid(struct kvm_vcpu *vcpu)
4245 {
4246         struct kvm_segment tr;
4247
4248         vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
4249
4250         if (tr.unusable)
4251                 return false;
4252         if (tr.selector & SEGMENT_TI_MASK)      /* TI = 1 */
4253                 return false;
4254         if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
4255                 return false;
4256         if (!tr.present)
4257                 return false;
4258
4259         return true;
4260 }
4261
4262 static bool ldtr_valid(struct kvm_vcpu *vcpu)
4263 {
4264         struct kvm_segment ldtr;
4265
4266         vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
4267
4268         if (ldtr.unusable)
4269                 return true;
4270         if (ldtr.selector & SEGMENT_TI_MASK)    /* TI = 1 */
4271                 return false;
4272         if (ldtr.type != 2)
4273                 return false;
4274         if (!ldtr.present)
4275                 return false;
4276
4277         return true;
4278 }
4279
4280 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
4281 {
4282         struct kvm_segment cs, ss;
4283
4284         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
4285         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
4286
4287         return ((cs.selector & SEGMENT_RPL_MASK) ==
4288                  (ss.selector & SEGMENT_RPL_MASK));
4289 }
4290
4291 /*
4292  * Check if guest state is valid. Returns true if valid, false if
4293  * not.
4294  * We assume that registers are always usable
4295  */
4296 static bool guest_state_valid(struct kvm_vcpu *vcpu)
4297 {
4298         if (enable_unrestricted_guest)
4299                 return true;
4300
4301         /* real mode guest state checks */
4302         if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
4303                 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
4304                         return false;
4305                 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
4306                         return false;
4307                 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
4308                         return false;
4309                 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
4310                         return false;
4311                 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
4312                         return false;
4313                 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
4314                         return false;
4315         } else {
4316         /* protected mode guest state checks */
4317                 if (!cs_ss_rpl_check(vcpu))
4318                         return false;
4319                 if (!code_segment_valid(vcpu))
4320                         return false;
4321                 if (!stack_segment_valid(vcpu))
4322                         return false;
4323                 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
4324                         return false;
4325                 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
4326                         return false;
4327                 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
4328                         return false;
4329                 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
4330                         return false;
4331                 if (!tr_valid(vcpu))
4332                         return false;
4333                 if (!ldtr_valid(vcpu))
4334                         return false;
4335         }
4336         /* TODO:
4337          * - Add checks on RIP
4338          * - Add checks on RFLAGS
4339          */
4340
4341         return true;
4342 }
4343
4344 static int init_rmode_tss(struct kvm *kvm)
4345 {
4346         gfn_t fn;
4347         u16 data = 0;
4348         int idx, r;
4349
4350         idx = srcu_read_lock(&kvm->srcu);
4351         fn = kvm->arch.tss_addr >> PAGE_SHIFT;
4352         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
4353         if (r < 0)
4354                 goto out;
4355         data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
4356         r = kvm_write_guest_page(kvm, fn++, &data,
4357                         TSS_IOPB_BASE_OFFSET, sizeof(u16));
4358         if (r < 0)
4359                 goto out;
4360         r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
4361         if (r < 0)
4362                 goto out;
4363         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
4364         if (r < 0)
4365                 goto out;
4366         data = ~0;
4367         r = kvm_write_guest_page(kvm, fn, &data,
4368                                  RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
4369                                  sizeof(u8));
4370 out:
4371         srcu_read_unlock(&kvm->srcu, idx);
4372         return r;
4373 }
4374
4375 static int init_rmode_identity_map(struct kvm *kvm)
4376 {
4377         int i, idx, r = 0;
4378         kvm_pfn_t identity_map_pfn;
4379         u32 tmp;
4380
4381         if (!enable_ept)
4382                 return 0;
4383
4384         /* Protect kvm->arch.ept_identity_pagetable_done. */
4385         mutex_lock(&kvm->slots_lock);
4386
4387         if (likely(kvm->arch.ept_identity_pagetable_done))
4388                 goto out2;
4389
4390         identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
4391
4392         r = alloc_identity_pagetable(kvm);
4393         if (r < 0)
4394                 goto out2;
4395
4396         idx = srcu_read_lock(&kvm->srcu);
4397         r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
4398         if (r < 0)
4399                 goto out;
4400         /* Set up identity-mapping pagetable for EPT in real mode */
4401         for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
4402                 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
4403                         _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
4404                 r = kvm_write_guest_page(kvm, identity_map_pfn,
4405                                 &tmp, i * sizeof(tmp), sizeof(tmp));
4406                 if (r < 0)
4407                         goto out;
4408         }
4409         kvm->arch.ept_identity_pagetable_done = true;
4410
4411 out:
4412         srcu_read_unlock(&kvm->srcu, idx);
4413
4414 out2:
4415         mutex_unlock(&kvm->slots_lock);
4416         return r;
4417 }
4418
4419 static void seg_setup(int seg)
4420 {
4421         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
4422         unsigned int ar;
4423
4424         vmcs_write16(sf->selector, 0);
4425         vmcs_writel(sf->base, 0);
4426         vmcs_write32(sf->limit, 0xffff);
4427         ar = 0x93;
4428         if (seg == VCPU_SREG_CS)
4429                 ar |= 0x08; /* code segment */
4430
4431         vmcs_write32(sf->ar_bytes, ar);
4432 }
4433
4434 static int alloc_apic_access_page(struct kvm *kvm)
4435 {
4436         struct page *page;
4437         int r = 0;
4438
4439         mutex_lock(&kvm->slots_lock);
4440         if (kvm->arch.apic_access_page_done)
4441                 goto out;
4442         r = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
4443                                     APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
4444         if (r)
4445                 goto out;
4446
4447         page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
4448         if (is_error_page(page)) {
4449                 r = -EFAULT;
4450                 goto out;
4451         }
4452
4453         /*
4454          * Do not pin the page in memory, so that memory hot-unplug
4455          * is able to migrate it.
4456          */
4457         put_page(page);
4458         kvm->arch.apic_access_page_done = true;
4459 out:
4460         mutex_unlock(&kvm->slots_lock);
4461         return r;
4462 }
4463
4464 static int alloc_identity_pagetable(struct kvm *kvm)
4465 {
4466         /* Called with kvm->slots_lock held. */
4467
4468         int r = 0;
4469
4470         BUG_ON(kvm->arch.ept_identity_pagetable_done);
4471
4472         r = __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
4473                                     kvm->arch.ept_identity_map_addr, PAGE_SIZE);
4474
4475         return r;
4476 }
4477
4478 static int allocate_vpid(void)
4479 {
4480         int vpid;
4481
4482         if (!enable_vpid)
4483                 return 0;
4484         spin_lock(&vmx_vpid_lock);
4485         vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
4486         if (vpid < VMX_NR_VPIDS)
4487                 __set_bit(vpid, vmx_vpid_bitmap);
4488         else
4489                 vpid = 0;
4490         spin_unlock(&vmx_vpid_lock);
4491         return vpid;
4492 }
4493
4494 static void free_vpid(int vpid)
4495 {
4496         if (!enable_vpid || vpid == 0)
4497                 return;
4498         spin_lock(&vmx_vpid_lock);
4499         __clear_bit(vpid, vmx_vpid_bitmap);
4500         spin_unlock(&vmx_vpid_lock);
4501 }
4502
4503 #define MSR_TYPE_R      1
4504 #define MSR_TYPE_W      2
4505 static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
4506                                                 u32 msr, int type)
4507 {
4508         int f = sizeof(unsigned long);
4509
4510         if (!cpu_has_vmx_msr_bitmap())
4511                 return;
4512
4513         /*
4514          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4515          * have the write-low and read-high bitmap offsets the wrong way round.
4516          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4517          */
4518         if (msr <= 0x1fff) {
4519                 if (type & MSR_TYPE_R)
4520                         /* read-low */
4521                         __clear_bit(msr, msr_bitmap + 0x000 / f);
4522
4523                 if (type & MSR_TYPE_W)
4524                         /* write-low */
4525                         __clear_bit(msr, msr_bitmap + 0x800 / f);
4526
4527         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4528                 msr &= 0x1fff;
4529                 if (type & MSR_TYPE_R)
4530                         /* read-high */
4531                         __clear_bit(msr, msr_bitmap + 0x400 / f);
4532
4533                 if (type & MSR_TYPE_W)
4534                         /* write-high */
4535                         __clear_bit(msr, msr_bitmap + 0xc00 / f);
4536
4537         }
4538 }
4539
4540 static void __vmx_enable_intercept_for_msr(unsigned long *msr_bitmap,
4541                                                 u32 msr, int type)
4542 {
4543         int f = sizeof(unsigned long);
4544
4545         if (!cpu_has_vmx_msr_bitmap())
4546                 return;
4547
4548         /*
4549          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4550          * have the write-low and read-high bitmap offsets the wrong way round.
4551          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4552          */
4553         if (msr <= 0x1fff) {
4554                 if (type & MSR_TYPE_R)
4555                         /* read-low */
4556                         __set_bit(msr, msr_bitmap + 0x000 / f);
4557
4558                 if (type & MSR_TYPE_W)
4559                         /* write-low */
4560                         __set_bit(msr, msr_bitmap + 0x800 / f);
4561
4562         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4563                 msr &= 0x1fff;
4564                 if (type & MSR_TYPE_R)
4565                         /* read-high */
4566                         __set_bit(msr, msr_bitmap + 0x400 / f);
4567
4568                 if (type & MSR_TYPE_W)
4569                         /* write-high */
4570                         __set_bit(msr, msr_bitmap + 0xc00 / f);
4571
4572         }
4573 }
4574
4575 /*
4576  * If a msr is allowed by L0, we should check whether it is allowed by L1.
4577  * The corresponding bit will be cleared unless both of L0 and L1 allow it.
4578  */
4579 static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
4580                                                unsigned long *msr_bitmap_nested,
4581                                                u32 msr, int type)
4582 {
4583         int f = sizeof(unsigned long);
4584
4585         if (!cpu_has_vmx_msr_bitmap()) {
4586                 WARN_ON(1);
4587                 return;
4588         }
4589
4590         /*
4591          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4592          * have the write-low and read-high bitmap offsets the wrong way round.
4593          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4594          */
4595         if (msr <= 0x1fff) {
4596                 if (type & MSR_TYPE_R &&
4597                    !test_bit(msr, msr_bitmap_l1 + 0x000 / f))
4598                         /* read-low */
4599                         __clear_bit(msr, msr_bitmap_nested + 0x000 / f);
4600
4601                 if (type & MSR_TYPE_W &&
4602                    !test_bit(msr, msr_bitmap_l1 + 0x800 / f))
4603                         /* write-low */
4604                         __clear_bit(msr, msr_bitmap_nested + 0x800 / f);
4605
4606         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4607                 msr &= 0x1fff;
4608                 if (type & MSR_TYPE_R &&
4609                    !test_bit(msr, msr_bitmap_l1 + 0x400 / f))
4610                         /* read-high */
4611                         __clear_bit(msr, msr_bitmap_nested + 0x400 / f);
4612
4613                 if (type & MSR_TYPE_W &&
4614                    !test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
4615                         /* write-high */
4616                         __clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
4617
4618         }
4619 }
4620
4621 static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
4622 {
4623         if (!longmode_only)
4624                 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy,
4625                                                 msr, MSR_TYPE_R | MSR_TYPE_W);
4626         __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode,
4627                                                 msr, MSR_TYPE_R | MSR_TYPE_W);
4628 }
4629
4630 static void vmx_enable_intercept_msr_read_x2apic(u32 msr)
4631 {
4632         __vmx_enable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4633                         msr, MSR_TYPE_R);
4634         __vmx_enable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4635                         msr, MSR_TYPE_R);
4636 }
4637
4638 static void vmx_disable_intercept_msr_read_x2apic(u32 msr)
4639 {
4640         __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4641                         msr, MSR_TYPE_R);
4642         __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4643                         msr, MSR_TYPE_R);
4644 }
4645
4646 static void vmx_disable_intercept_msr_write_x2apic(u32 msr)
4647 {
4648         __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4649                         msr, MSR_TYPE_W);
4650         __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4651                         msr, MSR_TYPE_W);
4652 }
4653
4654 static bool vmx_get_enable_apicv(void)
4655 {
4656         return enable_apicv;
4657 }
4658
4659 static int vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
4660 {
4661         struct vcpu_vmx *vmx = to_vmx(vcpu);
4662         int max_irr;
4663         void *vapic_page;
4664         u16 status;
4665
4666         if (vmx->nested.pi_desc &&
4667             vmx->nested.pi_pending) {
4668                 vmx->nested.pi_pending = false;
4669                 if (!pi_test_and_clear_on(vmx->nested.pi_desc))
4670                         return 0;
4671
4672                 max_irr = find_last_bit(
4673                         (unsigned long *)vmx->nested.pi_desc->pir, 256);
4674
4675                 if (max_irr == 256)
4676                         return 0;
4677
4678                 vapic_page = kmap(vmx->nested.virtual_apic_page);
4679                 if (!vapic_page) {
4680                         WARN_ON(1);
4681                         return -ENOMEM;
4682                 }
4683                 __kvm_apic_update_irr(vmx->nested.pi_desc->pir, vapic_page);
4684                 kunmap(vmx->nested.virtual_apic_page);
4685
4686                 status = vmcs_read16(GUEST_INTR_STATUS);
4687                 if ((u8)max_irr > ((u8)status & 0xff)) {
4688                         status &= ~0xff;
4689                         status |= (u8)max_irr;
4690                         vmcs_write16(GUEST_INTR_STATUS, status);
4691                 }
4692         }
4693         return 0;
4694 }
4695
4696 static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu)
4697 {
4698 #ifdef CONFIG_SMP
4699         if (vcpu->mode == IN_GUEST_MODE) {
4700                 struct vcpu_vmx *vmx = to_vmx(vcpu);
4701
4702                 /*
4703                  * Currently, we don't support urgent interrupt,
4704                  * all interrupts are recognized as non-urgent
4705                  * interrupt, so we cannot post interrupts when
4706                  * 'SN' is set.
4707                  *
4708                  * If the vcpu is in guest mode, it means it is
4709                  * running instead of being scheduled out and
4710                  * waiting in the run queue, and that's the only
4711                  * case when 'SN' is set currently, warning if
4712                  * 'SN' is set.
4713                  */
4714                 WARN_ON_ONCE(pi_test_sn(&vmx->pi_desc));
4715
4716                 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu),
4717                                 POSTED_INTR_VECTOR);
4718                 return true;
4719         }
4720 #endif
4721         return false;
4722 }
4723
4724 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
4725                                                 int vector)
4726 {
4727         struct vcpu_vmx *vmx = to_vmx(vcpu);
4728
4729         if (is_guest_mode(vcpu) &&
4730             vector == vmx->nested.posted_intr_nv) {
4731                 /* the PIR and ON have been set by L1. */
4732                 kvm_vcpu_trigger_posted_interrupt(vcpu);
4733                 /*
4734                  * If a posted intr is not recognized by hardware,
4735                  * we will accomplish it in the next vmentry.
4736                  */
4737                 vmx->nested.pi_pending = true;
4738                 kvm_make_request(KVM_REQ_EVENT, vcpu);
4739                 return 0;
4740         }
4741         return -1;
4742 }
4743 /*
4744  * Send interrupt to vcpu via posted interrupt way.
4745  * 1. If target vcpu is running(non-root mode), send posted interrupt
4746  * notification to vcpu and hardware will sync PIR to vIRR atomically.
4747  * 2. If target vcpu isn't running(root mode), kick it to pick up the
4748  * interrupt from PIR in next vmentry.
4749  */
4750 static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
4751 {
4752         struct vcpu_vmx *vmx = to_vmx(vcpu);
4753         int r;
4754
4755         r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
4756         if (!r)
4757                 return;
4758
4759         if (pi_test_and_set_pir(vector, &vmx->pi_desc))
4760                 return;
4761
4762         r = pi_test_and_set_on(&vmx->pi_desc);
4763         kvm_make_request(KVM_REQ_EVENT, vcpu);
4764         if (r || !kvm_vcpu_trigger_posted_interrupt(vcpu))
4765                 kvm_vcpu_kick(vcpu);
4766 }
4767
4768 static void vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
4769 {
4770         struct vcpu_vmx *vmx = to_vmx(vcpu);
4771
4772         if (!pi_test_and_clear_on(&vmx->pi_desc))
4773                 return;
4774
4775         kvm_apic_update_irr(vcpu, vmx->pi_desc.pir);
4776 }
4777
4778 /*
4779  * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4780  * will not change in the lifetime of the guest.
4781  * Note that host-state that does change is set elsewhere. E.g., host-state
4782  * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4783  */
4784 static void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
4785 {
4786         u32 low32, high32;
4787         unsigned long tmpl;
4788         struct desc_ptr dt;
4789         unsigned long cr4;
4790
4791         vmcs_writel(HOST_CR0, read_cr0() & ~X86_CR0_TS);  /* 22.2.3 */
4792         vmcs_writel(HOST_CR3, read_cr3());  /* 22.2.3  FIXME: shadow tables */
4793
4794         /* Save the most likely value for this task's CR4 in the VMCS. */
4795         cr4 = cr4_read_shadow();
4796         vmcs_writel(HOST_CR4, cr4);                     /* 22.2.3, 22.2.5 */
4797         vmx->host_state.vmcs_host_cr4 = cr4;
4798
4799         vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
4800 #ifdef CONFIG_X86_64
4801         /*
4802          * Load null selectors, so we can avoid reloading them in
4803          * __vmx_load_host_state(), in case userspace uses the null selectors
4804          * too (the expected case).
4805          */
4806         vmcs_write16(HOST_DS_SELECTOR, 0);
4807         vmcs_write16(HOST_ES_SELECTOR, 0);
4808 #else
4809         vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4810         vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4811 #endif
4812         vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4813         vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
4814
4815         native_store_idt(&dt);
4816         vmcs_writel(HOST_IDTR_BASE, dt.address);   /* 22.2.4 */
4817         vmx->host_idt_base = dt.address;
4818
4819         vmcs_writel(HOST_RIP, vmx_return); /* 22.2.5 */
4820
4821         rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4822         vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4823         rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
4824         vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */
4825
4826         if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4827                 rdmsr(MSR_IA32_CR_PAT, low32, high32);
4828                 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4829         }
4830 }
4831
4832 static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4833 {
4834         vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
4835         if (enable_ept)
4836                 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
4837         if (is_guest_mode(&vmx->vcpu))
4838                 vmx->vcpu.arch.cr4_guest_owned_bits &=
4839                         ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
4840         vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
4841 }
4842
4843 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4844 {
4845         u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4846
4847         if (!kvm_vcpu_apicv_active(&vmx->vcpu))
4848                 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4849         /* Enable the preemption timer dynamically */
4850         pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
4851         return pin_based_exec_ctrl;
4852 }
4853
4854 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
4855 {
4856         struct vcpu_vmx *vmx = to_vmx(vcpu);
4857
4858         vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
4859         if (cpu_has_secondary_exec_ctrls()) {
4860                 if (kvm_vcpu_apicv_active(vcpu))
4861                         vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
4862                                       SECONDARY_EXEC_APIC_REGISTER_VIRT |
4863                                       SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4864                 else
4865                         vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
4866                                         SECONDARY_EXEC_APIC_REGISTER_VIRT |
4867                                         SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4868         }
4869
4870         if (cpu_has_vmx_msr_bitmap())
4871                 vmx_set_msr_bitmap(vcpu);
4872 }
4873
4874 static u32 vmx_exec_control(struct vcpu_vmx *vmx)
4875 {
4876         u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4877
4878         if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
4879                 exec_control &= ~CPU_BASED_MOV_DR_EXITING;
4880
4881         if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
4882                 exec_control &= ~CPU_BASED_TPR_SHADOW;
4883 #ifdef CONFIG_X86_64
4884                 exec_control |= CPU_BASED_CR8_STORE_EXITING |
4885                                 CPU_BASED_CR8_LOAD_EXITING;
4886 #endif
4887         }
4888         if (!enable_ept)
4889                 exec_control |= CPU_BASED_CR3_STORE_EXITING |
4890                                 CPU_BASED_CR3_LOAD_EXITING  |
4891                                 CPU_BASED_INVLPG_EXITING;
4892         return exec_control;
4893 }
4894
4895 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
4896 {
4897         u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4898         if (!cpu_need_virtualize_apic_accesses(&vmx->vcpu))
4899                 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4900         if (vmx->vpid == 0)
4901                 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4902         if (!enable_ept) {
4903                 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4904                 enable_unrestricted_guest = 0;
4905                 /* Enable INVPCID for non-ept guests may cause performance regression. */
4906                 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
4907         }
4908         if (!enable_unrestricted_guest)
4909                 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4910         if (!ple_gap)
4911                 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4912         if (!kvm_vcpu_apicv_active(&vmx->vcpu))
4913                 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4914                                   SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4915         exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4916         /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4917            (handle_vmptrld).
4918            We can NOT enable shadow_vmcs here because we don't have yet
4919            a current VMCS12
4920         */
4921         exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4922
4923         if (!enable_pml)
4924                 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
4925
4926         /* Currently, we allow L1 guest to directly run pcommit instruction. */
4927         exec_control &= ~SECONDARY_EXEC_PCOMMIT;
4928
4929         return exec_control;
4930 }
4931
4932 static void ept_set_mmio_spte_mask(void)
4933 {
4934         /*
4935          * EPT Misconfigurations can be generated if the value of bits 2:0
4936          * of an EPT paging-structure entry is 110b (write/execute).
4937          * Also, magic bits (0x3ull << 62) is set to quickly identify mmio
4938          * spte.
4939          */
4940         kvm_mmu_set_mmio_spte_mask((0x3ull << 62) | 0x6ull);
4941 }
4942
4943 #define VMX_XSS_EXIT_BITMAP 0
4944 /*
4945  * Sets up the vmcs for emulated real mode.
4946  */
4947 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
4948 {
4949 #ifdef CONFIG_X86_64
4950         unsigned long a;
4951 #endif
4952         int i;
4953
4954         /* I/O */
4955         vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
4956         vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
4957
4958         if (enable_shadow_vmcs) {
4959                 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
4960                 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
4961         }
4962         if (cpu_has_vmx_msr_bitmap())
4963                 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
4964
4965         vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
4966
4967         /* Control */
4968         vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
4969         vmx->hv_deadline_tsc = -1;
4970
4971         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
4972
4973         if (cpu_has_secondary_exec_ctrls())
4974                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
4975                                 vmx_secondary_exec_control(vmx));
4976
4977         if (kvm_vcpu_apicv_active(&vmx->vcpu)) {
4978                 vmcs_write64(EOI_EXIT_BITMAP0, 0);
4979                 vmcs_write64(EOI_EXIT_BITMAP1, 0);
4980                 vmcs_write64(EOI_EXIT_BITMAP2, 0);
4981                 vmcs_write64(EOI_EXIT_BITMAP3, 0);
4982
4983                 vmcs_write16(GUEST_INTR_STATUS, 0);
4984
4985                 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4986                 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4987         }
4988
4989         if (ple_gap) {
4990                 vmcs_write32(PLE_GAP, ple_gap);
4991                 vmx->ple_window = ple_window;
4992                 vmx->ple_window_dirty = true;
4993         }
4994
4995         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4996         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4997         vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
4998
4999         vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
5000         vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
5001         vmx_set_constant_host_state(vmx);
5002 #ifdef CONFIG_X86_64
5003         rdmsrl(MSR_FS_BASE, a);
5004         vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
5005         rdmsrl(MSR_GS_BASE, a);
5006         vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
5007 #else
5008         vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
5009         vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
5010 #endif
5011
5012         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
5013         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
5014         vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
5015         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
5016         vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
5017
5018         if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
5019                 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
5020
5021         for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) {
5022                 u32 index = vmx_msr_index[i];
5023                 u32 data_low, data_high;
5024                 int j = vmx->nmsrs;
5025
5026                 if (rdmsr_safe(index, &data_low, &data_high) < 0)
5027                         continue;
5028                 if (wrmsr_safe(index, data_low, data_high) < 0)
5029                         continue;
5030                 vmx->guest_msrs[j].index = i;
5031                 vmx->guest_msrs[j].data = 0;
5032                 vmx->guest_msrs[j].mask = -1ull;
5033                 ++vmx->nmsrs;
5034         }
5035
5036
5037         vm_exit_controls_init(vmx, vmcs_config.vmexit_ctrl);
5038
5039         /* 22.2.1, 20.8.1 */
5040         vm_entry_controls_init(vmx, vmcs_config.vmentry_ctrl);
5041
5042         vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
5043         set_cr4_guest_host_mask(vmx);
5044
5045         if (vmx_xsaves_supported())
5046                 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
5047
5048         return 0;
5049 }
5050
5051 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
5052 {
5053         struct vcpu_vmx *vmx = to_vmx(vcpu);
5054         struct msr_data apic_base_msr;
5055         u64 cr0;
5056
5057         vmx->rmode.vm86_active = 0;
5058
5059         vmx->soft_vnmi_blocked = 0;
5060
5061         vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
5062         kvm_set_cr8(vcpu, 0);
5063
5064         if (!init_event) {
5065                 apic_base_msr.data = APIC_DEFAULT_PHYS_BASE |
5066                                      MSR_IA32_APICBASE_ENABLE;
5067                 if (kvm_vcpu_is_reset_bsp(vcpu))
5068                         apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
5069                 apic_base_msr.host_initiated = true;
5070                 kvm_set_apic_base(vcpu, &apic_base_msr);
5071         }
5072
5073         vmx_segment_cache_clear(vmx);
5074
5075         seg_setup(VCPU_SREG_CS);
5076         vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
5077         vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
5078
5079         seg_setup(VCPU_SREG_DS);
5080         seg_setup(VCPU_SREG_ES);
5081         seg_setup(VCPU_SREG_FS);
5082         seg_setup(VCPU_SREG_GS);
5083         seg_setup(VCPU_SREG_SS);
5084
5085         vmcs_write16(GUEST_TR_SELECTOR, 0);
5086         vmcs_writel(GUEST_TR_BASE, 0);
5087         vmcs_write32(GUEST_TR_LIMIT, 0xffff);
5088         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
5089
5090         vmcs_write16(GUEST_LDTR_SELECTOR, 0);
5091         vmcs_writel(GUEST_LDTR_BASE, 0);
5092         vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
5093         vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
5094
5095         if (!init_event) {
5096                 vmcs_write32(GUEST_SYSENTER_CS, 0);
5097                 vmcs_writel(GUEST_SYSENTER_ESP, 0);
5098                 vmcs_writel(GUEST_SYSENTER_EIP, 0);
5099                 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
5100         }
5101
5102         vmcs_writel(GUEST_RFLAGS, 0x02);
5103         kvm_rip_write(vcpu, 0xfff0);
5104
5105         vmcs_writel(GUEST_GDTR_BASE, 0);
5106         vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
5107
5108         vmcs_writel(GUEST_IDTR_BASE, 0);
5109         vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
5110
5111         vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
5112         vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
5113         vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
5114
5115         setup_msrs(vmx);
5116
5117         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
5118
5119         if (cpu_has_vmx_tpr_shadow() && !init_event) {
5120                 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
5121                 if (cpu_need_tpr_shadow(vcpu))
5122                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
5123                                      __pa(vcpu->arch.apic->regs));
5124                 vmcs_write32(TPR_THRESHOLD, 0);
5125         }
5126
5127         kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
5128
5129         if (kvm_vcpu_apicv_active(vcpu))
5130                 memset(&vmx->pi_desc, 0, sizeof(struct pi_desc));
5131
5132         if (vmx->vpid != 0)
5133                 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
5134
5135         cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
5136         vmx->vcpu.arch.cr0 = cr0;
5137         vmx_set_cr0(vcpu, cr0); /* enter rmode */
5138         vmx_set_cr4(vcpu, 0);
5139         vmx_set_efer(vcpu, 0);
5140         vmx_fpu_activate(vcpu);
5141         update_exception_bitmap(vcpu);
5142
5143         vpid_sync_context(vmx->vpid);
5144 }
5145
5146 /*
5147  * In nested virtualization, check if L1 asked to exit on external interrupts.
5148  * For most existing hypervisors, this will always return true.
5149  */
5150 static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
5151 {
5152         return get_vmcs12(vcpu)->pin_based_vm_exec_control &
5153                 PIN_BASED_EXT_INTR_MASK;
5154 }
5155
5156 /*
5157  * In nested virtualization, check if L1 has set
5158  * VM_EXIT_ACK_INTR_ON_EXIT
5159  */
5160 static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
5161 {
5162         return get_vmcs12(vcpu)->vm_exit_controls &
5163                 VM_EXIT_ACK_INTR_ON_EXIT;
5164 }
5165
5166 static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
5167 {
5168         return get_vmcs12(vcpu)->pin_based_vm_exec_control &
5169                 PIN_BASED_NMI_EXITING;
5170 }
5171
5172 static void enable_irq_window(struct kvm_vcpu *vcpu)
5173 {
5174         u32 cpu_based_vm_exec_control;
5175
5176         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5177         cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
5178         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5179 }
5180
5181 static void enable_nmi_window(struct kvm_vcpu *vcpu)
5182 {
5183         u32 cpu_based_vm_exec_control;
5184
5185         if (!cpu_has_virtual_nmis() ||
5186             vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
5187                 enable_irq_window(vcpu);
5188                 return;
5189         }
5190
5191         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5192         cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
5193         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5194 }
5195
5196 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
5197 {
5198         struct vcpu_vmx *vmx = to_vmx(vcpu);
5199         uint32_t intr;
5200         int irq = vcpu->arch.interrupt.nr;
5201
5202         trace_kvm_inj_virq(irq);
5203
5204         ++vcpu->stat.irq_injections;
5205         if (vmx->rmode.vm86_active) {
5206                 int inc_eip = 0;
5207                 if (vcpu->arch.interrupt.soft)
5208                         inc_eip = vcpu->arch.event_exit_inst_len;
5209                 if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
5210                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5211                 return;
5212         }
5213         intr = irq | INTR_INFO_VALID_MASK;
5214         if (vcpu->arch.interrupt.soft) {
5215                 intr |= INTR_TYPE_SOFT_INTR;
5216                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
5217                              vmx->vcpu.arch.event_exit_inst_len);
5218         } else
5219                 intr |= INTR_TYPE_EXT_INTR;
5220         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
5221 }
5222
5223 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
5224 {
5225         struct vcpu_vmx *vmx = to_vmx(vcpu);
5226
5227         if (is_guest_mode(vcpu))
5228                 return;
5229
5230         if (!cpu_has_virtual_nmis()) {
5231                 /*
5232                  * Tracking the NMI-blocked state in software is built upon
5233                  * finding the next open IRQ window. This, in turn, depends on
5234                  * well-behaving guests: They have to keep IRQs disabled at
5235                  * least as long as the NMI handler runs. Otherwise we may
5236                  * cause NMI nesting, maybe breaking the guest. But as this is
5237                  * highly unlikely, we can live with the residual risk.
5238                  */
5239                 vmx->soft_vnmi_blocked = 1;
5240                 vmx->vnmi_blocked_time = 0;
5241         }
5242
5243         ++vcpu->stat.nmi_injections;
5244         vmx->nmi_known_unmasked = false;
5245         if (vmx->rmode.vm86_active) {
5246                 if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
5247                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5248                 return;
5249         }
5250         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
5251                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
5252 }
5253
5254 static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
5255 {
5256         if (!cpu_has_virtual_nmis())
5257                 return to_vmx(vcpu)->soft_vnmi_blocked;
5258         if (to_vmx(vcpu)->nmi_known_unmasked)
5259                 return false;
5260         return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
5261 }
5262
5263 static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
5264 {
5265         struct vcpu_vmx *vmx = to_vmx(vcpu);
5266
5267         if (!cpu_has_virtual_nmis()) {
5268                 if (vmx->soft_vnmi_blocked != masked) {
5269                         vmx->soft_vnmi_blocked = masked;
5270                         vmx->vnmi_blocked_time = 0;
5271                 }
5272         } else {
5273                 vmx->nmi_known_unmasked = !masked;
5274                 if (masked)
5275                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5276                                       GUEST_INTR_STATE_NMI);
5277                 else
5278                         vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
5279                                         GUEST_INTR_STATE_NMI);
5280         }
5281 }
5282
5283 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
5284 {
5285         if (to_vmx(vcpu)->nested.nested_run_pending)
5286                 return 0;
5287
5288         if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
5289                 return 0;
5290
5291         return  !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5292                   (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
5293                    | GUEST_INTR_STATE_NMI));
5294 }
5295
5296 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
5297 {
5298         return (!to_vmx(vcpu)->nested.nested_run_pending &&
5299                 vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
5300                 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5301                         (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
5302 }
5303
5304 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
5305 {
5306         int ret;
5307
5308         ret = x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
5309                                     PAGE_SIZE * 3);
5310         if (ret)
5311                 return ret;
5312         kvm->arch.tss_addr = addr;
5313         return init_rmode_tss(kvm);
5314 }
5315
5316 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
5317 {
5318         switch (vec) {
5319         case BP_VECTOR:
5320                 /*
5321                  * Update instruction length as we may reinject the exception
5322                  * from user space while in guest debugging mode.
5323                  */
5324                 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
5325                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5326                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
5327                         return false;
5328                 /* fall through */
5329         case DB_VECTOR:
5330                 if (vcpu->guest_debug &
5331                         (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
5332                         return false;
5333                 /* fall through */
5334         case DE_VECTOR:
5335         case OF_VECTOR:
5336         case BR_VECTOR:
5337         case UD_VECTOR:
5338         case DF_VECTOR:
5339         case SS_VECTOR:
5340         case GP_VECTOR:
5341         case MF_VECTOR:
5342                 return true;
5343         break;
5344         }
5345         return false;
5346 }
5347
5348 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
5349                                   int vec, u32 err_code)
5350 {
5351         /*
5352          * Instruction with address size override prefix opcode 0x67
5353          * Cause the #SS fault with 0 error code in VM86 mode.
5354          */
5355         if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
5356                 if (emulate_instruction(vcpu, 0) == EMULATE_DONE) {
5357                         if (vcpu->arch.halt_request) {
5358                                 vcpu->arch.halt_request = 0;
5359                                 return kvm_vcpu_halt(vcpu);
5360                         }
5361                         return 1;
5362                 }
5363                 return 0;
5364         }
5365
5366         /*
5367          * Forward all other exceptions that are valid in real mode.
5368          * FIXME: Breaks guest debugging in real mode, needs to be fixed with
5369          *        the required debugging infrastructure rework.
5370          */
5371         kvm_queue_exception(vcpu, vec);
5372         return 1;
5373 }
5374
5375 /*
5376  * Trigger machine check on the host. We assume all the MSRs are already set up
5377  * by the CPU and that we still run on the same CPU as the MCE occurred on.
5378  * We pass a fake environment to the machine check handler because we want
5379  * the guest to be always treated like user space, no matter what context
5380  * it used internally.
5381  */
5382 static void kvm_machine_check(void)
5383 {
5384 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
5385         struct pt_regs regs = {
5386                 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
5387                 .flags = X86_EFLAGS_IF,
5388         };
5389
5390         do_machine_check(&regs, 0);
5391 #endif
5392 }
5393
5394 static int handle_machine_check(struct kvm_vcpu *vcpu)
5395 {
5396         /* already handled by vcpu_run */
5397         return 1;
5398 }
5399
5400 static int handle_exception(struct kvm_vcpu *vcpu)
5401 {
5402         struct vcpu_vmx *vmx = to_vmx(vcpu);
5403         struct kvm_run *kvm_run = vcpu->run;
5404         u32 intr_info, ex_no, error_code;
5405         unsigned long cr2, rip, dr6;
5406         u32 vect_info;
5407         enum emulation_result er;
5408
5409         vect_info = vmx->idt_vectoring_info;
5410         intr_info = vmx->exit_intr_info;
5411
5412         if (is_machine_check(intr_info))
5413                 return handle_machine_check(vcpu);
5414
5415         if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
5416                 return 1;  /* already handled by vmx_vcpu_run() */
5417
5418         if (is_no_device(intr_info)) {
5419                 vmx_fpu_activate(vcpu);
5420                 return 1;
5421         }
5422
5423         if (is_invalid_opcode(intr_info)) {
5424                 if (is_guest_mode(vcpu)) {
5425                         kvm_queue_exception(vcpu, UD_VECTOR);
5426                         return 1;
5427                 }
5428                 er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
5429                 if (er != EMULATE_DONE)
5430                         kvm_queue_exception(vcpu, UD_VECTOR);
5431                 return 1;
5432         }
5433
5434         error_code = 0;
5435         if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
5436                 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5437
5438         /*
5439          * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
5440          * MMIO, it is better to report an internal error.
5441          * See the comments in vmx_handle_exit.
5442          */
5443         if ((vect_info & VECTORING_INFO_VALID_MASK) &&
5444             !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
5445                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5446                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
5447                 vcpu->run->internal.ndata = 3;
5448                 vcpu->run->internal.data[0] = vect_info;
5449                 vcpu->run->internal.data[1] = intr_info;
5450                 vcpu->run->internal.data[2] = error_code;
5451                 return 0;
5452         }
5453
5454         if (is_page_fault(intr_info)) {
5455                 /* EPT won't cause page fault directly */
5456                 BUG_ON(enable_ept);
5457                 cr2 = vmcs_readl(EXIT_QUALIFICATION);
5458                 trace_kvm_page_fault(cr2, error_code);
5459
5460                 if (kvm_event_needs_reinjection(vcpu))
5461                         kvm_mmu_unprotect_page_virt(vcpu, cr2);
5462                 return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
5463         }
5464
5465         ex_no = intr_info & INTR_INFO_VECTOR_MASK;
5466
5467         if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
5468                 return handle_rmode_exception(vcpu, ex_no, error_code);
5469
5470         switch (ex_no) {
5471         case AC_VECTOR:
5472                 kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
5473                 return 1;
5474         case DB_VECTOR:
5475                 dr6 = vmcs_readl(EXIT_QUALIFICATION);
5476                 if (!(vcpu->guest_debug &
5477                       (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
5478                         vcpu->arch.dr6 &= ~15;
5479                         vcpu->arch.dr6 |= dr6 | DR6_RTM;
5480                         if (!(dr6 & ~DR6_RESERVED)) /* icebp */
5481                                 skip_emulated_instruction(vcpu);
5482
5483                         kvm_queue_exception(vcpu, DB_VECTOR);
5484                         return 1;
5485                 }
5486                 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
5487                 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
5488                 /* fall through */
5489         case BP_VECTOR:
5490                 /*
5491                  * Update instruction length as we may reinject #BP from
5492                  * user space while in guest debugging mode. Reading it for
5493                  * #DB as well causes no harm, it is not used in that case.
5494                  */
5495                 vmx->vcpu.arch.event_exit_inst_len =
5496                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5497                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5498                 rip = kvm_rip_read(vcpu);
5499                 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
5500                 kvm_run->debug.arch.exception = ex_no;
5501                 break;
5502         default:
5503                 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
5504                 kvm_run->ex.exception = ex_no;
5505                 kvm_run->ex.error_code = error_code;
5506                 break;
5507         }
5508         return 0;
5509 }
5510
5511 static int handle_external_interrupt(struct kvm_vcpu *vcpu)
5512 {
5513         ++vcpu->stat.irq_exits;
5514         return 1;
5515 }
5516
5517 static int handle_triple_fault(struct kvm_vcpu *vcpu)
5518 {
5519         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5520         return 0;
5521 }
5522
5523 static int handle_io(struct kvm_vcpu *vcpu)
5524 {
5525         unsigned long exit_qualification;
5526         int size, in, string;
5527         unsigned port;
5528
5529         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5530         string = (exit_qualification & 16) != 0;
5531         in = (exit_qualification & 8) != 0;
5532
5533         ++vcpu->stat.io_exits;
5534
5535         if (string || in)
5536                 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
5537
5538         port = exit_qualification >> 16;
5539         size = (exit_qualification & 7) + 1;
5540         skip_emulated_instruction(vcpu);
5541
5542         return kvm_fast_pio_out(vcpu, size, port);
5543 }
5544
5545 static void
5546 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5547 {
5548         /*
5549          * Patch in the VMCALL instruction:
5550          */
5551         hypercall[0] = 0x0f;
5552         hypercall[1] = 0x01;
5553         hypercall[2] = 0xc1;
5554 }
5555
5556 static bool nested_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val)
5557 {
5558         unsigned long always_on = VMXON_CR0_ALWAYSON;
5559         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5560
5561         if (to_vmx(vcpu)->nested.nested_vmx_secondary_ctls_high &
5562                 SECONDARY_EXEC_UNRESTRICTED_GUEST &&
5563             nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
5564                 always_on &= ~(X86_CR0_PE | X86_CR0_PG);
5565         return (val & always_on) == always_on;
5566 }
5567
5568 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
5569 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
5570 {
5571         if (is_guest_mode(vcpu)) {
5572                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5573                 unsigned long orig_val = val;
5574
5575                 /*
5576                  * We get here when L2 changed cr0 in a way that did not change
5577                  * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
5578                  * but did change L0 shadowed bits. So we first calculate the
5579                  * effective cr0 value that L1 would like to write into the
5580                  * hardware. It consists of the L2-owned bits from the new
5581                  * value combined with the L1-owned bits from L1's guest_cr0.
5582                  */
5583                 val = (val & ~vmcs12->cr0_guest_host_mask) |
5584                         (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
5585
5586                 if (!nested_cr0_valid(vcpu, val))
5587                         return 1;
5588
5589                 if (kvm_set_cr0(vcpu, val))
5590                         return 1;
5591                 vmcs_writel(CR0_READ_SHADOW, orig_val);
5592                 return 0;
5593         } else {
5594                 if (to_vmx(vcpu)->nested.vmxon &&
5595                     ((val & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON))
5596                         return 1;
5597                 return kvm_set_cr0(vcpu, val);
5598         }
5599 }
5600
5601 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
5602 {
5603         if (is_guest_mode(vcpu)) {
5604                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5605                 unsigned long orig_val = val;
5606
5607                 /* analogously to handle_set_cr0 */
5608                 val = (val & ~vmcs12->cr4_guest_host_mask) |
5609                         (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
5610                 if (kvm_set_cr4(vcpu, val))
5611                         return 1;
5612                 vmcs_writel(CR4_READ_SHADOW, orig_val);
5613                 return 0;
5614         } else
5615                 return kvm_set_cr4(vcpu, val);
5616 }
5617
5618 /* called to set cr0 as appropriate for clts instruction exit. */
5619 static void handle_clts(struct kvm_vcpu *vcpu)
5620 {
5621         if (is_guest_mode(vcpu)) {
5622                 /*
5623                  * We get here when L2 did CLTS, and L1 didn't shadow CR0.TS
5624                  * but we did (!fpu_active). We need to keep GUEST_CR0.TS on,
5625                  * just pretend it's off (also in arch.cr0 for fpu_activate).
5626                  */
5627                 vmcs_writel(CR0_READ_SHADOW,
5628                         vmcs_readl(CR0_READ_SHADOW) & ~X86_CR0_TS);
5629                 vcpu->arch.cr0 &= ~X86_CR0_TS;
5630         } else
5631                 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
5632 }
5633
5634 static int handle_cr(struct kvm_vcpu *vcpu)
5635 {
5636         unsigned long exit_qualification, val;
5637         int cr;
5638         int reg;
5639         int err;
5640
5641         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5642         cr = exit_qualification & 15;
5643         reg = (exit_qualification >> 8) & 15;
5644         switch ((exit_qualification >> 4) & 3) {
5645         case 0: /* mov to cr */
5646                 val = kvm_register_readl(vcpu, reg);
5647                 trace_kvm_cr_write(cr, val);
5648                 switch (cr) {
5649                 case 0:
5650                         err = handle_set_cr0(vcpu, val);
5651                         kvm_complete_insn_gp(vcpu, err);
5652                         return 1;
5653                 case 3:
5654                         err = kvm_set_cr3(vcpu, val);
5655                         kvm_complete_insn_gp(vcpu, err);
5656                         return 1;
5657                 case 4:
5658                         err = handle_set_cr4(vcpu, val);
5659                         kvm_complete_insn_gp(vcpu, err);
5660                         return 1;
5661                 case 8: {
5662                                 u8 cr8_prev = kvm_get_cr8(vcpu);
5663                                 u8 cr8 = (u8)val;
5664                                 err = kvm_set_cr8(vcpu, cr8);
5665                                 kvm_complete_insn_gp(vcpu, err);
5666                                 if (lapic_in_kernel(vcpu))
5667                                         return 1;
5668                                 if (cr8_prev <= cr8)
5669                                         return 1;
5670                                 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
5671                                 return 0;
5672                         }
5673                 }
5674                 break;
5675         case 2: /* clts */
5676                 handle_clts(vcpu);
5677                 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
5678                 skip_emulated_instruction(vcpu);
5679                 vmx_fpu_activate(vcpu);
5680                 return 1;
5681         case 1: /*mov from cr*/
5682                 switch (cr) {
5683                 case 3:
5684                         val = kvm_read_cr3(vcpu);
5685                         kvm_register_write(vcpu, reg, val);
5686                         trace_kvm_cr_read(cr, val);
5687                         skip_emulated_instruction(vcpu);
5688                         return 1;
5689                 case 8:
5690                         val = kvm_get_cr8(vcpu);
5691                         kvm_register_write(vcpu, reg, val);
5692                         trace_kvm_cr_read(cr, val);
5693                         skip_emulated_instruction(vcpu);
5694                         return 1;
5695                 }
5696                 break;
5697         case 3: /* lmsw */
5698                 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5699                 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
5700                 kvm_lmsw(vcpu, val);
5701
5702                 skip_emulated_instruction(vcpu);
5703                 return 1;
5704         default:
5705                 break;
5706         }
5707         vcpu->run->exit_reason = 0;
5708         vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5709                (int)(exit_qualification >> 4) & 3, cr);
5710         return 0;
5711 }
5712
5713 static int handle_dr(struct kvm_vcpu *vcpu)
5714 {
5715         unsigned long exit_qualification;
5716         int dr, dr7, reg;
5717
5718         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5719         dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5720
5721         /* First, if DR does not exist, trigger UD */
5722         if (!kvm_require_dr(vcpu, dr))
5723                 return 1;
5724
5725         /* Do not handle if the CPL > 0, will trigger GP on re-entry */
5726         if (!kvm_require_cpl(vcpu, 0))
5727                 return 1;
5728         dr7 = vmcs_readl(GUEST_DR7);
5729         if (dr7 & DR7_GD) {
5730                 /*
5731                  * As the vm-exit takes precedence over the debug trap, we
5732                  * need to emulate the latter, either for the host or the
5733                  * guest debugging itself.
5734                  */
5735                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5736                         vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
5737                         vcpu->run->debug.arch.dr7 = dr7;
5738                         vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5739                         vcpu->run->debug.arch.exception = DB_VECTOR;
5740                         vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5741                         return 0;
5742                 } else {
5743                         vcpu->arch.dr6 &= ~15;
5744                         vcpu->arch.dr6 |= DR6_BD | DR6_RTM;
5745                         kvm_queue_exception(vcpu, DB_VECTOR);
5746                         return 1;
5747                 }
5748         }
5749
5750         if (vcpu->guest_debug == 0) {
5751                 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
5752                                 CPU_BASED_MOV_DR_EXITING);
5753
5754                 /*
5755                  * No more DR vmexits; force a reload of the debug registers
5756                  * and reenter on this instruction.  The next vmexit will
5757                  * retrieve the full state of the debug registers.
5758                  */
5759                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5760                 return 1;
5761         }
5762
5763         reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5764         if (exit_qualification & TYPE_MOV_FROM_DR) {
5765                 unsigned long val;
5766
5767                 if (kvm_get_dr(vcpu, dr, &val))
5768                         return 1;
5769                 kvm_register_write(vcpu, reg, val);
5770         } else
5771                 if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
5772                         return 1;
5773
5774         skip_emulated_instruction(vcpu);
5775         return 1;
5776 }
5777
5778 static u64 vmx_get_dr6(struct kvm_vcpu *vcpu)
5779 {
5780         return vcpu->arch.dr6;
5781 }
5782
5783 static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val)
5784 {
5785 }
5786
5787 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5788 {
5789         get_debugreg(vcpu->arch.db[0], 0);
5790         get_debugreg(vcpu->arch.db[1], 1);
5791         get_debugreg(vcpu->arch.db[2], 2);
5792         get_debugreg(vcpu->arch.db[3], 3);
5793         get_debugreg(vcpu->arch.dr6, 6);
5794         vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
5795
5796         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
5797         vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL, CPU_BASED_MOV_DR_EXITING);
5798 }
5799
5800 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5801 {
5802         vmcs_writel(GUEST_DR7, val);
5803 }
5804
5805 static int handle_cpuid(struct kvm_vcpu *vcpu)
5806 {
5807         kvm_emulate_cpuid(vcpu);
5808         return 1;
5809 }
5810
5811 static int handle_rdmsr(struct kvm_vcpu *vcpu)
5812 {
5813         u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
5814         struct msr_data msr_info;
5815
5816         msr_info.index = ecx;
5817         msr_info.host_initiated = false;
5818         if (vmx_get_msr(vcpu, &msr_info)) {
5819                 trace_kvm_msr_read_ex(ecx);
5820                 kvm_inject_gp(vcpu, 0);
5821                 return 1;
5822         }
5823
5824         trace_kvm_msr_read(ecx, msr_info.data);
5825
5826         /* FIXME: handling of bits 32:63 of rax, rdx */
5827         vcpu->arch.regs[VCPU_REGS_RAX] = msr_info.data & -1u;
5828         vcpu->arch.regs[VCPU_REGS_RDX] = (msr_info.data >> 32) & -1u;
5829         skip_emulated_instruction(vcpu);
5830         return 1;
5831 }
5832
5833 static int handle_wrmsr(struct kvm_vcpu *vcpu)
5834 {
5835         struct msr_data msr;
5836         u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
5837         u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
5838                 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
5839
5840         msr.data = data;
5841         msr.index = ecx;
5842         msr.host_initiated = false;
5843         if (kvm_set_msr(vcpu, &msr) != 0) {
5844                 trace_kvm_msr_write_ex(ecx, data);
5845                 kvm_inject_gp(vcpu, 0);
5846                 return 1;
5847         }
5848
5849         trace_kvm_msr_write(ecx, data);
5850         skip_emulated_instruction(vcpu);
5851         return 1;
5852 }
5853
5854 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5855 {
5856         kvm_make_request(KVM_REQ_EVENT, vcpu);
5857         return 1;
5858 }
5859
5860 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5861 {
5862         u32 cpu_based_vm_exec_control;
5863
5864         /* clear pending irq */
5865         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5866         cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
5867         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5868
5869         kvm_make_request(KVM_REQ_EVENT, vcpu);
5870
5871         ++vcpu->stat.irq_window_exits;
5872         return 1;
5873 }
5874
5875 static int handle_halt(struct kvm_vcpu *vcpu)
5876 {
5877         return kvm_emulate_halt(vcpu);
5878 }
5879
5880 static int handle_vmcall(struct kvm_vcpu *vcpu)
5881 {
5882         return kvm_emulate_hypercall(vcpu);
5883 }
5884
5885 static int handle_invd(struct kvm_vcpu *vcpu)
5886 {
5887         return emulate_instruction(vcpu, 0) == EMULATE_DONE;
5888 }
5889
5890 static int handle_invlpg(struct kvm_vcpu *vcpu)
5891 {
5892         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5893
5894         kvm_mmu_invlpg(vcpu, exit_qualification);
5895         skip_emulated_instruction(vcpu);
5896         return 1;
5897 }
5898
5899 static int handle_rdpmc(struct kvm_vcpu *vcpu)
5900 {
5901         int err;
5902
5903         err = kvm_rdpmc(vcpu);
5904         kvm_complete_insn_gp(vcpu, err);
5905
5906         return 1;
5907 }
5908
5909 static int handle_wbinvd(struct kvm_vcpu *vcpu)
5910 {
5911         kvm_emulate_wbinvd(vcpu);
5912         return 1;
5913 }
5914
5915 static int handle_xsetbv(struct kvm_vcpu *vcpu)
5916 {
5917         u64 new_bv = kvm_read_edx_eax(vcpu);
5918         u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
5919
5920         if (kvm_set_xcr(vcpu, index, new_bv) == 0)
5921                 skip_emulated_instruction(vcpu);
5922         return 1;
5923 }
5924
5925 static int handle_xsaves(struct kvm_vcpu *vcpu)
5926 {
5927         skip_emulated_instruction(vcpu);
5928         WARN(1, "this should never happen\n");
5929         return 1;
5930 }
5931
5932 static int handle_xrstors(struct kvm_vcpu *vcpu)
5933 {
5934         skip_emulated_instruction(vcpu);
5935         WARN(1, "this should never happen\n");
5936         return 1;
5937 }
5938
5939 static int handle_apic_access(struct kvm_vcpu *vcpu)
5940 {
5941         if (likely(fasteoi)) {
5942                 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5943                 int access_type, offset;
5944
5945                 access_type = exit_qualification & APIC_ACCESS_TYPE;
5946                 offset = exit_qualification & APIC_ACCESS_OFFSET;
5947                 /*
5948                  * Sane guest uses MOV to write EOI, with written value
5949                  * not cared. So make a short-circuit here by avoiding
5950                  * heavy instruction emulation.
5951                  */
5952                 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5953                     (offset == APIC_EOI)) {
5954                         kvm_lapic_set_eoi(vcpu);
5955                         skip_emulated_instruction(vcpu);
5956                         return 1;
5957                 }
5958         }
5959         return emulate_instruction(vcpu, 0) == EMULATE_DONE;
5960 }
5961
5962 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5963 {
5964         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5965         int vector = exit_qualification & 0xff;
5966
5967         /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5968         kvm_apic_set_eoi_accelerated(vcpu, vector);
5969         return 1;
5970 }
5971
5972 static int handle_apic_write(struct kvm_vcpu *vcpu)
5973 {
5974         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5975         u32 offset = exit_qualification & 0xfff;
5976
5977         /* APIC-write VM exit is trap-like and thus no need to adjust IP */
5978         kvm_apic_write_nodecode(vcpu, offset);
5979         return 1;
5980 }
5981
5982 static int handle_task_switch(struct kvm_vcpu *vcpu)
5983 {
5984         struct vcpu_vmx *vmx = to_vmx(vcpu);
5985         unsigned long exit_qualification;
5986         bool has_error_code = false;
5987         u32 error_code = 0;
5988         u16 tss_selector;
5989         int reason, type, idt_v, idt_index;
5990
5991         idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5992         idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5993         type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5994
5995         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5996
5997         reason = (u32)exit_qualification >> 30;
5998         if (reason == TASK_SWITCH_GATE && idt_v) {
5999                 switch (type) {
6000                 case INTR_TYPE_NMI_INTR:
6001                         vcpu->arch.nmi_injected = false;
6002                         vmx_set_nmi_mask(vcpu, true);
6003                         break;
6004                 case INTR_TYPE_EXT_INTR:
6005                 case INTR_TYPE_SOFT_INTR:
6006                         kvm_clear_interrupt_queue(vcpu);
6007                         break;
6008                 case INTR_TYPE_HARD_EXCEPTION:
6009                         if (vmx->idt_vectoring_info &
6010                             VECTORING_INFO_DELIVER_CODE_MASK) {
6011                                 has_error_code = true;
6012                                 error_code =
6013                                         vmcs_read32(IDT_VECTORING_ERROR_CODE);
6014                         }
6015                         /* fall through */
6016                 case INTR_TYPE_SOFT_EXCEPTION:
6017                         kvm_clear_exception_queue(vcpu);
6018                         break;
6019                 default:
6020                         break;
6021                 }
6022         }
6023         tss_selector = exit_qualification;
6024
6025         if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
6026                        type != INTR_TYPE_EXT_INTR &&
6027                        type != INTR_TYPE_NMI_INTR))
6028                 skip_emulated_instruction(vcpu);
6029
6030         if (kvm_task_switch(vcpu, tss_selector,
6031                             type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
6032                             has_error_code, error_code) == EMULATE_FAIL) {
6033                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6034                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6035                 vcpu->run->internal.ndata = 0;
6036                 return 0;
6037         }
6038
6039         /*
6040          * TODO: What about debug traps on tss switch?
6041          *       Are we supposed to inject them and update dr6?
6042          */
6043
6044         return 1;
6045 }
6046
6047 static int handle_ept_violation(struct kvm_vcpu *vcpu)
6048 {
6049         unsigned long exit_qualification;
6050         gpa_t gpa;
6051         u32 error_code;
6052         int gla_validity;
6053
6054         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6055
6056         gla_validity = (exit_qualification >> 7) & 0x3;
6057         if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
6058                 printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
6059                 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
6060                         (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
6061                         vmcs_readl(GUEST_LINEAR_ADDRESS));
6062                 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
6063                         (long unsigned int)exit_qualification);
6064                 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
6065                 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
6066                 return 0;
6067         }
6068
6069         /*
6070          * EPT violation happened while executing iret from NMI,
6071          * "blocked by NMI" bit has to be set before next VM entry.
6072          * There are errata that may cause this bit to not be set:
6073          * AAK134, BY25.
6074          */
6075         if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
6076                         cpu_has_virtual_nmis() &&
6077                         (exit_qualification & INTR_INFO_UNBLOCK_NMI))
6078                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
6079
6080         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
6081         trace_kvm_page_fault(gpa, exit_qualification);
6082
6083         /* It is a write fault? */
6084         error_code = exit_qualification & PFERR_WRITE_MASK;
6085         /* It is a fetch fault? */
6086         error_code |= (exit_qualification << 2) & PFERR_FETCH_MASK;
6087         /* ept page table is present? */
6088         error_code |= (exit_qualification >> 3) & PFERR_PRESENT_MASK;
6089
6090         vcpu->arch.exit_qualification = exit_qualification;
6091
6092         return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
6093 }
6094
6095 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
6096 {
6097         int ret;
6098         gpa_t gpa;
6099
6100         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
6101         if (!kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
6102                 skip_emulated_instruction(vcpu);
6103                 trace_kvm_fast_mmio(gpa);
6104                 return 1;
6105         }
6106
6107         ret = handle_mmio_page_fault(vcpu, gpa, true);
6108         if (likely(ret == RET_MMIO_PF_EMULATE))
6109                 return x86_emulate_instruction(vcpu, gpa, 0, NULL, 0) ==
6110                                               EMULATE_DONE;
6111
6112         if (unlikely(ret == RET_MMIO_PF_INVALID))
6113                 return kvm_mmu_page_fault(vcpu, gpa, 0, NULL, 0);
6114
6115         if (unlikely(ret == RET_MMIO_PF_RETRY))
6116                 return 1;
6117
6118         /* It is the real ept misconfig */
6119         WARN_ON(1);
6120
6121         vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
6122         vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
6123
6124         return 0;
6125 }
6126
6127 static int handle_nmi_window(struct kvm_vcpu *vcpu)
6128 {
6129         u32 cpu_based_vm_exec_control;
6130
6131         /* clear pending NMI */
6132         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
6133         cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
6134         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
6135         ++vcpu->stat.nmi_window_exits;
6136         kvm_make_request(KVM_REQ_EVENT, vcpu);
6137
6138         return 1;
6139 }
6140
6141 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
6142 {
6143         struct vcpu_vmx *vmx = to_vmx(vcpu);
6144         enum emulation_result err = EMULATE_DONE;
6145         int ret = 1;
6146         u32 cpu_exec_ctrl;
6147         bool intr_window_requested;
6148         unsigned count = 130;
6149
6150         cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
6151         intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
6152
6153         while (vmx->emulation_required && count-- != 0) {
6154                 if (intr_window_requested && vmx_interrupt_allowed(vcpu))
6155                         return handle_interrupt_window(&vmx->vcpu);
6156
6157                 if (test_bit(KVM_REQ_EVENT, &vcpu->requests))
6158                         return 1;
6159
6160                 err = emulate_instruction(vcpu, EMULTYPE_NO_REEXECUTE);
6161
6162                 if (err == EMULATE_USER_EXIT) {
6163                         ++vcpu->stat.mmio_exits;
6164                         ret = 0;
6165                         goto out;
6166                 }
6167
6168                 if (err != EMULATE_DONE) {
6169                         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6170                         vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6171                         vcpu->run->internal.ndata = 0;
6172                         return 0;
6173                 }
6174
6175                 if (vcpu->arch.halt_request) {
6176                         vcpu->arch.halt_request = 0;
6177                         ret = kvm_vcpu_halt(vcpu);
6178                         goto out;
6179                 }
6180
6181                 if (signal_pending(current))
6182                         goto out;
6183                 if (need_resched())
6184                         schedule();
6185         }
6186
6187 out:
6188         return ret;
6189 }
6190
6191 static int __grow_ple_window(int val)
6192 {
6193         if (ple_window_grow < 1)
6194                 return ple_window;
6195
6196         val = min(val, ple_window_actual_max);
6197
6198         if (ple_window_grow < ple_window)
6199                 val *= ple_window_grow;
6200         else
6201                 val += ple_window_grow;
6202
6203         return val;
6204 }
6205
6206 static int __shrink_ple_window(int val, int modifier, int minimum)
6207 {
6208         if (modifier < 1)
6209                 return ple_window;
6210
6211         if (modifier < ple_window)
6212                 val /= modifier;
6213         else
6214                 val -= modifier;
6215
6216         return max(val, minimum);
6217 }
6218
6219 static void grow_ple_window(struct kvm_vcpu *vcpu)
6220 {
6221         struct vcpu_vmx *vmx = to_vmx(vcpu);
6222         int old = vmx->ple_window;
6223
6224         vmx->ple_window = __grow_ple_window(old);
6225
6226         if (vmx->ple_window != old)
6227                 vmx->ple_window_dirty = true;
6228
6229         trace_kvm_ple_window_grow(vcpu->vcpu_id, vmx->ple_window, old);
6230 }
6231
6232 static void shrink_ple_window(struct kvm_vcpu *vcpu)
6233 {
6234         struct vcpu_vmx *vmx = to_vmx(vcpu);
6235         int old = vmx->ple_window;
6236
6237         vmx->ple_window = __shrink_ple_window(old,
6238                                               ple_window_shrink, ple_window);
6239
6240         if (vmx->ple_window != old)
6241                 vmx->ple_window_dirty = true;
6242
6243         trace_kvm_ple_window_shrink(vcpu->vcpu_id, vmx->ple_window, old);
6244 }
6245
6246 /*
6247  * ple_window_actual_max is computed to be one grow_ple_window() below
6248  * ple_window_max. (See __grow_ple_window for the reason.)
6249  * This prevents overflows, because ple_window_max is int.
6250  * ple_window_max effectively rounded down to a multiple of ple_window_grow in
6251  * this process.
6252  * ple_window_max is also prevented from setting vmx->ple_window < ple_window.
6253  */
6254 static void update_ple_window_actual_max(void)
6255 {
6256         ple_window_actual_max =
6257                         __shrink_ple_window(max(ple_window_max, ple_window),
6258                                             ple_window_grow, INT_MIN);
6259 }
6260
6261 /*
6262  * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
6263  */
6264 static void wakeup_handler(void)
6265 {
6266         struct kvm_vcpu *vcpu;
6267         int cpu = smp_processor_id();
6268
6269         spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
6270         list_for_each_entry(vcpu, &per_cpu(blocked_vcpu_on_cpu, cpu),
6271                         blocked_vcpu_list) {
6272                 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
6273
6274                 if (pi_test_on(pi_desc) == 1)
6275                         kvm_vcpu_kick(vcpu);
6276         }
6277         spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
6278 }
6279
6280 static __init int hardware_setup(void)
6281 {
6282         int r = -ENOMEM, i, msr;
6283
6284         rdmsrl_safe(MSR_EFER, &host_efer);
6285
6286         for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i)
6287                 kvm_define_shared_msr(i, vmx_msr_index[i]);
6288
6289         vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
6290         if (!vmx_io_bitmap_a)
6291                 return r;
6292
6293         vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
6294         if (!vmx_io_bitmap_b)
6295                 goto out;
6296
6297         vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
6298         if (!vmx_msr_bitmap_legacy)
6299                 goto out1;
6300
6301         vmx_msr_bitmap_legacy_x2apic =
6302                                 (unsigned long *)__get_free_page(GFP_KERNEL);
6303         if (!vmx_msr_bitmap_legacy_x2apic)
6304                 goto out2;
6305
6306         vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
6307         if (!vmx_msr_bitmap_longmode)
6308                 goto out3;
6309
6310         vmx_msr_bitmap_longmode_x2apic =
6311                                 (unsigned long *)__get_free_page(GFP_KERNEL);
6312         if (!vmx_msr_bitmap_longmode_x2apic)
6313                 goto out4;
6314
6315         if (nested) {
6316                 vmx_msr_bitmap_nested =
6317                         (unsigned long *)__get_free_page(GFP_KERNEL);
6318                 if (!vmx_msr_bitmap_nested)
6319                         goto out5;
6320         }
6321
6322         vmx_vmread_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
6323         if (!vmx_vmread_bitmap)
6324                 goto out6;
6325
6326         vmx_vmwrite_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
6327         if (!vmx_vmwrite_bitmap)
6328                 goto out7;
6329
6330         memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
6331         memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
6332
6333         /*
6334          * Allow direct access to the PC debug port (it is often used for I/O
6335          * delays, but the vmexits simply slow things down).
6336          */
6337         memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
6338         clear_bit(0x80, vmx_io_bitmap_a);
6339
6340         memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
6341
6342         memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
6343         memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
6344         if (nested)
6345                 memset(vmx_msr_bitmap_nested, 0xff, PAGE_SIZE);
6346
6347         if (setup_vmcs_config(&vmcs_config) < 0) {
6348                 r = -EIO;
6349                 goto out8;
6350         }
6351
6352         if (boot_cpu_has(X86_FEATURE_NX))
6353                 kvm_enable_efer_bits(EFER_NX);
6354
6355         if (!cpu_has_vmx_vpid())
6356                 enable_vpid = 0;
6357         if (!cpu_has_vmx_shadow_vmcs())
6358                 enable_shadow_vmcs = 0;
6359         if (enable_shadow_vmcs)
6360                 init_vmcs_shadow_fields();
6361
6362         if (!cpu_has_vmx_ept() ||
6363             !cpu_has_vmx_ept_4levels()) {
6364                 enable_ept = 0;
6365                 enable_unrestricted_guest = 0;
6366                 enable_ept_ad_bits = 0;
6367         }
6368
6369         if (!cpu_has_vmx_ept_ad_bits())
6370                 enable_ept_ad_bits = 0;
6371
6372         if (!cpu_has_vmx_unrestricted_guest())
6373                 enable_unrestricted_guest = 0;
6374
6375         if (!cpu_has_vmx_flexpriority())
6376                 flexpriority_enabled = 0;
6377
6378         /*
6379          * set_apic_access_page_addr() is used to reload apic access
6380          * page upon invalidation.  No need to do anything if not
6381          * using the APIC_ACCESS_ADDR VMCS field.
6382          */
6383         if (!flexpriority_enabled)
6384                 kvm_x86_ops->set_apic_access_page_addr = NULL;
6385
6386         if (!cpu_has_vmx_tpr_shadow())
6387                 kvm_x86_ops->update_cr8_intercept = NULL;
6388
6389         if (enable_ept && !cpu_has_vmx_ept_2m_page())
6390                 kvm_disable_largepages();
6391
6392         if (!cpu_has_vmx_ple())
6393                 ple_gap = 0;
6394
6395         if (!cpu_has_vmx_apicv())
6396                 enable_apicv = 0;
6397
6398         if (cpu_has_vmx_tsc_scaling()) {
6399                 kvm_has_tsc_control = true;
6400                 kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
6401                 kvm_tsc_scaling_ratio_frac_bits = 48;
6402         }
6403
6404         vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
6405         vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
6406         vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
6407         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
6408         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
6409         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
6410         vmx_disable_intercept_for_msr(MSR_IA32_BNDCFGS, true);
6411
6412         memcpy(vmx_msr_bitmap_legacy_x2apic,
6413                         vmx_msr_bitmap_legacy, PAGE_SIZE);
6414         memcpy(vmx_msr_bitmap_longmode_x2apic,
6415                         vmx_msr_bitmap_longmode, PAGE_SIZE);
6416
6417         set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
6418
6419         for (msr = 0x800; msr <= 0x8ff; msr++)
6420                 vmx_disable_intercept_msr_read_x2apic(msr);
6421
6422         /* According SDM, in x2apic mode, the whole id reg is used.  But in
6423          * KVM, it only use the highest eight bits. Need to intercept it */
6424         vmx_enable_intercept_msr_read_x2apic(0x802);
6425         /* TMCCT */
6426         vmx_enable_intercept_msr_read_x2apic(0x839);
6427         /* TPR */
6428         vmx_disable_intercept_msr_write_x2apic(0x808);
6429         /* EOI */
6430         vmx_disable_intercept_msr_write_x2apic(0x80b);
6431         /* SELF-IPI */
6432         vmx_disable_intercept_msr_write_x2apic(0x83f);
6433
6434         if (enable_ept) {
6435                 kvm_mmu_set_mask_ptes(0ull,
6436                         (enable_ept_ad_bits) ? VMX_EPT_ACCESS_BIT : 0ull,
6437                         (enable_ept_ad_bits) ? VMX_EPT_DIRTY_BIT : 0ull,
6438                         0ull, VMX_EPT_EXECUTABLE_MASK);
6439                 ept_set_mmio_spte_mask();
6440                 kvm_enable_tdp();
6441         } else
6442                 kvm_disable_tdp();
6443
6444         update_ple_window_actual_max();
6445
6446         /*
6447          * Only enable PML when hardware supports PML feature, and both EPT
6448          * and EPT A/D bit features are enabled -- PML depends on them to work.
6449          */
6450         if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
6451                 enable_pml = 0;
6452
6453         if (!enable_pml) {
6454                 kvm_x86_ops->slot_enable_log_dirty = NULL;
6455                 kvm_x86_ops->slot_disable_log_dirty = NULL;
6456                 kvm_x86_ops->flush_log_dirty = NULL;
6457                 kvm_x86_ops->enable_log_dirty_pt_masked = NULL;
6458         }
6459
6460         if (cpu_has_vmx_preemption_timer() && enable_preemption_timer) {
6461                 u64 vmx_msr;
6462
6463                 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
6464                 cpu_preemption_timer_multi =
6465                          vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
6466         } else {
6467                 kvm_x86_ops->set_hv_timer = NULL;
6468                 kvm_x86_ops->cancel_hv_timer = NULL;
6469         }
6470
6471         kvm_set_posted_intr_wakeup_handler(wakeup_handler);
6472
6473         return alloc_kvm_area();
6474
6475 out8:
6476         free_page((unsigned long)vmx_vmwrite_bitmap);
6477 out7:
6478         free_page((unsigned long)vmx_vmread_bitmap);
6479 out6:
6480         if (nested)
6481                 free_page((unsigned long)vmx_msr_bitmap_nested);
6482 out5:
6483         free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
6484 out4:
6485         free_page((unsigned long)vmx_msr_bitmap_longmode);
6486 out3:
6487         free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
6488 out2:
6489         free_page((unsigned long)vmx_msr_bitmap_legacy);
6490 out1:
6491         free_page((unsigned long)vmx_io_bitmap_b);
6492 out:
6493         free_page((unsigned long)vmx_io_bitmap_a);
6494
6495     return r;
6496 }
6497
6498 static __exit void hardware_unsetup(void)
6499 {
6500         free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
6501         free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
6502         free_page((unsigned long)vmx_msr_bitmap_legacy);
6503         free_page((unsigned long)vmx_msr_bitmap_longmode);
6504         free_page((unsigned long)vmx_io_bitmap_b);
6505         free_page((unsigned long)vmx_io_bitmap_a);
6506         free_page((unsigned long)vmx_vmwrite_bitmap);
6507         free_page((unsigned long)vmx_vmread_bitmap);
6508         if (nested)
6509                 free_page((unsigned long)vmx_msr_bitmap_nested);
6510
6511         free_kvm_area();
6512 }
6513
6514 /*
6515  * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
6516  * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
6517  */
6518 static int handle_pause(struct kvm_vcpu *vcpu)
6519 {
6520         if (ple_gap)
6521                 grow_ple_window(vcpu);
6522
6523         skip_emulated_instruction(vcpu);
6524         kvm_vcpu_on_spin(vcpu);
6525
6526         return 1;
6527 }
6528
6529 static int handle_nop(struct kvm_vcpu *vcpu)
6530 {
6531         skip_emulated_instruction(vcpu);
6532         return 1;
6533 }
6534
6535 static int handle_mwait(struct kvm_vcpu *vcpu)
6536 {
6537         printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
6538         return handle_nop(vcpu);
6539 }
6540
6541 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
6542 {
6543         return 1;
6544 }
6545
6546 static int handle_monitor(struct kvm_vcpu *vcpu)
6547 {
6548         printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
6549         return handle_nop(vcpu);
6550 }
6551
6552 /*
6553  * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
6554  * We could reuse a single VMCS for all the L2 guests, but we also want the
6555  * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
6556  * allows keeping them loaded on the processor, and in the future will allow
6557  * optimizations where prepare_vmcs02 doesn't need to set all the fields on
6558  * every entry if they never change.
6559  * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
6560  * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
6561  *
6562  * The following functions allocate and free a vmcs02 in this pool.
6563  */
6564
6565 /* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
6566 static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
6567 {
6568         struct vmcs02_list *item;
6569         list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
6570                 if (item->vmptr == vmx->nested.current_vmptr) {
6571                         list_move(&item->list, &vmx->nested.vmcs02_pool);
6572                         return &item->vmcs02;
6573                 }
6574
6575         if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
6576                 /* Recycle the least recently used VMCS. */
6577                 item = list_last_entry(&vmx->nested.vmcs02_pool,
6578                                        struct vmcs02_list, list);
6579                 item->vmptr = vmx->nested.current_vmptr;
6580                 list_move(&item->list, &vmx->nested.vmcs02_pool);
6581                 return &item->vmcs02;
6582         }
6583
6584         /* Create a new VMCS */
6585         item = kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
6586         if (!item)
6587                 return NULL;
6588         item->vmcs02.vmcs = alloc_vmcs();
6589         if (!item->vmcs02.vmcs) {
6590                 kfree(item);
6591                 return NULL;
6592         }
6593         loaded_vmcs_init(&item->vmcs02);
6594         item->vmptr = vmx->nested.current_vmptr;
6595         list_add(&(item->list), &(vmx->nested.vmcs02_pool));
6596         vmx->nested.vmcs02_num++;
6597         return &item->vmcs02;
6598 }
6599
6600 /* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
6601 static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
6602 {
6603         struct vmcs02_list *item;
6604         list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
6605                 if (item->vmptr == vmptr) {
6606                         free_loaded_vmcs(&item->vmcs02);
6607                         list_del(&item->list);
6608                         kfree(item);
6609                         vmx->nested.vmcs02_num--;
6610                         return;
6611                 }
6612 }
6613
6614 /*
6615  * Free all VMCSs saved for this vcpu, except the one pointed by
6616  * vmx->loaded_vmcs. We must be running L1, so vmx->loaded_vmcs
6617  * must be &vmx->vmcs01.
6618  */
6619 static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
6620 {
6621         struct vmcs02_list *item, *n;
6622
6623         WARN_ON(vmx->loaded_vmcs != &vmx->vmcs01);
6624         list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
6625                 /*
6626                  * Something will leak if the above WARN triggers.  Better than
6627                  * a use-after-free.
6628                  */
6629                 if (vmx->loaded_vmcs == &item->vmcs02)
6630                         continue;
6631
6632                 free_loaded_vmcs(&item->vmcs02);
6633                 list_del(&item->list);
6634                 kfree(item);
6635                 vmx->nested.vmcs02_num--;
6636         }
6637 }
6638
6639 /*
6640  * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
6641  * set the success or error code of an emulated VMX instruction, as specified
6642  * by Vol 2B, VMX Instruction Reference, "Conventions".
6643  */
6644 static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
6645 {
6646         vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
6647                         & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
6648                             X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
6649 }
6650
6651 static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
6652 {
6653         vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
6654                         & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
6655                             X86_EFLAGS_SF | X86_EFLAGS_OF))
6656                         | X86_EFLAGS_CF);
6657 }
6658
6659 static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
6660                                         u32 vm_instruction_error)
6661 {
6662         if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
6663                 /*
6664                  * failValid writes the error number to the current VMCS, which
6665                  * can't be done there isn't a current VMCS.
6666                  */
6667                 nested_vmx_failInvalid(vcpu);
6668                 return;
6669         }
6670         vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
6671                         & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
6672                             X86_EFLAGS_SF | X86_EFLAGS_OF))
6673                         | X86_EFLAGS_ZF);
6674         get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
6675         /*
6676          * We don't need to force a shadow sync because
6677          * VM_INSTRUCTION_ERROR is not shadowed
6678          */
6679 }
6680
6681 static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
6682 {
6683         /* TODO: not to reset guest simply here. */
6684         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
6685         pr_warn("kvm: nested vmx abort, indicator %d\n", indicator);
6686 }
6687
6688 static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
6689 {
6690         struct vcpu_vmx *vmx =
6691                 container_of(timer, struct vcpu_vmx, nested.preemption_timer);
6692
6693         vmx->nested.preemption_timer_expired = true;
6694         kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
6695         kvm_vcpu_kick(&vmx->vcpu);
6696
6697         return HRTIMER_NORESTART;
6698 }
6699
6700 /*
6701  * Decode the memory-address operand of a vmx instruction, as recorded on an
6702  * exit caused by such an instruction (run by a guest hypervisor).
6703  * On success, returns 0. When the operand is invalid, returns 1 and throws
6704  * #UD or #GP.
6705  */
6706 static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
6707                                  unsigned long exit_qualification,
6708                                  u32 vmx_instruction_info, bool wr, gva_t *ret)
6709 {
6710         gva_t off;
6711         bool exn;
6712         struct kvm_segment s;
6713
6714         /*
6715          * According to Vol. 3B, "Information for VM Exits Due to Instruction
6716          * Execution", on an exit, vmx_instruction_info holds most of the
6717          * addressing components of the operand. Only the displacement part
6718          * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
6719          * For how an actual address is calculated from all these components,
6720          * refer to Vol. 1, "Operand Addressing".
6721          */
6722         int  scaling = vmx_instruction_info & 3;
6723         int  addr_size = (vmx_instruction_info >> 7) & 7;
6724         bool is_reg = vmx_instruction_info & (1u << 10);
6725         int  seg_reg = (vmx_instruction_info >> 15) & 7;
6726         int  index_reg = (vmx_instruction_info >> 18) & 0xf;
6727         bool index_is_valid = !(vmx_instruction_info & (1u << 22));
6728         int  base_reg       = (vmx_instruction_info >> 23) & 0xf;
6729         bool base_is_valid  = !(vmx_instruction_info & (1u << 27));
6730
6731         if (is_reg) {
6732                 kvm_queue_exception(vcpu, UD_VECTOR);
6733                 return 1;
6734         }
6735
6736         /* Addr = segment_base + offset */
6737         /* offset = base + [index * scale] + displacement */
6738         off = exit_qualification; /* holds the displacement */
6739         if (base_is_valid)
6740                 off += kvm_register_read(vcpu, base_reg);
6741         if (index_is_valid)
6742                 off += kvm_register_read(vcpu, index_reg)<<scaling;
6743         vmx_get_segment(vcpu, &s, seg_reg);
6744         *ret = s.base + off;
6745
6746         if (addr_size == 1) /* 32 bit */
6747                 *ret &= 0xffffffff;
6748
6749         /* Checks for #GP/#SS exceptions. */
6750         exn = false;
6751         if (is_protmode(vcpu)) {
6752                 /* Protected mode: apply checks for segment validity in the
6753                  * following order:
6754                  * - segment type check (#GP(0) may be thrown)
6755                  * - usability check (#GP(0)/#SS(0))
6756                  * - limit check (#GP(0)/#SS(0))
6757                  */
6758                 if (wr)
6759                         /* #GP(0) if the destination operand is located in a
6760                          * read-only data segment or any code segment.
6761                          */
6762                         exn = ((s.type & 0xa) == 0 || (s.type & 8));
6763                 else
6764                         /* #GP(0) if the source operand is located in an
6765                          * execute-only code segment
6766                          */
6767                         exn = ((s.type & 0xa) == 8);
6768         }
6769         if (exn) {
6770                 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
6771                 return 1;
6772         }
6773         if (is_long_mode(vcpu)) {
6774                 /* Long mode: #GP(0)/#SS(0) if the memory address is in a
6775                  * non-canonical form. This is an only check for long mode.
6776                  */
6777                 exn = is_noncanonical_address(*ret);
6778         } else if (is_protmode(vcpu)) {
6779                 /* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
6780                  */
6781                 exn = (s.unusable != 0);
6782                 /* Protected mode: #GP(0)/#SS(0) if the memory
6783                  * operand is outside the segment limit.
6784                  */
6785                 exn = exn || (off + sizeof(u64) > s.limit);
6786         }
6787         if (exn) {
6788                 kvm_queue_exception_e(vcpu,
6789                                       seg_reg == VCPU_SREG_SS ?
6790                                                 SS_VECTOR : GP_VECTOR,
6791                                       0);
6792                 return 1;
6793         }
6794
6795         return 0;
6796 }
6797
6798 /*
6799  * This function performs the various checks including
6800  * - if it's 4KB aligned
6801  * - No bits beyond the physical address width are set
6802  * - Returns 0 on success or else 1
6803  * (Intel SDM Section 30.3)
6804  */
6805 static int nested_vmx_check_vmptr(struct kvm_vcpu *vcpu, int exit_reason,
6806                                   gpa_t *vmpointer)
6807 {
6808         gva_t gva;
6809         gpa_t vmptr;
6810         struct x86_exception e;
6811         struct page *page;
6812         struct vcpu_vmx *vmx = to_vmx(vcpu);
6813         int maxphyaddr = cpuid_maxphyaddr(vcpu);
6814
6815         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
6816                         vmcs_read32(VMX_INSTRUCTION_INFO), false, &gva))
6817                 return 1;
6818
6819         if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
6820                                 sizeof(vmptr), &e)) {
6821                 kvm_inject_page_fault(vcpu, &e);
6822                 return 1;
6823         }
6824
6825         switch (exit_reason) {
6826         case EXIT_REASON_VMON:
6827                 /*
6828                  * SDM 3: 24.11.5
6829                  * The first 4 bytes of VMXON region contain the supported
6830                  * VMCS revision identifier
6831                  *
6832                  * Note - IA32_VMX_BASIC[48] will never be 1
6833                  * for the nested case;
6834                  * which replaces physical address width with 32
6835                  *
6836                  */
6837                 if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
6838                         nested_vmx_failInvalid(vcpu);
6839                         skip_emulated_instruction(vcpu);
6840                         return 1;
6841                 }
6842
6843                 page = nested_get_page(vcpu, vmptr);
6844                 if (page == NULL ||
6845                     *(u32 *)kmap(page) != VMCS12_REVISION) {
6846                         nested_vmx_failInvalid(vcpu);
6847                         kunmap(page);
6848                         skip_emulated_instruction(vcpu);
6849                         return 1;
6850                 }
6851                 kunmap(page);
6852                 vmx->nested.vmxon_ptr = vmptr;
6853                 break;
6854         case EXIT_REASON_VMCLEAR:
6855                 if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
6856                         nested_vmx_failValid(vcpu,
6857                                              VMXERR_VMCLEAR_INVALID_ADDRESS);
6858                         skip_emulated_instruction(vcpu);
6859                         return 1;
6860                 }
6861
6862                 if (vmptr == vmx->nested.vmxon_ptr) {
6863                         nested_vmx_failValid(vcpu,
6864                                              VMXERR_VMCLEAR_VMXON_POINTER);
6865                         skip_emulated_instruction(vcpu);
6866                         return 1;
6867                 }
6868                 break;
6869         case EXIT_REASON_VMPTRLD:
6870                 if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
6871                         nested_vmx_failValid(vcpu,
6872                                              VMXERR_VMPTRLD_INVALID_ADDRESS);
6873                         skip_emulated_instruction(vcpu);
6874                         return 1;
6875                 }
6876
6877                 if (vmptr == vmx->nested.vmxon_ptr) {
6878                         nested_vmx_failValid(vcpu,
6879                                              VMXERR_VMCLEAR_VMXON_POINTER);
6880                         skip_emulated_instruction(vcpu);
6881                         return 1;
6882                 }
6883                 break;
6884         default:
6885                 return 1; /* shouldn't happen */
6886         }
6887
6888         if (vmpointer)
6889                 *vmpointer = vmptr;
6890         return 0;
6891 }
6892
6893 /*
6894  * Emulate the VMXON instruction.
6895  * Currently, we just remember that VMX is active, and do not save or even
6896  * inspect the argument to VMXON (the so-called "VMXON pointer") because we
6897  * do not currently need to store anything in that guest-allocated memory
6898  * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
6899  * argument is different from the VMXON pointer (which the spec says they do).
6900  */
6901 static int handle_vmon(struct kvm_vcpu *vcpu)
6902 {
6903         struct kvm_segment cs;
6904         struct vcpu_vmx *vmx = to_vmx(vcpu);
6905         struct vmcs *shadow_vmcs;
6906         const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED
6907                 | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
6908
6909         /* The Intel VMX Instruction Reference lists a bunch of bits that
6910          * are prerequisite to running VMXON, most notably cr4.VMXE must be
6911          * set to 1 (see vmx_set_cr4() for when we allow the guest to set this).
6912          * Otherwise, we should fail with #UD. We test these now:
6913          */
6914         if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE) ||
6915             !kvm_read_cr0_bits(vcpu, X86_CR0_PE) ||
6916             (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
6917                 kvm_queue_exception(vcpu, UD_VECTOR);
6918                 return 1;
6919         }
6920
6921         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
6922         if (is_long_mode(vcpu) && !cs.l) {
6923                 kvm_queue_exception(vcpu, UD_VECTOR);
6924                 return 1;
6925         }
6926
6927         if (vmx_get_cpl(vcpu)) {
6928                 kvm_inject_gp(vcpu, 0);
6929                 return 1;
6930         }
6931
6932         if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMON, NULL))
6933                 return 1;
6934
6935         if (vmx->nested.vmxon) {
6936                 nested_vmx_failValid(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
6937                 skip_emulated_instruction(vcpu);
6938                 return 1;
6939         }
6940
6941         if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
6942                         != VMXON_NEEDED_FEATURES) {
6943                 kvm_inject_gp(vcpu, 0);
6944                 return 1;
6945         }
6946
6947         if (enable_shadow_vmcs) {
6948                 shadow_vmcs = alloc_vmcs();
6949                 if (!shadow_vmcs)
6950                         return -ENOMEM;
6951                 /* mark vmcs as shadow */
6952                 shadow_vmcs->revision_id |= (1u << 31);
6953                 /* init shadow vmcs */
6954                 vmcs_clear(shadow_vmcs);
6955                 vmx->nested.current_shadow_vmcs = shadow_vmcs;
6956         }
6957
6958         INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
6959         vmx->nested.vmcs02_num = 0;
6960
6961         hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
6962                      HRTIMER_MODE_REL);
6963         vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
6964
6965         vmx->nested.vmxon = true;
6966
6967         skip_emulated_instruction(vcpu);
6968         nested_vmx_succeed(vcpu);
6969         return 1;
6970 }
6971
6972 /*
6973  * Intel's VMX Instruction Reference specifies a common set of prerequisites
6974  * for running VMX instructions (except VMXON, whose prerequisites are
6975  * slightly different). It also specifies what exception to inject otherwise.
6976  */
6977 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
6978 {
6979         struct kvm_segment cs;
6980         struct vcpu_vmx *vmx = to_vmx(vcpu);
6981
6982         if (!vmx->nested.vmxon) {
6983                 kvm_queue_exception(vcpu, UD_VECTOR);
6984                 return 0;
6985         }
6986
6987         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
6988         if ((vmx_get_rflags(vcpu) & X86_EFLAGS_VM) ||
6989             (is_long_mode(vcpu) && !cs.l)) {
6990                 kvm_queue_exception(vcpu, UD_VECTOR);
6991                 return 0;
6992         }
6993
6994         if (vmx_get_cpl(vcpu)) {
6995                 kvm_inject_gp(vcpu, 0);
6996                 return 0;
6997         }
6998
6999         return 1;
7000 }
7001
7002 static inline void nested_release_vmcs12(struct vcpu_vmx *vmx)
7003 {
7004         if (vmx->nested.current_vmptr == -1ull)
7005                 return;
7006
7007         /* current_vmptr and current_vmcs12 are always set/reset together */
7008         if (WARN_ON(vmx->nested.current_vmcs12 == NULL))
7009                 return;
7010
7011         if (enable_shadow_vmcs) {
7012                 /* copy to memory all shadowed fields in case
7013                    they were modified */
7014                 copy_shadow_to_vmcs12(vmx);
7015                 vmx->nested.sync_shadow_vmcs = false;
7016                 vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
7017                                 SECONDARY_EXEC_SHADOW_VMCS);
7018                 vmcs_write64(VMCS_LINK_POINTER, -1ull);
7019         }
7020         vmx->nested.posted_intr_nv = -1;
7021         kunmap(vmx->nested.current_vmcs12_page);
7022         nested_release_page(vmx->nested.current_vmcs12_page);
7023         vmx->nested.current_vmptr = -1ull;
7024         vmx->nested.current_vmcs12 = NULL;
7025 }
7026
7027 /*
7028  * Free whatever needs to be freed from vmx->nested when L1 goes down, or
7029  * just stops using VMX.
7030  */
7031 static void free_nested(struct vcpu_vmx *vmx)
7032 {
7033         if (!vmx->nested.vmxon)
7034                 return;
7035
7036         vmx->nested.vmxon = false;
7037         free_vpid(vmx->nested.vpid02);
7038         nested_release_vmcs12(vmx);
7039         if (enable_shadow_vmcs)
7040                 free_vmcs(vmx->nested.current_shadow_vmcs);
7041         /* Unpin physical memory we referred to in current vmcs02 */
7042         if (vmx->nested.apic_access_page) {
7043                 nested_release_page(vmx->nested.apic_access_page);
7044                 vmx->nested.apic_access_page = NULL;
7045         }
7046         if (vmx->nested.virtual_apic_page) {
7047                 nested_release_page(vmx->nested.virtual_apic_page);
7048                 vmx->nested.virtual_apic_page = NULL;
7049         }
7050         if (vmx->nested.pi_desc_page) {
7051                 kunmap(vmx->nested.pi_desc_page);
7052                 nested_release_page(vmx->nested.pi_desc_page);
7053                 vmx->nested.pi_desc_page = NULL;
7054                 vmx->nested.pi_desc = NULL;
7055         }
7056
7057         nested_free_all_saved_vmcss(vmx);
7058 }
7059
7060 /* Emulate the VMXOFF instruction */
7061 static int handle_vmoff(struct kvm_vcpu *vcpu)
7062 {
7063         if (!nested_vmx_check_permission(vcpu))
7064                 return 1;
7065         free_nested(to_vmx(vcpu));
7066         skip_emulated_instruction(vcpu);
7067         nested_vmx_succeed(vcpu);
7068         return 1;
7069 }
7070
7071 /* Emulate the VMCLEAR instruction */
7072 static int handle_vmclear(struct kvm_vcpu *vcpu)
7073 {
7074         struct vcpu_vmx *vmx = to_vmx(vcpu);
7075         gpa_t vmptr;
7076         struct vmcs12 *vmcs12;
7077         struct page *page;
7078
7079         if (!nested_vmx_check_permission(vcpu))
7080                 return 1;
7081
7082         if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMCLEAR, &vmptr))
7083                 return 1;
7084
7085         if (vmptr == vmx->nested.current_vmptr)
7086                 nested_release_vmcs12(vmx);
7087
7088         page = nested_get_page(vcpu, vmptr);
7089         if (page == NULL) {
7090                 /*
7091                  * For accurate processor emulation, VMCLEAR beyond available
7092                  * physical memory should do nothing at all. However, it is
7093                  * possible that a nested vmx bug, not a guest hypervisor bug,
7094                  * resulted in this case, so let's shut down before doing any
7095                  * more damage:
7096                  */
7097                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
7098                 return 1;
7099         }
7100         vmcs12 = kmap(page);
7101         vmcs12->launch_state = 0;
7102         kunmap(page);
7103         nested_release_page(page);
7104
7105         nested_free_vmcs02(vmx, vmptr);
7106
7107         skip_emulated_instruction(vcpu);
7108         nested_vmx_succeed(vcpu);
7109         return 1;
7110 }
7111
7112 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
7113
7114 /* Emulate the VMLAUNCH instruction */
7115 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
7116 {
7117         return nested_vmx_run(vcpu, true);
7118 }
7119
7120 /* Emulate the VMRESUME instruction */
7121 static int handle_vmresume(struct kvm_vcpu *vcpu)
7122 {
7123
7124         return nested_vmx_run(vcpu, false);
7125 }
7126
7127 enum vmcs_field_type {
7128         VMCS_FIELD_TYPE_U16 = 0,
7129         VMCS_FIELD_TYPE_U64 = 1,
7130         VMCS_FIELD_TYPE_U32 = 2,
7131         VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
7132 };
7133
7134 static inline int vmcs_field_type(unsigned long field)
7135 {
7136         if (0x1 & field)        /* the *_HIGH fields are all 32 bit */
7137                 return VMCS_FIELD_TYPE_U32;
7138         return (field >> 13) & 0x3 ;
7139 }
7140
7141 static inline int vmcs_field_readonly(unsigned long field)
7142 {
7143         return (((field >> 10) & 0x3) == 1);
7144 }
7145
7146 /*
7147  * Read a vmcs12 field. Since these can have varying lengths and we return
7148  * one type, we chose the biggest type (u64) and zero-extend the return value
7149  * to that size. Note that the caller, handle_vmread, might need to use only
7150  * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
7151  * 64-bit fields are to be returned).
7152  */
7153 static inline int vmcs12_read_any(struct kvm_vcpu *vcpu,
7154                                   unsigned long field, u64 *ret)
7155 {
7156         short offset = vmcs_field_to_offset(field);
7157         char *p;
7158
7159         if (offset < 0)
7160                 return offset;
7161
7162         p = ((char *)(get_vmcs12(vcpu))) + offset;
7163
7164         switch (vmcs_field_type(field)) {
7165         case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7166                 *ret = *((natural_width *)p);
7167                 return 0;
7168         case VMCS_FIELD_TYPE_U16:
7169                 *ret = *((u16 *)p);
7170                 return 0;
7171         case VMCS_FIELD_TYPE_U32:
7172                 *ret = *((u32 *)p);
7173                 return 0;
7174         case VMCS_FIELD_TYPE_U64:
7175                 *ret = *((u64 *)p);
7176                 return 0;
7177         default:
7178                 WARN_ON(1);
7179                 return -ENOENT;
7180         }
7181 }
7182
7183
7184 static inline int vmcs12_write_any(struct kvm_vcpu *vcpu,
7185                                    unsigned long field, u64 field_value){
7186         short offset = vmcs_field_to_offset(field);
7187         char *p = ((char *) get_vmcs12(vcpu)) + offset;
7188         if (offset < 0)
7189                 return offset;
7190
7191         switch (vmcs_field_type(field)) {
7192         case VMCS_FIELD_TYPE_U16:
7193                 *(u16 *)p = field_value;
7194                 return 0;
7195         case VMCS_FIELD_TYPE_U32:
7196                 *(u32 *)p = field_value;
7197                 return 0;
7198         case VMCS_FIELD_TYPE_U64:
7199                 *(u64 *)p = field_value;
7200                 return 0;
7201         case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7202                 *(natural_width *)p = field_value;
7203                 return 0;
7204         default:
7205                 WARN_ON(1);
7206                 return -ENOENT;
7207         }
7208
7209 }
7210
7211 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
7212 {
7213         int i;
7214         unsigned long field;
7215         u64 field_value;
7216         struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs;
7217         const unsigned long *fields = shadow_read_write_fields;
7218         const int num_fields = max_shadow_read_write_fields;
7219
7220         preempt_disable();
7221
7222         vmcs_load(shadow_vmcs);
7223
7224         for (i = 0; i < num_fields; i++) {
7225                 field = fields[i];
7226                 switch (vmcs_field_type(field)) {
7227                 case VMCS_FIELD_TYPE_U16:
7228                         field_value = vmcs_read16(field);
7229                         break;
7230                 case VMCS_FIELD_TYPE_U32:
7231                         field_value = vmcs_read32(field);
7232                         break;
7233                 case VMCS_FIELD_TYPE_U64:
7234                         field_value = vmcs_read64(field);
7235                         break;
7236                 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7237                         field_value = vmcs_readl(field);
7238                         break;
7239                 default:
7240                         WARN_ON(1);
7241                         continue;
7242                 }
7243                 vmcs12_write_any(&vmx->vcpu, field, field_value);
7244         }
7245
7246         vmcs_clear(shadow_vmcs);
7247         vmcs_load(vmx->loaded_vmcs->vmcs);
7248
7249         preempt_enable();
7250 }
7251
7252 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
7253 {
7254         const unsigned long *fields[] = {
7255                 shadow_read_write_fields,
7256                 shadow_read_only_fields
7257         };
7258         const int max_fields[] = {
7259                 max_shadow_read_write_fields,
7260                 max_shadow_read_only_fields
7261         };
7262         int i, q;
7263         unsigned long field;
7264         u64 field_value = 0;
7265         struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs;
7266
7267         vmcs_load(shadow_vmcs);
7268
7269         for (q = 0; q < ARRAY_SIZE(fields); q++) {
7270                 for (i = 0; i < max_fields[q]; i++) {
7271                         field = fields[q][i];
7272                         vmcs12_read_any(&vmx->vcpu, field, &field_value);
7273
7274                         switch (vmcs_field_type(field)) {
7275                         case VMCS_FIELD_TYPE_U16:
7276                                 vmcs_write16(field, (u16)field_value);
7277                                 break;
7278                         case VMCS_FIELD_TYPE_U32:
7279                                 vmcs_write32(field, (u32)field_value);
7280                                 break;
7281                         case VMCS_FIELD_TYPE_U64:
7282                                 vmcs_write64(field, (u64)field_value);
7283                                 break;
7284                         case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7285                                 vmcs_writel(field, (long)field_value);
7286                                 break;
7287                         default:
7288                                 WARN_ON(1);
7289                                 break;
7290                         }
7291                 }
7292         }
7293
7294         vmcs_clear(shadow_vmcs);
7295         vmcs_load(vmx->loaded_vmcs->vmcs);
7296 }
7297
7298 /*
7299  * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
7300  * used before) all generate the same failure when it is missing.
7301  */
7302 static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
7303 {
7304         struct vcpu_vmx *vmx = to_vmx(vcpu);
7305         if (vmx->nested.current_vmptr == -1ull) {
7306                 nested_vmx_failInvalid(vcpu);
7307                 skip_emulated_instruction(vcpu);
7308                 return 0;
7309         }
7310         return 1;
7311 }
7312
7313 static int handle_vmread(struct kvm_vcpu *vcpu)
7314 {
7315         unsigned long field;
7316         u64 field_value;
7317         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7318         u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7319         gva_t gva = 0;
7320
7321         if (!nested_vmx_check_permission(vcpu) ||
7322             !nested_vmx_check_vmcs12(vcpu))
7323                 return 1;
7324
7325         /* Decode instruction info and find the field to read */
7326         field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
7327         /* Read the field, zero-extended to a u64 field_value */
7328         if (vmcs12_read_any(vcpu, field, &field_value) < 0) {
7329                 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
7330                 skip_emulated_instruction(vcpu);
7331                 return 1;
7332         }
7333         /*
7334          * Now copy part of this value to register or memory, as requested.
7335          * Note that the number of bits actually copied is 32 or 64 depending
7336          * on the guest's mode (32 or 64 bit), not on the given field's length.
7337          */
7338         if (vmx_instruction_info & (1u << 10)) {
7339                 kvm_register_writel(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
7340                         field_value);
7341         } else {
7342                 if (get_vmx_mem_address(vcpu, exit_qualification,
7343                                 vmx_instruction_info, true, &gva))
7344                         return 1;
7345                 /* _system ok, as nested_vmx_check_permission verified cpl=0 */
7346                 kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
7347                              &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
7348         }
7349
7350         nested_vmx_succeed(vcpu);
7351         skip_emulated_instruction(vcpu);
7352         return 1;
7353 }
7354
7355
7356 static int handle_vmwrite(struct kvm_vcpu *vcpu)
7357 {
7358         unsigned long field;
7359         gva_t gva;
7360         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7361         u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7362         /* The value to write might be 32 or 64 bits, depending on L1's long
7363          * mode, and eventually we need to write that into a field of several
7364          * possible lengths. The code below first zero-extends the value to 64
7365          * bit (field_value), and then copies only the appropriate number of
7366          * bits into the vmcs12 field.
7367          */
7368         u64 field_value = 0;
7369         struct x86_exception e;
7370
7371         if (!nested_vmx_check_permission(vcpu) ||
7372             !nested_vmx_check_vmcs12(vcpu))
7373                 return 1;
7374
7375         if (vmx_instruction_info & (1u << 10))
7376                 field_value = kvm_register_readl(vcpu,
7377                         (((vmx_instruction_info) >> 3) & 0xf));
7378         else {
7379                 if (get_vmx_mem_address(vcpu, exit_qualification,
7380                                 vmx_instruction_info, false, &gva))
7381                         return 1;
7382                 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
7383                            &field_value, (is_64_bit_mode(vcpu) ? 8 : 4), &e)) {
7384                         kvm_inject_page_fault(vcpu, &e);
7385                         return 1;
7386                 }
7387         }
7388
7389
7390         field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
7391         if (vmcs_field_readonly(field)) {
7392                 nested_vmx_failValid(vcpu,
7393                         VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
7394                 skip_emulated_instruction(vcpu);
7395                 return 1;
7396         }
7397
7398         if (vmcs12_write_any(vcpu, field, field_value) < 0) {
7399                 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
7400                 skip_emulated_instruction(vcpu);
7401                 return 1;
7402         }
7403
7404         nested_vmx_succeed(vcpu);
7405         skip_emulated_instruction(vcpu);
7406         return 1;
7407 }
7408
7409 /* Emulate the VMPTRLD instruction */
7410 static int handle_vmptrld(struct kvm_vcpu *vcpu)
7411 {
7412         struct vcpu_vmx *vmx = to_vmx(vcpu);
7413         gpa_t vmptr;
7414
7415         if (!nested_vmx_check_permission(vcpu))
7416                 return 1;
7417
7418         if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMPTRLD, &vmptr))
7419                 return 1;
7420
7421         if (vmx->nested.current_vmptr != vmptr) {
7422                 struct vmcs12 *new_vmcs12;
7423                 struct page *page;
7424                 page = nested_get_page(vcpu, vmptr);
7425                 if (page == NULL) {
7426                         nested_vmx_failInvalid(vcpu);
7427                         skip_emulated_instruction(vcpu);
7428                         return 1;
7429                 }
7430                 new_vmcs12 = kmap(page);
7431                 if (new_vmcs12->revision_id != VMCS12_REVISION) {
7432                         kunmap(page);
7433                         nested_release_page_clean(page);
7434                         nested_vmx_failValid(vcpu,
7435                                 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
7436                         skip_emulated_instruction(vcpu);
7437                         return 1;
7438                 }
7439
7440                 nested_release_vmcs12(vmx);
7441                 vmx->nested.current_vmptr = vmptr;
7442                 vmx->nested.current_vmcs12 = new_vmcs12;
7443                 vmx->nested.current_vmcs12_page = page;
7444                 if (enable_shadow_vmcs) {
7445                         vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
7446                                       SECONDARY_EXEC_SHADOW_VMCS);
7447                         vmcs_write64(VMCS_LINK_POINTER,
7448                                      __pa(vmx->nested.current_shadow_vmcs));
7449                         vmx->nested.sync_shadow_vmcs = true;
7450                 }
7451         }
7452
7453         nested_vmx_succeed(vcpu);
7454         skip_emulated_instruction(vcpu);
7455         return 1;
7456 }
7457
7458 /* Emulate the VMPTRST instruction */
7459 static int handle_vmptrst(struct kvm_vcpu *vcpu)
7460 {
7461         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7462         u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7463         gva_t vmcs_gva;
7464         struct x86_exception e;
7465
7466         if (!nested_vmx_check_permission(vcpu))
7467                 return 1;
7468
7469         if (get_vmx_mem_address(vcpu, exit_qualification,
7470                         vmx_instruction_info, true, &vmcs_gva))
7471                 return 1;
7472         /* ok to use *_system, as nested_vmx_check_permission verified cpl=0 */
7473         if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
7474                                  (void *)&to_vmx(vcpu)->nested.current_vmptr,
7475                                  sizeof(u64), &e)) {
7476                 kvm_inject_page_fault(vcpu, &e);
7477                 return 1;
7478         }
7479         nested_vmx_succeed(vcpu);
7480         skip_emulated_instruction(vcpu);
7481         return 1;
7482 }
7483
7484 /* Emulate the INVEPT instruction */
7485 static int handle_invept(struct kvm_vcpu *vcpu)
7486 {
7487         struct vcpu_vmx *vmx = to_vmx(vcpu);
7488         u32 vmx_instruction_info, types;
7489         unsigned long type;
7490         gva_t gva;
7491         struct x86_exception e;
7492         struct {
7493                 u64 eptp, gpa;
7494         } operand;
7495
7496         if (!(vmx->nested.nested_vmx_secondary_ctls_high &
7497               SECONDARY_EXEC_ENABLE_EPT) ||
7498             !(vmx->nested.nested_vmx_ept_caps & VMX_EPT_INVEPT_BIT)) {
7499                 kvm_queue_exception(vcpu, UD_VECTOR);
7500                 return 1;
7501         }
7502
7503         if (!nested_vmx_check_permission(vcpu))
7504                 return 1;
7505
7506         if (!kvm_read_cr0_bits(vcpu, X86_CR0_PE)) {
7507                 kvm_queue_exception(vcpu, UD_VECTOR);
7508                 return 1;
7509         }
7510
7511         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7512         type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
7513
7514         types = (vmx->nested.nested_vmx_ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
7515
7516         if (!(types & (1UL << type))) {
7517                 nested_vmx_failValid(vcpu,
7518                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7519                 skip_emulated_instruction(vcpu);
7520                 return 1;
7521         }
7522
7523         /* According to the Intel VMX instruction reference, the memory
7524          * operand is read even if it isn't needed (e.g., for type==global)
7525          */
7526         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
7527                         vmx_instruction_info, false, &gva))
7528                 return 1;
7529         if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &operand,
7530                                 sizeof(operand), &e)) {
7531                 kvm_inject_page_fault(vcpu, &e);
7532                 return 1;
7533         }
7534
7535         switch (type) {
7536         case VMX_EPT_EXTENT_GLOBAL:
7537                 kvm_mmu_sync_roots(vcpu);
7538                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
7539                 nested_vmx_succeed(vcpu);
7540                 break;
7541         default:
7542                 /* Trap single context invalidation invept calls */
7543                 BUG_ON(1);
7544                 break;
7545         }
7546
7547         skip_emulated_instruction(vcpu);
7548         return 1;
7549 }
7550
7551 static int handle_invvpid(struct kvm_vcpu *vcpu)
7552 {
7553         struct vcpu_vmx *vmx = to_vmx(vcpu);
7554         u32 vmx_instruction_info;
7555         unsigned long type, types;
7556         gva_t gva;
7557         struct x86_exception e;
7558         int vpid;
7559
7560         if (!(vmx->nested.nested_vmx_secondary_ctls_high &
7561               SECONDARY_EXEC_ENABLE_VPID) ||
7562                         !(vmx->nested.nested_vmx_vpid_caps & VMX_VPID_INVVPID_BIT)) {
7563                 kvm_queue_exception(vcpu, UD_VECTOR);
7564                 return 1;
7565         }
7566
7567         if (!nested_vmx_check_permission(vcpu))
7568                 return 1;
7569
7570         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7571         type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
7572
7573         types = (vmx->nested.nested_vmx_vpid_caps >> 8) & 0x7;
7574
7575         if (!(types & (1UL << type))) {
7576                 nested_vmx_failValid(vcpu,
7577                         VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7578                 skip_emulated_instruction(vcpu);
7579                 return 1;
7580         }
7581
7582         /* according to the intel vmx instruction reference, the memory
7583          * operand is read even if it isn't needed (e.g., for type==global)
7584          */
7585         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
7586                         vmx_instruction_info, false, &gva))
7587                 return 1;
7588         if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vpid,
7589                                 sizeof(u32), &e)) {
7590                 kvm_inject_page_fault(vcpu, &e);
7591                 return 1;
7592         }
7593
7594         switch (type) {
7595         case VMX_VPID_EXTENT_SINGLE_CONTEXT:
7596                 /*
7597                  * Old versions of KVM use the single-context version so we
7598                  * have to support it; just treat it the same as all-context.
7599                  */
7600         case VMX_VPID_EXTENT_ALL_CONTEXT:
7601                 __vmx_flush_tlb(vcpu, to_vmx(vcpu)->nested.vpid02);
7602                 nested_vmx_succeed(vcpu);
7603                 break;
7604         default:
7605                 /* Trap individual address invalidation invvpid calls */
7606                 BUG_ON(1);
7607                 break;
7608         }
7609
7610         skip_emulated_instruction(vcpu);
7611         return 1;
7612 }
7613
7614 static int handle_pml_full(struct kvm_vcpu *vcpu)
7615 {
7616         unsigned long exit_qualification;
7617
7618         trace_kvm_pml_full(vcpu->vcpu_id);
7619
7620         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7621
7622         /*
7623          * PML buffer FULL happened while executing iret from NMI,
7624          * "blocked by NMI" bit has to be set before next VM entry.
7625          */
7626         if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
7627                         cpu_has_virtual_nmis() &&
7628                         (exit_qualification & INTR_INFO_UNBLOCK_NMI))
7629                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
7630                                 GUEST_INTR_STATE_NMI);
7631
7632         /*
7633          * PML buffer already flushed at beginning of VMEXIT. Nothing to do
7634          * here.., and there's no userspace involvement needed for PML.
7635          */
7636         return 1;
7637 }
7638
7639 static int handle_pcommit(struct kvm_vcpu *vcpu)
7640 {
7641         /* we never catch pcommit instruct for L1 guest. */
7642         WARN_ON(1);
7643         return 1;
7644 }
7645
7646 static int handle_preemption_timer(struct kvm_vcpu *vcpu)
7647 {
7648         kvm_lapic_expired_hv_timer(vcpu);
7649         return 1;
7650 }
7651
7652 /*
7653  * The exit handlers return 1 if the exit was handled fully and guest execution
7654  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
7655  * to be done to userspace and return 0.
7656  */
7657 static int (*const kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
7658         [EXIT_REASON_EXCEPTION_NMI]           = handle_exception,
7659         [EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
7660         [EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
7661         [EXIT_REASON_NMI_WINDOW]              = handle_nmi_window,
7662         [EXIT_REASON_IO_INSTRUCTION]          = handle_io,
7663         [EXIT_REASON_CR_ACCESS]               = handle_cr,
7664         [EXIT_REASON_DR_ACCESS]               = handle_dr,
7665         [EXIT_REASON_CPUID]                   = handle_cpuid,
7666         [EXIT_REASON_MSR_READ]                = handle_rdmsr,
7667         [EXIT_REASON_MSR_WRITE]               = handle_wrmsr,
7668         [EXIT_REASON_PENDING_INTERRUPT]       = handle_interrupt_window,
7669         [EXIT_REASON_HLT]                     = handle_halt,
7670         [EXIT_REASON_INVD]                    = handle_invd,
7671         [EXIT_REASON_INVLPG]                  = handle_invlpg,
7672         [EXIT_REASON_RDPMC]                   = handle_rdpmc,
7673         [EXIT_REASON_VMCALL]                  = handle_vmcall,
7674         [EXIT_REASON_VMCLEAR]                 = handle_vmclear,
7675         [EXIT_REASON_VMLAUNCH]                = handle_vmlaunch,
7676         [EXIT_REASON_VMPTRLD]                 = handle_vmptrld,
7677         [EXIT_REASON_VMPTRST]                 = handle_vmptrst,
7678         [EXIT_REASON_VMREAD]                  = handle_vmread,
7679         [EXIT_REASON_VMRESUME]                = handle_vmresume,
7680         [EXIT_REASON_VMWRITE]                 = handle_vmwrite,
7681         [EXIT_REASON_VMOFF]                   = handle_vmoff,
7682         [EXIT_REASON_VMON]                    = handle_vmon,
7683         [EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
7684         [EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
7685         [EXIT_REASON_APIC_WRITE]              = handle_apic_write,
7686         [EXIT_REASON_EOI_INDUCED]             = handle_apic_eoi_induced,
7687         [EXIT_REASON_WBINVD]                  = handle_wbinvd,
7688         [EXIT_REASON_XSETBV]                  = handle_xsetbv,
7689         [EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
7690         [EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
7691         [EXIT_REASON_EPT_VIOLATION]           = handle_ept_violation,
7692         [EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
7693         [EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
7694         [EXIT_REASON_MWAIT_INSTRUCTION]       = handle_mwait,
7695         [EXIT_REASON_MONITOR_TRAP_FLAG]       = handle_monitor_trap,
7696         [EXIT_REASON_MONITOR_INSTRUCTION]     = handle_monitor,
7697         [EXIT_REASON_INVEPT]                  = handle_invept,
7698         [EXIT_REASON_INVVPID]                 = handle_invvpid,
7699         [EXIT_REASON_XSAVES]                  = handle_xsaves,
7700         [EXIT_REASON_XRSTORS]                 = handle_xrstors,
7701         [EXIT_REASON_PML_FULL]                = handle_pml_full,
7702         [EXIT_REASON_PCOMMIT]                 = handle_pcommit,
7703         [EXIT_REASON_PREEMPTION_TIMER]        = handle_preemption_timer,
7704 };
7705
7706 static const int kvm_vmx_max_exit_handlers =
7707         ARRAY_SIZE(kvm_vmx_exit_handlers);
7708
7709 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
7710                                        struct vmcs12 *vmcs12)
7711 {
7712         unsigned long exit_qualification;
7713         gpa_t bitmap, last_bitmap;
7714         unsigned int port;
7715         int size;
7716         u8 b;
7717
7718         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
7719                 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
7720
7721         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7722
7723         port = exit_qualification >> 16;
7724         size = (exit_qualification & 7) + 1;
7725
7726         last_bitmap = (gpa_t)-1;
7727         b = -1;
7728
7729         while (size > 0) {
7730                 if (port < 0x8000)
7731                         bitmap = vmcs12->io_bitmap_a;
7732                 else if (port < 0x10000)
7733                         bitmap = vmcs12->io_bitmap_b;
7734                 else
7735                         return true;
7736                 bitmap += (port & 0x7fff) / 8;
7737
7738                 if (last_bitmap != bitmap)
7739                         if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
7740                                 return true;
7741                 if (b & (1 << (port & 7)))
7742                         return true;
7743
7744                 port++;
7745                 size--;
7746                 last_bitmap = bitmap;
7747         }
7748
7749         return false;
7750 }
7751
7752 /*
7753  * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
7754  * rather than handle it ourselves in L0. I.e., check whether L1 expressed
7755  * disinterest in the current event (read or write a specific MSR) by using an
7756  * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
7757  */
7758 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
7759         struct vmcs12 *vmcs12, u32 exit_reason)
7760 {
7761         u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
7762         gpa_t bitmap;
7763
7764         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
7765                 return true;
7766
7767         /*
7768          * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
7769          * for the four combinations of read/write and low/high MSR numbers.
7770          * First we need to figure out which of the four to use:
7771          */
7772         bitmap = vmcs12->msr_bitmap;
7773         if (exit_reason == EXIT_REASON_MSR_WRITE)
7774                 bitmap += 2048;
7775         if (msr_index >= 0xc0000000) {
7776                 msr_index -= 0xc0000000;
7777                 bitmap += 1024;
7778         }
7779
7780         /* Then read the msr_index'th bit from this bitmap: */
7781         if (msr_index < 1024*8) {
7782                 unsigned char b;
7783                 if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
7784                         return true;
7785                 return 1 & (b >> (msr_index & 7));
7786         } else
7787                 return true; /* let L1 handle the wrong parameter */
7788 }
7789
7790 /*
7791  * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
7792  * rather than handle it ourselves in L0. I.e., check if L1 wanted to
7793  * intercept (via guest_host_mask etc.) the current event.
7794  */
7795 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
7796         struct vmcs12 *vmcs12)
7797 {
7798         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7799         int cr = exit_qualification & 15;
7800         int reg = (exit_qualification >> 8) & 15;
7801         unsigned long val = kvm_register_readl(vcpu, reg);
7802
7803         switch ((exit_qualification >> 4) & 3) {
7804         case 0: /* mov to cr */
7805                 switch (cr) {
7806                 case 0:
7807                         if (vmcs12->cr0_guest_host_mask &
7808                             (val ^ vmcs12->cr0_read_shadow))
7809                                 return true;
7810                         break;
7811                 case 3:
7812                         if ((vmcs12->cr3_target_count >= 1 &&
7813                                         vmcs12->cr3_target_value0 == val) ||
7814                                 (vmcs12->cr3_target_count >= 2 &&
7815                                         vmcs12->cr3_target_value1 == val) ||
7816                                 (vmcs12->cr3_target_count >= 3 &&
7817                                         vmcs12->cr3_target_value2 == val) ||
7818                                 (vmcs12->cr3_target_count >= 4 &&
7819                                         vmcs12->cr3_target_value3 == val))
7820                                 return false;
7821                         if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
7822                                 return true;
7823                         break;
7824                 case 4:
7825                         if (vmcs12->cr4_guest_host_mask &
7826                             (vmcs12->cr4_read_shadow ^ val))
7827                                 return true;
7828                         break;
7829                 case 8:
7830                         if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
7831                                 return true;
7832                         break;
7833                 }
7834                 break;
7835         case 2: /* clts */
7836                 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
7837                     (vmcs12->cr0_read_shadow & X86_CR0_TS))
7838                         return true;
7839                 break;
7840         case 1: /* mov from cr */
7841                 switch (cr) {
7842                 case 3:
7843                         if (vmcs12->cpu_based_vm_exec_control &
7844                             CPU_BASED_CR3_STORE_EXITING)
7845                                 return true;
7846                         break;
7847                 case 8:
7848                         if (vmcs12->cpu_based_vm_exec_control &
7849                             CPU_BASED_CR8_STORE_EXITING)
7850                                 return true;
7851                         break;
7852                 }
7853                 break;
7854         case 3: /* lmsw */
7855                 /*
7856                  * lmsw can change bits 1..3 of cr0, and only set bit 0 of
7857                  * cr0. Other attempted changes are ignored, with no exit.
7858                  */
7859                 if (vmcs12->cr0_guest_host_mask & 0xe &
7860                     (val ^ vmcs12->cr0_read_shadow))
7861                         return true;
7862                 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
7863                     !(vmcs12->cr0_read_shadow & 0x1) &&
7864                     (val & 0x1))
7865                         return true;
7866                 break;
7867         }
7868         return false;
7869 }
7870
7871 /*
7872  * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
7873  * should handle it ourselves in L0 (and then continue L2). Only call this
7874  * when in is_guest_mode (L2).
7875  */
7876 static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu)
7877 {
7878         u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
7879         struct vcpu_vmx *vmx = to_vmx(vcpu);
7880         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7881         u32 exit_reason = vmx->exit_reason;
7882
7883         trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason,
7884                                 vmcs_readl(EXIT_QUALIFICATION),
7885                                 vmx->idt_vectoring_info,
7886                                 intr_info,
7887                                 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
7888                                 KVM_ISA_VMX);
7889
7890         if (vmx->nested.nested_run_pending)
7891                 return false;
7892
7893         if (unlikely(vmx->fail)) {
7894                 pr_info_ratelimited("%s failed vm entry %x\n", __func__,
7895                                     vmcs_read32(VM_INSTRUCTION_ERROR));
7896                 return true;
7897         }
7898
7899         switch (exit_reason) {
7900         case EXIT_REASON_EXCEPTION_NMI:
7901                 if (!is_exception(intr_info))
7902                         return false;
7903                 else if (is_page_fault(intr_info))
7904                         return enable_ept;
7905                 else if (is_no_device(intr_info) &&
7906                          !(vmcs12->guest_cr0 & X86_CR0_TS))
7907                         return false;
7908                 else if (is_debug(intr_info) &&
7909                          vcpu->guest_debug &
7910                          (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
7911                         return false;
7912                 else if (is_breakpoint(intr_info) &&
7913                          vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
7914                         return false;
7915                 return vmcs12->exception_bitmap &
7916                                 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
7917         case EXIT_REASON_EXTERNAL_INTERRUPT:
7918                 return false;
7919         case EXIT_REASON_TRIPLE_FAULT:
7920                 return true;
7921         case EXIT_REASON_PENDING_INTERRUPT:
7922                 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
7923         case EXIT_REASON_NMI_WINDOW:
7924                 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
7925         case EXIT_REASON_TASK_SWITCH:
7926                 return true;
7927         case EXIT_REASON_CPUID:
7928                 if (kvm_register_read(vcpu, VCPU_REGS_RAX) == 0xa)
7929                         return false;
7930                 return true;
7931         case EXIT_REASON_HLT:
7932                 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
7933         case EXIT_REASON_INVD:
7934                 return true;
7935         case EXIT_REASON_INVLPG:
7936                 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
7937         case EXIT_REASON_RDPMC:
7938                 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
7939         case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
7940                 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
7941         case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
7942         case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
7943         case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
7944         case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
7945         case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
7946         case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
7947                 /*
7948                  * VMX instructions trap unconditionally. This allows L1 to
7949                  * emulate them for its L2 guest, i.e., allows 3-level nesting!
7950                  */
7951                 return true;
7952         case EXIT_REASON_CR_ACCESS:
7953                 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
7954         case EXIT_REASON_DR_ACCESS:
7955                 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
7956         case EXIT_REASON_IO_INSTRUCTION:
7957                 return nested_vmx_exit_handled_io(vcpu, vmcs12);
7958         case EXIT_REASON_MSR_READ:
7959         case EXIT_REASON_MSR_WRITE:
7960                 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
7961         case EXIT_REASON_INVALID_STATE:
7962                 return true;
7963         case EXIT_REASON_MWAIT_INSTRUCTION:
7964                 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
7965         case EXIT_REASON_MONITOR_TRAP_FLAG:
7966                 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_TRAP_FLAG);
7967         case EXIT_REASON_MONITOR_INSTRUCTION:
7968                 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
7969         case EXIT_REASON_PAUSE_INSTRUCTION:
7970                 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
7971                         nested_cpu_has2(vmcs12,
7972                                 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
7973         case EXIT_REASON_MCE_DURING_VMENTRY:
7974                 return false;
7975         case EXIT_REASON_TPR_BELOW_THRESHOLD:
7976                 return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
7977         case EXIT_REASON_APIC_ACCESS:
7978                 return nested_cpu_has2(vmcs12,
7979                         SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
7980         case EXIT_REASON_APIC_WRITE:
7981         case EXIT_REASON_EOI_INDUCED:
7982                 /* apic_write and eoi_induced should exit unconditionally. */
7983                 return true;
7984         case EXIT_REASON_EPT_VIOLATION:
7985                 /*
7986                  * L0 always deals with the EPT violation. If nested EPT is
7987                  * used, and the nested mmu code discovers that the address is
7988                  * missing in the guest EPT table (EPT12), the EPT violation
7989                  * will be injected with nested_ept_inject_page_fault()
7990                  */
7991                 return false;
7992         case EXIT_REASON_EPT_MISCONFIG:
7993                 /*
7994                  * L2 never uses directly L1's EPT, but rather L0's own EPT
7995                  * table (shadow on EPT) or a merged EPT table that L0 built
7996                  * (EPT on EPT). So any problems with the structure of the
7997                  * table is L0's fault.
7998                  */
7999                 return false;
8000         case EXIT_REASON_WBINVD:
8001                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
8002         case EXIT_REASON_XSETBV:
8003                 return true;
8004         case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
8005                 /*
8006                  * This should never happen, since it is not possible to
8007                  * set XSS to a non-zero value---neither in L1 nor in L2.
8008                  * If if it were, XSS would have to be checked against
8009                  * the XSS exit bitmap in vmcs12.
8010                  */
8011                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
8012         case EXIT_REASON_PCOMMIT:
8013                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_PCOMMIT);
8014         default:
8015                 return true;
8016         }
8017 }
8018
8019 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
8020 {
8021         *info1 = vmcs_readl(EXIT_QUALIFICATION);
8022         *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
8023 }
8024
8025 static int vmx_create_pml_buffer(struct vcpu_vmx *vmx)
8026 {
8027         struct page *pml_pg;
8028
8029         pml_pg = alloc_page(GFP_KERNEL | __GFP_ZERO);
8030         if (!pml_pg)
8031                 return -ENOMEM;
8032
8033         vmx->pml_pg = pml_pg;
8034
8035         vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
8036         vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
8037
8038         return 0;
8039 }
8040
8041 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
8042 {
8043         if (vmx->pml_pg) {
8044                 __free_page(vmx->pml_pg);
8045                 vmx->pml_pg = NULL;
8046         }
8047 }
8048
8049 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
8050 {
8051         struct vcpu_vmx *vmx = to_vmx(vcpu);
8052         u64 *pml_buf;
8053         u16 pml_idx;
8054
8055         pml_idx = vmcs_read16(GUEST_PML_INDEX);
8056
8057         /* Do nothing if PML buffer is empty */
8058         if (pml_idx == (PML_ENTITY_NUM - 1))
8059                 return;
8060
8061         /* PML index always points to next available PML buffer entity */
8062         if (pml_idx >= PML_ENTITY_NUM)
8063                 pml_idx = 0;
8064         else
8065                 pml_idx++;
8066
8067         pml_buf = page_address(vmx->pml_pg);
8068         for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
8069                 u64 gpa;
8070
8071                 gpa = pml_buf[pml_idx];
8072                 WARN_ON(gpa & (PAGE_SIZE - 1));
8073                 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
8074         }
8075
8076         /* reset PML index */
8077         vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
8078 }
8079
8080 /*
8081  * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
8082  * Called before reporting dirty_bitmap to userspace.
8083  */
8084 static void kvm_flush_pml_buffers(struct kvm *kvm)
8085 {
8086         int i;
8087         struct kvm_vcpu *vcpu;
8088         /*
8089          * We only need to kick vcpu out of guest mode here, as PML buffer
8090          * is flushed at beginning of all VMEXITs, and it's obvious that only
8091          * vcpus running in guest are possible to have unflushed GPAs in PML
8092          * buffer.
8093          */
8094         kvm_for_each_vcpu(i, vcpu, kvm)
8095                 kvm_vcpu_kick(vcpu);
8096 }
8097
8098 static void vmx_dump_sel(char *name, uint32_t sel)
8099 {
8100         pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
8101                name, vmcs_read32(sel),
8102                vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
8103                vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
8104                vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
8105 }
8106
8107 static void vmx_dump_dtsel(char *name, uint32_t limit)
8108 {
8109         pr_err("%s                           limit=0x%08x, base=0x%016lx\n",
8110                name, vmcs_read32(limit),
8111                vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
8112 }
8113
8114 static void dump_vmcs(void)
8115 {
8116         u32 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
8117         u32 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
8118         u32 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
8119         u32 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
8120         u32 secondary_exec_control = 0;
8121         unsigned long cr4 = vmcs_readl(GUEST_CR4);
8122         u64 efer = vmcs_read64(GUEST_IA32_EFER);
8123         int i, n;
8124
8125         if (cpu_has_secondary_exec_ctrls())
8126                 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8127
8128         pr_err("*** Guest State ***\n");
8129         pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
8130                vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
8131                vmcs_readl(CR0_GUEST_HOST_MASK));
8132         pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
8133                cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
8134         pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
8135         if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
8136             (cr4 & X86_CR4_PAE) && !(efer & EFER_LMA))
8137         {
8138                 pr_err("PDPTR0 = 0x%016llx  PDPTR1 = 0x%016llx\n",
8139                        vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
8140                 pr_err("PDPTR2 = 0x%016llx  PDPTR3 = 0x%016llx\n",
8141                        vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
8142         }
8143         pr_err("RSP = 0x%016lx  RIP = 0x%016lx\n",
8144                vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
8145         pr_err("RFLAGS=0x%08lx         DR7 = 0x%016lx\n",
8146                vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
8147         pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
8148                vmcs_readl(GUEST_SYSENTER_ESP),
8149                vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
8150         vmx_dump_sel("CS:  ", GUEST_CS_SELECTOR);
8151         vmx_dump_sel("DS:  ", GUEST_DS_SELECTOR);
8152         vmx_dump_sel("SS:  ", GUEST_SS_SELECTOR);
8153         vmx_dump_sel("ES:  ", GUEST_ES_SELECTOR);
8154         vmx_dump_sel("FS:  ", GUEST_FS_SELECTOR);
8155         vmx_dump_sel("GS:  ", GUEST_GS_SELECTOR);
8156         vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
8157         vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
8158         vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
8159         vmx_dump_sel("TR:  ", GUEST_TR_SELECTOR);
8160         if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) ||
8161             (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER)))
8162                 pr_err("EFER =     0x%016llx  PAT = 0x%016llx\n",
8163                        efer, vmcs_read64(GUEST_IA32_PAT));
8164         pr_err("DebugCtl = 0x%016llx  DebugExceptions = 0x%016lx\n",
8165                vmcs_read64(GUEST_IA32_DEBUGCTL),
8166                vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
8167         if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
8168                 pr_err("PerfGlobCtl = 0x%016llx\n",
8169                        vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
8170         if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
8171                 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
8172         pr_err("Interruptibility = %08x  ActivityState = %08x\n",
8173                vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
8174                vmcs_read32(GUEST_ACTIVITY_STATE));
8175         if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
8176                 pr_err("InterruptStatus = %04x\n",
8177                        vmcs_read16(GUEST_INTR_STATUS));
8178
8179         pr_err("*** Host State ***\n");
8180         pr_err("RIP = 0x%016lx  RSP = 0x%016lx\n",
8181                vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
8182         pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
8183                vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
8184                vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
8185                vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
8186                vmcs_read16(HOST_TR_SELECTOR));
8187         pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
8188                vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
8189                vmcs_readl(HOST_TR_BASE));
8190         pr_err("GDTBase=%016lx IDTBase=%016lx\n",
8191                vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
8192         pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
8193                vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
8194                vmcs_readl(HOST_CR4));
8195         pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
8196                vmcs_readl(HOST_IA32_SYSENTER_ESP),
8197                vmcs_read32(HOST_IA32_SYSENTER_CS),
8198                vmcs_readl(HOST_IA32_SYSENTER_EIP));
8199         if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER))
8200                 pr_err("EFER = 0x%016llx  PAT = 0x%016llx\n",
8201                        vmcs_read64(HOST_IA32_EFER),
8202                        vmcs_read64(HOST_IA32_PAT));
8203         if (vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
8204                 pr_err("PerfGlobCtl = 0x%016llx\n",
8205                        vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
8206
8207         pr_err("*** Control State ***\n");
8208         pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
8209                pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
8210         pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
8211         pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
8212                vmcs_read32(EXCEPTION_BITMAP),
8213                vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
8214                vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
8215         pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
8216                vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
8217                vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
8218                vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
8219         pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
8220                vmcs_read32(VM_EXIT_INTR_INFO),
8221                vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
8222                vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
8223         pr_err("        reason=%08x qualification=%016lx\n",
8224                vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
8225         pr_err("IDTVectoring: info=%08x errcode=%08x\n",
8226                vmcs_read32(IDT_VECTORING_INFO_FIELD),
8227                vmcs_read32(IDT_VECTORING_ERROR_CODE));
8228         pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
8229         if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
8230                 pr_err("TSC Multiplier = 0x%016llx\n",
8231                        vmcs_read64(TSC_MULTIPLIER));
8232         if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW)
8233                 pr_err("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
8234         if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
8235                 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
8236         if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
8237                 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
8238         n = vmcs_read32(CR3_TARGET_COUNT);
8239         for (i = 0; i + 1 < n; i += 4)
8240                 pr_err("CR3 target%u=%016lx target%u=%016lx\n",
8241                        i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2),
8242                        i + 1, vmcs_readl(CR3_TARGET_VALUE0 + i * 2 + 2));
8243         if (i < n)
8244                 pr_err("CR3 target%u=%016lx\n",
8245                        i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2));
8246         if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
8247                 pr_err("PLE Gap=%08x Window=%08x\n",
8248                        vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
8249         if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
8250                 pr_err("Virtual processor ID = 0x%04x\n",
8251                        vmcs_read16(VIRTUAL_PROCESSOR_ID));
8252 }
8253
8254 /*
8255  * The guest has exited.  See if we can fix it or if we need userspace
8256  * assistance.
8257  */
8258 static int vmx_handle_exit(struct kvm_vcpu *vcpu)
8259 {
8260         struct vcpu_vmx *vmx = to_vmx(vcpu);
8261         u32 exit_reason = vmx->exit_reason;
8262         u32 vectoring_info = vmx->idt_vectoring_info;
8263
8264         trace_kvm_exit(exit_reason, vcpu, KVM_ISA_VMX);
8265
8266         /*
8267          * Flush logged GPAs PML buffer, this will make dirty_bitmap more
8268          * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
8269          * querying dirty_bitmap, we only need to kick all vcpus out of guest
8270          * mode as if vcpus is in root mode, the PML buffer must has been
8271          * flushed already.
8272          */
8273         if (enable_pml)
8274                 vmx_flush_pml_buffer(vcpu);
8275
8276         /* If guest state is invalid, start emulating */
8277         if (vmx->emulation_required)
8278                 return handle_invalid_guest_state(vcpu);
8279
8280         if (is_guest_mode(vcpu) && nested_vmx_exit_handled(vcpu)) {
8281                 nested_vmx_vmexit(vcpu, exit_reason,
8282                                   vmcs_read32(VM_EXIT_INTR_INFO),
8283                                   vmcs_readl(EXIT_QUALIFICATION));
8284                 return 1;
8285         }
8286
8287         if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
8288                 dump_vmcs();
8289                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
8290                 vcpu->run->fail_entry.hardware_entry_failure_reason
8291                         = exit_reason;
8292                 return 0;
8293         }
8294
8295         if (unlikely(vmx->fail)) {
8296                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
8297                 vcpu->run->fail_entry.hardware_entry_failure_reason
8298                         = vmcs_read32(VM_INSTRUCTION_ERROR);
8299                 return 0;
8300         }
8301
8302         /*
8303          * Note:
8304          * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
8305          * delivery event since it indicates guest is accessing MMIO.
8306          * The vm-exit can be triggered again after return to guest that
8307          * will cause infinite loop.
8308          */
8309         if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
8310                         (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
8311                         exit_reason != EXIT_REASON_EPT_VIOLATION &&
8312                         exit_reason != EXIT_REASON_TASK_SWITCH)) {
8313                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8314                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
8315                 vcpu->run->internal.ndata = 2;
8316                 vcpu->run->internal.data[0] = vectoring_info;
8317                 vcpu->run->internal.data[1] = exit_reason;
8318                 return 0;
8319         }
8320
8321         if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked &&
8322             !(is_guest_mode(vcpu) && nested_cpu_has_virtual_nmis(
8323                                         get_vmcs12(vcpu))))) {
8324                 if (vmx_interrupt_allowed(vcpu)) {
8325                         vmx->soft_vnmi_blocked = 0;
8326                 } else if (vmx->vnmi_blocked_time > 1000000000LL &&
8327                            vcpu->arch.nmi_pending) {
8328                         /*
8329                          * This CPU don't support us in finding the end of an
8330                          * NMI-blocked window if the guest runs with IRQs
8331                          * disabled. So we pull the trigger after 1 s of
8332                          * futile waiting, but inform the user about this.
8333                          */
8334                         printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
8335                                "state on VCPU %d after 1 s timeout\n",
8336                                __func__, vcpu->vcpu_id);
8337                         vmx->soft_vnmi_blocked = 0;
8338                 }
8339         }
8340
8341         if (exit_reason < kvm_vmx_max_exit_handlers
8342             && kvm_vmx_exit_handlers[exit_reason])
8343                 return kvm_vmx_exit_handlers[exit_reason](vcpu);
8344         else {
8345                 WARN_ONCE(1, "vmx: unexpected exit reason 0x%x\n", exit_reason);
8346                 kvm_queue_exception(vcpu, UD_VECTOR);
8347                 return 1;
8348         }
8349 }
8350
8351 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
8352 {
8353         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8354
8355         if (is_guest_mode(vcpu) &&
8356                 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
8357                 return;
8358
8359         if (irr == -1 || tpr < irr) {
8360                 vmcs_write32(TPR_THRESHOLD, 0);
8361                 return;
8362         }
8363
8364         vmcs_write32(TPR_THRESHOLD, irr);
8365 }
8366
8367 static void vmx_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
8368 {
8369         u32 sec_exec_control;
8370
8371         /*
8372          * There is not point to enable virtualize x2apic without enable
8373          * apicv
8374          */
8375         if (!cpu_has_vmx_virtualize_x2apic_mode() ||
8376                                 !kvm_vcpu_apicv_active(vcpu))
8377                 return;
8378
8379         if (!cpu_need_tpr_shadow(vcpu))
8380                 return;
8381
8382         sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8383
8384         if (set) {
8385                 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
8386                 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
8387         } else {
8388                 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
8389                 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
8390         }
8391         vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control);
8392
8393         vmx_set_msr_bitmap(vcpu);
8394 }
8395
8396 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu, hpa_t hpa)
8397 {
8398         struct vcpu_vmx *vmx = to_vmx(vcpu);
8399
8400         /*
8401          * Currently we do not handle the nested case where L2 has an
8402          * APIC access page of its own; that page is still pinned.
8403          * Hence, we skip the case where the VCPU is in guest mode _and_
8404          * L1 prepared an APIC access page for L2.
8405          *
8406          * For the case where L1 and L2 share the same APIC access page
8407          * (flexpriority=Y but SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES clear
8408          * in the vmcs12), this function will only update either the vmcs01
8409          * or the vmcs02.  If the former, the vmcs02 will be updated by
8410          * prepare_vmcs02.  If the latter, the vmcs01 will be updated in
8411          * the next L2->L1 exit.
8412          */
8413         if (!is_guest_mode(vcpu) ||
8414             !nested_cpu_has2(vmx->nested.current_vmcs12,
8415                              SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
8416                 vmcs_write64(APIC_ACCESS_ADDR, hpa);
8417 }
8418
8419 static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
8420 {
8421         u16 status;
8422         u8 old;
8423
8424         if (max_isr == -1)
8425                 max_isr = 0;
8426
8427         status = vmcs_read16(GUEST_INTR_STATUS);
8428         old = status >> 8;
8429         if (max_isr != old) {
8430                 status &= 0xff;
8431                 status |= max_isr << 8;
8432                 vmcs_write16(GUEST_INTR_STATUS, status);
8433         }
8434 }
8435
8436 static void vmx_set_rvi(int vector)
8437 {
8438         u16 status;
8439         u8 old;
8440
8441         if (vector == -1)
8442                 vector = 0;
8443
8444         status = vmcs_read16(GUEST_INTR_STATUS);
8445         old = (u8)status & 0xff;
8446         if ((u8)vector != old) {
8447                 status &= ~0xff;
8448                 status |= (u8)vector;
8449                 vmcs_write16(GUEST_INTR_STATUS, status);
8450         }
8451 }
8452
8453 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
8454 {
8455         if (!is_guest_mode(vcpu)) {
8456                 vmx_set_rvi(max_irr);
8457                 return;
8458         }
8459
8460         if (max_irr == -1)
8461                 return;
8462
8463         /*
8464          * In guest mode.  If a vmexit is needed, vmx_check_nested_events
8465          * handles it.
8466          */
8467         if (nested_exit_on_intr(vcpu))
8468                 return;
8469
8470         /*
8471          * Else, fall back to pre-APICv interrupt injection since L2
8472          * is run without virtual interrupt delivery.
8473          */
8474         if (!kvm_event_needs_reinjection(vcpu) &&
8475             vmx_interrupt_allowed(vcpu)) {
8476                 kvm_queue_interrupt(vcpu, max_irr, false);
8477                 vmx_inject_irq(vcpu);
8478         }
8479 }
8480
8481 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
8482 {
8483         if (!kvm_vcpu_apicv_active(vcpu))
8484                 return;
8485
8486         vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
8487         vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
8488         vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
8489         vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
8490 }
8491
8492 static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
8493 {
8494         u32 exit_intr_info;
8495
8496         if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
8497               || vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI))
8498                 return;
8499
8500         vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8501         exit_intr_info = vmx->exit_intr_info;
8502
8503         /* Handle machine checks before interrupts are enabled */
8504         if (is_machine_check(exit_intr_info))
8505                 kvm_machine_check();
8506
8507         /* We need to handle NMIs before interrupts are enabled */
8508         if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
8509             (exit_intr_info & INTR_INFO_VALID_MASK)) {
8510                 kvm_before_handle_nmi(&vmx->vcpu);
8511                 asm("int $2");
8512                 kvm_after_handle_nmi(&vmx->vcpu);
8513         }
8514 }
8515
8516 static void vmx_handle_external_intr(struct kvm_vcpu *vcpu)
8517 {
8518         u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8519         register void *__sp asm(_ASM_SP);
8520
8521         /*
8522          * If external interrupt exists, IF bit is set in rflags/eflags on the
8523          * interrupt stack frame, and interrupt will be enabled on a return
8524          * from interrupt handler.
8525          */
8526         if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_INTR_TYPE_MASK))
8527                         == (INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR)) {
8528                 unsigned int vector;
8529                 unsigned long entry;
8530                 gate_desc *desc;
8531                 struct vcpu_vmx *vmx = to_vmx(vcpu);
8532 #ifdef CONFIG_X86_64
8533                 unsigned long tmp;
8534 #endif
8535
8536                 vector =  exit_intr_info & INTR_INFO_VECTOR_MASK;
8537                 desc = (gate_desc *)vmx->host_idt_base + vector;
8538                 entry = gate_offset(*desc);
8539                 asm volatile(
8540 #ifdef CONFIG_X86_64
8541                         "mov %%" _ASM_SP ", %[sp]\n\t"
8542                         "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
8543                         "push $%c[ss]\n\t"
8544                         "push %[sp]\n\t"
8545 #endif
8546                         "pushf\n\t"
8547                         "orl $0x200, (%%" _ASM_SP ")\n\t"
8548                         __ASM_SIZE(push) " $%c[cs]\n\t"
8549                         "call *%[entry]\n\t"
8550                         :
8551 #ifdef CONFIG_X86_64
8552                         [sp]"=&r"(tmp),
8553 #endif
8554                         "+r"(__sp)
8555                         :
8556                         [entry]"r"(entry),
8557                         [ss]"i"(__KERNEL_DS),
8558                         [cs]"i"(__KERNEL_CS)
8559                         );
8560         } else
8561                 local_irq_enable();
8562 }
8563
8564 static bool vmx_has_high_real_mode_segbase(void)
8565 {
8566         return enable_unrestricted_guest || emulate_invalid_guest_state;
8567 }
8568
8569 static bool vmx_mpx_supported(void)
8570 {
8571         return (vmcs_config.vmexit_ctrl & VM_EXIT_CLEAR_BNDCFGS) &&
8572                 (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_BNDCFGS);
8573 }
8574
8575 static bool vmx_xsaves_supported(void)
8576 {
8577         return vmcs_config.cpu_based_2nd_exec_ctrl &
8578                 SECONDARY_EXEC_XSAVES;
8579 }
8580
8581 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
8582 {
8583         u32 exit_intr_info;
8584         bool unblock_nmi;
8585         u8 vector;
8586         bool idtv_info_valid;
8587
8588         idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
8589
8590         if (cpu_has_virtual_nmis()) {
8591                 if (vmx->nmi_known_unmasked)
8592                         return;
8593                 /*
8594                  * Can't use vmx->exit_intr_info since we're not sure what
8595                  * the exit reason is.
8596                  */
8597                 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8598                 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
8599                 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
8600                 /*
8601                  * SDM 3: 27.7.1.2 (September 2008)
8602                  * Re-set bit "block by NMI" before VM entry if vmexit caused by
8603                  * a guest IRET fault.
8604                  * SDM 3: 23.2.2 (September 2008)
8605                  * Bit 12 is undefined in any of the following cases:
8606                  *  If the VM exit sets the valid bit in the IDT-vectoring
8607                  *   information field.
8608                  *  If the VM exit is due to a double fault.
8609                  */
8610                 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
8611                     vector != DF_VECTOR && !idtv_info_valid)
8612                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
8613                                       GUEST_INTR_STATE_NMI);
8614                 else
8615                         vmx->nmi_known_unmasked =
8616                                 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
8617                                   & GUEST_INTR_STATE_NMI);
8618         } else if (unlikely(vmx->soft_vnmi_blocked))
8619                 vmx->vnmi_blocked_time +=
8620                         ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
8621 }
8622
8623 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
8624                                       u32 idt_vectoring_info,
8625                                       int instr_len_field,
8626                                       int error_code_field)
8627 {
8628         u8 vector;
8629         int type;
8630         bool idtv_info_valid;
8631
8632         idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
8633
8634         vcpu->arch.nmi_injected = false;
8635         kvm_clear_exception_queue(vcpu);
8636         kvm_clear_interrupt_queue(vcpu);
8637
8638         if (!idtv_info_valid)
8639                 return;
8640
8641         kvm_make_request(KVM_REQ_EVENT, vcpu);
8642
8643         vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
8644         type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
8645
8646         switch (type) {
8647         case INTR_TYPE_NMI_INTR:
8648                 vcpu->arch.nmi_injected = true;
8649                 /*
8650                  * SDM 3: 27.7.1.2 (September 2008)
8651                  * Clear bit "block by NMI" before VM entry if a NMI
8652                  * delivery faulted.
8653                  */
8654                 vmx_set_nmi_mask(vcpu, false);
8655                 break;
8656         case INTR_TYPE_SOFT_EXCEPTION:
8657                 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
8658                 /* fall through */
8659         case INTR_TYPE_HARD_EXCEPTION:
8660                 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
8661                         u32 err = vmcs_read32(error_code_field);
8662                         kvm_requeue_exception_e(vcpu, vector, err);
8663                 } else
8664                         kvm_requeue_exception(vcpu, vector);
8665                 break;
8666         case INTR_TYPE_SOFT_INTR:
8667                 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
8668                 /* fall through */
8669         case INTR_TYPE_EXT_INTR:
8670                 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
8671                 break;
8672         default:
8673                 break;
8674         }
8675 }
8676
8677 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
8678 {
8679         __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
8680                                   VM_EXIT_INSTRUCTION_LEN,
8681                                   IDT_VECTORING_ERROR_CODE);
8682 }
8683
8684 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
8685 {
8686         __vmx_complete_interrupts(vcpu,
8687                                   vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
8688                                   VM_ENTRY_INSTRUCTION_LEN,
8689                                   VM_ENTRY_EXCEPTION_ERROR_CODE);
8690
8691         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
8692 }
8693
8694 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
8695 {
8696         int i, nr_msrs;
8697         struct perf_guest_switch_msr *msrs;
8698
8699         msrs = perf_guest_get_msrs(&nr_msrs);
8700
8701         if (!msrs)
8702                 return;
8703
8704         for (i = 0; i < nr_msrs; i++)
8705                 if (msrs[i].host == msrs[i].guest)
8706                         clear_atomic_switch_msr(vmx, msrs[i].msr);
8707                 else
8708                         add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
8709                                         msrs[i].host);
8710 }
8711
8712 void vmx_arm_hv_timer(struct kvm_vcpu *vcpu)
8713 {
8714         struct vcpu_vmx *vmx = to_vmx(vcpu);
8715         u64 tscl;
8716         u32 delta_tsc;
8717
8718         if (vmx->hv_deadline_tsc == -1)
8719                 return;
8720
8721         tscl = rdtsc();
8722         if (vmx->hv_deadline_tsc > tscl)
8723                 /* sure to be 32 bit only because checked on set_hv_timer */
8724                 delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
8725                         cpu_preemption_timer_multi);
8726         else
8727                 delta_tsc = 0;
8728
8729         vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
8730 }
8731
8732 static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
8733 {
8734         struct vcpu_vmx *vmx = to_vmx(vcpu);
8735         unsigned long debugctlmsr, cr4;
8736
8737         /* Record the guest's net vcpu time for enforced NMI injections. */
8738         if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
8739                 vmx->entry_time = ktime_get();
8740
8741         /* Don't enter VMX if guest state is invalid, let the exit handler
8742            start emulation until we arrive back to a valid state */
8743         if (vmx->emulation_required)
8744                 return;
8745
8746         if (vmx->ple_window_dirty) {
8747                 vmx->ple_window_dirty = false;
8748                 vmcs_write32(PLE_WINDOW, vmx->ple_window);
8749         }
8750
8751         if (vmx->nested.sync_shadow_vmcs) {
8752                 copy_vmcs12_to_shadow(vmx);
8753                 vmx->nested.sync_shadow_vmcs = false;
8754         }
8755
8756         if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
8757                 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
8758         if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
8759                 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
8760
8761         cr4 = cr4_read_shadow();
8762         if (unlikely(cr4 != vmx->host_state.vmcs_host_cr4)) {
8763                 vmcs_writel(HOST_CR4, cr4);
8764                 vmx->host_state.vmcs_host_cr4 = cr4;
8765         }
8766
8767         /* When single-stepping over STI and MOV SS, we must clear the
8768          * corresponding interruptibility bits in the guest state. Otherwise
8769          * vmentry fails as it then expects bit 14 (BS) in pending debug
8770          * exceptions being set, but that's not correct for the guest debugging
8771          * case. */
8772         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8773                 vmx_set_interrupt_shadow(vcpu, 0);
8774
8775         if (vmx->guest_pkru_valid)
8776                 __write_pkru(vmx->guest_pkru);
8777
8778         atomic_switch_perf_msrs(vmx);
8779         debugctlmsr = get_debugctlmsr();
8780
8781         vmx_arm_hv_timer(vcpu);
8782
8783         vmx->__launched = vmx->loaded_vmcs->launched;
8784         asm(
8785                 /* Store host registers */
8786                 "push %%" _ASM_DX "; push %%" _ASM_BP ";"
8787                 "push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */
8788                 "push %%" _ASM_CX " \n\t"
8789                 "cmp %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
8790                 "je 1f \n\t"
8791                 "mov %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
8792                 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
8793                 "1: \n\t"
8794                 /* Reload cr2 if changed */
8795                 "mov %c[cr2](%0), %%" _ASM_AX " \n\t"
8796                 "mov %%cr2, %%" _ASM_DX " \n\t"
8797                 "cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t"
8798                 "je 2f \n\t"
8799                 "mov %%" _ASM_AX", %%cr2 \n\t"
8800                 "2: \n\t"
8801                 /* Check if vmlaunch of vmresume is needed */
8802                 "cmpl $0, %c[launched](%0) \n\t"
8803                 /* Load guest registers.  Don't clobber flags. */
8804                 "mov %c[rax](%0), %%" _ASM_AX " \n\t"
8805                 "mov %c[rbx](%0), %%" _ASM_BX " \n\t"
8806                 "mov %c[rdx](%0), %%" _ASM_DX " \n\t"
8807                 "mov %c[rsi](%0), %%" _ASM_SI " \n\t"
8808                 "mov %c[rdi](%0), %%" _ASM_DI " \n\t"
8809                 "mov %c[rbp](%0), %%" _ASM_BP " \n\t"
8810 #ifdef CONFIG_X86_64
8811                 "mov %c[r8](%0),  %%r8  \n\t"
8812                 "mov %c[r9](%0),  %%r9  \n\t"
8813                 "mov %c[r10](%0), %%r10 \n\t"
8814                 "mov %c[r11](%0), %%r11 \n\t"
8815                 "mov %c[r12](%0), %%r12 \n\t"
8816                 "mov %c[r13](%0), %%r13 \n\t"
8817                 "mov %c[r14](%0), %%r14 \n\t"
8818                 "mov %c[r15](%0), %%r15 \n\t"
8819 #endif
8820                 "mov %c[rcx](%0), %%" _ASM_CX " \n\t" /* kills %0 (ecx) */
8821
8822                 /* Enter guest mode */
8823                 "jne 1f \n\t"
8824                 __ex(ASM_VMX_VMLAUNCH) "\n\t"
8825                 "jmp 2f \n\t"
8826                 "1: " __ex(ASM_VMX_VMRESUME) "\n\t"
8827                 "2: "
8828                 /* Save guest registers, load host registers, keep flags */
8829                 "mov %0, %c[wordsize](%%" _ASM_SP ") \n\t"
8830                 "pop %0 \n\t"
8831                 "mov %%" _ASM_AX ", %c[rax](%0) \n\t"
8832                 "mov %%" _ASM_BX ", %c[rbx](%0) \n\t"
8833                 __ASM_SIZE(pop) " %c[rcx](%0) \n\t"
8834                 "mov %%" _ASM_DX ", %c[rdx](%0) \n\t"
8835                 "mov %%" _ASM_SI ", %c[rsi](%0) \n\t"
8836                 "mov %%" _ASM_DI ", %c[rdi](%0) \n\t"
8837                 "mov %%" _ASM_BP ", %c[rbp](%0) \n\t"
8838 #ifdef CONFIG_X86_64
8839                 "mov %%r8,  %c[r8](%0) \n\t"
8840                 "mov %%r9,  %c[r9](%0) \n\t"
8841                 "mov %%r10, %c[r10](%0) \n\t"
8842                 "mov %%r11, %c[r11](%0) \n\t"
8843                 "mov %%r12, %c[r12](%0) \n\t"
8844                 "mov %%r13, %c[r13](%0) \n\t"
8845                 "mov %%r14, %c[r14](%0) \n\t"
8846                 "mov %%r15, %c[r15](%0) \n\t"
8847 #endif
8848                 "mov %%cr2, %%" _ASM_AX "   \n\t"
8849                 "mov %%" _ASM_AX ", %c[cr2](%0) \n\t"
8850
8851                 "pop  %%" _ASM_BP "; pop  %%" _ASM_DX " \n\t"
8852                 "setbe %c[fail](%0) \n\t"
8853                 ".pushsection .rodata \n\t"
8854                 ".global vmx_return \n\t"
8855                 "vmx_return: " _ASM_PTR " 2b \n\t"
8856                 ".popsection"
8857               : : "c"(vmx), "d"((unsigned long)HOST_RSP),
8858                 [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
8859                 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
8860                 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
8861                 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
8862                 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
8863                 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
8864                 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
8865                 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
8866                 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
8867                 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
8868 #ifdef CONFIG_X86_64
8869                 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
8870                 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
8871                 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
8872                 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
8873                 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
8874                 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
8875                 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
8876                 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
8877 #endif
8878                 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
8879                 [wordsize]"i"(sizeof(ulong))
8880               : "cc", "memory"
8881 #ifdef CONFIG_X86_64
8882                 , "rax", "rbx", "rdi", "rsi"
8883                 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
8884 #else
8885                 , "eax", "ebx", "edi", "esi"
8886 #endif
8887               );
8888
8889         /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
8890         if (debugctlmsr)
8891                 update_debugctlmsr(debugctlmsr);
8892
8893 #ifndef CONFIG_X86_64
8894         /*
8895          * The sysexit path does not restore ds/es, so we must set them to
8896          * a reasonable value ourselves.
8897          *
8898          * We can't defer this to vmx_load_host_state() since that function
8899          * may be executed in interrupt context, which saves and restore segments
8900          * around it, nullifying its effect.
8901          */
8902         loadsegment(ds, __USER_DS);
8903         loadsegment(es, __USER_DS);
8904 #endif
8905
8906         vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
8907                                   | (1 << VCPU_EXREG_RFLAGS)
8908                                   | (1 << VCPU_EXREG_PDPTR)
8909                                   | (1 << VCPU_EXREG_SEGMENTS)
8910                                   | (1 << VCPU_EXREG_CR3));
8911         vcpu->arch.regs_dirty = 0;
8912
8913         vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
8914
8915         vmx->loaded_vmcs->launched = 1;
8916
8917         vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
8918
8919         /*
8920          * eager fpu is enabled if PKEY is supported and CR4 is switched
8921          * back on host, so it is safe to read guest PKRU from current
8922          * XSAVE.
8923          */
8924         if (boot_cpu_has(X86_FEATURE_OSPKE)) {
8925                 vmx->guest_pkru = __read_pkru();
8926                 if (vmx->guest_pkru != vmx->host_pkru) {
8927                         vmx->guest_pkru_valid = true;
8928                         __write_pkru(vmx->host_pkru);
8929                 } else
8930                         vmx->guest_pkru_valid = false;
8931         }
8932
8933         /*
8934          * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
8935          * we did not inject a still-pending event to L1 now because of
8936          * nested_run_pending, we need to re-enable this bit.
8937          */
8938         if (vmx->nested.nested_run_pending)
8939                 kvm_make_request(KVM_REQ_EVENT, vcpu);
8940
8941         vmx->nested.nested_run_pending = 0;
8942
8943         vmx_complete_atomic_exit(vmx);
8944         vmx_recover_nmi_blocking(vmx);
8945         vmx_complete_interrupts(vmx);
8946 }
8947
8948 static void vmx_load_vmcs01(struct kvm_vcpu *vcpu)
8949 {
8950         struct vcpu_vmx *vmx = to_vmx(vcpu);
8951         int cpu;
8952
8953         if (vmx->loaded_vmcs == &vmx->vmcs01)
8954                 return;
8955
8956         cpu = get_cpu();
8957         vmx->loaded_vmcs = &vmx->vmcs01;
8958         vmx_vcpu_put(vcpu);
8959         vmx_vcpu_load(vcpu, cpu);
8960         vcpu->cpu = cpu;
8961         put_cpu();
8962 }
8963
8964 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
8965 {
8966         struct vcpu_vmx *vmx = to_vmx(vcpu);
8967
8968         if (enable_pml)
8969                 vmx_destroy_pml_buffer(vmx);
8970         free_vpid(vmx->vpid);
8971         leave_guest_mode(vcpu);
8972         vmx_load_vmcs01(vcpu);
8973         free_nested(vmx);
8974         free_loaded_vmcs(vmx->loaded_vmcs);
8975         kfree(vmx->guest_msrs);
8976         kvm_vcpu_uninit(vcpu);
8977         kmem_cache_free(kvm_vcpu_cache, vmx);
8978 }
8979
8980 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
8981 {
8982         int err;
8983         struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
8984         int cpu;
8985
8986         if (!vmx)
8987                 return ERR_PTR(-ENOMEM);
8988
8989         vmx->vpid = allocate_vpid();
8990
8991         err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
8992         if (err)
8993                 goto free_vcpu;
8994
8995         vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
8996         BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) * sizeof(vmx->guest_msrs[0])
8997                      > PAGE_SIZE);
8998
8999         err = -ENOMEM;
9000         if (!vmx->guest_msrs) {
9001                 goto uninit_vcpu;
9002         }
9003
9004         vmx->loaded_vmcs = &vmx->vmcs01;
9005         vmx->loaded_vmcs->vmcs = alloc_vmcs();
9006         if (!vmx->loaded_vmcs->vmcs)
9007                 goto free_msrs;
9008         if (!vmm_exclusive)
9009                 kvm_cpu_vmxon(__pa(per_cpu(vmxarea, raw_smp_processor_id())));
9010         loaded_vmcs_init(vmx->loaded_vmcs);
9011         if (!vmm_exclusive)
9012                 kvm_cpu_vmxoff();
9013
9014         cpu = get_cpu();
9015         vmx_vcpu_load(&vmx->vcpu, cpu);
9016         vmx->vcpu.cpu = cpu;
9017         err = vmx_vcpu_setup(vmx);
9018         vmx_vcpu_put(&vmx->vcpu);
9019         put_cpu();
9020         if (err)
9021                 goto free_vmcs;
9022         if (cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
9023                 err = alloc_apic_access_page(kvm);
9024                 if (err)
9025                         goto free_vmcs;
9026         }
9027
9028         if (enable_ept) {
9029                 if (!kvm->arch.ept_identity_map_addr)
9030                         kvm->arch.ept_identity_map_addr =
9031                                 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
9032                 err = init_rmode_identity_map(kvm);
9033                 if (err)
9034                         goto free_vmcs;
9035         }
9036
9037         if (nested) {
9038                 nested_vmx_setup_ctls_msrs(vmx);
9039                 vmx->nested.vpid02 = allocate_vpid();
9040         }
9041
9042         vmx->nested.posted_intr_nv = -1;
9043         vmx->nested.current_vmptr = -1ull;
9044         vmx->nested.current_vmcs12 = NULL;
9045
9046         /*
9047          * If PML is turned on, failure on enabling PML just results in failure
9048          * of creating the vcpu, therefore we can simplify PML logic (by
9049          * avoiding dealing with cases, such as enabling PML partially on vcpus
9050          * for the guest, etc.
9051          */
9052         if (enable_pml) {
9053                 err = vmx_create_pml_buffer(vmx);
9054                 if (err)
9055                         goto free_vmcs;
9056         }
9057
9058         return &vmx->vcpu;
9059
9060 free_vmcs:
9061         free_vpid(vmx->nested.vpid02);
9062         free_loaded_vmcs(vmx->loaded_vmcs);
9063 free_msrs:
9064         kfree(vmx->guest_msrs);
9065 uninit_vcpu:
9066         kvm_vcpu_uninit(&vmx->vcpu);
9067 free_vcpu:
9068         free_vpid(vmx->vpid);
9069         kmem_cache_free(kvm_vcpu_cache, vmx);
9070         return ERR_PTR(err);
9071 }
9072
9073 static void __init vmx_check_processor_compat(void *rtn)
9074 {
9075         struct vmcs_config vmcs_conf;
9076
9077         *(int *)rtn = 0;
9078         if (setup_vmcs_config(&vmcs_conf) < 0)
9079                 *(int *)rtn = -EIO;
9080         if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
9081                 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
9082                                 smp_processor_id());
9083                 *(int *)rtn = -EIO;
9084         }
9085 }
9086
9087 static int get_ept_level(void)
9088 {
9089         return VMX_EPT_DEFAULT_GAW + 1;
9090 }
9091
9092 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
9093 {
9094         u8 cache;
9095         u64 ipat = 0;
9096
9097         /* For VT-d and EPT combination
9098          * 1. MMIO: always map as UC
9099          * 2. EPT with VT-d:
9100          *   a. VT-d without snooping control feature: can't guarantee the
9101          *      result, try to trust guest.
9102          *   b. VT-d with snooping control feature: snooping control feature of
9103          *      VT-d engine can guarantee the cache correctness. Just set it
9104          *      to WB to keep consistent with host. So the same as item 3.
9105          * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
9106          *    consistent with host MTRR
9107          */
9108         if (is_mmio) {
9109                 cache = MTRR_TYPE_UNCACHABLE;
9110                 goto exit;
9111         }
9112
9113         if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
9114                 ipat = VMX_EPT_IPAT_BIT;
9115                 cache = MTRR_TYPE_WRBACK;
9116                 goto exit;
9117         }
9118
9119         if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
9120                 ipat = VMX_EPT_IPAT_BIT;
9121                 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
9122                         cache = MTRR_TYPE_WRBACK;
9123                 else
9124                         cache = MTRR_TYPE_UNCACHABLE;
9125                 goto exit;
9126         }
9127
9128         cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
9129
9130 exit:
9131         return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
9132 }
9133
9134 static int vmx_get_lpage_level(void)
9135 {
9136         if (enable_ept && !cpu_has_vmx_ept_1g_page())
9137                 return PT_DIRECTORY_LEVEL;
9138         else
9139                 /* For shadow and EPT supported 1GB page */
9140                 return PT_PDPE_LEVEL;
9141 }
9142
9143 static void vmcs_set_secondary_exec_control(u32 new_ctl)
9144 {
9145         /*
9146          * These bits in the secondary execution controls field
9147          * are dynamic, the others are mostly based on the hypervisor
9148          * architecture and the guest's CPUID.  Do not touch the
9149          * dynamic bits.
9150          */
9151         u32 mask =
9152                 SECONDARY_EXEC_SHADOW_VMCS |
9153                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
9154                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
9155
9156         u32 cur_ctl = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
9157
9158         vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
9159                      (new_ctl & ~mask) | (cur_ctl & mask));
9160 }
9161
9162 static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
9163 {
9164         struct kvm_cpuid_entry2 *best;
9165         struct vcpu_vmx *vmx = to_vmx(vcpu);
9166         u32 secondary_exec_ctl = vmx_secondary_exec_control(vmx);
9167
9168         if (vmx_rdtscp_supported()) {
9169                 bool rdtscp_enabled = guest_cpuid_has_rdtscp(vcpu);
9170                 if (!rdtscp_enabled)
9171                         secondary_exec_ctl &= ~SECONDARY_EXEC_RDTSCP;
9172
9173                 if (nested) {
9174                         if (rdtscp_enabled)
9175                                 vmx->nested.nested_vmx_secondary_ctls_high |=
9176                                         SECONDARY_EXEC_RDTSCP;
9177                         else
9178                                 vmx->nested.nested_vmx_secondary_ctls_high &=
9179                                         ~SECONDARY_EXEC_RDTSCP;
9180                 }
9181         }
9182
9183         /* Exposing INVPCID only when PCID is exposed */
9184         best = kvm_find_cpuid_entry(vcpu, 0x7, 0);
9185         if (vmx_invpcid_supported() &&
9186             (!best || !(best->ebx & bit(X86_FEATURE_INVPCID)) ||
9187             !guest_cpuid_has_pcid(vcpu))) {
9188                 secondary_exec_ctl &= ~SECONDARY_EXEC_ENABLE_INVPCID;
9189
9190                 if (best)
9191                         best->ebx &= ~bit(X86_FEATURE_INVPCID);
9192         }
9193
9194         if (cpu_has_secondary_exec_ctrls())
9195                 vmcs_set_secondary_exec_control(secondary_exec_ctl);
9196
9197         if (static_cpu_has(X86_FEATURE_PCOMMIT) && nested) {
9198                 if (guest_cpuid_has_pcommit(vcpu))
9199                         vmx->nested.nested_vmx_secondary_ctls_high |=
9200                                 SECONDARY_EXEC_PCOMMIT;
9201                 else
9202                         vmx->nested.nested_vmx_secondary_ctls_high &=
9203                                 ~SECONDARY_EXEC_PCOMMIT;
9204         }
9205 }
9206
9207 static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
9208 {
9209         if (func == 1 && nested)
9210                 entry->ecx |= bit(X86_FEATURE_VMX);
9211 }
9212
9213 static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
9214                 struct x86_exception *fault)
9215 {
9216         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
9217         u32 exit_reason;
9218
9219         if (fault->error_code & PFERR_RSVD_MASK)
9220                 exit_reason = EXIT_REASON_EPT_MISCONFIG;
9221         else
9222                 exit_reason = EXIT_REASON_EPT_VIOLATION;
9223         nested_vmx_vmexit(vcpu, exit_reason, 0, vcpu->arch.exit_qualification);
9224         vmcs12->guest_physical_address = fault->address;
9225 }
9226
9227 /* Callbacks for nested_ept_init_mmu_context: */
9228
9229 static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu)
9230 {
9231         /* return the page table to be shadowed - in our case, EPT12 */
9232         return get_vmcs12(vcpu)->ept_pointer;
9233 }
9234
9235 static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
9236 {
9237         WARN_ON(mmu_is_nested(vcpu));
9238         kvm_init_shadow_ept_mmu(vcpu,
9239                         to_vmx(vcpu)->nested.nested_vmx_ept_caps &
9240                         VMX_EPT_EXECUTE_ONLY_BIT);
9241         vcpu->arch.mmu.set_cr3           = vmx_set_cr3;
9242         vcpu->arch.mmu.get_cr3           = nested_ept_get_cr3;
9243         vcpu->arch.mmu.inject_page_fault = nested_ept_inject_page_fault;
9244
9245         vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
9246 }
9247
9248 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
9249 {
9250         vcpu->arch.walk_mmu = &vcpu->arch.mmu;
9251 }
9252
9253 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
9254                                             u16 error_code)
9255 {
9256         bool inequality, bit;
9257
9258         bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
9259         inequality =
9260                 (error_code & vmcs12->page_fault_error_code_mask) !=
9261                  vmcs12->page_fault_error_code_match;
9262         return inequality ^ bit;
9263 }
9264
9265 static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
9266                 struct x86_exception *fault)
9267 {
9268         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
9269
9270         WARN_ON(!is_guest_mode(vcpu));
9271
9272         if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code))
9273                 nested_vmx_vmexit(vcpu, to_vmx(vcpu)->exit_reason,
9274                                   vmcs_read32(VM_EXIT_INTR_INFO),
9275                                   vmcs_readl(EXIT_QUALIFICATION));
9276         else
9277                 kvm_inject_page_fault(vcpu, fault);
9278 }
9279
9280 static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu,
9281                                         struct vmcs12 *vmcs12)
9282 {
9283         struct vcpu_vmx *vmx = to_vmx(vcpu);
9284         int maxphyaddr = cpuid_maxphyaddr(vcpu);
9285
9286         if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
9287                 if (!PAGE_ALIGNED(vmcs12->apic_access_addr) ||
9288                     vmcs12->apic_access_addr >> maxphyaddr)
9289                         return false;
9290
9291                 /*
9292                  * Translate L1 physical address to host physical
9293                  * address for vmcs02. Keep the page pinned, so this
9294                  * physical address remains valid. We keep a reference
9295                  * to it so we can release it later.
9296                  */
9297                 if (vmx->nested.apic_access_page) /* shouldn't happen */
9298                         nested_release_page(vmx->nested.apic_access_page);
9299                 vmx->nested.apic_access_page =
9300                         nested_get_page(vcpu, vmcs12->apic_access_addr);
9301         }
9302
9303         if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
9304                 if (!PAGE_ALIGNED(vmcs12->virtual_apic_page_addr) ||
9305                     vmcs12->virtual_apic_page_addr >> maxphyaddr)
9306                         return false;
9307
9308                 if (vmx->nested.virtual_apic_page) /* shouldn't happen */
9309                         nested_release_page(vmx->nested.virtual_apic_page);
9310                 vmx->nested.virtual_apic_page =
9311                         nested_get_page(vcpu, vmcs12->virtual_apic_page_addr);
9312
9313                 /*
9314                  * Failing the vm entry is _not_ what the processor does
9315                  * but it's basically the only possibility we have.
9316                  * We could still enter the guest if CR8 load exits are
9317                  * enabled, CR8 store exits are enabled, and virtualize APIC
9318                  * access is disabled; in this case the processor would never
9319                  * use the TPR shadow and we could simply clear the bit from
9320                  * the execution control.  But such a configuration is useless,
9321                  * so let's keep the code simple.
9322                  */
9323                 if (!vmx->nested.virtual_apic_page)
9324                         return false;
9325         }
9326
9327         if (nested_cpu_has_posted_intr(vmcs12)) {
9328                 if (!IS_ALIGNED(vmcs12->posted_intr_desc_addr, 64) ||
9329                     vmcs12->posted_intr_desc_addr >> maxphyaddr)
9330                         return false;
9331
9332                 if (vmx->nested.pi_desc_page) { /* shouldn't happen */
9333                         kunmap(vmx->nested.pi_desc_page);
9334                         nested_release_page(vmx->nested.pi_desc_page);
9335                 }
9336                 vmx->nested.pi_desc_page =
9337                         nested_get_page(vcpu, vmcs12->posted_intr_desc_addr);
9338                 if (!vmx->nested.pi_desc_page)
9339                         return false;
9340
9341                 vmx->nested.pi_desc =
9342                         (struct pi_desc *)kmap(vmx->nested.pi_desc_page);
9343                 if (!vmx->nested.pi_desc) {
9344                         nested_release_page_clean(vmx->nested.pi_desc_page);
9345                         return false;
9346                 }
9347                 vmx->nested.pi_desc =
9348                         (struct pi_desc *)((void *)vmx->nested.pi_desc +
9349                         (unsigned long)(vmcs12->posted_intr_desc_addr &
9350                         (PAGE_SIZE - 1)));
9351         }
9352
9353         return true;
9354 }
9355
9356 static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu)
9357 {
9358         u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value;
9359         struct vcpu_vmx *vmx = to_vmx(vcpu);
9360
9361         if (vcpu->arch.virtual_tsc_khz == 0)
9362                 return;
9363
9364         /* Make sure short timeouts reliably trigger an immediate vmexit.
9365          * hrtimer_start does not guarantee this. */
9366         if (preemption_timeout <= 1) {
9367                 vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
9368                 return;
9369         }
9370
9371         preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
9372         preemption_timeout *= 1000000;
9373         do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
9374         hrtimer_start(&vmx->nested.preemption_timer,
9375                       ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL);
9376 }
9377
9378 static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
9379                                                 struct vmcs12 *vmcs12)
9380 {
9381         int maxphyaddr;
9382         u64 addr;
9383
9384         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
9385                 return 0;
9386
9387         if (vmcs12_read_any(vcpu, MSR_BITMAP, &addr)) {
9388                 WARN_ON(1);
9389                 return -EINVAL;
9390         }
9391         maxphyaddr = cpuid_maxphyaddr(vcpu);
9392
9393         if (!PAGE_ALIGNED(vmcs12->msr_bitmap) ||
9394            ((addr + PAGE_SIZE) >> maxphyaddr))
9395                 return -EINVAL;
9396
9397         return 0;
9398 }
9399
9400 /*
9401  * Merge L0's and L1's MSR bitmap, return false to indicate that
9402  * we do not use the hardware.
9403  */
9404 static inline bool nested_vmx_merge_msr_bitmap(struct kvm_vcpu *vcpu,
9405                                                struct vmcs12 *vmcs12)
9406 {
9407         int msr;
9408         struct page *page;
9409         unsigned long *msr_bitmap;
9410
9411         if (!nested_cpu_has_virt_x2apic_mode(vmcs12))
9412                 return false;
9413
9414         page = nested_get_page(vcpu, vmcs12->msr_bitmap);
9415         if (!page) {
9416                 WARN_ON(1);
9417                 return false;
9418         }
9419         msr_bitmap = (unsigned long *)kmap(page);
9420         if (!msr_bitmap) {
9421                 nested_release_page_clean(page);
9422                 WARN_ON(1);
9423                 return false;
9424         }
9425
9426         if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
9427                 if (nested_cpu_has_apic_reg_virt(vmcs12))
9428                         for (msr = 0x800; msr <= 0x8ff; msr++)
9429                                 nested_vmx_disable_intercept_for_msr(
9430                                         msr_bitmap,
9431                                         vmx_msr_bitmap_nested,
9432                                         msr, MSR_TYPE_R);
9433                 /* TPR is allowed */
9434                 nested_vmx_disable_intercept_for_msr(msr_bitmap,
9435                                 vmx_msr_bitmap_nested,
9436                                 APIC_BASE_MSR + (APIC_TASKPRI >> 4),
9437                                 MSR_TYPE_R | MSR_TYPE_W);
9438                 if (nested_cpu_has_vid(vmcs12)) {
9439                         /* EOI and self-IPI are allowed */
9440                         nested_vmx_disable_intercept_for_msr(
9441                                 msr_bitmap,
9442                                 vmx_msr_bitmap_nested,
9443                                 APIC_BASE_MSR + (APIC_EOI >> 4),
9444                                 MSR_TYPE_W);
9445                         nested_vmx_disable_intercept_for_msr(
9446                                 msr_bitmap,
9447                                 vmx_msr_bitmap_nested,
9448                                 APIC_BASE_MSR + (APIC_SELF_IPI >> 4),
9449                                 MSR_TYPE_W);
9450                 }
9451         } else {
9452                 /*
9453                  * Enable reading intercept of all the x2apic
9454                  * MSRs. We should not rely on vmcs12 to do any
9455                  * optimizations here, it may have been modified
9456                  * by L1.
9457                  */
9458                 for (msr = 0x800; msr <= 0x8ff; msr++)
9459                         __vmx_enable_intercept_for_msr(
9460                                 vmx_msr_bitmap_nested,
9461                                 msr,
9462                                 MSR_TYPE_R);
9463
9464                 __vmx_enable_intercept_for_msr(
9465                                 vmx_msr_bitmap_nested,
9466                                 APIC_BASE_MSR + (APIC_TASKPRI >> 4),
9467                                 MSR_TYPE_W);
9468                 __vmx_enable_intercept_for_msr(
9469                                 vmx_msr_bitmap_nested,
9470                                 APIC_BASE_MSR + (APIC_EOI >> 4),
9471                                 MSR_TYPE_W);
9472                 __vmx_enable_intercept_for_msr(
9473                                 vmx_msr_bitmap_nested,
9474                                 APIC_BASE_MSR + (APIC_SELF_IPI >> 4),
9475                                 MSR_TYPE_W);
9476         }
9477         kunmap(page);
9478         nested_release_page_clean(page);
9479
9480         return true;
9481 }
9482
9483 static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
9484                                            struct vmcs12 *vmcs12)
9485 {
9486         if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
9487             !nested_cpu_has_apic_reg_virt(vmcs12) &&
9488             !nested_cpu_has_vid(vmcs12) &&
9489             !nested_cpu_has_posted_intr(vmcs12))
9490                 return 0;
9491
9492         /*
9493          * If virtualize x2apic mode is enabled,
9494          * virtualize apic access must be disabled.
9495          */
9496         if (nested_cpu_has_virt_x2apic_mode(vmcs12) &&
9497             nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
9498                 return -EINVAL;
9499
9500         /*
9501          * If virtual interrupt delivery is enabled,
9502          * we must exit on external interrupts.
9503          */
9504         if (nested_cpu_has_vid(vmcs12) &&
9505            !nested_exit_on_intr(vcpu))
9506                 return -EINVAL;
9507
9508         /*
9509          * bits 15:8 should be zero in posted_intr_nv,
9510          * the descriptor address has been already checked
9511          * in nested_get_vmcs12_pages.
9512          */
9513         if (nested_cpu_has_posted_intr(vmcs12) &&
9514            (!nested_cpu_has_vid(vmcs12) ||
9515             !nested_exit_intr_ack_set(vcpu) ||
9516             vmcs12->posted_intr_nv & 0xff00))
9517                 return -EINVAL;
9518
9519         /* tpr shadow is needed by all apicv features. */
9520         if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
9521                 return -EINVAL;
9522
9523         return 0;
9524 }
9525
9526 static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
9527                                        unsigned long count_field,
9528                                        unsigned long addr_field)
9529 {
9530         int maxphyaddr;
9531         u64 count, addr;
9532
9533         if (vmcs12_read_any(vcpu, count_field, &count) ||
9534             vmcs12_read_any(vcpu, addr_field, &addr)) {
9535                 WARN_ON(1);
9536                 return -EINVAL;
9537         }
9538         if (count == 0)
9539                 return 0;
9540         maxphyaddr = cpuid_maxphyaddr(vcpu);
9541         if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr ||
9542             (addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr) {
9543                 pr_warn_ratelimited(
9544                         "nVMX: invalid MSR switch (0x%lx, %d, %llu, 0x%08llx)",
9545                         addr_field, maxphyaddr, count, addr);
9546                 return -EINVAL;
9547         }
9548         return 0;
9549 }
9550
9551 static int nested_vmx_check_msr_switch_controls(struct kvm_vcpu *vcpu,
9552                                                 struct vmcs12 *vmcs12)
9553 {
9554         if (vmcs12->vm_exit_msr_load_count == 0 &&
9555             vmcs12->vm_exit_msr_store_count == 0 &&
9556             vmcs12->vm_entry_msr_load_count == 0)
9557                 return 0; /* Fast path */
9558         if (nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_LOAD_COUNT,
9559                                         VM_EXIT_MSR_LOAD_ADDR) ||
9560             nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_STORE_COUNT,
9561                                         VM_EXIT_MSR_STORE_ADDR) ||
9562             nested_vmx_check_msr_switch(vcpu, VM_ENTRY_MSR_LOAD_COUNT,
9563                                         VM_ENTRY_MSR_LOAD_ADDR))
9564                 return -EINVAL;
9565         return 0;
9566 }
9567
9568 static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
9569                                        struct vmx_msr_entry *e)
9570 {
9571         /* x2APIC MSR accesses are not allowed */
9572         if (vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8)
9573                 return -EINVAL;
9574         if (e->index == MSR_IA32_UCODE_WRITE || /* SDM Table 35-2 */
9575             e->index == MSR_IA32_UCODE_REV)
9576                 return -EINVAL;
9577         if (e->reserved != 0)
9578                 return -EINVAL;
9579         return 0;
9580 }
9581
9582 static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
9583                                      struct vmx_msr_entry *e)
9584 {
9585         if (e->index == MSR_FS_BASE ||
9586             e->index == MSR_GS_BASE ||
9587             e->index == MSR_IA32_SMM_MONITOR_CTL || /* SMM is not supported */
9588             nested_vmx_msr_check_common(vcpu, e))
9589                 return -EINVAL;
9590         return 0;
9591 }
9592
9593 static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
9594                                       struct vmx_msr_entry *e)
9595 {
9596         if (e->index == MSR_IA32_SMBASE || /* SMM is not supported */
9597             nested_vmx_msr_check_common(vcpu, e))
9598                 return -EINVAL;
9599         return 0;
9600 }
9601
9602 /*
9603  * Load guest's/host's msr at nested entry/exit.
9604  * return 0 for success, entry index for failure.
9605  */
9606 static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
9607 {
9608         u32 i;
9609         struct vmx_msr_entry e;
9610         struct msr_data msr;
9611
9612         msr.host_initiated = false;
9613         for (i = 0; i < count; i++) {
9614                 if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
9615                                         &e, sizeof(e))) {
9616                         pr_warn_ratelimited(
9617                                 "%s cannot read MSR entry (%u, 0x%08llx)\n",
9618                                 __func__, i, gpa + i * sizeof(e));
9619                         goto fail;
9620                 }
9621                 if (nested_vmx_load_msr_check(vcpu, &e)) {
9622                         pr_warn_ratelimited(
9623                                 "%s check failed (%u, 0x%x, 0x%x)\n",
9624                                 __func__, i, e.index, e.reserved);
9625                         goto fail;
9626                 }
9627                 msr.index = e.index;
9628                 msr.data = e.value;
9629                 if (kvm_set_msr(vcpu, &msr)) {
9630                         pr_warn_ratelimited(
9631                                 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
9632                                 __func__, i, e.index, e.value);
9633                         goto fail;
9634                 }
9635         }
9636         return 0;
9637 fail:
9638         return i + 1;
9639 }
9640
9641 static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
9642 {
9643         u32 i;
9644         struct vmx_msr_entry e;
9645
9646         for (i = 0; i < count; i++) {
9647                 struct msr_data msr_info;
9648                 if (kvm_vcpu_read_guest(vcpu,
9649                                         gpa + i * sizeof(e),
9650                                         &e, 2 * sizeof(u32))) {
9651                         pr_warn_ratelimited(
9652                                 "%s cannot read MSR entry (%u, 0x%08llx)\n",
9653                                 __func__, i, gpa + i * sizeof(e));
9654                         return -EINVAL;
9655                 }
9656                 if (nested_vmx_store_msr_check(vcpu, &e)) {
9657                         pr_warn_ratelimited(
9658                                 "%s check failed (%u, 0x%x, 0x%x)\n",
9659                                 __func__, i, e.index, e.reserved);
9660                         return -EINVAL;
9661                 }
9662                 msr_info.host_initiated = false;
9663                 msr_info.index = e.index;
9664                 if (kvm_get_msr(vcpu, &msr_info)) {
9665                         pr_warn_ratelimited(
9666                                 "%s cannot read MSR (%u, 0x%x)\n",
9667                                 __func__, i, e.index);
9668                         return -EINVAL;
9669                 }
9670                 if (kvm_vcpu_write_guest(vcpu,
9671                                          gpa + i * sizeof(e) +
9672                                              offsetof(struct vmx_msr_entry, value),
9673                                          &msr_info.data, sizeof(msr_info.data))) {
9674                         pr_warn_ratelimited(
9675                                 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
9676                                 __func__, i, e.index, msr_info.data);
9677                         return -EINVAL;
9678                 }
9679         }
9680         return 0;
9681 }
9682
9683 /*
9684  * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
9685  * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
9686  * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
9687  * guest in a way that will both be appropriate to L1's requests, and our
9688  * needs. In addition to modifying the active vmcs (which is vmcs02), this
9689  * function also has additional necessary side-effects, like setting various
9690  * vcpu->arch fields.
9691  */
9692 static void prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
9693 {
9694         struct vcpu_vmx *vmx = to_vmx(vcpu);
9695         u32 exec_control;
9696
9697         vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
9698         vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
9699         vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
9700         vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
9701         vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
9702         vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
9703         vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
9704         vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
9705         vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
9706         vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
9707         vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
9708         vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
9709         vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
9710         vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
9711         vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
9712         vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
9713         vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
9714         vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
9715         vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
9716         vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
9717         vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
9718         vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
9719         vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
9720         vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
9721         vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
9722         vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
9723         vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
9724         vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
9725         vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
9726         vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
9727         vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
9728         vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
9729         vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
9730         vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
9731         vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
9732         vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
9733
9734         if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
9735                 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
9736                 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
9737         } else {
9738                 kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
9739                 vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
9740         }
9741         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
9742                 vmcs12->vm_entry_intr_info_field);
9743         vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
9744                 vmcs12->vm_entry_exception_error_code);
9745         vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
9746                 vmcs12->vm_entry_instruction_len);
9747         vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
9748                 vmcs12->guest_interruptibility_info);
9749         vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
9750         vmx_set_rflags(vcpu, vmcs12->guest_rflags);
9751         vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
9752                 vmcs12->guest_pending_dbg_exceptions);
9753         vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
9754         vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
9755
9756         if (nested_cpu_has_xsaves(vmcs12))
9757                 vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
9758         vmcs_write64(VMCS_LINK_POINTER, -1ull);
9759
9760         exec_control = vmcs12->pin_based_vm_exec_control;
9761         exec_control |= vmcs_config.pin_based_exec_ctrl;
9762         exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
9763
9764         if (nested_cpu_has_posted_intr(vmcs12)) {
9765                 /*
9766                  * Note that we use L0's vector here and in
9767                  * vmx_deliver_nested_posted_interrupt.
9768                  */
9769                 vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
9770                 vmx->nested.pi_pending = false;
9771                 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
9772                 vmcs_write64(POSTED_INTR_DESC_ADDR,
9773                         page_to_phys(vmx->nested.pi_desc_page) +
9774                         (unsigned long)(vmcs12->posted_intr_desc_addr &
9775                         (PAGE_SIZE - 1)));
9776         } else
9777                 exec_control &= ~PIN_BASED_POSTED_INTR;
9778
9779         vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, exec_control);
9780
9781         vmx->nested.preemption_timer_expired = false;
9782         if (nested_cpu_has_preemption_timer(vmcs12))
9783                 vmx_start_preemption_timer(vcpu);
9784
9785         /*
9786          * Whether page-faults are trapped is determined by a combination of
9787          * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
9788          * If enable_ept, L0 doesn't care about page faults and we should
9789          * set all of these to L1's desires. However, if !enable_ept, L0 does
9790          * care about (at least some) page faults, and because it is not easy
9791          * (if at all possible?) to merge L0 and L1's desires, we simply ask
9792          * to exit on each and every L2 page fault. This is done by setting
9793          * MASK=MATCH=0 and (see below) EB.PF=1.
9794          * Note that below we don't need special code to set EB.PF beyond the
9795          * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
9796          * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
9797          * !enable_ept, EB.PF is 1, so the "or" will always be 1.
9798          *
9799          * A problem with this approach (when !enable_ept) is that L1 may be
9800          * injected with more page faults than it asked for. This could have
9801          * caused problems, but in practice existing hypervisors don't care.
9802          * To fix this, we will need to emulate the PFEC checking (on the L1
9803          * page tables), using walk_addr(), when injecting PFs to L1.
9804          */
9805         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
9806                 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
9807         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
9808                 enable_ept ? vmcs12->page_fault_error_code_match : 0);
9809
9810         if (cpu_has_secondary_exec_ctrls()) {
9811                 exec_control = vmx_secondary_exec_control(vmx);
9812
9813                 /* Take the following fields only from vmcs12 */
9814                 exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
9815                                   SECONDARY_EXEC_RDTSCP |
9816                                   SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
9817                                   SECONDARY_EXEC_APIC_REGISTER_VIRT |
9818                                   SECONDARY_EXEC_PCOMMIT);
9819                 if (nested_cpu_has(vmcs12,
9820                                 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
9821                         exec_control |= vmcs12->secondary_vm_exec_control;
9822
9823                 if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) {
9824                         /*
9825                          * If translation failed, no matter: This feature asks
9826                          * to exit when accessing the given address, and if it
9827                          * can never be accessed, this feature won't do
9828                          * anything anyway.
9829                          */
9830                         if (!vmx->nested.apic_access_page)
9831                                 exec_control &=
9832                                   ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
9833                         else
9834                                 vmcs_write64(APIC_ACCESS_ADDR,
9835                                   page_to_phys(vmx->nested.apic_access_page));
9836                 } else if (!(nested_cpu_has_virt_x2apic_mode(vmcs12)) &&
9837                             cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
9838                         exec_control |=
9839                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
9840                         kvm_vcpu_reload_apic_access_page(vcpu);
9841                 }
9842
9843                 if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
9844                         vmcs_write64(EOI_EXIT_BITMAP0,
9845                                 vmcs12->eoi_exit_bitmap0);
9846                         vmcs_write64(EOI_EXIT_BITMAP1,
9847                                 vmcs12->eoi_exit_bitmap1);
9848                         vmcs_write64(EOI_EXIT_BITMAP2,
9849                                 vmcs12->eoi_exit_bitmap2);
9850                         vmcs_write64(EOI_EXIT_BITMAP3,
9851                                 vmcs12->eoi_exit_bitmap3);
9852                         vmcs_write16(GUEST_INTR_STATUS,
9853                                 vmcs12->guest_intr_status);
9854                 }
9855
9856                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
9857         }
9858
9859
9860         /*
9861          * Set host-state according to L0's settings (vmcs12 is irrelevant here)
9862          * Some constant fields are set here by vmx_set_constant_host_state().
9863          * Other fields are different per CPU, and will be set later when
9864          * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
9865          */
9866         vmx_set_constant_host_state(vmx);
9867
9868         /*
9869          * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
9870          * entry, but only if the current (host) sp changed from the value
9871          * we wrote last (vmx->host_rsp). This cache is no longer relevant
9872          * if we switch vmcs, and rather than hold a separate cache per vmcs,
9873          * here we just force the write to happen on entry.
9874          */
9875         vmx->host_rsp = 0;
9876
9877         exec_control = vmx_exec_control(vmx); /* L0's desires */
9878         exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
9879         exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
9880         exec_control &= ~CPU_BASED_TPR_SHADOW;
9881         exec_control |= vmcs12->cpu_based_vm_exec_control;
9882
9883         if (exec_control & CPU_BASED_TPR_SHADOW) {
9884                 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
9885                                 page_to_phys(vmx->nested.virtual_apic_page));
9886                 vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
9887         }
9888
9889         if (cpu_has_vmx_msr_bitmap() &&
9890             exec_control & CPU_BASED_USE_MSR_BITMAPS) {
9891                 nested_vmx_merge_msr_bitmap(vcpu, vmcs12);
9892                 /* MSR_BITMAP will be set by following vmx_set_efer. */
9893         } else
9894                 exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
9895
9896         /*
9897          * Merging of IO bitmap not currently supported.
9898          * Rather, exit every time.
9899          */
9900         exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
9901         exec_control |= CPU_BASED_UNCOND_IO_EXITING;
9902
9903         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
9904
9905         /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
9906          * bitwise-or of what L1 wants to trap for L2, and what we want to
9907          * trap. Note that CR0.TS also needs updating - we do this later.
9908          */
9909         update_exception_bitmap(vcpu);
9910         vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
9911         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
9912
9913         /* L2->L1 exit controls are emulated - the hardware exit is to L0 so
9914          * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
9915          * bits are further modified by vmx_set_efer() below.
9916          */
9917         vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
9918
9919         /* vmcs12's VM_ENTRY_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE are
9920          * emulated by vmx_set_efer(), below.
9921          */
9922         vm_entry_controls_init(vmx, 
9923                 (vmcs12->vm_entry_controls & ~VM_ENTRY_LOAD_IA32_EFER &
9924                         ~VM_ENTRY_IA32E_MODE) |
9925                 (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
9926
9927         if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) {
9928                 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
9929                 vcpu->arch.pat = vmcs12->guest_ia32_pat;
9930         } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
9931                 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
9932
9933
9934         set_cr4_guest_host_mask(vmx);
9935
9936         if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)
9937                 vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
9938
9939         if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
9940                 vmcs_write64(TSC_OFFSET,
9941                         vmx->nested.vmcs01_tsc_offset + vmcs12->tsc_offset);
9942         else
9943                 vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
9944
9945         if (enable_vpid) {
9946                 /*
9947                  * There is no direct mapping between vpid02 and vpid12, the
9948                  * vpid02 is per-vCPU for L0 and reused while the value of
9949                  * vpid12 is changed w/ one invvpid during nested vmentry.
9950                  * The vpid12 is allocated by L1 for L2, so it will not
9951                  * influence global bitmap(for vpid01 and vpid02 allocation)
9952                  * even if spawn a lot of nested vCPUs.
9953                  */
9954                 if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02) {
9955                         vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
9956                         if (vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
9957                                 vmx->nested.last_vpid = vmcs12->virtual_processor_id;
9958                                 __vmx_flush_tlb(vcpu, to_vmx(vcpu)->nested.vpid02);
9959                         }
9960                 } else {
9961                         vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
9962                         vmx_flush_tlb(vcpu);
9963                 }
9964
9965         }
9966
9967         if (nested_cpu_has_ept(vmcs12)) {
9968                 kvm_mmu_unload(vcpu);
9969                 nested_ept_init_mmu_context(vcpu);
9970         }
9971
9972         if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)
9973                 vcpu->arch.efer = vmcs12->guest_ia32_efer;
9974         else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
9975                 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
9976         else
9977                 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
9978         /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
9979         vmx_set_efer(vcpu, vcpu->arch.efer);
9980
9981         /*
9982          * This sets GUEST_CR0 to vmcs12->guest_cr0, with possibly a modified
9983          * TS bit (for lazy fpu) and bits which we consider mandatory enabled.
9984          * The CR0_READ_SHADOW is what L2 should have expected to read given
9985          * the specifications by L1; It's not enough to take
9986          * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
9987          * have more bits than L1 expected.
9988          */
9989         vmx_set_cr0(vcpu, vmcs12->guest_cr0);
9990         vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
9991
9992         vmx_set_cr4(vcpu, vmcs12->guest_cr4);
9993         vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
9994
9995         /* shadow page tables on either EPT or shadow page tables */
9996         kvm_set_cr3(vcpu, vmcs12->guest_cr3);
9997         kvm_mmu_reset_context(vcpu);
9998
9999         if (!enable_ept)
10000                 vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
10001
10002         /*
10003          * L1 may access the L2's PDPTR, so save them to construct vmcs12
10004          */
10005         if (enable_ept) {
10006                 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
10007                 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
10008                 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
10009                 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
10010         }
10011
10012         kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
10013         kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
10014 }
10015
10016 /*
10017  * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
10018  * for running an L2 nested guest.
10019  */
10020 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
10021 {
10022         struct vmcs12 *vmcs12;
10023         struct vcpu_vmx *vmx = to_vmx(vcpu);
10024         int cpu;
10025         struct loaded_vmcs *vmcs02;
10026         bool ia32e;
10027         u32 msr_entry_idx;
10028
10029         if (!nested_vmx_check_permission(vcpu) ||
10030             !nested_vmx_check_vmcs12(vcpu))
10031                 return 1;
10032
10033         skip_emulated_instruction(vcpu);
10034         vmcs12 = get_vmcs12(vcpu);
10035
10036         if (enable_shadow_vmcs)
10037                 copy_shadow_to_vmcs12(vmx);
10038
10039         /*
10040          * The nested entry process starts with enforcing various prerequisites
10041          * on vmcs12 as required by the Intel SDM, and act appropriately when
10042          * they fail: As the SDM explains, some conditions should cause the
10043          * instruction to fail, while others will cause the instruction to seem
10044          * to succeed, but return an EXIT_REASON_INVALID_STATE.
10045          * To speed up the normal (success) code path, we should avoid checking
10046          * for misconfigurations which will anyway be caught by the processor
10047          * when using the merged vmcs02.
10048          */
10049         if (vmcs12->launch_state == launch) {
10050                 nested_vmx_failValid(vcpu,
10051                         launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
10052                                : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
10053                 return 1;
10054         }
10055
10056         if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
10057             vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT) {
10058                 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
10059                 return 1;
10060         }
10061
10062         if (!nested_get_vmcs12_pages(vcpu, vmcs12)) {
10063                 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
10064                 return 1;
10065         }
10066
10067         if (nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12)) {
10068                 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
10069                 return 1;
10070         }
10071
10072         if (nested_vmx_check_apicv_controls(vcpu, vmcs12)) {
10073                 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
10074                 return 1;
10075         }
10076
10077         if (nested_vmx_check_msr_switch_controls(vcpu, vmcs12)) {
10078                 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
10079                 return 1;
10080         }
10081
10082         if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
10083                                 vmx->nested.nested_vmx_true_procbased_ctls_low,
10084                                 vmx->nested.nested_vmx_procbased_ctls_high) ||
10085             !vmx_control_verify(vmcs12->secondary_vm_exec_control,
10086                                 vmx->nested.nested_vmx_secondary_ctls_low,
10087                                 vmx->nested.nested_vmx_secondary_ctls_high) ||
10088             !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
10089                                 vmx->nested.nested_vmx_pinbased_ctls_low,
10090                                 vmx->nested.nested_vmx_pinbased_ctls_high) ||
10091             !vmx_control_verify(vmcs12->vm_exit_controls,
10092                                 vmx->nested.nested_vmx_true_exit_ctls_low,
10093                                 vmx->nested.nested_vmx_exit_ctls_high) ||
10094             !vmx_control_verify(vmcs12->vm_entry_controls,
10095                                 vmx->nested.nested_vmx_true_entry_ctls_low,
10096                                 vmx->nested.nested_vmx_entry_ctls_high))
10097         {
10098                 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
10099                 return 1;
10100         }
10101
10102         if (((vmcs12->host_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
10103             ((vmcs12->host_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
10104                 nested_vmx_failValid(vcpu,
10105                         VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
10106                 return 1;
10107         }
10108
10109         if (!nested_cr0_valid(vcpu, vmcs12->guest_cr0) ||
10110             ((vmcs12->guest_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
10111                 nested_vmx_entry_failure(vcpu, vmcs12,
10112                         EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
10113                 return 1;
10114         }
10115         if (vmcs12->vmcs_link_pointer != -1ull) {
10116                 nested_vmx_entry_failure(vcpu, vmcs12,
10117                         EXIT_REASON_INVALID_STATE, ENTRY_FAIL_VMCS_LINK_PTR);
10118                 return 1;
10119         }
10120
10121         /*
10122          * If the load IA32_EFER VM-entry control is 1, the following checks
10123          * are performed on the field for the IA32_EFER MSR:
10124          * - Bits reserved in the IA32_EFER MSR must be 0.
10125          * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
10126          *   the IA-32e mode guest VM-exit control. It must also be identical
10127          *   to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
10128          *   CR0.PG) is 1.
10129          */
10130         if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER) {
10131                 ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
10132                 if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) ||
10133                     ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) ||
10134                     ((vmcs12->guest_cr0 & X86_CR0_PG) &&
10135                      ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))) {
10136                         nested_vmx_entry_failure(vcpu, vmcs12,
10137                                 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
10138                         return 1;
10139                 }
10140         }
10141
10142         /*
10143          * If the load IA32_EFER VM-exit control is 1, bits reserved in the
10144          * IA32_EFER MSR must be 0 in the field for that register. In addition,
10145          * the values of the LMA and LME bits in the field must each be that of
10146          * the host address-space size VM-exit control.
10147          */
10148         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
10149                 ia32e = (vmcs12->vm_exit_controls &
10150                          VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0;
10151                 if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) ||
10152                     ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) ||
10153                     ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)) {
10154                         nested_vmx_entry_failure(vcpu, vmcs12,
10155                                 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
10156                         return 1;
10157                 }
10158         }
10159
10160         /*
10161          * We're finally done with prerequisite checking, and can start with
10162          * the nested entry.
10163          */
10164
10165         vmcs02 = nested_get_current_vmcs02(vmx);
10166         if (!vmcs02)
10167                 return -ENOMEM;
10168
10169         enter_guest_mode(vcpu);
10170
10171         vmx->nested.vmcs01_tsc_offset = vmcs_read64(TSC_OFFSET);
10172
10173         if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
10174                 vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
10175
10176         cpu = get_cpu();
10177         vmx->loaded_vmcs = vmcs02;
10178         vmx_vcpu_put(vcpu);
10179         vmx_vcpu_load(vcpu, cpu);
10180         vcpu->cpu = cpu;
10181         put_cpu();
10182
10183         vmx_segment_cache_clear(vmx);
10184
10185         prepare_vmcs02(vcpu, vmcs12);
10186
10187         msr_entry_idx = nested_vmx_load_msr(vcpu,
10188                                             vmcs12->vm_entry_msr_load_addr,
10189                                             vmcs12->vm_entry_msr_load_count);
10190         if (msr_entry_idx) {
10191                 leave_guest_mode(vcpu);
10192                 vmx_load_vmcs01(vcpu);
10193                 nested_vmx_entry_failure(vcpu, vmcs12,
10194                                 EXIT_REASON_MSR_LOAD_FAIL, msr_entry_idx);
10195                 return 1;
10196         }
10197
10198         vmcs12->launch_state = 1;
10199
10200         if (vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT)
10201                 return kvm_vcpu_halt(vcpu);
10202
10203         vmx->nested.nested_run_pending = 1;
10204
10205         /*
10206          * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
10207          * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
10208          * returned as far as L1 is concerned. It will only return (and set
10209          * the success flag) when L2 exits (see nested_vmx_vmexit()).
10210          */
10211         return 1;
10212 }
10213
10214 /*
10215  * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
10216  * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
10217  * This function returns the new value we should put in vmcs12.guest_cr0.
10218  * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
10219  *  1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
10220  *     available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
10221  *     didn't trap the bit, because if L1 did, so would L0).
10222  *  2. Bits that L1 asked to trap (and therefore L0 also did) could not have
10223  *     been modified by L2, and L1 knows it. So just leave the old value of
10224  *     the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
10225  *     isn't relevant, because if L0 traps this bit it can set it to anything.
10226  *  3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
10227  *     changed these bits, and therefore they need to be updated, but L0
10228  *     didn't necessarily allow them to be changed in GUEST_CR0 - and rather
10229  *     put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
10230  */
10231 static inline unsigned long
10232 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
10233 {
10234         return
10235         /*1*/   (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
10236         /*2*/   (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
10237         /*3*/   (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
10238                         vcpu->arch.cr0_guest_owned_bits));
10239 }
10240
10241 static inline unsigned long
10242 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
10243 {
10244         return
10245         /*1*/   (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
10246         /*2*/   (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
10247         /*3*/   (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
10248                         vcpu->arch.cr4_guest_owned_bits));
10249 }
10250
10251 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
10252                                        struct vmcs12 *vmcs12)
10253 {
10254         u32 idt_vectoring;
10255         unsigned int nr;
10256
10257         if (vcpu->arch.exception.pending && vcpu->arch.exception.reinject) {
10258                 nr = vcpu->arch.exception.nr;
10259                 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
10260
10261                 if (kvm_exception_is_soft(nr)) {
10262                         vmcs12->vm_exit_instruction_len =
10263                                 vcpu->arch.event_exit_inst_len;
10264                         idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
10265                 } else
10266                         idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
10267
10268                 if (vcpu->arch.exception.has_error_code) {
10269                         idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
10270                         vmcs12->idt_vectoring_error_code =
10271                                 vcpu->arch.exception.error_code;
10272                 }
10273
10274                 vmcs12->idt_vectoring_info_field = idt_vectoring;
10275         } else if (vcpu->arch.nmi_injected) {
10276                 vmcs12->idt_vectoring_info_field =
10277                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
10278         } else if (vcpu->arch.interrupt.pending) {
10279                 nr = vcpu->arch.interrupt.nr;
10280                 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
10281
10282                 if (vcpu->arch.interrupt.soft) {
10283                         idt_vectoring |= INTR_TYPE_SOFT_INTR;
10284                         vmcs12->vm_entry_instruction_len =
10285                                 vcpu->arch.event_exit_inst_len;
10286                 } else
10287                         idt_vectoring |= INTR_TYPE_EXT_INTR;
10288
10289                 vmcs12->idt_vectoring_info_field = idt_vectoring;
10290         }
10291 }
10292
10293 static int vmx_check_nested_events(struct kvm_vcpu *vcpu, bool external_intr)
10294 {
10295         struct vcpu_vmx *vmx = to_vmx(vcpu);
10296
10297         if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
10298             vmx->nested.preemption_timer_expired) {
10299                 if (vmx->nested.nested_run_pending)
10300                         return -EBUSY;
10301                 nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
10302                 return 0;
10303         }
10304
10305         if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) {
10306                 if (vmx->nested.nested_run_pending ||
10307                     vcpu->arch.interrupt.pending)
10308                         return -EBUSY;
10309                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
10310                                   NMI_VECTOR | INTR_TYPE_NMI_INTR |
10311                                   INTR_INFO_VALID_MASK, 0);
10312                 /*
10313                  * The NMI-triggered VM exit counts as injection:
10314                  * clear this one and block further NMIs.
10315                  */
10316                 vcpu->arch.nmi_pending = 0;
10317                 vmx_set_nmi_mask(vcpu, true);
10318                 return 0;
10319         }
10320
10321         if ((kvm_cpu_has_interrupt(vcpu) || external_intr) &&
10322             nested_exit_on_intr(vcpu)) {
10323                 if (vmx->nested.nested_run_pending)
10324                         return -EBUSY;
10325                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
10326                 return 0;
10327         }
10328
10329         return vmx_complete_nested_posted_interrupt(vcpu);
10330 }
10331
10332 static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
10333 {
10334         ktime_t remaining =
10335                 hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
10336         u64 value;
10337
10338         if (ktime_to_ns(remaining) <= 0)
10339                 return 0;
10340
10341         value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
10342         do_div(value, 1000000);
10343         return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
10344 }
10345
10346 /*
10347  * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
10348  * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
10349  * and this function updates it to reflect the changes to the guest state while
10350  * L2 was running (and perhaps made some exits which were handled directly by L0
10351  * without going back to L1), and to reflect the exit reason.
10352  * Note that we do not have to copy here all VMCS fields, just those that
10353  * could have changed by the L2 guest or the exit - i.e., the guest-state and
10354  * exit-information fields only. Other fields are modified by L1 with VMWRITE,
10355  * which already writes to vmcs12 directly.
10356  */
10357 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
10358                            u32 exit_reason, u32 exit_intr_info,
10359                            unsigned long exit_qualification)
10360 {
10361         /* update guest state fields: */
10362         vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
10363         vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
10364
10365         vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
10366         vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
10367         vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
10368
10369         vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
10370         vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
10371         vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
10372         vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
10373         vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
10374         vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
10375         vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
10376         vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
10377         vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
10378         vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
10379         vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
10380         vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
10381         vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
10382         vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
10383         vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
10384         vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
10385         vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
10386         vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
10387         vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
10388         vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
10389         vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
10390         vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
10391         vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
10392         vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
10393         vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
10394         vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
10395         vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
10396         vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
10397         vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
10398         vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
10399         vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
10400         vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
10401         vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
10402         vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
10403         vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
10404         vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
10405
10406         vmcs12->guest_interruptibility_info =
10407                 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
10408         vmcs12->guest_pending_dbg_exceptions =
10409                 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
10410         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
10411                 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
10412         else
10413                 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
10414
10415         if (nested_cpu_has_preemption_timer(vmcs12)) {
10416                 if (vmcs12->vm_exit_controls &
10417                     VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)
10418                         vmcs12->vmx_preemption_timer_value =
10419                                 vmx_get_preemption_timer_value(vcpu);
10420                 hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
10421         }
10422
10423         /*
10424          * In some cases (usually, nested EPT), L2 is allowed to change its
10425          * own CR3 without exiting. If it has changed it, we must keep it.
10426          * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
10427          * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
10428          *
10429          * Additionally, restore L2's PDPTR to vmcs12.
10430          */
10431         if (enable_ept) {
10432                 vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
10433                 vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
10434                 vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
10435                 vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
10436                 vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
10437         }
10438
10439         if (nested_cpu_has_vid(vmcs12))
10440                 vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
10441
10442         vmcs12->vm_entry_controls =
10443                 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
10444                 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
10445
10446         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS) {
10447                 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
10448                 vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
10449         }
10450
10451         /* TODO: These cannot have changed unless we have MSR bitmaps and
10452          * the relevant bit asks not to trap the change */
10453         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
10454                 vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
10455         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
10456                 vmcs12->guest_ia32_efer = vcpu->arch.efer;
10457         vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
10458         vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
10459         vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
10460         if (kvm_mpx_supported())
10461                 vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
10462         if (nested_cpu_has_xsaves(vmcs12))
10463                 vmcs12->xss_exit_bitmap = vmcs_read64(XSS_EXIT_BITMAP);
10464
10465         /* update exit information fields: */
10466
10467         vmcs12->vm_exit_reason = exit_reason;
10468         vmcs12->exit_qualification = exit_qualification;
10469
10470         vmcs12->vm_exit_intr_info = exit_intr_info;
10471         if ((vmcs12->vm_exit_intr_info &
10472              (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) ==
10473             (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK))
10474                 vmcs12->vm_exit_intr_error_code =
10475                         vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
10476         vmcs12->idt_vectoring_info_field = 0;
10477         vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
10478         vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
10479
10480         if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
10481                 /* vm_entry_intr_info_field is cleared on exit. Emulate this
10482                  * instead of reading the real value. */
10483                 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
10484
10485                 /*
10486                  * Transfer the event that L0 or L1 may wanted to inject into
10487                  * L2 to IDT_VECTORING_INFO_FIELD.
10488                  */
10489                 vmcs12_save_pending_event(vcpu, vmcs12);
10490         }
10491
10492         /*
10493          * Drop what we picked up for L2 via vmx_complete_interrupts. It is
10494          * preserved above and would only end up incorrectly in L1.
10495          */
10496         vcpu->arch.nmi_injected = false;
10497         kvm_clear_exception_queue(vcpu);
10498         kvm_clear_interrupt_queue(vcpu);
10499 }
10500
10501 /*
10502  * A part of what we need to when the nested L2 guest exits and we want to
10503  * run its L1 parent, is to reset L1's guest state to the host state specified
10504  * in vmcs12.
10505  * This function is to be called not only on normal nested exit, but also on
10506  * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
10507  * Failures During or After Loading Guest State").
10508  * This function should be called when the active VMCS is L1's (vmcs01).
10509  */
10510 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
10511                                    struct vmcs12 *vmcs12)
10512 {
10513         struct kvm_segment seg;
10514
10515         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
10516                 vcpu->arch.efer = vmcs12->host_ia32_efer;
10517         else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
10518                 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
10519         else
10520                 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
10521         vmx_set_efer(vcpu, vcpu->arch.efer);
10522
10523         kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
10524         kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
10525         vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
10526         /*
10527          * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
10528          * actually changed, because it depends on the current state of
10529          * fpu_active (which may have changed).
10530          * Note that vmx_set_cr0 refers to efer set above.
10531          */
10532         vmx_set_cr0(vcpu, vmcs12->host_cr0);
10533         /*
10534          * If we did fpu_activate()/fpu_deactivate() during L2's run, we need
10535          * to apply the same changes to L1's vmcs. We just set cr0 correctly,
10536          * but we also need to update cr0_guest_host_mask and exception_bitmap.
10537          */
10538         update_exception_bitmap(vcpu);
10539         vcpu->arch.cr0_guest_owned_bits = (vcpu->fpu_active ? X86_CR0_TS : 0);
10540         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
10541
10542         /*
10543          * Note that CR4_GUEST_HOST_MASK is already set in the original vmcs01
10544          * (KVM doesn't change it)- no reason to call set_cr4_guest_host_mask();
10545          */
10546         vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
10547         kvm_set_cr4(vcpu, vmcs12->host_cr4);
10548
10549         nested_ept_uninit_mmu_context(vcpu);
10550
10551         kvm_set_cr3(vcpu, vmcs12->host_cr3);
10552         kvm_mmu_reset_context(vcpu);
10553
10554         if (!enable_ept)
10555                 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
10556
10557         if (enable_vpid) {
10558                 /*
10559                  * Trivially support vpid by letting L2s share their parent
10560                  * L1's vpid. TODO: move to a more elaborate solution, giving
10561                  * each L2 its own vpid and exposing the vpid feature to L1.
10562                  */
10563                 vmx_flush_tlb(vcpu);
10564         }
10565
10566
10567         vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
10568         vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
10569         vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
10570         vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
10571         vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
10572
10573         /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1.  */
10574         if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
10575                 vmcs_write64(GUEST_BNDCFGS, 0);
10576
10577         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
10578                 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
10579                 vcpu->arch.pat = vmcs12->host_ia32_pat;
10580         }
10581         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
10582                 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
10583                         vmcs12->host_ia32_perf_global_ctrl);
10584
10585         /* Set L1 segment info according to Intel SDM
10586             27.5.2 Loading Host Segment and Descriptor-Table Registers */
10587         seg = (struct kvm_segment) {
10588                 .base = 0,
10589                 .limit = 0xFFFFFFFF,
10590                 .selector = vmcs12->host_cs_selector,
10591                 .type = 11,
10592                 .present = 1,
10593                 .s = 1,
10594                 .g = 1
10595         };
10596         if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
10597                 seg.l = 1;
10598         else
10599                 seg.db = 1;
10600         vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
10601         seg = (struct kvm_segment) {
10602                 .base = 0,
10603                 .limit = 0xFFFFFFFF,
10604                 .type = 3,
10605                 .present = 1,
10606                 .s = 1,
10607                 .db = 1,
10608                 .g = 1
10609         };
10610         seg.selector = vmcs12->host_ds_selector;
10611         vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
10612         seg.selector = vmcs12->host_es_selector;
10613         vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
10614         seg.selector = vmcs12->host_ss_selector;
10615         vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
10616         seg.selector = vmcs12->host_fs_selector;
10617         seg.base = vmcs12->host_fs_base;
10618         vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
10619         seg.selector = vmcs12->host_gs_selector;
10620         seg.base = vmcs12->host_gs_base;
10621         vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
10622         seg = (struct kvm_segment) {
10623                 .base = vmcs12->host_tr_base,
10624                 .limit = 0x67,
10625                 .selector = vmcs12->host_tr_selector,
10626                 .type = 11,
10627                 .present = 1
10628         };
10629         vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
10630
10631         kvm_set_dr(vcpu, 7, 0x400);
10632         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
10633
10634         if (cpu_has_vmx_msr_bitmap())
10635                 vmx_set_msr_bitmap(vcpu);
10636
10637         if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
10638                                 vmcs12->vm_exit_msr_load_count))
10639                 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
10640 }
10641
10642 /*
10643  * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
10644  * and modify vmcs12 to make it see what it would expect to see there if
10645  * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
10646  */
10647 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
10648                               u32 exit_intr_info,
10649                               unsigned long exit_qualification)
10650 {
10651         struct vcpu_vmx *vmx = to_vmx(vcpu);
10652         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
10653
10654         /* trying to cancel vmlaunch/vmresume is a bug */
10655         WARN_ON_ONCE(vmx->nested.nested_run_pending);
10656
10657         leave_guest_mode(vcpu);
10658         prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info,
10659                        exit_qualification);
10660
10661         if (nested_vmx_store_msr(vcpu, vmcs12->vm_exit_msr_store_addr,
10662                                  vmcs12->vm_exit_msr_store_count))
10663                 nested_vmx_abort(vcpu, VMX_ABORT_SAVE_GUEST_MSR_FAIL);
10664
10665         vmx_load_vmcs01(vcpu);
10666
10667         if ((exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT)
10668             && nested_exit_intr_ack_set(vcpu)) {
10669                 int irq = kvm_cpu_get_interrupt(vcpu);
10670                 WARN_ON(irq < 0);
10671                 vmcs12->vm_exit_intr_info = irq |
10672                         INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
10673         }
10674
10675         trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
10676                                        vmcs12->exit_qualification,
10677                                        vmcs12->idt_vectoring_info_field,
10678                                        vmcs12->vm_exit_intr_info,
10679                                        vmcs12->vm_exit_intr_error_code,
10680                                        KVM_ISA_VMX);
10681
10682         vm_entry_controls_init(vmx, vmcs_read32(VM_ENTRY_CONTROLS));
10683         vm_exit_controls_init(vmx, vmcs_read32(VM_EXIT_CONTROLS));
10684         vmx_segment_cache_clear(vmx);
10685
10686         /* if no vmcs02 cache requested, remove the one we used */
10687         if (VMCS02_POOL_SIZE == 0)
10688                 nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
10689
10690         load_vmcs12_host_state(vcpu, vmcs12);
10691
10692         /* Update TSC_OFFSET if TSC was changed while L2 ran */
10693         vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
10694
10695         /* This is needed for same reason as it was needed in prepare_vmcs02 */
10696         vmx->host_rsp = 0;
10697
10698         /* Unpin physical memory we referred to in vmcs02 */
10699         if (vmx->nested.apic_access_page) {
10700                 nested_release_page(vmx->nested.apic_access_page);
10701                 vmx->nested.apic_access_page = NULL;
10702         }
10703         if (vmx->nested.virtual_apic_page) {
10704                 nested_release_page(vmx->nested.virtual_apic_page);
10705                 vmx->nested.virtual_apic_page = NULL;
10706         }
10707         if (vmx->nested.pi_desc_page) {
10708                 kunmap(vmx->nested.pi_desc_page);
10709                 nested_release_page(vmx->nested.pi_desc_page);
10710                 vmx->nested.pi_desc_page = NULL;
10711                 vmx->nested.pi_desc = NULL;
10712         }
10713
10714         /*
10715          * We are now running in L2, mmu_notifier will force to reload the
10716          * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1.
10717          */
10718         kvm_vcpu_reload_apic_access_page(vcpu);
10719
10720         /*
10721          * Exiting from L2 to L1, we're now back to L1 which thinks it just
10722          * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
10723          * success or failure flag accordingly.
10724          */
10725         if (unlikely(vmx->fail)) {
10726                 vmx->fail = 0;
10727                 nested_vmx_failValid(vcpu, vmcs_read32(VM_INSTRUCTION_ERROR));
10728         } else
10729                 nested_vmx_succeed(vcpu);
10730         if (enable_shadow_vmcs)
10731                 vmx->nested.sync_shadow_vmcs = true;
10732
10733         /* in case we halted in L2 */
10734         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10735 }
10736
10737 /*
10738  * Forcibly leave nested mode in order to be able to reset the VCPU later on.
10739  */
10740 static void vmx_leave_nested(struct kvm_vcpu *vcpu)
10741 {
10742         if (is_guest_mode(vcpu))
10743                 nested_vmx_vmexit(vcpu, -1, 0, 0);
10744         free_nested(to_vmx(vcpu));
10745 }
10746
10747 /*
10748  * L1's failure to enter L2 is a subset of a normal exit, as explained in
10749  * 23.7 "VM-entry failures during or after loading guest state" (this also
10750  * lists the acceptable exit-reason and exit-qualification parameters).
10751  * It should only be called before L2 actually succeeded to run, and when
10752  * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
10753  */
10754 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
10755                         struct vmcs12 *vmcs12,
10756                         u32 reason, unsigned long qualification)
10757 {
10758         load_vmcs12_host_state(vcpu, vmcs12);
10759         vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
10760         vmcs12->exit_qualification = qualification;
10761         nested_vmx_succeed(vcpu);
10762         if (enable_shadow_vmcs)
10763                 to_vmx(vcpu)->nested.sync_shadow_vmcs = true;
10764 }
10765
10766 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
10767                                struct x86_instruction_info *info,
10768                                enum x86_intercept_stage stage)
10769 {
10770         return X86EMUL_CONTINUE;
10771 }
10772
10773 #ifdef CONFIG_X86_64
10774 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */
10775 static inline int u64_shl_div_u64(u64 a, unsigned int shift,
10776                                   u64 divisor, u64 *result)
10777 {
10778         u64 low = a << shift, high = a >> (64 - shift);
10779
10780         /* To avoid the overflow on divq */
10781         if (high >= divisor)
10782                 return 1;
10783
10784         /* Low hold the result, high hold rem which is discarded */
10785         asm("divq %2\n\t" : "=a" (low), "=d" (high) :
10786             "rm" (divisor), "0" (low), "1" (high));
10787         *result = low;
10788
10789         return 0;
10790 }
10791
10792 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc)
10793 {
10794         struct vcpu_vmx *vmx = to_vmx(vcpu);
10795         u64 tscl = rdtsc(), delta_tsc;
10796
10797         delta_tsc = guest_deadline_tsc - kvm_read_l1_tsc(vcpu, tscl);
10798
10799         /* Convert to host delta tsc if tsc scaling is enabled */
10800         if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio &&
10801                         u64_shl_div_u64(delta_tsc,
10802                                 kvm_tsc_scaling_ratio_frac_bits,
10803                                 vcpu->arch.tsc_scaling_ratio,
10804                                 &delta_tsc))
10805                 return -ERANGE;
10806
10807         /*
10808          * If the delta tsc can't fit in the 32 bit after the multi shift,
10809          * we can't use the preemption timer.
10810          * It's possible that it fits on later vmentries, but checking
10811          * on every vmentry is costly so we just use an hrtimer.
10812          */
10813         if (delta_tsc >> (cpu_preemption_timer_multi + 32))
10814                 return -ERANGE;
10815
10816         vmx->hv_deadline_tsc = tscl + delta_tsc;
10817         vmcs_set_bits(PIN_BASED_VM_EXEC_CONTROL,
10818                         PIN_BASED_VMX_PREEMPTION_TIMER);
10819         return 0;
10820 }
10821
10822 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
10823 {
10824         struct vcpu_vmx *vmx = to_vmx(vcpu);
10825         vmx->hv_deadline_tsc = -1;
10826         vmcs_clear_bits(PIN_BASED_VM_EXEC_CONTROL,
10827                         PIN_BASED_VMX_PREEMPTION_TIMER);
10828 }
10829 #endif
10830
10831 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
10832 {
10833         if (ple_gap)
10834                 shrink_ple_window(vcpu);
10835 }
10836
10837 static void vmx_slot_enable_log_dirty(struct kvm *kvm,
10838                                      struct kvm_memory_slot *slot)
10839 {
10840         kvm_mmu_slot_leaf_clear_dirty(kvm, slot);
10841         kvm_mmu_slot_largepage_remove_write_access(kvm, slot);
10842 }
10843
10844 static void vmx_slot_disable_log_dirty(struct kvm *kvm,
10845                                        struct kvm_memory_slot *slot)
10846 {
10847         kvm_mmu_slot_set_dirty(kvm, slot);
10848 }
10849
10850 static void vmx_flush_log_dirty(struct kvm *kvm)
10851 {
10852         kvm_flush_pml_buffers(kvm);
10853 }
10854
10855 static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm,
10856                                            struct kvm_memory_slot *memslot,
10857                                            gfn_t offset, unsigned long mask)
10858 {
10859         kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask);
10860 }
10861
10862 /*
10863  * This routine does the following things for vCPU which is going
10864  * to be blocked if VT-d PI is enabled.
10865  * - Store the vCPU to the wakeup list, so when interrupts happen
10866  *   we can find the right vCPU to wake up.
10867  * - Change the Posted-interrupt descriptor as below:
10868  *      'NDST' <-- vcpu->pre_pcpu
10869  *      'NV' <-- POSTED_INTR_WAKEUP_VECTOR
10870  * - If 'ON' is set during this process, which means at least one
10871  *   interrupt is posted for this vCPU, we cannot block it, in
10872  *   this case, return 1, otherwise, return 0.
10873  *
10874  */
10875 static int pi_pre_block(struct kvm_vcpu *vcpu)
10876 {
10877         unsigned long flags;
10878         unsigned int dest;
10879         struct pi_desc old, new;
10880         struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
10881
10882         if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
10883                 !irq_remapping_cap(IRQ_POSTING_CAP))
10884                 return 0;
10885
10886         vcpu->pre_pcpu = vcpu->cpu;
10887         spin_lock_irqsave(&per_cpu(blocked_vcpu_on_cpu_lock,
10888                           vcpu->pre_pcpu), flags);
10889         list_add_tail(&vcpu->blocked_vcpu_list,
10890                       &per_cpu(blocked_vcpu_on_cpu,
10891                       vcpu->pre_pcpu));
10892         spin_unlock_irqrestore(&per_cpu(blocked_vcpu_on_cpu_lock,
10893                                vcpu->pre_pcpu), flags);
10894
10895         do {
10896                 old.control = new.control = pi_desc->control;
10897
10898                 /*
10899                  * We should not block the vCPU if
10900                  * an interrupt is posted for it.
10901                  */
10902                 if (pi_test_on(pi_desc) == 1) {
10903                         spin_lock_irqsave(&per_cpu(blocked_vcpu_on_cpu_lock,
10904                                           vcpu->pre_pcpu), flags);
10905                         list_del(&vcpu->blocked_vcpu_list);
10906                         spin_unlock_irqrestore(
10907                                         &per_cpu(blocked_vcpu_on_cpu_lock,
10908                                         vcpu->pre_pcpu), flags);
10909                         vcpu->pre_pcpu = -1;
10910
10911                         return 1;
10912                 }
10913
10914                 WARN((pi_desc->sn == 1),
10915                      "Warning: SN field of posted-interrupts "
10916                      "is set before blocking\n");
10917
10918                 /*
10919                  * Since vCPU can be preempted during this process,
10920                  * vcpu->cpu could be different with pre_pcpu, we
10921                  * need to set pre_pcpu as the destination of wakeup
10922                  * notification event, then we can find the right vCPU
10923                  * to wakeup in wakeup handler if interrupts happen
10924                  * when the vCPU is in blocked state.
10925                  */
10926                 dest = cpu_physical_id(vcpu->pre_pcpu);
10927
10928                 if (x2apic_enabled())
10929                         new.ndst = dest;
10930                 else
10931                         new.ndst = (dest << 8) & 0xFF00;
10932
10933                 /* set 'NV' to 'wakeup vector' */
10934                 new.nv = POSTED_INTR_WAKEUP_VECTOR;
10935         } while (cmpxchg(&pi_desc->control, old.control,
10936                         new.control) != old.control);
10937
10938         return 0;
10939 }
10940
10941 static int vmx_pre_block(struct kvm_vcpu *vcpu)
10942 {
10943         if (pi_pre_block(vcpu))
10944                 return 1;
10945
10946         if (kvm_lapic_hv_timer_in_use(vcpu))
10947                 kvm_lapic_switch_to_sw_timer(vcpu);
10948
10949         return 0;
10950 }
10951
10952 static void pi_post_block(struct kvm_vcpu *vcpu)
10953 {
10954         struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
10955         struct pi_desc old, new;
10956         unsigned int dest;
10957         unsigned long flags;
10958
10959         if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
10960                 !irq_remapping_cap(IRQ_POSTING_CAP))
10961                 return;
10962
10963         do {
10964                 old.control = new.control = pi_desc->control;
10965
10966                 dest = cpu_physical_id(vcpu->cpu);
10967
10968                 if (x2apic_enabled())
10969                         new.ndst = dest;
10970                 else
10971                         new.ndst = (dest << 8) & 0xFF00;
10972
10973                 /* Allow posting non-urgent interrupts */
10974                 new.sn = 0;
10975
10976                 /* set 'NV' to 'notification vector' */
10977                 new.nv = POSTED_INTR_VECTOR;
10978         } while (cmpxchg(&pi_desc->control, old.control,
10979                         new.control) != old.control);
10980
10981         if(vcpu->pre_pcpu != -1) {
10982                 spin_lock_irqsave(
10983                         &per_cpu(blocked_vcpu_on_cpu_lock,
10984                         vcpu->pre_pcpu), flags);
10985                 list_del(&vcpu->blocked_vcpu_list);
10986                 spin_unlock_irqrestore(
10987                         &per_cpu(blocked_vcpu_on_cpu_lock,
10988                         vcpu->pre_pcpu), flags);
10989                 vcpu->pre_pcpu = -1;
10990         }
10991 }
10992
10993 static void vmx_post_block(struct kvm_vcpu *vcpu)
10994 {
10995         if (kvm_x86_ops->set_hv_timer)
10996                 kvm_lapic_switch_to_hv_timer(vcpu);
10997
10998         pi_post_block(vcpu);
10999 }
11000
11001 /*
11002  * vmx_update_pi_irte - set IRTE for Posted-Interrupts
11003  *
11004  * @kvm: kvm
11005  * @host_irq: host irq of the interrupt
11006  * @guest_irq: gsi of the interrupt
11007  * @set: set or unset PI
11008  * returns 0 on success, < 0 on failure
11009  */
11010 static int vmx_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
11011                               uint32_t guest_irq, bool set)
11012 {
11013         struct kvm_kernel_irq_routing_entry *e;
11014         struct kvm_irq_routing_table *irq_rt;
11015         struct kvm_lapic_irq irq;
11016         struct kvm_vcpu *vcpu;
11017         struct vcpu_data vcpu_info;
11018         int idx, ret = -EINVAL;
11019
11020         if (!kvm_arch_has_assigned_device(kvm) ||
11021                 !irq_remapping_cap(IRQ_POSTING_CAP))
11022                 return 0;
11023
11024         idx = srcu_read_lock(&kvm->irq_srcu);
11025         irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
11026         BUG_ON(guest_irq >= irq_rt->nr_rt_entries);
11027
11028         hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
11029                 if (e->type != KVM_IRQ_ROUTING_MSI)
11030                         continue;
11031                 /*
11032                  * VT-d PI cannot support posting multicast/broadcast
11033                  * interrupts to a vCPU, we still use interrupt remapping
11034                  * for these kind of interrupts.
11035                  *
11036                  * For lowest-priority interrupts, we only support
11037                  * those with single CPU as the destination, e.g. user
11038                  * configures the interrupts via /proc/irq or uses
11039                  * irqbalance to make the interrupts single-CPU.
11040                  *
11041                  * We will support full lowest-priority interrupt later.
11042                  */
11043
11044                 kvm_set_msi_irq(e, &irq);
11045                 if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu)) {
11046                         /*
11047                          * Make sure the IRTE is in remapped mode if
11048                          * we don't handle it in posted mode.
11049                          */
11050                         ret = irq_set_vcpu_affinity(host_irq, NULL);
11051                         if (ret < 0) {
11052                                 printk(KERN_INFO
11053                                    "failed to back to remapped mode, irq: %u\n",
11054                                    host_irq);
11055                                 goto out;
11056                         }
11057
11058                         continue;
11059                 }
11060
11061                 vcpu_info.pi_desc_addr = __pa(vcpu_to_pi_desc(vcpu));
11062                 vcpu_info.vector = irq.vector;
11063
11064                 trace_kvm_pi_irte_update(vcpu->vcpu_id, host_irq, e->gsi,
11065                                 vcpu_info.vector, vcpu_info.pi_desc_addr, set);
11066
11067                 if (set)
11068                         ret = irq_set_vcpu_affinity(host_irq, &vcpu_info);
11069                 else {
11070                         /* suppress notification event before unposting */
11071                         pi_set_sn(vcpu_to_pi_desc(vcpu));
11072                         ret = irq_set_vcpu_affinity(host_irq, NULL);
11073                         pi_clear_sn(vcpu_to_pi_desc(vcpu));
11074                 }
11075
11076                 if (ret < 0) {
11077                         printk(KERN_INFO "%s: failed to update PI IRTE\n",
11078                                         __func__);
11079                         goto out;
11080                 }
11081         }
11082
11083         ret = 0;
11084 out:
11085         srcu_read_unlock(&kvm->irq_srcu, idx);
11086         return ret;
11087 }
11088
11089 static struct kvm_x86_ops vmx_x86_ops = {
11090         .cpu_has_kvm_support = cpu_has_kvm_support,
11091         .disabled_by_bios = vmx_disabled_by_bios,
11092         .hardware_setup = hardware_setup,
11093         .hardware_unsetup = hardware_unsetup,
11094         .check_processor_compatibility = vmx_check_processor_compat,
11095         .hardware_enable = hardware_enable,
11096         .hardware_disable = hardware_disable,
11097         .cpu_has_accelerated_tpr = report_flexpriority,
11098         .cpu_has_high_real_mode_segbase = vmx_has_high_real_mode_segbase,
11099
11100         .vcpu_create = vmx_create_vcpu,
11101         .vcpu_free = vmx_free_vcpu,
11102         .vcpu_reset = vmx_vcpu_reset,
11103
11104         .prepare_guest_switch = vmx_save_host_state,
11105         .vcpu_load = vmx_vcpu_load,
11106         .vcpu_put = vmx_vcpu_put,
11107
11108         .update_bp_intercept = update_exception_bitmap,
11109         .get_msr = vmx_get_msr,
11110         .set_msr = vmx_set_msr,
11111         .get_segment_base = vmx_get_segment_base,
11112         .get_segment = vmx_get_segment,
11113         .set_segment = vmx_set_segment,
11114         .get_cpl = vmx_get_cpl,
11115         .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
11116         .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
11117         .decache_cr3 = vmx_decache_cr3,
11118         .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
11119         .set_cr0 = vmx_set_cr0,
11120         .set_cr3 = vmx_set_cr3,
11121         .set_cr4 = vmx_set_cr4,
11122         .set_efer = vmx_set_efer,
11123         .get_idt = vmx_get_idt,
11124         .set_idt = vmx_set_idt,
11125         .get_gdt = vmx_get_gdt,
11126         .set_gdt = vmx_set_gdt,
11127         .get_dr6 = vmx_get_dr6,
11128         .set_dr6 = vmx_set_dr6,
11129         .set_dr7 = vmx_set_dr7,
11130         .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
11131         .cache_reg = vmx_cache_reg,
11132         .get_rflags = vmx_get_rflags,
11133         .set_rflags = vmx_set_rflags,
11134
11135         .get_pkru = vmx_get_pkru,
11136
11137         .fpu_activate = vmx_fpu_activate,
11138         .fpu_deactivate = vmx_fpu_deactivate,
11139
11140         .tlb_flush = vmx_flush_tlb,
11141
11142         .run = vmx_vcpu_run,
11143         .handle_exit = vmx_handle_exit,
11144         .skip_emulated_instruction = skip_emulated_instruction,
11145         .set_interrupt_shadow = vmx_set_interrupt_shadow,
11146         .get_interrupt_shadow = vmx_get_interrupt_shadow,
11147         .patch_hypercall = vmx_patch_hypercall,
11148         .set_irq = vmx_inject_irq,
11149         .set_nmi = vmx_inject_nmi,
11150         .queue_exception = vmx_queue_exception,
11151         .cancel_injection = vmx_cancel_injection,
11152         .interrupt_allowed = vmx_interrupt_allowed,
11153         .nmi_allowed = vmx_nmi_allowed,
11154         .get_nmi_mask = vmx_get_nmi_mask,
11155         .set_nmi_mask = vmx_set_nmi_mask,
11156         .enable_nmi_window = enable_nmi_window,
11157         .enable_irq_window = enable_irq_window,
11158         .update_cr8_intercept = update_cr8_intercept,
11159         .set_virtual_x2apic_mode = vmx_set_virtual_x2apic_mode,
11160         .set_apic_access_page_addr = vmx_set_apic_access_page_addr,
11161         .get_enable_apicv = vmx_get_enable_apicv,
11162         .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
11163         .load_eoi_exitmap = vmx_load_eoi_exitmap,
11164         .hwapic_irr_update = vmx_hwapic_irr_update,
11165         .hwapic_isr_update = vmx_hwapic_isr_update,
11166         .sync_pir_to_irr = vmx_sync_pir_to_irr,
11167         .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
11168
11169         .set_tss_addr = vmx_set_tss_addr,
11170         .get_tdp_level = get_ept_level,
11171         .get_mt_mask = vmx_get_mt_mask,
11172
11173         .get_exit_info = vmx_get_exit_info,
11174
11175         .get_lpage_level = vmx_get_lpage_level,
11176
11177         .cpuid_update = vmx_cpuid_update,
11178
11179         .rdtscp_supported = vmx_rdtscp_supported,
11180         .invpcid_supported = vmx_invpcid_supported,
11181
11182         .set_supported_cpuid = vmx_set_supported_cpuid,
11183
11184         .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
11185
11186         .read_tsc_offset = vmx_read_tsc_offset,
11187         .write_tsc_offset = vmx_write_tsc_offset,
11188         .adjust_tsc_offset_guest = vmx_adjust_tsc_offset_guest,
11189         .read_l1_tsc = vmx_read_l1_tsc,
11190
11191         .set_tdp_cr3 = vmx_set_cr3,
11192
11193         .check_intercept = vmx_check_intercept,
11194         .handle_external_intr = vmx_handle_external_intr,
11195         .mpx_supported = vmx_mpx_supported,
11196         .xsaves_supported = vmx_xsaves_supported,
11197
11198         .check_nested_events = vmx_check_nested_events,
11199
11200         .sched_in = vmx_sched_in,
11201
11202         .slot_enable_log_dirty = vmx_slot_enable_log_dirty,
11203         .slot_disable_log_dirty = vmx_slot_disable_log_dirty,
11204         .flush_log_dirty = vmx_flush_log_dirty,
11205         .enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked,
11206
11207         .pre_block = vmx_pre_block,
11208         .post_block = vmx_post_block,
11209
11210         .pmu_ops = &intel_pmu_ops,
11211
11212         .update_pi_irte = vmx_update_pi_irte,
11213
11214 #ifdef CONFIG_X86_64
11215         .set_hv_timer = vmx_set_hv_timer,
11216         .cancel_hv_timer = vmx_cancel_hv_timer,
11217 #endif
11218 };
11219
11220 static int __init vmx_init(void)
11221 {
11222         int r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
11223                      __alignof__(struct vcpu_vmx), THIS_MODULE);
11224         if (r)
11225                 return r;
11226
11227 #ifdef CONFIG_KEXEC_CORE
11228         rcu_assign_pointer(crash_vmclear_loaded_vmcss,
11229                            crash_vmclear_local_loaded_vmcss);
11230 #endif
11231
11232         return 0;
11233 }
11234
11235 static void __exit vmx_exit(void)
11236 {
11237 #ifdef CONFIG_KEXEC_CORE
11238         RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
11239         synchronize_rcu();
11240 #endif
11241
11242         kvm_exit();
11243 }
11244
11245 module_init(vmx_init)
11246 module_exit(vmx_exit)