]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - arch/x86/kvm/x86.c
Merge tag 'powerpc-4.2-1' of git://git.kernel.org/pub/scm/linux/kernel/git/mpe/linux
[karo-tx-linux.git] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "assigned-dev.h"
31
32 #include <linux/clocksource.h>
33 #include <linux/interrupt.h>
34 #include <linux/kvm.h>
35 #include <linux/fs.h>
36 #include <linux/vmalloc.h>
37 #include <linux/module.h>
38 #include <linux/mman.h>
39 #include <linux/highmem.h>
40 #include <linux/iommu.h>
41 #include <linux/intel-iommu.h>
42 #include <linux/cpufreq.h>
43 #include <linux/user-return-notifier.h>
44 #include <linux/srcu.h>
45 #include <linux/slab.h>
46 #include <linux/perf_event.h>
47 #include <linux/uaccess.h>
48 #include <linux/hash.h>
49 #include <linux/pci.h>
50 #include <linux/timekeeper_internal.h>
51 #include <linux/pvclock_gtod.h>
52 #include <trace/events/kvm.h>
53
54 #define CREATE_TRACE_POINTS
55 #include "trace.h"
56
57 #include <asm/debugreg.h>
58 #include <asm/msr.h>
59 #include <asm/desc.h>
60 #include <asm/mtrr.h>
61 #include <asm/mce.h>
62 #include <linux/kernel_stat.h>
63 #include <asm/fpu/internal.h> /* Ugh! */
64 #include <asm/pvclock.h>
65 #include <asm/div64.h>
66
67 #define MAX_IO_MSRS 256
68 #define KVM_MAX_MCE_BANKS 32
69 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
70
71 #define emul_to_vcpu(ctxt) \
72         container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
73
74 /* EFER defaults:
75  * - enable syscall per default because its emulated by KVM
76  * - enable LME and LMA per default on 64 bit KVM
77  */
78 #ifdef CONFIG_X86_64
79 static
80 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
81 #else
82 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
83 #endif
84
85 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
86 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
87
88 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
89 static void process_nmi(struct kvm_vcpu *vcpu);
90 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
91
92 struct kvm_x86_ops *kvm_x86_ops;
93 EXPORT_SYMBOL_GPL(kvm_x86_ops);
94
95 static bool ignore_msrs = 0;
96 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
97
98 unsigned int min_timer_period_us = 500;
99 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
100
101 bool kvm_has_tsc_control;
102 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
103 u32  kvm_max_guest_tsc_khz;
104 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
105
106 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
107 static u32 tsc_tolerance_ppm = 250;
108 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
109
110 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
111 unsigned int lapic_timer_advance_ns = 0;
112 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
113
114 static bool backwards_tsc_observed = false;
115
116 #define KVM_NR_SHARED_MSRS 16
117
118 struct kvm_shared_msrs_global {
119         int nr;
120         u32 msrs[KVM_NR_SHARED_MSRS];
121 };
122
123 struct kvm_shared_msrs {
124         struct user_return_notifier urn;
125         bool registered;
126         struct kvm_shared_msr_values {
127                 u64 host;
128                 u64 curr;
129         } values[KVM_NR_SHARED_MSRS];
130 };
131
132 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
133 static struct kvm_shared_msrs __percpu *shared_msrs;
134
135 struct kvm_stats_debugfs_item debugfs_entries[] = {
136         { "pf_fixed", VCPU_STAT(pf_fixed) },
137         { "pf_guest", VCPU_STAT(pf_guest) },
138         { "tlb_flush", VCPU_STAT(tlb_flush) },
139         { "invlpg", VCPU_STAT(invlpg) },
140         { "exits", VCPU_STAT(exits) },
141         { "io_exits", VCPU_STAT(io_exits) },
142         { "mmio_exits", VCPU_STAT(mmio_exits) },
143         { "signal_exits", VCPU_STAT(signal_exits) },
144         { "irq_window", VCPU_STAT(irq_window_exits) },
145         { "nmi_window", VCPU_STAT(nmi_window_exits) },
146         { "halt_exits", VCPU_STAT(halt_exits) },
147         { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
148         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
149         { "hypercalls", VCPU_STAT(hypercalls) },
150         { "request_irq", VCPU_STAT(request_irq_exits) },
151         { "irq_exits", VCPU_STAT(irq_exits) },
152         { "host_state_reload", VCPU_STAT(host_state_reload) },
153         { "efer_reload", VCPU_STAT(efer_reload) },
154         { "fpu_reload", VCPU_STAT(fpu_reload) },
155         { "insn_emulation", VCPU_STAT(insn_emulation) },
156         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
157         { "irq_injections", VCPU_STAT(irq_injections) },
158         { "nmi_injections", VCPU_STAT(nmi_injections) },
159         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
160         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
161         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
162         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
163         { "mmu_flooded", VM_STAT(mmu_flooded) },
164         { "mmu_recycled", VM_STAT(mmu_recycled) },
165         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
166         { "mmu_unsync", VM_STAT(mmu_unsync) },
167         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
168         { "largepages", VM_STAT(lpages) },
169         { NULL }
170 };
171
172 u64 __read_mostly host_xcr0;
173
174 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
175
176 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
177 {
178         int i;
179         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
180                 vcpu->arch.apf.gfns[i] = ~0;
181 }
182
183 static void kvm_on_user_return(struct user_return_notifier *urn)
184 {
185         unsigned slot;
186         struct kvm_shared_msrs *locals
187                 = container_of(urn, struct kvm_shared_msrs, urn);
188         struct kvm_shared_msr_values *values;
189
190         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
191                 values = &locals->values[slot];
192                 if (values->host != values->curr) {
193                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
194                         values->curr = values->host;
195                 }
196         }
197         locals->registered = false;
198         user_return_notifier_unregister(urn);
199 }
200
201 static void shared_msr_update(unsigned slot, u32 msr)
202 {
203         u64 value;
204         unsigned int cpu = smp_processor_id();
205         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
206
207         /* only read, and nobody should modify it at this time,
208          * so don't need lock */
209         if (slot >= shared_msrs_global.nr) {
210                 printk(KERN_ERR "kvm: invalid MSR slot!");
211                 return;
212         }
213         rdmsrl_safe(msr, &value);
214         smsr->values[slot].host = value;
215         smsr->values[slot].curr = value;
216 }
217
218 void kvm_define_shared_msr(unsigned slot, u32 msr)
219 {
220         BUG_ON(slot >= KVM_NR_SHARED_MSRS);
221         if (slot >= shared_msrs_global.nr)
222                 shared_msrs_global.nr = slot + 1;
223         shared_msrs_global.msrs[slot] = msr;
224         /* we need ensured the shared_msr_global have been updated */
225         smp_wmb();
226 }
227 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
228
229 static void kvm_shared_msr_cpu_online(void)
230 {
231         unsigned i;
232
233         for (i = 0; i < shared_msrs_global.nr; ++i)
234                 shared_msr_update(i, shared_msrs_global.msrs[i]);
235 }
236
237 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
238 {
239         unsigned int cpu = smp_processor_id();
240         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
241         int err;
242
243         if (((value ^ smsr->values[slot].curr) & mask) == 0)
244                 return 0;
245         smsr->values[slot].curr = value;
246         err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
247         if (err)
248                 return 1;
249
250         if (!smsr->registered) {
251                 smsr->urn.on_user_return = kvm_on_user_return;
252                 user_return_notifier_register(&smsr->urn);
253                 smsr->registered = true;
254         }
255         return 0;
256 }
257 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
258
259 static void drop_user_return_notifiers(void)
260 {
261         unsigned int cpu = smp_processor_id();
262         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
263
264         if (smsr->registered)
265                 kvm_on_user_return(&smsr->urn);
266 }
267
268 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
269 {
270         return vcpu->arch.apic_base;
271 }
272 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
273
274 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
275 {
276         u64 old_state = vcpu->arch.apic_base &
277                 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
278         u64 new_state = msr_info->data &
279                 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
280         u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) |
281                 0x2ff | (guest_cpuid_has_x2apic(vcpu) ? 0 : X2APIC_ENABLE);
282
283         if (!msr_info->host_initiated &&
284             ((msr_info->data & reserved_bits) != 0 ||
285              new_state == X2APIC_ENABLE ||
286              (new_state == MSR_IA32_APICBASE_ENABLE &&
287               old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
288              (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
289               old_state == 0)))
290                 return 1;
291
292         kvm_lapic_set_base(vcpu, msr_info->data);
293         return 0;
294 }
295 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
296
297 asmlinkage __visible void kvm_spurious_fault(void)
298 {
299         /* Fault while not rebooting.  We want the trace. */
300         BUG();
301 }
302 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
303
304 #define EXCPT_BENIGN            0
305 #define EXCPT_CONTRIBUTORY      1
306 #define EXCPT_PF                2
307
308 static int exception_class(int vector)
309 {
310         switch (vector) {
311         case PF_VECTOR:
312                 return EXCPT_PF;
313         case DE_VECTOR:
314         case TS_VECTOR:
315         case NP_VECTOR:
316         case SS_VECTOR:
317         case GP_VECTOR:
318                 return EXCPT_CONTRIBUTORY;
319         default:
320                 break;
321         }
322         return EXCPT_BENIGN;
323 }
324
325 #define EXCPT_FAULT             0
326 #define EXCPT_TRAP              1
327 #define EXCPT_ABORT             2
328 #define EXCPT_INTERRUPT         3
329
330 static int exception_type(int vector)
331 {
332         unsigned int mask;
333
334         if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
335                 return EXCPT_INTERRUPT;
336
337         mask = 1 << vector;
338
339         /* #DB is trap, as instruction watchpoints are handled elsewhere */
340         if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
341                 return EXCPT_TRAP;
342
343         if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
344                 return EXCPT_ABORT;
345
346         /* Reserved exceptions will result in fault */
347         return EXCPT_FAULT;
348 }
349
350 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
351                 unsigned nr, bool has_error, u32 error_code,
352                 bool reinject)
353 {
354         u32 prev_nr;
355         int class1, class2;
356
357         kvm_make_request(KVM_REQ_EVENT, vcpu);
358
359         if (!vcpu->arch.exception.pending) {
360         queue:
361                 if (has_error && !is_protmode(vcpu))
362                         has_error = false;
363                 vcpu->arch.exception.pending = true;
364                 vcpu->arch.exception.has_error_code = has_error;
365                 vcpu->arch.exception.nr = nr;
366                 vcpu->arch.exception.error_code = error_code;
367                 vcpu->arch.exception.reinject = reinject;
368                 return;
369         }
370
371         /* to check exception */
372         prev_nr = vcpu->arch.exception.nr;
373         if (prev_nr == DF_VECTOR) {
374                 /* triple fault -> shutdown */
375                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
376                 return;
377         }
378         class1 = exception_class(prev_nr);
379         class2 = exception_class(nr);
380         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
381                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
382                 /* generate double fault per SDM Table 5-5 */
383                 vcpu->arch.exception.pending = true;
384                 vcpu->arch.exception.has_error_code = true;
385                 vcpu->arch.exception.nr = DF_VECTOR;
386                 vcpu->arch.exception.error_code = 0;
387         } else
388                 /* replace previous exception with a new one in a hope
389                    that instruction re-execution will regenerate lost
390                    exception */
391                 goto queue;
392 }
393
394 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
395 {
396         kvm_multiple_exception(vcpu, nr, false, 0, false);
397 }
398 EXPORT_SYMBOL_GPL(kvm_queue_exception);
399
400 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
401 {
402         kvm_multiple_exception(vcpu, nr, false, 0, true);
403 }
404 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
405
406 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
407 {
408         if (err)
409                 kvm_inject_gp(vcpu, 0);
410         else
411                 kvm_x86_ops->skip_emulated_instruction(vcpu);
412 }
413 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
414
415 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
416 {
417         ++vcpu->stat.pf_guest;
418         vcpu->arch.cr2 = fault->address;
419         kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
420 }
421 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
422
423 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
424 {
425         if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
426                 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
427         else
428                 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
429
430         return fault->nested_page_fault;
431 }
432
433 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
434 {
435         atomic_inc(&vcpu->arch.nmi_queued);
436         kvm_make_request(KVM_REQ_NMI, vcpu);
437 }
438 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
439
440 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
441 {
442         kvm_multiple_exception(vcpu, nr, true, error_code, false);
443 }
444 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
445
446 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
447 {
448         kvm_multiple_exception(vcpu, nr, true, error_code, true);
449 }
450 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
451
452 /*
453  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
454  * a #GP and return false.
455  */
456 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
457 {
458         if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
459                 return true;
460         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
461         return false;
462 }
463 EXPORT_SYMBOL_GPL(kvm_require_cpl);
464
465 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
466 {
467         if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
468                 return true;
469
470         kvm_queue_exception(vcpu, UD_VECTOR);
471         return false;
472 }
473 EXPORT_SYMBOL_GPL(kvm_require_dr);
474
475 /*
476  * This function will be used to read from the physical memory of the currently
477  * running guest. The difference to kvm_read_guest_page is that this function
478  * can read from guest physical or from the guest's guest physical memory.
479  */
480 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
481                             gfn_t ngfn, void *data, int offset, int len,
482                             u32 access)
483 {
484         struct x86_exception exception;
485         gfn_t real_gfn;
486         gpa_t ngpa;
487
488         ngpa     = gfn_to_gpa(ngfn);
489         real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
490         if (real_gfn == UNMAPPED_GVA)
491                 return -EFAULT;
492
493         real_gfn = gpa_to_gfn(real_gfn);
494
495         return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
496 }
497 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
498
499 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
500                                void *data, int offset, int len, u32 access)
501 {
502         return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
503                                        data, offset, len, access);
504 }
505
506 /*
507  * Load the pae pdptrs.  Return true is they are all valid.
508  */
509 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
510 {
511         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
512         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
513         int i;
514         int ret;
515         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
516
517         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
518                                       offset * sizeof(u64), sizeof(pdpte),
519                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
520         if (ret < 0) {
521                 ret = 0;
522                 goto out;
523         }
524         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
525                 if (is_present_gpte(pdpte[i]) &&
526                     (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
527                         ret = 0;
528                         goto out;
529                 }
530         }
531         ret = 1;
532
533         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
534         __set_bit(VCPU_EXREG_PDPTR,
535                   (unsigned long *)&vcpu->arch.regs_avail);
536         __set_bit(VCPU_EXREG_PDPTR,
537                   (unsigned long *)&vcpu->arch.regs_dirty);
538 out:
539
540         return ret;
541 }
542 EXPORT_SYMBOL_GPL(load_pdptrs);
543
544 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
545 {
546         u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
547         bool changed = true;
548         int offset;
549         gfn_t gfn;
550         int r;
551
552         if (is_long_mode(vcpu) || !is_pae(vcpu))
553                 return false;
554
555         if (!test_bit(VCPU_EXREG_PDPTR,
556                       (unsigned long *)&vcpu->arch.regs_avail))
557                 return true;
558
559         gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
560         offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
561         r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
562                                        PFERR_USER_MASK | PFERR_WRITE_MASK);
563         if (r < 0)
564                 goto out;
565         changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
566 out:
567
568         return changed;
569 }
570
571 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
572 {
573         unsigned long old_cr0 = kvm_read_cr0(vcpu);
574         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
575                                     X86_CR0_CD | X86_CR0_NW;
576
577         cr0 |= X86_CR0_ET;
578
579 #ifdef CONFIG_X86_64
580         if (cr0 & 0xffffffff00000000UL)
581                 return 1;
582 #endif
583
584         cr0 &= ~CR0_RESERVED_BITS;
585
586         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
587                 return 1;
588
589         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
590                 return 1;
591
592         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
593 #ifdef CONFIG_X86_64
594                 if ((vcpu->arch.efer & EFER_LME)) {
595                         int cs_db, cs_l;
596
597                         if (!is_pae(vcpu))
598                                 return 1;
599                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
600                         if (cs_l)
601                                 return 1;
602                 } else
603 #endif
604                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
605                                                  kvm_read_cr3(vcpu)))
606                         return 1;
607         }
608
609         if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
610                 return 1;
611
612         kvm_x86_ops->set_cr0(vcpu, cr0);
613
614         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
615                 kvm_clear_async_pf_completion_queue(vcpu);
616                 kvm_async_pf_hash_reset(vcpu);
617         }
618
619         if ((cr0 ^ old_cr0) & update_bits)
620                 kvm_mmu_reset_context(vcpu);
621         return 0;
622 }
623 EXPORT_SYMBOL_GPL(kvm_set_cr0);
624
625 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
626 {
627         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
628 }
629 EXPORT_SYMBOL_GPL(kvm_lmsw);
630
631 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
632 {
633         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
634                         !vcpu->guest_xcr0_loaded) {
635                 /* kvm_set_xcr() also depends on this */
636                 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
637                 vcpu->guest_xcr0_loaded = 1;
638         }
639 }
640
641 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
642 {
643         if (vcpu->guest_xcr0_loaded) {
644                 if (vcpu->arch.xcr0 != host_xcr0)
645                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
646                 vcpu->guest_xcr0_loaded = 0;
647         }
648 }
649
650 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
651 {
652         u64 xcr0 = xcr;
653         u64 old_xcr0 = vcpu->arch.xcr0;
654         u64 valid_bits;
655
656         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
657         if (index != XCR_XFEATURE_ENABLED_MASK)
658                 return 1;
659         if (!(xcr0 & XSTATE_FP))
660                 return 1;
661         if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
662                 return 1;
663
664         /*
665          * Do not allow the guest to set bits that we do not support
666          * saving.  However, xcr0 bit 0 is always set, even if the
667          * emulated CPU does not support XSAVE (see fx_init).
668          */
669         valid_bits = vcpu->arch.guest_supported_xcr0 | XSTATE_FP;
670         if (xcr0 & ~valid_bits)
671                 return 1;
672
673         if ((!(xcr0 & XSTATE_BNDREGS)) != (!(xcr0 & XSTATE_BNDCSR)))
674                 return 1;
675
676         if (xcr0 & XSTATE_AVX512) {
677                 if (!(xcr0 & XSTATE_YMM))
678                         return 1;
679                 if ((xcr0 & XSTATE_AVX512) != XSTATE_AVX512)
680                         return 1;
681         }
682         kvm_put_guest_xcr0(vcpu);
683         vcpu->arch.xcr0 = xcr0;
684
685         if ((xcr0 ^ old_xcr0) & XSTATE_EXTEND_MASK)
686                 kvm_update_cpuid(vcpu);
687         return 0;
688 }
689
690 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
691 {
692         if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
693             __kvm_set_xcr(vcpu, index, xcr)) {
694                 kvm_inject_gp(vcpu, 0);
695                 return 1;
696         }
697         return 0;
698 }
699 EXPORT_SYMBOL_GPL(kvm_set_xcr);
700
701 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
702 {
703         unsigned long old_cr4 = kvm_read_cr4(vcpu);
704         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
705                                    X86_CR4_SMEP | X86_CR4_SMAP;
706
707         if (cr4 & CR4_RESERVED_BITS)
708                 return 1;
709
710         if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
711                 return 1;
712
713         if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
714                 return 1;
715
716         if (!guest_cpuid_has_smap(vcpu) && (cr4 & X86_CR4_SMAP))
717                 return 1;
718
719         if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE))
720                 return 1;
721
722         if (is_long_mode(vcpu)) {
723                 if (!(cr4 & X86_CR4_PAE))
724                         return 1;
725         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
726                    && ((cr4 ^ old_cr4) & pdptr_bits)
727                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
728                                    kvm_read_cr3(vcpu)))
729                 return 1;
730
731         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
732                 if (!guest_cpuid_has_pcid(vcpu))
733                         return 1;
734
735                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
736                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
737                         return 1;
738         }
739
740         if (kvm_x86_ops->set_cr4(vcpu, cr4))
741                 return 1;
742
743         if (((cr4 ^ old_cr4) & pdptr_bits) ||
744             (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
745                 kvm_mmu_reset_context(vcpu);
746
747         if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
748                 kvm_update_cpuid(vcpu);
749
750         return 0;
751 }
752 EXPORT_SYMBOL_GPL(kvm_set_cr4);
753
754 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
755 {
756 #ifdef CONFIG_X86_64
757         cr3 &= ~CR3_PCID_INVD;
758 #endif
759
760         if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
761                 kvm_mmu_sync_roots(vcpu);
762                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
763                 return 0;
764         }
765
766         if (is_long_mode(vcpu)) {
767                 if (cr3 & CR3_L_MODE_RESERVED_BITS)
768                         return 1;
769         } else if (is_pae(vcpu) && is_paging(vcpu) &&
770                    !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
771                 return 1;
772
773         vcpu->arch.cr3 = cr3;
774         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
775         kvm_mmu_new_cr3(vcpu);
776         return 0;
777 }
778 EXPORT_SYMBOL_GPL(kvm_set_cr3);
779
780 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
781 {
782         if (cr8 & CR8_RESERVED_BITS)
783                 return 1;
784         if (irqchip_in_kernel(vcpu->kvm))
785                 kvm_lapic_set_tpr(vcpu, cr8);
786         else
787                 vcpu->arch.cr8 = cr8;
788         return 0;
789 }
790 EXPORT_SYMBOL_GPL(kvm_set_cr8);
791
792 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
793 {
794         if (irqchip_in_kernel(vcpu->kvm))
795                 return kvm_lapic_get_cr8(vcpu);
796         else
797                 return vcpu->arch.cr8;
798 }
799 EXPORT_SYMBOL_GPL(kvm_get_cr8);
800
801 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
802 {
803         int i;
804
805         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
806                 for (i = 0; i < KVM_NR_DB_REGS; i++)
807                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
808                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
809         }
810 }
811
812 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
813 {
814         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
815                 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
816 }
817
818 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
819 {
820         unsigned long dr7;
821
822         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
823                 dr7 = vcpu->arch.guest_debug_dr7;
824         else
825                 dr7 = vcpu->arch.dr7;
826         kvm_x86_ops->set_dr7(vcpu, dr7);
827         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
828         if (dr7 & DR7_BP_EN_MASK)
829                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
830 }
831
832 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
833 {
834         u64 fixed = DR6_FIXED_1;
835
836         if (!guest_cpuid_has_rtm(vcpu))
837                 fixed |= DR6_RTM;
838         return fixed;
839 }
840
841 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
842 {
843         switch (dr) {
844         case 0 ... 3:
845                 vcpu->arch.db[dr] = val;
846                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
847                         vcpu->arch.eff_db[dr] = val;
848                 break;
849         case 4:
850                 /* fall through */
851         case 6:
852                 if (val & 0xffffffff00000000ULL)
853                         return -1; /* #GP */
854                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
855                 kvm_update_dr6(vcpu);
856                 break;
857         case 5:
858                 /* fall through */
859         default: /* 7 */
860                 if (val & 0xffffffff00000000ULL)
861                         return -1; /* #GP */
862                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
863                 kvm_update_dr7(vcpu);
864                 break;
865         }
866
867         return 0;
868 }
869
870 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
871 {
872         if (__kvm_set_dr(vcpu, dr, val)) {
873                 kvm_inject_gp(vcpu, 0);
874                 return 1;
875         }
876         return 0;
877 }
878 EXPORT_SYMBOL_GPL(kvm_set_dr);
879
880 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
881 {
882         switch (dr) {
883         case 0 ... 3:
884                 *val = vcpu->arch.db[dr];
885                 break;
886         case 4:
887                 /* fall through */
888         case 6:
889                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
890                         *val = vcpu->arch.dr6;
891                 else
892                         *val = kvm_x86_ops->get_dr6(vcpu);
893                 break;
894         case 5:
895                 /* fall through */
896         default: /* 7 */
897                 *val = vcpu->arch.dr7;
898                 break;
899         }
900         return 0;
901 }
902 EXPORT_SYMBOL_GPL(kvm_get_dr);
903
904 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
905 {
906         u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
907         u64 data;
908         int err;
909
910         err = kvm_pmu_read_pmc(vcpu, ecx, &data);
911         if (err)
912                 return err;
913         kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
914         kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
915         return err;
916 }
917 EXPORT_SYMBOL_GPL(kvm_rdpmc);
918
919 /*
920  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
921  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
922  *
923  * This list is modified at module load time to reflect the
924  * capabilities of the host cpu. This capabilities test skips MSRs that are
925  * kvm-specific. Those are put in the beginning of the list.
926  */
927
928 #define KVM_SAVE_MSRS_BEGIN     12
929 static u32 msrs_to_save[] = {
930         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
931         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
932         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
933         HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
934         HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
935         MSR_KVM_PV_EOI_EN,
936         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
937         MSR_STAR,
938 #ifdef CONFIG_X86_64
939         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
940 #endif
941         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
942         MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS
943 };
944
945 static unsigned num_msrs_to_save;
946
947 static const u32 emulated_msrs[] = {
948         MSR_IA32_TSC_ADJUST,
949         MSR_IA32_TSCDEADLINE,
950         MSR_IA32_MISC_ENABLE,
951         MSR_IA32_MCG_STATUS,
952         MSR_IA32_MCG_CTL,
953 };
954
955 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
956 {
957         if (efer & efer_reserved_bits)
958                 return false;
959
960         if (efer & EFER_FFXSR) {
961                 struct kvm_cpuid_entry2 *feat;
962
963                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
964                 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
965                         return false;
966         }
967
968         if (efer & EFER_SVME) {
969                 struct kvm_cpuid_entry2 *feat;
970
971                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
972                 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
973                         return false;
974         }
975
976         return true;
977 }
978 EXPORT_SYMBOL_GPL(kvm_valid_efer);
979
980 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
981 {
982         u64 old_efer = vcpu->arch.efer;
983
984         if (!kvm_valid_efer(vcpu, efer))
985                 return 1;
986
987         if (is_paging(vcpu)
988             && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
989                 return 1;
990
991         efer &= ~EFER_LMA;
992         efer |= vcpu->arch.efer & EFER_LMA;
993
994         kvm_x86_ops->set_efer(vcpu, efer);
995
996         /* Update reserved bits */
997         if ((efer ^ old_efer) & EFER_NX)
998                 kvm_mmu_reset_context(vcpu);
999
1000         return 0;
1001 }
1002
1003 void kvm_enable_efer_bits(u64 mask)
1004 {
1005        efer_reserved_bits &= ~mask;
1006 }
1007 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1008
1009 /*
1010  * Writes msr value into into the appropriate "register".
1011  * Returns 0 on success, non-0 otherwise.
1012  * Assumes vcpu_load() was already called.
1013  */
1014 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1015 {
1016         switch (msr->index) {
1017         case MSR_FS_BASE:
1018         case MSR_GS_BASE:
1019         case MSR_KERNEL_GS_BASE:
1020         case MSR_CSTAR:
1021         case MSR_LSTAR:
1022                 if (is_noncanonical_address(msr->data))
1023                         return 1;
1024                 break;
1025         case MSR_IA32_SYSENTER_EIP:
1026         case MSR_IA32_SYSENTER_ESP:
1027                 /*
1028                  * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1029                  * non-canonical address is written on Intel but not on
1030                  * AMD (which ignores the top 32-bits, because it does
1031                  * not implement 64-bit SYSENTER).
1032                  *
1033                  * 64-bit code should hence be able to write a non-canonical
1034                  * value on AMD.  Making the address canonical ensures that
1035                  * vmentry does not fail on Intel after writing a non-canonical
1036                  * value, and that something deterministic happens if the guest
1037                  * invokes 64-bit SYSENTER.
1038                  */
1039                 msr->data = get_canonical(msr->data);
1040         }
1041         return kvm_x86_ops->set_msr(vcpu, msr);
1042 }
1043 EXPORT_SYMBOL_GPL(kvm_set_msr);
1044
1045 /*
1046  * Adapt set_msr() to msr_io()'s calling convention
1047  */
1048 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1049 {
1050         struct msr_data msr;
1051
1052         msr.data = *data;
1053         msr.index = index;
1054         msr.host_initiated = true;
1055         return kvm_set_msr(vcpu, &msr);
1056 }
1057
1058 #ifdef CONFIG_X86_64
1059 struct pvclock_gtod_data {
1060         seqcount_t      seq;
1061
1062         struct { /* extract of a clocksource struct */
1063                 int vclock_mode;
1064                 cycle_t cycle_last;
1065                 cycle_t mask;
1066                 u32     mult;
1067                 u32     shift;
1068         } clock;
1069
1070         u64             boot_ns;
1071         u64             nsec_base;
1072 };
1073
1074 static struct pvclock_gtod_data pvclock_gtod_data;
1075
1076 static void update_pvclock_gtod(struct timekeeper *tk)
1077 {
1078         struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1079         u64 boot_ns;
1080
1081         boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1082
1083         write_seqcount_begin(&vdata->seq);
1084
1085         /* copy pvclock gtod data */
1086         vdata->clock.vclock_mode        = tk->tkr_mono.clock->archdata.vclock_mode;
1087         vdata->clock.cycle_last         = tk->tkr_mono.cycle_last;
1088         vdata->clock.mask               = tk->tkr_mono.mask;
1089         vdata->clock.mult               = tk->tkr_mono.mult;
1090         vdata->clock.shift              = tk->tkr_mono.shift;
1091
1092         vdata->boot_ns                  = boot_ns;
1093         vdata->nsec_base                = tk->tkr_mono.xtime_nsec;
1094
1095         write_seqcount_end(&vdata->seq);
1096 }
1097 #endif
1098
1099 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1100 {
1101         /*
1102          * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1103          * vcpu_enter_guest.  This function is only called from
1104          * the physical CPU that is running vcpu.
1105          */
1106         kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1107 }
1108
1109 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1110 {
1111         int version;
1112         int r;
1113         struct pvclock_wall_clock wc;
1114         struct timespec boot;
1115
1116         if (!wall_clock)
1117                 return;
1118
1119         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1120         if (r)
1121                 return;
1122
1123         if (version & 1)
1124                 ++version;  /* first time write, random junk */
1125
1126         ++version;
1127
1128         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1129
1130         /*
1131          * The guest calculates current wall clock time by adding
1132          * system time (updated by kvm_guest_time_update below) to the
1133          * wall clock specified here.  guest system time equals host
1134          * system time for us, thus we must fill in host boot time here.
1135          */
1136         getboottime(&boot);
1137
1138         if (kvm->arch.kvmclock_offset) {
1139                 struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset);
1140                 boot = timespec_sub(boot, ts);
1141         }
1142         wc.sec = boot.tv_sec;
1143         wc.nsec = boot.tv_nsec;
1144         wc.version = version;
1145
1146         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1147
1148         version++;
1149         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1150 }
1151
1152 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1153 {
1154         uint32_t quotient, remainder;
1155
1156         /* Don't try to replace with do_div(), this one calculates
1157          * "(dividend << 32) / divisor" */
1158         __asm__ ( "divl %4"
1159                   : "=a" (quotient), "=d" (remainder)
1160                   : "0" (0), "1" (dividend), "r" (divisor) );
1161         return quotient;
1162 }
1163
1164 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
1165                                s8 *pshift, u32 *pmultiplier)
1166 {
1167         uint64_t scaled64;
1168         int32_t  shift = 0;
1169         uint64_t tps64;
1170         uint32_t tps32;
1171
1172         tps64 = base_khz * 1000LL;
1173         scaled64 = scaled_khz * 1000LL;
1174         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1175                 tps64 >>= 1;
1176                 shift--;
1177         }
1178
1179         tps32 = (uint32_t)tps64;
1180         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1181                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1182                         scaled64 >>= 1;
1183                 else
1184                         tps32 <<= 1;
1185                 shift++;
1186         }
1187
1188         *pshift = shift;
1189         *pmultiplier = div_frac(scaled64, tps32);
1190
1191         pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
1192                  __func__, base_khz, scaled_khz, shift, *pmultiplier);
1193 }
1194
1195 static inline u64 get_kernel_ns(void)
1196 {
1197         return ktime_get_boot_ns();
1198 }
1199
1200 #ifdef CONFIG_X86_64
1201 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1202 #endif
1203
1204 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1205 static unsigned long max_tsc_khz;
1206
1207 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
1208 {
1209         return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
1210                                    vcpu->arch.virtual_tsc_shift);
1211 }
1212
1213 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1214 {
1215         u64 v = (u64)khz * (1000000 + ppm);
1216         do_div(v, 1000000);
1217         return v;
1218 }
1219
1220 static void kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
1221 {
1222         u32 thresh_lo, thresh_hi;
1223         int use_scaling = 0;
1224
1225         /* tsc_khz can be zero if TSC calibration fails */
1226         if (this_tsc_khz == 0)
1227                 return;
1228
1229         /* Compute a scale to convert nanoseconds in TSC cycles */
1230         kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
1231                            &vcpu->arch.virtual_tsc_shift,
1232                            &vcpu->arch.virtual_tsc_mult);
1233         vcpu->arch.virtual_tsc_khz = this_tsc_khz;
1234
1235         /*
1236          * Compute the variation in TSC rate which is acceptable
1237          * within the range of tolerance and decide if the
1238          * rate being applied is within that bounds of the hardware
1239          * rate.  If so, no scaling or compensation need be done.
1240          */
1241         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1242         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1243         if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) {
1244                 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi);
1245                 use_scaling = 1;
1246         }
1247         kvm_x86_ops->set_tsc_khz(vcpu, this_tsc_khz, use_scaling);
1248 }
1249
1250 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1251 {
1252         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1253                                       vcpu->arch.virtual_tsc_mult,
1254                                       vcpu->arch.virtual_tsc_shift);
1255         tsc += vcpu->arch.this_tsc_write;
1256         return tsc;
1257 }
1258
1259 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1260 {
1261 #ifdef CONFIG_X86_64
1262         bool vcpus_matched;
1263         struct kvm_arch *ka = &vcpu->kvm->arch;
1264         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1265
1266         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1267                          atomic_read(&vcpu->kvm->online_vcpus));
1268
1269         /*
1270          * Once the masterclock is enabled, always perform request in
1271          * order to update it.
1272          *
1273          * In order to enable masterclock, the host clocksource must be TSC
1274          * and the vcpus need to have matched TSCs.  When that happens,
1275          * perform request to enable masterclock.
1276          */
1277         if (ka->use_master_clock ||
1278             (gtod->clock.vclock_mode == VCLOCK_TSC && vcpus_matched))
1279                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1280
1281         trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1282                             atomic_read(&vcpu->kvm->online_vcpus),
1283                             ka->use_master_clock, gtod->clock.vclock_mode);
1284 #endif
1285 }
1286
1287 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1288 {
1289         u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu);
1290         vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1291 }
1292
1293 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1294 {
1295         struct kvm *kvm = vcpu->kvm;
1296         u64 offset, ns, elapsed;
1297         unsigned long flags;
1298         s64 usdiff;
1299         bool matched;
1300         bool already_matched;
1301         u64 data = msr->data;
1302
1303         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1304         offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1305         ns = get_kernel_ns();
1306         elapsed = ns - kvm->arch.last_tsc_nsec;
1307
1308         if (vcpu->arch.virtual_tsc_khz) {
1309                 int faulted = 0;
1310
1311                 /* n.b - signed multiplication and division required */
1312                 usdiff = data - kvm->arch.last_tsc_write;
1313 #ifdef CONFIG_X86_64
1314                 usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1315 #else
1316                 /* do_div() only does unsigned */
1317                 asm("1: idivl %[divisor]\n"
1318                     "2: xor %%edx, %%edx\n"
1319                     "   movl $0, %[faulted]\n"
1320                     "3:\n"
1321                     ".section .fixup,\"ax\"\n"
1322                     "4: movl $1, %[faulted]\n"
1323                     "   jmp  3b\n"
1324                     ".previous\n"
1325
1326                 _ASM_EXTABLE(1b, 4b)
1327
1328                 : "=A"(usdiff), [faulted] "=r" (faulted)
1329                 : "A"(usdiff * 1000), [divisor] "rm"(vcpu->arch.virtual_tsc_khz));
1330
1331 #endif
1332                 do_div(elapsed, 1000);
1333                 usdiff -= elapsed;
1334                 if (usdiff < 0)
1335                         usdiff = -usdiff;
1336
1337                 /* idivl overflow => difference is larger than USEC_PER_SEC */
1338                 if (faulted)
1339                         usdiff = USEC_PER_SEC;
1340         } else
1341                 usdiff = USEC_PER_SEC; /* disable TSC match window below */
1342
1343         /*
1344          * Special case: TSC write with a small delta (1 second) of virtual
1345          * cycle time against real time is interpreted as an attempt to
1346          * synchronize the CPU.
1347          *
1348          * For a reliable TSC, we can match TSC offsets, and for an unstable
1349          * TSC, we add elapsed time in this computation.  We could let the
1350          * compensation code attempt to catch up if we fall behind, but
1351          * it's better to try to match offsets from the beginning.
1352          */
1353         if (usdiff < USEC_PER_SEC &&
1354             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1355                 if (!check_tsc_unstable()) {
1356                         offset = kvm->arch.cur_tsc_offset;
1357                         pr_debug("kvm: matched tsc offset for %llu\n", data);
1358                 } else {
1359                         u64 delta = nsec_to_cycles(vcpu, elapsed);
1360                         data += delta;
1361                         offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1362                         pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1363                 }
1364                 matched = true;
1365                 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1366         } else {
1367                 /*
1368                  * We split periods of matched TSC writes into generations.
1369                  * For each generation, we track the original measured
1370                  * nanosecond time, offset, and write, so if TSCs are in
1371                  * sync, we can match exact offset, and if not, we can match
1372                  * exact software computation in compute_guest_tsc()
1373                  *
1374                  * These values are tracked in kvm->arch.cur_xxx variables.
1375                  */
1376                 kvm->arch.cur_tsc_generation++;
1377                 kvm->arch.cur_tsc_nsec = ns;
1378                 kvm->arch.cur_tsc_write = data;
1379                 kvm->arch.cur_tsc_offset = offset;
1380                 matched = false;
1381                 pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1382                          kvm->arch.cur_tsc_generation, data);
1383         }
1384
1385         /*
1386          * We also track th most recent recorded KHZ, write and time to
1387          * allow the matching interval to be extended at each write.
1388          */
1389         kvm->arch.last_tsc_nsec = ns;
1390         kvm->arch.last_tsc_write = data;
1391         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1392
1393         vcpu->arch.last_guest_tsc = data;
1394
1395         /* Keep track of which generation this VCPU has synchronized to */
1396         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1397         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1398         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1399
1400         if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1401                 update_ia32_tsc_adjust_msr(vcpu, offset);
1402         kvm_x86_ops->write_tsc_offset(vcpu, offset);
1403         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1404
1405         spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1406         if (!matched) {
1407                 kvm->arch.nr_vcpus_matched_tsc = 0;
1408         } else if (!already_matched) {
1409                 kvm->arch.nr_vcpus_matched_tsc++;
1410         }
1411
1412         kvm_track_tsc_matching(vcpu);
1413         spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1414 }
1415
1416 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1417
1418 #ifdef CONFIG_X86_64
1419
1420 static cycle_t read_tsc(void)
1421 {
1422         cycle_t ret;
1423         u64 last;
1424
1425         /*
1426          * Empirically, a fence (of type that depends on the CPU)
1427          * before rdtsc is enough to ensure that rdtsc is ordered
1428          * with respect to loads.  The various CPU manuals are unclear
1429          * as to whether rdtsc can be reordered with later loads,
1430          * but no one has ever seen it happen.
1431          */
1432         rdtsc_barrier();
1433         ret = (cycle_t)vget_cycles();
1434
1435         last = pvclock_gtod_data.clock.cycle_last;
1436
1437         if (likely(ret >= last))
1438                 return ret;
1439
1440         /*
1441          * GCC likes to generate cmov here, but this branch is extremely
1442          * predictable (it's just a funciton of time and the likely is
1443          * very likely) and there's a data dependence, so force GCC
1444          * to generate a branch instead.  I don't barrier() because
1445          * we don't actually need a barrier, and if this function
1446          * ever gets inlined it will generate worse code.
1447          */
1448         asm volatile ("");
1449         return last;
1450 }
1451
1452 static inline u64 vgettsc(cycle_t *cycle_now)
1453 {
1454         long v;
1455         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1456
1457         *cycle_now = read_tsc();
1458
1459         v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1460         return v * gtod->clock.mult;
1461 }
1462
1463 static int do_monotonic_boot(s64 *t, cycle_t *cycle_now)
1464 {
1465         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1466         unsigned long seq;
1467         int mode;
1468         u64 ns;
1469
1470         do {
1471                 seq = read_seqcount_begin(&gtod->seq);
1472                 mode = gtod->clock.vclock_mode;
1473                 ns = gtod->nsec_base;
1474                 ns += vgettsc(cycle_now);
1475                 ns >>= gtod->clock.shift;
1476                 ns += gtod->boot_ns;
1477         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1478         *t = ns;
1479
1480         return mode;
1481 }
1482
1483 /* returns true if host is using tsc clocksource */
1484 static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now)
1485 {
1486         /* checked again under seqlock below */
1487         if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1488                 return false;
1489
1490         return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC;
1491 }
1492 #endif
1493
1494 /*
1495  *
1496  * Assuming a stable TSC across physical CPUS, and a stable TSC
1497  * across virtual CPUs, the following condition is possible.
1498  * Each numbered line represents an event visible to both
1499  * CPUs at the next numbered event.
1500  *
1501  * "timespecX" represents host monotonic time. "tscX" represents
1502  * RDTSC value.
1503  *
1504  *              VCPU0 on CPU0           |       VCPU1 on CPU1
1505  *
1506  * 1.  read timespec0,tsc0
1507  * 2.                                   | timespec1 = timespec0 + N
1508  *                                      | tsc1 = tsc0 + M
1509  * 3. transition to guest               | transition to guest
1510  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1511  * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
1512  *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1513  *
1514  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1515  *
1516  *      - ret0 < ret1
1517  *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1518  *              ...
1519  *      - 0 < N - M => M < N
1520  *
1521  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1522  * always the case (the difference between two distinct xtime instances
1523  * might be smaller then the difference between corresponding TSC reads,
1524  * when updating guest vcpus pvclock areas).
1525  *
1526  * To avoid that problem, do not allow visibility of distinct
1527  * system_timestamp/tsc_timestamp values simultaneously: use a master
1528  * copy of host monotonic time values. Update that master copy
1529  * in lockstep.
1530  *
1531  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1532  *
1533  */
1534
1535 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1536 {
1537 #ifdef CONFIG_X86_64
1538         struct kvm_arch *ka = &kvm->arch;
1539         int vclock_mode;
1540         bool host_tsc_clocksource, vcpus_matched;
1541
1542         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1543                         atomic_read(&kvm->online_vcpus));
1544
1545         /*
1546          * If the host uses TSC clock, then passthrough TSC as stable
1547          * to the guest.
1548          */
1549         host_tsc_clocksource = kvm_get_time_and_clockread(
1550                                         &ka->master_kernel_ns,
1551                                         &ka->master_cycle_now);
1552
1553         ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1554                                 && !backwards_tsc_observed
1555                                 && !ka->boot_vcpu_runs_old_kvmclock;
1556
1557         if (ka->use_master_clock)
1558                 atomic_set(&kvm_guest_has_master_clock, 1);
1559
1560         vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1561         trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1562                                         vcpus_matched);
1563 #endif
1564 }
1565
1566 static void kvm_gen_update_masterclock(struct kvm *kvm)
1567 {
1568 #ifdef CONFIG_X86_64
1569         int i;
1570         struct kvm_vcpu *vcpu;
1571         struct kvm_arch *ka = &kvm->arch;
1572
1573         spin_lock(&ka->pvclock_gtod_sync_lock);
1574         kvm_make_mclock_inprogress_request(kvm);
1575         /* no guest entries from this point */
1576         pvclock_update_vm_gtod_copy(kvm);
1577
1578         kvm_for_each_vcpu(i, vcpu, kvm)
1579                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1580
1581         /* guest entries allowed */
1582         kvm_for_each_vcpu(i, vcpu, kvm)
1583                 clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
1584
1585         spin_unlock(&ka->pvclock_gtod_sync_lock);
1586 #endif
1587 }
1588
1589 static int kvm_guest_time_update(struct kvm_vcpu *v)
1590 {
1591         unsigned long flags, this_tsc_khz;
1592         struct kvm_vcpu_arch *vcpu = &v->arch;
1593         struct kvm_arch *ka = &v->kvm->arch;
1594         s64 kernel_ns;
1595         u64 tsc_timestamp, host_tsc;
1596         struct pvclock_vcpu_time_info guest_hv_clock;
1597         u8 pvclock_flags;
1598         bool use_master_clock;
1599
1600         kernel_ns = 0;
1601         host_tsc = 0;
1602
1603         /*
1604          * If the host uses TSC clock, then passthrough TSC as stable
1605          * to the guest.
1606          */
1607         spin_lock(&ka->pvclock_gtod_sync_lock);
1608         use_master_clock = ka->use_master_clock;
1609         if (use_master_clock) {
1610                 host_tsc = ka->master_cycle_now;
1611                 kernel_ns = ka->master_kernel_ns;
1612         }
1613         spin_unlock(&ka->pvclock_gtod_sync_lock);
1614
1615         /* Keep irq disabled to prevent changes to the clock */
1616         local_irq_save(flags);
1617         this_tsc_khz = __this_cpu_read(cpu_tsc_khz);
1618         if (unlikely(this_tsc_khz == 0)) {
1619                 local_irq_restore(flags);
1620                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1621                 return 1;
1622         }
1623         if (!use_master_clock) {
1624                 host_tsc = native_read_tsc();
1625                 kernel_ns = get_kernel_ns();
1626         }
1627
1628         tsc_timestamp = kvm_x86_ops->read_l1_tsc(v, host_tsc);
1629
1630         /*
1631          * We may have to catch up the TSC to match elapsed wall clock
1632          * time for two reasons, even if kvmclock is used.
1633          *   1) CPU could have been running below the maximum TSC rate
1634          *   2) Broken TSC compensation resets the base at each VCPU
1635          *      entry to avoid unknown leaps of TSC even when running
1636          *      again on the same CPU.  This may cause apparent elapsed
1637          *      time to disappear, and the guest to stand still or run
1638          *      very slowly.
1639          */
1640         if (vcpu->tsc_catchup) {
1641                 u64 tsc = compute_guest_tsc(v, kernel_ns);
1642                 if (tsc > tsc_timestamp) {
1643                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1644                         tsc_timestamp = tsc;
1645                 }
1646         }
1647
1648         local_irq_restore(flags);
1649
1650         if (!vcpu->pv_time_enabled)
1651                 return 0;
1652
1653         if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1654                 kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
1655                                    &vcpu->hv_clock.tsc_shift,
1656                                    &vcpu->hv_clock.tsc_to_system_mul);
1657                 vcpu->hw_tsc_khz = this_tsc_khz;
1658         }
1659
1660         /* With all the info we got, fill in the values */
1661         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1662         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1663         vcpu->last_guest_tsc = tsc_timestamp;
1664
1665         if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1666                 &guest_hv_clock, sizeof(guest_hv_clock))))
1667                 return 0;
1668
1669         /* This VCPU is paused, but it's legal for a guest to read another
1670          * VCPU's kvmclock, so we really have to follow the specification where
1671          * it says that version is odd if data is being modified, and even after
1672          * it is consistent.
1673          *
1674          * Version field updates must be kept separate.  This is because
1675          * kvm_write_guest_cached might use a "rep movs" instruction, and
1676          * writes within a string instruction are weakly ordered.  So there
1677          * are three writes overall.
1678          *
1679          * As a small optimization, only write the version field in the first
1680          * and third write.  The vcpu->pv_time cache is still valid, because the
1681          * version field is the first in the struct.
1682          */
1683         BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
1684
1685         vcpu->hv_clock.version = guest_hv_clock.version + 1;
1686         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1687                                 &vcpu->hv_clock,
1688                                 sizeof(vcpu->hv_clock.version));
1689
1690         smp_wmb();
1691
1692         /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1693         pvclock_flags = (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1694
1695         if (vcpu->pvclock_set_guest_stopped_request) {
1696                 pvclock_flags |= PVCLOCK_GUEST_STOPPED;
1697                 vcpu->pvclock_set_guest_stopped_request = false;
1698         }
1699
1700         /* If the host uses TSC clocksource, then it is stable */
1701         if (use_master_clock)
1702                 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1703
1704         vcpu->hv_clock.flags = pvclock_flags;
1705
1706         trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
1707
1708         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1709                                 &vcpu->hv_clock,
1710                                 sizeof(vcpu->hv_clock));
1711
1712         smp_wmb();
1713
1714         vcpu->hv_clock.version++;
1715         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1716                                 &vcpu->hv_clock,
1717                                 sizeof(vcpu->hv_clock.version));
1718         return 0;
1719 }
1720
1721 /*
1722  * kvmclock updates which are isolated to a given vcpu, such as
1723  * vcpu->cpu migration, should not allow system_timestamp from
1724  * the rest of the vcpus to remain static. Otherwise ntp frequency
1725  * correction applies to one vcpu's system_timestamp but not
1726  * the others.
1727  *
1728  * So in those cases, request a kvmclock update for all vcpus.
1729  * We need to rate-limit these requests though, as they can
1730  * considerably slow guests that have a large number of vcpus.
1731  * The time for a remote vcpu to update its kvmclock is bound
1732  * by the delay we use to rate-limit the updates.
1733  */
1734
1735 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
1736
1737 static void kvmclock_update_fn(struct work_struct *work)
1738 {
1739         int i;
1740         struct delayed_work *dwork = to_delayed_work(work);
1741         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1742                                            kvmclock_update_work);
1743         struct kvm *kvm = container_of(ka, struct kvm, arch);
1744         struct kvm_vcpu *vcpu;
1745
1746         kvm_for_each_vcpu(i, vcpu, kvm) {
1747                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1748                 kvm_vcpu_kick(vcpu);
1749         }
1750 }
1751
1752 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1753 {
1754         struct kvm *kvm = v->kvm;
1755
1756         kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1757         schedule_delayed_work(&kvm->arch.kvmclock_update_work,
1758                                         KVMCLOCK_UPDATE_DELAY);
1759 }
1760
1761 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
1762
1763 static void kvmclock_sync_fn(struct work_struct *work)
1764 {
1765         struct delayed_work *dwork = to_delayed_work(work);
1766         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1767                                            kvmclock_sync_work);
1768         struct kvm *kvm = container_of(ka, struct kvm, arch);
1769
1770         schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
1771         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
1772                                         KVMCLOCK_SYNC_PERIOD);
1773 }
1774
1775 static bool msr_mtrr_valid(unsigned msr)
1776 {
1777         switch (msr) {
1778         case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
1779         case MSR_MTRRfix64K_00000:
1780         case MSR_MTRRfix16K_80000:
1781         case MSR_MTRRfix16K_A0000:
1782         case MSR_MTRRfix4K_C0000:
1783         case MSR_MTRRfix4K_C8000:
1784         case MSR_MTRRfix4K_D0000:
1785         case MSR_MTRRfix4K_D8000:
1786         case MSR_MTRRfix4K_E0000:
1787         case MSR_MTRRfix4K_E8000:
1788         case MSR_MTRRfix4K_F0000:
1789         case MSR_MTRRfix4K_F8000:
1790         case MSR_MTRRdefType:
1791         case MSR_IA32_CR_PAT:
1792                 return true;
1793         case 0x2f8:
1794                 return true;
1795         }
1796         return false;
1797 }
1798
1799 static bool valid_pat_type(unsigned t)
1800 {
1801         return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1802 }
1803
1804 static bool valid_mtrr_type(unsigned t)
1805 {
1806         return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
1807 }
1808
1809 bool kvm_mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1810 {
1811         int i;
1812         u64 mask;
1813
1814         if (!msr_mtrr_valid(msr))
1815                 return false;
1816
1817         if (msr == MSR_IA32_CR_PAT) {
1818                 for (i = 0; i < 8; i++)
1819                         if (!valid_pat_type((data >> (i * 8)) & 0xff))
1820                                 return false;
1821                 return true;
1822         } else if (msr == MSR_MTRRdefType) {
1823                 if (data & ~0xcff)
1824                         return false;
1825                 return valid_mtrr_type(data & 0xff);
1826         } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
1827                 for (i = 0; i < 8 ; i++)
1828                         if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
1829                                 return false;
1830                 return true;
1831         }
1832
1833         /* variable MTRRs */
1834         WARN_ON(!(msr >= 0x200 && msr < 0x200 + 2 * KVM_NR_VAR_MTRR));
1835
1836         mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
1837         if ((msr & 1) == 0) {
1838                 /* MTRR base */
1839                 if (!valid_mtrr_type(data & 0xff))
1840                         return false;
1841                 mask |= 0xf00;
1842         } else
1843                 /* MTRR mask */
1844                 mask |= 0x7ff;
1845         if (data & mask) {
1846                 kvm_inject_gp(vcpu, 0);
1847                 return false;
1848         }
1849
1850         return true;
1851 }
1852 EXPORT_SYMBOL_GPL(kvm_mtrr_valid);
1853
1854 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1855 {
1856         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1857
1858         if (!kvm_mtrr_valid(vcpu, msr, data))
1859                 return 1;
1860
1861         if (msr == MSR_MTRRdefType) {
1862                 vcpu->arch.mtrr_state.def_type = data;
1863                 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
1864         } else if (msr == MSR_MTRRfix64K_00000)
1865                 p[0] = data;
1866         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1867                 p[1 + msr - MSR_MTRRfix16K_80000] = data;
1868         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1869                 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
1870         else if (msr == MSR_IA32_CR_PAT)
1871                 vcpu->arch.pat = data;
1872         else {  /* Variable MTRRs */
1873                 int idx, is_mtrr_mask;
1874                 u64 *pt;
1875
1876                 idx = (msr - 0x200) / 2;
1877                 is_mtrr_mask = msr - 0x200 - 2 * idx;
1878                 if (!is_mtrr_mask)
1879                         pt =
1880                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1881                 else
1882                         pt =
1883                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1884                 *pt = data;
1885         }
1886
1887         kvm_mmu_reset_context(vcpu);
1888         return 0;
1889 }
1890
1891 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1892 {
1893         u64 mcg_cap = vcpu->arch.mcg_cap;
1894         unsigned bank_num = mcg_cap & 0xff;
1895
1896         switch (msr) {
1897         case MSR_IA32_MCG_STATUS:
1898                 vcpu->arch.mcg_status = data;
1899                 break;
1900         case MSR_IA32_MCG_CTL:
1901                 if (!(mcg_cap & MCG_CTL_P))
1902                         return 1;
1903                 if (data != 0 && data != ~(u64)0)
1904                         return -1;
1905                 vcpu->arch.mcg_ctl = data;
1906                 break;
1907         default:
1908                 if (msr >= MSR_IA32_MC0_CTL &&
1909                     msr < MSR_IA32_MCx_CTL(bank_num)) {
1910                         u32 offset = msr - MSR_IA32_MC0_CTL;
1911                         /* only 0 or all 1s can be written to IA32_MCi_CTL
1912                          * some Linux kernels though clear bit 10 in bank 4 to
1913                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1914                          * this to avoid an uncatched #GP in the guest
1915                          */
1916                         if ((offset & 0x3) == 0 &&
1917                             data != 0 && (data | (1 << 10)) != ~(u64)0)
1918                                 return -1;
1919                         vcpu->arch.mce_banks[offset] = data;
1920                         break;
1921                 }
1922                 return 1;
1923         }
1924         return 0;
1925 }
1926
1927 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1928 {
1929         struct kvm *kvm = vcpu->kvm;
1930         int lm = is_long_mode(vcpu);
1931         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1932                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1933         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1934                 : kvm->arch.xen_hvm_config.blob_size_32;
1935         u32 page_num = data & ~PAGE_MASK;
1936         u64 page_addr = data & PAGE_MASK;
1937         u8 *page;
1938         int r;
1939
1940         r = -E2BIG;
1941         if (page_num >= blob_size)
1942                 goto out;
1943         r = -ENOMEM;
1944         page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
1945         if (IS_ERR(page)) {
1946                 r = PTR_ERR(page);
1947                 goto out;
1948         }
1949         if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1950                 goto out_free;
1951         r = 0;
1952 out_free:
1953         kfree(page);
1954 out:
1955         return r;
1956 }
1957
1958 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1959 {
1960         return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1961 }
1962
1963 static bool kvm_hv_msr_partition_wide(u32 msr)
1964 {
1965         bool r = false;
1966         switch (msr) {
1967         case HV_X64_MSR_GUEST_OS_ID:
1968         case HV_X64_MSR_HYPERCALL:
1969         case HV_X64_MSR_REFERENCE_TSC:
1970         case HV_X64_MSR_TIME_REF_COUNT:
1971                 r = true;
1972                 break;
1973         }
1974
1975         return r;
1976 }
1977
1978 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1979 {
1980         struct kvm *kvm = vcpu->kvm;
1981
1982         switch (msr) {
1983         case HV_X64_MSR_GUEST_OS_ID:
1984                 kvm->arch.hv_guest_os_id = data;
1985                 /* setting guest os id to zero disables hypercall page */
1986                 if (!kvm->arch.hv_guest_os_id)
1987                         kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1988                 break;
1989         case HV_X64_MSR_HYPERCALL: {
1990                 u64 gfn;
1991                 unsigned long addr;
1992                 u8 instructions[4];
1993
1994                 /* if guest os id is not set hypercall should remain disabled */
1995                 if (!kvm->arch.hv_guest_os_id)
1996                         break;
1997                 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1998                         kvm->arch.hv_hypercall = data;
1999                         break;
2000                 }
2001                 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
2002                 addr = gfn_to_hva(kvm, gfn);
2003                 if (kvm_is_error_hva(addr))
2004                         return 1;
2005                 kvm_x86_ops->patch_hypercall(vcpu, instructions);
2006                 ((unsigned char *)instructions)[3] = 0xc3; /* ret */
2007                 if (__copy_to_user((void __user *)addr, instructions, 4))
2008                         return 1;
2009                 kvm->arch.hv_hypercall = data;
2010                 mark_page_dirty(kvm, gfn);
2011                 break;
2012         }
2013         case HV_X64_MSR_REFERENCE_TSC: {
2014                 u64 gfn;
2015                 HV_REFERENCE_TSC_PAGE tsc_ref;
2016                 memset(&tsc_ref, 0, sizeof(tsc_ref));
2017                 kvm->arch.hv_tsc_page = data;
2018                 if (!(data & HV_X64_MSR_TSC_REFERENCE_ENABLE))
2019                         break;
2020                 gfn = data >> HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT;
2021                 if (kvm_write_guest(kvm, gfn << HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT,
2022                         &tsc_ref, sizeof(tsc_ref)))
2023                         return 1;
2024                 mark_page_dirty(kvm, gfn);
2025                 break;
2026         }
2027         default:
2028                 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
2029                             "data 0x%llx\n", msr, data);
2030                 return 1;
2031         }
2032         return 0;
2033 }
2034
2035 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
2036 {
2037         switch (msr) {
2038         case HV_X64_MSR_APIC_ASSIST_PAGE: {
2039                 u64 gfn;
2040                 unsigned long addr;
2041
2042                 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
2043                         vcpu->arch.hv_vapic = data;
2044                         if (kvm_lapic_enable_pv_eoi(vcpu, 0))
2045                                 return 1;
2046                         break;
2047                 }
2048                 gfn = data >> HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT;
2049                 addr = gfn_to_hva(vcpu->kvm, gfn);
2050                 if (kvm_is_error_hva(addr))
2051                         return 1;
2052                 if (__clear_user((void __user *)addr, PAGE_SIZE))
2053                         return 1;
2054                 vcpu->arch.hv_vapic = data;
2055                 mark_page_dirty(vcpu->kvm, gfn);
2056                 if (kvm_lapic_enable_pv_eoi(vcpu, gfn_to_gpa(gfn) | KVM_MSR_ENABLED))
2057                         return 1;
2058                 break;
2059         }
2060         case HV_X64_MSR_EOI:
2061                 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
2062         case HV_X64_MSR_ICR:
2063                 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
2064         case HV_X64_MSR_TPR:
2065                 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
2066         default:
2067                 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
2068                             "data 0x%llx\n", msr, data);
2069                 return 1;
2070         }
2071
2072         return 0;
2073 }
2074
2075 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2076 {
2077         gpa_t gpa = data & ~0x3f;
2078
2079         /* Bits 2:5 are reserved, Should be zero */
2080         if (data & 0x3c)
2081                 return 1;
2082
2083         vcpu->arch.apf.msr_val = data;
2084
2085         if (!(data & KVM_ASYNC_PF_ENABLED)) {
2086                 kvm_clear_async_pf_completion_queue(vcpu);
2087                 kvm_async_pf_hash_reset(vcpu);
2088                 return 0;
2089         }
2090
2091         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2092                                         sizeof(u32)))
2093                 return 1;
2094
2095         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2096         kvm_async_pf_wakeup_all(vcpu);
2097         return 0;
2098 }
2099
2100 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2101 {
2102         vcpu->arch.pv_time_enabled = false;
2103 }
2104
2105 static void accumulate_steal_time(struct kvm_vcpu *vcpu)
2106 {
2107         u64 delta;
2108
2109         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2110                 return;
2111
2112         delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
2113         vcpu->arch.st.last_steal = current->sched_info.run_delay;
2114         vcpu->arch.st.accum_steal = delta;
2115 }
2116
2117 static void record_steal_time(struct kvm_vcpu *vcpu)
2118 {
2119         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2120                 return;
2121
2122         if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2123                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2124                 return;
2125
2126         vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
2127         vcpu->arch.st.steal.version += 2;
2128         vcpu->arch.st.accum_steal = 0;
2129
2130         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2131                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2132 }
2133
2134 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2135 {
2136         bool pr = false;
2137         u32 msr = msr_info->index;
2138         u64 data = msr_info->data;
2139
2140         switch (msr) {
2141         case MSR_AMD64_NB_CFG:
2142         case MSR_IA32_UCODE_REV:
2143         case MSR_IA32_UCODE_WRITE:
2144         case MSR_VM_HSAVE_PA:
2145         case MSR_AMD64_PATCH_LOADER:
2146         case MSR_AMD64_BU_CFG2:
2147                 break;
2148
2149         case MSR_EFER:
2150                 return set_efer(vcpu, data);
2151         case MSR_K7_HWCR:
2152                 data &= ~(u64)0x40;     /* ignore flush filter disable */
2153                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
2154                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
2155                 data &= ~(u64)0x40000;  /* ignore Mc status write enable */
2156                 if (data != 0) {
2157                         vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2158                                     data);
2159                         return 1;
2160                 }
2161                 break;
2162         case MSR_FAM10H_MMIO_CONF_BASE:
2163                 if (data != 0) {
2164                         vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2165                                     "0x%llx\n", data);
2166                         return 1;
2167                 }
2168                 break;
2169         case MSR_IA32_DEBUGCTLMSR:
2170                 if (!data) {
2171                         /* We support the non-activated case already */
2172                         break;
2173                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2174                         /* Values other than LBR and BTF are vendor-specific,
2175                            thus reserved and should throw a #GP */
2176                         return 1;
2177                 }
2178                 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2179                             __func__, data);
2180                 break;
2181         case 0x200 ... 0x2ff:
2182                 return set_msr_mtrr(vcpu, msr, data);
2183         case MSR_IA32_APICBASE:
2184                 return kvm_set_apic_base(vcpu, msr_info);
2185         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2186                 return kvm_x2apic_msr_write(vcpu, msr, data);
2187         case MSR_IA32_TSCDEADLINE:
2188                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2189                 break;
2190         case MSR_IA32_TSC_ADJUST:
2191                 if (guest_cpuid_has_tsc_adjust(vcpu)) {
2192                         if (!msr_info->host_initiated) {
2193                                 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2194                                 kvm_x86_ops->adjust_tsc_offset(vcpu, adj, true);
2195                         }
2196                         vcpu->arch.ia32_tsc_adjust_msr = data;
2197                 }
2198                 break;
2199         case MSR_IA32_MISC_ENABLE:
2200                 vcpu->arch.ia32_misc_enable_msr = data;
2201                 break;
2202         case MSR_KVM_WALL_CLOCK_NEW:
2203         case MSR_KVM_WALL_CLOCK:
2204                 vcpu->kvm->arch.wall_clock = data;
2205                 kvm_write_wall_clock(vcpu->kvm, data);
2206                 break;
2207         case MSR_KVM_SYSTEM_TIME_NEW:
2208         case MSR_KVM_SYSTEM_TIME: {
2209                 u64 gpa_offset;
2210                 struct kvm_arch *ka = &vcpu->kvm->arch;
2211
2212                 kvmclock_reset(vcpu);
2213
2214                 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2215                         bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2216
2217                         if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2218                                 set_bit(KVM_REQ_MASTERCLOCK_UPDATE,
2219                                         &vcpu->requests);
2220
2221                         ka->boot_vcpu_runs_old_kvmclock = tmp;
2222                 }
2223
2224                 vcpu->arch.time = data;
2225                 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2226
2227                 /* we verify if the enable bit is set... */
2228                 if (!(data & 1))
2229                         break;
2230
2231                 gpa_offset = data & ~(PAGE_MASK | 1);
2232
2233                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2234                      &vcpu->arch.pv_time, data & ~1ULL,
2235                      sizeof(struct pvclock_vcpu_time_info)))
2236                         vcpu->arch.pv_time_enabled = false;
2237                 else
2238                         vcpu->arch.pv_time_enabled = true;
2239
2240                 break;
2241         }
2242         case MSR_KVM_ASYNC_PF_EN:
2243                 if (kvm_pv_enable_async_pf(vcpu, data))
2244                         return 1;
2245                 break;
2246         case MSR_KVM_STEAL_TIME:
2247
2248                 if (unlikely(!sched_info_on()))
2249                         return 1;
2250
2251                 if (data & KVM_STEAL_RESERVED_MASK)
2252                         return 1;
2253
2254                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2255                                                 data & KVM_STEAL_VALID_BITS,
2256                                                 sizeof(struct kvm_steal_time)))
2257                         return 1;
2258
2259                 vcpu->arch.st.msr_val = data;
2260
2261                 if (!(data & KVM_MSR_ENABLED))
2262                         break;
2263
2264                 vcpu->arch.st.last_steal = current->sched_info.run_delay;
2265
2266                 preempt_disable();
2267                 accumulate_steal_time(vcpu);
2268                 preempt_enable();
2269
2270                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2271
2272                 break;
2273         case MSR_KVM_PV_EOI_EN:
2274                 if (kvm_lapic_enable_pv_eoi(vcpu, data))
2275                         return 1;
2276                 break;
2277
2278         case MSR_IA32_MCG_CTL:
2279         case MSR_IA32_MCG_STATUS:
2280         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2281                 return set_msr_mce(vcpu, msr, data);
2282
2283         /* Performance counters are not protected by a CPUID bit,
2284          * so we should check all of them in the generic path for the sake of
2285          * cross vendor migration.
2286          * Writing a zero into the event select MSRs disables them,
2287          * which we perfectly emulate ;-). Any other value should be at least
2288          * reported, some guests depend on them.
2289          */
2290         case MSR_K7_EVNTSEL0:
2291         case MSR_K7_EVNTSEL1:
2292         case MSR_K7_EVNTSEL2:
2293         case MSR_K7_EVNTSEL3:
2294                 if (data != 0)
2295                         vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
2296                                     "0x%x data 0x%llx\n", msr, data);
2297                 break;
2298         /* at least RHEL 4 unconditionally writes to the perfctr registers,
2299          * so we ignore writes to make it happy.
2300          */
2301         case MSR_K7_PERFCTR0:
2302         case MSR_K7_PERFCTR1:
2303         case MSR_K7_PERFCTR2:
2304         case MSR_K7_PERFCTR3:
2305                 vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
2306                             "0x%x data 0x%llx\n", msr, data);
2307                 break;
2308         case MSR_P6_PERFCTR0:
2309         case MSR_P6_PERFCTR1:
2310                 pr = true;
2311         case MSR_P6_EVNTSEL0:
2312         case MSR_P6_EVNTSEL1:
2313                 if (kvm_pmu_msr(vcpu, msr))
2314                         return kvm_pmu_set_msr(vcpu, msr_info);
2315
2316                 if (pr || data != 0)
2317                         vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2318                                     "0x%x data 0x%llx\n", msr, data);
2319                 break;
2320         case MSR_K7_CLK_CTL:
2321                 /*
2322                  * Ignore all writes to this no longer documented MSR.
2323                  * Writes are only relevant for old K7 processors,
2324                  * all pre-dating SVM, but a recommended workaround from
2325                  * AMD for these chips. It is possible to specify the
2326                  * affected processor models on the command line, hence
2327                  * the need to ignore the workaround.
2328                  */
2329                 break;
2330         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2331                 if (kvm_hv_msr_partition_wide(msr)) {
2332                         int r;
2333                         mutex_lock(&vcpu->kvm->lock);
2334                         r = set_msr_hyperv_pw(vcpu, msr, data);
2335                         mutex_unlock(&vcpu->kvm->lock);
2336                         return r;
2337                 } else
2338                         return set_msr_hyperv(vcpu, msr, data);
2339                 break;
2340         case MSR_IA32_BBL_CR_CTL3:
2341                 /* Drop writes to this legacy MSR -- see rdmsr
2342                  * counterpart for further detail.
2343                  */
2344                 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
2345                 break;
2346         case MSR_AMD64_OSVW_ID_LENGTH:
2347                 if (!guest_cpuid_has_osvw(vcpu))
2348                         return 1;
2349                 vcpu->arch.osvw.length = data;
2350                 break;
2351         case MSR_AMD64_OSVW_STATUS:
2352                 if (!guest_cpuid_has_osvw(vcpu))
2353                         return 1;
2354                 vcpu->arch.osvw.status = data;
2355                 break;
2356         default:
2357                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2358                         return xen_hvm_config(vcpu, data);
2359                 if (kvm_pmu_msr(vcpu, msr))
2360                         return kvm_pmu_set_msr(vcpu, msr_info);
2361                 if (!ignore_msrs) {
2362                         vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
2363                                     msr, data);
2364                         return 1;
2365                 } else {
2366                         vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
2367                                     msr, data);
2368                         break;
2369                 }
2370         }
2371         return 0;
2372 }
2373 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2374
2375
2376 /*
2377  * Reads an msr value (of 'msr_index') into 'pdata'.
2378  * Returns 0 on success, non-0 otherwise.
2379  * Assumes vcpu_load() was already called.
2380  */
2381 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2382 {
2383         return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
2384 }
2385 EXPORT_SYMBOL_GPL(kvm_get_msr);
2386
2387 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2388 {
2389         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
2390
2391         if (!msr_mtrr_valid(msr))
2392                 return 1;
2393
2394         if (msr == MSR_MTRRdefType)
2395                 *pdata = vcpu->arch.mtrr_state.def_type +
2396                          (vcpu->arch.mtrr_state.enabled << 10);
2397         else if (msr == MSR_MTRRfix64K_00000)
2398                 *pdata = p[0];
2399         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
2400                 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
2401         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
2402                 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
2403         else if (msr == MSR_IA32_CR_PAT)
2404                 *pdata = vcpu->arch.pat;
2405         else {  /* Variable MTRRs */
2406                 int idx, is_mtrr_mask;
2407                 u64 *pt;
2408
2409                 idx = (msr - 0x200) / 2;
2410                 is_mtrr_mask = msr - 0x200 - 2 * idx;
2411                 if (!is_mtrr_mask)
2412                         pt =
2413                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
2414                 else
2415                         pt =
2416                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
2417                 *pdata = *pt;
2418         }
2419
2420         return 0;
2421 }
2422
2423 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2424 {
2425         u64 data;
2426         u64 mcg_cap = vcpu->arch.mcg_cap;
2427         unsigned bank_num = mcg_cap & 0xff;
2428
2429         switch (msr) {
2430         case MSR_IA32_P5_MC_ADDR:
2431         case MSR_IA32_P5_MC_TYPE:
2432                 data = 0;
2433                 break;
2434         case MSR_IA32_MCG_CAP:
2435                 data = vcpu->arch.mcg_cap;
2436                 break;
2437         case MSR_IA32_MCG_CTL:
2438                 if (!(mcg_cap & MCG_CTL_P))
2439                         return 1;
2440                 data = vcpu->arch.mcg_ctl;
2441                 break;
2442         case MSR_IA32_MCG_STATUS:
2443                 data = vcpu->arch.mcg_status;
2444                 break;
2445         default:
2446                 if (msr >= MSR_IA32_MC0_CTL &&
2447                     msr < MSR_IA32_MCx_CTL(bank_num)) {
2448                         u32 offset = msr - MSR_IA32_MC0_CTL;
2449                         data = vcpu->arch.mce_banks[offset];
2450                         break;
2451                 }
2452                 return 1;
2453         }
2454         *pdata = data;
2455         return 0;
2456 }
2457
2458 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2459 {
2460         u64 data = 0;
2461         struct kvm *kvm = vcpu->kvm;
2462
2463         switch (msr) {
2464         case HV_X64_MSR_GUEST_OS_ID:
2465                 data = kvm->arch.hv_guest_os_id;
2466                 break;
2467         case HV_X64_MSR_HYPERCALL:
2468                 data = kvm->arch.hv_hypercall;
2469                 break;
2470         case HV_X64_MSR_TIME_REF_COUNT: {
2471                 data =
2472                      div_u64(get_kernel_ns() + kvm->arch.kvmclock_offset, 100);
2473                 break;
2474         }
2475         case HV_X64_MSR_REFERENCE_TSC:
2476                 data = kvm->arch.hv_tsc_page;
2477                 break;
2478         default:
2479                 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2480                 return 1;
2481         }
2482
2483         *pdata = data;
2484         return 0;
2485 }
2486
2487 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2488 {
2489         u64 data = 0;
2490
2491         switch (msr) {
2492         case HV_X64_MSR_VP_INDEX: {
2493                 int r;
2494                 struct kvm_vcpu *v;
2495                 kvm_for_each_vcpu(r, v, vcpu->kvm) {
2496                         if (v == vcpu) {
2497                                 data = r;
2498                                 break;
2499                         }
2500                 }
2501                 break;
2502         }
2503         case HV_X64_MSR_EOI:
2504                 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
2505         case HV_X64_MSR_ICR:
2506                 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
2507         case HV_X64_MSR_TPR:
2508                 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
2509         case HV_X64_MSR_APIC_ASSIST_PAGE:
2510                 data = vcpu->arch.hv_vapic;
2511                 break;
2512         default:
2513                 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2514                 return 1;
2515         }
2516         *pdata = data;
2517         return 0;
2518 }
2519
2520 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2521 {
2522         u64 data;
2523
2524         switch (msr) {
2525         case MSR_IA32_PLATFORM_ID:
2526         case MSR_IA32_EBL_CR_POWERON:
2527         case MSR_IA32_DEBUGCTLMSR:
2528         case MSR_IA32_LASTBRANCHFROMIP:
2529         case MSR_IA32_LASTBRANCHTOIP:
2530         case MSR_IA32_LASTINTFROMIP:
2531         case MSR_IA32_LASTINTTOIP:
2532         case MSR_K8_SYSCFG:
2533         case MSR_K7_HWCR:
2534         case MSR_VM_HSAVE_PA:
2535         case MSR_K7_EVNTSEL0:
2536         case MSR_K7_EVNTSEL1:
2537         case MSR_K7_EVNTSEL2:
2538         case MSR_K7_EVNTSEL3:
2539         case MSR_K7_PERFCTR0:
2540         case MSR_K7_PERFCTR1:
2541         case MSR_K7_PERFCTR2:
2542         case MSR_K7_PERFCTR3:
2543         case MSR_K8_INT_PENDING_MSG:
2544         case MSR_AMD64_NB_CFG:
2545         case MSR_FAM10H_MMIO_CONF_BASE:
2546         case MSR_AMD64_BU_CFG2:
2547                 data = 0;
2548                 break;
2549         case MSR_P6_PERFCTR0:
2550         case MSR_P6_PERFCTR1:
2551         case MSR_P6_EVNTSEL0:
2552         case MSR_P6_EVNTSEL1:
2553                 if (kvm_pmu_msr(vcpu, msr))
2554                         return kvm_pmu_get_msr(vcpu, msr, pdata);
2555                 data = 0;
2556                 break;
2557         case MSR_IA32_UCODE_REV:
2558                 data = 0x100000000ULL;
2559                 break;
2560         case MSR_MTRRcap:
2561                 data = 0x500 | KVM_NR_VAR_MTRR;
2562                 break;
2563         case 0x200 ... 0x2ff:
2564                 return get_msr_mtrr(vcpu, msr, pdata);
2565         case 0xcd: /* fsb frequency */
2566                 data = 3;
2567                 break;
2568                 /*
2569                  * MSR_EBC_FREQUENCY_ID
2570                  * Conservative value valid for even the basic CPU models.
2571                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2572                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2573                  * and 266MHz for model 3, or 4. Set Core Clock
2574                  * Frequency to System Bus Frequency Ratio to 1 (bits
2575                  * 31:24) even though these are only valid for CPU
2576                  * models > 2, however guests may end up dividing or
2577                  * multiplying by zero otherwise.
2578                  */
2579         case MSR_EBC_FREQUENCY_ID:
2580                 data = 1 << 24;
2581                 break;
2582         case MSR_IA32_APICBASE:
2583                 data = kvm_get_apic_base(vcpu);
2584                 break;
2585         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2586                 return kvm_x2apic_msr_read(vcpu, msr, pdata);
2587                 break;
2588         case MSR_IA32_TSCDEADLINE:
2589                 data = kvm_get_lapic_tscdeadline_msr(vcpu);
2590                 break;
2591         case MSR_IA32_TSC_ADJUST:
2592                 data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2593                 break;
2594         case MSR_IA32_MISC_ENABLE:
2595                 data = vcpu->arch.ia32_misc_enable_msr;
2596                 break;
2597         case MSR_IA32_PERF_STATUS:
2598                 /* TSC increment by tick */
2599                 data = 1000ULL;
2600                 /* CPU multiplier */
2601                 data |= (((uint64_t)4ULL) << 40);
2602                 break;
2603         case MSR_EFER:
2604                 data = vcpu->arch.efer;
2605                 break;
2606         case MSR_KVM_WALL_CLOCK:
2607         case MSR_KVM_WALL_CLOCK_NEW:
2608                 data = vcpu->kvm->arch.wall_clock;
2609                 break;
2610         case MSR_KVM_SYSTEM_TIME:
2611         case MSR_KVM_SYSTEM_TIME_NEW:
2612                 data = vcpu->arch.time;
2613                 break;
2614         case MSR_KVM_ASYNC_PF_EN:
2615                 data = vcpu->arch.apf.msr_val;
2616                 break;
2617         case MSR_KVM_STEAL_TIME:
2618                 data = vcpu->arch.st.msr_val;
2619                 break;
2620         case MSR_KVM_PV_EOI_EN:
2621                 data = vcpu->arch.pv_eoi.msr_val;
2622                 break;
2623         case MSR_IA32_P5_MC_ADDR:
2624         case MSR_IA32_P5_MC_TYPE:
2625         case MSR_IA32_MCG_CAP:
2626         case MSR_IA32_MCG_CTL:
2627         case MSR_IA32_MCG_STATUS:
2628         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2629                 return get_msr_mce(vcpu, msr, pdata);
2630         case MSR_K7_CLK_CTL:
2631                 /*
2632                  * Provide expected ramp-up count for K7. All other
2633                  * are set to zero, indicating minimum divisors for
2634                  * every field.
2635                  *
2636                  * This prevents guest kernels on AMD host with CPU
2637                  * type 6, model 8 and higher from exploding due to
2638                  * the rdmsr failing.
2639                  */
2640                 data = 0x20000000;
2641                 break;
2642         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2643                 if (kvm_hv_msr_partition_wide(msr)) {
2644                         int r;
2645                         mutex_lock(&vcpu->kvm->lock);
2646                         r = get_msr_hyperv_pw(vcpu, msr, pdata);
2647                         mutex_unlock(&vcpu->kvm->lock);
2648                         return r;
2649                 } else
2650                         return get_msr_hyperv(vcpu, msr, pdata);
2651                 break;
2652         case MSR_IA32_BBL_CR_CTL3:
2653                 /* This legacy MSR exists but isn't fully documented in current
2654                  * silicon.  It is however accessed by winxp in very narrow
2655                  * scenarios where it sets bit #19, itself documented as
2656                  * a "reserved" bit.  Best effort attempt to source coherent
2657                  * read data here should the balance of the register be
2658                  * interpreted by the guest:
2659                  *
2660                  * L2 cache control register 3: 64GB range, 256KB size,
2661                  * enabled, latency 0x1, configured
2662                  */
2663                 data = 0xbe702111;
2664                 break;
2665         case MSR_AMD64_OSVW_ID_LENGTH:
2666                 if (!guest_cpuid_has_osvw(vcpu))
2667                         return 1;
2668                 data = vcpu->arch.osvw.length;
2669                 break;
2670         case MSR_AMD64_OSVW_STATUS:
2671                 if (!guest_cpuid_has_osvw(vcpu))
2672                         return 1;
2673                 data = vcpu->arch.osvw.status;
2674                 break;
2675         default:
2676                 if (kvm_pmu_msr(vcpu, msr))
2677                         return kvm_pmu_get_msr(vcpu, msr, pdata);
2678                 if (!ignore_msrs) {
2679                         vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
2680                         return 1;
2681                 } else {
2682                         vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
2683                         data = 0;
2684                 }
2685                 break;
2686         }
2687         *pdata = data;
2688         return 0;
2689 }
2690 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2691
2692 /*
2693  * Read or write a bunch of msrs. All parameters are kernel addresses.
2694  *
2695  * @return number of msrs set successfully.
2696  */
2697 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2698                     struct kvm_msr_entry *entries,
2699                     int (*do_msr)(struct kvm_vcpu *vcpu,
2700                                   unsigned index, u64 *data))
2701 {
2702         int i, idx;
2703
2704         idx = srcu_read_lock(&vcpu->kvm->srcu);
2705         for (i = 0; i < msrs->nmsrs; ++i)
2706                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2707                         break;
2708         srcu_read_unlock(&vcpu->kvm->srcu, idx);
2709
2710         return i;
2711 }
2712
2713 /*
2714  * Read or write a bunch of msrs. Parameters are user addresses.
2715  *
2716  * @return number of msrs set successfully.
2717  */
2718 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2719                   int (*do_msr)(struct kvm_vcpu *vcpu,
2720                                 unsigned index, u64 *data),
2721                   int writeback)
2722 {
2723         struct kvm_msrs msrs;
2724         struct kvm_msr_entry *entries;
2725         int r, n;
2726         unsigned size;
2727
2728         r = -EFAULT;
2729         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2730                 goto out;
2731
2732         r = -E2BIG;
2733         if (msrs.nmsrs >= MAX_IO_MSRS)
2734                 goto out;
2735
2736         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2737         entries = memdup_user(user_msrs->entries, size);
2738         if (IS_ERR(entries)) {
2739                 r = PTR_ERR(entries);
2740                 goto out;
2741         }
2742
2743         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2744         if (r < 0)
2745                 goto out_free;
2746
2747         r = -EFAULT;
2748         if (writeback && copy_to_user(user_msrs->entries, entries, size))
2749                 goto out_free;
2750
2751         r = n;
2752
2753 out_free:
2754         kfree(entries);
2755 out:
2756         return r;
2757 }
2758
2759 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2760 {
2761         int r;
2762
2763         switch (ext) {
2764         case KVM_CAP_IRQCHIP:
2765         case KVM_CAP_HLT:
2766         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2767         case KVM_CAP_SET_TSS_ADDR:
2768         case KVM_CAP_EXT_CPUID:
2769         case KVM_CAP_EXT_EMUL_CPUID:
2770         case KVM_CAP_CLOCKSOURCE:
2771         case KVM_CAP_PIT:
2772         case KVM_CAP_NOP_IO_DELAY:
2773         case KVM_CAP_MP_STATE:
2774         case KVM_CAP_SYNC_MMU:
2775         case KVM_CAP_USER_NMI:
2776         case KVM_CAP_REINJECT_CONTROL:
2777         case KVM_CAP_IRQ_INJECT_STATUS:
2778         case KVM_CAP_IOEVENTFD:
2779         case KVM_CAP_IOEVENTFD_NO_LENGTH:
2780         case KVM_CAP_PIT2:
2781         case KVM_CAP_PIT_STATE2:
2782         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2783         case KVM_CAP_XEN_HVM:
2784         case KVM_CAP_ADJUST_CLOCK:
2785         case KVM_CAP_VCPU_EVENTS:
2786         case KVM_CAP_HYPERV:
2787         case KVM_CAP_HYPERV_VAPIC:
2788         case KVM_CAP_HYPERV_SPIN:
2789         case KVM_CAP_PCI_SEGMENT:
2790         case KVM_CAP_DEBUGREGS:
2791         case KVM_CAP_X86_ROBUST_SINGLESTEP:
2792         case KVM_CAP_XSAVE:
2793         case KVM_CAP_ASYNC_PF:
2794         case KVM_CAP_GET_TSC_KHZ:
2795         case KVM_CAP_KVMCLOCK_CTRL:
2796         case KVM_CAP_READONLY_MEM:
2797         case KVM_CAP_HYPERV_TIME:
2798         case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2799         case KVM_CAP_TSC_DEADLINE_TIMER:
2800 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2801         case KVM_CAP_ASSIGN_DEV_IRQ:
2802         case KVM_CAP_PCI_2_3:
2803 #endif
2804                 r = 1;
2805                 break;
2806         case KVM_CAP_COALESCED_MMIO:
2807                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2808                 break;
2809         case KVM_CAP_VAPIC:
2810                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2811                 break;
2812         case KVM_CAP_NR_VCPUS:
2813                 r = KVM_SOFT_MAX_VCPUS;
2814                 break;
2815         case KVM_CAP_MAX_VCPUS:
2816                 r = KVM_MAX_VCPUS;
2817                 break;
2818         case KVM_CAP_NR_MEMSLOTS:
2819                 r = KVM_USER_MEM_SLOTS;
2820                 break;
2821         case KVM_CAP_PV_MMU:    /* obsolete */
2822                 r = 0;
2823                 break;
2824 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2825         case KVM_CAP_IOMMU:
2826                 r = iommu_present(&pci_bus_type);
2827                 break;
2828 #endif
2829         case KVM_CAP_MCE:
2830                 r = KVM_MAX_MCE_BANKS;
2831                 break;
2832         case KVM_CAP_XCRS:
2833                 r = cpu_has_xsave;
2834                 break;
2835         case KVM_CAP_TSC_CONTROL:
2836                 r = kvm_has_tsc_control;
2837                 break;
2838         default:
2839                 r = 0;
2840                 break;
2841         }
2842         return r;
2843
2844 }
2845
2846 long kvm_arch_dev_ioctl(struct file *filp,
2847                         unsigned int ioctl, unsigned long arg)
2848 {
2849         void __user *argp = (void __user *)arg;
2850         long r;
2851
2852         switch (ioctl) {
2853         case KVM_GET_MSR_INDEX_LIST: {
2854                 struct kvm_msr_list __user *user_msr_list = argp;
2855                 struct kvm_msr_list msr_list;
2856                 unsigned n;
2857
2858                 r = -EFAULT;
2859                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2860                         goto out;
2861                 n = msr_list.nmsrs;
2862                 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2863                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2864                         goto out;
2865                 r = -E2BIG;
2866                 if (n < msr_list.nmsrs)
2867                         goto out;
2868                 r = -EFAULT;
2869                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2870                                  num_msrs_to_save * sizeof(u32)))
2871                         goto out;
2872                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2873                                  &emulated_msrs,
2874                                  ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2875                         goto out;
2876                 r = 0;
2877                 break;
2878         }
2879         case KVM_GET_SUPPORTED_CPUID:
2880         case KVM_GET_EMULATED_CPUID: {
2881                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2882                 struct kvm_cpuid2 cpuid;
2883
2884                 r = -EFAULT;
2885                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2886                         goto out;
2887
2888                 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2889                                             ioctl);
2890                 if (r)
2891                         goto out;
2892
2893                 r = -EFAULT;
2894                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2895                         goto out;
2896                 r = 0;
2897                 break;
2898         }
2899         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2900                 u64 mce_cap;
2901
2902                 mce_cap = KVM_MCE_CAP_SUPPORTED;
2903                 r = -EFAULT;
2904                 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2905                         goto out;
2906                 r = 0;
2907                 break;
2908         }
2909         default:
2910                 r = -EINVAL;
2911         }
2912 out:
2913         return r;
2914 }
2915
2916 static void wbinvd_ipi(void *garbage)
2917 {
2918         wbinvd();
2919 }
2920
2921 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2922 {
2923         return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2924 }
2925
2926 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2927 {
2928         /* Address WBINVD may be executed by guest */
2929         if (need_emulate_wbinvd(vcpu)) {
2930                 if (kvm_x86_ops->has_wbinvd_exit())
2931                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2932                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2933                         smp_call_function_single(vcpu->cpu,
2934                                         wbinvd_ipi, NULL, 1);
2935         }
2936
2937         kvm_x86_ops->vcpu_load(vcpu, cpu);
2938
2939         /* Apply any externally detected TSC adjustments (due to suspend) */
2940         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2941                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2942                 vcpu->arch.tsc_offset_adjustment = 0;
2943                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2944         }
2945
2946         if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2947                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2948                                 native_read_tsc() - vcpu->arch.last_host_tsc;
2949                 if (tsc_delta < 0)
2950                         mark_tsc_unstable("KVM discovered backwards TSC");
2951                 if (check_tsc_unstable()) {
2952                         u64 offset = kvm_x86_ops->compute_tsc_offset(vcpu,
2953                                                 vcpu->arch.last_guest_tsc);
2954                         kvm_x86_ops->write_tsc_offset(vcpu, offset);
2955                         vcpu->arch.tsc_catchup = 1;
2956                 }
2957                 /*
2958                  * On a host with synchronized TSC, there is no need to update
2959                  * kvmclock on vcpu->cpu migration
2960                  */
2961                 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2962                         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2963                 if (vcpu->cpu != cpu)
2964                         kvm_migrate_timers(vcpu);
2965                 vcpu->cpu = cpu;
2966         }
2967
2968         accumulate_steal_time(vcpu);
2969         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2970 }
2971
2972 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2973 {
2974         kvm_x86_ops->vcpu_put(vcpu);
2975         kvm_put_guest_fpu(vcpu);
2976         vcpu->arch.last_host_tsc = native_read_tsc();
2977 }
2978
2979 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2980                                     struct kvm_lapic_state *s)
2981 {
2982         kvm_x86_ops->sync_pir_to_irr(vcpu);
2983         memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2984
2985         return 0;
2986 }
2987
2988 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2989                                     struct kvm_lapic_state *s)
2990 {
2991         kvm_apic_post_state_restore(vcpu, s);
2992         update_cr8_intercept(vcpu);
2993
2994         return 0;
2995 }
2996
2997 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2998                                     struct kvm_interrupt *irq)
2999 {
3000         if (irq->irq >= KVM_NR_INTERRUPTS)
3001                 return -EINVAL;
3002         if (irqchip_in_kernel(vcpu->kvm))
3003                 return -ENXIO;
3004
3005         kvm_queue_interrupt(vcpu, irq->irq, false);
3006         kvm_make_request(KVM_REQ_EVENT, vcpu);
3007
3008         return 0;
3009 }
3010
3011 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
3012 {
3013         kvm_inject_nmi(vcpu);
3014
3015         return 0;
3016 }
3017
3018 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
3019                                            struct kvm_tpr_access_ctl *tac)
3020 {
3021         if (tac->flags)
3022                 return -EINVAL;
3023         vcpu->arch.tpr_access_reporting = !!tac->enabled;
3024         return 0;
3025 }
3026
3027 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
3028                                         u64 mcg_cap)
3029 {
3030         int r;
3031         unsigned bank_num = mcg_cap & 0xff, bank;
3032
3033         r = -EINVAL;
3034         if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
3035                 goto out;
3036         if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
3037                 goto out;
3038         r = 0;
3039         vcpu->arch.mcg_cap = mcg_cap;
3040         /* Init IA32_MCG_CTL to all 1s */
3041         if (mcg_cap & MCG_CTL_P)
3042                 vcpu->arch.mcg_ctl = ~(u64)0;
3043         /* Init IA32_MCi_CTL to all 1s */
3044         for (bank = 0; bank < bank_num; bank++)
3045                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
3046 out:
3047         return r;
3048 }
3049
3050 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
3051                                       struct kvm_x86_mce *mce)
3052 {
3053         u64 mcg_cap = vcpu->arch.mcg_cap;
3054         unsigned bank_num = mcg_cap & 0xff;
3055         u64 *banks = vcpu->arch.mce_banks;
3056
3057         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
3058                 return -EINVAL;
3059         /*
3060          * if IA32_MCG_CTL is not all 1s, the uncorrected error
3061          * reporting is disabled
3062          */
3063         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3064             vcpu->arch.mcg_ctl != ~(u64)0)
3065                 return 0;
3066         banks += 4 * mce->bank;
3067         /*
3068          * if IA32_MCi_CTL is not all 1s, the uncorrected error
3069          * reporting is disabled for the bank
3070          */
3071         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3072                 return 0;
3073         if (mce->status & MCI_STATUS_UC) {
3074                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3075                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3076                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3077                         return 0;
3078                 }
3079                 if (banks[1] & MCI_STATUS_VAL)
3080                         mce->status |= MCI_STATUS_OVER;
3081                 banks[2] = mce->addr;
3082                 banks[3] = mce->misc;
3083                 vcpu->arch.mcg_status = mce->mcg_status;
3084                 banks[1] = mce->status;
3085                 kvm_queue_exception(vcpu, MC_VECTOR);
3086         } else if (!(banks[1] & MCI_STATUS_VAL)
3087                    || !(banks[1] & MCI_STATUS_UC)) {
3088                 if (banks[1] & MCI_STATUS_VAL)
3089                         mce->status |= MCI_STATUS_OVER;
3090                 banks[2] = mce->addr;
3091                 banks[3] = mce->misc;
3092                 banks[1] = mce->status;
3093         } else
3094                 banks[1] |= MCI_STATUS_OVER;
3095         return 0;
3096 }
3097
3098 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3099                                                struct kvm_vcpu_events *events)
3100 {
3101         process_nmi(vcpu);
3102         events->exception.injected =
3103                 vcpu->arch.exception.pending &&
3104                 !kvm_exception_is_soft(vcpu->arch.exception.nr);
3105         events->exception.nr = vcpu->arch.exception.nr;
3106         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3107         events->exception.pad = 0;
3108         events->exception.error_code = vcpu->arch.exception.error_code;
3109
3110         events->interrupt.injected =
3111                 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
3112         events->interrupt.nr = vcpu->arch.interrupt.nr;
3113         events->interrupt.soft = 0;
3114         events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3115
3116         events->nmi.injected = vcpu->arch.nmi_injected;
3117         events->nmi.pending = vcpu->arch.nmi_pending != 0;
3118         events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3119         events->nmi.pad = 0;
3120
3121         events->sipi_vector = 0; /* never valid when reporting to user space */
3122
3123         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3124                          | KVM_VCPUEVENT_VALID_SHADOW);
3125         memset(&events->reserved, 0, sizeof(events->reserved));
3126 }
3127
3128 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3129                                               struct kvm_vcpu_events *events)
3130 {
3131         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3132                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3133                               | KVM_VCPUEVENT_VALID_SHADOW))
3134                 return -EINVAL;
3135
3136         process_nmi(vcpu);
3137         vcpu->arch.exception.pending = events->exception.injected;
3138         vcpu->arch.exception.nr = events->exception.nr;
3139         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3140         vcpu->arch.exception.error_code = events->exception.error_code;
3141
3142         vcpu->arch.interrupt.pending = events->interrupt.injected;
3143         vcpu->arch.interrupt.nr = events->interrupt.nr;
3144         vcpu->arch.interrupt.soft = events->interrupt.soft;
3145         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3146                 kvm_x86_ops->set_interrupt_shadow(vcpu,
3147                                                   events->interrupt.shadow);
3148
3149         vcpu->arch.nmi_injected = events->nmi.injected;
3150         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3151                 vcpu->arch.nmi_pending = events->nmi.pending;
3152         kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3153
3154         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3155             kvm_vcpu_has_lapic(vcpu))
3156                 vcpu->arch.apic->sipi_vector = events->sipi_vector;
3157
3158         kvm_make_request(KVM_REQ_EVENT, vcpu);
3159
3160         return 0;
3161 }
3162
3163 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3164                                              struct kvm_debugregs *dbgregs)
3165 {
3166         unsigned long val;
3167
3168         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3169         kvm_get_dr(vcpu, 6, &val);
3170         dbgregs->dr6 = val;
3171         dbgregs->dr7 = vcpu->arch.dr7;
3172         dbgregs->flags = 0;
3173         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3174 }
3175
3176 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3177                                             struct kvm_debugregs *dbgregs)
3178 {
3179         if (dbgregs->flags)
3180                 return -EINVAL;
3181
3182         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3183         kvm_update_dr0123(vcpu);
3184         vcpu->arch.dr6 = dbgregs->dr6;
3185         kvm_update_dr6(vcpu);
3186         vcpu->arch.dr7 = dbgregs->dr7;
3187         kvm_update_dr7(vcpu);
3188
3189         return 0;
3190 }
3191
3192 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3193
3194 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3195 {
3196         struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3197         u64 xstate_bv = xsave->header.xfeatures;
3198         u64 valid;
3199
3200         /*
3201          * Copy legacy XSAVE area, to avoid complications with CPUID
3202          * leaves 0 and 1 in the loop below.
3203          */
3204         memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3205
3206         /* Set XSTATE_BV */
3207         *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3208
3209         /*
3210          * Copy each region from the possibly compacted offset to the
3211          * non-compacted offset.
3212          */
3213         valid = xstate_bv & ~XSTATE_FPSSE;
3214         while (valid) {
3215                 u64 feature = valid & -valid;
3216                 int index = fls64(feature) - 1;
3217                 void *src = get_xsave_addr(xsave, feature);
3218
3219                 if (src) {
3220                         u32 size, offset, ecx, edx;
3221                         cpuid_count(XSTATE_CPUID, index,
3222                                     &size, &offset, &ecx, &edx);
3223                         memcpy(dest + offset, src, size);
3224                 }
3225
3226                 valid -= feature;
3227         }
3228 }
3229
3230 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3231 {
3232         struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3233         u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3234         u64 valid;
3235
3236         /*
3237          * Copy legacy XSAVE area, to avoid complications with CPUID
3238          * leaves 0 and 1 in the loop below.
3239          */
3240         memcpy(xsave, src, XSAVE_HDR_OFFSET);
3241
3242         /* Set XSTATE_BV and possibly XCOMP_BV.  */
3243         xsave->header.xfeatures = xstate_bv;
3244         if (cpu_has_xsaves)
3245                 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3246
3247         /*
3248          * Copy each region from the non-compacted offset to the
3249          * possibly compacted offset.
3250          */
3251         valid = xstate_bv & ~XSTATE_FPSSE;
3252         while (valid) {
3253                 u64 feature = valid & -valid;
3254                 int index = fls64(feature) - 1;
3255                 void *dest = get_xsave_addr(xsave, feature);
3256
3257                 if (dest) {
3258                         u32 size, offset, ecx, edx;
3259                         cpuid_count(XSTATE_CPUID, index,
3260                                     &size, &offset, &ecx, &edx);
3261                         memcpy(dest, src + offset, size);
3262                 } else
3263                         WARN_ON_ONCE(1);
3264
3265                 valid -= feature;
3266         }
3267 }
3268
3269 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3270                                          struct kvm_xsave *guest_xsave)
3271 {
3272         if (cpu_has_xsave) {
3273                 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3274                 fill_xsave((u8 *) guest_xsave->region, vcpu);
3275         } else {
3276                 memcpy(guest_xsave->region,
3277                         &vcpu->arch.guest_fpu.state.fxsave,
3278                         sizeof(struct fxregs_state));
3279                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3280                         XSTATE_FPSSE;
3281         }
3282 }
3283
3284 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3285                                         struct kvm_xsave *guest_xsave)
3286 {
3287         u64 xstate_bv =
3288                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3289
3290         if (cpu_has_xsave) {
3291                 /*
3292                  * Here we allow setting states that are not present in
3293                  * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
3294                  * with old userspace.
3295                  */
3296                 if (xstate_bv & ~kvm_supported_xcr0())
3297                         return -EINVAL;
3298                 load_xsave(vcpu, (u8 *)guest_xsave->region);
3299         } else {
3300                 if (xstate_bv & ~XSTATE_FPSSE)
3301                         return -EINVAL;
3302                 memcpy(&vcpu->arch.guest_fpu.state.fxsave,
3303                         guest_xsave->region, sizeof(struct fxregs_state));
3304         }
3305         return 0;
3306 }
3307
3308 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3309                                         struct kvm_xcrs *guest_xcrs)
3310 {
3311         if (!cpu_has_xsave) {
3312                 guest_xcrs->nr_xcrs = 0;
3313                 return;
3314         }
3315
3316         guest_xcrs->nr_xcrs = 1;
3317         guest_xcrs->flags = 0;
3318         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3319         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3320 }
3321
3322 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3323                                        struct kvm_xcrs *guest_xcrs)
3324 {
3325         int i, r = 0;
3326
3327         if (!cpu_has_xsave)
3328                 return -EINVAL;
3329
3330         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3331                 return -EINVAL;
3332
3333         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3334                 /* Only support XCR0 currently */
3335                 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3336                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3337                                 guest_xcrs->xcrs[i].value);
3338                         break;
3339                 }
3340         if (r)
3341                 r = -EINVAL;
3342         return r;
3343 }
3344
3345 /*
3346  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3347  * stopped by the hypervisor.  This function will be called from the host only.
3348  * EINVAL is returned when the host attempts to set the flag for a guest that
3349  * does not support pv clocks.
3350  */
3351 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3352 {
3353         if (!vcpu->arch.pv_time_enabled)
3354                 return -EINVAL;
3355         vcpu->arch.pvclock_set_guest_stopped_request = true;
3356         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3357         return 0;
3358 }
3359
3360 long kvm_arch_vcpu_ioctl(struct file *filp,
3361                          unsigned int ioctl, unsigned long arg)
3362 {
3363         struct kvm_vcpu *vcpu = filp->private_data;
3364         void __user *argp = (void __user *)arg;
3365         int r;
3366         union {
3367                 struct kvm_lapic_state *lapic;
3368                 struct kvm_xsave *xsave;
3369                 struct kvm_xcrs *xcrs;
3370                 void *buffer;
3371         } u;
3372
3373         u.buffer = NULL;
3374         switch (ioctl) {
3375         case KVM_GET_LAPIC: {
3376                 r = -EINVAL;
3377                 if (!vcpu->arch.apic)
3378                         goto out;
3379                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3380
3381                 r = -ENOMEM;
3382                 if (!u.lapic)
3383                         goto out;
3384                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3385                 if (r)
3386                         goto out;
3387                 r = -EFAULT;
3388                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3389                         goto out;
3390                 r = 0;
3391                 break;
3392         }
3393         case KVM_SET_LAPIC: {
3394                 r = -EINVAL;
3395                 if (!vcpu->arch.apic)
3396                         goto out;
3397                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3398                 if (IS_ERR(u.lapic))
3399                         return PTR_ERR(u.lapic);
3400
3401                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3402                 break;
3403         }
3404         case KVM_INTERRUPT: {
3405                 struct kvm_interrupt irq;
3406
3407                 r = -EFAULT;
3408                 if (copy_from_user(&irq, argp, sizeof irq))
3409                         goto out;
3410                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3411                 break;
3412         }
3413         case KVM_NMI: {
3414                 r = kvm_vcpu_ioctl_nmi(vcpu);
3415                 break;
3416         }
3417         case KVM_SET_CPUID: {
3418                 struct kvm_cpuid __user *cpuid_arg = argp;
3419                 struct kvm_cpuid cpuid;
3420
3421                 r = -EFAULT;
3422                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3423                         goto out;
3424                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3425                 break;
3426         }
3427         case KVM_SET_CPUID2: {
3428                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3429                 struct kvm_cpuid2 cpuid;
3430
3431                 r = -EFAULT;
3432                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3433                         goto out;
3434                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3435                                               cpuid_arg->entries);
3436                 break;
3437         }
3438         case KVM_GET_CPUID2: {
3439                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3440                 struct kvm_cpuid2 cpuid;
3441
3442                 r = -EFAULT;
3443                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3444                         goto out;
3445                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3446                                               cpuid_arg->entries);
3447                 if (r)
3448                         goto out;
3449                 r = -EFAULT;
3450                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3451                         goto out;
3452                 r = 0;
3453                 break;
3454         }
3455         case KVM_GET_MSRS:
3456                 r = msr_io(vcpu, argp, kvm_get_msr, 1);
3457                 break;
3458         case KVM_SET_MSRS:
3459                 r = msr_io(vcpu, argp, do_set_msr, 0);
3460                 break;
3461         case KVM_TPR_ACCESS_REPORTING: {
3462                 struct kvm_tpr_access_ctl tac;
3463
3464                 r = -EFAULT;
3465                 if (copy_from_user(&tac, argp, sizeof tac))
3466                         goto out;
3467                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3468                 if (r)
3469                         goto out;
3470                 r = -EFAULT;
3471                 if (copy_to_user(argp, &tac, sizeof tac))
3472                         goto out;
3473                 r = 0;
3474                 break;
3475         };
3476         case KVM_SET_VAPIC_ADDR: {
3477                 struct kvm_vapic_addr va;
3478
3479                 r = -EINVAL;
3480                 if (!irqchip_in_kernel(vcpu->kvm))
3481                         goto out;
3482                 r = -EFAULT;
3483                 if (copy_from_user(&va, argp, sizeof va))
3484                         goto out;
3485                 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3486                 break;
3487         }
3488         case KVM_X86_SETUP_MCE: {
3489                 u64 mcg_cap;
3490
3491                 r = -EFAULT;
3492                 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3493                         goto out;
3494                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3495                 break;
3496         }
3497         case KVM_X86_SET_MCE: {
3498                 struct kvm_x86_mce mce;
3499
3500                 r = -EFAULT;
3501                 if (copy_from_user(&mce, argp, sizeof mce))
3502                         goto out;
3503                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3504                 break;
3505         }
3506         case KVM_GET_VCPU_EVENTS: {
3507                 struct kvm_vcpu_events events;
3508
3509                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3510
3511                 r = -EFAULT;
3512                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3513                         break;
3514                 r = 0;
3515                 break;
3516         }
3517         case KVM_SET_VCPU_EVENTS: {
3518                 struct kvm_vcpu_events events;
3519
3520                 r = -EFAULT;
3521                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3522                         break;
3523
3524                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3525                 break;
3526         }
3527         case KVM_GET_DEBUGREGS: {
3528                 struct kvm_debugregs dbgregs;
3529
3530                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3531
3532                 r = -EFAULT;
3533                 if (copy_to_user(argp, &dbgregs,
3534                                  sizeof(struct kvm_debugregs)))
3535                         break;
3536                 r = 0;
3537                 break;
3538         }
3539         case KVM_SET_DEBUGREGS: {
3540                 struct kvm_debugregs dbgregs;
3541
3542                 r = -EFAULT;
3543                 if (copy_from_user(&dbgregs, argp,
3544                                    sizeof(struct kvm_debugregs)))
3545                         break;
3546
3547                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3548                 break;
3549         }
3550         case KVM_GET_XSAVE: {
3551                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3552                 r = -ENOMEM;
3553                 if (!u.xsave)
3554                         break;
3555
3556                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3557
3558                 r = -EFAULT;
3559                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3560                         break;
3561                 r = 0;
3562                 break;
3563         }
3564         case KVM_SET_XSAVE: {
3565                 u.xsave = memdup_user(argp, sizeof(*u.xsave));
3566                 if (IS_ERR(u.xsave))
3567                         return PTR_ERR(u.xsave);
3568
3569                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3570                 break;
3571         }
3572         case KVM_GET_XCRS: {
3573                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3574                 r = -ENOMEM;
3575                 if (!u.xcrs)
3576                         break;
3577
3578                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3579
3580                 r = -EFAULT;
3581                 if (copy_to_user(argp, u.xcrs,
3582                                  sizeof(struct kvm_xcrs)))
3583                         break;
3584                 r = 0;
3585                 break;
3586         }
3587         case KVM_SET_XCRS: {
3588                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3589                 if (IS_ERR(u.xcrs))
3590                         return PTR_ERR(u.xcrs);
3591
3592                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3593                 break;
3594         }
3595         case KVM_SET_TSC_KHZ: {
3596                 u32 user_tsc_khz;
3597
3598                 r = -EINVAL;
3599                 user_tsc_khz = (u32)arg;
3600
3601                 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3602                         goto out;
3603
3604                 if (user_tsc_khz == 0)
3605                         user_tsc_khz = tsc_khz;
3606
3607                 kvm_set_tsc_khz(vcpu, user_tsc_khz);
3608
3609                 r = 0;
3610                 goto out;
3611         }
3612         case KVM_GET_TSC_KHZ: {
3613                 r = vcpu->arch.virtual_tsc_khz;
3614                 goto out;
3615         }
3616         case KVM_KVMCLOCK_CTRL: {
3617                 r = kvm_set_guest_paused(vcpu);
3618                 goto out;
3619         }
3620         default:
3621                 r = -EINVAL;
3622         }
3623 out:
3624         kfree(u.buffer);
3625         return r;
3626 }
3627
3628 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3629 {
3630         return VM_FAULT_SIGBUS;
3631 }
3632
3633 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3634 {
3635         int ret;
3636
3637         if (addr > (unsigned int)(-3 * PAGE_SIZE))
3638                 return -EINVAL;
3639         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3640         return ret;
3641 }
3642
3643 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3644                                               u64 ident_addr)
3645 {
3646         kvm->arch.ept_identity_map_addr = ident_addr;
3647         return 0;
3648 }
3649
3650 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3651                                           u32 kvm_nr_mmu_pages)
3652 {
3653         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3654                 return -EINVAL;
3655
3656         mutex_lock(&kvm->slots_lock);
3657
3658         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3659         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3660
3661         mutex_unlock(&kvm->slots_lock);
3662         return 0;
3663 }
3664
3665 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3666 {
3667         return kvm->arch.n_max_mmu_pages;
3668 }
3669
3670 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3671 {
3672         int r;
3673
3674         r = 0;
3675         switch (chip->chip_id) {
3676         case KVM_IRQCHIP_PIC_MASTER:
3677                 memcpy(&chip->chip.pic,
3678                         &pic_irqchip(kvm)->pics[0],
3679                         sizeof(struct kvm_pic_state));
3680                 break;
3681         case KVM_IRQCHIP_PIC_SLAVE:
3682                 memcpy(&chip->chip.pic,
3683                         &pic_irqchip(kvm)->pics[1],
3684                         sizeof(struct kvm_pic_state));
3685                 break;
3686         case KVM_IRQCHIP_IOAPIC:
3687                 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3688                 break;
3689         default:
3690                 r = -EINVAL;
3691                 break;
3692         }
3693         return r;
3694 }
3695
3696 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3697 {
3698         int r;
3699
3700         r = 0;
3701         switch (chip->chip_id) {
3702         case KVM_IRQCHIP_PIC_MASTER:
3703                 spin_lock(&pic_irqchip(kvm)->lock);
3704                 memcpy(&pic_irqchip(kvm)->pics[0],
3705                         &chip->chip.pic,
3706                         sizeof(struct kvm_pic_state));
3707                 spin_unlock(&pic_irqchip(kvm)->lock);
3708                 break;
3709         case KVM_IRQCHIP_PIC_SLAVE:
3710                 spin_lock(&pic_irqchip(kvm)->lock);
3711                 memcpy(&pic_irqchip(kvm)->pics[1],
3712                         &chip->chip.pic,
3713                         sizeof(struct kvm_pic_state));
3714                 spin_unlock(&pic_irqchip(kvm)->lock);
3715                 break;
3716         case KVM_IRQCHIP_IOAPIC:
3717                 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3718                 break;
3719         default:
3720                 r = -EINVAL;
3721                 break;
3722         }
3723         kvm_pic_update_irq(pic_irqchip(kvm));
3724         return r;
3725 }
3726
3727 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3728 {
3729         int r = 0;
3730
3731         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3732         memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3733         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3734         return r;
3735 }
3736
3737 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3738 {
3739         int r = 0;
3740
3741         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3742         memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3743         kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
3744         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3745         return r;
3746 }
3747
3748 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3749 {
3750         int r = 0;
3751
3752         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3753         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3754                 sizeof(ps->channels));
3755         ps->flags = kvm->arch.vpit->pit_state.flags;
3756         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3757         memset(&ps->reserved, 0, sizeof(ps->reserved));
3758         return r;
3759 }
3760
3761 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3762 {
3763         int r = 0, start = 0;
3764         u32 prev_legacy, cur_legacy;
3765         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3766         prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3767         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3768         if (!prev_legacy && cur_legacy)
3769                 start = 1;
3770         memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3771                sizeof(kvm->arch.vpit->pit_state.channels));
3772         kvm->arch.vpit->pit_state.flags = ps->flags;
3773         kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
3774         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3775         return r;
3776 }
3777
3778 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3779                                  struct kvm_reinject_control *control)
3780 {
3781         if (!kvm->arch.vpit)
3782                 return -ENXIO;
3783         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3784         kvm->arch.vpit->pit_state.reinject = control->pit_reinject;
3785         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3786         return 0;
3787 }
3788
3789 /**
3790  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3791  * @kvm: kvm instance
3792  * @log: slot id and address to which we copy the log
3793  *
3794  * Steps 1-4 below provide general overview of dirty page logging. See
3795  * kvm_get_dirty_log_protect() function description for additional details.
3796  *
3797  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
3798  * always flush the TLB (step 4) even if previous step failed  and the dirty
3799  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
3800  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
3801  * writes will be marked dirty for next log read.
3802  *
3803  *   1. Take a snapshot of the bit and clear it if needed.
3804  *   2. Write protect the corresponding page.
3805  *   3. Copy the snapshot to the userspace.
3806  *   4. Flush TLB's if needed.
3807  */
3808 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3809 {
3810         bool is_dirty = false;
3811         int r;
3812
3813         mutex_lock(&kvm->slots_lock);
3814
3815         /*
3816          * Flush potentially hardware-cached dirty pages to dirty_bitmap.
3817          */
3818         if (kvm_x86_ops->flush_log_dirty)
3819                 kvm_x86_ops->flush_log_dirty(kvm);
3820
3821         r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
3822
3823         /*
3824          * All the TLBs can be flushed out of mmu lock, see the comments in
3825          * kvm_mmu_slot_remove_write_access().
3826          */
3827         lockdep_assert_held(&kvm->slots_lock);
3828         if (is_dirty)
3829                 kvm_flush_remote_tlbs(kvm);
3830
3831         mutex_unlock(&kvm->slots_lock);
3832         return r;
3833 }
3834
3835 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3836                         bool line_status)
3837 {
3838         if (!irqchip_in_kernel(kvm))
3839                 return -ENXIO;
3840
3841         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3842                                         irq_event->irq, irq_event->level,
3843                                         line_status);
3844         return 0;
3845 }
3846
3847 long kvm_arch_vm_ioctl(struct file *filp,
3848                        unsigned int ioctl, unsigned long arg)
3849 {
3850         struct kvm *kvm = filp->private_data;
3851         void __user *argp = (void __user *)arg;
3852         int r = -ENOTTY;
3853         /*
3854          * This union makes it completely explicit to gcc-3.x
3855          * that these two variables' stack usage should be
3856          * combined, not added together.
3857          */
3858         union {
3859                 struct kvm_pit_state ps;
3860                 struct kvm_pit_state2 ps2;
3861                 struct kvm_pit_config pit_config;
3862         } u;
3863
3864         switch (ioctl) {
3865         case KVM_SET_TSS_ADDR:
3866                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3867                 break;
3868         case KVM_SET_IDENTITY_MAP_ADDR: {
3869                 u64 ident_addr;
3870
3871                 r = -EFAULT;
3872                 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3873                         goto out;
3874                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3875                 break;
3876         }
3877         case KVM_SET_NR_MMU_PAGES:
3878                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3879                 break;
3880         case KVM_GET_NR_MMU_PAGES:
3881                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3882                 break;
3883         case KVM_CREATE_IRQCHIP: {
3884                 struct kvm_pic *vpic;
3885
3886                 mutex_lock(&kvm->lock);
3887                 r = -EEXIST;
3888                 if (kvm->arch.vpic)
3889                         goto create_irqchip_unlock;
3890                 r = -EINVAL;
3891                 if (atomic_read(&kvm->online_vcpus))
3892                         goto create_irqchip_unlock;
3893                 r = -ENOMEM;
3894                 vpic = kvm_create_pic(kvm);
3895                 if (vpic) {
3896                         r = kvm_ioapic_init(kvm);
3897                         if (r) {
3898                                 mutex_lock(&kvm->slots_lock);
3899                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3900                                                           &vpic->dev_master);
3901                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3902                                                           &vpic->dev_slave);
3903                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3904                                                           &vpic->dev_eclr);
3905                                 mutex_unlock(&kvm->slots_lock);
3906                                 kfree(vpic);
3907                                 goto create_irqchip_unlock;
3908                         }
3909                 } else
3910                         goto create_irqchip_unlock;
3911                 smp_wmb();
3912                 kvm->arch.vpic = vpic;
3913                 smp_wmb();
3914                 r = kvm_setup_default_irq_routing(kvm);
3915                 if (r) {
3916                         mutex_lock(&kvm->slots_lock);
3917                         mutex_lock(&kvm->irq_lock);
3918                         kvm_ioapic_destroy(kvm);
3919                         kvm_destroy_pic(kvm);
3920                         mutex_unlock(&kvm->irq_lock);
3921                         mutex_unlock(&kvm->slots_lock);
3922                 }
3923         create_irqchip_unlock:
3924                 mutex_unlock(&kvm->lock);
3925                 break;
3926         }
3927         case KVM_CREATE_PIT:
3928                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3929                 goto create_pit;
3930         case KVM_CREATE_PIT2:
3931                 r = -EFAULT;
3932                 if (copy_from_user(&u.pit_config, argp,
3933                                    sizeof(struct kvm_pit_config)))
3934                         goto out;
3935         create_pit:
3936                 mutex_lock(&kvm->slots_lock);
3937                 r = -EEXIST;
3938                 if (kvm->arch.vpit)
3939                         goto create_pit_unlock;
3940                 r = -ENOMEM;
3941                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3942                 if (kvm->arch.vpit)
3943                         r = 0;
3944         create_pit_unlock:
3945                 mutex_unlock(&kvm->slots_lock);
3946                 break;
3947         case KVM_GET_IRQCHIP: {
3948                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3949                 struct kvm_irqchip *chip;
3950
3951                 chip = memdup_user(argp, sizeof(*chip));
3952                 if (IS_ERR(chip)) {
3953                         r = PTR_ERR(chip);
3954                         goto out;
3955                 }
3956
3957                 r = -ENXIO;
3958                 if (!irqchip_in_kernel(kvm))
3959                         goto get_irqchip_out;
3960                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3961                 if (r)
3962                         goto get_irqchip_out;
3963                 r = -EFAULT;
3964                 if (copy_to_user(argp, chip, sizeof *chip))
3965                         goto get_irqchip_out;
3966                 r = 0;
3967         get_irqchip_out:
3968                 kfree(chip);
3969                 break;
3970         }
3971         case KVM_SET_IRQCHIP: {
3972                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3973                 struct kvm_irqchip *chip;
3974
3975                 chip = memdup_user(argp, sizeof(*chip));
3976                 if (IS_ERR(chip)) {
3977                         r = PTR_ERR(chip);
3978                         goto out;
3979                 }
3980
3981                 r = -ENXIO;
3982                 if (!irqchip_in_kernel(kvm))
3983                         goto set_irqchip_out;
3984                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3985                 if (r)
3986                         goto set_irqchip_out;
3987                 r = 0;
3988         set_irqchip_out:
3989                 kfree(chip);
3990                 break;
3991         }
3992         case KVM_GET_PIT: {
3993                 r = -EFAULT;
3994                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3995                         goto out;
3996                 r = -ENXIO;
3997                 if (!kvm->arch.vpit)
3998                         goto out;
3999                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
4000                 if (r)
4001                         goto out;
4002                 r = -EFAULT;
4003                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
4004                         goto out;
4005                 r = 0;
4006                 break;
4007         }
4008         case KVM_SET_PIT: {
4009                 r = -EFAULT;
4010                 if (copy_from_user(&u.ps, argp, sizeof u.ps))
4011                         goto out;
4012                 r = -ENXIO;
4013                 if (!kvm->arch.vpit)
4014                         goto out;
4015                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
4016                 break;
4017         }
4018         case KVM_GET_PIT2: {
4019                 r = -ENXIO;
4020                 if (!kvm->arch.vpit)
4021                         goto out;
4022                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
4023                 if (r)
4024                         goto out;
4025                 r = -EFAULT;
4026                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
4027                         goto out;
4028                 r = 0;
4029                 break;
4030         }
4031         case KVM_SET_PIT2: {
4032                 r = -EFAULT;
4033                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
4034                         goto out;
4035                 r = -ENXIO;
4036                 if (!kvm->arch.vpit)
4037                         goto out;
4038                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
4039                 break;
4040         }
4041         case KVM_REINJECT_CONTROL: {
4042                 struct kvm_reinject_control control;
4043                 r =  -EFAULT;
4044                 if (copy_from_user(&control, argp, sizeof(control)))
4045                         goto out;
4046                 r = kvm_vm_ioctl_reinject(kvm, &control);
4047                 break;
4048         }
4049         case KVM_XEN_HVM_CONFIG: {
4050                 r = -EFAULT;
4051                 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
4052                                    sizeof(struct kvm_xen_hvm_config)))
4053                         goto out;
4054                 r = -EINVAL;
4055                 if (kvm->arch.xen_hvm_config.flags)
4056                         goto out;
4057                 r = 0;
4058                 break;
4059         }
4060         case KVM_SET_CLOCK: {
4061                 struct kvm_clock_data user_ns;
4062                 u64 now_ns;
4063                 s64 delta;
4064
4065                 r = -EFAULT;
4066                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4067                         goto out;
4068
4069                 r = -EINVAL;
4070                 if (user_ns.flags)
4071                         goto out;
4072
4073                 r = 0;
4074                 local_irq_disable();
4075                 now_ns = get_kernel_ns();
4076                 delta = user_ns.clock - now_ns;
4077                 local_irq_enable();
4078                 kvm->arch.kvmclock_offset = delta;
4079                 kvm_gen_update_masterclock(kvm);
4080                 break;
4081         }
4082         case KVM_GET_CLOCK: {
4083                 struct kvm_clock_data user_ns;
4084                 u64 now_ns;
4085
4086                 local_irq_disable();
4087                 now_ns = get_kernel_ns();
4088                 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
4089                 local_irq_enable();
4090                 user_ns.flags = 0;
4091                 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4092
4093                 r = -EFAULT;
4094                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4095                         goto out;
4096                 r = 0;
4097                 break;
4098         }
4099
4100         default:
4101                 r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
4102         }
4103 out:
4104         return r;
4105 }
4106
4107 static void kvm_init_msr_list(void)
4108 {
4109         u32 dummy[2];
4110         unsigned i, j;
4111
4112         /* skip the first msrs in the list. KVM-specific */
4113         for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
4114                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4115                         continue;
4116
4117                 /*
4118                  * Even MSRs that are valid in the host may not be exposed
4119                  * to the guests in some cases.  We could work around this
4120                  * in VMX with the generic MSR save/load machinery, but it
4121                  * is not really worthwhile since it will really only
4122                  * happen with nested virtualization.
4123                  */
4124                 switch (msrs_to_save[i]) {
4125                 case MSR_IA32_BNDCFGS:
4126                         if (!kvm_x86_ops->mpx_supported())
4127                                 continue;
4128                         break;
4129                 default:
4130                         break;
4131                 }
4132
4133                 if (j < i)
4134                         msrs_to_save[j] = msrs_to_save[i];
4135                 j++;
4136         }
4137         num_msrs_to_save = j;
4138 }
4139
4140 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4141                            const void *v)
4142 {
4143         int handled = 0;
4144         int n;
4145
4146         do {
4147                 n = min(len, 8);
4148                 if (!(vcpu->arch.apic &&
4149                       !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
4150                     && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
4151                         break;
4152                 handled += n;
4153                 addr += n;
4154                 len -= n;
4155                 v += n;
4156         } while (len);
4157
4158         return handled;
4159 }
4160
4161 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4162 {
4163         int handled = 0;
4164         int n;
4165
4166         do {
4167                 n = min(len, 8);
4168                 if (!(vcpu->arch.apic &&
4169                       !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
4170                                          addr, n, v))
4171                     && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
4172                         break;
4173                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
4174                 handled += n;
4175                 addr += n;
4176                 len -= n;
4177                 v += n;
4178         } while (len);
4179
4180         return handled;
4181 }
4182
4183 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4184                         struct kvm_segment *var, int seg)
4185 {
4186         kvm_x86_ops->set_segment(vcpu, var, seg);
4187 }
4188
4189 void kvm_get_segment(struct kvm_vcpu *vcpu,
4190                      struct kvm_segment *var, int seg)
4191 {
4192         kvm_x86_ops->get_segment(vcpu, var, seg);
4193 }
4194
4195 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4196                            struct x86_exception *exception)
4197 {
4198         gpa_t t_gpa;
4199
4200         BUG_ON(!mmu_is_nested(vcpu));
4201
4202         /* NPT walks are always user-walks */
4203         access |= PFERR_USER_MASK;
4204         t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
4205
4206         return t_gpa;
4207 }
4208
4209 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4210                               struct x86_exception *exception)
4211 {
4212         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4213         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4214 }
4215
4216  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4217                                 struct x86_exception *exception)
4218 {
4219         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4220         access |= PFERR_FETCH_MASK;
4221         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4222 }
4223
4224 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4225                                struct x86_exception *exception)
4226 {
4227         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4228         access |= PFERR_WRITE_MASK;
4229         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4230 }
4231
4232 /* uses this to access any guest's mapped memory without checking CPL */
4233 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4234                                 struct x86_exception *exception)
4235 {
4236         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4237 }
4238
4239 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4240                                       struct kvm_vcpu *vcpu, u32 access,
4241                                       struct x86_exception *exception)
4242 {
4243         void *data = val;
4244         int r = X86EMUL_CONTINUE;
4245
4246         while (bytes) {
4247                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4248                                                             exception);
4249                 unsigned offset = addr & (PAGE_SIZE-1);
4250                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4251                 int ret;
4252
4253                 if (gpa == UNMAPPED_GVA)
4254                         return X86EMUL_PROPAGATE_FAULT;
4255                 ret = kvm_read_guest_page(vcpu->kvm, gpa >> PAGE_SHIFT, data,
4256                                           offset, toread);
4257                 if (ret < 0) {
4258                         r = X86EMUL_IO_NEEDED;
4259                         goto out;
4260                 }
4261
4262                 bytes -= toread;
4263                 data += toread;
4264                 addr += toread;
4265         }
4266 out:
4267         return r;
4268 }
4269
4270 /* used for instruction fetching */
4271 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4272                                 gva_t addr, void *val, unsigned int bytes,
4273                                 struct x86_exception *exception)
4274 {
4275         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4276         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4277         unsigned offset;
4278         int ret;
4279
4280         /* Inline kvm_read_guest_virt_helper for speed.  */
4281         gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4282                                                     exception);
4283         if (unlikely(gpa == UNMAPPED_GVA))
4284                 return X86EMUL_PROPAGATE_FAULT;
4285
4286         offset = addr & (PAGE_SIZE-1);
4287         if (WARN_ON(offset + bytes > PAGE_SIZE))
4288                 bytes = (unsigned)PAGE_SIZE - offset;
4289         ret = kvm_read_guest_page(vcpu->kvm, gpa >> PAGE_SHIFT, val,
4290                                   offset, bytes);
4291         if (unlikely(ret < 0))
4292                 return X86EMUL_IO_NEEDED;
4293
4294         return X86EMUL_CONTINUE;
4295 }
4296
4297 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4298                                gva_t addr, void *val, unsigned int bytes,
4299                                struct x86_exception *exception)
4300 {
4301         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4302         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4303
4304         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4305                                           exception);
4306 }
4307 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4308
4309 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4310                                       gva_t addr, void *val, unsigned int bytes,
4311                                       struct x86_exception *exception)
4312 {
4313         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4314         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4315 }
4316
4317 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4318                                        gva_t addr, void *val,
4319                                        unsigned int bytes,
4320                                        struct x86_exception *exception)
4321 {
4322         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4323         void *data = val;
4324         int r = X86EMUL_CONTINUE;
4325
4326         while (bytes) {
4327                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4328                                                              PFERR_WRITE_MASK,
4329                                                              exception);
4330                 unsigned offset = addr & (PAGE_SIZE-1);
4331                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4332                 int ret;
4333
4334                 if (gpa == UNMAPPED_GVA)
4335                         return X86EMUL_PROPAGATE_FAULT;
4336                 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
4337                 if (ret < 0) {
4338                         r = X86EMUL_IO_NEEDED;
4339                         goto out;
4340                 }
4341
4342                 bytes -= towrite;
4343                 data += towrite;
4344                 addr += towrite;
4345         }
4346 out:
4347         return r;
4348 }
4349 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4350
4351 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4352                                 gpa_t *gpa, struct x86_exception *exception,
4353                                 bool write)
4354 {
4355         u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4356                 | (write ? PFERR_WRITE_MASK : 0);
4357
4358         if (vcpu_match_mmio_gva(vcpu, gva)
4359             && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4360                                  vcpu->arch.access, access)) {
4361                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4362                                         (gva & (PAGE_SIZE - 1));
4363                 trace_vcpu_match_mmio(gva, *gpa, write, false);
4364                 return 1;
4365         }
4366
4367         *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4368
4369         if (*gpa == UNMAPPED_GVA)
4370                 return -1;
4371
4372         /* For APIC access vmexit */
4373         if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4374                 return 1;
4375
4376         if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
4377                 trace_vcpu_match_mmio(gva, *gpa, write, true);
4378                 return 1;
4379         }
4380
4381         return 0;
4382 }
4383
4384 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4385                         const void *val, int bytes)
4386 {
4387         int ret;
4388
4389         ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
4390         if (ret < 0)
4391                 return 0;
4392         kvm_mmu_pte_write(vcpu, gpa, val, bytes);
4393         return 1;
4394 }
4395
4396 struct read_write_emulator_ops {
4397         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4398                                   int bytes);
4399         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4400                                   void *val, int bytes);
4401         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4402                                int bytes, void *val);
4403         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4404                                     void *val, int bytes);
4405         bool write;
4406 };
4407
4408 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4409 {
4410         if (vcpu->mmio_read_completed) {
4411                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4412                                vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4413                 vcpu->mmio_read_completed = 0;
4414                 return 1;
4415         }
4416
4417         return 0;
4418 }
4419
4420 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4421                         void *val, int bytes)
4422 {
4423         return !kvm_read_guest(vcpu->kvm, gpa, val, bytes);
4424 }
4425
4426 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4427                          void *val, int bytes)
4428 {
4429         return emulator_write_phys(vcpu, gpa, val, bytes);
4430 }
4431
4432 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4433 {
4434         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4435         return vcpu_mmio_write(vcpu, gpa, bytes, val);
4436 }
4437
4438 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4439                           void *val, int bytes)
4440 {
4441         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4442         return X86EMUL_IO_NEEDED;
4443 }
4444
4445 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4446                            void *val, int bytes)
4447 {
4448         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4449
4450         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4451         return X86EMUL_CONTINUE;
4452 }
4453
4454 static const struct read_write_emulator_ops read_emultor = {
4455         .read_write_prepare = read_prepare,
4456         .read_write_emulate = read_emulate,
4457         .read_write_mmio = vcpu_mmio_read,
4458         .read_write_exit_mmio = read_exit_mmio,
4459 };
4460
4461 static const struct read_write_emulator_ops write_emultor = {
4462         .read_write_emulate = write_emulate,
4463         .read_write_mmio = write_mmio,
4464         .read_write_exit_mmio = write_exit_mmio,
4465         .write = true,
4466 };
4467
4468 static int emulator_read_write_onepage(unsigned long addr, void *val,
4469                                        unsigned int bytes,
4470                                        struct x86_exception *exception,
4471                                        struct kvm_vcpu *vcpu,
4472                                        const struct read_write_emulator_ops *ops)
4473 {
4474         gpa_t gpa;
4475         int handled, ret;
4476         bool write = ops->write;
4477         struct kvm_mmio_fragment *frag;
4478
4479         ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4480
4481         if (ret < 0)
4482                 return X86EMUL_PROPAGATE_FAULT;
4483
4484         /* For APIC access vmexit */
4485         if (ret)
4486                 goto mmio;
4487
4488         if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4489                 return X86EMUL_CONTINUE;
4490
4491 mmio:
4492         /*
4493          * Is this MMIO handled locally?
4494          */
4495         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4496         if (handled == bytes)
4497                 return X86EMUL_CONTINUE;
4498
4499         gpa += handled;
4500         bytes -= handled;
4501         val += handled;
4502
4503         WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4504         frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4505         frag->gpa = gpa;
4506         frag->data = val;
4507         frag->len = bytes;
4508         return X86EMUL_CONTINUE;
4509 }
4510
4511 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
4512                         unsigned long addr,
4513                         void *val, unsigned int bytes,
4514                         struct x86_exception *exception,
4515                         const struct read_write_emulator_ops *ops)
4516 {
4517         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4518         gpa_t gpa;
4519         int rc;
4520
4521         if (ops->read_write_prepare &&
4522                   ops->read_write_prepare(vcpu, val, bytes))
4523                 return X86EMUL_CONTINUE;
4524
4525         vcpu->mmio_nr_fragments = 0;
4526
4527         /* Crossing a page boundary? */
4528         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4529                 int now;
4530
4531                 now = -addr & ~PAGE_MASK;
4532                 rc = emulator_read_write_onepage(addr, val, now, exception,
4533                                                  vcpu, ops);
4534
4535                 if (rc != X86EMUL_CONTINUE)
4536                         return rc;
4537                 addr += now;
4538                 if (ctxt->mode != X86EMUL_MODE_PROT64)
4539                         addr = (u32)addr;
4540                 val += now;
4541                 bytes -= now;
4542         }
4543
4544         rc = emulator_read_write_onepage(addr, val, bytes, exception,
4545                                          vcpu, ops);
4546         if (rc != X86EMUL_CONTINUE)
4547                 return rc;
4548
4549         if (!vcpu->mmio_nr_fragments)
4550                 return rc;
4551
4552         gpa = vcpu->mmio_fragments[0].gpa;
4553
4554         vcpu->mmio_needed = 1;
4555         vcpu->mmio_cur_fragment = 0;
4556
4557         vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4558         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4559         vcpu->run->exit_reason = KVM_EXIT_MMIO;
4560         vcpu->run->mmio.phys_addr = gpa;
4561
4562         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4563 }
4564
4565 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4566                                   unsigned long addr,
4567                                   void *val,
4568                                   unsigned int bytes,
4569                                   struct x86_exception *exception)
4570 {
4571         return emulator_read_write(ctxt, addr, val, bytes,
4572                                    exception, &read_emultor);
4573 }
4574
4575 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4576                             unsigned long addr,
4577                             const void *val,
4578                             unsigned int bytes,
4579                             struct x86_exception *exception)
4580 {
4581         return emulator_read_write(ctxt, addr, (void *)val, bytes,
4582                                    exception, &write_emultor);
4583 }
4584
4585 #define CMPXCHG_TYPE(t, ptr, old, new) \
4586         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4587
4588 #ifdef CONFIG_X86_64
4589 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4590 #else
4591 #  define CMPXCHG64(ptr, old, new) \
4592         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4593 #endif
4594
4595 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4596                                      unsigned long addr,
4597                                      const void *old,
4598                                      const void *new,
4599                                      unsigned int bytes,
4600                                      struct x86_exception *exception)
4601 {
4602         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4603         gpa_t gpa;
4604         struct page *page;
4605         char *kaddr;
4606         bool exchanged;
4607
4608         /* guests cmpxchg8b have to be emulated atomically */
4609         if (bytes > 8 || (bytes & (bytes - 1)))
4610                 goto emul_write;
4611
4612         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4613
4614         if (gpa == UNMAPPED_GVA ||
4615             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4616                 goto emul_write;
4617
4618         if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4619                 goto emul_write;
4620
4621         page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4622         if (is_error_page(page))
4623                 goto emul_write;
4624
4625         kaddr = kmap_atomic(page);
4626         kaddr += offset_in_page(gpa);
4627         switch (bytes) {
4628         case 1:
4629                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4630                 break;
4631         case 2:
4632                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4633                 break;
4634         case 4:
4635                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4636                 break;
4637         case 8:
4638                 exchanged = CMPXCHG64(kaddr, old, new);
4639                 break;
4640         default:
4641                 BUG();
4642         }
4643         kunmap_atomic(kaddr);
4644         kvm_release_page_dirty(page);
4645
4646         if (!exchanged)
4647                 return X86EMUL_CMPXCHG_FAILED;
4648
4649         mark_page_dirty(vcpu->kvm, gpa >> PAGE_SHIFT);
4650         kvm_mmu_pte_write(vcpu, gpa, new, bytes);
4651
4652         return X86EMUL_CONTINUE;
4653
4654 emul_write:
4655         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4656
4657         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4658 }
4659
4660 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4661 {
4662         /* TODO: String I/O for in kernel device */
4663         int r;
4664
4665         if (vcpu->arch.pio.in)
4666                 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
4667                                     vcpu->arch.pio.size, pd);
4668         else
4669                 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
4670                                      vcpu->arch.pio.port, vcpu->arch.pio.size,
4671                                      pd);
4672         return r;
4673 }
4674
4675 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4676                                unsigned short port, void *val,
4677                                unsigned int count, bool in)
4678 {
4679         vcpu->arch.pio.port = port;
4680         vcpu->arch.pio.in = in;
4681         vcpu->arch.pio.count  = count;
4682         vcpu->arch.pio.size = size;
4683
4684         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4685                 vcpu->arch.pio.count = 0;
4686                 return 1;
4687         }
4688
4689         vcpu->run->exit_reason = KVM_EXIT_IO;
4690         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4691         vcpu->run->io.size = size;
4692         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4693         vcpu->run->io.count = count;
4694         vcpu->run->io.port = port;
4695
4696         return 0;
4697 }
4698
4699 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4700                                     int size, unsigned short port, void *val,
4701                                     unsigned int count)
4702 {
4703         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4704         int ret;
4705
4706         if (vcpu->arch.pio.count)
4707                 goto data_avail;
4708
4709         ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4710         if (ret) {
4711 data_avail:
4712                 memcpy(val, vcpu->arch.pio_data, size * count);
4713                 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
4714                 vcpu->arch.pio.count = 0;
4715                 return 1;
4716         }
4717
4718         return 0;
4719 }
4720
4721 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4722                                      int size, unsigned short port,
4723                                      const void *val, unsigned int count)
4724 {
4725         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4726
4727         memcpy(vcpu->arch.pio_data, val, size * count);
4728         trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
4729         return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4730 }
4731
4732 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4733 {
4734         return kvm_x86_ops->get_segment_base(vcpu, seg);
4735 }
4736
4737 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4738 {
4739         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4740 }
4741
4742 int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
4743 {
4744         if (!need_emulate_wbinvd(vcpu))
4745                 return X86EMUL_CONTINUE;
4746
4747         if (kvm_x86_ops->has_wbinvd_exit()) {
4748                 int cpu = get_cpu();
4749
4750                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4751                 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4752                                 wbinvd_ipi, NULL, 1);
4753                 put_cpu();
4754                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4755         } else
4756                 wbinvd();
4757         return X86EMUL_CONTINUE;
4758 }
4759
4760 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4761 {
4762         kvm_x86_ops->skip_emulated_instruction(vcpu);
4763         return kvm_emulate_wbinvd_noskip(vcpu);
4764 }
4765 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4766
4767
4768
4769 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4770 {
4771         kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
4772 }
4773
4774 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
4775                            unsigned long *dest)
4776 {
4777         return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4778 }
4779
4780 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
4781                            unsigned long value)
4782 {
4783
4784         return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4785 }
4786
4787 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4788 {
4789         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4790 }
4791
4792 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4793 {
4794         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4795         unsigned long value;
4796
4797         switch (cr) {
4798         case 0:
4799                 value = kvm_read_cr0(vcpu);
4800                 break;
4801         case 2:
4802                 value = vcpu->arch.cr2;
4803                 break;
4804         case 3:
4805                 value = kvm_read_cr3(vcpu);
4806                 break;
4807         case 4:
4808                 value = kvm_read_cr4(vcpu);
4809                 break;
4810         case 8:
4811                 value = kvm_get_cr8(vcpu);
4812                 break;
4813         default:
4814                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4815                 return 0;
4816         }
4817
4818         return value;
4819 }
4820
4821 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4822 {
4823         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4824         int res = 0;
4825
4826         switch (cr) {
4827         case 0:
4828                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4829                 break;
4830         case 2:
4831                 vcpu->arch.cr2 = val;
4832                 break;
4833         case 3:
4834                 res = kvm_set_cr3(vcpu, val);
4835                 break;
4836         case 4:
4837                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4838                 break;
4839         case 8:
4840                 res = kvm_set_cr8(vcpu, val);
4841                 break;
4842         default:
4843                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4844                 res = -1;
4845         }
4846
4847         return res;
4848 }
4849
4850 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4851 {
4852         return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4853 }
4854
4855 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4856 {
4857         kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4858 }
4859
4860 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4861 {
4862         kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4863 }
4864
4865 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4866 {
4867         kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4868 }
4869
4870 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4871 {
4872         kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4873 }
4874
4875 static unsigned long emulator_get_cached_segment_base(
4876         struct x86_emulate_ctxt *ctxt, int seg)
4877 {
4878         return get_segment_base(emul_to_vcpu(ctxt), seg);
4879 }
4880
4881 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4882                                  struct desc_struct *desc, u32 *base3,
4883                                  int seg)
4884 {
4885         struct kvm_segment var;
4886
4887         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4888         *selector = var.selector;
4889
4890         if (var.unusable) {
4891                 memset(desc, 0, sizeof(*desc));
4892                 return false;
4893         }
4894
4895         if (var.g)
4896                 var.limit >>= 12;
4897         set_desc_limit(desc, var.limit);
4898         set_desc_base(desc, (unsigned long)var.base);
4899 #ifdef CONFIG_X86_64
4900         if (base3)
4901                 *base3 = var.base >> 32;
4902 #endif
4903         desc->type = var.type;
4904         desc->s = var.s;
4905         desc->dpl = var.dpl;
4906         desc->p = var.present;
4907         desc->avl = var.avl;
4908         desc->l = var.l;
4909         desc->d = var.db;
4910         desc->g = var.g;
4911
4912         return true;
4913 }
4914
4915 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4916                                  struct desc_struct *desc, u32 base3,
4917                                  int seg)
4918 {
4919         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4920         struct kvm_segment var;
4921
4922         var.selector = selector;
4923         var.base = get_desc_base(desc);
4924 #ifdef CONFIG_X86_64
4925         var.base |= ((u64)base3) << 32;
4926 #endif
4927         var.limit = get_desc_limit(desc);
4928         if (desc->g)
4929                 var.limit = (var.limit << 12) | 0xfff;
4930         var.type = desc->type;
4931         var.dpl = desc->dpl;
4932         var.db = desc->d;
4933         var.s = desc->s;
4934         var.l = desc->l;
4935         var.g = desc->g;
4936         var.avl = desc->avl;
4937         var.present = desc->p;
4938         var.unusable = !var.present;
4939         var.padding = 0;
4940
4941         kvm_set_segment(vcpu, &var, seg);
4942         return;
4943 }
4944
4945 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4946                             u32 msr_index, u64 *pdata)
4947 {
4948         return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
4949 }
4950
4951 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4952                             u32 msr_index, u64 data)
4953 {
4954         struct msr_data msr;
4955
4956         msr.data = data;
4957         msr.index = msr_index;
4958         msr.host_initiated = false;
4959         return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
4960 }
4961
4962 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
4963                               u32 pmc)
4964 {
4965         return kvm_pmu_check_pmc(emul_to_vcpu(ctxt), pmc);
4966 }
4967
4968 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
4969                              u32 pmc, u64 *pdata)
4970 {
4971         return kvm_pmu_read_pmc(emul_to_vcpu(ctxt), pmc, pdata);
4972 }
4973
4974 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
4975 {
4976         emul_to_vcpu(ctxt)->arch.halt_request = 1;
4977 }
4978
4979 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4980 {
4981         preempt_disable();
4982         kvm_load_guest_fpu(emul_to_vcpu(ctxt));
4983         /*
4984          * CR0.TS may reference the host fpu state, not the guest fpu state,
4985          * so it may be clear at this point.
4986          */
4987         clts();
4988 }
4989
4990 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
4991 {
4992         preempt_enable();
4993 }
4994
4995 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
4996                               struct x86_instruction_info *info,
4997                               enum x86_intercept_stage stage)
4998 {
4999         return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
5000 }
5001
5002 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
5003                                u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
5004 {
5005         kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
5006 }
5007
5008 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
5009 {
5010         return kvm_register_read(emul_to_vcpu(ctxt), reg);
5011 }
5012
5013 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
5014 {
5015         kvm_register_write(emul_to_vcpu(ctxt), reg, val);
5016 }
5017
5018 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
5019 {
5020         kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
5021 }
5022
5023 static const struct x86_emulate_ops emulate_ops = {
5024         .read_gpr            = emulator_read_gpr,
5025         .write_gpr           = emulator_write_gpr,
5026         .read_std            = kvm_read_guest_virt_system,
5027         .write_std           = kvm_write_guest_virt_system,
5028         .fetch               = kvm_fetch_guest_virt,
5029         .read_emulated       = emulator_read_emulated,
5030         .write_emulated      = emulator_write_emulated,
5031         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
5032         .invlpg              = emulator_invlpg,
5033         .pio_in_emulated     = emulator_pio_in_emulated,
5034         .pio_out_emulated    = emulator_pio_out_emulated,
5035         .get_segment         = emulator_get_segment,
5036         .set_segment         = emulator_set_segment,
5037         .get_cached_segment_base = emulator_get_cached_segment_base,
5038         .get_gdt             = emulator_get_gdt,
5039         .get_idt             = emulator_get_idt,
5040         .set_gdt             = emulator_set_gdt,
5041         .set_idt             = emulator_set_idt,
5042         .get_cr              = emulator_get_cr,
5043         .set_cr              = emulator_set_cr,
5044         .cpl                 = emulator_get_cpl,
5045         .get_dr              = emulator_get_dr,
5046         .set_dr              = emulator_set_dr,
5047         .set_msr             = emulator_set_msr,
5048         .get_msr             = emulator_get_msr,
5049         .check_pmc           = emulator_check_pmc,
5050         .read_pmc            = emulator_read_pmc,
5051         .halt                = emulator_halt,
5052         .wbinvd              = emulator_wbinvd,
5053         .fix_hypercall       = emulator_fix_hypercall,
5054         .get_fpu             = emulator_get_fpu,
5055         .put_fpu             = emulator_put_fpu,
5056         .intercept           = emulator_intercept,
5057         .get_cpuid           = emulator_get_cpuid,
5058         .set_nmi_mask        = emulator_set_nmi_mask,
5059 };
5060
5061 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5062 {
5063         u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5064         /*
5065          * an sti; sti; sequence only disable interrupts for the first
5066          * instruction. So, if the last instruction, be it emulated or
5067          * not, left the system with the INT_STI flag enabled, it
5068          * means that the last instruction is an sti. We should not
5069          * leave the flag on in this case. The same goes for mov ss
5070          */
5071         if (int_shadow & mask)
5072                 mask = 0;
5073         if (unlikely(int_shadow || mask)) {
5074                 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5075                 if (!mask)
5076                         kvm_make_request(KVM_REQ_EVENT, vcpu);
5077         }
5078 }
5079
5080 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5081 {
5082         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5083         if (ctxt->exception.vector == PF_VECTOR)
5084                 return kvm_propagate_fault(vcpu, &ctxt->exception);
5085
5086         if (ctxt->exception.error_code_valid)
5087                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5088                                       ctxt->exception.error_code);
5089         else
5090                 kvm_queue_exception(vcpu, ctxt->exception.vector);
5091         return false;
5092 }
5093
5094 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5095 {
5096         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5097         int cs_db, cs_l;
5098
5099         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5100
5101         ctxt->eflags = kvm_get_rflags(vcpu);
5102         ctxt->eip = kvm_rip_read(vcpu);
5103         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
5104                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
5105                      (cs_l && is_long_mode(vcpu))       ? X86EMUL_MODE_PROT64 :
5106                      cs_db                              ? X86EMUL_MODE_PROT32 :
5107                                                           X86EMUL_MODE_PROT16;
5108         ctxt->guest_mode = is_guest_mode(vcpu);
5109
5110         init_decode_cache(ctxt);
5111         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5112 }
5113
5114 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5115 {
5116         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5117         int ret;
5118
5119         init_emulate_ctxt(vcpu);
5120
5121         ctxt->op_bytes = 2;
5122         ctxt->ad_bytes = 2;
5123         ctxt->_eip = ctxt->eip + inc_eip;
5124         ret = emulate_int_real(ctxt, irq);
5125
5126         if (ret != X86EMUL_CONTINUE)
5127                 return EMULATE_FAIL;
5128
5129         ctxt->eip = ctxt->_eip;
5130         kvm_rip_write(vcpu, ctxt->eip);
5131         kvm_set_rflags(vcpu, ctxt->eflags);
5132
5133         if (irq == NMI_VECTOR)
5134                 vcpu->arch.nmi_pending = 0;
5135         else
5136                 vcpu->arch.interrupt.pending = false;
5137
5138         return EMULATE_DONE;
5139 }
5140 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5141
5142 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
5143 {
5144         int r = EMULATE_DONE;
5145
5146         ++vcpu->stat.insn_emulation_fail;
5147         trace_kvm_emulate_insn_failed(vcpu);
5148         if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
5149                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5150                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5151                 vcpu->run->internal.ndata = 0;
5152                 r = EMULATE_FAIL;
5153         }
5154         kvm_queue_exception(vcpu, UD_VECTOR);
5155
5156         return r;
5157 }
5158
5159 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
5160                                   bool write_fault_to_shadow_pgtable,
5161                                   int emulation_type)
5162 {
5163         gpa_t gpa = cr2;
5164         pfn_t pfn;
5165
5166         if (emulation_type & EMULTYPE_NO_REEXECUTE)
5167                 return false;
5168
5169         if (!vcpu->arch.mmu.direct_map) {
5170                 /*
5171                  * Write permission should be allowed since only
5172                  * write access need to be emulated.
5173                  */
5174                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5175
5176                 /*
5177                  * If the mapping is invalid in guest, let cpu retry
5178                  * it to generate fault.
5179                  */
5180                 if (gpa == UNMAPPED_GVA)
5181                         return true;
5182         }
5183
5184         /*
5185          * Do not retry the unhandleable instruction if it faults on the
5186          * readonly host memory, otherwise it will goto a infinite loop:
5187          * retry instruction -> write #PF -> emulation fail -> retry
5188          * instruction -> ...
5189          */
5190         pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
5191
5192         /*
5193          * If the instruction failed on the error pfn, it can not be fixed,
5194          * report the error to userspace.
5195          */
5196         if (is_error_noslot_pfn(pfn))
5197                 return false;
5198
5199         kvm_release_pfn_clean(pfn);
5200
5201         /* The instructions are well-emulated on direct mmu. */
5202         if (vcpu->arch.mmu.direct_map) {
5203                 unsigned int indirect_shadow_pages;
5204
5205                 spin_lock(&vcpu->kvm->mmu_lock);
5206                 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5207                 spin_unlock(&vcpu->kvm->mmu_lock);
5208
5209                 if (indirect_shadow_pages)
5210                         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5211
5212                 return true;
5213         }
5214
5215         /*
5216          * if emulation was due to access to shadowed page table
5217          * and it failed try to unshadow page and re-enter the
5218          * guest to let CPU execute the instruction.
5219          */
5220         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5221
5222         /*
5223          * If the access faults on its page table, it can not
5224          * be fixed by unprotecting shadow page and it should
5225          * be reported to userspace.
5226          */
5227         return !write_fault_to_shadow_pgtable;
5228 }
5229
5230 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5231                               unsigned long cr2,  int emulation_type)
5232 {
5233         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5234         unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5235
5236         last_retry_eip = vcpu->arch.last_retry_eip;
5237         last_retry_addr = vcpu->arch.last_retry_addr;
5238
5239         /*
5240          * If the emulation is caused by #PF and it is non-page_table
5241          * writing instruction, it means the VM-EXIT is caused by shadow
5242          * page protected, we can zap the shadow page and retry this
5243          * instruction directly.
5244          *
5245          * Note: if the guest uses a non-page-table modifying instruction
5246          * on the PDE that points to the instruction, then we will unmap
5247          * the instruction and go to an infinite loop. So, we cache the
5248          * last retried eip and the last fault address, if we meet the eip
5249          * and the address again, we can break out of the potential infinite
5250          * loop.
5251          */
5252         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5253
5254         if (!(emulation_type & EMULTYPE_RETRY))
5255                 return false;
5256
5257         if (x86_page_table_writing_insn(ctxt))
5258                 return false;
5259
5260         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5261                 return false;
5262
5263         vcpu->arch.last_retry_eip = ctxt->eip;
5264         vcpu->arch.last_retry_addr = cr2;
5265
5266         if (!vcpu->arch.mmu.direct_map)
5267                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5268
5269         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5270
5271         return true;
5272 }
5273
5274 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5275 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5276
5277 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5278                                 unsigned long *db)
5279 {
5280         u32 dr6 = 0;
5281         int i;
5282         u32 enable, rwlen;
5283
5284         enable = dr7;
5285         rwlen = dr7 >> 16;
5286         for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5287                 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5288                         dr6 |= (1 << i);
5289         return dr6;
5290 }
5291
5292 static void kvm_vcpu_check_singlestep(struct kvm_vcpu *vcpu, unsigned long rflags, int *r)
5293 {
5294         struct kvm_run *kvm_run = vcpu->run;
5295
5296         /*
5297          * rflags is the old, "raw" value of the flags.  The new value has
5298          * not been saved yet.
5299          *
5300          * This is correct even for TF set by the guest, because "the
5301          * processor will not generate this exception after the instruction
5302          * that sets the TF flag".
5303          */
5304         if (unlikely(rflags & X86_EFLAGS_TF)) {
5305                 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5306                         kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 |
5307                                                   DR6_RTM;
5308                         kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5309                         kvm_run->debug.arch.exception = DB_VECTOR;
5310                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
5311                         *r = EMULATE_USER_EXIT;
5312                 } else {
5313                         vcpu->arch.emulate_ctxt.eflags &= ~X86_EFLAGS_TF;
5314                         /*
5315                          * "Certain debug exceptions may clear bit 0-3.  The
5316                          * remaining contents of the DR6 register are never
5317                          * cleared by the processor".
5318                          */
5319                         vcpu->arch.dr6 &= ~15;
5320                         vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5321                         kvm_queue_exception(vcpu, DB_VECTOR);
5322                 }
5323         }
5324 }
5325
5326 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5327 {
5328         if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5329             (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5330                 struct kvm_run *kvm_run = vcpu->run;
5331                 unsigned long eip = kvm_get_linear_rip(vcpu);
5332                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5333                                            vcpu->arch.guest_debug_dr7,
5334                                            vcpu->arch.eff_db);
5335
5336                 if (dr6 != 0) {
5337                         kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
5338                         kvm_run->debug.arch.pc = eip;
5339                         kvm_run->debug.arch.exception = DB_VECTOR;
5340                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
5341                         *r = EMULATE_USER_EXIT;
5342                         return true;
5343                 }
5344         }
5345
5346         if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
5347             !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
5348                 unsigned long eip = kvm_get_linear_rip(vcpu);
5349                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5350                                            vcpu->arch.dr7,
5351                                            vcpu->arch.db);
5352
5353                 if (dr6 != 0) {
5354                         vcpu->arch.dr6 &= ~15;
5355                         vcpu->arch.dr6 |= dr6 | DR6_RTM;
5356                         kvm_queue_exception(vcpu, DB_VECTOR);
5357                         *r = EMULATE_DONE;
5358                         return true;
5359                 }
5360         }
5361
5362         return false;
5363 }
5364
5365 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5366                             unsigned long cr2,
5367                             int emulation_type,
5368                             void *insn,
5369                             int insn_len)
5370 {
5371         int r;
5372         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5373         bool writeback = true;
5374         bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5375
5376         /*
5377          * Clear write_fault_to_shadow_pgtable here to ensure it is
5378          * never reused.
5379          */
5380         vcpu->arch.write_fault_to_shadow_pgtable = false;
5381         kvm_clear_exception_queue(vcpu);
5382
5383         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5384                 init_emulate_ctxt(vcpu);
5385
5386                 /*
5387                  * We will reenter on the same instruction since
5388                  * we do not set complete_userspace_io.  This does not
5389                  * handle watchpoints yet, those would be handled in
5390                  * the emulate_ops.
5391                  */
5392                 if (kvm_vcpu_check_breakpoint(vcpu, &r))
5393                         return r;
5394
5395                 ctxt->interruptibility = 0;
5396                 ctxt->have_exception = false;
5397                 ctxt->exception.vector = -1;
5398                 ctxt->perm_ok = false;
5399
5400                 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5401
5402                 r = x86_decode_insn(ctxt, insn, insn_len);
5403
5404                 trace_kvm_emulate_insn_start(vcpu);
5405                 ++vcpu->stat.insn_emulation;
5406                 if (r != EMULATION_OK)  {
5407                         if (emulation_type & EMULTYPE_TRAP_UD)
5408                                 return EMULATE_FAIL;
5409                         if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5410                                                 emulation_type))
5411                                 return EMULATE_DONE;
5412                         if (emulation_type & EMULTYPE_SKIP)
5413                                 return EMULATE_FAIL;
5414                         return handle_emulation_failure(vcpu);
5415                 }
5416         }
5417
5418         if (emulation_type & EMULTYPE_SKIP) {
5419                 kvm_rip_write(vcpu, ctxt->_eip);
5420                 if (ctxt->eflags & X86_EFLAGS_RF)
5421                         kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
5422                 return EMULATE_DONE;
5423         }
5424
5425         if (retry_instruction(ctxt, cr2, emulation_type))
5426                 return EMULATE_DONE;
5427
5428         /* this is needed for vmware backdoor interface to work since it
5429            changes registers values  during IO operation */
5430         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5431                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5432                 emulator_invalidate_register_cache(ctxt);
5433         }
5434
5435 restart:
5436         r = x86_emulate_insn(ctxt);
5437
5438         if (r == EMULATION_INTERCEPTED)
5439                 return EMULATE_DONE;
5440
5441         if (r == EMULATION_FAILED) {
5442                 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5443                                         emulation_type))
5444                         return EMULATE_DONE;
5445
5446                 return handle_emulation_failure(vcpu);
5447         }
5448
5449         if (ctxt->have_exception) {
5450                 r = EMULATE_DONE;
5451                 if (inject_emulated_exception(vcpu))
5452                         return r;
5453         } else if (vcpu->arch.pio.count) {
5454                 if (!vcpu->arch.pio.in) {
5455                         /* FIXME: return into emulator if single-stepping.  */
5456                         vcpu->arch.pio.count = 0;
5457                 } else {
5458                         writeback = false;
5459                         vcpu->arch.complete_userspace_io = complete_emulated_pio;
5460                 }
5461                 r = EMULATE_USER_EXIT;
5462         } else if (vcpu->mmio_needed) {
5463                 if (!vcpu->mmio_is_write)
5464                         writeback = false;
5465                 r = EMULATE_USER_EXIT;
5466                 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5467         } else if (r == EMULATION_RESTART)
5468                 goto restart;
5469         else
5470                 r = EMULATE_DONE;
5471
5472         if (writeback) {
5473                 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5474                 toggle_interruptibility(vcpu, ctxt->interruptibility);
5475                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5476                 kvm_rip_write(vcpu, ctxt->eip);
5477                 if (r == EMULATE_DONE)
5478                         kvm_vcpu_check_singlestep(vcpu, rflags, &r);
5479                 if (!ctxt->have_exception ||
5480                     exception_type(ctxt->exception.vector) == EXCPT_TRAP)
5481                         __kvm_set_rflags(vcpu, ctxt->eflags);
5482
5483                 /*
5484                  * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
5485                  * do nothing, and it will be requested again as soon as
5486                  * the shadow expires.  But we still need to check here,
5487                  * because POPF has no interrupt shadow.
5488                  */
5489                 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
5490                         kvm_make_request(KVM_REQ_EVENT, vcpu);
5491         } else
5492                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5493
5494         return r;
5495 }
5496 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5497
5498 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5499 {
5500         unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5501         int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5502                                             size, port, &val, 1);
5503         /* do not return to emulator after return from userspace */
5504         vcpu->arch.pio.count = 0;
5505         return ret;
5506 }
5507 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5508
5509 static void tsc_bad(void *info)
5510 {
5511         __this_cpu_write(cpu_tsc_khz, 0);
5512 }
5513
5514 static void tsc_khz_changed(void *data)
5515 {
5516         struct cpufreq_freqs *freq = data;
5517         unsigned long khz = 0;
5518
5519         if (data)
5520                 khz = freq->new;
5521         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5522                 khz = cpufreq_quick_get(raw_smp_processor_id());
5523         if (!khz)
5524                 khz = tsc_khz;
5525         __this_cpu_write(cpu_tsc_khz, khz);
5526 }
5527
5528 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5529                                      void *data)
5530 {
5531         struct cpufreq_freqs *freq = data;
5532         struct kvm *kvm;
5533         struct kvm_vcpu *vcpu;
5534         int i, send_ipi = 0;
5535
5536         /*
5537          * We allow guests to temporarily run on slowing clocks,
5538          * provided we notify them after, or to run on accelerating
5539          * clocks, provided we notify them before.  Thus time never
5540          * goes backwards.
5541          *
5542          * However, we have a problem.  We can't atomically update
5543          * the frequency of a given CPU from this function; it is
5544          * merely a notifier, which can be called from any CPU.
5545          * Changing the TSC frequency at arbitrary points in time
5546          * requires a recomputation of local variables related to
5547          * the TSC for each VCPU.  We must flag these local variables
5548          * to be updated and be sure the update takes place with the
5549          * new frequency before any guests proceed.
5550          *
5551          * Unfortunately, the combination of hotplug CPU and frequency
5552          * change creates an intractable locking scenario; the order
5553          * of when these callouts happen is undefined with respect to
5554          * CPU hotplug, and they can race with each other.  As such,
5555          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5556          * undefined; you can actually have a CPU frequency change take
5557          * place in between the computation of X and the setting of the
5558          * variable.  To protect against this problem, all updates of
5559          * the per_cpu tsc_khz variable are done in an interrupt
5560          * protected IPI, and all callers wishing to update the value
5561          * must wait for a synchronous IPI to complete (which is trivial
5562          * if the caller is on the CPU already).  This establishes the
5563          * necessary total order on variable updates.
5564          *
5565          * Note that because a guest time update may take place
5566          * anytime after the setting of the VCPU's request bit, the
5567          * correct TSC value must be set before the request.  However,
5568          * to ensure the update actually makes it to any guest which
5569          * starts running in hardware virtualization between the set
5570          * and the acquisition of the spinlock, we must also ping the
5571          * CPU after setting the request bit.
5572          *
5573          */
5574
5575         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5576                 return 0;
5577         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5578                 return 0;
5579
5580         smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5581
5582         spin_lock(&kvm_lock);
5583         list_for_each_entry(kvm, &vm_list, vm_list) {
5584                 kvm_for_each_vcpu(i, vcpu, kvm) {
5585                         if (vcpu->cpu != freq->cpu)
5586                                 continue;
5587                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5588                         if (vcpu->cpu != smp_processor_id())
5589                                 send_ipi = 1;
5590                 }
5591         }
5592         spin_unlock(&kvm_lock);
5593
5594         if (freq->old < freq->new && send_ipi) {
5595                 /*
5596                  * We upscale the frequency.  Must make the guest
5597                  * doesn't see old kvmclock values while running with
5598                  * the new frequency, otherwise we risk the guest sees
5599                  * time go backwards.
5600                  *
5601                  * In case we update the frequency for another cpu
5602                  * (which might be in guest context) send an interrupt
5603                  * to kick the cpu out of guest context.  Next time
5604                  * guest context is entered kvmclock will be updated,
5605                  * so the guest will not see stale values.
5606                  */
5607                 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5608         }
5609         return 0;
5610 }
5611
5612 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5613         .notifier_call  = kvmclock_cpufreq_notifier
5614 };
5615
5616 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
5617                                         unsigned long action, void *hcpu)
5618 {
5619         unsigned int cpu = (unsigned long)hcpu;
5620
5621         switch (action) {
5622                 case CPU_ONLINE:
5623                 case CPU_DOWN_FAILED:
5624                         smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5625                         break;
5626                 case CPU_DOWN_PREPARE:
5627                         smp_call_function_single(cpu, tsc_bad, NULL, 1);
5628                         break;
5629         }
5630         return NOTIFY_OK;
5631 }
5632
5633 static struct notifier_block kvmclock_cpu_notifier_block = {
5634         .notifier_call  = kvmclock_cpu_notifier,
5635         .priority = -INT_MAX
5636 };
5637
5638 static void kvm_timer_init(void)
5639 {
5640         int cpu;
5641
5642         max_tsc_khz = tsc_khz;
5643
5644         cpu_notifier_register_begin();
5645         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5646 #ifdef CONFIG_CPU_FREQ
5647                 struct cpufreq_policy policy;
5648                 memset(&policy, 0, sizeof(policy));
5649                 cpu = get_cpu();
5650                 cpufreq_get_policy(&policy, cpu);
5651                 if (policy.cpuinfo.max_freq)
5652                         max_tsc_khz = policy.cpuinfo.max_freq;
5653                 put_cpu();
5654 #endif
5655                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5656                                           CPUFREQ_TRANSITION_NOTIFIER);
5657         }
5658         pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5659         for_each_online_cpu(cpu)
5660                 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5661
5662         __register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5663         cpu_notifier_register_done();
5664
5665 }
5666
5667 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5668
5669 int kvm_is_in_guest(void)
5670 {
5671         return __this_cpu_read(current_vcpu) != NULL;
5672 }
5673
5674 static int kvm_is_user_mode(void)
5675 {
5676         int user_mode = 3;
5677
5678         if (__this_cpu_read(current_vcpu))
5679                 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5680
5681         return user_mode != 0;
5682 }
5683
5684 static unsigned long kvm_get_guest_ip(void)
5685 {
5686         unsigned long ip = 0;
5687
5688         if (__this_cpu_read(current_vcpu))
5689                 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5690
5691         return ip;
5692 }
5693
5694 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5695         .is_in_guest            = kvm_is_in_guest,
5696         .is_user_mode           = kvm_is_user_mode,
5697         .get_guest_ip           = kvm_get_guest_ip,
5698 };
5699
5700 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5701 {
5702         __this_cpu_write(current_vcpu, vcpu);
5703 }
5704 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5705
5706 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5707 {
5708         __this_cpu_write(current_vcpu, NULL);
5709 }
5710 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5711
5712 static void kvm_set_mmio_spte_mask(void)
5713 {
5714         u64 mask;
5715         int maxphyaddr = boot_cpu_data.x86_phys_bits;
5716
5717         /*
5718          * Set the reserved bits and the present bit of an paging-structure
5719          * entry to generate page fault with PFER.RSV = 1.
5720          */
5721          /* Mask the reserved physical address bits. */
5722         mask = rsvd_bits(maxphyaddr, 51);
5723
5724         /* Bit 62 is always reserved for 32bit host. */
5725         mask |= 0x3ull << 62;
5726
5727         /* Set the present bit. */
5728         mask |= 1ull;
5729
5730 #ifdef CONFIG_X86_64
5731         /*
5732          * If reserved bit is not supported, clear the present bit to disable
5733          * mmio page fault.
5734          */
5735         if (maxphyaddr == 52)
5736                 mask &= ~1ull;
5737 #endif
5738
5739         kvm_mmu_set_mmio_spte_mask(mask);
5740 }
5741
5742 #ifdef CONFIG_X86_64
5743 static void pvclock_gtod_update_fn(struct work_struct *work)
5744 {
5745         struct kvm *kvm;
5746
5747         struct kvm_vcpu *vcpu;
5748         int i;
5749
5750         spin_lock(&kvm_lock);
5751         list_for_each_entry(kvm, &vm_list, vm_list)
5752                 kvm_for_each_vcpu(i, vcpu, kvm)
5753                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
5754         atomic_set(&kvm_guest_has_master_clock, 0);
5755         spin_unlock(&kvm_lock);
5756 }
5757
5758 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
5759
5760 /*
5761  * Notification about pvclock gtod data update.
5762  */
5763 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
5764                                void *priv)
5765 {
5766         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
5767         struct timekeeper *tk = priv;
5768
5769         update_pvclock_gtod(tk);
5770
5771         /* disable master clock if host does not trust, or does not
5772          * use, TSC clocksource
5773          */
5774         if (gtod->clock.vclock_mode != VCLOCK_TSC &&
5775             atomic_read(&kvm_guest_has_master_clock) != 0)
5776                 queue_work(system_long_wq, &pvclock_gtod_work);
5777
5778         return 0;
5779 }
5780
5781 static struct notifier_block pvclock_gtod_notifier = {
5782         .notifier_call = pvclock_gtod_notify,
5783 };
5784 #endif
5785
5786 int kvm_arch_init(void *opaque)
5787 {
5788         int r;
5789         struct kvm_x86_ops *ops = opaque;
5790
5791         if (kvm_x86_ops) {
5792                 printk(KERN_ERR "kvm: already loaded the other module\n");
5793                 r = -EEXIST;
5794                 goto out;
5795         }
5796
5797         if (!ops->cpu_has_kvm_support()) {
5798                 printk(KERN_ERR "kvm: no hardware support\n");
5799                 r = -EOPNOTSUPP;
5800                 goto out;
5801         }
5802         if (ops->disabled_by_bios()) {
5803                 printk(KERN_ERR "kvm: disabled by bios\n");
5804                 r = -EOPNOTSUPP;
5805                 goto out;
5806         }
5807
5808         r = -ENOMEM;
5809         shared_msrs = alloc_percpu(struct kvm_shared_msrs);
5810         if (!shared_msrs) {
5811                 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
5812                 goto out;
5813         }
5814
5815         r = kvm_mmu_module_init();
5816         if (r)
5817                 goto out_free_percpu;
5818
5819         kvm_set_mmio_spte_mask();
5820
5821         kvm_x86_ops = ops;
5822
5823         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
5824                         PT_DIRTY_MASK, PT64_NX_MASK, 0);
5825
5826         kvm_timer_init();
5827
5828         perf_register_guest_info_callbacks(&kvm_guest_cbs);
5829
5830         if (cpu_has_xsave)
5831                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
5832
5833         kvm_lapic_init();
5834 #ifdef CONFIG_X86_64
5835         pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
5836 #endif
5837
5838         return 0;
5839
5840 out_free_percpu:
5841         free_percpu(shared_msrs);
5842 out:
5843         return r;
5844 }
5845
5846 void kvm_arch_exit(void)
5847 {
5848         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5849
5850         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5851                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
5852                                             CPUFREQ_TRANSITION_NOTIFIER);
5853         unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5854 #ifdef CONFIG_X86_64
5855         pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
5856 #endif
5857         kvm_x86_ops = NULL;
5858         kvm_mmu_module_exit();
5859         free_percpu(shared_msrs);
5860 }
5861
5862 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
5863 {
5864         ++vcpu->stat.halt_exits;
5865         if (irqchip_in_kernel(vcpu->kvm)) {
5866                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
5867                 return 1;
5868         } else {
5869                 vcpu->run->exit_reason = KVM_EXIT_HLT;
5870                 return 0;
5871         }
5872 }
5873 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
5874
5875 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
5876 {
5877         kvm_x86_ops->skip_emulated_instruction(vcpu);
5878         return kvm_vcpu_halt(vcpu);
5879 }
5880 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
5881
5882 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
5883 {
5884         u64 param, ingpa, outgpa, ret;
5885         uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
5886         bool fast, longmode;
5887
5888         /*
5889          * hypercall generates UD from non zero cpl and real mode
5890          * per HYPER-V spec
5891          */
5892         if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
5893                 kvm_queue_exception(vcpu, UD_VECTOR);
5894                 return 0;
5895         }
5896
5897         longmode = is_64_bit_mode(vcpu);
5898
5899         if (!longmode) {
5900                 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
5901                         (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
5902                 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
5903                         (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
5904                 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
5905                         (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
5906         }
5907 #ifdef CONFIG_X86_64
5908         else {
5909                 param = kvm_register_read(vcpu, VCPU_REGS_RCX);
5910                 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
5911                 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
5912         }
5913 #endif
5914
5915         code = param & 0xffff;
5916         fast = (param >> 16) & 0x1;
5917         rep_cnt = (param >> 32) & 0xfff;
5918         rep_idx = (param >> 48) & 0xfff;
5919
5920         trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
5921
5922         switch (code) {
5923         case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
5924                 kvm_vcpu_on_spin(vcpu);
5925                 break;
5926         default:
5927                 res = HV_STATUS_INVALID_HYPERCALL_CODE;
5928                 break;
5929         }
5930
5931         ret = res | (((u64)rep_done & 0xfff) << 32);
5932         if (longmode) {
5933                 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5934         } else {
5935                 kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
5936                 kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
5937         }
5938
5939         return 1;
5940 }
5941
5942 /*
5943  * kvm_pv_kick_cpu_op:  Kick a vcpu.
5944  *
5945  * @apicid - apicid of vcpu to be kicked.
5946  */
5947 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
5948 {
5949         struct kvm_lapic_irq lapic_irq;
5950
5951         lapic_irq.shorthand = 0;
5952         lapic_irq.dest_mode = 0;
5953         lapic_irq.dest_id = apicid;
5954
5955         lapic_irq.delivery_mode = APIC_DM_REMRD;
5956         kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
5957 }
5958
5959 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
5960 {
5961         unsigned long nr, a0, a1, a2, a3, ret;
5962         int op_64_bit, r = 1;
5963
5964         kvm_x86_ops->skip_emulated_instruction(vcpu);
5965
5966         if (kvm_hv_hypercall_enabled(vcpu->kvm))
5967                 return kvm_hv_hypercall(vcpu);
5968
5969         nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
5970         a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
5971         a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
5972         a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
5973         a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
5974
5975         trace_kvm_hypercall(nr, a0, a1, a2, a3);
5976
5977         op_64_bit = is_64_bit_mode(vcpu);
5978         if (!op_64_bit) {
5979                 nr &= 0xFFFFFFFF;
5980                 a0 &= 0xFFFFFFFF;
5981                 a1 &= 0xFFFFFFFF;
5982                 a2 &= 0xFFFFFFFF;
5983                 a3 &= 0xFFFFFFFF;
5984         }
5985
5986         if (kvm_x86_ops->get_cpl(vcpu) != 0) {
5987                 ret = -KVM_EPERM;
5988                 goto out;
5989         }
5990
5991         switch (nr) {
5992         case KVM_HC_VAPIC_POLL_IRQ:
5993                 ret = 0;
5994                 break;
5995         case KVM_HC_KICK_CPU:
5996                 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
5997                 ret = 0;
5998                 break;
5999         default:
6000                 ret = -KVM_ENOSYS;
6001                 break;
6002         }
6003 out:
6004         if (!op_64_bit)
6005                 ret = (u32)ret;
6006         kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
6007         ++vcpu->stat.hypercalls;
6008         return r;
6009 }
6010 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
6011
6012 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
6013 {
6014         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6015         char instruction[3];
6016         unsigned long rip = kvm_rip_read(vcpu);
6017
6018         kvm_x86_ops->patch_hypercall(vcpu, instruction);
6019
6020         return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
6021 }
6022
6023 /*
6024  * Check if userspace requested an interrupt window, and that the
6025  * interrupt window is open.
6026  *
6027  * No need to exit to userspace if we already have an interrupt queued.
6028  */
6029 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
6030 {
6031         return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
6032                 vcpu->run->request_interrupt_window &&
6033                 kvm_arch_interrupt_allowed(vcpu));
6034 }
6035
6036 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
6037 {
6038         struct kvm_run *kvm_run = vcpu->run;
6039
6040         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
6041         kvm_run->cr8 = kvm_get_cr8(vcpu);
6042         kvm_run->apic_base = kvm_get_apic_base(vcpu);
6043         if (irqchip_in_kernel(vcpu->kvm))
6044                 kvm_run->ready_for_interrupt_injection = 1;
6045         else
6046                 kvm_run->ready_for_interrupt_injection =
6047                         kvm_arch_interrupt_allowed(vcpu) &&
6048                         !kvm_cpu_has_interrupt(vcpu) &&
6049                         !kvm_event_needs_reinjection(vcpu);
6050 }
6051
6052 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
6053 {
6054         int max_irr, tpr;
6055
6056         if (!kvm_x86_ops->update_cr8_intercept)
6057                 return;
6058
6059         if (!vcpu->arch.apic)
6060                 return;
6061
6062         if (!vcpu->arch.apic->vapic_addr)
6063                 max_irr = kvm_lapic_find_highest_irr(vcpu);
6064         else
6065                 max_irr = -1;
6066
6067         if (max_irr != -1)
6068                 max_irr >>= 4;
6069
6070         tpr = kvm_lapic_get_cr8(vcpu);
6071
6072         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
6073 }
6074
6075 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
6076 {
6077         int r;
6078
6079         /* try to reinject previous events if any */
6080         if (vcpu->arch.exception.pending) {
6081                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
6082                                         vcpu->arch.exception.has_error_code,
6083                                         vcpu->arch.exception.error_code);
6084
6085                 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
6086                         __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
6087                                              X86_EFLAGS_RF);
6088
6089                 if (vcpu->arch.exception.nr == DB_VECTOR &&
6090                     (vcpu->arch.dr7 & DR7_GD)) {
6091                         vcpu->arch.dr7 &= ~DR7_GD;
6092                         kvm_update_dr7(vcpu);
6093                 }
6094
6095                 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
6096                                           vcpu->arch.exception.has_error_code,
6097                                           vcpu->arch.exception.error_code,
6098                                           vcpu->arch.exception.reinject);
6099                 return 0;
6100         }
6101
6102         if (vcpu->arch.nmi_injected) {
6103                 kvm_x86_ops->set_nmi(vcpu);
6104                 return 0;
6105         }
6106
6107         if (vcpu->arch.interrupt.pending) {
6108                 kvm_x86_ops->set_irq(vcpu);
6109                 return 0;
6110         }
6111
6112         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6113                 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6114                 if (r != 0)
6115                         return r;
6116         }
6117
6118         /* try to inject new event if pending */
6119         if (vcpu->arch.nmi_pending) {
6120                 if (kvm_x86_ops->nmi_allowed(vcpu)) {
6121                         --vcpu->arch.nmi_pending;
6122                         vcpu->arch.nmi_injected = true;
6123                         kvm_x86_ops->set_nmi(vcpu);
6124                 }
6125         } else if (kvm_cpu_has_injectable_intr(vcpu)) {
6126                 /*
6127                  * Because interrupts can be injected asynchronously, we are
6128                  * calling check_nested_events again here to avoid a race condition.
6129                  * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6130                  * proposal and current concerns.  Perhaps we should be setting
6131                  * KVM_REQ_EVENT only on certain events and not unconditionally?
6132                  */
6133                 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6134                         r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6135                         if (r != 0)
6136                                 return r;
6137                 }
6138                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
6139                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
6140                                             false);
6141                         kvm_x86_ops->set_irq(vcpu);
6142                 }
6143         }
6144         return 0;
6145 }
6146
6147 static void process_nmi(struct kvm_vcpu *vcpu)
6148 {
6149         unsigned limit = 2;
6150
6151         /*
6152          * x86 is limited to one NMI running, and one NMI pending after it.
6153          * If an NMI is already in progress, limit further NMIs to just one.
6154          * Otherwise, allow two (and we'll inject the first one immediately).
6155          */
6156         if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
6157                 limit = 1;
6158
6159         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
6160         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
6161         kvm_make_request(KVM_REQ_EVENT, vcpu);
6162 }
6163
6164 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
6165 {
6166         u64 eoi_exit_bitmap[4];
6167         u32 tmr[8];
6168
6169         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
6170                 return;
6171
6172         memset(eoi_exit_bitmap, 0, 32);
6173         memset(tmr, 0, 32);
6174
6175         kvm_ioapic_scan_entry(vcpu, eoi_exit_bitmap, tmr);
6176         kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
6177         kvm_apic_update_tmr(vcpu, tmr);
6178 }
6179
6180 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu)
6181 {
6182         ++vcpu->stat.tlb_flush;
6183         kvm_x86_ops->tlb_flush(vcpu);
6184 }
6185
6186 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
6187 {
6188         struct page *page = NULL;
6189
6190         if (!irqchip_in_kernel(vcpu->kvm))
6191                 return;
6192
6193         if (!kvm_x86_ops->set_apic_access_page_addr)
6194                 return;
6195
6196         page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6197         if (is_error_page(page))
6198                 return;
6199         kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
6200
6201         /*
6202          * Do not pin apic access page in memory, the MMU notifier
6203          * will call us again if it is migrated or swapped out.
6204          */
6205         put_page(page);
6206 }
6207 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
6208
6209 void kvm_arch_mmu_notifier_invalidate_page(struct kvm *kvm,
6210                                            unsigned long address)
6211 {
6212         /*
6213          * The physical address of apic access page is stored in the VMCS.
6214          * Update it when it becomes invalid.
6215          */
6216         if (address == gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT))
6217                 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
6218 }
6219
6220 /*
6221  * Returns 1 to let vcpu_run() continue the guest execution loop without
6222  * exiting to the userspace.  Otherwise, the value will be returned to the
6223  * userspace.
6224  */
6225 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
6226 {
6227         int r;
6228         bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
6229                 vcpu->run->request_interrupt_window;
6230         bool req_immediate_exit = false;
6231
6232         if (vcpu->requests) {
6233                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
6234                         kvm_mmu_unload(vcpu);
6235                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
6236                         __kvm_migrate_timers(vcpu);
6237                 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
6238                         kvm_gen_update_masterclock(vcpu->kvm);
6239                 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
6240                         kvm_gen_kvmclock_update(vcpu);
6241                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
6242                         r = kvm_guest_time_update(vcpu);
6243                         if (unlikely(r))
6244                                 goto out;
6245                 }
6246                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
6247                         kvm_mmu_sync_roots(vcpu);
6248                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
6249                         kvm_vcpu_flush_tlb(vcpu);
6250                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
6251                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
6252                         r = 0;
6253                         goto out;
6254                 }
6255                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
6256                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
6257                         r = 0;
6258                         goto out;
6259                 }
6260                 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
6261                         vcpu->fpu_active = 0;
6262                         kvm_x86_ops->fpu_deactivate(vcpu);
6263                 }
6264                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
6265                         /* Page is swapped out. Do synthetic halt */
6266                         vcpu->arch.apf.halted = true;
6267                         r = 1;
6268                         goto out;
6269                 }
6270                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
6271                         record_steal_time(vcpu);
6272                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
6273                         process_nmi(vcpu);
6274                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
6275                         kvm_handle_pmu_event(vcpu);
6276                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
6277                         kvm_deliver_pmi(vcpu);
6278                 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
6279                         vcpu_scan_ioapic(vcpu);
6280                 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
6281                         kvm_vcpu_reload_apic_access_page(vcpu);
6282         }
6283
6284         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
6285                 kvm_apic_accept_events(vcpu);
6286                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
6287                         r = 1;
6288                         goto out;
6289                 }
6290
6291                 if (inject_pending_event(vcpu, req_int_win) != 0)
6292                         req_immediate_exit = true;
6293                 /* enable NMI/IRQ window open exits if needed */
6294                 else if (vcpu->arch.nmi_pending)
6295                         kvm_x86_ops->enable_nmi_window(vcpu);
6296                 else if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
6297                         kvm_x86_ops->enable_irq_window(vcpu);
6298
6299                 if (kvm_lapic_enabled(vcpu)) {
6300                         /*
6301                          * Update architecture specific hints for APIC
6302                          * virtual interrupt delivery.
6303                          */
6304                         if (kvm_x86_ops->hwapic_irr_update)
6305                                 kvm_x86_ops->hwapic_irr_update(vcpu,
6306                                         kvm_lapic_find_highest_irr(vcpu));
6307                         update_cr8_intercept(vcpu);
6308                         kvm_lapic_sync_to_vapic(vcpu);
6309                 }
6310         }
6311
6312         r = kvm_mmu_reload(vcpu);
6313         if (unlikely(r)) {
6314                 goto cancel_injection;
6315         }
6316
6317         preempt_disable();
6318
6319         kvm_x86_ops->prepare_guest_switch(vcpu);
6320         if (vcpu->fpu_active)
6321                 kvm_load_guest_fpu(vcpu);
6322         kvm_load_guest_xcr0(vcpu);
6323
6324         vcpu->mode = IN_GUEST_MODE;
6325
6326         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6327
6328         /* We should set ->mode before check ->requests,
6329          * see the comment in make_all_cpus_request.
6330          */
6331         smp_mb__after_srcu_read_unlock();
6332
6333         local_irq_disable();
6334
6335         if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
6336             || need_resched() || signal_pending(current)) {
6337                 vcpu->mode = OUTSIDE_GUEST_MODE;
6338                 smp_wmb();
6339                 local_irq_enable();
6340                 preempt_enable();
6341                 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6342                 r = 1;
6343                 goto cancel_injection;
6344         }
6345
6346         if (req_immediate_exit)
6347                 smp_send_reschedule(vcpu->cpu);
6348
6349         kvm_guest_enter();
6350
6351         if (unlikely(vcpu->arch.switch_db_regs)) {
6352                 set_debugreg(0, 7);
6353                 set_debugreg(vcpu->arch.eff_db[0], 0);
6354                 set_debugreg(vcpu->arch.eff_db[1], 1);
6355                 set_debugreg(vcpu->arch.eff_db[2], 2);
6356                 set_debugreg(vcpu->arch.eff_db[3], 3);
6357                 set_debugreg(vcpu->arch.dr6, 6);
6358                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6359         }
6360
6361         trace_kvm_entry(vcpu->vcpu_id);
6362         wait_lapic_expire(vcpu);
6363         kvm_x86_ops->run(vcpu);
6364
6365         /*
6366          * Do this here before restoring debug registers on the host.  And
6367          * since we do this before handling the vmexit, a DR access vmexit
6368          * can (a) read the correct value of the debug registers, (b) set
6369          * KVM_DEBUGREG_WONT_EXIT again.
6370          */
6371         if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
6372                 int i;
6373
6374                 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
6375                 kvm_x86_ops->sync_dirty_debug_regs(vcpu);
6376                 for (i = 0; i < KVM_NR_DB_REGS; i++)
6377                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
6378         }
6379
6380         /*
6381          * If the guest has used debug registers, at least dr7
6382          * will be disabled while returning to the host.
6383          * If we don't have active breakpoints in the host, we don't
6384          * care about the messed up debug address registers. But if
6385          * we have some of them active, restore the old state.
6386          */
6387         if (hw_breakpoint_active())
6388                 hw_breakpoint_restore();
6389
6390         vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu,
6391                                                            native_read_tsc());
6392
6393         vcpu->mode = OUTSIDE_GUEST_MODE;
6394         smp_wmb();
6395
6396         /* Interrupt is enabled by handle_external_intr() */
6397         kvm_x86_ops->handle_external_intr(vcpu);
6398
6399         ++vcpu->stat.exits;
6400
6401         /*
6402          * We must have an instruction between local_irq_enable() and
6403          * kvm_guest_exit(), so the timer interrupt isn't delayed by
6404          * the interrupt shadow.  The stat.exits increment will do nicely.
6405          * But we need to prevent reordering, hence this barrier():
6406          */
6407         barrier();
6408
6409         kvm_guest_exit();
6410
6411         preempt_enable();
6412
6413         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6414
6415         /*
6416          * Profile KVM exit RIPs:
6417          */
6418         if (unlikely(prof_on == KVM_PROFILING)) {
6419                 unsigned long rip = kvm_rip_read(vcpu);
6420                 profile_hit(KVM_PROFILING, (void *)rip);
6421         }
6422
6423         if (unlikely(vcpu->arch.tsc_always_catchup))
6424                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6425
6426         if (vcpu->arch.apic_attention)
6427                 kvm_lapic_sync_from_vapic(vcpu);
6428
6429         r = kvm_x86_ops->handle_exit(vcpu);
6430         return r;
6431
6432 cancel_injection:
6433         kvm_x86_ops->cancel_injection(vcpu);
6434         if (unlikely(vcpu->arch.apic_attention))
6435                 kvm_lapic_sync_from_vapic(vcpu);
6436 out:
6437         return r;
6438 }
6439
6440 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
6441 {
6442         if (!kvm_arch_vcpu_runnable(vcpu)) {
6443                 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6444                 kvm_vcpu_block(vcpu);
6445                 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6446                 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
6447                         return 1;
6448         }
6449
6450         kvm_apic_accept_events(vcpu);
6451         switch(vcpu->arch.mp_state) {
6452         case KVM_MP_STATE_HALTED:
6453                 vcpu->arch.pv.pv_unhalted = false;
6454                 vcpu->arch.mp_state =
6455                         KVM_MP_STATE_RUNNABLE;
6456         case KVM_MP_STATE_RUNNABLE:
6457                 vcpu->arch.apf.halted = false;
6458                 break;
6459         case KVM_MP_STATE_INIT_RECEIVED:
6460                 break;
6461         default:
6462                 return -EINTR;
6463                 break;
6464         }
6465         return 1;
6466 }
6467
6468 static int vcpu_run(struct kvm_vcpu *vcpu)
6469 {
6470         int r;
6471         struct kvm *kvm = vcpu->kvm;
6472
6473         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6474
6475         for (;;) {
6476                 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6477                     !vcpu->arch.apf.halted)
6478                         r = vcpu_enter_guest(vcpu);
6479                 else
6480                         r = vcpu_block(kvm, vcpu);
6481                 if (r <= 0)
6482                         break;
6483
6484                 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
6485                 if (kvm_cpu_has_pending_timer(vcpu))
6486                         kvm_inject_pending_timer_irqs(vcpu);
6487
6488                 if (dm_request_for_irq_injection(vcpu)) {
6489                         r = -EINTR;
6490                         vcpu->run->exit_reason = KVM_EXIT_INTR;
6491                         ++vcpu->stat.request_irq_exits;
6492                         break;
6493                 }
6494
6495                 kvm_check_async_pf_completion(vcpu);
6496
6497                 if (signal_pending(current)) {
6498                         r = -EINTR;
6499                         vcpu->run->exit_reason = KVM_EXIT_INTR;
6500                         ++vcpu->stat.signal_exits;
6501                         break;
6502                 }
6503                 if (need_resched()) {
6504                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6505                         cond_resched();
6506                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6507                 }
6508         }
6509
6510         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6511
6512         return r;
6513 }
6514
6515 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
6516 {
6517         int r;
6518         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6519         r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
6520         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6521         if (r != EMULATE_DONE)
6522                 return 0;
6523         return 1;
6524 }
6525
6526 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
6527 {
6528         BUG_ON(!vcpu->arch.pio.count);
6529
6530         return complete_emulated_io(vcpu);
6531 }
6532
6533 /*
6534  * Implements the following, as a state machine:
6535  *
6536  * read:
6537  *   for each fragment
6538  *     for each mmio piece in the fragment
6539  *       write gpa, len
6540  *       exit
6541  *       copy data
6542  *   execute insn
6543  *
6544  * write:
6545  *   for each fragment
6546  *     for each mmio piece in the fragment
6547  *       write gpa, len
6548  *       copy data
6549  *       exit
6550  */
6551 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
6552 {
6553         struct kvm_run *run = vcpu->run;
6554         struct kvm_mmio_fragment *frag;
6555         unsigned len;
6556
6557         BUG_ON(!vcpu->mmio_needed);
6558
6559         /* Complete previous fragment */
6560         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
6561         len = min(8u, frag->len);
6562         if (!vcpu->mmio_is_write)
6563                 memcpy(frag->data, run->mmio.data, len);
6564
6565         if (frag->len <= 8) {
6566                 /* Switch to the next fragment. */
6567                 frag++;
6568                 vcpu->mmio_cur_fragment++;
6569         } else {
6570                 /* Go forward to the next mmio piece. */
6571                 frag->data += len;
6572                 frag->gpa += len;
6573                 frag->len -= len;
6574         }
6575
6576         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
6577                 vcpu->mmio_needed = 0;
6578
6579                 /* FIXME: return into emulator if single-stepping.  */
6580                 if (vcpu->mmio_is_write)
6581                         return 1;
6582                 vcpu->mmio_read_completed = 1;
6583                 return complete_emulated_io(vcpu);
6584         }
6585
6586         run->exit_reason = KVM_EXIT_MMIO;
6587         run->mmio.phys_addr = frag->gpa;
6588         if (vcpu->mmio_is_write)
6589                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
6590         run->mmio.len = min(8u, frag->len);
6591         run->mmio.is_write = vcpu->mmio_is_write;
6592         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6593         return 0;
6594 }
6595
6596
6597 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
6598 {
6599         struct fpu *fpu = &current->thread.fpu;
6600         int r;
6601         sigset_t sigsaved;
6602
6603         fpu__activate_curr(fpu);
6604
6605         if (vcpu->sigset_active)
6606                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
6607
6608         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
6609                 kvm_vcpu_block(vcpu);
6610                 kvm_apic_accept_events(vcpu);
6611                 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
6612                 r = -EAGAIN;
6613                 goto out;
6614         }
6615
6616         /* re-sync apic's tpr */
6617         if (!irqchip_in_kernel(vcpu->kvm)) {
6618                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
6619                         r = -EINVAL;
6620                         goto out;
6621                 }
6622         }
6623
6624         if (unlikely(vcpu->arch.complete_userspace_io)) {
6625                 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
6626                 vcpu->arch.complete_userspace_io = NULL;
6627                 r = cui(vcpu);
6628                 if (r <= 0)
6629                         goto out;
6630         } else
6631                 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
6632
6633         r = vcpu_run(vcpu);
6634
6635 out:
6636         post_kvm_run_save(vcpu);
6637         if (vcpu->sigset_active)
6638                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
6639
6640         return r;
6641 }
6642
6643 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6644 {
6645         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
6646                 /*
6647                  * We are here if userspace calls get_regs() in the middle of
6648                  * instruction emulation. Registers state needs to be copied
6649                  * back from emulation context to vcpu. Userspace shouldn't do
6650                  * that usually, but some bad designed PV devices (vmware
6651                  * backdoor interface) need this to work
6652                  */
6653                 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
6654                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6655         }
6656         regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
6657         regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
6658         regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
6659         regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
6660         regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
6661         regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
6662         regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
6663         regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
6664 #ifdef CONFIG_X86_64
6665         regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
6666         regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
6667         regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
6668         regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
6669         regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
6670         regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
6671         regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
6672         regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
6673 #endif
6674
6675         regs->rip = kvm_rip_read(vcpu);
6676         regs->rflags = kvm_get_rflags(vcpu);
6677
6678         return 0;
6679 }
6680
6681 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6682 {
6683         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
6684         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6685
6686         kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
6687         kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
6688         kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
6689         kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
6690         kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
6691         kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
6692         kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
6693         kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
6694 #ifdef CONFIG_X86_64
6695         kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
6696         kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
6697         kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
6698         kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
6699         kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
6700         kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
6701         kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
6702         kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
6703 #endif
6704
6705         kvm_rip_write(vcpu, regs->rip);
6706         kvm_set_rflags(vcpu, regs->rflags);
6707
6708         vcpu->arch.exception.pending = false;
6709
6710         kvm_make_request(KVM_REQ_EVENT, vcpu);
6711
6712         return 0;
6713 }
6714
6715 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
6716 {
6717         struct kvm_segment cs;
6718
6719         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
6720         *db = cs.db;
6721         *l = cs.l;
6722 }
6723 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
6724
6725 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
6726                                   struct kvm_sregs *sregs)
6727 {
6728         struct desc_ptr dt;
6729
6730         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6731         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6732         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6733         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6734         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6735         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6736
6737         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6738         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6739
6740         kvm_x86_ops->get_idt(vcpu, &dt);
6741         sregs->idt.limit = dt.size;
6742         sregs->idt.base = dt.address;
6743         kvm_x86_ops->get_gdt(vcpu, &dt);
6744         sregs->gdt.limit = dt.size;
6745         sregs->gdt.base = dt.address;
6746
6747         sregs->cr0 = kvm_read_cr0(vcpu);
6748         sregs->cr2 = vcpu->arch.cr2;
6749         sregs->cr3 = kvm_read_cr3(vcpu);
6750         sregs->cr4 = kvm_read_cr4(vcpu);
6751         sregs->cr8 = kvm_get_cr8(vcpu);
6752         sregs->efer = vcpu->arch.efer;
6753         sregs->apic_base = kvm_get_apic_base(vcpu);
6754
6755         memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
6756
6757         if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
6758                 set_bit(vcpu->arch.interrupt.nr,
6759                         (unsigned long *)sregs->interrupt_bitmap);
6760
6761         return 0;
6762 }
6763
6764 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
6765                                     struct kvm_mp_state *mp_state)
6766 {
6767         kvm_apic_accept_events(vcpu);
6768         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
6769                                         vcpu->arch.pv.pv_unhalted)
6770                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
6771         else
6772                 mp_state->mp_state = vcpu->arch.mp_state;
6773
6774         return 0;
6775 }
6776
6777 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
6778                                     struct kvm_mp_state *mp_state)
6779 {
6780         if (!kvm_vcpu_has_lapic(vcpu) &&
6781             mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
6782                 return -EINVAL;
6783
6784         if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
6785                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
6786                 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
6787         } else
6788                 vcpu->arch.mp_state = mp_state->mp_state;
6789         kvm_make_request(KVM_REQ_EVENT, vcpu);
6790         return 0;
6791 }
6792
6793 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
6794                     int reason, bool has_error_code, u32 error_code)
6795 {
6796         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6797         int ret;
6798
6799         init_emulate_ctxt(vcpu);
6800
6801         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
6802                                    has_error_code, error_code);
6803
6804         if (ret)
6805                 return EMULATE_FAIL;
6806
6807         kvm_rip_write(vcpu, ctxt->eip);
6808         kvm_set_rflags(vcpu, ctxt->eflags);
6809         kvm_make_request(KVM_REQ_EVENT, vcpu);
6810         return EMULATE_DONE;
6811 }
6812 EXPORT_SYMBOL_GPL(kvm_task_switch);
6813
6814 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
6815                                   struct kvm_sregs *sregs)
6816 {
6817         struct msr_data apic_base_msr;
6818         int mmu_reset_needed = 0;
6819         int pending_vec, max_bits, idx;
6820         struct desc_ptr dt;
6821
6822         if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
6823                 return -EINVAL;
6824
6825         dt.size = sregs->idt.limit;
6826         dt.address = sregs->idt.base;
6827         kvm_x86_ops->set_idt(vcpu, &dt);
6828         dt.size = sregs->gdt.limit;
6829         dt.address = sregs->gdt.base;
6830         kvm_x86_ops->set_gdt(vcpu, &dt);
6831
6832         vcpu->arch.cr2 = sregs->cr2;
6833         mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
6834         vcpu->arch.cr3 = sregs->cr3;
6835         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
6836
6837         kvm_set_cr8(vcpu, sregs->cr8);
6838
6839         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
6840         kvm_x86_ops->set_efer(vcpu, sregs->efer);
6841         apic_base_msr.data = sregs->apic_base;
6842         apic_base_msr.host_initiated = true;
6843         kvm_set_apic_base(vcpu, &apic_base_msr);
6844
6845         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
6846         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
6847         vcpu->arch.cr0 = sregs->cr0;
6848
6849         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
6850         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
6851         if (sregs->cr4 & X86_CR4_OSXSAVE)
6852                 kvm_update_cpuid(vcpu);
6853
6854         idx = srcu_read_lock(&vcpu->kvm->srcu);
6855         if (!is_long_mode(vcpu) && is_pae(vcpu)) {
6856                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
6857                 mmu_reset_needed = 1;
6858         }
6859         srcu_read_unlock(&vcpu->kvm->srcu, idx);
6860
6861         if (mmu_reset_needed)
6862                 kvm_mmu_reset_context(vcpu);
6863
6864         max_bits = KVM_NR_INTERRUPTS;
6865         pending_vec = find_first_bit(
6866                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
6867         if (pending_vec < max_bits) {
6868                 kvm_queue_interrupt(vcpu, pending_vec, false);
6869                 pr_debug("Set back pending irq %d\n", pending_vec);
6870         }
6871
6872         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6873         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6874         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6875         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6876         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6877         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6878
6879         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6880         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6881
6882         update_cr8_intercept(vcpu);
6883
6884         /* Older userspace won't unhalt the vcpu on reset. */
6885         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
6886             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
6887             !is_protmode(vcpu))
6888                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6889
6890         kvm_make_request(KVM_REQ_EVENT, vcpu);
6891
6892         return 0;
6893 }
6894
6895 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
6896                                         struct kvm_guest_debug *dbg)
6897 {
6898         unsigned long rflags;
6899         int i, r;
6900
6901         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
6902                 r = -EBUSY;
6903                 if (vcpu->arch.exception.pending)
6904                         goto out;
6905                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
6906                         kvm_queue_exception(vcpu, DB_VECTOR);
6907                 else
6908                         kvm_queue_exception(vcpu, BP_VECTOR);
6909         }
6910
6911         /*
6912          * Read rflags as long as potentially injected trace flags are still
6913          * filtered out.
6914          */
6915         rflags = kvm_get_rflags(vcpu);
6916
6917         vcpu->guest_debug = dbg->control;
6918         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
6919                 vcpu->guest_debug = 0;
6920
6921         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
6922                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
6923                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
6924                 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
6925         } else {
6926                 for (i = 0; i < KVM_NR_DB_REGS; i++)
6927                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
6928         }
6929         kvm_update_dr7(vcpu);
6930
6931         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6932                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
6933                         get_segment_base(vcpu, VCPU_SREG_CS);
6934
6935         /*
6936          * Trigger an rflags update that will inject or remove the trace
6937          * flags.
6938          */
6939         kvm_set_rflags(vcpu, rflags);
6940
6941         kvm_x86_ops->update_db_bp_intercept(vcpu);
6942
6943         r = 0;
6944
6945 out:
6946
6947         return r;
6948 }
6949
6950 /*
6951  * Translate a guest virtual address to a guest physical address.
6952  */
6953 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
6954                                     struct kvm_translation *tr)
6955 {
6956         unsigned long vaddr = tr->linear_address;
6957         gpa_t gpa;
6958         int idx;
6959
6960         idx = srcu_read_lock(&vcpu->kvm->srcu);
6961         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
6962         srcu_read_unlock(&vcpu->kvm->srcu, idx);
6963         tr->physical_address = gpa;
6964         tr->valid = gpa != UNMAPPED_GVA;
6965         tr->writeable = 1;
6966         tr->usermode = 0;
6967
6968         return 0;
6969 }
6970
6971 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6972 {
6973         struct fxregs_state *fxsave =
6974                         &vcpu->arch.guest_fpu.state.fxsave;
6975
6976         memcpy(fpu->fpr, fxsave->st_space, 128);
6977         fpu->fcw = fxsave->cwd;
6978         fpu->fsw = fxsave->swd;
6979         fpu->ftwx = fxsave->twd;
6980         fpu->last_opcode = fxsave->fop;
6981         fpu->last_ip = fxsave->rip;
6982         fpu->last_dp = fxsave->rdp;
6983         memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
6984
6985         return 0;
6986 }
6987
6988 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6989 {
6990         struct fxregs_state *fxsave =
6991                         &vcpu->arch.guest_fpu.state.fxsave;
6992
6993         memcpy(fxsave->st_space, fpu->fpr, 128);
6994         fxsave->cwd = fpu->fcw;
6995         fxsave->swd = fpu->fsw;
6996         fxsave->twd = fpu->ftwx;
6997         fxsave->fop = fpu->last_opcode;
6998         fxsave->rip = fpu->last_ip;
6999         fxsave->rdp = fpu->last_dp;
7000         memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
7001
7002         return 0;
7003 }
7004
7005 static void fx_init(struct kvm_vcpu *vcpu)
7006 {
7007         fpstate_init(&vcpu->arch.guest_fpu.state);
7008         if (cpu_has_xsaves)
7009                 vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv =
7010                         host_xcr0 | XSTATE_COMPACTION_ENABLED;
7011
7012         /*
7013          * Ensure guest xcr0 is valid for loading
7014          */
7015         vcpu->arch.xcr0 = XSTATE_FP;
7016
7017         vcpu->arch.cr0 |= X86_CR0_ET;
7018 }
7019
7020 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
7021 {
7022         if (vcpu->guest_fpu_loaded)
7023                 return;
7024
7025         /*
7026          * Restore all possible states in the guest,
7027          * and assume host would use all available bits.
7028          * Guest xcr0 would be loaded later.
7029          */
7030         kvm_put_guest_xcr0(vcpu);
7031         vcpu->guest_fpu_loaded = 1;
7032         __kernel_fpu_begin();
7033         __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state);
7034         trace_kvm_fpu(1);
7035 }
7036
7037 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
7038 {
7039         kvm_put_guest_xcr0(vcpu);
7040
7041         if (!vcpu->guest_fpu_loaded)
7042                 return;
7043
7044         vcpu->guest_fpu_loaded = 0;
7045         copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu);
7046         __kernel_fpu_end();
7047         ++vcpu->stat.fpu_reload;
7048         if (!vcpu->arch.eager_fpu)
7049                 kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
7050
7051         trace_kvm_fpu(0);
7052 }
7053
7054 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
7055 {
7056         kvmclock_reset(vcpu);
7057
7058         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
7059         kvm_x86_ops->vcpu_free(vcpu);
7060 }
7061
7062 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
7063                                                 unsigned int id)
7064 {
7065         struct kvm_vcpu *vcpu;
7066
7067         if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
7068                 printk_once(KERN_WARNING
7069                 "kvm: SMP vm created on host with unstable TSC; "
7070                 "guest TSC will not be reliable\n");
7071
7072         vcpu = kvm_x86_ops->vcpu_create(kvm, id);
7073
7074         /*
7075          * Activate fpu unconditionally in case the guest needs eager FPU.  It will be
7076          * deactivated soon if it doesn't.
7077          */
7078         kvm_x86_ops->fpu_activate(vcpu);
7079         return vcpu;
7080 }
7081
7082 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
7083 {
7084         int r;
7085
7086         vcpu->arch.mtrr_state.have_fixed = 1;
7087         r = vcpu_load(vcpu);
7088         if (r)
7089                 return r;
7090         kvm_vcpu_reset(vcpu);
7091         kvm_mmu_setup(vcpu);
7092         vcpu_put(vcpu);
7093
7094         return r;
7095 }
7096
7097 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
7098 {
7099         struct msr_data msr;
7100         struct kvm *kvm = vcpu->kvm;
7101
7102         if (vcpu_load(vcpu))
7103                 return;
7104         msr.data = 0x0;
7105         msr.index = MSR_IA32_TSC;
7106         msr.host_initiated = true;
7107         kvm_write_tsc(vcpu, &msr);
7108         vcpu_put(vcpu);
7109
7110         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
7111                                         KVMCLOCK_SYNC_PERIOD);
7112 }
7113
7114 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
7115 {
7116         int r;
7117         vcpu->arch.apf.msr_val = 0;
7118
7119         r = vcpu_load(vcpu);
7120         BUG_ON(r);
7121         kvm_mmu_unload(vcpu);
7122         vcpu_put(vcpu);
7123
7124         kvm_x86_ops->vcpu_free(vcpu);
7125 }
7126
7127 void kvm_vcpu_reset(struct kvm_vcpu *vcpu)
7128 {
7129         atomic_set(&vcpu->arch.nmi_queued, 0);
7130         vcpu->arch.nmi_pending = 0;
7131         vcpu->arch.nmi_injected = false;
7132         kvm_clear_interrupt_queue(vcpu);
7133         kvm_clear_exception_queue(vcpu);
7134
7135         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
7136         kvm_update_dr0123(vcpu);
7137         vcpu->arch.dr6 = DR6_INIT;
7138         kvm_update_dr6(vcpu);
7139         vcpu->arch.dr7 = DR7_FIXED_1;
7140         kvm_update_dr7(vcpu);
7141
7142         vcpu->arch.cr2 = 0;
7143
7144         kvm_make_request(KVM_REQ_EVENT, vcpu);
7145         vcpu->arch.apf.msr_val = 0;
7146         vcpu->arch.st.msr_val = 0;
7147
7148         kvmclock_reset(vcpu);
7149
7150         kvm_clear_async_pf_completion_queue(vcpu);
7151         kvm_async_pf_hash_reset(vcpu);
7152         vcpu->arch.apf.halted = false;
7153
7154         kvm_pmu_reset(vcpu);
7155
7156         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
7157         vcpu->arch.regs_avail = ~0;
7158         vcpu->arch.regs_dirty = ~0;
7159
7160         kvm_x86_ops->vcpu_reset(vcpu);
7161 }
7162
7163 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
7164 {
7165         struct kvm_segment cs;
7166
7167         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7168         cs.selector = vector << 8;
7169         cs.base = vector << 12;
7170         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7171         kvm_rip_write(vcpu, 0);
7172 }
7173
7174 int kvm_arch_hardware_enable(void)
7175 {
7176         struct kvm *kvm;
7177         struct kvm_vcpu *vcpu;
7178         int i;
7179         int ret;
7180         u64 local_tsc;
7181         u64 max_tsc = 0;
7182         bool stable, backwards_tsc = false;
7183
7184         kvm_shared_msr_cpu_online();
7185         ret = kvm_x86_ops->hardware_enable();
7186         if (ret != 0)
7187                 return ret;
7188
7189         local_tsc = native_read_tsc();
7190         stable = !check_tsc_unstable();
7191         list_for_each_entry(kvm, &vm_list, vm_list) {
7192                 kvm_for_each_vcpu(i, vcpu, kvm) {
7193                         if (!stable && vcpu->cpu == smp_processor_id())
7194                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7195                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
7196                                 backwards_tsc = true;
7197                                 if (vcpu->arch.last_host_tsc > max_tsc)
7198                                         max_tsc = vcpu->arch.last_host_tsc;
7199                         }
7200                 }
7201         }
7202
7203         /*
7204          * Sometimes, even reliable TSCs go backwards.  This happens on
7205          * platforms that reset TSC during suspend or hibernate actions, but
7206          * maintain synchronization.  We must compensate.  Fortunately, we can
7207          * detect that condition here, which happens early in CPU bringup,
7208          * before any KVM threads can be running.  Unfortunately, we can't
7209          * bring the TSCs fully up to date with real time, as we aren't yet far
7210          * enough into CPU bringup that we know how much real time has actually
7211          * elapsed; our helper function, get_kernel_ns() will be using boot
7212          * variables that haven't been updated yet.
7213          *
7214          * So we simply find the maximum observed TSC above, then record the
7215          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
7216          * the adjustment will be applied.  Note that we accumulate
7217          * adjustments, in case multiple suspend cycles happen before some VCPU
7218          * gets a chance to run again.  In the event that no KVM threads get a
7219          * chance to run, we will miss the entire elapsed period, as we'll have
7220          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
7221          * loose cycle time.  This isn't too big a deal, since the loss will be
7222          * uniform across all VCPUs (not to mention the scenario is extremely
7223          * unlikely). It is possible that a second hibernate recovery happens
7224          * much faster than a first, causing the observed TSC here to be
7225          * smaller; this would require additional padding adjustment, which is
7226          * why we set last_host_tsc to the local tsc observed here.
7227          *
7228          * N.B. - this code below runs only on platforms with reliable TSC,
7229          * as that is the only way backwards_tsc is set above.  Also note
7230          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
7231          * have the same delta_cyc adjustment applied if backwards_tsc
7232          * is detected.  Note further, this adjustment is only done once,
7233          * as we reset last_host_tsc on all VCPUs to stop this from being
7234          * called multiple times (one for each physical CPU bringup).
7235          *
7236          * Platforms with unreliable TSCs don't have to deal with this, they
7237          * will be compensated by the logic in vcpu_load, which sets the TSC to
7238          * catchup mode.  This will catchup all VCPUs to real time, but cannot
7239          * guarantee that they stay in perfect synchronization.
7240          */
7241         if (backwards_tsc) {
7242                 u64 delta_cyc = max_tsc - local_tsc;
7243                 backwards_tsc_observed = true;
7244                 list_for_each_entry(kvm, &vm_list, vm_list) {
7245                         kvm_for_each_vcpu(i, vcpu, kvm) {
7246                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
7247                                 vcpu->arch.last_host_tsc = local_tsc;
7248                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7249                         }
7250
7251                         /*
7252                          * We have to disable TSC offset matching.. if you were
7253                          * booting a VM while issuing an S4 host suspend....
7254                          * you may have some problem.  Solving this issue is
7255                          * left as an exercise to the reader.
7256                          */
7257                         kvm->arch.last_tsc_nsec = 0;
7258                         kvm->arch.last_tsc_write = 0;
7259                 }
7260
7261         }
7262         return 0;
7263 }
7264
7265 void kvm_arch_hardware_disable(void)
7266 {
7267         kvm_x86_ops->hardware_disable();
7268         drop_user_return_notifiers();
7269 }
7270
7271 int kvm_arch_hardware_setup(void)
7272 {
7273         int r;
7274
7275         r = kvm_x86_ops->hardware_setup();
7276         if (r != 0)
7277                 return r;
7278
7279         kvm_init_msr_list();
7280         return 0;
7281 }
7282
7283 void kvm_arch_hardware_unsetup(void)
7284 {
7285         kvm_x86_ops->hardware_unsetup();
7286 }
7287
7288 void kvm_arch_check_processor_compat(void *rtn)
7289 {
7290         kvm_x86_ops->check_processor_compatibility(rtn);
7291 }
7292
7293 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
7294 {
7295         return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL);
7296 }
7297
7298 struct static_key kvm_no_apic_vcpu __read_mostly;
7299
7300 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
7301 {
7302         struct page *page;
7303         struct kvm *kvm;
7304         int r;
7305
7306         BUG_ON(vcpu->kvm == NULL);
7307         kvm = vcpu->kvm;
7308
7309         vcpu->arch.pv.pv_unhalted = false;
7310         vcpu->arch.emulate_ctxt.ops = &emulate_ops;
7311         if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_reset_bsp(vcpu))
7312                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7313         else
7314                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
7315
7316         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
7317         if (!page) {
7318                 r = -ENOMEM;
7319                 goto fail;
7320         }
7321         vcpu->arch.pio_data = page_address(page);
7322
7323         kvm_set_tsc_khz(vcpu, max_tsc_khz);
7324
7325         r = kvm_mmu_create(vcpu);
7326         if (r < 0)
7327                 goto fail_free_pio_data;
7328
7329         if (irqchip_in_kernel(kvm)) {
7330                 r = kvm_create_lapic(vcpu);
7331                 if (r < 0)
7332                         goto fail_mmu_destroy;
7333         } else
7334                 static_key_slow_inc(&kvm_no_apic_vcpu);
7335
7336         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
7337                                        GFP_KERNEL);
7338         if (!vcpu->arch.mce_banks) {
7339                 r = -ENOMEM;
7340                 goto fail_free_lapic;
7341         }
7342         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
7343
7344         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
7345                 r = -ENOMEM;
7346                 goto fail_free_mce_banks;
7347         }
7348
7349         fx_init(vcpu);
7350
7351         vcpu->arch.ia32_tsc_adjust_msr = 0x0;
7352         vcpu->arch.pv_time_enabled = false;
7353
7354         vcpu->arch.guest_supported_xcr0 = 0;
7355         vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
7356
7357         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
7358
7359         kvm_async_pf_hash_reset(vcpu);
7360         kvm_pmu_init(vcpu);
7361
7362         return 0;
7363
7364 fail_free_mce_banks:
7365         kfree(vcpu->arch.mce_banks);
7366 fail_free_lapic:
7367         kvm_free_lapic(vcpu);
7368 fail_mmu_destroy:
7369         kvm_mmu_destroy(vcpu);
7370 fail_free_pio_data:
7371         free_page((unsigned long)vcpu->arch.pio_data);
7372 fail:
7373         return r;
7374 }
7375
7376 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
7377 {
7378         int idx;
7379
7380         kvm_pmu_destroy(vcpu);
7381         kfree(vcpu->arch.mce_banks);
7382         kvm_free_lapic(vcpu);
7383         idx = srcu_read_lock(&vcpu->kvm->srcu);
7384         kvm_mmu_destroy(vcpu);
7385         srcu_read_unlock(&vcpu->kvm->srcu, idx);
7386         free_page((unsigned long)vcpu->arch.pio_data);
7387         if (!irqchip_in_kernel(vcpu->kvm))
7388                 static_key_slow_dec(&kvm_no_apic_vcpu);
7389 }
7390
7391 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
7392 {
7393         kvm_x86_ops->sched_in(vcpu, cpu);
7394 }
7395
7396 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
7397 {
7398         if (type)
7399                 return -EINVAL;
7400
7401         INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
7402         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
7403         INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
7404         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
7405         atomic_set(&kvm->arch.noncoherent_dma_count, 0);
7406
7407         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
7408         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
7409         /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
7410         set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
7411                 &kvm->arch.irq_sources_bitmap);
7412
7413         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
7414         mutex_init(&kvm->arch.apic_map_lock);
7415         spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
7416
7417         pvclock_update_vm_gtod_copy(kvm);
7418
7419         INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
7420         INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
7421
7422         return 0;
7423 }
7424
7425 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
7426 {
7427         int r;
7428         r = vcpu_load(vcpu);
7429         BUG_ON(r);
7430         kvm_mmu_unload(vcpu);
7431         vcpu_put(vcpu);
7432 }
7433
7434 static void kvm_free_vcpus(struct kvm *kvm)
7435 {
7436         unsigned int i;
7437         struct kvm_vcpu *vcpu;
7438
7439         /*
7440          * Unpin any mmu pages first.
7441          */
7442         kvm_for_each_vcpu(i, vcpu, kvm) {
7443                 kvm_clear_async_pf_completion_queue(vcpu);
7444                 kvm_unload_vcpu_mmu(vcpu);
7445         }
7446         kvm_for_each_vcpu(i, vcpu, kvm)
7447                 kvm_arch_vcpu_free(vcpu);
7448
7449         mutex_lock(&kvm->lock);
7450         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
7451                 kvm->vcpus[i] = NULL;
7452
7453         atomic_set(&kvm->online_vcpus, 0);
7454         mutex_unlock(&kvm->lock);
7455 }
7456
7457 void kvm_arch_sync_events(struct kvm *kvm)
7458 {
7459         cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
7460         cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
7461         kvm_free_all_assigned_devices(kvm);
7462         kvm_free_pit(kvm);
7463 }
7464
7465 void kvm_arch_destroy_vm(struct kvm *kvm)
7466 {
7467         if (current->mm == kvm->mm) {
7468                 /*
7469                  * Free memory regions allocated on behalf of userspace,
7470                  * unless the the memory map has changed due to process exit
7471                  * or fd copying.
7472                  */
7473                 struct kvm_userspace_memory_region mem;
7474                 memset(&mem, 0, sizeof(mem));
7475                 mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
7476                 kvm_set_memory_region(kvm, &mem);
7477
7478                 mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
7479                 kvm_set_memory_region(kvm, &mem);
7480
7481                 mem.slot = TSS_PRIVATE_MEMSLOT;
7482                 kvm_set_memory_region(kvm, &mem);
7483         }
7484         kvm_iommu_unmap_guest(kvm);
7485         kfree(kvm->arch.vpic);
7486         kfree(kvm->arch.vioapic);
7487         kvm_free_vcpus(kvm);
7488         kfree(rcu_dereference_check(kvm->arch.apic_map, 1));
7489 }
7490
7491 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
7492                            struct kvm_memory_slot *dont)
7493 {
7494         int i;
7495
7496         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7497                 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
7498                         kvfree(free->arch.rmap[i]);
7499                         free->arch.rmap[i] = NULL;
7500                 }
7501                 if (i == 0)
7502                         continue;
7503
7504                 if (!dont || free->arch.lpage_info[i - 1] !=
7505                              dont->arch.lpage_info[i - 1]) {
7506                         kvfree(free->arch.lpage_info[i - 1]);
7507                         free->arch.lpage_info[i - 1] = NULL;
7508                 }
7509         }
7510 }
7511
7512 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
7513                             unsigned long npages)
7514 {
7515         int i;
7516
7517         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7518                 unsigned long ugfn;
7519                 int lpages;
7520                 int level = i + 1;
7521
7522                 lpages = gfn_to_index(slot->base_gfn + npages - 1,
7523                                       slot->base_gfn, level) + 1;
7524
7525                 slot->arch.rmap[i] =
7526                         kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
7527                 if (!slot->arch.rmap[i])
7528                         goto out_free;
7529                 if (i == 0)
7530                         continue;
7531
7532                 slot->arch.lpage_info[i - 1] = kvm_kvzalloc(lpages *
7533                                         sizeof(*slot->arch.lpage_info[i - 1]));
7534                 if (!slot->arch.lpage_info[i - 1])
7535                         goto out_free;
7536
7537                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
7538                         slot->arch.lpage_info[i - 1][0].write_count = 1;
7539                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
7540                         slot->arch.lpage_info[i - 1][lpages - 1].write_count = 1;
7541                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
7542                 /*
7543                  * If the gfn and userspace address are not aligned wrt each
7544                  * other, or if explicitly asked to, disable large page
7545                  * support for this slot
7546                  */
7547                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
7548                     !kvm_largepages_enabled()) {
7549                         unsigned long j;
7550
7551                         for (j = 0; j < lpages; ++j)
7552                                 slot->arch.lpage_info[i - 1][j].write_count = 1;
7553                 }
7554         }
7555
7556         return 0;
7557
7558 out_free:
7559         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7560                 kvfree(slot->arch.rmap[i]);
7561                 slot->arch.rmap[i] = NULL;
7562                 if (i == 0)
7563                         continue;
7564
7565                 kvfree(slot->arch.lpage_info[i - 1]);
7566                 slot->arch.lpage_info[i - 1] = NULL;
7567         }
7568         return -ENOMEM;
7569 }
7570
7571 void kvm_arch_memslots_updated(struct kvm *kvm)
7572 {
7573         /*
7574          * memslots->generation has been incremented.
7575          * mmio generation may have reached its maximum value.
7576          */
7577         kvm_mmu_invalidate_mmio_sptes(kvm);
7578 }
7579
7580 int kvm_arch_prepare_memory_region(struct kvm *kvm,
7581                                 struct kvm_memory_slot *memslot,
7582                                 struct kvm_userspace_memory_region *mem,
7583                                 enum kvm_mr_change change)
7584 {
7585         /*
7586          * Only private memory slots need to be mapped here since
7587          * KVM_SET_MEMORY_REGION ioctl is no longer supported.
7588          */
7589         if ((memslot->id >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_CREATE)) {
7590                 unsigned long userspace_addr;
7591
7592                 /*
7593                  * MAP_SHARED to prevent internal slot pages from being moved
7594                  * by fork()/COW.
7595                  */
7596                 userspace_addr = vm_mmap(NULL, 0, memslot->npages * PAGE_SIZE,
7597                                          PROT_READ | PROT_WRITE,
7598                                          MAP_SHARED | MAP_ANONYMOUS, 0);
7599
7600                 if (IS_ERR((void *)userspace_addr))
7601                         return PTR_ERR((void *)userspace_addr);
7602
7603                 memslot->userspace_addr = userspace_addr;
7604         }
7605
7606         return 0;
7607 }
7608
7609 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
7610                                      struct kvm_memory_slot *new)
7611 {
7612         /* Still write protect RO slot */
7613         if (new->flags & KVM_MEM_READONLY) {
7614                 kvm_mmu_slot_remove_write_access(kvm, new);
7615                 return;
7616         }
7617
7618         /*
7619          * Call kvm_x86_ops dirty logging hooks when they are valid.
7620          *
7621          * kvm_x86_ops->slot_disable_log_dirty is called when:
7622          *
7623          *  - KVM_MR_CREATE with dirty logging is disabled
7624          *  - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
7625          *
7626          * The reason is, in case of PML, we need to set D-bit for any slots
7627          * with dirty logging disabled in order to eliminate unnecessary GPA
7628          * logging in PML buffer (and potential PML buffer full VMEXT). This
7629          * guarantees leaving PML enabled during guest's lifetime won't have
7630          * any additonal overhead from PML when guest is running with dirty
7631          * logging disabled for memory slots.
7632          *
7633          * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
7634          * to dirty logging mode.
7635          *
7636          * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
7637          *
7638          * In case of write protect:
7639          *
7640          * Write protect all pages for dirty logging.
7641          *
7642          * All the sptes including the large sptes which point to this
7643          * slot are set to readonly. We can not create any new large
7644          * spte on this slot until the end of the logging.
7645          *
7646          * See the comments in fast_page_fault().
7647          */
7648         if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
7649                 if (kvm_x86_ops->slot_enable_log_dirty)
7650                         kvm_x86_ops->slot_enable_log_dirty(kvm, new);
7651                 else
7652                         kvm_mmu_slot_remove_write_access(kvm, new);
7653         } else {
7654                 if (kvm_x86_ops->slot_disable_log_dirty)
7655                         kvm_x86_ops->slot_disable_log_dirty(kvm, new);
7656         }
7657 }
7658
7659 void kvm_arch_commit_memory_region(struct kvm *kvm,
7660                                 struct kvm_userspace_memory_region *mem,
7661                                 const struct kvm_memory_slot *old,
7662                                 enum kvm_mr_change change)
7663 {
7664         struct kvm_memory_slot *new;
7665         int nr_mmu_pages = 0;
7666
7667         if ((mem->slot >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_DELETE)) {
7668                 int ret;
7669
7670                 ret = vm_munmap(old->userspace_addr,
7671                                 old->npages * PAGE_SIZE);
7672                 if (ret < 0)
7673                         printk(KERN_WARNING
7674                                "kvm_vm_ioctl_set_memory_region: "
7675                                "failed to munmap memory\n");
7676         }
7677
7678         if (!kvm->arch.n_requested_mmu_pages)
7679                 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
7680
7681         if (nr_mmu_pages)
7682                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
7683
7684         /* It's OK to get 'new' slot here as it has already been installed */
7685         new = id_to_memslot(kvm->memslots, mem->slot);
7686
7687         /*
7688          * Dirty logging tracks sptes in 4k granularity, meaning that large
7689          * sptes have to be split.  If live migration is successful, the guest
7690          * in the source machine will be destroyed and large sptes will be
7691          * created in the destination. However, if the guest continues to run
7692          * in the source machine (for example if live migration fails), small
7693          * sptes will remain around and cause bad performance.
7694          *
7695          * Scan sptes if dirty logging has been stopped, dropping those
7696          * which can be collapsed into a single large-page spte.  Later
7697          * page faults will create the large-page sptes.
7698          */
7699         if ((change != KVM_MR_DELETE) &&
7700                 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
7701                 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
7702                 kvm_mmu_zap_collapsible_sptes(kvm, new);
7703
7704         /*
7705          * Set up write protection and/or dirty logging for the new slot.
7706          *
7707          * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
7708          * been zapped so no dirty logging staff is needed for old slot. For
7709          * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
7710          * new and it's also covered when dealing with the new slot.
7711          */
7712         if (change != KVM_MR_DELETE)
7713                 kvm_mmu_slot_apply_flags(kvm, new);
7714 }
7715
7716 void kvm_arch_flush_shadow_all(struct kvm *kvm)
7717 {
7718         kvm_mmu_invalidate_zap_all_pages(kvm);
7719 }
7720
7721 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
7722                                    struct kvm_memory_slot *slot)
7723 {
7724         kvm_mmu_invalidate_zap_all_pages(kvm);
7725 }
7726
7727 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
7728 {
7729         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
7730                 kvm_x86_ops->check_nested_events(vcpu, false);
7731
7732         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
7733                 !vcpu->arch.apf.halted)
7734                 || !list_empty_careful(&vcpu->async_pf.done)
7735                 || kvm_apic_has_events(vcpu)
7736                 || vcpu->arch.pv.pv_unhalted
7737                 || atomic_read(&vcpu->arch.nmi_queued) ||
7738                 (kvm_arch_interrupt_allowed(vcpu) &&
7739                  kvm_cpu_has_interrupt(vcpu));
7740 }
7741
7742 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
7743 {
7744         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
7745 }
7746
7747 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
7748 {
7749         return kvm_x86_ops->interrupt_allowed(vcpu);
7750 }
7751
7752 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
7753 {
7754         if (is_64_bit_mode(vcpu))
7755                 return kvm_rip_read(vcpu);
7756         return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
7757                      kvm_rip_read(vcpu));
7758 }
7759 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
7760
7761 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
7762 {
7763         return kvm_get_linear_rip(vcpu) == linear_rip;
7764 }
7765 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
7766
7767 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
7768 {
7769         unsigned long rflags;
7770
7771         rflags = kvm_x86_ops->get_rflags(vcpu);
7772         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7773                 rflags &= ~X86_EFLAGS_TF;
7774         return rflags;
7775 }
7776 EXPORT_SYMBOL_GPL(kvm_get_rflags);
7777
7778 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
7779 {
7780         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
7781             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
7782                 rflags |= X86_EFLAGS_TF;
7783         kvm_x86_ops->set_rflags(vcpu, rflags);
7784 }
7785
7786 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
7787 {
7788         __kvm_set_rflags(vcpu, rflags);
7789         kvm_make_request(KVM_REQ_EVENT, vcpu);
7790 }
7791 EXPORT_SYMBOL_GPL(kvm_set_rflags);
7792
7793 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
7794 {
7795         int r;
7796
7797         if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
7798               work->wakeup_all)
7799                 return;
7800
7801         r = kvm_mmu_reload(vcpu);
7802         if (unlikely(r))
7803                 return;
7804
7805         if (!vcpu->arch.mmu.direct_map &&
7806               work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
7807                 return;
7808
7809         vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
7810 }
7811
7812 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
7813 {
7814         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
7815 }
7816
7817 static inline u32 kvm_async_pf_next_probe(u32 key)
7818 {
7819         return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
7820 }
7821
7822 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7823 {
7824         u32 key = kvm_async_pf_hash_fn(gfn);
7825
7826         while (vcpu->arch.apf.gfns[key] != ~0)
7827                 key = kvm_async_pf_next_probe(key);
7828
7829         vcpu->arch.apf.gfns[key] = gfn;
7830 }
7831
7832 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
7833 {
7834         int i;
7835         u32 key = kvm_async_pf_hash_fn(gfn);
7836
7837         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
7838                      (vcpu->arch.apf.gfns[key] != gfn &&
7839                       vcpu->arch.apf.gfns[key] != ~0); i++)
7840                 key = kvm_async_pf_next_probe(key);
7841
7842         return key;
7843 }
7844
7845 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7846 {
7847         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
7848 }
7849
7850 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7851 {
7852         u32 i, j, k;
7853
7854         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
7855         while (true) {
7856                 vcpu->arch.apf.gfns[i] = ~0;
7857                 do {
7858                         j = kvm_async_pf_next_probe(j);
7859                         if (vcpu->arch.apf.gfns[j] == ~0)
7860                                 return;
7861                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
7862                         /*
7863                          * k lies cyclically in ]i,j]
7864                          * |    i.k.j |
7865                          * |....j i.k.| or  |.k..j i...|
7866                          */
7867                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
7868                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
7869                 i = j;
7870         }
7871 }
7872
7873 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
7874 {
7875
7876         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
7877                                       sizeof(val));
7878 }
7879
7880 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
7881                                      struct kvm_async_pf *work)
7882 {
7883         struct x86_exception fault;
7884
7885         trace_kvm_async_pf_not_present(work->arch.token, work->gva);
7886         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
7887
7888         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
7889             (vcpu->arch.apf.send_user_only &&
7890              kvm_x86_ops->get_cpl(vcpu) == 0))
7891                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
7892         else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
7893                 fault.vector = PF_VECTOR;
7894                 fault.error_code_valid = true;
7895                 fault.error_code = 0;
7896                 fault.nested_page_fault = false;
7897                 fault.address = work->arch.token;
7898                 kvm_inject_page_fault(vcpu, &fault);
7899         }
7900 }
7901
7902 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
7903                                  struct kvm_async_pf *work)
7904 {
7905         struct x86_exception fault;
7906
7907         trace_kvm_async_pf_ready(work->arch.token, work->gva);
7908         if (work->wakeup_all)
7909                 work->arch.token = ~0; /* broadcast wakeup */
7910         else
7911                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
7912
7913         if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
7914             !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
7915                 fault.vector = PF_VECTOR;
7916                 fault.error_code_valid = true;
7917                 fault.error_code = 0;
7918                 fault.nested_page_fault = false;
7919                 fault.address = work->arch.token;
7920                 kvm_inject_page_fault(vcpu, &fault);
7921         }
7922         vcpu->arch.apf.halted = false;
7923         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7924 }
7925
7926 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
7927 {
7928         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
7929                 return true;
7930         else
7931                 return !kvm_event_needs_reinjection(vcpu) &&
7932                         kvm_x86_ops->interrupt_allowed(vcpu);
7933 }
7934
7935 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
7936 {
7937         atomic_inc(&kvm->arch.noncoherent_dma_count);
7938 }
7939 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
7940
7941 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
7942 {
7943         atomic_dec(&kvm->arch.noncoherent_dma_count);
7944 }
7945 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
7946
7947 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
7948 {
7949         return atomic_read(&kvm->arch.noncoherent_dma_count);
7950 }
7951 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
7952
7953 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
7954 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
7955 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
7956 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
7957 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
7958 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
7959 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
7960 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
7961 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
7962 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
7963 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
7964 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
7965 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
7966 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
7967 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);