]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - arch/x86/mm/tlb.c
Merge branch 'work.__copy_to_user' of git://git.kernel.org/pub/scm/linux/kernel/git...
[karo-tx-linux.git] / arch / x86 / mm / tlb.c
1 #include <linux/init.h>
2
3 #include <linux/mm.h>
4 #include <linux/spinlock.h>
5 #include <linux/smp.h>
6 #include <linux/interrupt.h>
7 #include <linux/export.h>
8 #include <linux/cpu.h>
9
10 #include <asm/tlbflush.h>
11 #include <asm/mmu_context.h>
12 #include <asm/cache.h>
13 #include <asm/apic.h>
14 #include <asm/uv/uv.h>
15 #include <linux/debugfs.h>
16
17 /*
18  *      TLB flushing, formerly SMP-only
19  *              c/o Linus Torvalds.
20  *
21  *      These mean you can really definitely utterly forget about
22  *      writing to user space from interrupts. (Its not allowed anyway).
23  *
24  *      Optimizations Manfred Spraul <manfred@colorfullife.com>
25  *
26  *      More scalable flush, from Andi Kleen
27  *
28  *      Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi
29  */
30
31 void leave_mm(int cpu)
32 {
33         struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
34
35         /*
36          * It's plausible that we're in lazy TLB mode while our mm is init_mm.
37          * If so, our callers still expect us to flush the TLB, but there
38          * aren't any user TLB entries in init_mm to worry about.
39          *
40          * This needs to happen before any other sanity checks due to
41          * intel_idle's shenanigans.
42          */
43         if (loaded_mm == &init_mm)
44                 return;
45
46         if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_OK)
47                 BUG();
48
49         switch_mm(NULL, &init_mm, NULL);
50 }
51 EXPORT_SYMBOL_GPL(leave_mm);
52
53 void switch_mm(struct mm_struct *prev, struct mm_struct *next,
54                struct task_struct *tsk)
55 {
56         unsigned long flags;
57
58         local_irq_save(flags);
59         switch_mm_irqs_off(prev, next, tsk);
60         local_irq_restore(flags);
61 }
62
63 void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
64                         struct task_struct *tsk)
65 {
66         unsigned cpu = smp_processor_id();
67         struct mm_struct *real_prev = this_cpu_read(cpu_tlbstate.loaded_mm);
68
69         /*
70          * NB: The scheduler will call us with prev == next when
71          * switching from lazy TLB mode to normal mode if active_mm
72          * isn't changing.  When this happens, there is no guarantee
73          * that CR3 (and hence cpu_tlbstate.loaded_mm) matches next.
74          *
75          * NB: leave_mm() calls us with prev == NULL and tsk == NULL.
76          */
77
78         this_cpu_write(cpu_tlbstate.state, TLBSTATE_OK);
79
80         if (real_prev == next) {
81                 /*
82                  * There's nothing to do: we always keep the per-mm control
83                  * regs in sync with cpu_tlbstate.loaded_mm.  Just
84                  * sanity-check mm_cpumask.
85                  */
86                 if (WARN_ON_ONCE(!cpumask_test_cpu(cpu, mm_cpumask(next))))
87                         cpumask_set_cpu(cpu, mm_cpumask(next));
88                 return;
89         }
90
91         if (IS_ENABLED(CONFIG_VMAP_STACK)) {
92                 /*
93                  * If our current stack is in vmalloc space and isn't
94                  * mapped in the new pgd, we'll double-fault.  Forcibly
95                  * map it.
96                  */
97                 unsigned int stack_pgd_index = pgd_index(current_stack_pointer());
98
99                 pgd_t *pgd = next->pgd + stack_pgd_index;
100
101                 if (unlikely(pgd_none(*pgd)))
102                         set_pgd(pgd, init_mm.pgd[stack_pgd_index]);
103         }
104
105         this_cpu_write(cpu_tlbstate.loaded_mm, next);
106
107         WARN_ON_ONCE(cpumask_test_cpu(cpu, mm_cpumask(next)));
108         cpumask_set_cpu(cpu, mm_cpumask(next));
109
110         /*
111          * Re-load page tables.
112          *
113          * This logic has an ordering constraint:
114          *
115          *  CPU 0: Write to a PTE for 'next'
116          *  CPU 0: load bit 1 in mm_cpumask.  if nonzero, send IPI.
117          *  CPU 1: set bit 1 in next's mm_cpumask
118          *  CPU 1: load from the PTE that CPU 0 writes (implicit)
119          *
120          * We need to prevent an outcome in which CPU 1 observes
121          * the new PTE value and CPU 0 observes bit 1 clear in
122          * mm_cpumask.  (If that occurs, then the IPI will never
123          * be sent, and CPU 0's TLB will contain a stale entry.)
124          *
125          * The bad outcome can occur if either CPU's load is
126          * reordered before that CPU's store, so both CPUs must
127          * execute full barriers to prevent this from happening.
128          *
129          * Thus, switch_mm needs a full barrier between the
130          * store to mm_cpumask and any operation that could load
131          * from next->pgd.  TLB fills are special and can happen
132          * due to instruction fetches or for no reason at all,
133          * and neither LOCK nor MFENCE orders them.
134          * Fortunately, load_cr3() is serializing and gives the
135          * ordering guarantee we need.
136          */
137         load_cr3(next->pgd);
138
139         /*
140          * This gets called via leave_mm() in the idle path where RCU
141          * functions differently.  Tracing normally uses RCU, so we have to
142          * call the tracepoint specially here.
143          */
144         trace_tlb_flush_rcuidle(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
145
146         /* Stop flush ipis for the previous mm */
147         WARN_ON_ONCE(!cpumask_test_cpu(cpu, mm_cpumask(real_prev)) &&
148                      real_prev != &init_mm);
149         cpumask_clear_cpu(cpu, mm_cpumask(real_prev));
150
151         /* Load per-mm CR4 and LDTR state */
152         load_mm_cr4(next);
153         switch_ldt(real_prev, next);
154 }
155
156 static void flush_tlb_func_common(const struct flush_tlb_info *f,
157                                   bool local, enum tlb_flush_reason reason)
158 {
159         /* This code cannot presently handle being reentered. */
160         VM_WARN_ON(!irqs_disabled());
161
162         if (this_cpu_read(cpu_tlbstate.state) != TLBSTATE_OK) {
163                 leave_mm(smp_processor_id());
164                 return;
165         }
166
167         if (f->end == TLB_FLUSH_ALL) {
168                 local_flush_tlb();
169                 if (local)
170                         count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
171                 trace_tlb_flush(reason, TLB_FLUSH_ALL);
172         } else {
173                 unsigned long addr;
174                 unsigned long nr_pages = (f->end - f->start) >> PAGE_SHIFT;
175                 addr = f->start;
176                 while (addr < f->end) {
177                         __flush_tlb_single(addr);
178                         addr += PAGE_SIZE;
179                 }
180                 if (local)
181                         count_vm_tlb_events(NR_TLB_LOCAL_FLUSH_ONE, nr_pages);
182                 trace_tlb_flush(reason, nr_pages);
183         }
184 }
185
186 static void flush_tlb_func_local(void *info, enum tlb_flush_reason reason)
187 {
188         const struct flush_tlb_info *f = info;
189
190         flush_tlb_func_common(f, true, reason);
191 }
192
193 static void flush_tlb_func_remote(void *info)
194 {
195         const struct flush_tlb_info *f = info;
196
197         inc_irq_stat(irq_tlb_count);
198
199         if (f->mm && f->mm != this_cpu_read(cpu_tlbstate.loaded_mm))
200                 return;
201
202         count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
203         flush_tlb_func_common(f, false, TLB_REMOTE_SHOOTDOWN);
204 }
205
206 void native_flush_tlb_others(const struct cpumask *cpumask,
207                              const struct flush_tlb_info *info)
208 {
209         count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
210         if (info->end == TLB_FLUSH_ALL)
211                 trace_tlb_flush(TLB_REMOTE_SEND_IPI, TLB_FLUSH_ALL);
212         else
213                 trace_tlb_flush(TLB_REMOTE_SEND_IPI,
214                                 (info->end - info->start) >> PAGE_SHIFT);
215
216         if (is_uv_system()) {
217                 unsigned int cpu;
218
219                 cpu = smp_processor_id();
220                 cpumask = uv_flush_tlb_others(cpumask, info);
221                 if (cpumask)
222                         smp_call_function_many(cpumask, flush_tlb_func_remote,
223                                                (void *)info, 1);
224                 return;
225         }
226         smp_call_function_many(cpumask, flush_tlb_func_remote,
227                                (void *)info, 1);
228 }
229
230 /*
231  * See Documentation/x86/tlb.txt for details.  We choose 33
232  * because it is large enough to cover the vast majority (at
233  * least 95%) of allocations, and is small enough that we are
234  * confident it will not cause too much overhead.  Each single
235  * flush is about 100 ns, so this caps the maximum overhead at
236  * _about_ 3,000 ns.
237  *
238  * This is in units of pages.
239  */
240 static unsigned long tlb_single_page_flush_ceiling __read_mostly = 33;
241
242 void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
243                                 unsigned long end, unsigned long vmflag)
244 {
245         int cpu;
246
247         struct flush_tlb_info info = {
248                 .mm = mm,
249         };
250
251         cpu = get_cpu();
252
253         /* Synchronize with switch_mm. */
254         smp_mb();
255
256         /* Should we flush just the requested range? */
257         if ((end != TLB_FLUSH_ALL) &&
258             !(vmflag & VM_HUGETLB) &&
259             ((end - start) >> PAGE_SHIFT) <= tlb_single_page_flush_ceiling) {
260                 info.start = start;
261                 info.end = end;
262         } else {
263                 info.start = 0UL;
264                 info.end = TLB_FLUSH_ALL;
265         }
266
267         if (mm == this_cpu_read(cpu_tlbstate.loaded_mm)) {
268                 VM_WARN_ON(irqs_disabled());
269                 local_irq_disable();
270                 flush_tlb_func_local(&info, TLB_LOCAL_MM_SHOOTDOWN);
271                 local_irq_enable();
272         }
273
274         if (cpumask_any_but(mm_cpumask(mm), cpu) < nr_cpu_ids)
275                 flush_tlb_others(mm_cpumask(mm), &info);
276         put_cpu();
277 }
278
279
280 static void do_flush_tlb_all(void *info)
281 {
282         count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
283         __flush_tlb_all();
284         if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_LAZY)
285                 leave_mm(smp_processor_id());
286 }
287
288 void flush_tlb_all(void)
289 {
290         count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
291         on_each_cpu(do_flush_tlb_all, NULL, 1);
292 }
293
294 static void do_kernel_range_flush(void *info)
295 {
296         struct flush_tlb_info *f = info;
297         unsigned long addr;
298
299         /* flush range by one by one 'invlpg' */
300         for (addr = f->start; addr < f->end; addr += PAGE_SIZE)
301                 __flush_tlb_single(addr);
302 }
303
304 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
305 {
306
307         /* Balance as user space task's flush, a bit conservative */
308         if (end == TLB_FLUSH_ALL ||
309             (end - start) > tlb_single_page_flush_ceiling << PAGE_SHIFT) {
310                 on_each_cpu(do_flush_tlb_all, NULL, 1);
311         } else {
312                 struct flush_tlb_info info;
313                 info.start = start;
314                 info.end = end;
315                 on_each_cpu(do_kernel_range_flush, &info, 1);
316         }
317 }
318
319 void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch)
320 {
321         struct flush_tlb_info info = {
322                 .mm = NULL,
323                 .start = 0UL,
324                 .end = TLB_FLUSH_ALL,
325         };
326
327         int cpu = get_cpu();
328
329         if (cpumask_test_cpu(cpu, &batch->cpumask)) {
330                 VM_WARN_ON(irqs_disabled());
331                 local_irq_disable();
332                 flush_tlb_func_local(&info, TLB_LOCAL_SHOOTDOWN);
333                 local_irq_enable();
334         }
335
336         if (cpumask_any_but(&batch->cpumask, cpu) < nr_cpu_ids)
337                 flush_tlb_others(&batch->cpumask, &info);
338         cpumask_clear(&batch->cpumask);
339
340         put_cpu();
341 }
342
343 static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf,
344                              size_t count, loff_t *ppos)
345 {
346         char buf[32];
347         unsigned int len;
348
349         len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling);
350         return simple_read_from_buffer(user_buf, count, ppos, buf, len);
351 }
352
353 static ssize_t tlbflush_write_file(struct file *file,
354                  const char __user *user_buf, size_t count, loff_t *ppos)
355 {
356         char buf[32];
357         ssize_t len;
358         int ceiling;
359
360         len = min(count, sizeof(buf) - 1);
361         if (copy_from_user(buf, user_buf, len))
362                 return -EFAULT;
363
364         buf[len] = '\0';
365         if (kstrtoint(buf, 0, &ceiling))
366                 return -EINVAL;
367
368         if (ceiling < 0)
369                 return -EINVAL;
370
371         tlb_single_page_flush_ceiling = ceiling;
372         return count;
373 }
374
375 static const struct file_operations fops_tlbflush = {
376         .read = tlbflush_read_file,
377         .write = tlbflush_write_file,
378         .llseek = default_llseek,
379 };
380
381 static int __init create_tlb_single_page_flush_ceiling(void)
382 {
383         debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR,
384                             arch_debugfs_dir, NULL, &fops_tlbflush);
385         return 0;
386 }
387 late_initcall(create_tlb_single_page_flush_ceiling);